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Abstract 
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid neoplasm in 

Western countries and represents an aggressive form of lymphoma, particularly 

heterogeneous in terms of symptoms, genetic profile and therapeutic response. This pathology 

presents significant challenges for researchers and clinicians due to its considerable 

variability.  

The heterogeneous nature of DLBCL, in fact, makes its management complex and 

difficult to identify subgroups of patients who may benefit from specific treatments. The 

variability in symptoms, genetic characteristics and response to therapies complicates the 

analysis and requires a multidisciplinary and integrated approach. 

One of the main obstacles to research is the difficulty in finding complete and accurate data 

on patients with DLBCL. Furthermore, morphological data are often insufficient to provide a 

complete picture of the disease. It is crucial, therefore, to collect a wide range of information, 

including not only morphological, but also genetic, molecular, clinical and immunological 

data. 

Using AI algorithms to manage vast data sets is critical to understanding the 

complexity of the disease and tumor environment to improve survival predictions in cancer 

studies.  

The stratification of cancer patients represents a crucial step in the personalization of therapies 

and the optimization of clinical approaches, allowing a separation of patients into 

homogeneous groups.  

The objective of this study is the clustering of DLBCL patients, as a function of 

morphological characteristics, using artificial intelligence to obtain a stratification of subjects 

that reflects their survival. Histopathological images and clinical data of patients with DLBCL 

were used to obtain homogeneous groups related to prognosis, using unsupervised partition 

algorithms. The use of hierarchical clustering has allowed the obtaining of two subgroups of 

populations, different in morphological characteristics and probability of survival to adverse 

events, such as disease aggravation or recurrence. The two groups also reflect the percentage 

of associated deaths and therefore the prognosis of the subjects themselves. 

The integration of these machine learning methods into clinical practice can lead to 

the optimization of treatment strategies and better disease management, increasing the 

chances of therapeutic success and improving the quality of life of patients. 
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It is therefore essential to intensify the commitment to data collection to improve the 

understanding of DLBCL and refine patient stratification techniques.  
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Introduction  

1.1 Lymphoma  

Lymphoma is a neoplasm that originates in the lymphatic system, a key component of 

the immune system. This disease is divided into two main categories: Hodgkin lymphoma 

(HL) and non-Hodgkin lymphoma (NHL), each characterized by different subtypes, 

pathogenesis, and clinical behaviors. 

Diffuse large B-cell lymphoma is the most common lymphoid neoplasm in Western countries 

and accounts for 30-40% of non-Hodgkin's lymphoma (NHL) cases. 85% of cases are known 

as "not otherwise specified" (NOS) and represent an aggressive, particularly heterogeneous 

tumor, in terms of symptoms, genetic profile and therapeutic response. [1] 

DLBCL is characterized by rapid growth of B lymphocytes, one of two types of white blood 

cells. The disease derives, in fact, from the neoplastic transformation of lymphoid cells and 

is genetically associated with a vast number of mutations, chromosomal translocations and 

epigenetic alterations.  

The diagnosis is in a wide age range, with a median localized around 64 years, and its 

course depends mainly on the extra-lymph node site in which it occurs. [2] 

The detection of the pathology requires a multidisciplinary and highly specialized approach 

to the patient, which usually combines the use of histological investigations, clinical analysis 

and advanced molecular techniques. The complex and heterogeneous network of information 

related to this subtype of lymphoma strongly influences the prognosis and the choice of 

therapeutic treatment. 

Characterized by a 5-year overall survival rate of 60-70%, the best approach for 

DLBCL characterization is personalized medicine. The use of gene expression profiling 

(GEP) studies allows, in fact, the optimization of the therapy, designed on the specific patient, 

thanks to the identification of target genes. [3] [4] [5] 

The treatment of lymphomas varies greatly depending on the subtype, stage, and 

molecular characteristics of the tumor. In non-Hodgkin's lymphomas, the therapeutic 
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approach can range from active surveillance in indolent cases to more aggressive 

chemotherapy regimens and targeted therapies. Standard treatment involves the use of  

R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). The 

response rate sees 25% of patients immune to therapy or subject to relapses, requiring salvage 

therapy with high-dose immuno-chemotherapy and/or allogeneic transplantation.  

Over the past 20 years, several attempts have been made to try to classify DLBCL-

NOS and better predict its therapeutic response.  

This was made possible thanks to the progressive development of high-throughput 

technologies that have greatly increased knowledge of the molecular characteristics and 

oncogenic mechanisms responsible for the development and progression of DLBCL. [6] 

However, despite the introduction of state-of-the-art tools and recent advances in the study of 

lymphoma, the use of such systems within clinical practice is still impractical.  

This is because, although a limited number of biomarkers have been identified for the 

characterization of the molecular subtype, these are still poorly reproducible and are 

associated with poor prognostic value. [6] 

Lymphoma represents a complex and dynamic field of cancer research. Within the 

diverse and heterogeneous system that characterizes lymphoma, artificial intelligence (AI) 

can play an important role in identifying characteristics or associations hidden from the 

human eye, useful for identifying any prognostic biomarkers, outlining the elements that 

differentiate the various neoplastic subtypes.  

The use of artificial intelligence (AI)-based algorithms could be easily integrated into 

pathology laboratories equipped with slide scanners, to increase current diagnostic/clinical 

performance. 

The aim of the following study is to identify the features that characterize subjects 

with DLBCL and that influence their survival status.  

The correct stratification of patients makes it possible to identify homogeneous groups, 

different from each other in terms of characteristics and course of the disease. In this way, it 

is possible to analyze the characteristics that unite the subjects of the same cluster and identify 

optimal therapeutic pathways, targeted and personalized on the patient, which would lead to 

an improvement in the prognosis of the subjects themselves. This research stems from a 

growing clinical need and the need to increase the reliability of the therapies used, to reduce 

the number of subjects immune to treatment and the number of relapses.  

The analysis conducted aims to create an algorithm capable of differentiating subjects 

affected by DLBCL based on the intrinsic relationships between morphological data and the 
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outcome of the disease, to support the pathologist in the decision-making process and the 

medical team in defining personalized paths and treatments for patients. 

1.1.2 Pathological anatomy 

Pathological anatomy is a discipline aimed at studying morphological, 

immunophenotypic and molecular alterations that involve tissues in different pathological 

processes, such as infections, inflammation and neoplasms. 

Histological examination is a diagnostic medical procedure that involves the 

microscopic analysis of tissue samples, taken for the study of pathologies. 

Histology is a branch of biology that deals with the study of cells and their organization within 

a tissue, both from a morphological and functional point of view. 

To allow their study, the tissue must be fixed, cut and colored with colors functional to the 

recognition of the various components that make up a tissue. 

Digital pathology is a field of pathology that allows the digitization of histological 

images taken from the patient during biopsy, using high-resolution scanners (Fig.1). The 

digital images produced by the scanners can be viewed with the latest generation software 

and analyzed through automatic processes, facilitating the management, sharing and 

manipulation of complex data, in a highly reproducible way. 

Modern slide scanners enable fast, high-resolution digitization of large portions of tissues 

(Whole-Slide Imaging – WSI), thus making available an enormous amount of data that 

reflects the morphological and functional aspects (in the case of immunohistochemical 

staining) of tissues. [6] This method allows the excised tissue section to be quickly visualized 

and analyzed, generating a digital file that can be easily used within complex computational 

algorithms. 

 

 
Figure 1 - Digitization of histological images 

Automating the analysis of digitized histology slides is a fast, high-throughput, and 

cost-effective alternative to manual analysis, characterized by slowness and possible errors 



 11 

related to inter/intra-operator variability. The use of artificial intelligence in medicine offers 

vast possibilities for improving diagnostic and clinical processes in cancer treatment. 

In particular, artificial intelligence can certainly play a fundamental role in speeding up the 

extraction and management of the large amount of data associated with patients, providing 

concrete help to clinicians.  

The information extracted, together with the knowledge and experience of the pathologist, 

outlines the diagnosis and the best therapeutic path for the patient analyzed. 

In oncology, pathological anatomy is essential for determining the type of tumor, the 

stage of the disease, and for determining possible therapeutic targets. 

In clinical practice, histopathological imaging analysis is based on the interpretation of the 

morphological and chromatic characteristics of the observed slides.  

Different operators then lead to different interpretations of the same slide. Pathological 

analysis is, in fact, strongly linked to the experience of the operator and influenced by it. 

There is, therefore, an evident variability in the quality of the service that can be provided to 

the citizen. 

The adoption of digital algorithms in pathology could, therefore, help reduce much of this 

variability, standardizing the medical procedure and bringing it to a higher quality.  

The digital transition to the disease, enhanced by artificial intelligence, could provide benefits 

to all patients. [6] 

1.1.3 DLBCL morphology 

DLBCL is a disease morphologically characterized by tumor cells that are larger than the 

benign cells present within the same portion of tissue, usually larger even than tissue 

macrophages. DLBCL cells are round or ovoid in shape, presenting a diffuse neoplastic 

growth, which invades the lymphatic tissue. 

The most common variants described are the centroblastic variant, the immunoblastic 

variant and the anaplastic variant. The characteristics of the variants are: 

A. centroblastic variant: In this variant, the cancer cells resemble centroblastic cells, 

immature B cells involved in the production of antibodies. It represents the most 

widespread variant, covering about 80% of cases; 

B. immunoblastic variant: in this variant, most of the cells (90%) are made up of 

immunoblasts, activated mature B cells that release antibodies into the body; 
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C. anaplastic variant: this variant is characterized by the presence of degenerated tumor 

cells, which lose their resemblance to normal lymphoid cells; It represents the least 

frequent variant, covering about 3% of all cases. 

 

Figure 2 - Common morphological variants of DLBCL in H&E: (A) centroblastic variant; (B) immunoblastic 

variant; (C) anaplastic variant [1] 

Despite the different histological configurations, the morphology of DLBCL is not currently 

correlated with the prognosis of subjects. To this end, the use of automated image processing 

algorithms could identify potential biological and immunohistochemical markers at the 

prognostic level. [7] 

1.1.4 DLBCL gene expression profile 

Cancerous diseases are often characterized by alterations in gene expression. Certain 

genes, known as oncogenes, can be overexpressed, promoting, for example, the uncontrolled 

growth of cancer cells. Others may be responsible for the evasion of cancer cells from the 

normal mechanisms of apoptosis. The gene expression profile is a quantitative analysis that 

allows to compare genes expressed differently in a pathological tissue with those expressed 

by a healthy tissue, to understand the mechanisms involved in the pathology analyzed and to 

allow their study.  The use of gene expression profiling allowed DLBCL to be classified into 

three categories: 

- CGB: subgroups of diffuse large B-cell lymphoma similar to germ center B-cells; 

- ABC: Activated B-cell Diffuse Large B-cell Lymphoma Subgroups 

- unclassified; 

The identified subgroups have different stages of differentiation and activation of B cells, also 

known as "cells of origin" (COO). The various categories are associated with different clinical 
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outcomes, with GCB patients associated with significantly higher overall survival and free 

survival than ABC patients. [6]  

Many studies have focused on defining predictive models for clustering genetic subtypes of 

DLBCL, exploiting the onset of shared genetic abnormalities. 

A 2018 study [8] identified 5 distinct classes of DLBCL. The study uses an automated 

method that starts from a series of classes (seeds) and iteratively moves cases in and out of 

classes to obtain a method for genetic distinction. The identified phenotypic subtypes, shown 

in yellow in the figure below, differ in gene expression signatures and responses to 

immunotherapy. 

 

Figure 3 – DLBCL classes by genetic distinction 

 

A subsequent study [9], based on a Bayesian predictive model, expands the number 

of previously identified genetic signatures and determines the probability of lymphoma 

belonging to one of the seven identified classes, each of which is associated with a biomarker 

(in purple).  

Although algorithms based on immunohistochemical evaluation have been identified 

for the identification of biomarkers, these are numerically very limited. The reproducibility 

and prognostic and predictive role of DLBCL-associated biomarkers, although generally 

included in the pathology report, is still controversial [6]. 

There is therefore a strong need to develop robust classification methods, aimed at defining 

the mechanisms and pathways that drive the development and progression of DLBCL, 

emphasizing the need to develop specific therapies. [10] 
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There are various disciplines aimed at studying information derived from alteration in 

the number of copies, chromosomal arrangements, epigenetic alterations and gene expression 

of subjects. The information derived from genetic profiles is numerous and requires elaborate 

analysis techniques to identify targets of prognostic value associated with diseases. 

In the study of complex pathologies, as in the case of DLBCL, the availability of such 

information is however difficult, due to the high heterogeneity between subjects which turns 

into a difficult comparative analysis. 

1.1.5 Multi-Omnic Analysis 

Multi-omnic analysis consists of the integrated use of genetic data and clinical data 

within algorithms for predicting survival, for analyzing the biological processes of 

oncological diseases and personalizing therapies.  

The analysis of omnic data, collected at scale, requires the use of advanced methods 

for the identification of significant patterns in the biological data and processes analyzed. 

The goal is to understand which molecular components interact and contribute to the 

functioning of a complex biological process.  

Understanding the biological processes involved in cancer diseases is a fundamental 

step for biomedical research, to develop innovative, targeted and personalized therapies on 

the individual subject, overcoming the "one-size-fits-all" approach. 

Multi-omnic analysis generally increases the accuracy of prediction in survival 

analyses by plotting the relationships between biological mechanisms and consequences on 

the body of the analyzed subject, as a clinician would. 
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The term "multi-omnic" refers to the study of the genome, transcriptome, epigenome, 

proteome, exposome, and microbiome.  

Below is a graphical diagram representing an overview of the main analyses of omnimic data 

(Fig. 4). 

 

 
Figure 4 - Multi-omnic approaches 

 

The term genomics encompasses all methods of analyzing the sequence and structure 

of DNA to identify genetic variants that may be associated with specific medical conditions.  

The use of DNA-microarrays, sensors that allow the simultaneous analysis of various genetic 

portions, has made it possible to analyze DNA on a large scale, revolutionizing branches such 
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as medicine and biology, increasing the effectiveness of therapies through personalized 

medicine [9]. 

Copy number variation (CNV), together with simple nucleotide variation (SNV), are methods 

of analysis that fall under genomics.  

NVC describes the phenomenon of the repetition of genomic sequences, characteristic of all. 

Such repeats may represent biomarkers in tumor disease processes.  

SNV is the process of replacing a single nucleotide within the DNA strand which, depending 

on its location within a coding or non-coding region, can lead to the formation of a pathogenic 

variant or the premature truncation of a protein. SNV leads to slight variations in the genome, 

associated with individual diversity and predisposition to certain diseases or response to 

external agents [9].  

These phenomena affect gene expression and, consequently, the protein expression of the 

individual. [11] 

The transcriptome profile analyzes the complete set of all RNA molecules present 

within a cell or tissue at any given time.  

The aim of the analysis is to map both coding and non-coding components, determining the 

heterogeneity of gene expression within cells, organs and tissues. [12] 

The analysis allows to reconstruct the networks of biological interaction, producing a 

molecular fingerprint of the processes.  

The proteome profile (the set of proteins synthesized by the genome) represents the 

large-scale study of the proteins expressed by an organism at a given time. The study of the 

proteome focuses on the analysis of post-translational changes and protein-protein 

interactions [9].  

The proteome analysis allows, in the study of DLBCL, to stratify patients into different 

subcategories; This stratification, however, does not correspond to the prognostic outcome of 

the stratified subjects.  

The analysis conducted in the following study aims to identify a stratification of patients 

based on morphological features derived from the subjects' histopathological slides, so that 

clustering corresponds to the prognostic output of the subjects' survival. 

Unlike the genome, both the transcriptome and the proteome are highly dynamic 

entities, which do not remain constant over time.  

Epigenomics is a branch of molecular biology that studies chemical changes at the 

epigenetic level that can affect gene expression and how these changes can be passed on to 

subsequent generations. The most common modifications concern DNA methylation, a 
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regulatory process of cell differentiation and repression, and post-translational histone 

alterations, a process related to the mechanisms of transcription or gene inhibition. [13] 

The exposome analyzes the exposure to environmental factors to which the individual 

is exposed and the influence that these factors can have on the body, investigating the 

relationships between external agents and the development of diseases. This branch allows 

the exploration of factors external to the body. 

Microbiomics analyzes the microorganisms that influence the physiology of an 

individual. The microbiota is made up of bacteria, archaea, viruses, phages and fungi. This 

branch studies how changes in microbiome activity and composition affect individuals' 

disease states. [14] 

Finally, metabolomics studies the quantification and expression of metabolites in a 

biological sample, focusing on the variation of the metabolic profile in various biological 

settings [13]. 

Multi-omnic sciences allow the understanding of biological mechanisms, studying the 

interactions between internal and external factors, allowing the identification of potential 

biomarkers or the identification of pharmacological targets, with consequent improvement of 

diagnostic-therapeutic pathways. 

The main challenges in analyzing large data sets in multi-omnics integration [13] are: 

- dimensionality curse: This is about the amount of data collected about a single subject 

in relation to contextually limiting the subjects on whom the data is taken. This aspect 

leads to several problems, including overfitting, the phenomenon of hyper-adaptation 

to training data with loss of the ability to generalize, the increase in computational 

cost and the increase in noise. These elements contribute to increasing the difficulty 

of interpreting the results and reducing the robustness of the analysis method used; 

- data heterogeneity: This refers to the inherent diversity of data and the methods used 

to analyse it. 

Multi-omnic analysis requires the use of integration methods that reduce system complexity 

and computational time, which allow for the optimal selection of the models that most 

correlate with the desired output.
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The main methods of multi-omnic data integration, theorized by Picard, are graphically 

shown in the figure below. [17] 

 
Figure 5 - Main methods of integration of multi-omics data according to Picard 

Data integration methods provide an overview of the most used ways to process data 

and how they are used together within analytics pipelines. [15] [16] 

Early and mixed integration strategies are the easiest to implement as they involve 

concatenating data into a single matrix, respectively, or initially analyzing several datasets 

separately before integrating them. These methods, although performing, ignore the intrinsic 

distribution of data and the possible complementarity within the various omics blocks [17]. 

Intermediate integration involves the selection of features that share a common latent space, 

to simulate molecular interactions between biological mechanisms. The main advantage of 

these techniques is their ability to identify the inter-omic structure of the joint by emphasizing 

the complementary information in each omics [17]. 

Late integration involves the application of machine learning methods on the different omics 

blocks, to combine their respective predictions (acronym-omnics multiple analysis).  

Finally, hierarchical integration strategies use external information, from scientific databases, 

sequentially on the different data, exploiting previous knowledge on the interactions between 

the various blocks.  

Advanced genetic testing can be particularly expensive when performed for the 

analysis of rare or complex diseases. Furthermore, the availability of data could be hindered 

by the use of different protocols or machinery present in the various research centers, by the 

lack of homogeneity of the data and by the different storage format.. 

1.2 Artificial intelligence in medicine 

Artificial intelligence (AI) is a field of data science that aims to create algorithms that 

can simulate human intelligence. AI encompasses several approaches that differ depending 

on the computational potential used (Fig. 6).  
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Figure 6 - AI layering 

Artificial intelligence offers new horizons to current clinical practices, providing methods to 

improve the diagnosis, treatment and management of diseases. Machine learning algorithms 

can analyze large amounts of genetic, imaging and clinical data, providing diagnostic support 

tools, which could revolutionize the therapeutic and clinical approach. Using automated 

algorithms in medicine can increase efficiency, reduce errors, and make care targeted and 

personalized. 

1.2.1 Machine Learning  

Machine learning (ML) encompasses learning methods that can automatically derive 

insights from data without the need to program code to do so. This technology is based on 

learning algorithms that can analyze and interpret large volumes of data, to identify patterns 

and trends that allow predictions or decisions to be made, leveraging predetermined patterns 

and/or equations.  

As the model learns, it improves its performance based on the number of examples made 

available in the system. The operation of the algorithms requires that the model takes as input 

the features, manually extracted from the data, learns the internal connections and produces a 

result. Machine learning is divided into three different types, depending on the learning 

modalities (Fig.7), each useful for solving different tasks [18]: 

1. supervised learning: Use models from the training dataset to map out the 

characteristics of the target, using the information learned to make predictions about 

future data. During training, the model compares the predictions obtained with the 

labels provided and updates the model to minimize the error made on the prediction. 

It is used for regression or classification tasks; 



 20 

2. unsupervised learning: Use unlabeled data to investigate patterns hidden in the data 

itself, without external supervision. It is used for clustering tasks, to group instances 

into separate clusters, based on specific combinations of the characteristics 

themselves; 

3. reinforcement learning: use both the information learned from the data and the 

information learned during the mistakes made during the training phase, to solve a 

specific task. It is therefore based on a cycle of actions and feedback, used to optimize 

the long-term strategy, taking advantage of the external dynamic environment. 

 
Figure 7 - ML Learning Techniques 

1.2.2 Deep Learning 

Deep learning (DL) is an evolution of machine learning that uses interconnected deep 

networks to model complex relationships between data. It is particularly useful when 

managing large datasets, both structured and unstructured.  

The algorithms used in DL have multiple layers of processing, linked together to form 

a hierarchy of features. Each layer of the network takes the information learned from the 

previous layer and processes it further, allowing the automatic extraction of high-level 

features. 

The main difference between DL and ML is that in deep learning, the features are not 

chosen directly by the user but by the algorithm itself, within the learning process (Fig. 8). 
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Figure 8 - Difference Between Machine Learning and Deep Learning 

The types of learning differ depending on the purpose. In clinical image processing, the 

main ones are divided into classification, detection, segmentation, and generation (Fig. 9). 

- Classification allows you to assign a label or class to a dataset, using predefined 

categories. This method can be used for the classification and grading of a given 

pathology; 

- Detection is the process of identifying and locating a target of interest within a frame 

or image. It is used to detect any tissue injuries or degeneration; 

- Segmentation is the process of classifying pixels in an image, to classify them into a 

certain class. The process makes it possible to segment and separate pathological 

regions or entire organs, to analyze their contents; 

- Generation allows the creation of new data, starting from reference images. The goal 

is to expand the information on which to apply subsequent learning algorithms. 

 
Figure 9 - Types of learning for clinical image processing 
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The performance you get using an ML or DL algorithm depends on the amount of data 

you use. ML algorithms tend to improve quickly at first as the amount of data provided 

increases. However, this trend tends to saturate, indicating that a significant increase in data 

does not also lead to improved performance. The advantage of using these methods lies in a 

lower computational cost, due to a lower complexity of the methods themselves and of the 

problem under consideration and a shorter associated resolution time. DL algorithms, on the 

other hand, tend to have lower initial performance that improves as the amount of data 

provided increases. The improvements are, in fact, continuous and more consistent than the 

ML (Fig. 10). 

 
Figure 10 - Relationship between the amount of data and the performance achieved in machine learning and 

deep learning  

The use of clinical, histological and genetic data within predictive models can be 

exploited in oncology to estimate patient survival and the degree of aggressiveness of the 

disease. The use of learning algorithms in cancer research is an important tool for 

biomedicine, offering numerous benefits ranging from early detection to the discovery of new 

biological targets. These benefits come from the ability to analyze significant amounts of 

complex data and identify hidden patterns that are difficult to detect with traditional methods.  

Cancer is a complex disease that requires the integrated analysis of data of different 

kinds and the collaboration of multidisciplinary teams. By simulating the practice followed 

by a doctor, AI algorithms can be used to automatically integrate and analyze different types 

of characteristics. 

Automated systems produce output by significantly reducing both the times and costs 

associated with traditional diagnostic methods and the workload of healthcare professionals, 

simultaneously increasing the scalability of diagnostic and therapeutic processes and 

optimizing the reproducibility of results. [19] 
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1.3 Clustering for patient stratification 

The use of clustering algorithms can be useful for the subdivision of cancer patients 

into homogeneous subgroups, which are difficult to identify with traditional approaches. 

Heterogeneity among cancer patients is one of the biggest challenges in cancer care. In fact, 

even if tumors are of the same type, they can behave differently and lead to different outcomes 

in patients who apparently have similar characteristics.  

Clustering in machine learning allows you to automatically manage the heterogeneity of data 

and process it effectively, creating subgroups with significant differences in treatment 

response, prognosis, or disease progression. 

1.3.1 Unsupervised Clustering 

Unsupervised clustering is a machine learning method that uses unlabeled data to generate 

groups of data (or clusters), without any prior knowledge of the category to which they 

belong. 

In clustering, the goal is to identify, within the analyzed data, hidden patterns or structures, 

generating homogeneous groups. Within each cluster, the data have common characteristics 

that are all the more distant from the other clusters the better the method used, in relation to 

the data provided to the system itself. 

A clustering algorithm is characterized by: 

•  a grouping rule; 

• a measure of similarity. 

To assess the similarity between the elements, a "prototype" is used; The prototype is an 

element, not necessarily real, that characterizes the elements of a cluster as a group. 

In the biomedical field, unsupervised clustering methods are particularly useful in the 

analysis of large heterogeneous datasets, to identify hidden patterns that allow patient 

stratification and therefore the optimization of treatments and the personalization of care 

pathways. The ability to discover new, non-obvious relationships between data is critical for 

clustering patients, identifying new biomarkers, and predicting disease progression over time. 

Unsupervised learning techniques tend to outperform supervised methods in the analysis of 

relatively small datasets, typical of biomedical databases. [20] 

In the study of a complex disease such as large B-cell lymphoma, it is essential to 

identify strategies for a significant stratification of subjects. 
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 The study carried out proposes the analysis and comparison of two different types of 

clustering, in order to allow a subdivision of patients that reflects the analysis of their survival 

and their prognosis The unsupervised clustering methods used are K-means and hierarchical 

clustering, which differ in their ability to handle different types of data, similarity parameter 

and sensitivity to initial parameters.  

1.3.1.1 K-means 

K-means is a partitional, unsupervised clustering algorithm used to generate a defined 

K number of disjoint groups.  

Each cluster in the K-means is associated with a representative point (prototype), called a 

centroid, usually calculated as the average of the elements. The number of centroids 

calculated is equal to the number K of groups to be formed.  

Additional parameters that characterize clusters are intra-cluster variability and inter-cluster 

variability. Intra-cluster variability is a measure of similarity between elements belonging to 

a cluster, such as distance between points in the same cluster and its centroid, while inter-

cluster variability measures the distance between the groups themselves. 

During the initial phase of data processing, centroids are randomly assigned. Each element is 

then iteratively assigned to the nearest cluster, leading to the computation of a new centroid. 

The iterative process ends when one or more conditions are met: 

• the centroids stabilize: the cluster assignments for the individual points no longer 

change and the algorithm converges towards the solution; 

• the algorithm has completed executing the specified number of iterations. 

K-means is generally used in the presence of continuous data sets, as it is based on data 

distance parameters. On discrete or categorical data sets, in fact, the algorithm may not lead 

to meaningful solutions. 

The most common measure of similarity used is the Euclidean distance (d) between the 

data. The purpose of the algorithm is, in fact, to minimize the squared distance between the 

data and the center of gravity of the cluster to which they belong.  

!(#, %) = (# − %)(# − %)′ 
This measure makes the algorithm highly sensitive to the scale of variables and the presence 

of outliers, assigning greater weight to data with a higher numerical value. To obtain results 

that are independent of variable scale, you must perform normalization methods on the data, 

so that the result is not biased. 
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The result obtained by clustering also depends heavily on the K parameter, which refers 

to the number of clusters into which the dataset is intended to be partitioned. The a priori 

definition of a parameter is difficult when preliminary information about the data is not 

known. The a priori definition of the K parameter can lead to the achievement of only sub-

optimal results. 

1.3.1.2 Hierarchical Clustering 

 Hierarchical clustering produces a hierarchy of nested clusters. The simplest 

representation of hierarchical clustering is a tree-like pattern, known as a dendrogram. In the 

dendrogram, each cluster union is represented by a branch, the height of which indicates the 

distance or dissimilarity between the groups. The length of the segment that joins the 

elements within the clusters, in fact, is proportional to the degree of dissimilarity. 

In hierarchical clustering, you don't need to define the number of clusters in advance. This 

makes it easier to use, especially for datasets for which no prior structural information is 

known.  

 In the bottom-up approach, the elements are considered as a single cluster, consisting of 

maximum similarity, to be iteratively joined to neighboring elements, each represented by a 

prototype. The merging of the individual elements continues until a single cluster is 

obtained. 

In the less used top-down approach, you start with a single cluster containing all the data, 

and progressively divide it into clusters contained by individual elements. 

Again, the quality of the clusters obtained can depend heavily on the similarity measure 

used. 

 In the context of agglomerative hierarchical clustering methods, one of the methods 

that can be used for group construction is ‘Ward’. This is used for the creation of compact 

and homogeneous clusters, with minimal internal variance. Unlike other methods, the 'eard' 

tends to avoid the formation of elongated or irregularly shaped clusters. 

 The use of hierarchical clustering techniques presents a great flexibility, thanks to 

the a posteriori choice of the number of groups to be formed and to a graphic and intuitive 

visualization of the similarity between the elements provided by the dendrogram. 



 26 

Methods 

2.1 Description of the dataset 

The data analyzed relate to a total of 117 subjects suffering from diffuse large B-

cell lymphoma. Histopathological images of the solid tumor in RGB, data on the status 

of death of the subject and temporal data relating to the presence of a first adverse event, 

starting from diagnosis, were provided of the available patients. 

For each patient, 50 40x histological ROIs, measuring 1024x1024, were extracted 

from digitized histology slides. ROIs were randomly derived from the original WSI, 

without the application of a specific algorithm or method to identify areas of interest. This 

is because, since it is a solid tumor, it was hypothesized that each area of the tile could 

constitute an area of clinical interest. 

 The analyzed images are stained with hematoxylin eosin (H&E). This stain is 

used in histopathology to highlight pathological changes present within an organ or tissue. 

Inside the slide, the cytoplasm and its basic components are stained pink, while the 

nucleus and various acidic components are stained blue-violet (Fig. 11). 

 
Figure 11- Example of histological ROI (1024x1204) with H&E staining extracted on the patient 

(21_L_1503_A1_EE_tile_18) 

 Histological data (ROI) were pre-processed to reduce areas of non-clinical 

interest (example: areas with high slide content). Binary masks relating to the 

distribution of tissue nuclei were then extracted from the processed tiles. 

From the data thus obtained, the features that characterize each subject were extracted, 

used as input to the tested algorithms. 
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2.2 Pipelines 

The aim of the study is the separation of the analyzed subjects into clusters that 

reflect the probability of survival and/or the state of death of the subjects themselves, 

using automatic partitioning algorithms. 

In the first phase of the project, histological data were processed to obtain tissue ROIs 

and the binary masks associated with them. The data obtained were then processed to 

create a reduced and homogeneous dataset, which reduced the areas of non-diagnostic 

interest present in the tiles and excluded the histological regions consisting of artifacts. 

On the data obtained, the characterizing characteristics were then extracted, both on the 

histological tiles and on the binary masks, to identify the morphological parameters that 

represented the individual subjects. The matrix of features thus obtained was used 

within two clustering algorithms, K-means and hierarchical clustering, to compare their 

performance and identify the most appropriate method for the separation of subjects 

based on their morphological characteristics. Finally, the survival curves of the event 

were estimated on the clusters obtained, to verify the goodness of the clusters based on 

the prognosis of the subject. 

 
Figures12- Process flow diagram 

The entire analysis process, shown in figure 12, has been developed and 

processed in Matlab. 
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2.3 Data Preparation 

The histological tiles obtained were processed to obtain a reduced dataset of 

increased quality. The reduced dataset was used in the later stages of the analysis. 

The processing process for increasing the quality of imaging data concerns: 

- use of a three-class network for the generation of binary masks, related to the 

nuclei scheme; 

- processing of the masks obtained; 

- tile processing. 

The processes will be analyzed in detail in the following chapters. 

2.3.1 Generation of binary masks 

The masks of the nuclei were automatically generated using an automatic 

algorithm for the discrimination of three classes.  

 

Figure 13 - (A) ROI extracted; (B) result of the softmax algorithm used; (C) overlapping the main 
boundaries with the original ROI; (D) binary mask obtained. (Patient reference: 
22_L_565_A1A_EE_tile_25) 
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This method allows to obtain probability masks (softmax), starting from the 

histological images colored in H&E. Softmax allows you to interpret the parts in the 

image as the probability of belonging to a class. There are three possible classes: cell 

nucleus, nucleus contours, and background (cytoplasm). 

Once the probabilities are known, binary masks of segmented nuclei can be 

obtained, without merging neighboring objects. The outputs obtained from the network 

are shown in Figure 13. 

Obtaining accurate cell segmentation is a necessary requirement for computational 

analysis of histological data. In the clinical field, in fact, the information obtained from 

cell morphology is fundamental within the diagnostic-decision-making process. [7] 

 

2.3.2 Processing Masks 

Once the binary masks were obtained, they were processed to allow a correct 

management of the data obtained. 

In the initial phase, masks were superimposed on the tiles to evaluate, nucleus by 

nucleus, the segmentation obtained by the three-class network. 

For each segmented nucleus, the average intensity of the color associated with it 

was evaluated, to evaluate whether the segmented area leaving the network corresponded 

to a cell nucleus. 

Areas segmented with the "core" class from the network correspond to regions of 

tissue colored purple. This, using the histological grayscale image as a reference, 

corresponds to values of low intensity (dark color). 

In this way, the nuclei corresponding to the areas of high intensity (white color) 

were identified, to remove them. 

Figure 14 shows the flow chart of the process used. 
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Figure 14 - Flowchart of the mask processing algorithm used 

This reduces areas of false segmentation that do not correspond to the nucleus of 

a cell but to the histological glass. This process is shown graphically in figure 15. 

 
Figure 15 - First phase of mask processing: reduction of false segmentation 
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An automatic algorithm was then applied to the output masks to remove the cores 

that had an irrelevant area (zero or unitary). This process is necessary for the correct 

generation of the graphic files and for the extraction of the morphological characteristics 

used within the algorithms used for the analysis of the survival of the subjects. The 

importance of this step was verified during the feature extraction phase. 

The result of the processing was verified graphically, overlapping the binary 

masks obtained from the softmax network and the output masks obtained after the 

removal of the small objects (Fig. 16): 

 
Figure 16 - (A) Original tile; (B) overlapping of the processed mask on the original tile (cores identified 
in yellow, cores discarded in blue) 

2.3.3. Tile Processing 

Histopathological tiles were evaluated to eliminate images of reduced quality or 

containing artifacts due to poor tissue preservation.  

Each tile was then scanned for any blurred areas. The presence of artifacts may be 

due to the different thickness or density of the tissue, as well as the possible presence of 

any air bubbles. 

The extent of the blurring of the tiles was assessed using the Laplacian method. 

The Laplacian operator performs a second-order derivation, aimed at identifying the 

points of rapid transition within an image. 
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Once the transitions (edges) have been identified, the variance of the Laplacian (*!) is 

calculated to measure the dispersion of the image values:  

*! = +,-(∇!/) 
where ∇!/ is the Laplacian operator applied to the image:  

∇!0(x, y) = ∂!	f(x, y)
∂x! + ∂

!	f(x, y)
∂y!  

Images for which the variance is less than the set threshold value (th=100) are removed 

from the dataset. 

Images that are not blurry are further analyzed to evaluate the percentage of pixels 

belonging to the slide, to maintain only the tiles that have a high content of pathological 

tissue. In this case, ROIs that matched the slide by more than 50% were removed from 

the dataset. Areas associated with the slide can be recognized by setting a threshold on 

color intensity (th=244/255), which distinguishes white areas from areas of tissue stained 

in H&E. 

The implemented algorithm is represented in the following flowchart: 

 
Figure 17 - Tile preprocessing flowchart 
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The result obtained from the application of the previous method is shown in figure 18. 

 

 

Figure 18 - Result obtained from the processing of the tiles 

 

The image above (Fig. 18) shows the distribution of files contained within each 

patient file after the cleaning algorithm was applied (Fig. 17), compared to the maximum 

number of files initially contained in the folder. 

Initially, 50 40x histological ROIs were extracted for each patient, with a size of 

1024x1024. Random extraction allows you to obtain a dataset that associates the same 

number of ROIs with each patient, without checking the ROI status. 

After applying the tile processing method explained above, each subject will be 

associated with a different number of images, depending on the number of tiles that have 

passed the applied quality checks. 

Depending on the distribution of the files and therefore the overall content of the data that 

can be analyzed for the various subjects, three thresholds are evaluated, depending on the 

minimum number of files acceptable within a medical record to keep the subject valid.  
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The thresholds evaluated are: 

- minimum number of acceptable files equal to 0 files: all patients are included in 

the study, for a total of 117/117 subjects, with a difference of 0%; 

- minimum number of acceptable files equal to 25 files: all patients who meet the 

chosen inclusion criterion are included, for a total of 110/117 subjects, with a 

difference of 5.128%; 

- minimum number of acceptable files equal to 30 files: All patients who meet the 

chosen inclusion criterion are included, for a total of 105/117 subjects, with a 

difference of 9.501%. 

Prior to the definition of the final data set, a further image processing phase was 

applied before proceeding with the final rejection of the tile. 

The algorithm in this case provides, after the first identification of the blurred images, 

by means of the Laplacian method, the manipulation of the HSV color space to 

improve the saturation and contrast of the original image.  

In particular, saturation has increased by 50 units per pixel and contrast by a factor of 

1.5.  

Increasing these values simultaneously leads to an overall increase in the vibrancy of 

the image, possibly leading to an increase in the number of files that could be saved 

within the final dataset, thanks to an improvement in the color of the image. 

Images with the most vibrancy are further tested to check the blur status using the 

previous method.  

If the image is sharp this time, the white will be checked before saving or permanently 

deleting the tile.  

The algorithm used is explained in the following flowchart: 
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Figure 19 - Optimized tile pre processing 

 

 

The results obtained after the application of the improvement algorithm (fig.18) are 

shown in the following figure: 
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Figure 20 - Result of the application of optimized tile processing 

 

The second method used demonstrates an overall increase in the number of images 

saved within each patient file. The thresholds evaluated are the same as in the previous 

case, but with variation in the results obtained: 

- minimum number of acceptable files equal to 0 files: all patients are included in 

the study, for a total of 117/117 subjects, with a difference of 0%; 

- minimum number of acceptable files equal to 25 files: all patients who meet the 

chosen inclusion criterion are included, for a total of 111/117 subjects, with a 

difference of 5.128%; 

- minimum number of acceptable files equal to 30 files: all patients who meet the 

chosen inclusion criterion are included, for a total of 110/117 subjects, with a 

difference of 7.692%. 

The difference in color and quality between the discarded and saved tiles, obtained after 

applying the patient inclusion criteria, is shown below: 
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Figure 21- In the green box the optimized and saved tiles; The other images are examples of discarded 
tiles. The cards refer to different groups of patients, specified in the figure 

2.4 Feature extraction 

 Once the reduced dataset was obtained, different morphological features were 

extracted from the tiles and masks, so that they were associated with each patient and 

uniquely characterized him. 

 The extraction of the features was carried out manually to optimize the 

characteristics that could be significant for the separation of the subjects into 

homogeneous groups. Subjects affected by DLBCL, in fact, are highly homogeneous and 
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poorly separable using only the morphological characteristics extracted from 

histopathological slides. 

 Separate analyses were performed on masks and tiles on three regions of interest: 

the whole image, the small cell population, corresponding to lymphocytes, and the large 

cell population, corresponding to DLBCL tumor nuclei. 

Masks were used to extract 12 geometric features, while tiles were used to extract 6 

texture features, of which 4 were extracted on tumor cells and 2 on the global image. In 

total, 18 morphological features are associated with each patient. 

 First, the pixel diameter of a DLBCL cell was manually selected, used as a 

reference to distinguish cancer cells from non-cancer cells (lymphocytes).  

Figure 22 shows the manual selection method, which consists of identifying the left and 

right extremes of the core diameter: 

 
Figure 22 - Manual selection of DLBCL cell diameter extremes: left end selection, right end selection. 

 The procedure was manualized in the absence of indications or annotations on the 

histological images analyzed, based solely on chromatic information. The diameter 

identified is 14 pixels. 

However, it is known in the literature that the size of neoplastic B cells reaches 

dimensions up to 4-5 times larger than healthy cells. [22] 

The diameter was then chosen on one of the tumor B cells that could be included in this 

clinical definition, evaluating the result obtained through the graphical representation of 

the two cell populations (Fig. 23) 
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The separation of the two populations allows the extraction of targeted characteristics to 

extract, separately, the indicators that characterize lymphocytes from the indicators that 

characterize DLBCL cells. The extracted parameters will be analyzed later. 

The two identified cell populations are shown in the figure below: 

 

Figure 23 - (A) mask of the nuclei; (B) identified cell populations: in yellow the lymphocytes, in purple 
the DLBCL cells 

  

 

Based on the available data, both shape and texture features were extracted to obtain a 

set of morphological characteristics associated with each patient that represented on 

average the characteristic cell population of the tumor. The matrix of average 

characteristics was finally normalized by min max normalization, obtaining variables 
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between 0 and 1, so that each had the same weight once entered the clustering 

algorithm: 

#",$%&' = #" − #'"$
#'() − #'"$

 

 

Below is the operational flow diagram for feature extraction, used for subject 

clustering: 

 
Figure 24 - Feature extraction flowchart 

 
 

2.4.1 Features extracted from binary masks 

On the masks, 12 geometric features were extracted, respectively extracted from 

the small cell graphs, the small cell population, the large cell population and the overall 

mask. 

The extracted features are shown in the flowchart below. 
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Figure 25 - Flowchart of features extracted from binary masks of nuclei  

The following are the characteristics extracted from the two cell populations 

identified by diameter threshold: 

• total number of cells belonging to the cell population; 

• average area of the cell population; 

• average circularity of the cell population. 

In the case of lymphocytes, the average density of small cells was also extracted. 
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On the total number of cells belonging to the various populations, the ratio was 

derived, as the number of large cells compared to the number of small cells and the sum 

of the two cell populations (total cells area).  

The identified ratio emphasizes the subjects that present a disproportion between 

the two populations:  

7 = ∑ 9,-:;	%;99
∑ <=,99	%;99 

with R < 1 when the lymphocyte population is greater than the number of DLBCL 

tumor cells present in the tiles. 

The values of the total cells area, the number of small cells, and the number of 

large cells were divided by the total number of tiles for each subject. This is because, after 

the application of the pre-processing operations, the subjects present a different number 

N of tiles, caused by the removal of the tiles that have not passed the quality controls 

carried out. 

Finally, the polymorphism parameter, a measure of cell size variability, was 

obtained on the masks, as the standard deviation of the cell areas identified in the 

segmentation. 

 

2.4.1.1 Graphs 

 A graph is a mathematical representation useful for extracting morphological 

features on histological tissues. 

The matlab function used to create the graph is: '>	 = 	:-,?ℎ(<, A)'. 
The unoriented graph returned by the function consists of a series of nodes (or 

vertices) and a set of edges, which connect the nodes, without a specific direction of 

connection. In tissue image analysis, the nodes are represented by the centroids of the 

segmented nuclei, while the edges represent the connections between the centroids 

themselves. 

The use of cell graphs in the study of oncological pathologies is significant 

because it allows to extract the spatial arrangement of cells and their interactions, 

allowing to capture complex details on the architecture of tissues. In histological image 

analysis, graphs can model both low-level features (such as cell shape or size) and high-

level features (such as tissue structure). 
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Figure 26 shows on the left the centroids superimposed on the segmented nuclei, and on 

the right the graph made on all the cellular areas identified in the mask. 

 
Figure 26 - Superposition of centroids (A) and graph (B) on the binary mask of nuclei 

  The extracted features were calculated on the graph built on the population of 

small cells, related to lymphocytes, as shown in figure 27.                                          

 
Figure 27 - Example of a graph obtained from the population of small cells 

The characteristics extracted from the lymphocyte population are: 

• number of nodes (corresponding to the total number of lymphocytes); 

• number of arcs; 

• Average node spacing in graphs (average number of connections per node). 

In the analysis of histological images, the use of the graph and the characteristics 

extracted from it can be useful for the representation of cell populations and for the 

relationships between them. 

It was decided to limit the characteristics extracted on the graph to the lymphocyte 

population only, starting from the hypothesis that a region with a high presence of benign 
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B cells would be associated with a better outcome of DLBCL pathology, since it would 

trigger favorable immune mechanisms. This hypothesis was provided directly by the 

referring pathologist. 

2.4.2 Features extracted from histological tiles 

 Texture features were extracted from the histological tiles both on the entire ROI 

region and on the areas corresponding to DLBCL tumor cells. 

Parameters derived from the gray levels co-occurrence matrix (GLCM) were calculated 

on tumor cells. The GLCM matrix describes the texture of an image by measuring how 

often the pixel pairs have specific values, relative to a specific spatial relationship of 

pixels that occurs in an image. [16] 

In particular, the matrix was calculated in Matlab using the 'graycomatrix' function, with 

angle 0 (Offset = [0 1]). Among the possible directions, shown in figure 28, the GLCM 

was calculated based on the horizontal variation of the pixels (one pixel away to the right). 

 
Figure 28 - Possible offset directions [23] 

The texture characteristics extracted in the study, obtained from DLBCL cells 

using the 'graycoprops' function, are: 

• Contrast: Calculated as the difference in gray between adjacent pixels, such as: 

[23] 

BCDA-,<A =E|G − H|!I(G, H)
",*

 

where	I(G, H) represents the probability of distribution of the difference in gray 

level between adjacent pixels (G, H). Contrast indicates the amount of local 

variation in the image, where a high value corresponds to a highly heterogeneous 

image. 

• Correlation: Measures the degree of similarity between adjacent pixels, for 

example: [23] 
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BC--;9,AGCD = ∑ (G − J))KH − J+L",* ⋅ 	I(G, H)
*)*+

 

where: J) , J+ represents the average of the gray levels of the row and column, 

respectively;  *) , *+ the variance of the gray levels of the row and column. 

• Energy: Also known as, angular momentum second, represents a measure of the 

uniformity of the GLCM, as the sum of the squared elements in the GLCM:[23] 

ND;-:O =EI(G, H)!
",*

 

• homogeneity: measures the proximity of the distribution of elements in the GLCM 

to the diagonal, such as: [23] 

PC=C:;DGAO =E I(G, H)
1 + |G − H|

",*
 

Below, in figure 29, is shown the flowchart that schematizes the functions extracted on 

the tiles. 

 
Figure 29 - Flowchart of the extraction of texture features extracted from histopathological tiles 
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Two further parameters were obtained on the tiles: the tissue density and the 

fraction of tissue area on the extracellular area.  

To identify the tissue pattern, the 'edge(gray_img, 'Canny')' function was used, applied to 

the grayscale image, which is useful for detecting edges in the image. Once the number 

of pixels classified as "edges" was obtained, the tissue pattern was calculated as the 

number of pixels associated with the edges divided by the totality of pixels in the image. 

The identified model is shown in the following figure:  

 
Figure 30 - (A) histological tile; (B) the edges identified in tile A are highlighted in yellow 

Finally, to identify the fraction of tissue area on the extracellular area, a binary 

segmentation algorithm based on color threshold was used to identify the two portions 

of interest: the area relative to the tissue and the area relative to the extracellular matrix. 

From a morphological point of view, this parameter can provide information on tumor 

architecture, useful for differentiating patients.  

2.5 Patient clustering and survival analysis 

 The normalized feature matrix was tested on two clustering algorithms: K-means 

and hierarchical clustering. Each method was evaluated to obtain k=2,3,4 clusters of 

patients.  

To evaluate the quality of the clusters obtained, the 'silhouette' method was used, in 

particular: 
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• Silhouette mean: calculated average value of the silhouette over all points of the 

dataset, it represents a global measure of the quality of clustering. The silhouette 

value for a point i is calculated as [17]: 

R(G) = S(G) − ,(G)
max	(,(G), S(G)) 

where ,(G) represents the average distance between point i and all other points within 

its cluster and S(G)	the average distance between the point G and all points in the 

nearest cluster. 

R(G) values have range from -1 to 1, where 1 represents an optimal that the point is 

well associated with one's cluster and poorly matched to the other clusters; Null or 

negative values indicate that the split may not be adequate. 

The average value R(G) represents the average of all the values of the silhouette. 

• Silhouette plot: This is a graphical method of displaying values R(G) for each point 

in the cluster. In the chart, each bar represents a point, and each point is grouped 

by cluster. The distribution of each group is represented graphically by the 

Euclidean method of distance. 

The clusters obtained were visualized by reducing the dimensionality of the variables 

to two main components, through the analysis of the main components (PCA). This 

technique was used to transform normalized variables into a set of uncorrelated variables, 

known as principal components. Variables can thus be displayed in a new space with 

reduced complexity, while maintaining their informative content. The first principal 

component is the direction along which the data varies the most, the second principal 

component is the direction orthogonal to the first that has the second greatest variance, 

and so on. 

In the graphs, observations that belong to the same cluster (depending on the result of the 

clustering) will be colored in the same way, allowing you to see how the data is distributed 

and how far it is separated from each other. 

 In the available data, each patient is associated with two main events: 

• death: binary vector that represents the state of death of the subject (death=0, 

death event that did not occur, death=1, death event that occurred); 

• any firt event: binary vector that represents the occurrence, in the subject, of a first 

adverse event (AFE=0, adverse event that did not occur or censored, AFE=1, 
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adverse event that occurred, or not censored). Aggravations or recurrences of the 

disease are considered an adverse event; 

• date of any first event: represents the time, in months, in which the first adverse 

event occurred. For subjects in whom AFE did not occur, the time is equal to NaN. 

These data, reported for example in Table 1, were used to derive the survival curves of 

the groups of subjects. 

For each clustering, the recurrence-free or worsening survival curve of the population 

groups obtained using the matlab function 'ecdf', with the 'function', 'survivor' option, was 

estimated. This function, used in 'survivor' mode, returns the survival curve of a group of 

subjects, like the Kaplan-Meier method. The function returns the empirical cumulative 

distribution, which represents the probability that the adverse event has occurred up to a 

certain point in time. 

If a curve remains high (survival = 1) for an extended period of time, it means that most 

patients remain free from long-term recurrence or worsening, suggesting a positive 

treatment or a better prognosis for that cohort. Conversely, if a curve descends rapidly, it 

means that many patients are experiencing recurrences or worsening in a short period of 

time, suggesting a worse prognosis. 

Finally, the probability curves obtained were associated with the state of death of the 

subject himself, to verify the correlation between the two events examined. 

 
Table 1 – Major events associated with the patient: death status, any first event, time any first event 

ID Death 
(0: No, 1 Yes) 

AFE 
(0: No, 1 Yes) 

Time 
 AFE (months) 

19_L_2084_A1_EE 0 1 25 

19_L_2934_4_EE 1 1 22 

19_L_2934_8_EE 0 1 17 

20_L_1001_A1_EE 1 1 18 

20_L_1001_EE 0 0 Nan 

20_L_1020_A1_EE 0 0 Nan 

… … … … 
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Results 

3.1 Analysis of the population of subjects 

 The 111 subjects analyzed were graphically represented as a function of time in 

months in which the first adverse event occurs, or not.  

 
Figure 31 - Occurrence in months since the occurrence of the first adverse event 

 On the x-axis, at time zero, all subjects who have not had an adverse event are 

represented. In the subgroup considered, 7 subjects died (in black). 

According to the various time bands, the subjects who had an adverse event were then 

represented. Within the first two years of diagnosis, most subjects died, while most subjects 

survive in patients who present with the first adverse event two years after diagnosis. The 

observation period of subjects ranges from up to three years, with only one subject monitored 

at 42 months. 

 It is not known what factor leads to the shown result. The increase in deaths in the first 

12 months could be due to a greater aggressiveness of the disease, the presence of any external 

risk factors, the presence of comorbidities or the ineffectiveness of the therapeutic treatment 

followed. 

0 20 40 60 80 100 120
Patients

0

6

12

18

24

30

36

42

D
at

e 
An

y 
Fi

rs
t E

ve
nt

Any First Event Occurrence

Death = 0
Death = 1



 50 

3.2 Comparison of clustering algorithms 
 The results of clustering were compared according to the number of subgroups into 

which patients were divided, respectively with the K-means algorithm and with the 

hierarchical clustering algorithm (method 'ward'). 

For each algorithm the following are shown: 

• the graphical representation of the division into clusters by displaying the first two 

main components obtained from the PCA; 

• silhouette plot for the visualization of the average silhouette of each subject, for the 

visualization of the goodness of the clusters obtained; 

• survival curve for adverse events, with a graphical representation of proportional 

deaths: the survival curve obtained for each cluster of subjects is superimposed on 

circles that represent, in proportion to their size, the number of deaths that occurred at 

that moment in time. 

For clustering obtained by means of a hierarchical division algorithm, the dendrogram of the 

output obtained on the normalized variables is also provided, with visualization of the cut and 

the consequent clusters formed. 

3.2.1 Splitting into two clusters 

This section compares the results of splitting into two clusters. 

• Clustering K-means: 

 
Figure 32 - The result of the grouping obtained with the k-means algorithm (k=2), with the number of deaths, displayed by 
the first two main components. 
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Figure 32 shows the two groups obtained using the K-means algorithm, for k=2, on 

normalized features. The result is represented graphically as a function of the first and second 

main components obtained by the PCA. 

The two clusters, although numerically different, have roughly the same mortality rate 

(~28%). 

 
Figure 33 - Silhouette graph for the k-means algorithm (k=2) 

The Silhouette graph shows, in cluster 1, 19 subjects, of which 5 with a silhouette 

value less than or equal to 0.1 and 14 with a negative value.  

This shows an equidistance from both clusters for subjects with R(G) ≤ 0.1 and a 

probable misassignment to the cluster for subjects with R(G) < 0 

Most of the subjects belonging to the clusters have R(G) ≥ 0.2. 

Cluster 2 has higher silhouette values overall than cluster 1. 

The value of the mean of the silhouette is equal to R(G) = 0.3221. 

 

Figure 34 shows the adverse event survival curves obtained in the two clusters: 
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Figure 34 - Adverse event survival curve for the k-means algorithm (k=2) 

From the graph, the curves are hardly distinguishable, with a trend reversal around 17 

months. From the division obtained with the K-means method (for k = 2) the two groups 

obtained show a similar evolution over time with respect to the variable of interest (adverse 

event). The two groups are therefore not significantly separable using the morphological 

features extracted from histopathological images.  As a result, the clusters obtained show no 

difference in survival. 

• Hierarchical clustering: 

 
Figure 35 - Result of the grouping obtained with the linkage algorithm (k=2), with number of deaths, displayed by means 
of the first two main components. 
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Figure 35 shows the two groups obtained from the use of the hierarchical clustering 

algorithm 'linkage', for k=2, on the normalized characteristics. 

Also in this case, cluster 2, in red, is numerically more populated. The mortality rate in the 

two groups is different, with 30.61% associated with group 1 and 25.81% for group 2. 

 
Figure 36 - Dendrogram representative of hierarchical clustering obtained from normalized features (k=2) 

The dendrogram represents in figure 36 the division of patients into two clusters. 

 
Figure 37- Silhouette graph for the linking algorithm (k=2) 
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The Silhouette graph (Fig. 37) shows 11 subjects with a negative value, distributed in 

both clusters (2 in cluster 1, 9 in cluster 2). The clusters have similar silhouette values, 

showing similar behavior in terms of internal cohesion and separation between the clusters. 

The value of the mean of the silhouette is equal to R(G) = 0.3112. 

 
Figure 38 - Result of the grouping obtained with the linkage algorithm (k=2), with number of deaths, displayed by the first 
two main components 

 The adverse event survival curve obtained (Fig. 38) is more distinct for the two groups 

of subjects identified by the hierarchical clustering algorithm. Cluster 1, in blue, has better 

survival of the event than cluster 2, in red, which has lower values and a greater slope. Around 

15 months, the curves partially overlap, indicating some similarity in the likelihood of 

survival between the two groups at that time. However, in the following moments of time, the 

curves are widely separated. This divergence between the curves indicates a difference in 

long-term survival rates between the two groups. 

 The two groups identified by the hierarchical clustering algorithm lead to the 

formation of the two populations that have different intrinsic characteristics or risk factors, 

which influence their probability of surviving over time. 

 Table 2 summarizes the parameters that characterize the groups identified by the two 

algorithms tested. 
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Table 2 - Comparison of the clusters parameters (k=2) 

Method Clusters Percentage of deaths 

Clustering K-means Cluster 1 28.00% 

 Cluster 2 27.87% 

Hierarchical clustering Cluster 1 30.61% 

 Cluster 2 25.81% 

3.2.2 Division into three clusters 

This section compares the results of splitting it into three clusters. 

• Clustering K-means: 

 
Figure 39 - The result of the grouping obtained with the K-means algorithm (k=3), with the number of deaths, displayed by 
means of the first two main components. 

 
Figure 40 - Silhouette graph for the K-means algorithm (k=3) 
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 In Figure 39 you can see the patient groups created by the K-means algorithm, for 

k=3. This subdivision, as shown by the graph of the silhouette (Fig. 40), is more accurate than 

the division into two clusters previously analyzed, carried out in a similar way on the 

morphological characteristics extracted from the entire population of subjects. 

The following are highlight: 

• fewer subjects with possible assignment to the wrong cluster: the value has dropped 

from 19 (k=2) to 5 (k=3); 

• Increase in the average value of the silhouette: the average value of the successful 

silhouette equal to R(G) = 0.3508. 

 
Figure 41 - Adverse event survival curve for the K-means algorithm (k=3) 

  

The trend of the adverse event survival curves (Fig. 41), as in the case of clustering with K-

means for k=2, shows curves that tend to overlap for clusters 2 and 3, and a slightly different 

trend for cluster 1. The latter, in fact, has a higher probability of survival to the adverse event, 

a trend that is also reflected in a lower effective mortality.  

In addition, the curve of cluster 1 falls rapidly after 21 months, showing an opposite trend 

compared to the other clusters. 

Clusters 2 and 3 have approximately the same risk of worsening and recurrence, as shown by 

the overlapping curves; Cluster 3 is, however, associated with the highest mortality rate 

(36.36%). 
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• Hierarchical clustering: 

 
Figure 42 - Result of the grouping obtained with the linkage algorithm (k=3), with number of deaths, displayed by means 
of the first two main components. 

 

 
Figure 43 - Dendrogram representative of hierarchical clustering obtained from normalized features (k=3) 
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The division into three clusters carried out by the hierarchical clustering algorithm 

(Fig. 42-43) leads to the formation of two groups of patients of the same size (cluster 2, in red 

and cluster 3, in yellow) and to the formation of a small cluster (cluster 1, in blue), consisting 

of only seven subjects. 

 Subjects belonging to cluster 1 show similar morphological characteristics, but very distant 

from cluster 2, as can be seen from the height of the segment that unites them on a hierarchical 

scale.  

The height of the branches of the dendrogram, in fact, reflects the dissimilarity between the 

various groups.  

 
Figure 44 - Silhouette graph for linkage algorithm (k=3) 

  

The silhouette graph (Fig. 44) associated with the grouping shows a high heterogeneity of the 

characteristics of cluster 1, represented above. The values achieved per silhouette fluctuate, 

in fact, from a minimum of 0.6 to a maximum of 0.8. 

The other two clusters, on the other hand, have silhouette values that tend to be lower, with 6 

subjects likely incorrectly clustered in cluster 2 and 7 subjects likely to have incorrect 

groupings in cluster 3. The average value of the silhouette is equal to R(G) = 0.2942. 
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Figure 45 - Result of the grouping obtained with the linkage algorithm (k=3), with number of deaths, displayed by means 
of the first two main components 

 The adverse event survival curves (Fig. 45) are quite distinct for clusters 2 and 3, 

reaching a point of similarity around 15 months.  

The curve of cluster 1, on the other hand, is drastically inclined, a trend that is reflected in a 

better survival of the initial event and a sudden worsening over time. Subjects belonging to 

cluster 1 present, if not censored, adverse events that occurred after twenty and before twenty-

six months. 

In contrast to the division obtained with k=2 (Fig.38), the survival curves reflect less the 

negativity of the prognosis associated with the subjects belonging to the clusters. Table 3 

summarizes the parameters that characterize the groups identified by the two algorithms 

tested. 

Table 3- Comparison of the clusters parameters (k=3) 

Method Clusters Percentage of deaths 

Clustering K-means Cluster 1 15.79% 

 Cluster 2 27.12% 

 Cluster 3 36.36% 

Hierarchical clustering Cluster 1 14.29% 

 Cluster 2 27.27% 

 Cluster 3 30.61% 
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3.2.3 Division into four clusters 

The results of the four-cluster split are compared below. 

• Clustering K-means: 

 
Figure 46 - The result of the grouping obtained with the K-means algorithm (k=4), with the number of deaths, displayed by 
the first two main components. 

The division into four clusters obtained by the K-means method shows (Fig. 46) a 

different number and a different intrinsic mortality rate. The mortality rate of the groups is 

collected in Table 4. 

 
Figure 47 - Silhouette graph for the K-means algorithm (k=4) 
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 The division, graphically shown by the silhouette graph (Fig. 47), shows four distinct 

groups, with 1 subject probably mistakenly assigned in cluster 2, 2 subjects in cluster 2 and 5 

in cluster 3. The average silhouette value is equal to R(G) = 0.3339. 

 
Figure 48 - Adverse event survival curve for the K-means algorithm (k=3) 

  

Again, the event survival curves (Fig. 48) are not well distinguished.  

In the initial part, before 15 months, all the curves are superimposed, showing various trend 

reversals between the various groups. 

This could be a similar progression of the disease for all identified clusters. 

In the following months, the curves are more separated, although there are various changes 

in trend, especially between group 1 and group 3 and between group 3 and group 4. 

In addition, the curves identified do not reflect the prognosis in terms of death. 

By analyzing the 40% probability of survival to the adverse event, we can see how the yellow 

curve (cluster 3) has a lower survival to the event than the blue curve (cluster 1).  

However, the mortality rate in cluster 1 is the highest among the various groups, and that of 

cluster 1 is the lowest. 

This result would indicate an inverse correlation between the probability of worsening or 

recurrence and the death of the subjects. 
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• Hierarchical clustering: 

 
Figure 49 - Result of the grouping obtained with the linkage algorithm (k=4), with number of deaths, displayed by means 
of the first two main components. 

 
Figure 50 - Dendrogram representative of hierarchical clustering obtained from normalized features (k=4) 

In Figure 49 it is possible to visualize the groups of patients created by the linkage 

algorithm, for k=4. Clusters 1 and 2 are about equally distant from clusters 3 and 4, as shown 

by the height of the segment that unites them in a hierarchical scale (Fig. 50). Cluster 1, in 
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blue, is also associated with the highest mortality rate, while cluster 3 is the group associated 

with the lowest mortality rate. 

 
Figure 51 - Silhouette graph for the K-means algorithm (k=4) 

The silhouette graph (Fig. 51) shows a good separation of the clusters for the first three 

groups, while in cluster 4 there are 10 subjects with possible belonging to the wrong cluster 

(negative silhouette). The average value of the silhouette is equal to R(G) = 0.3277. 

 
Figure 52 - Result of the grouping obtained with the linkage algorithm (k=4), with number of deaths, displayed by means 
of the first two main components 

 The adverse event survival curves obtained by the hierarchical clustering algorithm 

(Fig. 52) are more separated than the clusters obtained by the k-means algorithm, with the 

same number of clusters obtained.  
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Cluster 3, in yellow, seems to have a higher survival to the adverse event than the other curves, 

but an almost vertical trend in the course of the disease. Survival to cluster event 3, at least in 

the early stages, reflects the lower mortality rate associated with the group. 

Cluster 4 and Cluster 1 show overlapping trends in the initial phase, showing distinct 

behaviors only after 15 months.  

The trend of cluster 2, in orange, maintains its trend, reflecting its low intrinsic mortality, up 

to about 30 months, where it reverses its trend with cluster 1. 

 Table 4 summarizes the parameters that characterize the groups identified by the two 

algorithms tested with k=4. 

 
Table 4 - Comparison of cluster parameters (k=4) 

Method Clusters Percentage of deaths 

Clustering K-means Cluster 1 40.00% 

 Cluster 2 23.81% 

 Cluster 3 21.74% 

 Cluster 4 30.77% 

Hierarchical clustering Cluster 1 44.44% 

 Cluster 2 22.58% 

 Cluster 3 14.28% 

 Cluster 4 27.27% 

 

From the use of machine learning methods for the stratification of a group of patients 

with DLBCL, the use of morphological features was found to be, in the case of hierarchical 

clustering with two groups, the best algorithm to discriminate subjects in terms of survival to 

the event. 

The results obtained demonstrate, in the remaining cases analyzed, that the characteristics 

used to obtain the clusters are not sufficiently discriminating to reflect the survival of the 

adverse event, in terms of recurrences or aggravations of the disease. 

In the case of subjects with DLBCL, in fact, the morphological features alone are generally 

highly heterogeneous and not very informative for the division into groups based on 

prognosis. 

 The result obtained demonstrates how the optimized extraction of characteristics, in 

terms of texture and shape variables, under the pathologist's indication, can still be effective, 

despite the intrinsic difficulty of the problem. 
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3.3 Critical issues and improvements 

 From the analysis of the results obtained, it is possible to deduce that the approach 

used for the stratification of patients is adequate to reflect the survival of the subjects. The 

result of the clustering carried out with the linkage method, with k=2, can represent, in fact, 

a starting point for the analysis of the populations affected by DLBCL. From the methods 

analyzed as a whole, however, it is evident the difficulty in the stratification of subjects 

affected by DLBCL, using morphological features alone. 

 It is possible that the data used within the feature matrix is connected by complex 

networks that may not have been captured by the tested algorithms (K-means and hierarchical 

clustering). However, it was not possible to use and compare other clustering algorithms on 

the available data because the data has the same average density and the variables are also 

linearly dependent. 

ROIs obtained from histological data could, in a future study, be identified by a guided 

algorithm, which considers areas of clinical interest and automatically discards areas of non-

interest. The algorithm to generate the ROI currently used draws 50 tiles randomly, pulling 

them from the entire WSI. 

In addition, ROI staining could be standardized by a stain normalization algorithm to generate 

a dataset free of intra-patient and inter-patient color variability. 

The data available to conduct the study are currently scarce and inadequate to be used 

within a clinical trial. It would be appropriate, in fact, to collect additional clinical data from 

patients, to allow a statistical study on the characteristics to be carried out and identify any 

significant parameters for the stratification of the populations. Such data could also be 

introduced into the matrix of features provided as input to the clustering algorithms, to allow 

the method to extract hidden patterns, possibly related to the morphological variables of the 

subject. 

To improve the analysis, it would also be appropriate to collect data relating to further 

reports, in order to complete the subject's medical history and extract characteristics relating 

to the prognosis of the analyzed population.  

In the study of cancer subjects, in fact, it is essential to consider various clinical, biological 

and molecular parameters for a complete evaluation of the disease. These parameters not only 

help diagnose the disease, but also define its prognosis and personalize treatment. 

In patients with DLBCL, it is essential to collect genetic data to identify biological markers 

related to prognosis. 
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 The expansion of the dataset and the characteristics associated with the subjects could 

allow the use of deep learning approaches, machine learning techniques more suitable for 

identifying the deep correlation between data, thanks to the intrinsic extraction of the 

characteristics linked to the output. 

 The comprehensive evaluation of a patient with DLBCL therefore requires a 

multidisciplinary approach that integrates clinical, biological, molecular and imaging 

information. This method is the best for defining the prognosis and planning treatment. Using 

an AI-based multimodal algorithm could lead to significantly better results for patient 

stratification and analysis of their survival. 

 The tested method and the characteristics extracted from the population of subjects 

analyzed is however a first starting point for the stratification of subjects affected by DLBCL, 

showing how the optimization of the extracted parameters can, even in the face of a 

heterogeneous group of subjects, allow the clustering of patients.
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Conclusion and future developments 

 The study demonstrated how the application of artificial intelligence techniques for 

the stratification of patients with DLBCL, based on morphological characteristics, represents 

a potential tool to improve the understanding of the disease and clinical management. In 

particular, the use of hierarchical clustering allowed us to obtain two subgroups of 

populations, based on the extracted morphological characteristics that reflect the percentage 

of associated deaths and the prognosis of the subjects themselves. 

However, the results obtained highlighted some limitations in the approach used, in 

the ability to accurately reflect patient survival. This is likely due to a complex and inherent 

data network that is not fully captured by the algorithms tested, as well as the scarcity of 

available data. 

The difficulties encountered underline the need to improve the quality and quantity of 

the data collected and the need to use genetic and molecular information, to allow a more 

precise and useful stratification for the personalization of the treatment of the subjects, with 

a view to personalized medicine. A multimodal approach combining clinical, genetic, 

biological, and imaging data, supported by artificial intelligence, could make it possible to 

extract hidden patterns and significantly improve prognosis and treatment planning for 

patients with DLBCL. 

In anticipation of an expansion of the available data, a multimodal algorithm has been 

developed, based on deep learning, capable of taking clinical, histological and genetic data as 

input and returning the survival curve of the patients analyzed as output. The algorithm was 

developed by adapting the 'Pathomic Fusion'  method developed by Chen et al. [24]. The 

algorithm uses various unimodal networks, VGG for histological image analysis, GCN for 

graph analysis, and SNN for molecular data analysis. The unimodal outputs are combined 

with each other to generate a complex network with optimized performance. In the process, 

Kronecker's product of unimodal features is used, combined with a gating-based attention 

mechanism to control the expressiveness of each representation. This helps you understand 

how the importance of features changes based on the input you provide. Finally, the output 

of the learning model can be used to estimate the probability of survival of the analyzed 

subjects. 

Continuing research in the field of DLBCL is critical to better understand the 

mechanisms underlying the disease, identify novel prognostic biomarkers, and optimize 
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personalized therapies, improving the overall prognosis of the subject. The integration of 

advanced artificial intelligence techniques within clinical practice opens a promising avenue 

for clinician decision support in the management of cancer patients, contributing to the rapid 

processing of large data sets, facilitating patient management and aiming for precision 

medicine. Looking ahead, the use of AI algorithms in medical practice could revolutionize 

the ability to interpret large amounts of complex data, enabling the identification of hidden 

patterns and correlations between biological, clinical, and imaging features that would 

otherwise escape traditional analysis. Approaches based on machine learning algorithms can 

offer valuable support to traditional medicine. 

In conclusion, continued investment in clinical research, in combination with the use 

of advanced technologies, will be decisive in achieving significant advances in the prognosis 

of patients with DLBCL and other complex and heterogeneous diseases that, to date, remain 

difficult to effectively treat with traditional approaches. 
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