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Abstract

Chronic diseases, particularly those affecting mobility such as Parkinson’s

disease, present significant challenges in diagnosis and management due to

their progressive nature. Understanding the correlation between physical

activity (PA) and chronic disease progression is crucial for developing

effective treatment strategies. Engaging in physical activities provides

valuable insights into individuals’ daily routines, health conditions, habits,

and mental well-being. Continuous monitoring of motor activities is

essential for early detection, tracking disease progression, and guiding

therapeutic interventions. Traditional Optical Motion Capture (OMC)

systems, considered the gold standard for motion analysis, offer high

precision but are expensive, require complex setups, and are limited to

controlled environments. These limitations constrain their applicability in

real-world settings. Given these constraints, this thesis project explores

the potential of Inertial Measurement Units (IMUs) as a more accessible,

scalable, and practical alternative for Human Activity Recognition (HAR)

and chronic disease management. IMUs, which include accelerometers

and gyroscopes, are wearable sensors capable of accurately detecting

and classifying human motions in natural environments over extended

periods. This approach enables continuous, real-world data collection,

which is crucial for enhancing the monitoring of chronic conditions and

improving patient outcomes through timely interventions. The research

develops and validates a HAR system based on IMU data, focusing on

identifying different movement patterns using Delsys IMU sensors. The

study investigates the relationship between daily physical activity and the

progression of chronic diseases, with an emphasis on detecting activities

related to these conditions. An experimental protocol was implemented on

7 healthy subjects to establish a baseline for detecting activities relevant

to the intended clinical applications. This protocol also facilitated the

simultaneous capture of motion data from both IMUs and EMG sensors,

allowing for a comprehensive analysis of their performance. IMUs were
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strategically placed on various body parts, such as the wrist, thigh, and

pocket, to determine optimal sensor placement for activity detection while

ensuring patient comfort.

Various machine learning models were evaluated for their ability to classify

different physical activities, with the Multilayer Perceptron (MLP) neural

network identified as the most effective model, offering a balance between

accuracy and computational efficiency. The performance of the IMU-based

system yielded satisfactory results, indicating that IMUs can achieve high

accuracy levels for almost all placements.

Additionally, this thesis discusses the broader implications of using IMUs for

chronic disease management. Continuous data collection enabled by these

sensors provides a non-invasive method for tracking motor impairments’

progression, allowing for more precise assessment of treatment efficacy. This

capability is especially valuable for chronic conditions, where subtle changes

in motor function may require adjustments in therapeutic strategies.

In conclusion, this research demonstrates that IMUs, combined with ad-

vanced machine learning algorithms, offer a viable, cost-effective alternative

to traditional OMC systems for human motion analysis. The portability

and scalability of IMUs make them particularly well-suited for continuous

monitoring in real-world settings, presenting significant potential for early

detection and management of chronic diseases. Future research will focus on

refining the system for specific clinical applications and exploring integration

with other wearable technologies to further enhance diagnostic capabilities.

The study highlights the importance of daily physical activity in managing

chronic diseases and underscores the potential of sensor-based monitoring

in improving health outcomes and extending longevity.
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1 Introduction

1.1 Human Activity Recognition

Human Activity Recognition (HAR) plays a critical role in understanding and

interpreting human actions within specific time frames. It relies on the analysis

of time-based data, which can be captured in various formats such as videos,

images, or discrete measurements. This field finds wide-ranging applications across

diverse sectors, including healthcare, security, and infrastructure management.

Traditionally, sensor data for HAR has been collected using two main motion capture

methods: camera-based computer vision systems and inertial sensor-based systems

[1].

In computer vision systems, human activities are observed and recorded through

cameras, but automating the recognition of these activities from image sequences

poses significant challenges. Moreover, continuous camera surveillance raises

privacy concerns and may not always be feasible, particularly in scenarios requiring

uninterrupted monitoring. In the medical field, Optical Motion Capture (OMC)

systems paired with force plates are widely regarded as the gold standard for

measuring gait time series in patients. However, OMC systems come with several

limitations, including high expenses, extensive data processing durations, and spatial

restrictions. These disadvantages have led to a growing interest in wearable sensor

technologies as an alternative solution.

In recent decades, wearable sensors have emerged as pivotal tools in response to the

constraints of traditional gold standard method and technological advancements.
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The compact design of wearable sensors allows for unhindered analysis, a notable

difference from optoelectronic motion capture (OMC) systems, which, despite

their precision, are hindered by high costs, lengthy data processing times, and

spatial limitations. Consequently, wearable sensors are increasingly recognized

as a promising alternative solution. Inertial sensors, such as accelerometers

and gyroscopes, have gained interest due to advancements in semiconductor and

Micro-Electro-Mechanical Systems (MEMS) technologies. When miniaturized, these

sensors can be discreetly attached to or worn on the human body, providing a

cost-effective and non-intrusive method for data collection.The information gathered

from wearable sensors serves as valuable input for HAR systems, which utilize

machine learning and pattern recognition techniques to analyze human activity

patterns [2]. As Human Activity Recognition (HAR) technologies advance, the

integration of wearable devices and non-intrusive sensors offers significant potential

for gaining deeper insights into human behavior. Nonetheless, challenges remain,

including ensuring user acceptance and determining optimal sensor placement during

various daily activities. Furthermore, lightweight wireless sensor devices offer

versatility and comfort, making them suitable for continuous monitoring during

activities of daily living, including sleep. For elderly individuals, these devices can

be instrumental in detecting alarm conditions triggered by unusual behaviors or

changes in routine activities associated with psychomotor pathologies. In the realm

of sports and fitness, such sensors enable tracking of exercise routines and repetitions,

facilitating the monitoring of workout regimens and energy expenditure assessment.

A notable advancement in sensor technology involves combining surface elec-

tromyography (sEMG) and accelerometer sensors into a single device. This
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integration enables the collection of comprehensive data on muscle activity, force,

fatigue, direction, and acceleration. Such data are essential for evaluating sports

performance, preventing injuries, facilitating rehabilitation, and monitoring human

activity in various contexts [3].

The primary objective of this study is to collect data from subjects through the

strategic placement of practical and non-intrusive sensors during routine daily

activities. The overarching aim is to identify optimal positions for IMU sensors that

minimize discomfort while addressing medical needs for individuals with chronic

conditions and respecting privacy considerations. To assess the effectiveness of

wearable sensors in detecting various physical activities and their potential for

monitoring different health conditions, this study will develop and implement an

algorithm capable of recognizing a range of easily performed and captured daily

activities. This is particularly relevant for patients with chronic illnesses such as type

2 diabetes, Parkinson’s disease, and Alzheimer’s disease. The goal is to use these

activities as key indicators for tracking disease progression and detecting disease

advancement. Sensors will be strategically placed on different parts of the body to

enhance detection accuracy. The primary aim is to create a monitoring system that

is practical and comfortable for all patients, including those with chronic conditions,

while also demonstrating and addressing the limitations of wearable technology

compared to established gold standard techniques. Furthermore, this study aims to

build a robust neural network for accurate activity classification, thereby improving

patient compliance with sensor usage. By carefully selecting sensor positions that

ensure minimal discomfort, the system enables patients to carry out daily activities

without inconvenience.
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The study will focus on a cohort of healthy young adults, aiming to identify and

classify a variety of everyday activities. This approach ensures that the tested

algorithm can be effectively applied to a broad spectrum of common daily activities.

The study will focus on a cohort of healthy young adults aged 20 to 27 years, aiming

to identify and classify a variety of everyday activities. This approach ensures that

the tested algorithm can be effectively applied to a broad spectrum of common daily

activities. A total of 7 volunteers, comprising both women and men, participated

in the study. The participants’ ages ranged from 20 to 27 years, with a mean age

of 23.0 years and a standard deviation of ±2.31 years. Each participant wore three

9-axis Inertial Measurement Units (IMUs) positioned at different locations on the

body.

1.2 Protocol definition

Formulating a protocol was essential to conduct an exhaustive analysis aimed at

elucidating the influence and magnitude of daily activities on the advancement of

chronical pathologies, which is the central starting point of this thesis. Given the

wide spectrum of these pathological conditions, the absence of established protocols

in the literature presents a challenge to conducting comprehensive analyses.

To rigorously define this protocol for instrumental measurement employing inertial

sensors, literature review on various motion capture techniques was undertaken,

aimed at delineating both the primary advantages associated with wearable sensors

and recent studies involving the application of inertial sensor units (IMUs). This

includes identifying optimal sensor placements, defining acquisition protocols,

establishing experimental setups, examining investigated parameters, reporting
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results, and discussing associated limitations. Firstly, an exhaustive examination

was conducted on diverse motion capture techniques, encompassing both traditional

methods and the emerging use of wearables for gait assessment. The advantages of

wearables, including IMU units, were underscored to elucidate their selection as the

preferred mode of acquisition in this study.

Subsequently, the focus of the literature review shifted to identifying the optimal

sensor placement, taking into account both common and precise locations. Central

to the selection of placement was the consideration of physical activity (PA) in

various chronic pathologies, with particular emphasis on type 2 diabetes, Alzheimer’s

disease (AD), and Parkinson’s disease(PD). By analyzing established physical

protocols for each condition, specific motor tasks were delineated and subsequently

acquired. This process has lead the selection of the best sensor placement to acquire

data during each activity.

Furthermore, the entire study followed the sensor placement protocol indicated

in the reference text ”Atlas of Muscle Innervation Zones: Understanding Surface

Electromyography and Its Applications” by M. Barbero, R. Merletti, and A.

Rainoldi. [4]. The identification of motor tasks was conducted through analysis of

the impact of different physical exercises on a restricted spectrum of widely prevalent

chronic pathologies, aimed at determining optimal movements and sensor inertial

placements on the selected body segments, accompanied by the identification of a

local reference system for each segment.
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1.3 Algorithm of Human Activity Recognition

The algorithm of Human Activity Recognition involves four primary steps for

comprehensive activity analysis, aiming to achieve satisfying results. Each step

requires specific decisions aligned with the work’s objectives.

Initially, sensors are carefully selected and placed, which is crucial for accurately

detecting and analyzing various activities during data collection. Next, the acquired

data undergo pre-processing to ensure they are clean and significant, removing

noise. Following this, relevant features are selected from the data, which are

essential for effective analysis. Finally, the appropriate Machine Learning algorithm

is determined to accurately classify and recognize the activities. This brief overview

outlines the main steps of the HAR process.[1].

Figure 1: HAR process [5]

Based on the study of additional research conducted in the analysis of human
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movement [1],[2],[5],[6] and expanding on the groundwork laid out in the HAR

process described earlier, during this study, in order to adhere to standard machine

learning protocols, the following steps have been meticulously executed to develop

an effective model for activity detection:

1. Data Acquisition: Firstly, the initial step involves selecting sensors that can

accurately capture data relevant to the desired activities. Wearable devices

offer flexibility in placement ,whether in a pocket, on the wrist, around the

waist, and so on. These devices utilize accelerometers, magnetometers, and

gyroscopes to gather readings across three axes: x, y, and z. Once the analysis

protocol is defined, raw input signals are acquired from these sensors and

organized into distinct datasets.

2. Data Pre-processing: Before analysis, the sensor output data require

cleaning and processing to eliminate noise and artifacts. This includes

post-processing accelerometer and gyroscope readings across x, y, and z

directions, as well as EMG signals from wearable devices. Once the raw data

is collected, pre-processing techniques such as noise removing, sampling, and

windowing are applied. Subsequently, the dataset is divided into test, training,

and evaluation sets, with careful consideration given to the ratio to effectively

train and validate the machine learning model.

3. Feature Extraction: Based on the different activities and the different aims

of the study,features are extracted manually or automatically, serving as inputs

for training machine learning models. Trained models are used to infer human

activities in real-world scenarios.
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4. Evalutation: The evaluation of a machine learning model involves using

performance metrics like accuracy, precision, recall, F1-score, and AUC-ROC.

Cross-validation ensures the model’s consistency and prevents overfitting ,

meanwhile the analysis of the confusion matrix reveals where the model makes

errors. External validation tests the model on new data to ensure it generalizes

well beyond the training set. These steps collectively assess the model’s

effectiveness and suitability for real-world applications.
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2 Protocol definition

Formulating a protocol was essential to conduct an exhaustive analysis aimed at

elucidating the influence and magnitude of daily activities on the advancement of

chronical pathologies, which is the central starting point of this thesis. Given the

wide spectrum of these pathological conditions, the absence of established protocols

in the literature presents a challenge to conducting comprehensive analyses.

To rigorously define this protocol for instrumental measurement employing inertial

sensors, a sequential identification of preliminary phases was undertaken:

1. Literature review on various motion capture techniques, aimed at delin-

eating both the primary advantages associated with wearable sensors and

recent studies involving the application of inertial sensor units (IMUs). This

includes identifying optimal sensor placements, defining acquisition protocols,

establishing experimental setups, examining investigated parameters, report-

ing results, and discussing associated limitations.

2. Identification of motor tasks through analysis of the impact of different

physical exercises on a restricted spectrum of widely prevalent chronic

pathologies, aimed at determining optimal movements and sensor inertial

placements.

3. Placement of sensors on selected body segments, accompanied by the

identification of a local reference system for each segment.

4. Analysis of the results, involving the examination of the obtained biome-

chanical parameters and the extraction the most significant features for
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validation of the results.

2.1 Litterature review

The literature review was divided into two main sections. Firstly, an exhaustive

examination was conducted on diverse motion capture techniques, encompassing

both traditional methods and the emerging use of wearables for gait assessment.

The advantages of wearables, including IMU units, were underscored to elucidate

their selection as the preferred mode of acquisition in this study.

Subsequently, the focus of the literature review shifted to identifying the optimal

sensor placement, taking into account both common and precise locations. Central

to the selection of placement was the consideration of physical activity (PA) in

various chronic pathologies, with particular emphasis on type 2 diabetes, Alzheimer’s

disease (AD), and Parkinson’s disease(PD). By analyzing established physical

protocols for each condition, specific motor tasks were delineated and subsequently

acquired. This process has lead the selection of the best sensor placement to acquire

data during each activity.

The primary source for the literature review was the Scopus database, which

provides the ability to search for articles using various keywords. Upon entering

the appropriate search string containing keywords related to the topic of interest,

Scopus allows users to visualize articles or reviews. The search was confined to the

fields of title, abstract, and keywords. These keywords were appropriately separated

using boolean operators AND and OR within the search strings.

Through the use of the following keywords: IMUs, Motion Capture, and Gait

Analysis, the first part of the literature review was fulfilled. Meanwhile, in order
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to find the perfect placement of the sensors, the following keywords were used:

IMUs, Placement, and HAR, which, as already stated, stands for Human Activity

Recognition.

Furthermore, the entire study followed the sensor placement protocol indicated

in the reference text ”Atlas of Muscle Innervation Zones: Understanding Surface

Electromyography and Its Applications” by M. Barbero, R. Merletti, and A.

Rainoldi. [4].
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3 Motion Capture Systems

Gait analysis, which systematically studies the walking pattern, plays a crucial role

in providing insights into an individual’s functional level, identifying dysfunctions

and injuries, evaluating the effectiveness of rehabilitation, assessing the success of

surgeries and also monitoring pathological diseases.

Traditional methods for collecting sensor data for HAR encompass camera-based

computer vision systems and inertial sensor-based systems. In the former,

human activities are captured via cameras, and the challenge lies in automatically

recognizing these activities based on sequences of images. However, limitations arise

in scenarios necessitating continuous activity monitoring, where complete camera

coverage may not be feasible. Moreover, privacy concerns arise as continuous camera

surveillance can be intrusive and discomforting for individuals.

Methods for assessing the gait pattern can be broadly categorized into kinematics

and kinetics. Kinematic analysis focuses on movement patterns, specifically spatio-

temporal variables, without considering the forces involved in motion production.

On the other hand, kinetic analysis is concerned with determining the joint moments

and forces, including the ground reaction force (GRF), involved in walking.

As the acquisition of gait kinetics conventionally requires an equipped environment

with force plates, there have been recurring efforts to develop alternative strategies

in this field. One common approach is the utilization of kinematic motion data

to estimate the internal forces experienced by body segments through inverse

dynamics. Joint moments are crucial outcomes of motion analysis and are often used

to extract relevant information for clinical decision-making. Conventionally, joint
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moments can be calculated using an inverse-dynamics method, with the measured

GRFs serving as input data. However, obtaining proper kinetic data in motion

analysis studies can be challenging due to the limitations of force plates, which are

typically restricted to laboratory environments. Efforts to address these challenges

include exploring methods to estimate kinetic parameters from kinematic data alone,

leveraging machine learning algorithms, and incorporating wearable sensors such

as IMUs. These approaches aim to enhance the accessibility and feasibility of gait

analysis outside of traditional laboratory settings, enabling more comprehensive and

continuous monitoring of human movement patterns in real-world environments.

While kinematic and kinetic analyses are frequently performed separately, they

can also be seamlessly integrated into a unified evaluation. The gold standard

method often employs an optoelectronic system with skin markers for this purpose.

Additionally, force plates and Inertial Measurement Units (IMUs) are commonly

utilized to gather data from human subjects, offering complementary insights into

biomechanical parameters.

3.1 Golden Standard: Optical Motion Capture

In the medical field, Optical Motion Capture (OMC) systems combined with force

plates have long been considered the gold standard for accurately quantifying

patients’ motion capture [2]. Video-based optoelectronic systems rely on devices

capable of sourcing, detecting, and controlling light, which fall under the photonics

spectrum. The experimental setup typically involves retro-reflective markers visible

to multiple video cameras, offering flexibility in capturing images of various body

regions.
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Existing motion capture systems are expensive, bulky, and require extensive

training for proper operation, which is not always feasible for every patient. For

three-dimensional (3D) movement capture, these systems necessitate at least three

to six precision cameras as shown in Figure 2, typically installed in specialized

institutions provided with gait laboratories. This setup poses practical limitations,

including complexity and time-consuming operation. Additionally, motion capture

systems face constraints due to line-of-sight difficulties, leading to potential data

loss [7].

An alternative to traditional motion capture systems would be a marker-less tracking

system that is surely less expensive and does not require markers on participants.

Therefore, the development of a precise, accurate, cost-effective, and user-friendly

marker-less tracking system holds significant potential.

Figure 2: Graphical representation of the experimental set-up of optoelectronic
system and kinetic (force platform) motion analysis system.[8]
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3.2 Wearables for gait assessment

3.2.1 Accelerometers

According to Newton’s second law, an object with constant mass [kg] accelerates

(m/s²) in proportion to the sum of the applied net force [N]. Accelerometers are

developed from this principle using various approaches (e.g., piezoelectric, thermal,

and capacitive). They are highly configurable devices, where their bandwidth or

frequency response can be adjusted through coupling filter capacitors. This aspect

is crucial for accurate sensing, as the bandwidth must encompass the frequency or

vibration of interest. Range (g = 9.81 m/s²) and sampling frequency (fs, Hertz[Hz])

are additional parameters of interest that need consideration based on the type of

activity to be measured.

The dynamic range of an accelerometer is the ± maximum amplitude that can be

measured before distorting the output signal during data collection. Low-intensity

movements (e.g., postural balance) are assessed more sensitively with lower g values.

Conversely, high-insensitivity movements (e.g., gait) are accurately assessed with

higher g values to capture high-amplitude (range) movements without distortion or

clipping.

Most accelerometer-based wearables offer selectable ranges to work within the

optimal range, which depends on both the type of movement and the body part

involved. For instance, 3D linear accelerations recorded at joints can range from

3.0g to 12.0g, while lower back vertical acceleration and horizontal acceleration can

range from −0.3g to 0.8g and from −0.3g to 0.4g, respectively. Thus, accelerometers
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must be capable of measuring accelerations up to ±12g regardless of the attachment

location but with enough resolution to capture subtle (low g) movements [7].

3.2.2 Gyroscopes

Gyroscopes measure angular velocity [°/s] and are highly utilized as inertial sensors,

following closely behind accelerometers in popularity. During deployment, it’s

crucial to take into account scale factor stability, which indicates the sensitivity

of the optical gyroscope. Achieving minimum scale factor stability is essential to

minimize sensor errors. This stability can be quantified using the angle random walk

(ARW) formula:

ARW =
R

60
√
B

where R represents resolution and B represents bandwidth.

While combining a tri-axial accelerometer with a tri-axial gyroscope allows for the

determination of relative heading/direction, it’s important to note that the output

may drift over time. This phenomenon highlights the need for ongoing monitoring

and calibration to maintain accuracy in long-term applications [7].

3.2.3 Magnetometers

Magnetometers are devices that measure the direction, strength, and changes of a

magnetic field (measured in Gauss) at a specific location. They are particularly

sensitive to Earth’s magnetic field and can be utilized to correct drift or detect

rotations in a known direction. In scenarios where magnetometers are absent,
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using 6 axes (three axes each of accelerometer and gyroscope) can provide relative

heading, although it may exhibit some degree of drift.

Integrating magnetometers into the system can mitigate drift by offering an absolute

heading reference point based on the Earth’s magnetic field. It’s important to note

that magnetometers may be influenced by localized magnetic fields, which can vary

in uncontrolled environments such as free-living conditions. Accelerometers are

adept at recognizing numerous daily activities, while gyroscopes notably improve

fall detection accuracy. Integrating accelerometer and gyroscope data enhances

the reliability of activity recognition processes. Otherwise the magnetometer’s

reliance on directions often leads to overfitting in training classifiers, rendering its

use ineffective for activity recognition, as indicated by studies [7].

3.2.4 Electromyography (EMG)

EMG sensors record myoelectric signals, generated by motor neurons, using different

electrode types: needle or surface.

Needle (fine wire) electrodes are directly inserted into the muscle, while surface

electrodes are placed on the skin. An explanatory representation in Figure 3
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Figure 3: Different types of EMG’s electrodes: on the hand surface electrodes and
on the arm needle ones. [9]

Although the former offer more precise outcomes, their invasive nature limits their

practicality. Surface EMG electrodes (sEMG), including wireless option used in

this project, provide a more convenient setup for recording muscle activities in both

clinical and free-living settings.

Myoelectric signals typically range from 10 to 1000 Hz and are generally measured

in millivolts [mV] : muscle contractions produce signals around 10 Hz due to

tissue displacement, while ground impact during walking generates signals at

25–30 Hz. However, EMG signals have low signal reception and are susceptible to

unwanted noise, mainly from tissue motion and neighboring motors. Nonetheless,

these noise sources are identified and mitigated during both signal acquisition

and post-processing stages. During signal acquisition, unwanted electronic signals,

such as common mode noise, can be minimized using differential amplifiers or

instrumentation amplifiers (IA) with a high common mode rejection ratio (CMRR).
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Also during acquisition the optimal protocol provides the perfect sensor placement

in order to avoid meaningless acquisition. Additionally, post-processing techniques,

such as digital low-pass, high-pass, or band-pass filters, are applied to reduce noise

while considering the sEMG frequency spectrum [7].

In this project experimental project all the measures adopted to mitigate noise

influences are thoroughly explained in the following chapters .

3.2.5 IMUs

The concept of the Inertial Measurement Unit (IMU) emerged in the 1970s. Utilizing

independent inertial devices such as gyroscopes and accelerometers, it became

possible to separately measure angular velocity, acceleration, and other parameters.

By integrating the outputs of these devices, the position of an object could be deter-

mined through integration. A typical IMU comprises three orthogonal gyroscopes,

three orthogonal accelerometers, and a computer for coordinate conversion, enabling

the measurement of attitude, position, and velocity information of a carrier.

Over time, IMUs have continued to shrink in size. Advancements in micro

and nanotechnologies have paved the way for the development of micro inertial

measurement units (MIMUs). MIMUs integrate multiple micro inertial sensors,

micro monitoring and control circuits, and a coordinate conversion circuit to

obtain comprehensive inertial measurement parameters of moving objects. The

basic structure of an MIMU, shown in Figure 4, typically consists of three

micro-gyroscopes and three micro-accelerometers, arranged in orthogonal surfaces

of a cube. The sensitive axes x, y, and z are perpendicular to each other, allowing
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the measurement of ωx, ωy, ωz as the outputs of micro-gyroscopes and ax, ay, az.

as the outputs of micro-accelerometers along each axis [10].

One notable advantage of MIMUs in human movement analysis is their self-

containment during operation. Accelerometers and gyroscopes can collect quan-

titative motion data irrespective of time and environment. Additionally, the

omnipresence of a magnetic field on Earth enables the use of magnetometers in most

locations. Furthermore, commercially available MIMUs are compact, lightweight,

and can be equipped with additional hardware such as Bluetooth, Wi-Fi, or SD

card capabilities. This allows for features like wireless data transmission or internal

memory recording, facilitating easy data collection without interfering with natural

human movement [10].

Figure 4: Basic structure diagram of an MIMU.[10]
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In table 1 I have collected the main features that characterize the sensors used

in this project, the IMUs,and the gold standard techniques previously mentioned.

This comparison between Optical Motion Capture (OMC) and IMU sensors aims to

highlight the primary advantages and disadvantages of each analysis technique.

Optoelettronic systems IMUs sensors

High resolution Discrete resolution

Accuracy golden standard Discrete accuracy

High cost Cost reduction

High accuracy Discrete accuracy

Power supply Power efficiency

Motion Lab constrained Flexibility in deployment

Intrusive monitoring Non-intrusive monitoring

Bulky Lightweight

Line-of-sight difficulties Unlimited field of use

Table 1: Comparison between Optoelectronic Motion Capture systems and IMUs
sensors

The main features I want to focus on, as they are crucial for the study’s objective,

include the lightweight nature of IMUs, which makes them easy to wear even for

patients with chronic conditions. Unlike optical motion capture (OMC) systems

that require complex setup and a laboratory environment, IMU sensors offer reduced

costs and an unlimited field of use, demonstrating their versatility. In this study,

this allowed the activity acquisition’s process without being limited to a laboratory

setting, thus emulating daily activities in a real-world context.
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Moreover lightweight and wireless devices can be comfortably worn during daily life

activities (ADL), including sleep, for monitoring purposes. For the elderly, these

devices could be used to detect alarm conditions triggered by unusual behaviors

(such as remaining in bed or lack of activity during a defined time interval) or

changes in routine activities associated with psychomotor conditions.In this study,

sleep monitoring was excluded because, within the context of chronic diseases,

biomechanical parameters related to sleep provide less informative data compared to

the acquisition of more dynamic activities of the subject. Nonetheless, it is crucial

to emphasize the value of these devices in applications beyond the specific focus of

this study, as they hold significant potential for monitoring activities outside the

scope of this research.

For healthy individuals, they could be employed during sports activities to track

exercise routines and repetitions, facilitating the monitoring of training regimens

and determining the energy expenditure for each movement. Mobile fitness coaching

has embraced various topics, from assessing the quality of sports actions to

detecting specific sports activities. Combining surface electromyography (sEMG)

and accelerometric sensors in a single device allows for obtaining all the necessary

information to accurately assess muscle activity, strength, fatigue, directionality, and

acceleration. These aspects are crucial for evaluating sports performance, preventing

injuries, facilitating rehabilitation, and monitoring human activity in general.
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4 Data Aquisition

4.1 Experimental Setup

The experimental setup consisted of three Trigno Avanti™ Sensors, 9-axial inertial

measurement unit (IMU) sensors with accelerometer, gyroscope and magnetometer

in recording mode, paired with EMG electrodes.

The signals can be adjusted across four different ranges for each sensor, covering a

spectrum from ±2g to ±16g for accelerometer data and ±250°/s to ±2000°/s for

gyroscope data.

With nine channels of data, the sensor can accurately estimate orientation in

three-dimensional space. The Trigno wireless communication system ensures reliable

data transmission for up to 16 sensors, maintaining connectivity over distances of

approximately 20 meters. Sampling frequency for accelerometer and gyroscope

was 133.33Hz. To obtain the synchronization between three IMUs all data were

timestamped. The sensors feature a rechargeable lithium polymer battery, providing

multiple hours of continuous use. The actual duration will vary depending on usage

conditions, typically ranging between 4 to 8 hours of performance. In this project

the sensors recharging was made with the 4 based station showed in the Figure 7.

The main capabilities of the Trigno Avanti™ Sensor are listed in table 2 below:
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Capability Description

Onboard configurable precision
EMG sensor

EMG electrodes integrated on the back of the
sensor unit

Built-in 9-axis inertial measurement
unit (IMU)

Each unit includes an accelerometer, gyro-
scope, and magnetometer in recording mode

Dual-mode ”BLE-Base” communi-
cation

Dual-mode communication with the base
system

Onboard RMS and Mean calcula-
tions

Integrated capability to calculate RMS and
Mean values

Onboard orientation calculation Capability to calculate the 3D orientation of
each unit

Onboard median frequency calcula-
tion

Capability to output the mean frequency

Software selectable operational
modes

Several operational modes can be selected
based on the acquired activity

Inter-sensor latency < 1 sample pe-
riod

Latency period between sensor synchroniza-
tions

Wireless transmission range +20m Limit of wireless connection range to the
station

Self-contained rechargeable battery Power supply mode

Environmentally sealed enclosure Environmentally sealed casing

Low power mode Battery low consumption mode

Internal magnetic switch Integrated magnetometer unit

LED User Feedback Status of the units represented by LED
indicators

Table 2: Capabilities of Trigno Avanti™ Sensor
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Figure 5: Sensor view from different point and sensor modes with the specified
sampling frequencies. [11]

Figure 6: Orientation axes of the Trigno Avanti™ sensors’unit. [11]

37



Figure 7: Trigno System “Charge-4” Station for sensor recharging.Orientation
axes of the Trigno Avanti™ sensors’unit. [11]

As shown in Figure 6, the Trigno Avanti™ sensors have predetermined axis directions

that were taken into account during the acquisition process, in order to evaluate the

sign of the oscillation of the accelerations acquired. This information could be

effectively coupled with the ones from Trigno EMG Sensors to detect synchronized

movements based on signals detected by the Electromyography (EMG) system.

Trigno EMG Sensors are equipped with four silver bar contacts designed to detect

EMG signals at the skin surface.The sampling frequency of the EMG signal is

1000Hz, and the mobile device allows the choice of two different EMG bandwidths:

10-850Hz or 20-450Hz. To ensure optimal signal amplitude, it’s crucial to position

these bars perpendicular to the direction of muscle fibers. The top of the sensor

features an arrow, aiding in determining this orientation. Aligning the arrow parallel

to the muscle fibers, as shown in Figure 8, beneath the sensor ensures proper

placement.

Moreover, it’s essential to position the sensor at the center of the muscle belly,
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avoiding placement near tendons or the muscle’s edge, in order to acquire the optimal

signal amplitude avoiding the muscles’ part which not contribute to the contraction

of the fibres. This positioning enhances signal accuracy and minimizes interference.

To ensure secure and reliable placement during movement analysis, the sensors are

attached to the skin using Delsys Adhesive Sensor Interface.

Figure 8: EMG Sensors must be properly oriented with the muscle fibers. Align
the sensor’s arrow with the direction of the underlying muscle fibers. [11]
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4.2 Measurement procedure

Data were collected using a mobile tablet to facilitate acquisition both indoors and

outdoors during various activities. The Trigno Mobile System App was employed

for data collection, which was subsequently exported to a notebook computer for

further analysis. As previously mentioned, to maintain signal amplitude and reduce

noise, the sensors were secured using an adhesive interface to ensure a stable contact

with the skin of the chosen human segments. Additionally, the acquisition procedure

required pre-shaving and sanitizing the skin site before placing the Trigno™ sensors

over muscles using double-sided adhesives. Through the use of the Trigno Mobile

System App interface, it is possible to pursue different acquisition modules and

directly export the data in the desired format.

Figure 9: Experiment Set-up and record Data with Mobile EMG Suite. The steps
from A to D show how to achieve high quality surface EMG signals
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4.2.1 Choice of the motor tasks

The selection of the motor tasks, as already explained, was guided by an in-depth

exploration of previous studies [12], [13] regarding the role of physical exercise (PE)

in the progression of chronic diseases, such as Parkinson’s disease (PD), Alzheimer’s

disease (AD), and diabetes, which are among the most prevalent .

Recent research reveals that there is currently no definitive consensus on the optimal

physical exercise regimen for improving clinical outcomes in Alzheimer’s disease

patients. Nevertheless, aerobic physical exercise has emerged as a viable and

beneficial practice for individuals with AD, consistently associated with improved

cognitive function. Simple activities like regular walking have shown promise in

mitigating cognitive decline, while also enhancing postural and motor functions in

AD patients, who frequently experience diminished muscle mass and strength.

Moreover, balance training has proven effective in enhancing postural abilities,

thereby reducing the risk of falls, particularly in moderately-to-severely affected

individuals. Multicomponent exercise training, which integrates balance, aerobic,

and strength exercises, has demonstrated notable efficacy in enhancing postural

and motor functioning while reducing fall risk in AD patients. High-intensity

physical activities like cycling, aerobics, or tennis are linked to a 40% lower risk

of disease compared to low-intensity activities such as walking or dancing [12],

showing substantial enhancements in balance, mobility, and functional capacities in

Parkinson’s disease patients. Additionally, structured walking programs, involving

30 minutes of walking five times a week for at least six weeks, show significant

improvements have shown substantial enhancements in balance, mobility, and
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functional capacities. These findings emphasize the importance of intensity and

specific exercise types in enhancing overall health outcomes [12].

The subjects had to perform different activities, which were mainly divided in 3

different groups:

• Aerobic training: continuous, rhythmic movement of large muscle groups,

such as in walking, jogging, and cycling;

• Resistence training: synonymous with strength training, resistance exercise

involves movements utilizing free weights, weight machines, body weight

exercises, or elastic resistance bands;

• Balance training: exercises designed to improve stability and equilibrium

by challenging the body’s balance control systems, reducing fall risk, and

enhancing overall balance;

In order to combine the aforementioned task with the need to characterize daily life

activities, that as previously mentioned is one of the main aims of this project, the

following activities were chosen :

• Mixed walking: Walking without a constant speed and without a fixed

direction. To simulate daily life walking, which lacks constraints, the subjects

were able to change direction, turn, or simulate avoiding obstacles during the

acquisitions and the aquisition were taken both indoor and outdoor.

• Organizing things: The acquisition required subjects to be seated, thus a

sitting acquisition was performed while engaging in daily life activities, such

as scrolling on mobile screens or organizing things on the desk. The main joint
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involved was the wrist, so activities were performed on both the dominant and

non-dominant sides to see any correlation.

• Climbing stairs: The activity was performed both with and without the

handrail to observe any influence on the data. Climbing stairs can be

considered an activity that encompasses all three main groups mentioned

above.

• Descending stairs: This activity was chosen to evaluate how well the

machine learning algorithm could distinguish it from the previous one and

to assess the patient’s balance and stability. Moreover, descending stairs, like

climbing, is a useful daily life activity.

As previously mentioned, the acquisitions were carried out both outdoors and

indoors, with an average duration of 30 seconds for each acquisition, and each task

was performed 3 times, resulting in 12 acquisitions per subject. Before proceeding

with a new acquisition, a 60-second break is observed during which the subject is

free to move in order to limit fatigue.
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4.2.2 Sensors’ placement

The methodology for conducting motion analysis relies on protocols, which I

designed to ensure test repeatability and operational standardization during data

acquisition. Firstly, the anatomical reference system is established for each human

segment where sensors are placed, as detailed in the following section 4.3, and sensor

axis orientation relative to the corresponding anatomical segments is determined.

In order to define the local anatomical system in the right way the sensors were

carefully placed on the relevant body segments according to predetermined locations.

Subsequently, a static trial was conducted, during which participants were instructed

to maintain an upright position for a few seconds. This step is essential for system

calibration and ensures accurate data collection.

Finally, participants performed a dynamic trial involving the execution of the specific

motor tasks aimed at evaluating various parameters. This comprehensive approach

facilitates an in-depth analysis of motion patterns, offering significant insights into

the dynamics of human movement. Special emphasis was placed on meticulous

sensor placement, aiming to align the sensor axis parallel to the anatomical axis of

the segment under examination.

All the volunteers wore three 9-axis Inertial Measurement Units (IMUs) positioned

at different locations on the body. These positions were selected to acquire useful

information based on the chosen motor tasks. The following sensor placements were

established:

1. Wrist;

2. Thigh;
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3. Pocket;

In the first configuration, sensors were placed on the wrist using a bracelet-like setup.

In the second configuration, sensors were positioned on the thigh to capture both

the IMUs parameters and the EMG signal of the quadriceps during activities. The

third configuration involved placing the sensors in a pocket without any constraints.

The sensor placement is illustrated in Figure 10, which is directly extracted from

the Trigno Avanti App, providing a useful tool for monitoring the data recorded by

the sensors.

Figure 10: IMU sensors’ placement on the participant’s body.
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The EMG signal was acquired to discriminate difference of intensity between the

selected activities. The aim was to examine the same tasks and daily activities with

increasing precision of acquisition, starting from the simplest setup, the pocket,

which does not require any physical constraint, and ending with the most complete

and noiseless acquisition,the quadiceps placement, involving both IMUs and EMG

sensors.

sEMG attached to lower limb muscles provides reliable muscle activity and force

information for gait assessment in neurological conditions. Specifically, activities of

28 major muscles controlling each lower limb can be readily identified. Ideally,

lower leg and foot muscles such as the gastrocnemius medialis, gastrocnemius

lateralis, soleus, tibialis anterior, and peroneus longus-brevis are suitable for sensor

placement, with the reference electrode located at the ankle. Following SENIAM

recommendations, the tibialis anterior, lateral gastrocnemius, and rectus femoris

muscles were selected to collect EMG parameters for gait assessment in Parkinson’s

disease (PD) [7].

The decision to focus on the quadriceps muscle for monitoring muscle activation and

physical activity intensity was based on previous research showing the significant

involvement and activation of both the gastrocnemius and quadriceps muscle

groups during typical daily activities such as walking, running, and stair climbing.

It is conceivable that the relationship between muscle characteristics and gait

performance varies across different lower extremity joints. Specifically, the strength

of knee muscles seems to have a more pronounced impact at slower speeds, while

the strength of ankle muscles becomes critical at maximal speeds. The quadriceps

muscle primarily contributes to the braking phase, whereas the gastrocnemius is
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predominantly involved in the propulsion phase[14],[15]. Additionally, I chose to

focus on the quadriceps muscle due to the more comfortable placement of the sensor.

The quadriceps muscles are the strongest in the human body. Literally quadriceps

means ”four-headed muscle” from Latin, in fact the quacripes comprises four distinct

muscles : the rectus femoris, vastus medialis, vastus intermedius, and vastus lateralis

as showed in Figure 11.

Figure 11: Anatomy of the quadriceps muscles. [16]

In this project the focus was centred on the activity of rectus femoris, which stands

out for crossing both the hip and knee joints. It is a fusiform muscle, characterized

by its spindle-like shape, and is composed of two heads. Originating from two sites

on the ilium—the anterior inferior iliac spine (straight head) and the supraacetabular

groove (reflected head)—these heads converge into a single muscle belly. This belly

runs vertically down the thigh, covering its anterior aspect.

The muscle fibers of the rectus femoris come together to form a thick tendon that

inserts into the base of the patella, contributing to the overall function of the

quadriceps. Occasionally, the rectus femoris may exhibit a third head, originating

from the iliofemoral ligament, adding variability to its structure.

For EMG placement, adherence to guidelines established by SENIAM (Surface EMG
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for Non-Invasive Assessment of Muscles) was ensured. These guidelines encompass

various aspects, including identification of electrode types, skin preparation, patient

positioning, determination of electrode locations, and electrode fixation [17]. Fur-

thermore, additional recommendations for sEMG placement provided in a previous

review conducted by M. Barbero, R. Merletti, and A. Rainoldi [4] were followed.

These guidelines were instrumental in avoiding errors such as interference from soft

tissue or inappropriate muscle selection, which could compromise the collection of

meaningful data during sEMG measurements. The best placement of the sensor, in

order to acquire an optimal EMG signal, was between 0% and 50% or between 83%

and 100% of the Anatomical landmark frames (ALF), as showed in Figure 12.

Figure 12: Optimal EMG sensors’ placement between the superior side of the
patella and the anterior superior iliac spine. [4]
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The wrist placement involved both the dominant and non-dominant sides to

investigate potential correlations between them. These locations were chosen in

activity recognition studies for sensor placement due to their representativeness of

typical motion patterns, crucial for correlating physical exercise (PE) with chronic

pathologies. Additionally, these placements were chosen to mitigate potential

acquisition issues stemming from health concerns associated with the analyzed

pathologies. Furthermore, as previously mentioned, the IMUs placements were

selected with the idea to have positions feasible for daily life acquisition, ensuring

comfort for the patient and minimizing privacy or discomfort problems.
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4.3 Definition of the anatomical reference system

for body segments

To define an anatomical reference system for each sensor fixed to the analyzed

segment, particularly those placed on the wrist and thigh, the definitions proposed

by the Standardization and Terminology Committee (STC) of the International

Society of Biomechanics were followed [18] [19]. The STC proposes a definition of

a joint coordinate system (JCS) for each joint, establishing a standard for the local

axis system in each articulating segment or bone. These recommendations by the

STC aim to facilitate further revisions and obtain more reliable feedback. For the

sensor placed in the pocket, defining a fixed reference system is impossible due to the

sensor’s lack of stability. Consequently, additional measurements were considered

during the feature analysis phase, as reported in the section 5.1 later.

4.3.1 Wrist - Carpal bones coordinate system

The global wrist motion typically involves the movement of the second and/or third

metacarpal in relation to the radius, with emphasis placed on the third metacarpal.

This motion is achieved through the movement of the carpal bones in relation to the

radius and the articulations of the eight carpal bones among themselves [Figure 14].

Each bone is assigned a coordinate system, assuming the forearm is initially in the

standard anatomical position, with the palm facing forward (anteriorly) and the

thumb positioned laterally. The back of the hand and forearm face posteriorly.
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Figure 13: Bones involved in the wrist joint.[19]

For a right arm, the positive Y-axis is directed proximally, the positive X-axis is

directed volarly, and the positive Z-axis is directed to the right in the anatomical

position. To maintain consistency between the clinical motion of left and right arms,

for a left arm, the Y-axis is directed distally, the X-axis dorsally, and the Z-axis to

the right in the anatomical position.

The eight carpal bones— caphoid, lunate, triquetrum, pisiform, trapezium, trapezoid,

capitate, and hamate—are collectively considered. The neutral wrist position is used

as reference. This position occurs when the wrist is in neutral flexion/extension and

neutral radial/ulnar deviation, aligning the long axis of the third metacarpal parallel

to the Y-axis of the radius.

Typically motion is defined relative to the radius rather than the ulna. Therefore,

the orientation of the coordinate systems for each carpal bone should be parallel to

the radial coordinate system when the wrist is in the neutral position. Thus, the

Y-axis of each carpal bone is parallel to the Y-axis of the radius, and similarly for

the X and Z axes, as shown in Figure 14.
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Currently,the volumetric centroid of the bone is used to define the origin of a

coordinate system within a carpal bone. It is proposed that, when necessary,

the origin of a coordinate system within a carpal bone should be located at the

volumetric centroid of the bone[19].

Figure 14: Dorsal view of a right wrist joint illustrating the capitate coordinate
system as an example of the carpal coordinate systems.[19]
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4.3.2 Thigh - Femoral coordinate system

To ensure the proper placement of the Trigno Avanti™ Sensor on the thigh, two

essential factors were taken into consideration: the femoral coordinate system

relative to the hip joint and the optimal placement relative to the center of rectus

femoris’ belly [4], as discussed in 4.2.2. The combination of these factors led to the

correct positioning of the sensor.

Figure 15: relative position od rectus femoris muscle and femur bone.[18]

This section provides a thorough explanation of the local coordinate system of

reference, following the directives of the ISB [18]. The femur, located within the

thigh, constitutes the upper segment of each lower limb. It is the only bone present

in the thigh, articulating with the pelvis at the proximal extremity and with the

tibia to form the knee joint at the distal extremity. The femoral coordinate system

is derived from the hip joint and is determined by the following axes:
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• O: The origin coincident with the hip center of rotation.

• Z: The line parallel to a line connecting the right and left anterior superior

iliac spine, and pointing to the right.

• X: The line parallel to a line lying in the plane defined by the two anterior

superior iliac spine and the midpoint of the two posterior superior iliac spine,

orthogonal to the Z-axis, and pointing anteriorly.

• Y: The line perpendicular to both X and Z, pointing cranially.

Figure 16: Pelvic coordinate system (XYZ) and femoral coordinate system
(xyz).[18]
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5 Methods of analysis

5.1 Data Pre-processing

Once the data processing is completed, and all markers have been accurately

labeled and any gaps resolved, the data is exported into a .mat file format for

further analysis in MATLAB (version 9.10.0 R2024a, MathWorks Inc., Natick, MA,

USA), where I made data-driven decisions that optimized the results. This .mat

file contains both Inertial Measurement Unit (IMU) and Electromyography (EMG)

data. The processing pathways diverge based on the data’s sampling frequencies

(fs).

I applied a dual-pass 4th order Butterworth low-pass filter with a cutoff frequency

of 10 Hz to the IMU data. This choice was made after carefully analyzing the

signal and evaluating the energy from different frequencies using the Fast Fourier

Transform (FFT). Additionally, the mean value was removed, thereby eliminating

the DC component and the constant gravity component associated with the sensor’s

inclination from subsequent parameter calculations.

For post-processing noise reduction in sEMG signals, I followed scientific guidelines

from the International Society of Electromyography and Kinesiology (ISEK) and

the Surface EMG for Non-Invasive Assessment of Muscles (SENIAM) project [17].

These guidelines recommend using band-pass filters with a low cutoff frequency of

10Hz and a high cutoff frequency of 500Hz, which is particularly relevant for sEMG

data sampled at 1kHz, the fs I used. This approach is designed to enhance data

quality by removing unwanted noise, which I found crucial for ensuring accurate and
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reliable results. In applying this strategy, I opted for a Butterworth 4th order filter

with the specified cutoff frequencies. I chose this filter because its characteristics

are well-suited for smoothing out noise while preserving the integrity of the signal,

which was essential for the quality of my data. This step has been invaluable in

refining the data, and I felt confident that it would prepare the data effectively for

the next stages of analysis.
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(a)

(b)

Figure 17: 3D raw (b) and filtered data (a) for climbing stairs on IMU sensor
placed on the wrist
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(a)

(b)

Figure 18: 3D raw (b) and filtered data (a) for climbing stairs on IMU sensor
placed on the thigh

58



5.2 Feature Extraction

Features are generally abstractions of data designed to accurately represent the

original information. Feature extraction involves transforming large input data into

a reduced set of features, known as a feature vector. These feature vectors contain

discriminative information that helps differentiate between various activities or data

classes and are used as inputs for classification algorithms [20].

I decided to extract features from the data using the signalTimeFeatureExtractor

and signalFrequencyFeatureExtractor objects. These tools are part of

the Signal Processing Toolbox and the Statistics and Machine Learning

Toolbox (version 9.10.0 R2024a, MathWorks Inc., Natick, MA, USA). By using

these tools, I successfully reduced the data’s dimensionality while preserving the

key characteristics necessary for accurate classification.

5.2.1 IMU

For the IMU data, I calculated the following features:

• In the time domain: I extracted the mean of the unfiltered signals (meanFE),

and for the filtered signals, I calculated the root mean square (RMS), shape

factor (SF), peak value (PV), crest factor (CF), clearance factor (CLF), and

impulse factor (IF).

• In the frequency domain: I determined the mean frequency (MNF) and median

frequency (MDF, MNP).

I chose to analyze features in both the time and frequency domains to take
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advantage of the unique insights each domain provides. Time domain features are

straightforward to extract because they involve basic statistical measures of the

signal and do not require the computationally intensive process of power spectrum

analysis. This simplicity allows for efficient extraction and initial assessment of the

signal’s characteristics.

In the frequency domain, I focused on the mean frequency (MNF) and median

frequency (MDF) because these features offer critical insights into the signal’s

frequency content. The mean frequency provides an average measure of the signal’s

frequency distribution, while the median frequency offers a robust central tendency

measure, helping to identify dominant frequency components and detect shifts in

signal characteristics.

For the frequency domain analysis, I created a feature extractor object (freqFE) to

systematically compute these features. I selected a Fast Fourier Transform (FFT)

window length and spectral estimation window size of 512 samples. This choice was

made to strike a balance between frequency resolution and computational efficiency.

A window length of 512 samples provides sufficient resolution to accurately capture

the frequency components of interest while keeping the computational demands

manageable. I also checked the length of the input signal (Filtered) and stored

it as signalLength. If the signal length was shorter than the window length,

I adjusted the parameters accordingly to avoid errors. Finally, I configured the

frequency domain feature extractor to use Welch’s method ("WelchPSD") for spectral

estimation, which is well-regarded for providing accurate power spectral density

estimates with reduced variance. This approach ensures precise frequency analysis

while accommodating the signal’s length and avoiding potential errors in the feature
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extraction process. In table 3 below, I reported all the mathematical formulas used

and the namely parameters.

Feature Mathematical Definition

Mean Value (MV)
1

N

NX
i=1

x(i)

Root Mean Square (RMS)

vuut 1

N

NX
i=1

x(i)2

Shape Factor (SF)

q
1
N

PN
i=1 x(i)

2

1
N

PN
i=1 x(i)

Peak Value (PV) max{x(t)}

Crest Factor (CF)
max{x(t)}√

2

Clearance Factor (CLF)
max{x(t)}

( 1
N

PN
i=1

p
|x(i)|)2

Impulse Factor (IF)
max{x(t)}
1
N

PN
i=1 |x(i)|

Median Frequency (MDF)

Z MDF

0

f · P (f) df =
1

2

Z ∞

0

f · P (f) df

Mean Power (MNP)

R∞
0 f · P (f ) dfR∞
0 P (f ) df

Table 3: Features and their Mathematical Definitions

61



As previously mentioned, the pocket sensor is unique among the sensors used in

this study due to its variable positioning during activity recordings, which leads to

inconsistent results. To standardize this sensor with the thigh and wrist sensors,

which follow the joint coordinate system (JCS) directives provided by the ISB [18],

[19], I calculated the Euclidean norm for each acquisition frame from the pocket

sensor. This calculation aimed to average the recorded accelerations and velocities,

compensating for the absence of a fixed reference axis system.

This method was crucial in addressing the pocket sensor’s challenges. Although it

excels in comfort and non-invasiveness, which are essential qualities for my study

aim, it is also the noisiest sensor due to its lack of a defined axis system. By using

the Euclidean norm to average the data, I effectively reduced noise and improved the

sensor’s reliability. This approach mitigated one of its main limitations, allowing for

a standardized record that could be directly compared with the data from the more

stable thigh and wrist sensors. Overall, this process was valuable in managing the

variability introduced by the pocket sensor’s positioning. It facilitated meaningful

comparisons between sensors with different orientations, enhanced the accuracy of

the analysis, and simplified data integration, ensuring that all measurements were

on a comparable scale.

The Euclidean norm ∥x∥ of an n-dimensional vector x = (x1, x2, . . . , xn) is defined

as:

∥x∥ =
q

x2
1 + x2

2 + · · ·+ x2
n =

vuut nX
i=1

x2
i

Where x = (xx, xy, xz) is a vector where each xi represents the values of the axes

x, y, z at a given time interval. The Euclidean norm ∥x∥ is calculated as follows:
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∥x∥ =
q
x2
x + x2

y + x2
x

This norm represents a single value derived from the three directions x, y, z in a

defined second of time. In addition to the features extracted from the IMU data

recorded, other features were extracted from the norm vectors. These features were

then computed to see their correlation with the previously mentioned ones.
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5.2.2 EMG

For the EMG signal analysis, I calculated specific features extracted from both the

time domain and the frequency domain. In the time domain, I focused on the Mean

Absolute Value (MAV) and Root Mean Square (RMS), as these metrics provide

straightforward insights into the signal’s amplitude characteristics. In the frequency

domain, I analyzed the Median Frequency (MDF) and Mean Frequency (MNP),

which are useful for understanding the signal’s frequency distribution. Additionally,

I chose to analyze the Hjorth parameters, which are well-established statistical

descriptors used in biomedical signal processing to characterize signals such as EEG

and EMG [21]. These parameters, Activity, Mobility, and Complexity, offer valuable

insights into the time-domain and frequency-domain characteristics of a signal:

• Activity (Act): This represents the overall energy or power of the signal,

calculated as the variance. It provides a measure of the signal’s intensity.

• Mobility (Mob): This measures the mean frequency or rate of change of the

signal, offering insights into how quickly the signal’s characteristics change

over time. It is computed as the square root of the ratio of the variance of the

first derivative to the variance of the signal itself.

• Complexity (Com): This assesses the irregularity or complexity of the signal

waveform. It is determined by the ratio of the mobility of the first derivative

of the signal to the mobility of the original signal.

These descriptors are advantageous because they efficiently analyze signals in the

time domain without relying on computationally intensive methods like Fourier
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Transform. Activity quantifies the signal’s power by measuring the squared

standard deviation of amplitude. Mobility serves as an estimate of mean frequency,

and Complexity provides an estimate of signal bandwidth and its deviation from

a pure sine wave. While Hjorth parameters are efficient, they are not without

limitations. They are susceptible to noise due to their reliance on signal derivatives.

To address this, I also calculated the Spectral Purity Index (SPI) to evaluate the

proportion of the signal’s power within a specified frequency band. This index

helps to assess how much of the signal’s energy is concentrated within the desired

frequency range, which is particularly useful for EMG signals.

I set the sampling frequency to the instrument’s nominal value of fsamp = 1000Hz

and used Welch’s method to compute the Power Spectral Density (PSD) of the

EMG signal. I defined the frequency range of interest from 10 Hz to 500Hz and

calculated the power within this band by summing the PSD values within the

identified indices. I then computed the SPI as the ratio of the power in this

fundamental band to the total power.

The SPI values for each acquisition were close to unity, validating the filtering

process previously conducted. This result indicates that the signal’s energy is

well-focused within the desired frequency range, which is crucial for analyzing EMG

signals accurately. This approach not only helped in assessing signal quality but

also ensured that the filtering process was effective in reducing noise and improving

data reliability.

This combination of methods allowed me to address the challenges inherent in EMG

signal analysis, such as noise and variability, while also leveraging the strengths of

each approach to enhance the overall quality and accuracy of the data.

65



Feature Mathematical Definition
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Table 4: Features and their Mathematical Definitions

The MATLAB scripts I used to extract features table 4 and in table 3 are detailed

in section 7. For analyzing the frequency domain characteristics, I took a different
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approach compared to the IMU data, specifically I developed two distinct functions:

fmean and fmedian, whose scripts are also included in section 7.

The fmedian function is designed to calculate the median frequency of a given signal

epoch. To ensure the accuracy of this calculation, I first preprocess the signal by

removing its mean. This step is crucial as it centers the signal around zero, effectively

mitigating the influence of any DC components that might otherwise skew the

results. These DC components typically arise from noise and the inherent non-zero

mean of the EMG signal. After preprocessing, I proceed to define the parameters

necessary for calculating the Power Spectral Density (PSD). This includes utilizing

a rectangular window with no overlap between segments to ensure a clean and

straightforward PSD calculation. Additionally, I set the Nyquist frequency, the

frequency resolution, and the number of points for the Fast Fourier Transform (FFT)

to optimize the analysis.

Employing Welch’s method, I then compute the PSD of the signal, which yields both

the PSD values P and their corresponding frequencies f . To determine the median

frequency, I sum the PSD values cumulatively until this cumulative sum reaches

half of the total power of the spectrum. This cumulative point effectively divides

the spectrum into two equal halves. Subsequently, I calculate the median frequency

fmedian as the average of the two frequencies that bracket this cumulative sum point.

This approach helps to identify where the spectral power is centered within the

signal, providing valuable insights into the distribution of frequency components. I

have found this method particularly effective for capturing the median frequency,

which is instrumental in understanding the spectral characteristics of the EMG

signal. In parallel, for calculating the mean frequency, I have developed the fmean
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function. This function starts by determining the number of points required for

the FFT based on the sampling frequency fsamp and the length of the signal epoch

epoch len. As with the median frequency calculation, the signal is preprocessed to

remove its mean before proceeding. I then compute the Power Spectral Density

(PSD) using Welch’s method, which provides the PSD values Pxx along with their

corresponding frequencies f .

To find the mean frequency fmean, I perform a weighted sum of the frequencies

f , where each frequency is multiplied by its corresponding PSD value Pxx. This

weighted sum is then divided by the total power in the PSD to yield the

mean frequency. This measure represents the center of mass of the spectral

power distribution, offering a comprehensive view of the average frequency of the

signal. This method is particularly useful for understanding the overall frequency

characteristics of the signal, as it highlights the dominant frequency components

and provides a clearer picture of the signal’s frequency distribution.

After extracting these features using the MATLAB Toolbox, I compiled them into

a table array and imported this data into Excel for further analysis. These data

encompassed the three-axis readings from the accelerometers and gyroscopes for all

three sensors placed on the patients. I chose this detailed approach to ensure that

each aspect of the sensor data was thoroughly analyzed, allowing for a comprehensive

evaluation of the sensor performance and accuracy.

By carefully preprocessing the data and employing both median and mean frequency

calculations, I was able to gain valuable insights into the signal’s frequency content

and improve the overall quality of my analysis.
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5.3 Features selection

The different features were organized into Excel worksheets to enable meaningful

export to the data mining environment Orange (Demsar et al. 2013). Orange

is a component-based visual programming software package for data visualization,

machine learning, data mining, and data analysis [22]. The worksheets exported

were divided and organized by sensor: there were mainly four data worksheets per

subject, one for the EMG data and three for the IMU data.

Before diving into all the features, I find it essential to figure out which ones are

crucial and which ones aren’t necessary. So, I first identify the features that influence

activity selection, then narrow down the features based on how they correlate with

each other. In the world of machine learning, not every feature within a dataset

contributes equally to the model’s predictive power, some features may introduce

noise or redundancy, potentially obstructing the model’s performance. Thus, the

process of feature selection is paramount to ensure the inclusion of only the most

relevant and informative features.

To optimize the feature selection process and move beyond the traditional models

typically used in data analysis, I decided to employ two complementary methods

in order to provide a more comprehensive comparison of the relevant features.

First, I focused on the correlation between the features themselves by analyzing

the correlations’ coefficients, which enabled me to identify and eliminate redundant

features, thereby reducing complexity and potential multicollinearity.

Second, I constructed and classified a decision tree, a method that helps identify

the features most important in distinguishing between different motor tasks. By
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evaluating the significance of each feature within the decision tree, I was able to

prioritize those that contribute most effectively to the classification process.

By combining these two methods—correlation analysis and decision tree classifica-

tion—I implemented a robust feature selection protocol that ensures the selected

features are both non-redundant and highly informative for classifying motor tasks.

This dual approach not only streamlines the model by eliminating unnecessary

features but also enhances its predictive performance by focusing on the most

significant features.

5.3.1 Correlation Analysis

Correlation is a statistical measure indicating the degree to which two variables

are related. When variables are correlated, a change in one variable is associated

with a change in another, either in the same direction (positive correlation) or

in the opposite direction (negative correlation). Often, correlation is discussed in

the context of a linear relationship between two continuous variables, showing the

strength of the relationship between them. When features exhibit high correlation,

they convey similar information about the target variable. This redundancy can be

a problemfor constructing the model, as it may lead to overfitting and make the

model unnecessarily complex.

Feature selection is a crucial step in the modeling process, aiming to identify the most

informative elements within a dataset. By focusing on the most relevant features,

It’s possible to implement a model that captures the essential patterns in the data

while avoiding the pitfalls of irrelevant or redundant information.

To streamline the model and enhance its efficiency, it is essential to identify and
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eliminate highly correlated features. Features that provide similar information can

lead to redundancy, which not only complicates the model but also increases its

computational complexity. Furthermore, high correlation among features can result

in multicollinearity—a situation where predictors are highly interrelated. This

interrelation can inflate the variance of coefficient estimates, making the model

unstable and difficult to interpret. By removing one of the correlated features,

it is possible to mitigate these issues, ensuring that the model remains both robust

and interpretable.

A judicious feature selection process, which takes into account feature correlation,

optimizes the model’s predictive performance. This process involves retaining a

sufficient number of features to capture the complexity of the data while discarding

those that do not contribute additional, meaningful information. This approach

enhances the model’s robustness and facilitates a clearer understanding of the

underlying data patterns by focusing on the key drivers of the target variable.

Consequently, the model becomes more streamlined, efficient, and easier to interpret,

and is more likely to generalize well to new data.

In summary, by concentrating on the most informative features, I managed to

develop models that are not only effective in prediction but also provide valuable

insights into the structure and relationships within the data. This refined approach

ensures that the model remains both powerful and practical, offering accurate

predictions and a deeper understanding of the data’s underlying dynamics. Before

analyzing and evaluating the degree of correlation, it’s crucial to normalize or

standardize the dataset. This step ensures that all features are on the same scale,

which facilitates better comparison and enhances the training performance of the
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neural network. Specifically, normalization can be achieved using the min-max

normalization method [23], which scales the values of a variable to a range between

0 and 1. The min-max normalization is implemented as:

x̃i =
xi −min{x}

max{x} −min{x}

where x̃i is the normalized value of the feature xi, and min{x} and max{x} represent

the minimum and maximum values of the feature, respectively. This ensures that:

0 ≤ x̃i ≤ 1

Normalization significantly improves the model’s convergence rate and overall

accuracy. By ensuring that features are on a comparable scale, normalization allows

for more effective training of the neural network. Consequently, I am confident in

building models that are both efficient and effective, with enhanced performance

and stability [23].

To identify the degree of correlation between the different features in the working

dataset, the Correlation Widget was employed. I calculated the degree of

correlation between the different features using the Pearson product-moment

correlation, which is commonly abbreviated as “r”. The values obtained are showed

in the below table 5, table 6 and table 7.
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Feature 1 Feature 2 Correlation r

RMS STD +1.000

CLF IF +0.959

CF IF +0.937

CF CLF +0.909

PV STD +0.898

PV RMS +0.898

MDF MNF +0.844

IF SF +0.743

CLF SF +0.740

PV SF +0.593

CLF MNF +0.589

CF SF +0.576

CF MNF +0.575

IF MNF +0.565

MDF PV +0.560

CLF MDF +0.514

CLF PV +0.492

SF STD +0.481

RMS SF +0.480

MDF SF +0.472

MDF STD +0.471

MDF RMS +0.469

Table 5: Pearson Correlation between Variable Pairs Pocket sensor
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Feature 1 Feature 2 Correlation r

RMS STD +1.000

CLF IF +0.986

CF IF +0.972

CF CLF +0.932

CLF SF +0.854

IF SF +0.825

PV STD +0.795

PV RMS +0.795

CF SF +0.721

CF RMS -0.489

CF STD -0.488

IF RMS -0.470

IF STD -0.469

MDF MNF 0.454

CLF RMS -0.434

CLF STD -0.433

MNF RMS -0.392

MNF STD -0.391

MNF PV -0.346

IF MNF +0.329

CF MNF +0.312

CLF MNF +0.306

Table 6: Pearson Correlation between Variable Pairs Thigh Sensor
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Feature 1 Feature 2 Correlation r

RMS STD +1.000

CLF IF +0.990

CF IF +0.978

CF CLF +0.959

CLF SF +0.825

PV STD +0.809

PV RMS +0.807

IF SF +0.767

CF SF +0.675

MDF MNF +0.590

MNF PV +0.481

CF MNF +0.461

PV SF +0.403

IF MNF +0.398

CLF MNF +0.389

MDF CF +0.372

CLF PV +0.328

MDF IF +0.321

MDF CLF +0.316

IF PV +0.310

MDF IF +0.307

Table 7: Pearson Correlation between Variable Pairs Wrist Sensor

To present a clearer view of the data, I have summarized the correlation levels in

the following bar charts:
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Figure 19: Bar chart illustrating the Pearson correlation between
pairs of features from table 5. The dashed horizontal line marks the
threshold value of 0.750, used as a reference to highlight correlations
exceeding this value.

Figure 20: Bar chart illustrating the Pearson correlation between
pairs of features from table 6. The bars represent the correlation
value for each feature pair, with different colors indicating the
direction of the correlation. The dashed horizontal line marks the
threshold value of 0.750, used as a reference to highlight correlations
exceeding this value.
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Figure 21: Bar chart illustrating the Pearson correlation between pairs of features
from table 7. The dashed horizontal line marks the threshold value of 0.750, used as
a reference to highlight correlations exceeding this value.

5.3.2 Decision Tree selection

The decision tree model plays a crucial role in refining feature selection and

enhancing model performance. After analyzing feature correlations to eliminate

redundant variables, I further optimized the feature selection process using a decision

tree approach. Specifically, I utilized the Automatically Decision Tree model, as

detailed by Parkka et al. (2006) [24]. This model was implemented and visualized

through the Tree and Tree Viewer widgets, providing an in-depth look at the

decision-making process. A decision tree is a powerful supervised learning algorithm

used for both classification and regression tasks. It operates similarly to a flowchart,

starting at a root node that poses a specific question about the data. Based on
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the answers to this question, the tree branches out into internal decision nodes,

each leading to further questions and additional branches. This process continues

iteratively until the data reaches terminal nodes, or ”leaf” nodes, where the final

decision or prediction is made. The strength of decision trees lies in their ability to

offer a clear, visual representation of how algorithms process data to reach outcomes.

This visual clarity facilitates an intuitive understanding of the decision-making

process, from the initial query to the final classification or prediction [25]. A key

consideration in developing a decision tree is the choice of the splitting criterion. For

the decision tree created using the Orange 3 widget, I chose the default criterion:

Information Gain. This criterion evaluates the reduction in entropy or uncertainty

within the dataset caused by the splits, thereby prioritizing the most informative

features in the decision-making process. By leveraging the decision tree’s visual

and analytical capabilities, I managed to refine the feature selection process further,

enhancing the overall predictive performance and interpretability of the model. In

the realm of machine learning, Information Gain serves as a pivotal guidepost in

decision tree construction. It’s a metric designed to quantify the effectiveness of a

potential feature in splitting a dataset. Essentially, it aims to minimize uncertainty

or entropy in the dataset, calculated using the formula [26]:

H(S) = −
cX

i=1

pi log2(pi)

Here, H(S) represents the entropy of the dataset before splitting, pi is the proportion

of examples in class i, and c is the number of classes. When splitting the data based

on a feature, the goal is to maximize the reduction in entropy. This reduction,
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known as information gain, is calculated using the formula:

IG(S,A) = H(S)−
nX

i=1

|Si|
|S|

H(Si)

Where H(S) is the entropy of the parent node, |Si| is the number of examples in

the ith child node, |S| is the total number of examples in the parent node, and

H(Si) is the entropy of the ith child node after splitting [26]. By systematically

evaluating information gain across all features, the decision tree algorithms were

employed to navigate the data landscape. This approach ensured that the features

selected provided the most clarity for decision-making, leading to a model that

was both accurate in its predictions and insightful in its analysis. To enhance the

model’s reliability and effectiveness I methodically divided the dataset, selecting

features that most effectively classified the data at each stage. Throughout each

training and validation session, I built the decision tree using the training data

and then refined it to achieve the optimal level, defined by the lowest error rate. I

rigorously tested the decision tree model to evaluate its accuracy, ensuring that it

was not only sufficient but also reliable for feature selection. The accuracy levels

achieved, showed in table 8, demonstrated that the method was efficient and that

the model was robust and trustworthy for selecting the most relevant features.
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Placement AUC CA F1 Prec Recall MCC

WRIST 0.930 0.785 0.788 0.812 0.785 0.719

THIGH 0.907 0.732 0.730 0.732 0.732 0.644

POCKET 0.891 0.688 0.684 0.684 0.688 0.584

Table 8: Performance Evaluation of the Costume Decision Tree for each sensor
placement

Figure 22: Decision Tree relative to the wrist’s sensor data

Figure 23: Decision Tree relative to the thigh’s sensor data
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Figure 24: Decision Tree relative to the pocket’s IMU data

5.3.3 Feature Exclusion Rationale

Upon reviewing the correlation table and analyzing the features used in the decision

tree, I decided to exclude specific features from the dataset. These decisions were

based on high correlations with other features and overlapping roles in the analysis.

The Pearson correlation coefficient r was calculated by evaluating and comparing

the same features for each axis and for each magnitude —acceleration and angular

velocity— separately. This axis-specific and magnitude-specific correlation analysis

aligned with the overall data analysis, confirming that the features identified for

removal due to correlation were consistent with those indicated by the general

analysis.

The rationale for excluding each feature, considering these correlations and their

implications, is detailed below:

1. Standard Deviation (STD): The strong correlation between Standard

Deviation (STD) and Root Mean Square (RMS) stems from their intrin-

sic mathematical relationship and complementary functions in representing

dataset characteristics. Both metrics are related to the distribution of data
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around the mean: STD measures the dispersion of values relative to the mean,

while RMS provides an average magnitude of the values, considering both

positive and negative deviations from the mean. Mathematically, RMS can be

viewed as an extension of standard deviation when dealing with datasets that

include both positive and negative values. RMS is particularly sensitive to

extreme values because it squares each value before averaging, which amplifies

the impact of deviations from the mean. This inherent connection makes

RMS and STD closely correlated, especially in contexts where values are not

symmetrically distributed or include outliers.

The high correlation coefficient between STD and RMS reflects not only their

theoretical relationship but also how both metrics capture similar information

about the variability and intensity of the data. Since they both quantify

how data oscillates around a central value, it is natural for them to exhibit

significant correlation.

Reflecting on this, I concluded that including both features could introduce

redundancy into the model without providing significant additional value.

The presence of strong multicollinearity could not only complicate the

interpretation of the model but also negatively impact the stability of the

coefficient estimates. For these reasons, I decided to exclude STD from the

dataset, relying on RMS to represent the variability and magnitude of the

data in the dataset aiming to simplify the analysis, while still maintaining the

dataset’s descriptive capacity. This choice allows me to focus on features that

contribute distinct and useful information to the model, thereby improving its

efficiency and effectiveness.
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2. Impulse Factor (IF): The Impulse Factor (IF) shows a strong correlation

with both the Shape Factor (SF) and the Clearance Factor (CLF). This

high correlation can be attributed to the interdependent relationships within

the system under study, as shown in ??, and can be explained by several

interconnected aspects of the system. The IF, which measures the peak value

of a transient event, can be influenced by the Shape Factor(SF), which in turn

affects the CLF, a measure that captures the severity of peaks relative to the

average vibration. This interdependence results in overlapping information

among the factors. By excluding IF from the dataset, the model can be

simplified, reducing the risk of overfitting while retaining the most relevant

information provided by SF and CLF. This approach ensures a more robust

and interpretable model by avoiding noise introduced by redundant variables.

Practical considerations, such as system design and measurement limitations,

may also contribute to the observed correlations, as these factors are affected

by common dynamics and measurements. Thus, while IF captures the in-

tensity of transient changes, SF characterizes geometric properties influencing

force distribution, and CLF reflects the severity of vibration peaks. Given their

interrelated nature, careful consideration in modeling is required to improve

both interpretability and predictive performance.

3. Clearance Factor (CLF):The significant correlation between the Clearance

Factor (CLF) and the Crest Factor (CF), as shown in ??, reflects their shared

reliance on specific characteristics of the signal or system behavior. The Crest

Factor measures the ratio between a waveform’s peak value and its RMS value,

commonly used to assess the peakiness or transient nature of a signal. The
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high correlation suggests that systems with higher Crest Factors, indicating

more pronounced signal peaks, are also likely to exhibit higher Clearance

Factors, which quantify the severity of these peaks compared to the average

vibration levels. Conversely, systems with lower Crest Factors typically exhibit

lower Clearance Factors. My analysis revealed that including both factors

could introduce redundancy due to their interconnected nature. Thus, CLF

was excluded to improve model clarity and focus on features with distinct

contributions.

4. Mean: I decided to exclude the mean of the unfiltered signal from the analysis

based on a detailed consideration of the nature of IMU sensor data and its

characteristics. IMU sensors, which measure acceleration and angular velocity,

produce data that are inherently dynamic and vary significantly with changes

in motion and orientation. The mean value of such data, especially when

unfiltered, tends to be low and relatively constant due to the averaging effect

of constant motion or lack of significant deviations.

Given that IMU data are primarily used to capture transient events and

dynamic changes in movement, the mean value, which represents a static

measure of central tendency, does not reflect the critical variations and patterns

needed to differentiate between different activities. For instance, activities

involving rapid changes or specific motion patterns are better characterized by

features such as peak values, frequency content, and variations, which the mean

value fails to capture adequately. Moreover, the presence of high-frequency

noise and transient fluctuations in IMU data means that the mean value often

remains stable and uninformative, as it is influenced more by the constant
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or average state rather than the activity-specific dynamics. Including a

feature that does not vary significantly with different activities introduces

redundancy and can dilute the effectiveness of the feature set, leading to

potential multicollinearity issues and complicating the analysis.

By excluding the mean, the dataset is streamlined to focus on features that

better capture the dynamic behavior of the system, such as variations in

acceleration and angular velocity that are more indicative of specific activities.

This decision aligns with best practices in sensor data analysis, where the goal

is to extract and emphasize features that provide meaningful insights into the

varying dynamics of the system, ensuring a more robust and insightful model

for activity detection.

In summary, the exclusion of Standard Deviation (STD), Impulse Factor (IF),

Clearance Factor (CLF), and Mean from the dataset was based on their high

correlations and overlapping roles with other features. Removing these features

reduces redundancy, avoids multicollinearity, and focuses on more informative

metrics. This refined selection improves the model’s clarity and performance by

ensuring that only unique and relevant features are included, thereby enhancing its

ability to effectively detect and classify activities. In table 9 below, I reported the

features removed for each placement after comparing both the Pearson correlation

coefficient r and the classification made by the Decision Tree.

85



Placement Features Removed

Wrist STD, IF, Mean

Thigh STD, CLF, IF, Mean

Pocket STD, CLF, IF, PV, Mean

Table 9: Features removed for each placement to increase the goodness of the
analysis.
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Figure 26: Statistical relationship between the features based on the data calculated
on the wrist sensor:
the first Figure shows the correlation between between CF and CLF, the second
Figure shows the correlation between RMS and STD, and the last Figure shows the
correlation between the IF and CLF values.
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5.4 Machine Learning

This chapter explores the statistical and mathematical techniques utilized in

recognition and evaluation processes within Machine Learning (ML) and Neural

Network (NN) applications, with a particular focus on supervised learning, a

fundamental approach in Human Activity Recognition (HAR) as demonstrated by

various studies [27], [28], [29]. Supervised learning is crucial because it relies on

known examples, such as training sets, to estimate a function that maps inputs to

outputs. By training on a labeled dataset, where each example is paired with a

corresponding output label, the model learns to generalize the relationship between

inputs and outputs. This process allows the model to make accurate predictions on

new, unseen data, which is essential in the HAR process as it enables the model to

generalize across new patient groups. Highlighting supervised learning is essential

because it forms the backbone of many practical applications in ML and NN, where

precise mapping from inputs to outputs is crucial for tasks such as classification,

regression, and pattern recognition.

Li, Xin, et al. [28] aimed to enhance exoskeletons’ ability to recognize human motion

patterns by analyzing the biomechanics of the lower limbs and developing wearable

devices equipped with electromyography (EMG) sensors and inertial measurement

units (IMUs). They introduced a Dual Stream Convolutional Neural Network

(CNN)-Relief method to handle the data acquired. Convolutional Neural Networks

(CNNs) are particularly effective for modeling complex, non-linear relationships

between variables, such as those encountered in the HAR process. CNNs are widely

used across various domains due to their ability to model intricate patterns and make
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accurate predictions. Although threshold-based and time-frequency algorithms offer

high accuracy in data classification, these approaches often require calibration, and

pre-determined threshold rates may not be applicable across different neurological

conditions.

Similarly, Y. Celik et al. [29] provide an overview of existing inertial and EMG-based

algorithms and summarize previous gait assessment studies in neurological contexts.

They discuss the advantages and limitations of using wearable devices for gait

assessment and explore future research directions. Specifically, they address gaps

in feature selection and classification, proposing the use of ML and NN techniques,

particularly deep learning methods, to improve activity recognition with inertial data

from wearable devices. Given these considerations, I decided to focus on supervised

methods, specifically neural networks (NN) within the realms of machine learning

(ML) and artificial intelligence (AI). Neural networks are chosen for their exceptional

accuracy and adaptability to diverse conditions and datasets. Their flexibility and

robustness make them particularly well-suited for improving activity recognition and

addressing some of the limitations found in traditional methods.

5.4.1 Multilayer Perceptron

Among the various neural network architectures, the Multilayer Perceptron (MLP)

has been selected for this study due to its proven effectiveness and versatility in

addressing a wide range of problems.

The MLP consists of an input layer, one or more hidden layers, and an output

layer, with each neuron in one layer fully connected to every neuron in the

subsequent layer. The input layer processes the data, with each neuron representing
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a specific feature or variable from the dataset. The hidden layers are responsible for

performing computations and extracting features from the input data, allowing the

network to learn and model complex relationships. The number of hidden layers

and neurons per layer can be adjusted based on the complexity of the problem at

hand. The output layer generates the final prediction or classification.

The Multilayer Perceptron (MLP) is well-suited for this study due to its ability

to model complex, non-linear relationships and its well-established training

methodologies. Its robust and flexible architecture enables effective learning of

hierarchical feature representations, which is crucial for capturing intricate patterns

in the data. A key challenge in developing the MLP model was determining the

optimal configuration for recognizing various motor tasks. This involved selecting

the appropriate number of neurons and hidden layers tailored to the specific

dataset. Designing this structure required meticulous consideration to balance

model complexity and performance, ensuring that the MLP could learn effectively

and generalize from the data. The implementation of the MLP was carried out

using the Orange widget Neural Network, which provides a range of options for

configuring the MLP architecture and learning process.

The learing process involves adjusting the weights of the connections between

neurons to minimize the discrepancy between the predicted and actual outputs.

This adjustment is accomplished using backpropagation, a technique that computes

the gradient of the loss function with respect to the weights and updates the

weights accordingly to reduce the error. The training procedure typically includes

at least one complete pass through the dataset (epoch). To mitigate overfitting and

manage training time, stopping rules are employed. In the table 10 are reported
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the most common stopping rules used:

Stopping Rule Description

SR1 Minimum relative change in error
achieved

SR2 Error cannot be further decreased

SR2 Maximum training time has been
exceeded

Table 10: Stopping rules for the MLP training process.

These rules might include stopping training when the error on the validation set

increases (SR1) or when the error reduction falls below a certain threshold over a

set number of epochs (SR2) [27]. The SR2 stopping rule is used by default, which

limits the algorithm to a maximum number of iterations. In this instance, the

maximum number of iterations has been set to 200. Two other important settings

that need consideration are the type of activation function for the neurons in the

hidden layers and the type of solver used.

I decided to use the hyperbolic tangent activation function, also known as

tanh, because examining the data distribution indicated that this function would

effectively discriminate between the classes [30]. Let z be the weighted sum of inputs

and biases:

z =
nX

i=1

(wi · xi) + b

where:

• wi are the weights,
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• xi are the input values,

• b is the bias term.

The output of the hyperbolic tangent function, also known as the tanh activation

function, is computed as follows:

ŷ = tanh(z) =
ez − e−z

ez + e−z

where:

• tanh(z) is the hyperbolic tangent function,

• e is the base of the natural logarithm.

Figure 27: Representation of the activation function.

The tanh function is particularly powerful in neural networks as it maps outputs to

a range between −1 and 1, centering the data around zero, as shown in Figure 27.

This helps in achieving better convergence during training. Additionally, tanh
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introduces non-linearity, provides smooth gradients for optimization, and allows

for a normalized output that can enhance the network’s ability to model complex

patterns. During the backpropagation algorithm, the gradients of the loss function

with respect to the weights and biases are calculated using the derivative of the tanh

function:

∂ tanh(z)

∂z
= 1− tanh2(z)

This derivative shows how the tanh function’s output changes with respect to its

input, and it is essential for adjusting the weights and biases in the network to

minimize the error during training.

Figure 28: Example of MLP with tanh activation function

These gradients are then used to update the weights and biases to minimize the

error between the predicted and actual outputs [30]. Regarding the optimization

solver, I opted to use the default option, which is L-BFGS-B. This optimizer is a
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member of the quasi-Newton methods family, known for its efficiency in handling

large-scale problems.

As previously emphasized, determining the number of neurons in different layers of

a neural network is a crucial step in designing an effective machine learning model,

thus to address this, I followed guidelines from Orr and Muller’s ”Neural Networks:

Tricks of the Trade” [31] to optimize and personalize the number of neurons in the

input layer, hidden layers, and output layer. Here the guidelines that I took in count

to select the right number of neurons for each layer:

1. Number of Input Neurons

The number of neurons in the input layer is determined by the number of

features in the dataset. Each neuron in the input layer corresponds to one

feature.

Number of input neurons = Number of features in the dataset

The number of input neurons is determined by the features selected in

the previous step, to ensure consistency and facilitate comparison across

different sensor placements, I set the number of input neurons to 7, which

accommodates all feature selections. This standardization allows for a fair

evaluation of the neural network’s performance across varying feature sets,

ensuring that performance differences are attributable to the model itself

rather than variations in the input configuration.

2. Number of Output Neurons

The number of neurons in the output layer depends on the type of problem you
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are trying to solve: for classification problems, the number of output neurons

typically corresponds to the number of classes.

Number of output neurons = Number of classes

Training neural networks to estimate posteriors typically requires a 1-out-of-N

coding of training targets, where the number of output neurons must match

the number of classes. However, training a neural network with thousands

of output neurons is impractical. As the number of classes increases, the

complexity of the optimal discriminant functions also increases, raising the

potential for conflicts between classes. Therefore, while neural network

classifiers are effective for tasks with relatively few classes, they become

impractical for tasks involving a large number of classes due to these

limitations.

In this case, the number of output neurons is predetermined by the different

motor tasks to be recognized, which correspond to the number of target classes.

Consequently, the number of output neurons is set to 4, matching the 4 target

classes.

3. Number of Neurons in Hidden Layers

Determining the number of neurons in the hidden layers is a crucial step

in designing a neural network architecture as it significantly influences the

model’s ability to learn and generalize. Hidden layers, although not directly

interacting with the external environment, have a tremendous impact on the

final output.
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While there is no fixed rule, a common empirical approach involves starting

with a moderate number of neurons and then adjusting based on the model’s

performance, typically selecting a number that falls between the input and

output neurons [31]. Common practices and experimental methods can provide

valuable guidance in this process [32]. To optimize the number of neurons in

the hidden layers, I combined two different approaches, which I will describe

here:

• Trial and Error Method:

This method involves repeated attempts until optimal performance is

achieved and can be divided into two strategies:

– Forward Approach: This approach starts with a small number of

hidden neurons, such as two, and gradually increases the number,

training and testing each time until performance improves.

– Backward Approach: This approach begins with a large number

of hidden neurons and gradually decreases the number, training and

testing each time until performance improves.

• Rule of Thumb:

The rule of thumb suggests that the number of hidden neurons should

be between the size of the input and output layers, often using 2
3
of the

input layer size plus the output layer size, and less than twice the input

layer size [32].

I selected a combining approach based on both the Trial and Error Method

and the Rule of Thumb empirical methods. Initially, a trial configuration of
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9 neurons in each of the two hidden layers was chosen, based on the following

calculation:

Number of neurons ≈ 2

3
× 7 + 4 ≈ 9

Subsequently, following a forward approach, the Trial and Error Method was

used to reach the best configuration, resulting in 13 neurons in the first hidden

layer and 9 neurons in the second hidden layer.

The design of MLP, as describe above, is represented then in the following Figure 29,

where it’s possible to see in detail the architecture of the network with all the

different layers and links.

Input Neurons 7

Neurons in the 1st Hidden Layer 13

Neurons in the 2nd Hidden Layer 9

Output Neurons 4

Table 11: Neural network architecture
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Figure 29: Visualization of a Multi-Layer Perceptron (MLP) with 7 input neurons,
two hidden layers (with 13 and 9 neurons respectively), and 4 output neurons. The
diagram illustrates the structure and connectivity between the layers.

98



6 Evaluation of the Model

To evaluate the model comprehensively, I utilized another Orange widget,

Prediction. The performance of the MLP model is evaluated and compared to

a Logistic Regression model, with both models trained on the same dataset.

The analysis focuses on demonstrating the MLP’s superior performance, primarily

attributed to its capability to combine multiple tanh activation functions. These

functions are more effective for the learning process with the dataset under analysis

compared to the logistic function σ employed by the Logistic Regression model.

Training and testing both models on the same data could lead to the problem of

overfitting, where the model becomes too attached to the training data and struggles

to generalize to new, unseen data. To avoid this issue, I adopted a cautious approach:

instead of training and testing on the same dataset, I used manual random sampling.

The random sampling of the dataset was performed using the Random Sampler

widget, where I decided to randomly split my dataset into two parts— a Training

Set and a Test Set. I allocate 70% of the data to the Training Set and the remaining

30% to the Test Set. Moreover, to make this process even more robust, each split is

non-replicable: every time I perform the split, it is different, introducing variability

into my training and testing subsets. By doing this, I’m not only avoiding overfitting

but also allowing for a more comprehensive evaluation of my models. This variability

in training and testing data enables me to gauge how well my models generalize to

new data, ultimately enhancing their classification capabilities and providing more

reliable assessments of their performance.

The evaluation of the models’ performances was conducted using the Predictions
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widget, which generates a report containing key metrics for assessing the models’

effectiveness. Initially, I focused on analyzing the Classification Accuracy (CA)

of the model. This metric measures the ratio of correctly predicted instances (both

true positives and true negatives) to the total number of instances. Although it

provides a general indication of the classifier’s performance, CA can be misleading

when applied to imbalanced datasets.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where:

• TP = True Positives

• TN = True Negatives

• FP = False Positives

• FN = False Negatives

Initially, I evaluated the CA to gauge the accuracy of the neural network model,

as recommended in relevant literature [6]. After achieving a satisfactory level of

accuracy, I proceeded to evaluate additional metrics to further assess the model’s

performance and robustness:

• AUC: Evaluates binary classifiers by measuring the area under the ROC

curve, plotting sensitivity against (1 - specificity). An AUC of 0.5 indicates

random performance, while 1.0 indicates perfect discrimination. It is typically

computed using numerical integration.
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• F1 Score: The harmonic mean of precision and recall, useful for imbalanced

datasets as it balances both metrics.

F1 =
2× TP

2× TP + FP + FN
(2)

• Precision: The ratio of true positive instances to the sum of true positive and

false positive instances. Important when the cost of false positives is high.

Precision =
TP

TP + FP
(3)

• Recall(Sensitivity): The ratio of true positive instances to the sum of

true positive and false negative instances. Important when the cost of false

negatives is high.

Recall =
TP

TP + FN
(4)

• MCC: A balanced measure considering true and false positives and negatives,

suitable for imbalanced datasets. The MCC ranges from -1 (total disagree-

ment) to 1 (perfect prediction).

MCC =
TP × TN − FP × FNp

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5)

These metrics provide a comprehensive toolkit for evaluating and comparing

the performance of classification models in various contexts [22]. The resulting

performance of the two models are reported in the following table 12:
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Model Placement AUC CA F1 Prec Recall MCC

Logistic
Regression

WRIST 0.834 0.674 0.671 0.702 0.674 0.576

THIGH 0.869 0.651 0.634 0.630 0.651 0.538

POCKET 0.834 0.579 0.558 0.556 0.579 0.439

MLP

WRIST 0.918 0.767 0.770 0.793 0.767 0.694

THIGH 0.923 0.884 0.882 0.889 0.884 0.847

POCKET 0.798 0.649 0.650 0.657 0.649 0.527

Table 12: Prediction of the goodness of the model based on the performance on
the data with the random sampling process with a ratio 70:30.

To provide a clearer representation of the performance of the two models, I have

depicted in Figure 31 the bar charts corresponding to the values in table 12. Each

chart visually compares the performance of the Logistic Regression and MLP models

across various metrics and sensor placements.
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Figure 31: Comparison of model performance across different sensor placements.
The first figure illustrates the performance metrics (AUC, CA, F1, Precision, Recall,
MCC) for the WRIST placement, the second figure for the THIGH placement, and
the third figure for the POCKET placement.
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As illustrated in Figure 31, the MLP model consistently surpasses the Logistic

Regression model across the dataset, demonstrating higher accuracy and sensitivity.

This performance aligns with expectations, given the MLP’s ability to model

complex patterns effectively. To ensure that these observations are both robust and

reliable, it is crucial to perform a comprehensive evaluation of the models.

For a more accurate assessment, it is essential to avoid relying solely on metrics

from a single random sampling instance. Instead, repeating the evaluation process

and computing average metrics over multiple trials provides a more reliable estimate

of model performance. This approach is motivated by the need to capture a true

reflection of the model’s generalization ability rather than potential anomalies in

a single dataset split. Cross-validation is employed as a fundamental technique to

achieve this robust evaluation. This method involves partitioning the dataset into

several subsets, typically into training, validation, and testing sets. The training

set is used to fit the model, the testing set evaluates performance during training,

and the validation set provides an unbiased measure of generalizability. In practice,

k-fold cross-validation is applied by dividing the dataset into k folds. The model is

trained on k− 1 folds and validated on the remaining fold. This process is repeated

k times, with each fold serving as the validation set once, and the results are

averaged to provide a more accurate performance estimate. I chose to use 10-fold

cross-validation to ensure a reliable assessment, minimizing potential biases and

overfitting associated with a single train-test split.

While cross-validation offers insights into model accuracy across a broad dataset,

scoring on distinct datasets further verifies the model’s generalizability. The

evaluation was conducted using the Test and Score widget, which facilitated a
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detailed analysis of the models’ performance and helped confirm their robustness.

The metrics obtained through these methods are presented in tables 13 and 14.

These comprehensive evaluations are essential for developing models that not only

perform well on training data but also generalize effectively to new, unseen data.

This rigorous approach underscores my commitment to ensuring that the model

developed in more both accurate and robust, providing reliable predictions in

practical applications.

Placement AUC CA F1 Prec Recall MCC Spec

WRIST 0.886 0.736 0.739 0.752 0.736 0.651 0.912

THIGH 0.919 0.806 0.805 0.805 0.806 0.741 0.935

POCKET 0.809 0.625 0.621 0.621 0.625 0.501 0.875

Table 13: Performance Evaluation of the Multilayer Perceptron Model Using the
cross-validation process

Placement AUC CA F1 Prec Recall MCC Spec

WRIST 0.819 0.528 0.530 0.532 0.528 0.370 0.843

THIGH 0.852 0.625 0.624 0.630 0.625 0.502 0.875

POCKET 0.816 0.583 0.559 0.556 0.583 0.451 0.861

Table 14: Performance Evaluation of the Logistic Regression Model using the
cross-validtion process
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Figure 33: Comparison of model performance across different sensor placements
through the cross-validation process. The first figure illustrates the performance
metrics (AUC, CA, F1, Precision, Recall, MCC) for the WRIST placement, the
second figure for the THIGH placement, and the third figure for the POCKET
placement.

Based on the provided tables (13 for MLP and 14 for LR), along with the

corresponding bar charts in Figure 33, a comparative analysis clearly demonstrates

that the Neural Network (MLP) consistently outperforms Logistic Regression (LR)

across various performance metrics. Specifically, the MLP model achieves higher

scores in AUC, CA, F1 Score, Precision, Recall, and MCC compared to the LR

model. This suggests that the MLP is more effective in handling classification

tasks, offering greater robustness and accuracy across different sensor placements.

In detail, the MLP achieves notably higher AUC (0.919 vs. 0.852 for THIGH, 0.886

vs. 0.819 for WRIST, and 0.809 vs. 0.816 for POCKET), which demonstrates its

ability to distinguish between classes more effectively. The classification accuracy

(CA) also shows a clear advantage for MLP, with scores of 0.806 vs. 0.625 for

THIGH, 0.736 vs. 0.528 for WRIST, and 0.625 vs. 0.583 for POCKET. Similarly,
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the F1 Score, Precision, Recall, and MCC metrics favor MLP, reinforcing its

superior performance across various evaluation criteria. On the other hand,

LR, while demonstrating respectable performance, falls short in achieving the

high scores seen with MLP, particularly in scenarios involving different sensor

placements. This suggests that for tasks requiring high accuracy and reliability

in activity classification, the MLP model is more suitable based on the provided

performance metrics.

Figure 34: Comparison of Neural Network (MLP) and Logistic Regression (LR)
models by Classification Accuracy (CA) across different sensor placements (Wrist,
Thigh, Pocket). The bars represent the average classification accuracy for each
model, with error bars indicating the variance. The MLP consistently outperforms
LR across all placements, with the wrist sensor showing the highest accuracy for
both models.

The inclusion of error bars in Figure 34 illustrates the variability or uncertainty

associated with the classification accuracy measurements for both the Neural
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Network (MLP) and Logistic Regression (LR) models across different sensor

placements (Wrist, Thigh, Pocket). For each model, the error bars indicate

the standard deviation in accuracy values across the different sensor placements,

providing insight into the consistency of model performance. For the MLP model,

the mean classification accuracy is 0.722, with a standard deviation of approximately

0.075. For the LR model, the mean classification accuracy is 0.579, with a standard

deviation of approximately 0.040. The error bars thus represent the dispersion of

accuracy values around these mean accuracies.

Understanding this variance is crucial for evaluating the stability and robustness

of each model. The error bars highlight the extent of variability in accuracy

across sensor placements, reflecting the consistency of model performance. A

narrower spread of error bars suggests greater consistency and higher reliability

in classification accuracy. For instance, the smaller variance in LR indicates a

more stable performance across different sensor placements compared to MLP. By

incorporating error bars, the figure offers a more nuanced interpretation of the

results. While the mean accuracy values provide a central measure of performance,

the error bars reveal how much the accuracy fluctuates. This helps assess how

well each model performs under varying conditions and with different sensor data,

providing essential insight into the robustness and practical applicability of the

models in real-world scenarios.

The Test and Score widget allows for a detailed comparison of models using

various metrics. In this analysis, I decided to delve whit a more precise pairwise

comparison to evaluate each model based on Classification Accuracy (CA). The

following table (table 15) presents the results of this pairwise comparison, including
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the negligible difference values:

Comparing Models by Classification Accuracy

Placement Neural Network (NN) Logistic Regression

Wrist
Neural Network (NN) 0.984 (0.016)

Logistic Regression 0.000 (0.016)

Thigh
Neural Network (NN) 0.878(0.121)

Logistic Regression 0.001 (0.121)

Pocket
Neural Network (NN) 0.254(0.685)

Logistic Regression 0.061(0.685)

Table 15: Pairwise comparison of models using the selected score (available only
for cross-validation). The number in the table gives the probability that the model
corresponding to the row has a higher score than the model corresponding to the
column. The smaller number below shows the probability that the difference between
the pair is negligible.

The probability table provides a comprehensive comparison of Classification Accu-

racy (CA) between Neural Network (NN) and Logistic Regression (LR) classifiers

across different placements: Wrist, Thigh, and Pocket. Each cell contains two values:

the upper value represents the probability that the NN model outperforms the LR

model regarding CA. the , while the lower value in parentheses indicates the prob-

ability that the difference in scores between the two models is negligible, providing

insights into whether the performance differences are statistically significant or likely

due to random variation.

Analysis of the Pairwise Comparison:

• Wrist Placement: The NN model shows a very high probability (0.984) of

outperforming the LR model in CA, with a negligible difference probability of

0.016. This suggests that the observed performance difference is statistically
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significant.

• Thigh Placement: The NN model also exhibits a strong probability (0.878)

of achieving higher CA compared to the LR model, with a negligible difference

probability of 0.121. This indicates that while the NN model generally

performs better, the difference might not be substantial in some cases.

• Pocket Placement: The probability that the NN model outperforms the LR

model is lower (0.254), and the negligible difference probability is quite high

(0.685). This suggests that the performance gap between NN and LR is less

pronounced at this placement and could be attributed to random variation.

Overall, the analysis underscores that while the Neural Network model generally

offers superior performance, the extent of its advantage varies with different

sensor placements. The negligible differences in performance probabilities further

emphasize that, apart from the Wrist placement, the performance disparities

between the models are less likely to be statistically significant. This nuanced

understanding highlights the importance of considering specific conditions and

placements when evaluating and selecting the most appropriate model for a given

application.

In particular, the comparable performance of the Logistic Regression model in

the Pocket placement may be attributed to the nature of the data collected. It is

plausible that the data from the Pocket placement exhibit greater homogeneity due

to increased noise levels, which can affect the discriminative power of the models.

This noise may result in more consistent accuracy measurements for the Logistic

Regression model, as it might better handle the variability introduced by the data.
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In contrast, the Neural Network, which typically excels in distinguishing between

features in cleaner datasets, might not leverage its strengths as effectively under

these conditions. Thus, the relatively uniform data quality at the Pocket placement

could favor the Logistic Regression model, leading to performance levels that are

comparable to, or even better than, the Neural Network in this specific context.

6.1 Confusion Matrix

To assess the effectiveness of the two models in classifying the different motor

classes across the various subjects analyzed, I computed the corresponding confusion

matrices for each sensor placement. This approach allows a direct evaluation

of the classifiers’ performance, highlighting which classes have the highest rates

of misclassification. By identifying these problematic areas, I could investigate

potential reasons that lead to these errors and suggest improvements for the neural

network model in future studies. The confusion matrices, which were generated

using the Orange widget Confusion Matrix, are presented in the following tables.

112



Figure 35: Comparative analysis of the Neural Network (MLP) and Logistic
Regression (LR) models for wrist sensor placement. The confusion matrix displays
the classification performance of each model across different motor classes. The
table provides insights into which classes are most frequently misclassified, helping
to identify areas for potential model improvement.

Figure 36: Confusion matrix for the Neural Network (MLP) and Logistic
Regression (LR) models applied to thigh sensor placement. This figure illustrates
the accuracy of each model in classifying motor activities, highlighting the rate of
misclassification for each motor class.
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Figure 37: Confusion matrix for the Neural Network (MLP) and Logistic
Regression (LR) models using pocket sensor placement. The matrix visualizes the
performance of the classifiers, showing the distribution of correct and incorrect
classifications across motor classes.

6.1.1 Sensor Location:Pocket

MLP Classifier

• Mixed Walking: The classifier correctly identified 21 instances of mixed

walking, with some confusion with climbing stairs(15 misclassifications) and

descending stairs (8 misclassifications).

• Organizing Things: This class was well recognized, with 41 correct

predictions out of 46 instances, indicating strong performance.

• Descending Stairs: 32 instances were correctly classified, but some confusion

was present with climbing stairs (5 misclassifications) and mixed walking (8

misclassifications).

• Climbing Stairs: Only 24 out of 48 instances were correctly classified, with

significant confusion with mixed walking (15 instances).

114



Logistic Regression

• Mixed Walking: Logistic Regression struggled with this class, correctly

identifying only 10 instances. Confusion occurred with climbing stairs (16

instances) and descending stairs (17 instances).

• Organizing Things: The model performed well, with 41 correct predictions

out of 49.

• Descending Stairs: 32 correct predictions were made, though confusion

occurred with mixed walking (10 instances).

• Climbing Stairs: 32 instances were correctly classified, but confusion

remained with mixed walking (7 instances) and organizing things (6 instances).

The MLP model demonstrated better performance than Logistic Regression in

recognizing most activities using the pocket sensor. It excelled particularly in

identifying ”Organizing Things” with high accuracy. However, both models

struggled with ”Mixed Walking” which was frequently confused with ”Climbing

Stairs ” and ” Descending Stairs”. The MLP model had fewer misclassifications

compared to Logistic Regression, especially in ”Mixed Walking” and ”Climbing

Stairs”. This suggests that the MLP model is more reliable for tasks involving

the pocket sensor, although there is still room for improvement in distinguishing

between similar activities.

6.1.2 Sensor Location: Wrist

MLP Classifier
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• Mixed Walking: The classifier improved with 24 correct identifications,

though confusion persisted with descending stairs (7 instances) and climbing

stairs(3 instances).

• Organizing Things: Almost perfect recognition was achieved, with 34

correct identifications out of 36.

• Descending Stairs: 23 instances were correctly classified, with some

confusion with climbing stairs (10 instances).

• Climbing Stairs: Recognition improved, with 25 correctly classified instances

and minimal confusion respect to the pocket placement.

Logistic Regression

• Mixed Walking: 17 instances were correctly identified, though confusion

remained with descending stairs (9 instances) and climbing stairs(6 instances).

• Organizing Things: 30 instances were correctly classified, with 6 misclassi-

fication.

• Descending Stairs: Only 14 correct classifications were made, with notable

confusion between climbing stairs (11 instances) and mixed walking (10

instances).

• Climbing Stairs: Only 15 correct classifications were made , with particular

confusion with descending stairs (13 instances).

The wrist sensor location revealed that the MLP model consistently outperformed

Logistic Regression, particularly in recognizing ”Organizing Things” and ”Climbing

Stairs .” While the MLP model showed improvements in classifying ”Mixed
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Walking” compared to the pocket sensor, some confusion with ”Descending Stairs”

and ”climbing stairs” remained. Logistic Regression lagged behind significantly

in identifying ”Descending Stairs” and ”Climbing Stairs ” showing more frequent

misclassifications in these categories. The wrist sensor thus benefits more from the

MLP model, which better handles the complexity of the activities, though minor

misclassification issues persist

6.1.3 Sensor Location: Thigh

MLP Classifier

• Mixed Walking: The model maintained 24 correct classifications, though

confusion persisted with descending stairs(9 instances).

• Organizing Things: Strong recognition was achieved with 35 correct

predictions, though 1 instances were misclassified.

• Descending Stairs: 25 instances were correctly classified, with some

confusion across climbing stairs (4 instances) and mixed walking (7 instance).

• Climbing Stairs: The classifier correctly identified 32 instances, with some

confusion with descending stairs(2 instances) and mixed walking(2 instances).

Logistic Regression

• Mixed Walking: The model correctly classified 17 instances, but showed

confusion across descending stairs (13 instances) and climbing stairs (6

instances).

• Organizing Things: 34 correct predictions were made, with 2 misclassifica-
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tions.

• Descending Stairs: The model struggled, with only 13 correct predictions,

and confusion with mixed walking (16 instances).

• Climbing Stairs: Logistic regression performed correctly classifying 26

instances, with confusion with the mixe walking task (9 instances).

The thigh sensor provided relatively stable performance for the MLP model,

which effectively recognized ”Organizing Things” and ”Climbing Stairs” similar

to the wrist sensor. However, a slight decline in performance was observed in

classifying ”Descending Stairs” with some confusion with ”Mixed Walking” and

”Climbing Stairs.” Logistic Regression continued to struggle with ”Mixed Walking,”

”Descending Stairs,” and ”Climbing Stairs” showing higher rates of misclassification

compared to the MLP model. Overall, the thigh sensor’s performance highlights the

MLP model’s superior ability to handle complex activities, but it also points to the

need for further refinement to improve accuracy, especially for activities that share

similar movement patterns.

Overall considerations

In summary, the MLP model consistently outperformed Logistic Regression in

recognizing the four activities, with particularly strong performance in identifying

”Organizing Things” and ”Climbing Stairs.” The wrist sensor proved to be the

most effective across both models, showing high accuracy in classifying ”Organizing

Things” and ”Climbing Stairs.” However, both models struggled with accurately

classifying ”Mixed Walking,” which was frequently confused with ”Descending
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Stairs” and ”Climbing Stairs ” due to the similarities in movement patterns. Upon

reflection, I attribute this difficulty in recognizing ”Mixed Walking” to the fact

that participants emulated normal walking patterns during the mixed walking task,

with each individual exhibiting a unique gait. This variability likely disrupted

the establishment of a clear recognition pattern, making it more challenging to

differentiate ”Mixed Walking” from other motor tasks. This insight underscores

the importance of considering individual differences in gait when developing and

refining activity recognition models, as these variations can significantly impact the

accuracy of classification, particularly for activities with overlapping characteristics.

119



7 Conclusions

The main aim of this study was to advance the field of human activity recognition

(HAR) by utilizing a combination of Inertial Measurement Unit (IMU) and

Electromyography (EMG) signals. These sensors, although not considered the gold

standard for HAR, offer several advantages, such as lower cost and the ability to be

used in various settings beyond controlled lab environments. The research focused

on developing and evaluating machine learning (ML) models capable of accurately

classifying different motor activities based on data collected from these wearable

sensors. The study was motivated by the growing demand for reliable activity

recognition systems in areas like healthcare monitoring, rehabilitation, and sports

performance analysis, with particular emphasis on detecting activities suitable for

patients with chronic diseases. Consequently, the target motor tasks selected were

designed to be feasible for a wide range of individuals and useful in monitoring the

progression of chronic conditions.

The study began with an extensive review of existing methods in activity recognition,

underscoring the potential benefits of combining IMU and EMG signals. This was

followed by the design and implementation of a comprehensive data processing

pipeline. The pipeline encompassed stages such as data acquisition, noise reduction,

and feature extraction, with a focus on deriving meaningful features from both

the time and frequency domains of the collected signals. These features were

then used as inputs for the machine learning models developed in the next phase

of the research. At the core of the study was a comparative analysis of two

machine learning algorithms: Logistic Regression and Multi-Layer Perceptron
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(MLP). Logistic Regression, a linear model, was chosen for its simplicity and

interpretability, while the MLP, a type of neural network, was implemented for

its ability to model complex, non-linear relationships in the data. The MLP

was specifically chosen for its customizability and its ability to use the hyperbolic

tangent function as the activation function, which is more suitable than the sigmoid

function—commonly used in Logistic Regression—when dealing with datasets with

higher variability. The performance of these models was evaluated based on different

sensor placements on the body, aiming to determine their effectiveness in recognizing

four distinct motor activities. The results demonstrated the superior performance

of the MLP model across all sensor locations, particularly in recognizing complex

activities such as stairs-related activities (climbing and descending stairs). The MLP

consistently outperformed Logistic Regression in key metrics, including accuracy,

AUC, F1 Score, Precision, Recall, and MCC, showcasing its robustness in capturing

the intricate patterns within the data.

Among the various sensor placements, the wrist sensor proved to be the most

effective for both models, offering the most consistent and accurate recognition of

activities like organizing things and climbing stairs. However, even with this sensor,

both models struggled to accurately classify mixed walking, with Logistic Regression

showing particular difficulty.

The mixed walking class was the most challenging to classify correctly across all

sensor placements and models. This class was frequently confused with descending

stairs and climbing stairs, likely due to the similar movement patterns involved in

these activities. This challenge highlights the need for more sophisticated models or

additional data sources to improve classification accuracy for such complex activities.
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A specific challenge of this study was evaluating the performance of the sensor

placed in the pocket, which emerged as the least accurate positioning compared to

the wrist and thigh placements. Although the pocket sensor allowed for natural

movement without restrictions, this freedom led to significant variations in sensor

orientation, which affected the consistency of data capture. As a result, both

the MLP and Logistic Regression models faced difficulties in accurately classifying

activities like mixed walking and climbing stairs when using data from the pocket

sensor. The comparable performance of Logistic Regression in the pocket placement

is likely due to the increased noise in the data, which may have made the

data more homogeneous. This homogeneity could reduce the advantage typically

provided by the MLP’s ability to capture non-linear dependencies, leading to a

better-than-expected performance of Logistic Regression. Despite these challenges,

the analysis indicated that the MLP model still managed to achieve a moderate level

of accuracy, outperforming Logistic Regression in most cases. However, the overall

performance of the pocket sensor was lower than the other placements, suggesting

that while the results were acceptable, they were not optimal for precise activity

recognition.

Based on the analysis, the MLP model is recommended as the most suitable for

the classification tasks addressed in this study. Its ability to capture non-linear

dependencies in the data makes it particularly well-suited for recognizing complex

activities. Future research should focus on refining this model or exploring more

advanced neural network architectures, such as Convolutional Neural Networks

(CNNs) or Recurrent Neural Networks (RNNs), to further enhance recognition rates,

especially for the difficult mixed walking class.
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In conclusion, this study demonstrates that both sensor placement and the choice

of machine learning models significantly influence the performance of human

activity recognition systems. The MLP model, particularly when combined with

wrist-mounted sensors, shows great potential for providing reliable and accurate

activity recognition. However, challenges remain, particularly in distinguishing

between activities with similar movement patterns. Addressing these challenges

will require further research, possibly involving more advanced machine learning

techniques or additional sensor modalities, to improve the robustness and accuracy

of activity recognition systems in real-world applications.
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Appendix A

Matlab R2024a scripts

The analysis employed the following functions for feature extraction.

The function fmedian calculates the median frequency of a given signal epoch. It

takes three inputs: the signal epoch x, the sampling frequency fsam, and the length

of the epoch in seconds epoch len.

1 function fmedianv = fmedian(x, fsamp , epoch_len)

2 % Function to calculate the median frequency of a signal

epoch.

3 % Input parameters: x signal epoch (vector)

4 % fsamp sampling frequency

5 % epoch_len epoch length (in seconds

)

6 % Output parameters: fmedianv median frequency

7

8 % Calculate P using a simple periodogram

9 x = x - mean(x);

10

11 win = rectwin(length(x));

12 noverlap = 0;

13 fNy = fsamp / 2;
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14 df = 1 / epoch_len;

15 NFFT = fsamp / epoch_len;

16

17 [P, f] = pwelch(x, win , noverlap , NFFT , fsamp);

18

19 A = sum(P) / 2;

20 i = 1;

21 S = 0;

22 while S < A

23 S = S + P(i);

24 i = i + 1;

25 end

26

27 fmedianv = (f(i) + f(i - 1)) / 2;

28 end

Listing 1: MNP function’s script
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The function fmean calculates the mean frequency of a given signal epoch. It takes

three inputs: the signal epoch x, the sampling frequency fsamp, and the length of

the epoch in seconds epoch len.

1 function fmeanv = fmean(x, fsamp , epoch_len)

2 % Function to calculate the mean frequency of a signal epoch.

3 % Input parameters: x signal epoch (vector)

4 % fsamp sampling frequency

5 % epoch_len epoch length (in seconds

)

6 % Output parameters: fmeanv mean frequency

7 NFFT=fsamp/epoch_len;

8

9 % Body of the function

10 x=x-mean(x);

11 [Pxx ,f]= pwelch(x,[],[],NFFT ,fsamp);

12 fmeanv=sum(f.*Pxx)/sum(Pxx);

13

14 end

Listing 2: MDP function’s script

1 % Hjorth parameters

2 % Activity

3 Act = var(EMG_fil);
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4

5 % Mobility

6 Mob = sqrt(var(diff(EMG_fil))./var(EMG_fil));

7

8 % Complexity

9 Com = sqrt(var(diff(diff(EMG_fil)))./var(EMG_fil));

10

11 % signal parameters

12 fs = 1000; % sample frequency

13

14 % Evaluation of the Power spectrum

15 [pxx , f] = pwelch(EMG_fil , [], [], [], fs);

16

17 % Defining the cut -off frequencies

18 f1 = 10; % Low cut -off frequency (Hz)

19 f2 = 500; % High cut -off frequency (Hz)

20

21 % Finding indices for f1 and f2

22 idx_f1 = find(f >=f1 , 1);

23 idx_f2 = find(f <= f2 , 1, ’last’);

24

25 % Evaluation of the power spectrum of interest (f1 - f2)

26 P_f = sum(pxx(idx_f1:idx_f2));

27

28 % Evaluation of the total Power content (0 - f_max)
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29 P_t = sum(pxx);

30

31 % Spectral Purity Index

32 SPI = P_f / P_t;

33

34 % MEAN ABSOLUTE VALUE

35 MAV = sum(abs(x))/( length(x)/fsamp);

36 % Root Mean Square

37 RMS=std(x)

Listing 3: Hijort parameters’ script

1 % Create feature extractor objects

2 meanFE = signalTimeFeatureExtractor ("Mean", true , "SampleRate

", fs);

3

4 timeFE = signalTimeFeatureExtractor ("RMS", true , ...

5 "StandardDeviation", true , ...

6 "ShapeFactor", true , ...

7 "PeakValue", true , ...

8 "CrestFactor", true , ...

9 "ClearanceFactor", true , ...

10 "ImpulseFactor", true , ...

11 "SampleRate", fs);

12
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13 freqFE = signalFrequencyFeatureExtractor (" PeakAmplitude",

true , ...

14 "PeakLocation", true , ...

15 "MeanFrequency", true , ...

16 "BandPower", true , ...

17 "PowerBandwidth", true , ...

18 "SampleRate", fs);

19

20 % Create datastores

21 meanFeatureDs = arrayDatastore(Data ’, "IterationDimension",

2);

22 timeFeatureDs = arrayDatastore(Filtered ’, "IterationDimension

", 2);

23

24 % Extract features using the datastores and feature

extractors

25 meanFeatureDs = transform(meanFeatureDs , @(x) meanFE.extract(

x{:}));

26 timeFeatureDs = transform(timeFeatureDs , @(x) timeFE.extract(

x{:}));

27

28 % Read the features

29 meanFeatures = readall(meanFeatureDs , "UseParallel", true);

30 timeFeatures = readall(timeFeatureDs , "UseParallel", true);

31
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32 % Combine the features

33 features = [meanFeatures timeFeatures ];

34

35 % Convert channel labels to categorical

36 Channels = cellstr(Channels);

37 categories = categorical(Channels);

38 disp(categories);

39

40 % Create the feature table

41 featureTable = array2table(features);

42 actioncats = categorical(categories) ’;

43 % featureTable.ActivityID = ’’; % Uncomment and adapt if

necessary

44

45 % Display the first rows of the table

46 head(featureTable)

Listing 4: Extraction of features through Matlab Signal Processing Toolbox and

Statistics and Machine Learning Toolbox
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