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Abstract 

 
Cardiovascular diseases (CVDs) are the leading cause of global death, accounting for 30% of 
all fatalities. The understanding of the hemodynamics of cardiovascular flows in vivo is 
important to evaluate diseases progression and the efficacy of surgical treatments.  

A new promising diagnostic technique for cardiovascular flow assessment is "4D flow MRI”. 
It overcomes the limitations associated with traditional methods, like Doppler 
echocardiography and 2D time-resolved phase-contrast (PC) MRI and it is able to provide 
information on the temporal and spatial evolution of 3D blood flow, with complete volumetric 
coverage. 

However, noise-like errors significantly affect the accuracy of these measurements. In this 
context, the aim of this study is to enhance the quality of 4D flow MRI data by exploiting the 
physical law of the incompressibility of blood, which results in the imposition of a 
divergence-free condition on the flow field. 

In particular, three divergence-free approaches - Finite Difference Method (FDM), 
Divergence-Free Wavelets (DFW) and Radial Basis Functions (RBF) based methods – have 
been considered in this study to reduce the divergence of the velocity field provided by 4D 
flow MRI, reducing the deviation between the filtered flow field and the measured one.  

In detail, the Finite Difference Method (FDM) projects the velocity data into a divergence-
free space using Helmholtz-Hodge decomposition, solved by employing first-order finite 
differences with periodic boundary conditions.  

Radial Basis Functions (RBF)-based method used normalized convolution to locally 
approximate the acquired velocity field into divergence-free radial basis functions (RBFs), 
used as convolution kernels. The normalized convolution operation is equivalent to solving a 
weighted linear least squares problem, the result of which is a vector of coefficients that is 
used to reconstruct the divergence-free flow field.  

Divergence-Free Wavelets (DFW)-based method applies the Discrete Wavelet Transform, 
realized through a bank of filters, separately, to each velocity component. The resulting 
divergence-free and non–divergence-free coefficients, linearly combined, provide a sparse 
representation of flow data, which were subjected to the denoising procedure using a soft-
thresholding technique, called SureShrink. Furthermore, a second-generation denoising 
method, named “cycle spinning”, was considered to reduce blocking artifacts.  

Comparative analysis of these methods, applied on synthetic velocity data obtained from a 
CFD simulation of a realistic aorta at the systolic peak and with Gaussian noise superimposed, 
demonstrated, both qualitatively and quantitatively, the effective restoration of the original 
flow field and a reduction in the divergence of noisy data. 

Quantitative results showed that the DFW-based method performed better than FDM and 
RBF-based method. The no-divergence constraint in the DFW-based method is more relaxed, 



 
 

 

making it less sensitive to segmentation errors Moreover, the DFW-based method with partial 
cycle spinning further enhanced its performance.  

In conclusion, the finding of this study can be significant because the integration of these 
denoising techniques into 4D flow MRI data could improve the accuracy of hemodynamic 
assessments, providing a significant advance in the diagnostic and therapeutic management 
of cardiovascular disease. 
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INTRODUCTION  
 
Cardiovascular diseases (CVD) are the most common cause of death worldwide (30% of all 
global deaths)  (Gasteigder et.al. , 2014). Relevant examples of CVDs are acquired or 
congenital heart failures, stenosis, aneurysms (A. Can, R. Du., 2015) and atherosclerosis. The 
initiation, progression and outcome of a CVD is a multi-factorial problem that involves three 
different risk factors: systemic factors, related to diet and lifestyle, biological factors like wall 
biomechanics, genetics and vessel morphology and hemodynamic factors, related to the 
presence of disturbed flows within the vessels. 
 
Cardiovascular pathologies arise in regions of complex geometry, characterized by 
multidirectional fluid dynamic patterns, like for example flow separation and recirculation.  
The knowledge of cardiovascular flows allows to understand how altered hemodynamics 
contribute to the onset or progression of diseases (A.M. Nixon, M. Gunel, B.E. Sumpio.) and 
to evaluate the recovery of physiological flows following surgery or a surgical procedure.  
 
The lack of a “gold standard” as a measurement technique for cardiovascular flow assessment 
in vivo and non-invasively, has involved different research to overcome the limitations of the 
most common clinical tools used for this purpose nowadays. They are: 
 

- Doppler echocardiography: it measures a single direction of blood flow velocity 
through the emission of high frequency sound waves (2 to 18 MHz), by exploiting the 
Doppler effect for interpreting the receiving echoes.  
This approach is limited by the constraints associated with echo-Doppler imaging: 
variable velocity assessment, limited acoustic window and operator-dependent quality.  

- 2D time-resolved (CINE) phase-contrast (PC) MRI: it involves velocity encoding in a 
single direction, perpendicular to the 2D imaging slice positioned orthogonally to the 
lumen of the vessel (through-plane encoding). As a result of incomplete spatial volume 
coverage, caused by gaps between adjacent slices, and breath-hold misregistration, 
caused by data acquisition performed during a 10-20 second breath-hold period, it is 
difficult to fully analyse flow patterns.  
 

However, in the last decade comparative studies among the main techniques used in clinical 
practice for characterizing hemodynamic patterns in the human body (Maya Gabbour, 
Susanne Schnell, Kelly Jarvis, Joshua D Robinson, Michael Markl, Cynthia K Rigsby., 2014), 
have highlighted the potential of a new imaging tool, the 3D time-resolved PC-MRI, also 
known as 4D flow MRI. Even if 4D flow MRI performs worse in spatial and temporal 
resolution, compared with echo-Doppler, it overcomes 2D CINE PC MRI and Doppler 
echocardiography since it allows three-directional measurements of blood flow, flexible 
retrospective quantification of flow parameters, full volumetric coverage and hence more 
appropriate quantitative velocity measurements. However, noise-like errors significantly 
affect the accuracy of velocity measurements so the development of new clinical tools for 
assessing cardiovascular flows in vivo has increased the need to find techniques to increase 
their accuracy. 
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The aim of this study is to compare the performances of different state-of-the-art techniques 
to enhance the quality of 4D flow MRI velocity data by exploiting the physical law of the 
incompressibility of blood, which results in the imposition of a divergence-free condition on 
the flow field, by using synthetic 4D flow MRI data derived from a CFD simulation of a 
realistic thoracic aorta to which Gaussian noise was superimposed after the voxelization 
process. 
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MAGNETIC RESONANCE IMAGING (MRI) 
 
Magnetic Resonance Imaging (MRI) techniques are based on the principle of Nuclear 
Magnetic Resonance (NMR), a spectroscopic imaging technique that provides information 
about the chemical-physical nature of matter through interaction at the nuclear level with 
magnetic fields (Hornak, 1996). This phenomenon was first observed in 1946 by E. Purcell 
and F. Bloch, winners of the Nobel Prize in Physics in 1952. However, it was applied to 
clinical diagnostics since the beginning of the 1970s, in view of its ability of producing images 
of body districts noninvasively and without the use of ionizing radiation (Bistolfi, 1986). 
 
NUCLEAR MAGNETIC RESONANCE - PHYSICAL PRINCIPLES 
 
Hydrogen is the most widely used nuclide in MRI, since it is abundant in biological tissues.  
 
Each hydrogen atomic nucleus possesses a proton, which has an intrinsic magnetic property 
called spin. Spin has the dimensions of the physical entity 'angular momentum' and is 
generated by the rotation of the particle around its axis. 
 
The rotation of a charged particle, such as the proton, produces a microscopic vector, parallel 
to the spin axis and aligned with the angular momentum or spin momentum I, which is called 
the magnetic moment (μ). So, the behaviour of the proton can be likened to that of a small 
magnet with a north pole and a south pole. As such, it can change orientation when immersed 
in an external magnetic field. 
 
For a proton, with spin number ½, only two orientations are possible for the magnetic moment 
vector, each of which determines an energy configuration: high-energy (termed spin-down) 
or low-energy (termed spin-up).  
The external magnetic field also exerts a mechanical moment on the spin, which produces 
precession motion in the spin around the flux lines of 𝐵!,  with a frequency described by 
Larmor's law: 
 

Ω! = 𝛾𝐵!		 
 

(1) 

 
where Ω!	is the Larmor pulsation, 𝛾 is the gyromagnetic ratio and 𝐵! the external magnetic 
field strength.  
 
Under conditions of rest, the magnetic moments are randomly oriented, and all orientations 
are equiprobable. The application of the external static magnetic field introduces orientations 
that are preferential to others, so globally a nonzero magnetization vector arises along the 
direction of magnetic field application 𝐵! (z axis). The component on the (x, y) plane, on the 
other hand, since the spins precede at the same frequency but with random phase, is zero. 
The information needed for MR imaging is contained in the magnetization vector. It, however, 
is a sum of parallel and antiparallel contributions with respect to one direction, with a very 
low predominance of one group over another.  
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If all nuclei immersed in the 𝐵! field are considered, it is observed that the spin-up number 
(𝑁#$) is slightly higher than the spin-down number (𝑁%&'() and their ratio is defined by the 
Boltzmann statistic: 
 
 
 

𝑁#$
𝑁%&'(
) = 𝑒

)*
+,  

 

(2) 

 
Where ∆𝐸 is the energy difference between the two energetic states 𝑁#$ and 𝑁%&'(,	k is the 
Boltzmann constant, and T is the absolute Temperature. This results in a low value of the 
magnetization vector, which in turn leads to low signal-to-noise ratio (SNR), poor 
detectability and measurement problems. To solve this problem, the phenomenon of 
resonance, the particular condition of a system whereby it has an excitation response that is 
maximally amplified, is exploited.  
 
To place the system in a resonant condition, an additional external field must be provided at 
an appropriate frequency.  
 
The stimulation magnetic field 𝐵-, a dynamic field generated by a radio-frequency excitation 
with a pulsation equal to the Larmor pulsation, perpendicular to 𝐵!, causes a transfer of energy 
from the stimulation field to the spin. 
 
Under the effect of the magnetic field 𝐵-, the magnetization vector deviates from the z-axis 
by an angle called the flip-angle (α). The value of the flip-angle depends on the duration of 
application of the 𝐵- field. α values of interest are: 
 

• α=90°: the system is in saturation, the longitudinal component of the magnetization 
vector is cancelled and a transverse component arises in the (x, y) plane.  

• The saturation of the system is caused by the transition of spins from spin-up to spin-
down due to energy transfer, until the condition 𝑁#$ =𝑁%&'( is reached, resulting in a 
cancellation of longitudinal component of the magnetization vector (𝑀.). In addition, 
the action of 𝐵- puts the spins in phase concordance. As the precession of these spins 
continues around the z axis, there is the appearance of a component of the resulting 
magnetization vector in the (x, y) plane,	𝑀/0. 

• α=180°: the longitudinal component along z is flipped, and no component appears in 
the (x, y) plane. 

 
When the flip angle reaches 90° or 180°, the 𝐵- perturbation stops, and the system returns to 
its equilibrium state through two relaxation mechanisms: 
 

• Longitudinal relaxation, or spin-lattice: involves a gradual recovery of the longitudinal 
component of the magnetization vector. 

• Transverse relaxation, or spin-spin: involves a gradual cancellation of the transverse 
component of the magnetization vector. 
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The two processes occur simultaneously, and both have an exponential trend, with different 
time constants: constant 𝑇-  is the longitudinal (or spin-reticulum/lattice) relaxation time, 
while constant 𝑇1 is the transverse (or spin-spin) relaxation time: 
 

𝑀. = 𝑀! 01 − 𝑒
2 3,!3 

 

(3) 

 

𝑀/0 = 𝑀/0"𝑒
2 3,#  

 

(4) 

 
The change in the direction of the magnetization vector generates an induced electromagnetic 
field on a coil placed in the (x, y) plane. The signal received by the coil has a time course that 
tends to zero almost exponentially and is called FID (Free Induction Decay).  
 
The FID signal, however, contains no information about the spatial location of the voxel that 
originated it. To trace the raw data back to an ordered map associated with the image, a 
technique based on the Fourier method is used: after demodulating the FID coming from a 
voxel (thus eliminating the fast oscillations due to the stimulation field) the frequency and 
phase information of each individual FID is combined (phase and frequency encoding, the 
latter obtained by applying field gradients along the axes). Thereby, pairs of values are 
obtained that uniquely identify the position in the plane of the voxel which generated that 
signal.  
 
At the end of the process, by summing the contributions of all voxels, a space expressed in 
Fourier coefficients, called k-space, is obtained. That space, then, represents the coefficients 
of the 2D Fourier transform of the measured MR image; therefore, to trace back to the image, 
it is sufficient to apply the inverse Fourier transform to the k-space. 
 
There are several modes of k-space acquisition, which are called trajectories. The most 
popular ones are Cartesian trajectory, Echo Planar Imaging (EPI), radial trajectory and spiral 
trajectory. The most widely used is the Cartesian mode, which acquires parallel and 
equispaced lines of k-space by proceeding sequentially. Its wide use is due to the good quality 
of the reconstructions, which do not suffer from artifacts as in the case of the other trajectories. 
The use of such a trajectory, however, implies very long acquisition times because of the need 
to repeat the RF stimulus for each line acquired. 
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PHASE-CONTRAST MRI (PC MRI)  
 
Cardiovascular magnetic resonance imaging has undergone substantial developments over 
the last decades. Since its introduction in the late 1980s, PC MRI, also termed ‘flow-sensitive 
MRI’ or ‘MR velocity mapping’, has become a routine part of standard-of-care cardiac MRI 
(David T.Wymer, Kunal P. Patel, William F. Burke, Vinay K. Bhatia. , 2020). In most MRI 
examinations, phase data are not considered for image interpretation. However, in selected 
clinical cases such as evaluating blood flow in the heart and through vessels with 2D CINE 
PC MRI or 4D flow MRI, phase data provide useful information. These imaging modes are 
based on the phase data of all MRI signals, in order to obtain quantitative blood flow 
information. Signals deconstructed by Fourier analysis maintain their frequency and phase 
information.  
The generation of a phase-contrast MRI image, for unidirectional velocity encoding, involves 
two acquisitions (Figure 1), each taken after the application of a linear bipolar gradient in the 
flow direction, with all parameters held constant but the linear bipolar gradient reversed in 
the second acquisition (Joachim Lotz, 2002). 
 
Spins, which move in the direction of application of the first positive magnetic field gradient, 
G1, acquire a displacement in their rotational phase, proportional to the position they have 
along the gradient and, therefore, to the velocity: faster spins, that reach positions where the 
gradient field takes on higher values, will have larger phase shifts than slower spins. The 
phase shifts of stationary spins are removed by the application of the second negative 
magnetic field gradient, G2, which is applied in the direction of the flow, with the same 
amplitude but reversed in sign with respect to G1. 
 
However, since removal of the stationary signal is a source of noise in most phase-contrast 
images, a second acquisition with inverted bipolar gradient is performed and subtracted from 
the first one. This removes background phase effects and produces a map where only voxels 
in which the spins are moving will have a nonzero phase shift value, that is directly 
proportional to the blood velocity value. 
 
 

 
 

Figure 1. Physics of PC MRI processing: application of bipolar gradients.  
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The equation for calculating the spin phase change is: 

 

∆Φ = 𝛾𝑣⃑Δ𝑀- 
 

(5) 

where 𝛾 is the gyromagnetic ratio, 𝑣 is the proton velocity and Δ𝑀- is the change in the 
magnetic moment. The phase angle is directly proportional to the proton velocity. However, 
since the angles are finite and behave according to modular arithmetic, only a certain range 
of velocities can be mapped, those generating phase shifts that do not exceed the range that 
includes values from - 180° to 180°. The maximum measurable velocity is called the encoding 
velocity (Venc). 

Since ∆Φ < π , when ∆Φ = π  |𝑣⃑| ≤ Venc:  

 

𝑉𝑒𝑛𝑐 = 4
5)6!

  
 

(6) 

where Δ𝑀- is proportionate to gradient strength. Since velocity encoding is inversely 
proportional to gradient intensity, encoding lower velocity requires larger gradient areas and 
thus longer echo and repetition times (TE and TR). Echo Time (TE) is the time between the 
application of the radio frequency (RF) stimulation and the moment when the echo signal is 
acquired. Repetition Time (TR) is the time interval between two successive excitation RF 
impulses applied to the same volume of blood. 

Encoding velocity is defined as the maximum velocity that can be detected correctly without 
incurring the phenomenon of velocity aliasing. The latter generates an artifact in the image, 
identifiable as a sudden change from high to low velocity within a flow region. If aliasing 
artifacts are present, accurate visualization and quantification of the flow may be 
compromised, unless an antialiasing correction is made, or the acquisition is repeated by 
setting a higher Venc. 

However, Venc is related to the SNR (or VNR in this case) by the following relationship: 

 

									𝑉𝑛𝑜𝑖𝑠𝑒 ≈
𝑉𝑒𝑛𝑐
𝑆𝑁𝑅  

 

(7) 

Where 𝑉(&789 represents the threshold below which speed measurement can be considered 
unreliable due to noise. So, a too high Venc can lead to increased noise superimposed on the 
image, resulting in a loss of image quality. Venc should be set at the physiological velocity of 
the vessel of interest and adapted to the hemodynamic conditions there. Typical settings for 
Venc are 150-200 cm/s in the thoracic aorta, 250-400 cm/s in the aorta with aortic stenosis or 
coarctation, 100-150 cm/s for intracardiac flow, and 50-80 cm/s in the large vessels of the 
venous system. If a large imaging volume with several vessels is examined, there may not be 
an optimal Venc setting, and the value must be chosen according to the clinical question. 
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4D FLOW MRI – INTRODUCTION 

4D flow MRI technique uses the physical principles underlying PC MRI. It has been 
developed to overcome the limitations of 2D CINE PC MRI and perform more complete and 
better assessments on blood flow through the heart and large vessels.  
 
4D flow MRI can provide information on the temporal and spatial evolution of 3D blood flow 
with complete volumetric coverage of any cardiac or vascular region of interest in a single 
acquisition, therefore it has become a new potential clinical diagnostic tool (Michael Markl, 
2012) (Zoran Stankovic, Bradley D. Allen, Julio Garcia, Kelly B. Jarvis, Michael Markl. , 
2014). 
 
4D flow MRI is also known as three-dimensional (3D) time-resolved (CINE) phase-contrast 
(PC) MRI with three-directional velocity encoding. The method mentioned above obtains, for 
each voxel of an acquired 3D volume, at each measured time point of the cardiac cycle, 
anatomical and three-directional velocity information.  
 
 
4D FLOW MRI – ACQUISITION TECHNIQUES 
 
4D flow MRI, through four-point interleaved velocity encoding and the k-space segmentation 
technique, provides three-directional velocity measurements. Data acquisition is 
synchronized with the cardiac cycle and flow data are collected over multiple RR intervals of 
succeeding cardiac cycles.   
 
According to the k-space segmentation technique, for each single line of raw k-space data, 
one reference image and three other images, each related to velocity encoding along three 
orthogonal x, y and z directions, are acquired. 
  
Concomitantly, the k-space segmentation technique involves collecting, for each time frame 
of a cardiac cycle, a subset,	𝑁:9; ,of all the steps required for phase encoding: a certain number 
of k-space lines along the y (𝑁0) and z (𝑁.) directions. The acquisition is repeated for each 
same time frame of successive cardiac cycles, until the entire three-dimensional coverage is 
achieved, after <$<%

<&'(
 heartbeats. The choice of 𝑁:9; determines the temporal resolution, that is 

the time required to collect data in a single time frame, and consequently the total scan time. 
 
At the end of the 4D flow data acquisition (Figure 2), four time-resolved 3D data sets are 
generated ("magnitude" data representing anatomy and three “phase” data sets representing 
"Vx, Vy and Vz" velocities). The large amount of data that must be collected results in 
significant scan times, and this is the primary cause limiting the use of 4D flow MRI in clinical 
practice.  
 
Approaches that have been proposed to reduce scan times include the use of undersampling 
methods, like kt-BLAST, kt-SENSE, ktGRAPPA, L1-SPIRiT or other parallel imaging or 
compressed sensing techniques.  
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Figure 2. Standard data acquisition for 4D flow MRI.  
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4D FLOW MRI – LIMITATIONS OF THE TECHNIQUE 
 
Current limitations of 4D flow MRI are: low spatio-temporal resolution, long scan times and 
acquisition noise (Malenka M. Bissell, 2023). The large volume of data collected in 4D flow 
MRI limits the spatio-temporal resolution (1.5-3 mm is the isotropic spatial resolution and 
30-60 ms is the typical temporal resolution, in clinical settings). Furthermore, if 
undersampling techniques are not used, scan times can exceed 20 minutes. The acquisition 
noise causes multiple sources of error (Table 1) in 4D flow MRI, which degrade image quality 
and measurement accuracy, by introducing inaccurate flow quantifications. There are two 
main broad categories of errors that are reported below. 
 

- Data acquisition-related errors 
 

Data acquisition-related errors are background phase offsets due to magnetic field 
inhomogeneities, eddy currents, or even concomitant gradient fields. Background phase offset 
errors caused by concomitant gradient fields can be corrected by a scheme already 
implemented in most modern MRI systems, during the image reconstruction phase. Instead, 
those caused by eddy currents need a pre-processing phase to be corrected. Specifically, the 
switching of time-varying magnetic field gradients causes changes in magnetic flux that, in 
turn, induce eddy currents in the conductive parts of the scanning system. These eddy currents 
alter the strengths and durations of the desired gradients and thus result in spatially and 
temporally variable phase offsets in any type of PC-CMR. The recommended approach for 
correcting such offset errors is that presented by Walker et al. (Walker PG, 1993). The latter 
is based on the identification, following a thresh-holding procedure, of regions of static flow 
that are fictitious by polynomial interpolation on the image, to identify and subsequently 
subtract from the image the phase offsets caused by eddy currents. More details on appropriate 
correction strategies for background phase offsets due to magnetic field inhomogeneities can 
be found in Markl et al. (Markl M, 2003). 
 
Other sources of error related to data acquisition include low spatial and/or temporal 
resolution and inadequate Venc, which, as discussed earlier, can cause phase unwrapping, 
resulting in velocity aliasing. 
 

- Patient-related errors 
 

Patient-related errors are caused by heart-rate variability, physiological respiration and 
unwanted body motion by uncooperative patients. Mainly due to respiratory movements, in 
clinical thoracic and abdominal applications, some artifacts are formed, resulting in reduced 
image quality that can be improved by respiratory gating, auto gating or even averaging 
techniques, which, however, result in increased scan time. 
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Table 1. Typology, implication and proposed mitigation strategies for potential sources of errors in 4D flow 
MRI. 

 
 
 
Despite the implementation of various techniques for reducing error sources, nonuniformly 
distributed noise and residual aliasing may still be present on the image, especially if the 
image has been reconstructed using subsampling methods to reduce scan times.  
 
As will be explained in the next paragraphs, one approach to reduce residual errors is to 
constrain the data according to the physical law governing blood flow: the physical constraint 
of incompressible blood flow results in the imposition of a divergence-free condition on the 
velocity flow field acquired with 4D flow MRI.  
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ANATOMY AND PHYSIOLOGY OF THE AORTA  
 
The divergence-free denoising techniques were tested on CFD simulation of incompressible 
blood flow within an aorta at the systolic peak. The aorta is the main artery of the human 
body, both in terms of size and elasticity (Cira Rosaria Tiziana di Gioia, 2023) (Xiaochen 
Wang, 2023). It is approximately 30-40 cm in length: it originates from the ejection cone of 
the left ventricle and first travels upward, after which it curves and finally returns downward, 
descending along the spine to pass the diaphragm and end at the level of the joint between the 
lumbar L4 and L5 vertebrae, bifurcating into the two iliac arteries. At its exit from the heart, 
its diameter measures about 3 cm and decreases in a craniocaudal direction. 

The role of the aorta is to distribute oxygen-rich blood through the systemic circulation to 
lower caliber arterial vessels; these, in turn, repeatedly branch off to vascularize tissues 
throughout the body. Constant blood flow in the secondary arteries is also ensured thanks to 
the marked elasticity of the walls of the aorta. 

The aortic wall (Figure 3) is made up of three overlapping tunics named the intima, media 
and adventitia, respectively, from the internal to the external surface of the aorta (D’amati, et 
al., 2013). 

 

 

 
Figure 3. Composition of the aortic wall. 
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The tunica intima consists of endothelial cells, arranged on a thin connective layer called the 
basal lamina. The layer of endothelium comes in direct contact with blood, contains collagen 
and elastin fibers, so it is sensitive to pulsatile shear stress exerted by the streaming blood. 

The middle tunica consists mainly of collagen, elastin, and smooth muscle cells (MSCs): it is 
the thickest layer of the artery wall, i.e., the one that supports loads under physiological 
conditions.  

The adventitia tunica consists of connective tissue, supports loads at higher pressures, 
preventing the aorta from over-expanding, and collects the vasa vasorum, i.e., the vessels that 
sustain the arterial wall itself. 

The thickness of each layer varies and depends on the distance from the heart. 

The aorta is typically divided into two anatomical segments: the thoracic aorta and the 
abdominal aorta, separated by the diaphragm (Figure 4). The thoracic aorta is the portion 
above the diaphragm, which in turn is divided into the ascending aorta, aortic arch and 
descending aorta. 

 
Figure 4. Aorta’s anatomical segments.  
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ASCENDING AORTA  

The ascending aorta is the first short segment of the aorta. It originates from the orifice of the 
aortic valve at the level of the third intercostal space, after which it heads upward and to the 
right until it reaches the second chondro-sternal articulation, where it terminates before the 
aortic arch. Approximately five centimeters long, the ascending aorta can be divided into two 
tracts: the aortic root, which extends from the annulus to the sinotubular junction (STJ) and 
includes the sinuses of Valsalva, three swellings posterior to each of the three valve leaflets, 
the aortic cusps end the origins of the coronary arteries and a very simple tubular tract that 
extends to the aortic arch.  

 

AORTIC ARCH  

The aortic arch originates where the ascending aorta ends, i.e., at the level of the second 
chondro-sternal articulation, carries upward and posteriorly and peaks at the level of the first 
chondro-sternal articulation, then descends posteriorly to the left and rests on the spine, to end 
at the level of the articulation between T4 and T5, where it terminates before the descending 
aorta. Three large arterial trunks perfusing the upper half of the body originate from the aortic 
arch from right to left, which are: the right brachiocephalic artery, the left carotid artery, and 
the left subclavian artery. 

 

DESCENDING AORTA  

The descending aorta follows the aortic arch. It begins at the lower margin of the IV thoracic 
vertebra, descends into the thorax, following the midline of the spine and then enters the aortic 
orifice of the diaphragm, at the level of the XII thoracic vertebra and continues as the 
abdominal aorta.  

The abdominal aorta begins at the diaphragmatic hole for the passage of the aorta and ends, 
having reached the fourth lumbar vertebra, by bifurcating into the two common right and left 
iliac arteries.  
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BLOOD – PHYSICAL PROPERTIES 
 
Blood is a specialized body fluid whose main functions are: 
 

- Transport of oxygen and nutrients to cells and tissues. 
- Removal of waste materials and their subsequent transport to the kidneys and liver, 

which clean the blood. 
- Transport of cells and antibodies to protect the body from diseases and infections. 
- Regulation of body temperature. 
- Formation of blood clots to prevent excess blood loss. 

 
Blood (Tamas Alexy, Jon Detterich, Philippe Connes, Kalman Toth, Elie Nader, 2022) is a 
corpuscular fluid material, composed mainly of erythrocytes (RBC), biconcave disks about 
8µm in diameter and 1-2µm in thickness, platelets and white blood cells, in small percentages. 
These corpuscular components are immersed in an aqueous medium containing protein and 
electrolytes (the plasma).  
 
Plasma, the suspending medium for the cellular components of blood, plays an important 
function in moderating the physical properties of blood. The viscosity of plasma is determined 
principally by its protein content: fibrinogen is an important determinant of plasma viscosity, 
due to its high molecular weight (~340 kDa) and fibrous structure. Albumin also significantly 
impacts plasma and whole blood viscosity. Plasma is a Newtonian fluid whereby its viscosity 
is independent of the shear rate it is exposed to. Its normal value at 37°C is around 1.3 mPa 
s.  
 
Precisely because of this multiphase nature, whole blood, i.e., the mixture of plasma and solid 
particles, configures as a non-Newtonian fluid, defined as a fluid with a shear rate dependent 
viscosity. Blood viscosity is derived from its shear rate- shear stress relationship. Viscosity 
depends on several factors intrinsic to the fluid, such as temperature, pressure, density, and 
composition (Table 2). Haematocrit, defined as the volume of RBC compared to total blood 
volume (normal range: 35–45%), is the primary determinant of blood viscosity.  
 
The viscosity of whole blood demonstrates a non-linear decrease with increasing shear rate. 
The tendency for RBC to cluster is the primary determinant of blood viscosity at low shear, 
and the dispersion of these clusters aids in dramatically decreasing blood viscosity with 
increasing shear.  
 
“Aggregating” factors of RBC are: high percentage of haematocrit, because higher RBC 
concentrations promote cell-cell contact, high concentration of plasma protein and 
particularly fibrinogen, elimination of negatively charged glycoproteins from the surface 
(e.g., sialic acid), increase of membrane fluidity of RBC. Instead, shear rate is considered a 
“disaggregating” factor given that rouleaux are only stable under a tolerable low shear rate. 
From a hydrodynamical point of view, blood, being composed of a high percentage of water, 
behaves as an incompressible fluid: its density is constant and, in accordance with the 
principle of conservation of mass, the blood flow field is ideally solenoidal, i.e. divergence-
free.  
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Table 2. Percentage of component, subcomponent, type of protein and electrolyte content (and their major 
function performed within the human body) of blood.  
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BLOOD - FLUID DYNAMIC BEHAVIOUR 
 
The behaviour of a viscous fluid at the macroscopic level is described, in fluid dynamics, by 
the Navier-Stokes equations, a system of nonlinear partial differential equations (PDEs) (R. 
B. Bird, R. C. Armstrong, and O. Hassager., 1987).  
It has not yet been possible to determine a closed-form solution to this differential problem. 
However, modern computational models, coupled with the remarkable capabilities of modern 
computers, have made it possible to determine approximate numerical solutions of the Navier-
Stokes equations and some but a few analytical solutions under extremely simplifying 
assumptions made about the fluid under consideration. 
The Navier-Stokes equations (Figure 5) are directly descended from the balance equations, 
applied to an open thermofluidodynamic system: the mass conservation equation, momentum 
conservation equation and total energy balance equation. 
 
 

 
Figure 5. Navier-Stokes equations.  
 
Regarding these equations, some aspects need to be clarified. To study the motion of a fluid 
there are two possible approaches: the Lagrangian and the Eulerian representation. The clear 
difference between the two lies in the fact that, while in the first-mentioned, one is supposed 
to follow the kinematic/dynamic evolution of a single elementary fluid particle, in the latter, 
the focus is on a fixed volume in space, called the control volume, going to study what 
happens to a given mass of fluid transiting there over time. Generally, in fluid mechanics, the 
Eulerian representation is used. 
 
 



 
 

                                 18 
 

EULERIAN MASS BALANCE – DIVERGENCE FREE CONDITION 
 
The Eulerian approach describes the motion of a fluid by expressing, at each point in the space 
occupied by the fluid, the density and velocity of the fluid itself as a function of time. Consider 
a parallelepiped-shaped element of infinitesimal volume 𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧. The mass contained 
at a given instant in the volume is 𝜌𝑑𝑉, where 	𝜌 = 	𝜌(𝑡, 𝑥, 𝑦, 𝑧) is a function, in general, of 
time and position. The derivative (rate of increase) in time of the mass of the infinitesimal 
volume is then defined by =>

=3
𝑑𝑥𝑑𝑦𝑑𝑧. 

 
With reference to the following fixed volume element in space, one defines: 
 
 

 
 
 
𝜌𝑉/|/𝑑𝑦𝑑𝑧           incoming mass flow rate in 𝑑𝑉 across the surface in x 
 
𝜌𝑉/|/?%/𝑑𝑦𝑑𝑧      mass flow rate exiting 𝑑𝑉 through the surface in x+dx 
 
𝜌𝑉0O0𝑑𝑥𝑑𝑧           incoming mass flow rate in 𝑑𝑉 across the surface in y 
 
𝜌𝑉0O0?%0𝑑𝑥𝑑𝑧      mass flow rate exiting 𝑑𝑉 through the surface in y+dy 
 
𝜌𝑉.|.𝑑𝑥𝑑𝑦           incoming mass flow rate in 𝑑𝑉 across the surface in z 
 
𝜌𝑉.|.?%.𝑑𝑥𝑑𝑦      mass flow rate exiting 𝑑𝑉 through the surface in z+dz 
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Dealing with infinitesimals, under the assumption of continuum, one can go to the limits, to 
calculate the mass accumulated in the infinitesimal volume due to flow rates, first, in the x-
direction. Assigning the positive sign to the incoming flow rate and the negative sign to the 
outgoing flow rate, the rate of increase of the mass within the infinitesimal volume, due to the 
flow through the surfaces in x and x+dx, divided by the volume of the cube, is: 
 
 

lim
%/→!

𝜌𝑉/|/𝑑𝑦𝑑𝑧 − 𝜌𝑉/|/?%/𝑑𝑦𝑑𝑧
𝑑𝑥𝑑𝑦𝑑𝑧 = −

𝜌𝑉/|/?%/ − 𝜌𝑉/|/
𝑑𝑥 = −

𝜕𝜌𝑉/
𝜕𝑥  

 

(8) 

 
The same can be done with respect to other coordinates:  
 
 

lim
%0→!

𝜌𝑉0O0𝑑𝑥𝑑𝑧 − 𝜌𝑉0O0?%0𝑑𝑥𝑑𝑧

𝑑𝑥𝑑𝑦𝑑𝑧 = −
𝜌𝑉0O0?%0 − 𝜌𝑉0T0

𝑑𝑦 = −
𝜕𝜌𝑉0
𝜕𝑦  

 

(9) 

 
 

lim
%.→!

𝜌𝑉.|.𝑑𝑥𝑑𝑦 − 𝜌𝑉.|.?%.𝑑𝑥𝑑𝑦
𝑑𝑥𝑑𝑦𝑑𝑧 = −

𝜌𝑉.|.?%. − 𝜌𝑉.|.
𝑑𝑧 = −

𝜕𝜌𝑉.
𝜕𝑧  

 

(10) 

 
he overall derivative (rate of increase) of the mass within the infinitesimal volume is due to 
the sum of the derivatives due to the flow through the surfaces in x and x+dx, y and y+dy, z 
and z+dz:  
 

𝜕𝜌
𝜕𝑡 = −

𝜕𝜌𝑉/
𝜕𝑥 −

𝜕𝜌𝑉0
𝜕𝑦 −

𝜕𝜌𝑉.
𝜕𝑧  

 

(11) 

 
which can also be written as: 
 
 

𝜕𝜌
𝜕𝑡 + 𝑉/

𝜕𝜌
𝜕𝑥 + 𝑉0

𝜕𝜌
𝜕𝑦 + 𝑉.

𝜕𝜌
𝜕𝑧 + 𝜌

𝜕𝑉/
𝜕𝑥 + 𝜌

𝜕𝑉0
𝜕𝑦 + 𝜌

𝜕𝑉.
𝜕𝑧 = 0 

 

(12) 

 
 
For incompressible fluid these relationships are simplified, since 𝜌 = 𝜌(𝑡, 𝑥, 𝑦, 𝑧) is constant, 
and the equations just seen is reduced to:  
 

					𝝆𝒅𝒊𝒗𝑽 = 𝟎 
				 
 

(13) 
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DIVERGENCE OPERATOR 
 
Divergence (Brewer, 1999) is an operator that converts a vector into a scalar quantity, given 
by the sum of the three partial derivatives of the three components of the vector along the x, 
y, z directions: 
 

𝑑𝑖𝑣𝑉 =
𝜕𝑉/
𝜕𝑥 +

𝜕𝑉0
𝜕𝑦 +

𝜕𝑉.
𝜕𝑧  

 
 

(14) 

In fluid dynamics, divergence can be interpreted as the overall difference between the flow 
entering and leaving the 6 faces of a cube of dimensions dx, dy, dz, within the fluid domain 
of interest. 
 
Negative divergence indicates that the outflow is greater than the inflow and the flow tends 
to compress, that is, to converge to a point in the vector field.  
 
If the divergence has positive values, the incoming flow is greater than the outgoing flow and 
the flow tends to expand, that is, to diverge from a point in the vector field. 
 
A vector field in which the divergence representing it is zero is called a solenoidal field. 
 
 
 
 
GRADIENT OPERATOR 
 
The gradient operator (Weisstein) expresses the change in a scalar physical quantity per unit 
length in each direction. For example, the thermal gradient expresses the change in 
temperature along a chosen direction, while the pressure gradient, similarly, express the 
change in pressure along a particular direction. The gradient of a scalar function f(x,y,z) is 
defined as the vector, denoted by 𝑔𝑟𝑎𝑑	𝑓, given by the sum of the three prime partial 
derivatives of the function along the three directions, identified through the three versors 
(representing the unit norm and direction vectors of the three Cartesian axes x, y and z) 
denoted by the letters i, j and k. In symbols: 
 

𝑔𝑟𝑎𝑑	𝑓 =
𝛿𝑓
𝛿𝑥 𝑖 +

𝛿𝑓
𝛿𝑦 𝑗 +

𝛿𝑓
𝛿𝑧 𝑘 

 
 

(15) 

 
The gradient transforms a scalar into a vector. 
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DIVERGENCE-FREE STRATEGIES TO INCREASE THE ACCURACY 
OF 4D FLOW MRI VELOCITY DATA 
 
By constraining the synthetic 4D flow MRI velocity data to the physical law governing blood 
flow, the Eulerian mass balance, under the assumption of incompressible fluid, the velocity 
field must ideally be divergence-free. Noise-like errors can be reduced by suppressing 
divergent components in the flow data. In this context, this study compares the performances 
of various divergence-free approaches exploiting the physical law of the incompressibility of 
blood to enhance the quality of 4D flow MRI velocity data. 

These divergence-free strategies correct the divergence of the velocity field provided by 4D 
flow MRI, trying to keep it as close to zero as possible, while keeping the deviation between 
the denoised flow field and the measured flow field as small as possible. 
 
Bakhshinejad et al. (Bakhshinejad., 2018), divided these techniques in two groups: 
 

- Projection-based methods, where the divergence-free condition to the velocity is 
strongly imposed, through the projection of the unprocessed noisy 4D flow data into a 
divergence-free space. 

- Regularization-based methods, where the divergence-free condition to the velocity is 
relaxed through mathematically rigorous spatiotemporal regularizations. 

 
For this study, three state-of-the-art divergence-free projection-based methods have been 
considered:  
 

- Finite Differences based Method (FDM). 
- Radial Basis Functions (RBFs) based Method. 
- Divergence-free Wavelets (DFWs) based Method.  
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FINITE DIFFERENCE METHOD  
 
Finite difference methods are commonly used to solve differential equations by discretizing 
them, approximating the derivatives with the difference operation, by taking advantage of 
Taylor series expansion. Let f(x) be a continuous and n-times differentiable function. Its value 
at nearby points can be expressed in terms of a Taylor series: 
 
 

				𝑓(𝑥 + ∆𝑥) = 𝑓(𝑥) +
𝑑𝑓(𝑥)
𝑑𝑥 Δ𝑥 +

𝑑1𝑓(𝑥)
𝑑𝑥1

∆𝑥1

2! + ⋯+
𝑑(𝑓(𝑥)
𝑑𝑥(

∆𝑥(

𝑛! + ⋯ 
 
 

(16) 

The series seen above converges if ∆x is small, and f(x) is differentiable. For a convergent 
series, the successive terms are progressively smaller. The terms of the Taylor series 
expansion can be rearranged to give an accurate approximation of the first derivative: 
 
 

				
𝑑𝑓(𝑥)
𝑑𝑥 =

[𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)]
∆𝑥 + 𝑜(∆𝑥) 

 
 

(17) 

Both the spatial and temporal domains are discretized, i.e., divided into a finite number of 
intervals. The solutions at the grid points are obtained from the discretization operation, with 
a certain degree of approximation, the more exact the distance ∆x, between the grid 
intersection points that overlap the domain of definition of the unknown function, decreases. 
The error between the numerical solution and the exact solution is determined by the error 
that is made by switching from the differential operator to the difference operator. This error 
is called discretization error or truncation error (of the Taylor series). 
 
The finite difference method proposed by Song et al. (S. M. Song, 1993) computes the 
discretized form of the Helmholtz-Hodge decomposition (Harsh Bhatia, 2013) to project the 
4D flow data into a divergence-free space. 
The Helmholtz-Hodge decomposition (HHD) of a vector field is one of the fundamental 
theorems of vector calculus. In fluid dynamics, the use of the properties of HHD to smooth 
vector fields is particularly interesting. 
 
According to Helmholtz, under conditions of asymptotic behaviour at infinity, every vector 
field in ℝA can be described in terms of its divergence-free and rotation-free components: 
 

1. The divergence-free component is incompressible, represents rotation, and can be 
expressed as the curl of a vector field. 

2. The rotation-free component is irrotational, represents translation and 
compression/expansion, and can be expressed as the gradient of a scalar field. 
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Based on this theorem, every acquired vector field 𝑣6jjjjj⃗ 	can be expressed as follows: 
 
 

𝑣6jjjjj⃗ 	= ∇𝑝 + ∇ × 𝑞⃗ 
 

(18) 

 
Where ∇𝑝 is the irrotational (curl-free) contribution and ∇ × 𝑞⃗ the incompressible 
(divergence-free) contribution. The calculation of the divergence of the velocity field 𝑣6jjjjj⃗  
coincides with the calculation of the divergence of the gradient (Laplacian) of the scalar 
function	𝑝, since the contribution ∇ × 𝑞⃗ is already divergence-free: 
 
 

∇ ∙ 𝑣6jjjjj⃗ 	= ∇1𝑝					𝑖𝑛	Ω (19) 
 
 
where Ω	is	the	tlow	domain.	One calculates 𝑝 by solving the Poisson equation with boundary 
condition 𝑝 = 0	𝑖𝑛	𝜕Ω	 using the Fast Fourier Transform with periodic extension and thus 
obtains the projection of 𝑣6jjjjj⃗  in the divergence-free space: 
 

ℙ𝑣6jjjjj⃗ 	= 𝑣6jjjjj⃗ 	– 	𝛻𝑝 
 

(20) 

where ℙ is the projection operator. Numerically ℙ was implemented as: 
 
 

ℙ = 𝐼 − 𝐸,(𝐸𝐸,)2-𝐸 
 

(21) 

where E is the discretized divergence operator. 
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RADIAL BASIS FUNCTIONS – BASED METHOD 	

Busch et al. (J. Busch, 2013) used the normalized convolution to locally approximate the 
acquired velocity field into divergence-free radial basis functions (RBFs), functions of real 
variables with real values that depend exclusively on the distance from the origin or from a 
fixed point called the centre linearly combined to be divergence-free, used as convolution 
kernels.  
 
NORMALIZED CONVOLUTION 
 
Standard convolution is one of the most widely used operations in image processing, the 
process performing certain operations into a digital image, like denoising, to get some useful 
information from it. It is a simple mathematical operation in which two matrices (the image 
and a kernel) produce a third matrix as a result of the following processes: 
 

• Superimposition of a kernel (or mask) on the image. 
• Multiplication of coincident terms. 
• Sum of the results and divide by the weight ∑𝑘7B. 
• Moving the kernel to the next pixel (over the entire image matrix). 

 
 

 
 

The equation represents a weighted linear combination of values, used to estimate the output 
of an image processing operation such as image filtering. 𝐼7B represents the intensity values of 
each pixel in the image. 𝑘7B represents the weight coefficients associated with each intensity 
value 𝐼7B. The numerator ∑𝑘7B 𝐼7B represents the weighted sum of pixel intensities. The 
denominator ∑O𝑘7BO normalises the equation and is the sum of the absolute values of the 
weights. 
 
Unlike standard convolution, in normalized convolution, both the data and the convolution 
operators are accompanied by a scalar component that represents the appropriate “weight” to 
be given to the data, the certainty function values, or to the operator values, the applicability 
function values. These special properties have largely enabled the use of normalized 
convolution in various applications, to reduce or eliminate false responses of the standard 
convolution operator due to missing or uncertain data: effects, called “edge effects”, that 
inevitably occur at the edges of limited input data. For a signal of limited extent, the surround 
of points near the boundary will include points where no values are provided.  
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Using a certainty function, the weight associated with such missing or unreliable data can be 
reduced by leaving the signal value unspecified and setting the certainty values at those points 
to zero or very low values. 
 
In addition, the basis functions, in which the surroundings of a signal point are projected, can 
be defined for a domain larger than the surroundings under consideration: they can in fact be 
unlimited, e.g., polynomials or complex exponentials, and however take on a value of zero at 
points where one is not operating, thanks to the applicability function, which imposes a spatial 
localization or “windowing” of the convolution operator.  
The appropriate choice of applicability function depends on the type of application. In 
general, there is a tendency to give greater importance to points in the centre of the 
surroundings under consideration than to points farther away. Therefore, unless specific 
direction dependence is desired, isotropic and monotonically decreasing applicability in all 
directions is preferred. 
 
Normalized convolution is a point operation or, more correctly, an operation on a 
neighbourhood of each signal pixel, which can be better analysed when projected into a 
subspace which is spanned by a set of carefully chosen new basis functions. The projection is 
equivalent to solving a weighted linear least squares problem, whose weights are the values 
of the certainty function and of the applicability function. The geometric interpretation of 
least-squares minimization is that the local neighbourhood of the signal, for each pixel, is 
projected into a subspace spanned by the basis functions (Lowitzsch, 2002). 
 
The result of normalized convolution at each point of the signal is a vector of coefficients. It 
is found using a weighted least square fit to the acquired 4D flow data, formulated as follows: 
 
Let 𝑡(𝑟) be some arbitrary function in ℝ and B a finite set of basis functions 𝑏-(𝑟),	𝑏1(𝑟), …	
𝑏C(𝑟) with 𝑟	 ∈ ℝA. We call: 
 

𝑡D(𝑟) =�𝑏7(𝑟)𝑢7

C

7E-

 

 

(22) 

 
the best approximation of t in B if the coefficient 𝑢7 are chosen such that the supremum norm: 
 

|𝑡 − 𝑡D| ≡ sup
F∈ℝ

�𝑡D(𝑟) − 𝑡(𝑟)� 

 

(23) 

 
is minimal. According to the normalized convolution principle for the expansion into basis 
functions, the equation is modified as follows: 
 

𝑎(𝑟)𝑐(𝑟)𝑡D(𝑟) = 𝑎(𝑟)𝑐(𝑟)�𝑏7(𝑟)𝑢7

C

7E-

 
(24) 
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Where a(r) and c(r) are the values, respectively, of the applicability function and the certainty 
function for each point of the image. Let the 𝑛 × 𝑛  𝑊I = 𝑑𝑖𝑎𝑔(𝑎), 𝑊J = 𝑑𝑖𝑎𝑔(𝑐) two 
introduced matrices, containing the scalar values of a(r) and c(r), respectively, with the 
positions of the lattice points on the diagonal.  
Referring to a discrete image, t, the equation can be rewritten as follows: 
 
 

𝑊I𝑊J𝑡D = 𝑊I𝑊J𝐵𝑢 
 

(25) 

 
The coefficients of 𝑢 are chosen such that |𝑡 − 𝑡D| is minimal with respect to the Euclidean 
norm. A direct solution is obtained by: 
 
 

𝑢 = (𝐵∗(𝑊I𝑊J)1𝐵)2-𝐵∗(𝑊I𝑊J)1𝑡 (26) 
 
 
which results in a system of equations given by:  
 
 

𝑢 = �
(𝑎 ∙ 𝑐 ∙ 𝑏-, 𝑏-) ⋯ (𝑎 ∙ 𝑐 ∙ 𝑏-, 𝑏C)

⋮ ⋱ ⋮
(𝑎 ∙ 𝑐 ∙ 𝑏C, 𝑏-) ⋯ (𝑎 ∙ 𝑐 ∙ 𝑏C, 𝑏C)

�

2-

�
(𝑎 ∙ 𝑐 ∙ 𝑏-, 𝑡)

⋮
(𝑎 ∙ 𝑐 ∙ 𝑏C, 𝑡)

� 
(27) 

 
 
The basis functions, in which the surrounding of a signal point is projected, must reflect the 
physical behaviour of the data: they must be divergence-free. 
For this purpose, a class of matrix-valued radial basis functions, divergence-free and 
compactly supported, have been introduced. 

Radial basis functions are functions of real variables with real values that depend exclusively 
on the distance from the origin or from a fixed point called the centre. More precisely, a radial 
basis function (RBF) is a function 𝜑:ℛ( → ℛ such that 𝜑(𝑥) = 𝜑(‖𝑥 − 𝑥!‖), where 𝑥 =
𝑥-, … , 𝑥( and ‖. ‖ is the Euclidean norm.  

They are often used as a collection {𝜑+}+ which form a basis for some function space of 
interest, hence the name.  

Commonly used type of RBF include: 

 

• Gaussian 

 

𝜑(𝑟) = 𝑒2(MF)# 
 

(28) 
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• Inverse quadratic 

𝜑(𝑟) =
1

1 + (𝜀𝑟)1 

 

(29) 

 

• Inverse multiquadric  
 

𝜑(𝑟) =
1

�1 + (𝜀𝑟)1
 (30) 

 

Where 𝜀 is the shape factor. 

 

• Polyharmonic spline 

 

𝜑(𝑟) = 𝑟+ 
𝜑(𝑟) = 𝑟+ln 𝑟 

(31) 

 

• Thin plate spline  
 

𝜑(𝑟) = 𝑟1 ln 𝑟 
 

(32) 

 

Explicitly, the expansion of a function 𝑓(𝑥) in RBF will have the form: 

 

𝑓(𝑥) =�𝑎7𝜑(‖𝑥 − 𝑥7‖)
<

7E-

 

 

(33) 

 

where the approximating function 𝑓(𝑥) is represented as a sum of N radial basis functions, 
each weighted by an appropriate coefficient 𝑎7 and associated with a different centre 𝑥7, to be 
determined to minimize the error in a suitably chosen direction and thus optimize the 
approximating function.  
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Bush et al. (J. Busch et.al, 2013), introduced a set of RBFs defined based on the Gaussian 
function 𝜓 

 

𝜓5(𝑟) = exp �−
|𝑟|1

2𝛾1
� 

 

(34) 

where 𝛾 determines the size of the support.  
 
The divergence-free RBFs are given by: 
 
 

𝜉7(𝑟) = � �
𝜕1

𝜕𝑟7𝜕𝑟B
𝑒B −

𝜕1

𝜕𝑟B𝜕𝑟B
𝑒7�

BE-,1,A

	Ψ5(𝑟) 

 

(35) 

where 𝑖 count the the spatial dimension. It follows that the sum: 
 
 

�(𝜉-(𝑟 − 𝑟7)𝑐7- + 𝜉1(𝑟 − 𝑟7)𝑐71 + 𝜉A(𝑟 − 𝑟7)𝑐7A
7

 

 

(36) 

 
is dense in the space of divergence-free functions where 𝑐7-,	𝑐71, 𝑐7A denote the coefficients for 
the expansion. This implies that, in theory, any divergence-free function can be approximated 
arbitrarily well by a linear combination of RBFs.  
 
Using: 
 
 

Φ = (𝜉-𝜉1𝜉A) 
 

(37) 

the radial basis matrix can be written as: 
 
 
 

Φ(𝑟) = &'1 −
|𝑟|!

2𝛾!- 𝐼 +
1
2𝛾! 𝑟𝑟

"0 𝑒𝑥𝑝 '−
|𝑟|!

2𝛾!- 

 

(38) 

where 𝐼 is the identity matrix.  
Finally, using matrix notation, the vector field is expanded into radial basis matrices according 
to: 
 

𝑣(𝑟) =�Φ(𝑟 − 𝑟7)𝑐7
7

 (39) 
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and the coefficients 𝑐7-,	𝑐71, 𝑐7A are summarized into a vector: 
 

𝑐7 = (𝑐7-	𝑐71𝑐7A), 
 

(40) 

The process of least square fit to the acquired 4D flow data, used to find the vector of 
coefficients, results in a system of equations given by: 
 
 

�
Φ(𝑟- − 𝑛-) … Φ(𝑟- − 𝑛()

… … …
Φ(𝑟( − 𝑛-) … Φ(𝑟( − 𝑛()

� �
𝑐-
…
𝑐(
  = �

𝑉-
…
𝑉(
  

 

(41) 

here the locations 𝑟7 where the divergence-free velocity field is reconstructed are the same 
locations 𝑛 where the 4D flow data is sampled.  
 
The projection of the noisy data into divergence-free vector fields, using the finite difference 
method or even the radial basis functions (RBFs) used as convolution kernels in the 
normalized convolution operation, imposes a too rigorous divergence-free constraint on the 
4D flow data, requiring accurate segmentation to avoid the possibility of significant divergent 
components arising in the neighbourhood of flow edges, static tissue or turbulent flow, where 
the discrete flow representation consists of discontinuities. Consequently, it was necessary to 
develop an algorithm that imposes a ‘softer’ no-divergence constraint on the flow data, 
reducing the sensitivity of noise reduction to segmentation errors, cause accurate 
segmentation is difficult to achieve when working with low signal-to-noise data, like those 
from 4D flow MRI. 
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DIVERGENCE-FREE WAVELETS – BASED METHOD   
 
Ong et al. (F. Ong, 2015) proposed a robust process to enforce a soft divergence-free 
constraint on the flow field, using the divergence-free wavelet (DFW) transform. 
 
WAVELET TRANSFORM 
 
The wavelet transform is a powerful tool for the analysis and processing of signals and is 
extremely efficient in various fields of application, such as compression and denoising, and 
in general when dealing with non-stationary signals, such as images (A.Bovik, 2009).  
These, in fact, are characterised by long period tendency at low frequencies (backgrounds), 
also called trends, and short period tendency at high frequencies (discontinuities, edges), also 
called anomalies. The latter, although they occupy a relatively small percentage in the image, 
have a high information content and must therefore be represented appropriately. 
 
The wavelet transform has several interesting properties: 
 

• Good time-frequency localization capability: it can analyze signals with time-varying 
characteristics (the images that needs to be analyzed has both slowly varying trends, 
like sine waves, and abrupt variations, like deltas). 

• Multiresolution representation, through the separation of low-frequency and high-
frequency contents by using two families of functions: scaling functions and wavelet 
functions. 

• It is easily constructed through a filter bank. 
 
The Wavelet transform is the best compromise in the trade-off between time resolution and 
frequency resolution in signal analysis.  
To introduce the concept of time-frequency localization, reference should be made to the 
Fourier Transform and the Short Time Fourier Transform (STFT). The Fourier transform of 
an analogue signal x(t) is defined as follows: 
 

𝐹𝑇[𝑥(𝑡)] = 𝑋(𝑓) = £ 𝑥(𝑡)𝑒2B14P3𝑑𝑡
?Q

2Q
 

(42) 

 
Where f is the frequency. The Fourier transform has perfect frequency localisation (Figure 6): 
it provides information about all the frequency components of the signal being analysed and 
their amplitudes but gives no information about when each frequency component of the signal 
appears over time. Thus, the Fourier transform is ideal for analysing stationary signals.  

The STFT was developed to overcome the poor time resolution of the Fourier transform. It is 
mathematically defined as follows: 

𝑆𝑇𝐹𝑇[𝑥(𝑡)] = 𝑆𝑇𝐹𝑇[𝑓, 𝜏] = £ 𝑥(𝑡)𝑔∗(𝑡 − 𝜏)𝑒2B14P3𝑑𝑡
?Q

2Q
 

 

(43) 
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Here, f is the frequency, 𝑔(𝑡) is the convolution window of fixed length and 𝜏 is the time shift 
of 𝑔(𝑡) along the signal. STFT is the simplest way to obtain a time-frequency transform of 
the signal. The non-stationary signal is divided into several portions, assumed to be stationary, 
through convolution with a window 𝑔(𝑡) of fixed length. The window is translated from the 
beginning to the end of the signal and the Fourier transform is calculated for each stationary 
portion into which the signal has been divided.  

Although the STFT has better temporal localization (Figure 7) than the FT, the use of a 
window of finite length results in a loss of frequency resolution compared to the FT. 

A good time-frequency transform should have ∆t (time resolution) and ∆f (frequency 
resolution) very small; however, the uncertainty principle rules out the possibility of having 
an arbitrarily high resolution in both time and frequency, since it limits the duration-band 
product of the functions as follows: 
 

Δ𝑡Δ𝑓 =
1
4𝜋 

 

(44) 

This relationship is also called Heisenberg's inequality. 

In two-dimensional signals, such as images, there are low-frequency components that last for 
a long time and require high frequency resolution and high-frequency components that appear 
as peaks in time and require high temporal resolution.  

The wavelet transform (Figure 8), due to its property of providing multi-resolution analysis, 
has found numerous applications in the field of image analysis (I.Daubechies). 

 

Multiresolution analysis provides:  

• Good time resolution and poor frequency resolution at high frequencies. 
• Good frequency resolution and poor time resolution at low frequencies. 
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Figure 6. Time-frequency localization example for FT 
 

 

 
Figure 7. Time-frequency localization example for STFT 
 

 

 
Figure 8. Time-frequency localization example for CWT 
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An important feature common to all wavelets is that they are bounded, i.e. they decline to 
zero in amplitude at some distance from the centre, in stark contrast to the sine/cosine waves 
used in Fourier analysis, which continue to infinity. This is the underlying key to DWT's 
temporal localisation. The two major transforms in wavelet analysis are continuous and 
discrete transform.  
 
Mathematically, the Continuous Wavelet Transform (CWT) is defined as follows: 
 

𝐶𝑊𝑇[𝑥(𝑡)] = 𝐶𝑊𝑇[𝑎, 𝑏] =
1
√𝑎

£ 𝑥(𝑡)𝜓∗ 0
𝑡 − 𝑏
𝑎 3 𝑑𝑡

?Q

2Q
 

 

(45) 

where 𝑎 = 1
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦© , is the scale parameter and 𝜓∗ ª32R

I
« is obtained from the function 

𝜓(𝑡), known as the mother wavelet.  
 
The wavelet is a rapidly decaying wave like oscillation that has zero mean and finite energy. 
An example of a mother wavelet is shown in Figure 9, with the corresponding expanded (a > 
1) and compressed version (a < 1). 
 
 

 
Figure 9. Mother wavelet (a=1) with corresponding expanded (a > 1) and compressed version (a < 1). 
 
The wavelet constitutes a new basis function and acts as a window function, similarly to that 
of the STFT. Wavelet exists in different size and shape: to choose the right wavelet one will 
need to consider the application one will use for. Two important key wavelet concepts are 
scaling and shifting. By modifying a and b, the wavelet is respectively scaled (expanded 
and/or compressed) and shifted along the signal. Scaling refers to the process of stretching or 
shrinking the signal in time, which can be expressed using the equation 𝜓ª3

I
« , where 𝑎 > 0 

is the scaling factor. A larger scale factor a results in a stretched wavelet, which corresponds 
to a lower frequency. A smaller scale factor results in a shrinker wavelet, which corresponds 
to a higher frequency.  
 
𝐶𝑊𝑇[𝑎, 𝑏] represents how well the modified mother wavelet matches the signal. When 
wavelet and signal have similar frequencies, the local fit is good. Alternatively, when the 
frequency of the signal and the frequency of the wavelet are different, the wavelet does not 
align with the signal very well, so the local fit is bad. A stretched wavelet helps in capturing 
the slowly varying changes in a signal while a compressed wavelet helps in capturing the 



 
 

                                 34 
 

abrupt changes. Shifting a wavelet means advancing the onset of the wavelet along the length 
of the signal.  
The output of CWT are coefficients which are functions of scale (or frequency) and time. 
Several scales wavelets (typical number of scales per octave are 10,12,16 and 32) are shifted 
in time along the entire length of the signal and compared with the original signal. The process 
is repeated for all the scales resulting in coefficients that are function of wavelet scale and 
shift parameter. The time-frequency windows of 𝜓IR(𝑡) have overlapped each other, which 
means there is information redundancy in CWT: if the scaling and shifting parameters are 
chosen to be discrete then the wavelet transform won’t generate huge amounts of data and 
redundant coefficients are eliminated.  
 
The Discrete Wavelet Transform (DWT) is mathematically defined as follows:  
 

𝐷𝑊𝑇[𝑥(𝑡)] = 𝐷𝑊𝑇[𝑎, 𝑏] =
1
√𝑎

� 𝑥[𝑡𝑚]𝜓 ¯
𝑡𝑚 − 𝑏
𝑎 °

$2-

CE!

 

 

(46) 

with scaling and shifting parameters discretized as follows:  
 

𝑎 = 𝑘22B (47) 
  

 
𝑏 = 22B (48) 

 
where 𝑗 is the resolution level of the multiresolution analysis which will be discussed later 
and k is a discrete scaling parameter that regulates the level of wavelet expansion.  
This process is often referred to as dyadic scaling and shifting because a and b change as a 
function of the power of 2. For the denoising and compression of signals and images the key 
application is the Discrete Wavelet Transform (DWT). To implement the DWT, one uses 
discrete filter banks (Figure 10) to compute discrete wavelet coefficients. Two-channel perfect 
reconstruction (PR) filter banks are a common and efficient way to implement the DWT. 
 

 

 
  
 
Figure 10. Implementation of DWT by using discrete filter banks. 
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The signal is first filtered with special lowpass ℎ(𝑘) and highpass 𝑔(𝑘) filters to obtain 
lowpass and highpass sub-bands reconstructed through the definition of approximation 
coefficients (𝑥B-) and detail coefficients (𝑑B-), respectively. The detail coefficients are called 
wavelet coefficients. In the next level of decomposition, the lowpass sub-band is iteratively 
filtered by the same technique to yield narrower sub bands. The length of the coefficients in 
each sub-band is half of the number of coefficients in the preceding stage. These filters also 
can reconstruct the sub-bands while cancelling any aliasing that occurs due to down sampling.  
 
The steps involved in wavelet denoising are: 
 

1. Multilevel wavelet decomposition. 
2. Choose of a suitable thresholding technique. 
3. Threshold of the wavelet coefficients and reconstruct the signal: DWT is invertible, so 

the signal can be reconstructed from the DWT coefficients with the inverse DWT.  
 
The analytical treatment made for the wavelet in the one-dimensional case, extends similarly 
to the two-dimensional case, operating first along the rows and then along the columns of the 
signal. 
 
Divergence-Free Wavelet denoising inherits advantages of wavelet denoising, including 
efficient multiscale decompositions, edge preserving transforms, and sparse representation of 
signals, while amounting to only linear computational complexity.  
 
DFW transformation projects a 3D vector field on multivariate divergence-free wavelet bases 
(orthogonal or biorthogonal) obtained by tensor products of one-dimensional wavelets or 
scaling functions. To construct the divergence-free wavelet bases one needs to start with a 
vector multiresolution analysis (MRA) (Erwan Deriaz, 2007). 
 
Multi-resolution analysis are approximation spaces that allow the construction of divergence-
free wavelet bases where the flow field, subjected to the divergence reduction process of 
velocity data, is projected. Analysing the two-dimensional case, let �𝑉B!� be a one-
dimensional MRA with differentiable scaling function 𝜙- and wavelet function 𝜓-. Then one 
can be build a MRA �𝑉B-� with a scaling function 𝜙! and wavelet function 𝜓!, verifying: 

 

𝑉!! = 𝑠𝑝𝑎𝑛{𝜙!(𝑥 − 𝑘), 𝑘 ∈ ℤ} 

𝑉!- = 𝑠𝑝𝑎𝑛{𝜙-(𝑥 − 𝑘), 𝑘 ∈ ℤ} 

and  

𝜙D-(𝑥) = 𝜙!(𝑥) − 𝜙!(𝑥 − 1) (49) 
 

𝜓D
-(𝑥) = 4𝜓!(𝑥) 

 
(50) 
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Linear and quadratic spline scaling functions 𝜙!, 𝜙- and wavelet functions 𝜓!, 𝜓- (Figure 
11) satisfy the above propositions and are used to construct DFWs, by combining appropriate 
tensor products of these functions.  
 

 

 
Figure 11. Representation of linear and quadratic spline scaling functions 𝜙!, 𝜙" and wavelet functions 
𝜓!, 𝜓". In black: linear and quadratic spine scaling functions. In blue: linear and quadratic spline wavelet 
functions. 

 
The starting point of the construction of 2D divergence-free basis wavelets lies in considering 
as multiresolution analysis of 𝐿1(ℝ1)1 the vector space of tensor-products �𝑉B-⨂𝑉B!� ×
�𝑉B!⨂𝑉B-�. In the isotropic case, the 2D scaling functions 𝜙!,	𝜙-	and wavelets 𝜓!, 𝜓-	of this 
MRA are given by: 
 
 

𝜙-(𝑥, 𝑦) = T𝜙-(𝑥)𝜙!(𝑦)
0

 
 

(51) 

  
 

𝜙1(𝑥, 𝑦) = ¶ 0
𝜙!(𝑥)𝜙-(𝑦)

 

 

(52) 

 
 

Ψ-
(-,!)(𝑥, 𝑦) = T𝜓-(𝑥)𝜙!(𝑦)

0
 

 

(53) 

 
 

Ψ1
(-,!)(𝑥, 𝑦) = ¶ 0

𝜓!(𝑥)𝜙-(𝑦)
 

 

(54) 

 
 

Ψ-
(!,-)(𝑥, 𝑦) = T𝜙-(𝑥)𝜙!(𝑦)

0
 (55) 
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Ψ1
(!,-)(𝑥, 𝑦) = ¶ 0

𝜙!(𝑥)𝜙-(𝑦)
 

 

(56) 

 
 

Ψ-
(-,-)(𝑥, 𝑦) = T𝜓-(𝑥)𝜓!(𝑦)

0
 

 

(57) 

 
 

Ψ1
(-,-)(𝑥, 𝑦) = ¶ 0

𝜓!(𝑥)𝜓-(𝑦)
 

 

(58) 

 
Then, using the above functions, two-dimensional divergence-free scaling and wavelet 
functions can be constructed (Figure 12). The 2D divergence-free vector scaling functions 
takes the form: 
 
 

𝜙%7S(𝑥, 𝑦, 𝑧) = ¶ 𝜙-
(𝑥)[𝜙!(𝑦) − 𝜙!(𝑦 − 1)]

−[𝜙!(𝑥) − 𝜙!(𝑥 − 1)]𝜙-(𝑦)
 (59) 

 
 
And the corresponding isotropic vector wavelets are given by the system: 
 
 

Ψ%7S
(-,!)(𝑥, 𝑦) = ·−

1
4
𝜓-(𝑥)[𝜙!(𝑦) − 𝜙!(𝑦 − 1)]

ψ!(𝑥)𝜙-(𝑦)
 

 
 

(60) 

 

Ψ%7S
(!,-)(𝑥, 𝑦) = ·

𝜙-(𝑥)ψ!(𝑦)

−
1
4
[𝜙!(𝑥) − 𝜙!(𝑥 − 1)]𝜓-(𝑦)

 

 

(61) 

 
 

Ψ%7S
(-,-)(𝑥, 𝑦) = ¶ ψ-

(𝑥)ψ!(𝑦)
−ψ!(𝑥)ψ-(𝑦)

 

 

(62) 
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Figure 12. Representation of isotropic 2D divergence-free wavelets Ψ#$%

(",!)(right), Ψ#$%
(!,") (centre) and 

Ψ#$%
(",")(left). 

 
The scaling functions generate a divergence-free MRA (Multi Resolution Analysis). In this 
new divergence-free MRA, one can construct isotropic as well as anisotropic divergence-free 
wavelet bases and its complement. The complement functions correspond to non-divergence-
free part of the data (Figure 13). 
 
 
 

 
 
 
Figure 13. Representation of isotropic 2D non-divergence-free wavelets. 
 
In the isotropic three-dimensional case, the construction of divergence-free wavelets bases 
starts with a vector multiresolution analysis of 𝐿1(ℝA)A, of the type: 
 
 

¹𝑉B = �𝑉B-⨂𝑉B!⨂𝑉B!� × �𝑉B!⨂𝑉B-⨂𝑉B!� × �𝑉B!⨂𝑉B!⨂𝑉B-�ºB∈ℤ 
 
 
This MRA is constructed by three 3D vector scaling functions and a set of 21 3D vector 
wavelets, consisting of 14 divergence-free vector wavelets and 7 complement functions.  
 
 

{Ψ7M|𝑖 = 1,2,3, 𝜀 = (𝜀-, 𝜀1, 𝜀A)	𝑤𝑖𝑡ℎ	𝜀7 = 0,1	𝑎𝑛𝑑	𝜀 ≠ (0,0,0)} 
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Figure 14. Flow diagram of DFW denoising.  
 
To summarize, denoising using DFWs is performed by implementing the Discrete Wavelet 
Transform (or Fast Wavelet Transform), in which the transfer functions of the low-pass and 
high-pass filters are the linear combination of the scaling functions in one case and of the 
wavelet functions in the other, respectively. The coefficients obtained as output from the low-
pass and high-pass filters are all that is needed to calculate the wavelet decomposition of a 
given function.  
 
In denoising three-dimensional velocity data, the calculation of DFW coefficients is reduced 
to a linear combination of wavelet coefficients generated by the Fast Wavelet Transforms, 
performed separately on each velocity component (Figure 14). The complete set of linear 
combination equations is provided in literature (F. Ong, 2015). Resulting divergence-free and 
non–divergence-free coefficients, obtained from the linear combination discussed above, 
provide a sparse representation of the flow data, which can be, now, effectively subjected to 
the denoising procedure by using a soft-thresholding technique. 
 
Denoising with DFWs allows for the preservation of flow information at the edges of 
segmented vessels, as a soft-thresholding threshold is chosen not only for divergence-free 
coefficients but also for non-divergence-free coefficients, which will not be completely 
eliminated. In such a manner, important flow components near the edges of the vessel will be 
analysed. Furthermore, to allow for better denoising performance, the threshold selected for 
divergence-free coefficients is separate and differs from that chosen for non-divergence-free 
coefficients. 
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SOFT-THRESHOLDING TECHNIQUE: SURESHRINK 

The multilevel wavelet decomposition performed by the discrete wavelet transform, coupled 
with obtaining a sparse representation of the flux data, made it possible to develop a procedure 
with good performance in reducing the noise level superimposed on the image, while leaving 
its information content unchanged.  
 
The sparsity of the signal allows the typically Gaussian noise, superimposed on the image, to 
be evenly distributed over all wavelet coefficients, unlike the information content of the 
image, which is found in a few wavelet coefficients of greater amplitude.  
 
The denoising procedure, called SureShrink, consists of solving an optimization problem to 
find a threshold to subject the wavelet coefficients to the soft-thresholding procedure (Donoho 
DL, 1995). In the soft-thresholding procedure, coefficients with magnitude less than the 
threshold are set to zero, while the coefficients greater than the threshold are shrunk toward 
zero by subtracting the threshold value from the coefficients value. 
 
To select an appropriate threshold for a given noise level, SureShrink is considered an optimal 
scheme for minimizing mean square error in the wavelet domain (Luisier F, 2007) (Fei Xiao, 
2012). 
 
It is convenient to use when the data are not sparse enough to make the use of the "universal 
threshold" effective. The latter is known as VisuShrink and is a function of the noise power 
𝜎1	and of the number of signal samples N: 

 

𝑇 = �2𝜎1𝑙𝑜𝑔𝑁 (63) 

 

The aim of image wavelet denoising is the minimization of the estimated mean square error 
between the clean image and the image to be denoised, defined as follows: 

 

< |𝑥À − 𝑥|1 ≥�
𝑁B
𝑁 < O𝑥ÀB − 𝑥BO1 >

U

BE-

 

 

(64) 

With SureShrink, one has the advantage of having at one's disposal a very accurate estimate 
of the MSE, which depends only on the noisy image and not on the clean image: Stein's 
Unbiased Risk Estimator (SURE). This estimate is quadratic, and its minimization is 
equivalent to solving a linear system of equations. 
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The thresholding is adaptive: a threshold is assigned to each dyadic resolution level 𝑗. For 
each wavelet subband J, let 𝐼B be the index set of subband coefficients corresponding to the 
segmented data, 𝑁B be the length of the index set 𝐼B, 𝑥7,B be the ith subband coefficients in 𝐼B  
and 𝜎 be the noise standard deviation, SureShrink chooses the subband dependent threshold 
𝑡B∗ as follows: 
 

𝑡B∗ = min
3
𝜎1 −

1
𝑁B
(2𝜎1	#Ã𝑖: O𝑥7,BO ≤ 𝑡	Ä − 	�min�O𝑥7,BO, 𝑡�

1)

<)

BE-

 

(65) 

 
To robustly estimate 𝜎, median absolute deviation (MAD) was applied on the highest 
frequency subband of nondivergence-free component, which is given by the formula: 
 

𝜎 = 1.4826	𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥7 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)|) 
 

(66) 

Thresholds for SureShrink can be computed with complexity 𝑁𝑙𝑜𝑔𝑁.  
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BLOCKING ARTIFACTS: CYCLE SPINNING  

 
Simple thresholding in an orthogonal wavelet domain can be considered as first-generation 
denoising: to improve its performance, SureShrink was investigated to select appropriate 
thresholds.  
 
DFW denoising suffers from visual artifacts, e.g., Gibbs phenomena near discontinuities and 
other blocking artifacts caused by the lack of translation invariant of the wavelet basis 
(Donoho., 1995). To reduce such artifacts and improve denoising performance, a second-
generation denoising method, named “cycle spinning” by Coifman, was considered 
(Vlachos., 2005). 
 
Gibbs phenomena are caused by the fact that the reconstruction of the image with the inverse 
wavelet transform, after subjecting the wavelet coefficients to the soft-thresholding 
procedure, uses only a subset of the entire set of wavelet basis elements. Unlike the classical 
Gibbs phenomena associated with Fourier analysis, pseudo-Gibbs phenomena in wavelet 
domain are much better localized and much more moderate in their oscillations. However, 
they are visually displeasing and manifest as ringing in the neighbourhood of discontinuities, 
as alternating undershoots and overshoots of the intensity level. 
 
The blocking artifacts are all caused by the lack of precise alignments between the signal 
characteristics and those of the wavelet bases. 
 
One method to correct such misalignments is to enforce a shift to the signals, so that their 
features change position. Two operators, time shift (h) and frequency shift (ξ), respectively, 
are introduced: having chosen the best h and ξ, using an optimization algorithm, which also 
gives a quantitative measure of the good alignment between signal and wavelet basis, the data 
is shifted, denoising of the shifted data is performed, and finally the shifted data is returned 
to its initial position (de-shifting) during image reconstruction. 
 
When a signal contains several discontinuities, the best shift for one discontinuity in the signal 
may also be the worst shift for another discontinuity. Consequently, the approach involves 
applying a range of shifts, and average over the several results so obtained. 
 
Artifacts will consequently be suppressed by "medializing" the shift dependence, in a time of 
the order of nlog2(n).  
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MATERIALS AND METHODS 
 
CFD SIMULATION 
 
The denoising techniques were tested on synthetic velocity data obtained from a CFD 
simulation of hemodynamics in a realistic aorta at the systolic peak and with Gaussian noise 
superimposed. 
 
First, the 3D geometry of a healthy thoracic aorta was constructed from 4D flow MRI scans 
through the process of segmentation and was subjected to the process of mesh generation, in 
order to solve the Navier-Stokes equations. Here, the blood flow is modeled as incompressible 
Newtonian fluid, with constant density and viscosity (density equal to 1060	kg	m2A; dynamic 
viscosity equal to 3.5	102APa	s). 
 
The general Navier-Stokes equations for fluid motion can be written as: 
 

ρ 0
∂v
∂t + v ∙ ∇v3 = −∇p + µ∆v 

 

(67) 

 
Furthermore, incompressible flow must satisfy the continuity equation, formulated as: 
 

∇ ∙ v = 0 
 

(68) 

 
Where ρ is the fluid density, v represents the velocity vector in all three spatial directions, t is 
the time, ∇ is the gradient operator, p is the pressure, µ is the viscosity and ∆ is the Laplacian 
operator. 
 
The numerical approximation of the exact solution is accomplished by defining certain 
boundary conditions (BCs). Measured 3D phase-contrast flow maps were extracted along the 
cardiac cycle and used to generate Dirichlet inflow BCs, applied in terms of 3D velocity 
profiles (BC3D) at the ascending aorta (AAo) inlet section (as detailed in Morbiducci et al., 
2013 and De Nisco et al., 2018). The outflow fractions from each outlet are quantified 
according to predefined percentages of the total outflow derived from experimental values in 
the literature. 
Furthermore, the no slip-boundary condition, i. e., flow speed is zero at the vessel wall, is 
assumed.  
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ALGORITHM IMPLEMENTATION  
 
The methods previously discussed, the Finite Difference Method (FDM), the Radial Basis 
Functions-based method (RBFs), the Divergence-Free Wavelets- based method (DFW) and 
finally the Divergence-Free Wavelets- based method (DFW) with the implementation of cycle 
spinning, were implemented using C and CUDA programming languages with MATLAB 
(The MathWorks, Natick, MA, USA), call into use through the mex function, on standard 
computer hardware. 
 
To evaluate the reduction in divergence of velocity data, the algorithms were tested on 
synthetic velocity data obtained from a CFD simulation of the aorta at the systolic peak. The 
CFD model of the aorta was voxelized using a resolution of 0.003 m in all three directions of 
space. To evaluate the denoising performance of the 4 algorithms, to the synthetic reference 
velocity data, after being voxelized, was homogeneously distributed zero mean Gaussian 
noise, separately, on each direction of the 3D velocity field, in order to increase the divergence 
of the reference velocity field, obtained from the CFD simulation, and so, to better appreciate 
the denoising performance of the various algorithms. The magnitude 4D flow MRI data were 
used for segmentation in the CFD simulation, with SNR=14.18 dB. Since the standard 
deviation of the measurable velocity is proportional to the SNR and Venc, i.e. the maximum 
measurable velocity without incurring velocity aliasing, the latter was chosen to be 150 cm/s, 
a value compatible with the typical physiological velocity within the aorta. 

𝜎 =
√2𝑉9(J
𝜋	𝑆𝑁𝑅 

(69) 

Starting from one of the three velocity components (u, v or w) in the parallelepiped 
representing the FOV (30x45x16), the binary mask (imMag), useful for vessel segmentation 
(imMask), was derived, setting non-zero velocity values equal to 1, being the velocity in the 
voxels outside the vessel already zero. 

In order to assess the robustness of the algorithms FDM, RBFs – based method, DFW – based 
method with SureShrink and MAD estimation of noise and DFWs – based method with partial 
cycle spinning were implemented in MATLAB for comparison, on noisy velocity data. 

For FDM denoising, first-order finite difference and periodic boundary conditions were used.  
 
For RBF denoising, matrix valued RBF based on the Gaussian function, for each spatial point, 
was generated and it was used as convolution kernel for a given radius. The support of the 
basis functions (2*radius+1, 2*radius+1, 2*radius+1) was set to be (9,9,9; radius=4) as they 
produced low errors. A binary certainty function with a uniform non-zero weight for flow 
regions was used for normalized convolution for RBF, providing an optimal balance between 
smoothness and local approximation of the velocity vector field. Iterative least squares in 
RBF were implemented with LSQR (27) in MATLAB with maximum number of iterations 
set to (100). The values radius=4 and Niter=100 were selected based on a not in-depth 
sensitivity analysis, based only on the quantitative parameters of the error in restoring the 
reference velocity fields. 
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For the construction of the Divergence-Free Wavelet (DFW), linear spline wavelets were 
utilized for 𝜙! and 𝜓!, while quadratic spline wavelets were employed for 𝜙- and 𝜓-, all 
incorporating symmetric boundary extensions. Unless otherwise specified, two levels of 
wavelet decompositions were used for CFD simulations. 

To simplify the process, partial cycle spinning was implemented instead of the full cycle 
spinning. This method involves randomly shifting the input data, applying DFW denoising, 
and averaging the results over a few iterations. In all experiments, eight random shifts were 
used for partial cycle spinning. During the soft-thresholding operation, the wavelet 
coefficients at the coarsest level remained unchanged since they were not sparse. For 
threshold selection, SureShrink and Median Absolute Deviation (MAD) were used unless 
stated otherwise. Specifically, for SureShrink, MAD was applied to the highest frequency 
subband of the nondivergence-free component to estimate the noise standard deviation, as 
this approach provides more accurate estimates when applied to a sparser subband. 

The algorithms that have been implemented are available in a software package provided by 
Ong et al. (F. Ong, 2015), to reproduce some of the results obtained in their publication, 
reported in the literature. The software can be downloaded from:  

http://www.eecs.berkeley.edu/~mlustig/Software.html.  

ParaView software was used for better visualization of flow in 3D, in absence and presence 
of noise, and to calculate and visually assess divergence decrease.  
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ERROR MEASURING PARAMETERS 
 
For a quantitative analysis of the results, denoising performances were quantified through an 
error analysis of the flow data processed with the denoising algorithms, compared with the 
original flow data, taken as a reference.  
 
More specifically, let N be the number of segmented voxels and 𝑉7,F9P and 𝑉7,%9(&789% be the 
reference and denoised velocity vectors, respectively, at the 𝑖3V segmented voxel, so, each 
denoising performance was quantified with regard to the following parameters: 
 
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑁𝑅𝑀𝑆𝐸 (𝑣𝑁𝑅𝑀𝑆𝐸): computes the root mean square deviation between the 
reference and the denoised velocity fields. It measures how well a denoising or smoothing 
technique has retained the original velocity characteristics (both in terms of direction and 
magnitude).  
 
 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑁𝑅𝑀𝑆𝐸 =
1

𝑚𝑎𝑥7(O𝑽𝒊,𝒓𝒆𝒇O)
Ï
1
𝑁�O𝑽𝒊,𝒓𝒆𝒇 − 𝑽𝒊,𝒅𝒆𝒏𝒐𝒊𝒔𝒆𝒅O

1
<

7E!

 

 

(70) 

 
𝑆𝑝𝑒𝑒𝑑 𝑁𝑅𝑀𝑆𝐸 (sNRMSE): computes the root mean square deviation between the magnitude 
of the reference and that of the denoised velocity fields. It measures how well a denoising or 
smoothing technique has retained the original velocity characteristics (only in terms of 
magnitude).  
 
 

𝑆𝑝𝑒𝑒𝑑	𝑁𝑅𝑀𝑆𝐸 =
1

𝑚𝑎𝑥7(O𝑽𝒊,𝒓𝒆𝒇O)
Ï
1
𝑁��O𝑽𝒊,𝒓𝒆𝒇O − O𝑽𝒊,𝒅𝒆𝒏𝒐𝒊𝒔𝒆𝒅O�

1
<

7E-

 

 

(71) 

 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐸𝑟𝑟𝑜𝑟	𝑖𝑛	𝐹𝑙𝑜𝑤	𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (AEFD): compares the alignment between the reference 
velocity field and the denoised one.  
 
 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐸𝑟𝑟𝑜𝑟	𝑖𝑛	𝐹𝑙𝑜𝑤	𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =
1
𝑁�

�1 −
O𝑽𝒊,𝒓𝒆𝒇 ∙ 𝑽𝒊,𝒅𝒆𝒏𝒐𝒊𝒔𝒆𝒅O
O𝑽𝒊,𝒓𝒆𝒇OO𝑽𝒊,𝒅𝒆𝒏𝒐𝒊𝒔𝒆𝒅O

�
<

7E-

 

 

(72) 
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𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝐼𝑛𝑑𝑒𝑥 (ASI): measures the degree of alignment between the 
reference velocity field and the denoised one (both in terms of direction and magnitude). 
 
 

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝐼𝑛𝑑𝑒𝑥 ≜
1
2 (1 +

𝑽𝒊,𝒅𝒆𝒏𝒐𝒊𝒔𝒆𝒅 ∙ 𝑽𝒊,𝒓𝒆𝒇
O𝑽𝒊,𝒅𝒆𝒏𝒐𝒊𝒔𝒆𝒅OO𝑽𝒊,𝒓𝒆𝒇O

) 

 

(73) 

 
𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝐼𝑛𝑑𝑒x (MSI): measures the degree of alignment between the 
reference velocity field and the denoised one (only in terms of magnitude). 
 
 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝐼𝑛𝑑𝑒𝑥 ≜ 	1 − Ò
O𝑽𝒊,𝒅𝒆𝒏𝒐𝒊𝒔𝒆𝒅O

max	(O𝑽𝒊,𝒅𝒆𝒏𝒐𝒊𝒔𝒆𝒅O)
−

O𝑽𝒊,𝒓𝒆𝒇O
max	(O𝑽𝒊,𝒓𝒆𝒇O)

Ò 

 

   
(74) 

 
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 (SI): synthesizes information derived from both ASI and MSI into a single 
measure. 
 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝐼𝑛𝑑𝑒𝑥 = 𝐴𝑆𝐼 ∗ 𝑀𝑆𝐼 
 

(75) 

 
The denoising performance is better the more the first three mentioned error measurement 
parameters (vNRMSE, sNRMSE, AEFD) are close to zero and the more ASI, MSI and SI are 
close to 1, reflecting a perfect alignment between the simulated hemodynamic flow conditions 
before and after the denoising operation. 

Furthermore, scatter plot of velocity magnitude distributions are used to better understand 
quantitative data, while violin plots are used for comparing probability distributions of 
divergence data. 
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RESULTS  
 
The performances of the four denoising algorithms were qualitatively compared through 
visualization of (i) the original synthetic 3D blood velocity field (obtained after the 
voxelization of CFD data and therefore considered as the ground truth), (ii) the noisy synthetic 
3D blood velocity field (obtained after the voxelization and the noise superimposition on the 
CFD data), and (iii) the denoised synthetic 3D blood velocity field. The same qualitative 
approach was used to compare divergence reduction performances.  
 
The velocity vectors distribution of the original synthetic flow field shows, at the systolic 
peak, a high-speed flow region with maximum velocity at the inner lateral side of ascending 
aorta and near the aortic arch. In the descending aorta, a homogeneous velocity both in 
magnitude and direction is observed, which decreases and becomes close to zero near the 
vessel walls, in agreement with the no-sleep boundary condition at the vessel walls.  

Superimposing the white Gaussian noise on the CFD-simulated flow results in slightly higher 
velocities in magnitude. Furthermore, as can be seen from the images in which the original 
and noisy velocity fields are superimposed (Figure 19-22), the noisy velocity vector field will 
undergo changes in the direction of the velocity vectors, particularly at the ascending aorta, 
the aortic arch and near the vessel walls.  

In both cases the higher velocity is in correspondence of the inlet of the supra-aortic vessels.  

To verify the correctness and accuracy of the restoration of the original velocity distribution 
after the denoising procedure, the simulated flow within a realistic aorta with superimposed 
noise was processed by 4 different approaches. 

The FDM method (Figure 15) reconstructs the original velocity field with many errors, both 
in magnitude and direction. It is an approach sensitive to segmentation errors, which confuses 
the geometric model of the realistic aorta with the (synthetic) background tissues. This 
involves over-segmentation of regions where the velocity field should not be reconstructed, 
leading to detection of erroneous and insignificant details.  

The projective technique using RBFs and normalized convolution (Figure 16) performs 
significantly better than the FDM method: the flow field is completely reconstructed, 
comparable to the original, in the vessel lumen. Instead, the velocities near the vessel walls 
aren’t fully restored as the originals. Despite the use of the binary certainty function the 
approach remains sensitive to segmentation errors. 

The best performance, in reconstructing the original flow field, is achieved with divergence 
free wavelets (Figure 17): a sparse representation of the flow is obtained and the velocity 
components near the edges of the vessel are also reconstructed correctly. The performance is 
higher if partial cycle spinning is used (Figure 18). 
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Figure 15. Comparison between, from left to right: synthetic original velocity field, synthetic velocity field 
with superimposed Gaussian noise, synthetic velocity field subjected to the denoising procedure with FDM.  

 
Figure 16. Comparison between, from left to right: synthetic original velocity field, synthetic velocity field 
with superimposed Gaussian noise, synthetic velocity field subjected to the denoising procedure with 
projection into RBFs. 
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Figure 17. Comparison between, from left to right: synthetic original velocity field, synthetic velocity field 
with superimposed Gaussian noise, synthetic velocity field subjected to the denoising procedure with DFWs.  

 
 
Figure 18. Comparison between, from left to right: synthetic original velocity field, synthetic velocity field 
with superimposed Gaussian noise, synthetic velocity field subjected to the denoising procedure with DFWs 
and partial cycle spinning.  
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Figure 19. Comparison between, from left to right: “original” and “noisy” velocity fields overlapped with 
two different colors (original in blue and noisy in green), “original” and “denoised with FDM” velocity fields 
overlapped with two different colors (original in blue and denoised in green). 

 
 
Figure 20. Comparison between, from left to right: “original” and “noisy” velocity fields overlapped with 
two different colors (original in blue and noisy in green), “original” and “denoised with RBFs” velocity fields 
overlapped with two different colors (original in blue and denoised in green). 



 
 

                                 52 
 

 
Figure 21. Comparison between, from left to right: “original” and “noisy” velocity fields overlapped with 
two different colors (original in blue and noisy in green), “original” and “denoised with DFWs” velocity fields 
overlapped with two different colors (original in blue and denoised in green). 

 
 
Figure 22. Comparison between, from left to right: “original” and “noisy” velocity fields overlapped with 
two different colors (original in blue and noisy in green), “original” and “denoised with DFWs and partial 
cycle spinning” velocity fields overlapped with two different colors (original in blue and denoised in green). 
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Furthermore, to evaluate the performances of the denoising algorithms, not only the 
restoration of the original flow field but also the reduction of divergence on two-dimensional 
slices of the realistic aorta was qualitatively analyzed, by comparing the divergence of the 
original velocity field, that of the noisy velocity field and that of the noisy velocity field 
subjected to each of the denoising procedures. 
 
Within the aorta, velocity divergence values of the original flow field are highest at the 
branching points where blood flow splits into multiple arteries. This phenomenon is 
particularly evident near the aortic arch, where the aorta branches into supra-aortic arteries 
supplying blood to the head and upper limbs. Divergence takes higher values in the synthetic 
flow model with Gaussian noise superimposed. 
 
After applying the algorithm which use finite differences (FDM), a reduction in divergence 
components was visually observed (Figure 23), which appear to be smoother but distributed 
like those in the noisy model. On the cross-sections of the ascending aorta, the divergence 
obtained with FDM appears to be lower than that in the original flow. There is a risk of missing 
flow patterns that might be relevant.  

With the RBFs-based method (Figure 24), a soft smoothing effect on divergence of the noisy 
flow field is visually observed following the denoising process. This soft smoothing effect 
may cause fluid dynamic patterns of interest to be overlooked. However, this issue can 
potentially be mitigated by increasing the kernel size, but this would lead to deviation from 
the original flow field.  

Applying the DFW-based method the divergence is reduced and more closely aligns with 
that of the original data (Figure 25-26): some divergence values of the original flow field, 
especially those at the aortic arch, are preserved, compared to the original synthetic flow 
data.  

The same qualitative considerations are applicable to the calculation of divergence on the 
cross-sections of ascending and descending aorta. 
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Figure 23. Comparison between the divergence in a bidimensional slice of the realistic aorta, which arise, 
respectively, from left to right, in original synthetic velocity field, synthetic velocity field with superimposed 
Gaussian noise, synthetic noisy velocity field subjected to the denoising procedure with FDM.   
 

 
 

Figure 24. Comparison between the divergence in a bidimensional slice of the realistic aorta, which arise, 
respectively, from left to right, in original synthetic velocity field, synthetic velocity field with superimposed 
Gaussian noise, synthetic noisy velocity field subjected to the denoising procedure with projection into RBFs.   
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Figure 25. Comparison between the divergence in a bidimensional slice of the realistic aorta, which arise, 
respectively, from left to right, in original synthetic velocity field, synthetic velocity field with superimposed 
Gaussian noise, synthetic noisy velocity field subjected to the denoising procedure with DFWs.   
 

 
Figure 26. Comparison between the divergence in a bidimensional slice of the realistic aorta, which arise, 
respectively, from left to right, in original synthetic velocity field, synthetic velocity field with superimposed 
Gaussian noise, synthetic noisy velocity field subjected to the denoising procedure with DFWs and partial 
cycle spinning.   
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The following tables collect the values of each of the parameters discussed in the section Error 
Analysis for each of the 4 approaches used for denoising. 
 
 
 

 
 
Table 3. Values of vNRMSE, sNRMSE, AEFD for each of the denoising methods. 
 

 
 
Table 4. Mean, median, 25° percentile, 75° percentile of ASI for each of the denoising methods. 
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Table 5. Mean, median, 25° percentile, 75° percentile of MSI for each of the denoising methods. 
 
 
 
 

 
 
Table 6. Mean, median, 25° percentile, 75° percentile of SI for each of the denoising methods. 
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The quantitative analysis above shows better performance in denoising with DFW-based 
method with partial cycle spinning: values of 𝑣𝑁𝑅𝑀𝑆𝐸, 𝑠𝑁𝑅𝑀𝑆𝐸 and AEFD (Table 3) are 
closer to zero, and values of ASI, MSI and SI (Table 4-6) are closer to 1. Quantitatively, 
velocity NRMSE, speed NRMSE, and direction error for the denoised flow with DFW with 
cycle spinning are respectively 0.0112, 0.0088 and 0.0195. DFW with cycle spinning achieves 
the lowest errors in all three error criteria. At the same time, it achieves the higher mean value 
of ASI, MSI and SI, respectively 0.9886, 0.9928, 0.9815.  This means a very good similarity 
between reference hemodynamic conditions and the denoised ones, more than other denoising 
strategies, in performance order: DFW without partial cycle spinning, RBFs based method 
and FDM.  
 
The following scatter represents the relationship between the magnitude of the velocity of the 
original synthetic flow data and the magnitude of the velocity of the synthetic denoised flow 
data, for each of the denoising procedures. The red line indicates the perfect match line among 
the original velocity magnitude and the filtered velocity magnitude, while the green line is the 
regression line of the two sets of velocity magnitude data. In the legend the Pearson’s 
coefficient (r) is shown, as a measure of the linear correlation between the two velocity 
magnitude data. 
 
 
 
 
 

 
Figure 27. Plot of velocity magnitude distributions as a scatter plot: filtered velocity magnitude with FDM 
vs. original velocity magnitude. 
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Figure 28. Plot of velocity magnitude distributions as a scatter plot: filtered velocity magnitude with 
projection into RBFs vs. original velocity magnitude. 
 

 
 
Figure 29. Plot of velocity magnitude distributions as a scatter plot: filtered velocity magnitude with DFW- 
based method vs. original velocity magnitude. 
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Figure 30. Plot of velocity magnitude distributions as a scatter plot: filtered velocity magnitude with DFW-
based method and partial cycle spinning vs. original velocity magnitude. 
 
The scatter plots related to the denoising methods have been reported in order of progressively 
better performance.  FDM is the least accurate method in preserving the relationship between 
the original and filtered velocity data (Figure 27); this is observed by a greater dispersion of 
the data around the red line representing the identity line and by the regression line, the green 
line, deviating the most from the bisector. The correlation coefficient (Pearson) r is the lowest 
and is equal to 0.9699 (p<0.05), a value close to 1 which, however, indicates a linear 
correlation between the two data sets. In addition, some points outside the main lines can be 
seen, particularly at near-zero and higher velocity values (over 1.5 m/s). These outliers 
represent points where the filtered velocity does not perfectly match the original velocity, 
causing filtering errors and residual noise.  
 
The RBFs method seems to be more accurate in preserving the relationship between original 
and filtered velocity than FDM, with slightly better correlation (r=0.9912; p<0.05) and fewer 
outliers (Figure 28), which are less pronounced than in the FDM plot. Although there are still 
some points away from the identity line, their amount and deviation from the identity line are 
lower, suggesting that RBFs-based method handles these values better. 
 
The presence of a well-fitting regression line to the data and a high correlation coefficient 
(r=0.9972; p<0.05) suggest that the best method used to filter the data, which preserves 
velocity information well enough, is the DFW-based method with partial cycle spinning 
(Figure 30). The Pearson coefficient value is higher than that obtained with DFW-based 
method without partial cycle spinning (Figure 29) (0.9972 vs. 0.9956), with RBFs based-
method (0.9972 vs. 0.9912) and much higher than that obtained with FDM (0.9972 vs. 
0.9699). This is indicative of an almost perfect correlation and a better fit to the original 
values. The distribution of points is predominantly close to the identity line. Ideally, if the 
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data followed this line perfectly, it would mean that the filtering method introduced no 
distortion or change in the magnitude of the original velocity, restoring it completely.  
 
Outliers are also present to a lesser amount, almost completely absent, demonstrating the good 
denoising capabilities of the methods that allow for a sparse representation of the flow field. 
 
 
To quantitatively assess the performances of the algorithms in terms of divergence 
minimization, the probability density functions of the absolute value of divergence were 
computed and visualized using violin plots (Figure 31-34). The width of the violin plot, at a 
certain level, represents the probability density of the absolute value of divergence data at that 
value, that is, how concentrated the data are in that region. To quantitatively state that the 
denoising strategies have effectively reduced the divergence, one wants lower values of mean 
and median of the distributions.  
 
The DFW-based method with partial cycle spinning is confirmed the best performing method.  
 
 
 
 

 
Figure 31. Plot of absolute value of divergence in a violin plot: on the left noisy divergence probability 
density distribution, on the right divergence probability density distribution of filtered data with FDM. 
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Figure 32. Plot of absolute value of divergence in a violin plot: on the left noisy divergence probability 
density distribution, on the right divergence probability density distribution of filtered data with RBFs. 
 
 

 
 
Figure 33. Plot of absolute value of divergence in a violin plot: on the left noisy divergence probability 
density distribution, on the right divergence probability density distribution of filtered data with DFW-based 
method. 
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Figure 34. Plot of absolute value of divergence in a violin plot: on the left noisy divergence probability 
density distribution, on the right divergence probability density distribution of filtered data with DFW-based 
method and partial cycle spinning. 
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CONCLUSIONS 
 
This study compares the performances of four state-of-the-art methods for processing 4D flow 
MRI data with the aim of increasing spatio-temporal resolution, and attenuating acquisition 
noise. 4D flow MRI is a state-of-the-art imaging technique in the assessment of hemodynamic 
patterns within the heart and great vessels, which has several limitations that preclude its use 
as a diagnostic technique in clinical practice. The two main drawbacks are poor spatio-
temporal resolution and long acquisition times: to reduce the acquisition time, subsampling 
techniques arise. However, they give rise to other artifacts and further reduce the spatio-
temporal resolution. In this regard, to reduce errors caused by acquisition problems or noise, 
some approaches exploit the law of conservation of mass for blood, which is an 
incompressible fluid, to suppress the velocity divergence that should ideally be zero.  
 
Four of the main state-of-the-art divergence-free denoising methods were analyzed, namely: 
the Finite Difference Method (FDM), the Radial Basis Functions-based method (RBFs), the 
Divergence-Free Wavelets- based method (DFW) and finally the Divergence-Free Wavelets- 
based method (DFW) with the implementation of cycle spinning. To compare their 
performances, these approaches were applied to synthetic 4D flow MRI velocity data obtained 
from a CFD simulation of a realistic aorta at the systolic peak and after the superimposition 
of Gaussian white noise. 
 
The Finite Difference Method (FDM) projects the velocity data into a divergence-free space 
using Helmholtz-Hodge decomposition, solved by employing first-order finite differences 
with periodic boundary conditions to solve the Laplace equation. Instead, Radial Basis 
Functions (RBFs)-based method used normalized convolution to locally approximate the 
acquired velocity field into divergence-free radial basis functions (RBFs), used as convolution 
kernels. In this circumstance one can choose a larger kernel size, which results in efficient 
denoising in the vessel lumen. This, together with the possibility of choosing appropriate 
certainty and applicability functions, makes the RBFs-based method perform better than 
FDM. Nevertheless, both FDM and RBFs-based method suffer from inaccuracies in the 
segmentation of the flow field, since the divergence-free constraint on the flow field is strictly 
imposed: while flow patterns were reconstructed accurately in the vessel lumen, relatively 
large errors remained at the vessel border. 
 
Divergence-Free Wavelets (DFW)-based method applies the Discrete Wavelet Transform, 
realized through a bank of filters, separately, to each velocity component. The resulting 
divergence-free and non–divergence-free coefficients, linearly combined, provide a sparse 
representation of flow data, which were subjected to the denoising procedure using a soft-
thresholding technique, called SureShrink. Instead of eliminating nondivergence-free 
coefficients, soft-thresholding non-divergence-free coefficients allows the flexibility to adjust 
the cutoff so that important components, such as those arising near edges, can be captured. 
Furthermore, a second-generation denoising method, named “cycle spinning”, was 
considered to reduce blocking artifacts.  

The main results showed that both DFW and RBF based methods show significant noise 
reduction in vector visualization. Visually, their vector representations look very similar to 
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the original flow field. On the other hand, FDM shows less improvement than other methods. 
Comparing to DFW without cycle spinning DFW with partial cycle spinning reduces blocking 
artifacts and improves denoising performance. Comparative analysis of these methods, 
demonstrated, both qualitatively and quantitatively, the effective restoration of the reference 
flow field and a reduction in the divergence of noisy data. Quantitative results showed that 
the DFW-based method performed better than FDM and RBF-based method. The no-
divergence constraint in the DFW-based method is more relaxed, making it less sensitive to 
segmentation errors. Moreover, the DFW-based method with partial cycle spinning further 
enhanced its performance. DFW with partial cycle spinning outperforms other methods 
quantitatively, in all the error criteria, and qualitatively. 

 
The good performance of the denoising algorithms investigated in this study open the way for 
the widespread use of 4D flow MRI in clinical practice, with the advantages that could follow 
in the treatment of cardiovascular diseases or cardiac surgical procedures. Hemodynamic 
descriptors, such as those based on wall shear stress (WSS) and its variability in magnitude 
and direction along the cardiac cycle and other harmonic descriptors such as Fluctuating 
Kinetic Energy (FKE) could be more accurately calculated using adequately denoised 4D 
flow MRI data. These hemodynamic parameters make it possible to synthesize information 
about the highly complex blood flow within vessels, especially near the walls, and its role in 
the biomechanical processes involved in vascular pathogenesis. In this regard, a possible 
future development of this work is the search for new denoising techniques, even more 
performant and less sensitive to segmentation errors, so that a more precise calculation of 
hemodynamic descriptors such as WSS can be performed from 4D flow MRI data, to assess 
non-invasively in vivo the flow imprint on the vessel walls and increase the mechanistic 
knowledge of vascular disease.  
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