
POLITECNICO DI TORINO

Master’s Degree in Biomedical Engineering

Evaluation of Consciousness in
patients through EEG signals: a
Pattern Recognition and Feature

Engineering approach

Supervisor
Luca Mesin
Co-Supervisor
Hossein Ahmadi

Candidate
Francesco Serracca

A.Y. 2024/2025





Contents

1 Abstract 11

2 Introduction 13
2.1 Nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Cerebrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Brainstem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Cerebellum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Diencephalon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Meninges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Cerebral cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9 Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9.1 Neocortex layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Brain signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10.1 Electroencephalography(EEG) . . . . . . . . . . . . . . . . . . . . 25
2.10.2 EEG characteristcs . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10.3 Components of EEG signals . . . . . . . . . . . . . . . . . . . . . 26
2.10.4 Mu waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.10.5 EEG recordings and International 10-20 System . . . . . . . . . . 28
2.10.6 Mono-polar vs bipolar acquisition . . . . . . . . . . . . . . . . . . 29
2.10.7 EEG artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 BCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.11.1 Control Signal Types in BCI . . . . . . . . . . . . . . . . . . . . . 37

2.12 The enigma of Consciousness . . . . . . . . . . . . . . . . . . . . . . . . 38
2.12.1 What is Consciousness? . . . . . . . . . . . . . . . . . . . . . . . 38
2.12.2 States of consciousness . . . . . . . . . . . . . . . . . . . . . . . . 38
2.12.3 Disorders of consciousness . . . . . . . . . . . . . . . . . . . . . . 39
2.12.4 Scales for assessing the state of consciousness . . . . . . . . . . . 41

3 Materials and Methods 43
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Downsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Artefact detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.4 Epochs division . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.5 Frequency bands division . . . . . . . . . . . . . . . . . . . . . . . 52

3



3.4 Features calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.1 Time-domain features . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2 Hjorth parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Frequency-domain features . . . . . . . . . . . . . . . . . . . . . . 54
3.4.4 Bandwidth Power calculation . . . . . . . . . . . . . . . . . . . . 55
3.4.5 Relative powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.6 Frequency-domain statistcs . . . . . . . . . . . . . . . . . . . . . . 55
3.4.7 Frequency band ratios . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.8 Non-linear features . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Entropies calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Spatio-temporal features . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.1 Cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.2 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.3 Lagged-coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.4 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.5 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.6 Pearson’s Correlation Coefficient . . . . . . . . . . . . . . . . . . 63
3.6.7 Phase-Locking Value . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Features organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8 Clustering algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8.1 KMeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8.2 Agglomerative Clustering . . . . . . . . . . . . . . . . . . . . . . 65
3.8.3 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 Features selection method . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.9.1 SelectKBest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.10 Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.10.1 Multinomial Logistic Regression . . . . . . . . . . . . . . . . . . . 67
3.10.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.10.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . 68

4 Procedure 71

5 Results 75
5.1 Clustering Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Clustering performances - Scenario ’ALL’ . . . . . . . . . . . . . . 75
5.1.2 Cluster plots - Scenario ’ALL’ . . . . . . . . . . . . . . . . . . . . 76
5.1.3 Clustering performances - Scenario ’OA’ . . . . . . . . . . . . . . 77
5.1.4 Cluster plots - Scenario ’OA’ . . . . . . . . . . . . . . . . . . . . . 78
5.1.5 Clustering performances - Scenario ’OC’ . . . . . . . . . . . . . . 79
5.1.6 Cluster plots - Scenario ’OC’ . . . . . . . . . . . . . . . . . . . . . 80

5.2 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.1 Classification performances - Scenario ’ALL’ . . . . . . . . . . . . 81
5.2.2 Plot ROC Curve, Confusion Matrix and Classification Report -

Scenario ’ALL’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.3 Classification performances - Scenario ’OA’ . . . . . . . . . . . . . 86
5.2.4 Plot ROC Curve, Confusion Matrix and Classification Report -

Scenario ’OA’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.5 Classification performances - Scenario ’OC’ . . . . . . . . . . . . . 90



5.2.6 Plot ROC Curve, Confusion Matrix and Classification Report -
Scenario ’OC’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Discussions and Conclusions 95

7 Ringraziamenti 99





List of Figures

2.1 Central Nervous System (CNS) and Peripheral Nervous System (PNS)
composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Principals organs that compose the Brain. . . . . . . . . . . . . . . . . . 14

2.3 Sagittal section of the brain showing the three sections of the brainstem. 16

2.4 Median sagittal view of the brain. . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Layered structure of the meninges. . . . . . . . . . . . . . . . . . . . . . 18

2.6 White and Grey Matter’s disposition in the Brain and in the Spinal Cord. 19

2.7 Vision of the lobes of the cerebral cortex. . . . . . . . . . . . . . . . . . . 19

2.8 The somatosensory and motor homunculus derived by Wilder Panfield
illustrating the effects of electrical stimulation of the cortex of human
neurosurgical patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Main parts of a neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Schematic representation of the AP. . . . . . . . . . . . . . . . . . . . . . 22

2.11 The six layers of the neocortex seen in section. At the top is the surface of
the brain, at the bottom the deepest layer. On the left, the different types
of neuronal cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.12 Three levels of acquisition of brain signals and different techniquesb [19]. 25

2.13 Waveforms of the EEG rythms. . . . . . . . . . . . . . . . . . . . . . . . 27

2.14 Lateral (A) and dorsal (B) view of electrode placement on the scalp according
to Standard 10-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.15 Positioning of the 73 electrodes on the scalp according to the Extended
10-20 Standard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.16 Example of mono-polar acquisition (A) and bipolar acquisition (B). . . . 30

2.17 Example of eyeblink artifact. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.18 Example of cardiac artifact. . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.19 Example of Myogenic artifacts. . . . . . . . . . . . . . . . . . . . . . . . 34

2.20 Example of chewing and tongue artifact. . . . . . . . . . . . . . . . . . . 35

2.21 Interaction of the two major components of consciousness, wakefulness and
awareness, in different states of consciousness.On the X-axis is the level of
wakefulness and on the Y-axis is the content of awareness [14]. . . . . . . 39

2.22 Comparison of levels of arousal and awereness of different states of disorder
of consciousness compared to the state of normal consciousness. . . . . . 41

3.1 Position of the electrodes on the scalp. . . . . . . . . . . . . . . . . . . . 44

3.2 Channels used for each subjects for the purpose of eliminating the non-
informative and uncommon ones. . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Comparison of the EEG signal of a random subject of a random channel
before and after downsampling. . . . . . . . . . . . . . . . . . . . . . . . 46

7



3.4 Comparison of the EEG signal of a random subject of a random channel
before and after Band Pass Filtering. . . . . . . . . . . . . . . . . . . . . 47

3.5 Comparison of the Raw EEG and EEG after EMG artefact removal of a
random subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Comparison of the Raw EEG and EEG after EOG artefact removal of a
random subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Comparison of the Raw EEG and EEG after EMG+EOG artefact removal
of a random subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Plot of all the frequency bands for one channel of a random patient. . . . 52
3.9 Example of structure of the Random Forest. . . . . . . . . . . . . . . . . 68
3.10 Illustration of the best hyperplane that separates two classes in a 2D chart. 69

5.1 Cluster representation with Agglomerative Clustering method. . . . . . . 76
5.2 Cluster representation with KMeans method. . . . . . . . . . . . . . . . . 76
5.3 Cluster representation with DBSCAN method. . . . . . . . . . . . . . . . 77
5.4 Cluster representation with Agglomerative Clustering method. . . . . . . 78
5.5 Cluster representation with KMeans method. . . . . . . . . . . . . . . . . 78
5.6 Cluster representation with DBSCAN method. . . . . . . . . . . . . . . . 79
5.7 Cluster representation with Agglomerative Clustering method. . . . . . . 80
5.8 Cluster representation with KMeans method. . . . . . . . . . . . . . . . . 80
5.9 Cluster representation with DBSCAN method. . . . . . . . . . . . . . . . 81
5.10 ROC Curve - Random Forest . . . . . . . . . . . . . . . . . . . . . . . . 82
5.11 ROC Curve - Support Vector Machine . . . . . . . . . . . . . . . . . . . 82
5.12 ROC Curve - Logistic Regression . . . . . . . . . . . . . . . . . . . . . . 83
5.13 Confusion Matrix - Random Forest . . . . . . . . . . . . . . . . . . . . . 83
5.14 Confusion Matrix - Support Vector Machine . . . . . . . . . . . . . . . . 84
5.15 Confusion Matrix - Logistic Regression . . . . . . . . . . . . . . . . . . . 84
5.16 Classification Report - Random Forest . . . . . . . . . . . . . . . . . . . 85
5.17 Classification Report - Support Vector Machine . . . . . . . . . . . . . . 85
5.18 Classification Report - Logistic Regression . . . . . . . . . . . . . . . . . 85
5.19 ROC Curve - Random Forest . . . . . . . . . . . . . . . . . . . . . . . . 86
5.20 ROC Curve - Support Vector Machine . . . . . . . . . . . . . . . . . . . 87
5.21 ROC Curve - Logistic Regression . . . . . . . . . . . . . . . . . . . . . . 87
5.22 Confusion Matrix - Random Forest . . . . . . . . . . . . . . . . . . . . . 88
5.23 Confusion Matrix - Support Vector Machine . . . . . . . . . . . . . . . . 88
5.24 Confusion Matrix - Logistic Regression . . . . . . . . . . . . . . . . . . . 89
5.25 Classification Report - Random Forest . . . . . . . . . . . . . . . . . . . 89
5.26 Classification Report - Support Vector Machine . . . . . . . . . . . . . . 90
5.27 Classification Report - Logistic Regression . . . . . . . . . . . . . . . . . 90
5.28 ROC curve - Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.29 ROC Curve - Support Vector Machine . . . . . . . . . . . . . . . . . . . 91
5.30 ROC Curve - Logistic Regression . . . . . . . . . . . . . . . . . . . . . . 92
5.31 Confusion Matrix - Random Forest . . . . . . . . . . . . . . . . . . . . . 92
5.32 Confusion Matrix - Support Vector Machine . . . . . . . . . . . . . . . . 93
5.33 Confusion Matrix - Logistic Regression . . . . . . . . . . . . . . . . . . . 93
5.34 Classification Report - Random Forest . . . . . . . . . . . . . . . . . . . 94
5.35 Classification Report - Support Vector Machine . . . . . . . . . . . . . . 94
5.36 Classification Report - Logistic Regression . . . . . . . . . . . . . . . . . 94



List of Tables

2.1 EEG rhythms and associated states. . . . . . . . . . . . . . . . . . . . . 27

5.1 Values of performance indicators for the three clustering types referred to
the ’ALL’ scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Values of performance indicators for the three clustering types referred to
the ’OA’ scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Values of performance indicators for the three clustering types referred to
the ’OC’ scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Values of performance indicators for the three classification methods referred
to the ’ALL’ scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Values of performance indicators for the three classification methods referred
to the ’OA’ scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Values of performance indicators for the three classification methods referred
to the ’OC’ scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Features extracted in different analysis scenarios. . . . . . . . . . . . . . 96

9





Chapter 1

Abstract

This thesis deals with the analysis of states of consciousness in patients through EEG
(electroencephalography) signals, using pattern recognition and feature engineering . This
work aims to implement classification and assessment techniques of DOC patients through
brain signals. EEG, due to its high temporal resolution and non-invasive nature, has been
chosen as the main technique for brain data acquisition. The process involves several
steps, including channel selection, preliminary signal pre-processing, artefact detection,
feature extraction in both time and frequency domains, and the use of clustering and
classification algorithms for data analysis. Among the classification methods used are
Support Vector Machine, Random Forest and logistic regression. The results show the
feasibility of these approaches in distinguishing between different states of consciousness,
paving the way for future research on advanced methodologies to monitor and assess
consciousness in clinical settings.
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Chapter 2

Introduction

2.1 Nervous system

For Nervous system we mean, from an anatomical and functional point of view, the unit
characterized by highly specialized tissue responsible for processing bio-electrical signals.
From an anatomical point of view, it is divided in Central Nervous System (CNS) and
Peripheral Nervous System (PNS).

Figure 2.1: Central Nervous System (CNS) and Peripheral Nervous System (PNS)
composition.
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• Central Nervous System: it is enclosed in the skull as regards the encephalon,
and in the vertebral canal if we consider the spinal cord. It has the task to collect
and integrate the received information from the external environment by the spinal
nerves, cranial nerves but also by the senses; furthermore, it coordinates all parts
of the body by sending them responses to stimuli.

• Peripheral Nervous System: it is made up of peripheral nervous structures such
as ganglia, nerves, sensory receptors (thermoreceptors, proprioceptors, mechanore-
ceptors, odor receptors, taste receptors) and specialized organs such as the eye and
the auditory apparatus.

In this chapter, we focus on the central nervous system, the organs that compose it, their
composition and the functions they perform.

The contents of the following paragraphs regarding notions of anatomy are taken, unless
otherwise specified through further bibliographical references, from the book ”Principles
of Neural Science” by Eric R. Kandel [9] and from the consultation of the site https:

//it.wikipedia.org/.

2.2 Brain

The brain or encephalon is the principal organ of the CNS and it is involved in a wide
range of processes, from learning to memory up to sensory functions such as vision and
hearing. It is one of the bigger and more complex organs of our body and it constitutes
the hub of the human neural system. It is housed and protected totally within the skull
and inside contains numerous structures and billions of cells. As we can also see from the
Figure 2.2 it is composed of three organs :

• Cerebrum

• Brainstem

• Cerebellum

Figure 2.2: Principals organs that compose the Brain.
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2.3 Cerebrum

The human cerebrum is the principal organ of the CNS and it is present in all vertebrates
organisms and most invertebrates. Its weigh is about 1400 grams, has a volume between
1100 and 1300 cm3, and contains 1012 neurons. From an embryological point of view it
is the result of the development of the prosencephalon and derives from the diencephalic
and telencephalic vesicles. Anatomically, in fact, it is made up of the diencephalon and
telencephalon. The diencephalon is smaller and is wrapped superiorly and laterally by the
telencephalon. It aggregates the thalamus, epithalamus, metathalamus, hypothalamus,
and subthalamus. It performs key roles such as regulation of body temperature, appetite
control, management of cardiac rhythms, sensory perception and transfer of sensory
information. It is divided in two hemispheres, the two halves of the brain, divided by the
median longitudinal sulcus (interhemispheric fissure).
In turn, each hemisphere is divided into lobes, the main ones are four:

• Frontal Lobe

• Temporal Lobe

• Parietal Lobe

• Occipital Lobe

2.4 Brainstem

The brainstem is situated at the base of the brain and it is made up of of the midbrain,
pons, and medulla oblongata (arranged as can be seen in Figure 2.3). The brainstem
contains nerve fibers that descend to and ascend from the spinal cord; it also houses
several motor and sensory nuclei, which are groups of neurons that further process these
signals. The most numerous of these are located within the pons and are collectively
known as ”pontine nuclei”. The basal ganglia are closely connected with the cerebral
cortex and play a critical role in movement. Both Parkinson’s disease and Huntigton’s
chorea are due to pathology in the basal ganglia. Ascending towards the skull, the spinal
cord progressively changes and becomes more complex, finally articulating as the medulla
oblongata or bulb. It contains the centers for the regulation of visceral, respiratory and
blood pressure functions.
The medulla oblongata is an elongated structure located in the lower part of the
brainstem. Information relating to taste, touch and mainly hearing pass from the bulb.
Pons is a large protuberance of the brainstem, which forms part of the floor of the fourth
cerebral ventricle, and joins the cerebellum posteriorly via the middle cerebellar peduncle.
Midbrain is the tallest structure of the brainstem. It is involved in various brain
functions, including vision (through the regulation of some extrinsic and intrinsic muscles
of the eyes), the planning and regulation of muscle movements, as well as reward mech-
anisms through the substantia nigra, associated with the motor pathways of the basal
nuclei. Dopamine, the neurotransmitter also known as ”neurohormone” is produced in the
substantia nigra and plays a role in the development of motivation, sense of satisfaction
and gratification.

15



Figure 2.3: Sagittal section of the brain showing the three sections of the brainstem.

2.5 Cerebellum

The cerebellum, whose name comes from the Latin term for ”little brain” is situated
beneath the posterior part of the cerebral hemispheres (Figure 2.4). It plays a key role
in generating smooth, coordinated movements and is also involved in motor learning and
adaptation. Although the cerebellum does not have direct connections to the spinal cord,
it indirectly influences movement through its connections to the cerebrum and brainstem.
People with disorders of the cerebellum are still able to move, but their movements lack
normal coordination; these characteristic deficits are known collectively as ataxia.

2.6 Diencephalon

The diencephalon is the central part of the brain situated between the telencephalon and
the midbrain (see Figure 2.4). It plays a crucial role in many fundamental functions
of the central nervous system, maintaining homeostasis and responding to changes in
the external environment. The diencephalon consists of several structures, including the
thalamus, hypothalamus, epithalamus, and subthalamus.
The thalamus is a large nucleus that acts as a relay station for most sensory information
heading to the cerebral cortex. It receives input from nearly all sensory systems (except
olfaction) and sends these signals to the appropriate cortical areas for processing.
Additionally, the thalamus is involved in the regulation of sleep, wakefulness, and con-
sciousness.
The hypothalamus is a small but vital region of the diencephalon that controls many
essential bodily functions. It regulates the endocrine system by controlling the pituitary
gland, manages stress responses, and controls body temperature, hunger, thirst, and
circadian rhythms, which are the daily cycles of biological activity. The hypothalamus
also plays a role in emotions and behavior.
The epithalamus includes the pineal gland, which secretes melatonin, a hormone that
regulates circadian rhythms and the sleep-wake cycle. The epithalamus also helps regulate
certain autonomic functions.
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The subthalamus, located beneath the thalamus, contains structures such as the subtha-
lamic nucleus. It is involved in motor control and has close connections with the basal
ganglia, which are essential for the coordination and modulation of movement. The
spinal cord, which extends from the brain along the spine, serves as a ”highway” for
communication between the brain and the rest of the body.

Figure 2.4: Median sagittal view of the brain.

2.7 Meninges

The meninges are a system of membranes located inside the skull that cover the central
nervous system and protect the brain and spinal cord. Canonically there are three
membranous connective layers that appear as concentric sheets Figure 1.5, but recent
studies have led to considering a fourth. Respectively, from the outside to the inside,
they are called:

• Dura mater (or dura meninges or pachymeninges)

• Arachnoid

• Lymphatic-like subarachnoid (SLYM)

• Pia mater (or pia meninge)
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Figure 2.5: Layered structure of the meninges.

The dura mater consists of a double layer of dense irregular connective tissue and is
formed by two layers, the periosteal and the meningeal [8].
Followed by the arachnoid, the intermediate layer, divided into two layers, the molecular
and the trabecular. With its filaments it remains fixed to the last layer, and the pia
mater, in indirect contact, due to the presence of glial cells, with the brain.
The arachnoid is made up of simple squamous epithelium and is not vascularized, while
the pia mater is made up of a looser connective tissue made up of collagen and, on the
contrary, is very vascularized.
The space between the arachnoid and the pia mater is called subarachnoid, and it
contains the cerebrospinal fluid or liquor, produced by the choroid plexuses located in the
cerebral ventricles. It has several functions, including bathing, insulating, draining and
nourishing every part of the central nervous system, creating the optimal environment
for cell reproduction [17].

2.8 Cerebral cortex

The brain is made up of of two types of tissue: grey matter and white matter. The grey
matter is the outer layer and it has this typical colour due to the presence of cell body
of neurons (soma) and dendrites. Instead, white matter is characterized by neural fibres,
known as axons of neurons. The outermost layer of the grey matter is the cerebral cortex;
it is from 2 to 4 mm thick and it is convoluted into several folds made of gyri and sulci
because it has a large surface in a limited volume (Figure 2.6).
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Figure 2.6: White and Grey Matter’s disposition in the Brain and in the Spinal Cord.

The cerebral cortex is divided into different regions, known as projection areas and
each is dedicated to specific functions. The area that manages our visual ability is located
in the Occipital lobe, while the area responsible for hearing is located in the Temporal
lobes. Olfactory and gustatory functions are located in the hippocampus, a section of
the Temporal lobe, while more advanced thinking functions are controlled mainly by
the Frontal lobe, as is the motor cortex, which is involved in planning, controlling and
executing voluntary body movements. Finally, the primary somatosensory cortex located
in the parietal lobe is responsible for the perception of, for example, touch, pain and
temperature.

Figure 2.7: Vision of the lobes of the cerebral cortex.

In describing brain functions and projection areas, it is useful to introduce the concept
of cortical homunculus of the Canadian neurosurgeon Wilder Penfield. It is a map
(Figure 2.8) that depicts the areas of motor and sensory cortex associated with distinct
motor functions. It is a distorted image of the body in which are represented larger
the parts of the body that need more precision and a finely graded control of movement
(e.g., the hand) or have greater importance for the purpose of sensory perception, are
represented disproportionately large [20].
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Figure 2.8: The somatosensory and motor homunculus derived by Wilder Panfield
illustrating the effects of electrical stimulation of the cortex of human neurosurgical
patients.

2.9 Neuron

The neuron is the basic unit of the brain and together with the neuroglia cells (more
numerous than neurons and with a supporting function) and the vascular system constitute
the nervous system. It contributes to the elaboration and propagation of the nervous
impulse. Anatomically, it is composed of three parts: the cell body or soma, where the
nucleus resides and from it branch out cytoplasmic extensions, called neurites, which are
the dendrites and the axon.

Figure 2.9: Main parts of a neuron.

The dendrites extend with a tree-like structure but but they are not responsible for the
propagation of the nervous impulse as they are not good conductors and tend to decrease
the speed of propagation. They, however, receive the nervous impulse from afferent cells,
whereas, the axon conducts the signal towards other cells and is an excellent conductor
thanks to the myelin layers (its transmission speed is approximately 150 m/s or 540
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km/h). The final part of the axon is an expansion called ”synaptic bouton” and through
these buttons, an axon can cling to the dendrites or cell bodies of other neurons so that the
nervous impulse propagates, in a chain reaction, along a neuronal network. Considering
the morphology of the neuron, it can be classified based on:
1) Number and branching method of extensions:

• Unipolar neurons: if they present a type of extension with the value of an axon
and the pyrenophore (part of the cell in which the nucleus is located) with the value
of a receptor site.

• Bipolar neurons: if they have one axon and only one dendrite.

• Multipolar neurons: if they have an axon and multiple dendrites.

• Pseudounipolar neurons: if they appear to present only one type of ganglionic
extension.

2) Formal appearance:

• Pyramidal cells: pyramid-shaped, the dendrites at the base are distributed horizon-
tally, while the apical dendrite develops in height. The axon generally heads towards
the innermost areas of the cortex, often entering the subcortical white matter.

• Stellate cells: star-shaped, also called granules, the dendrites branch in the
immediate vicinity of the soma.

• Fusiform cells: spindle-shaped with two dendritic branches at the ends.

Based on the function it is possible to classify the neuron as:

• Sensory neurons: transmit information from receptors (receptor in the skin,
photoreceptor in the retina. . . ) to CNS (“afferent” neurons). They have long
dendrites and short axons.

• Motor neurons: transmit information from CNS to effectors (muscles or glands).
Have short dendrites and long axons.

• Interneurons: connect sensory and motor neurons within specific regions of CNS.
Have short dendrites and long or short axons.

Dendrites accumulate information from other neurons or from sensory organs. This
information is integrated into the axon hillock and produces an action potential (AP). It
is a brief electrical signal that propagates along the axon. Information is passed through
synapses (the point of connection between two neurons) and AP induces the release of
neurotransmitters into the synaptic cleft and activates the next neuron. Neurotransmitters
influence trans-membrane ion flow either to increase (excitatory neurotransmitters) or
to decrease (inhibitory) the probability that the postsynaptic cell will produce an AP.
Excitatory Post-Synaptic Potential (EPSP) and Inhibitory Post-Synaptic Potential (IPSP),
are the two types of post-synaptic potential: excitatory or inhibitory depending on
the type of neurotransmitter used. When there is EPSP the resting state potential
becomes less negative, this phenomenon is called depolarization of the membrane, on the
other hand when there is IPSP that potential becomes more negative so we call that
phenomenon hyperpolarization of the membrane. If the sum of EPSP is greater than a

21



specific level is born an AP, while if there are a lot of IPSP or it’s impossible to overcome
the level, the AP can’t be released. In Figure below there is a schematic representation of
the AP. There is an initial phase in which the stimulus arrives, if this one is greater than
the threshold the depolarization starts and also the AP. Then there is the repolarization
so the membrane’s potential becomes more negative and after there is a refractory period
(this state is called hyperpolarization) where the neuron is inactive because of the Na+
channels. After that, the potential comes to the resting state initial potential so the
neuron becomes active again.

Figure 2.10: Schematic representation of the AP.

2.9.1 Neocortex layers

The neocortex is composed of six morphologically distinct layers, primarily discernible
by the kinds of cells they comprise. From the most superficial to the deepest they are
the following:

• I Molecular layer.

• II External granula layer.

• III External pyramidal layer.

• IV Internal granular layer.

• V Internal pyramidal layer.

• VI Polymorphic layer.

From the Figure 2.11 we can observe different types of cells in each layer of the cortex.
We can divide nerve cells into two categories: pyramidal cells, the most common in the
cortex, and non-pyramidal cells. The first has a pyramidal shape with an apex facing
the surface of the cortex and a long axon that extends to other cortical areas or sub-
cortical regions. Among nonpyramidal cells, the most numerous are the stellate cells,
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with branched dendrites that originate from the cell body and terminate together with
the axon, within a narrow region of the cortex. The first layer of the cortex contains very
few neurons and is composed mostly of the dendrites arising from pyramidal neurons. The
second consists of stellate cells and small pyramidal cells, whereas the external pyramidal
layer is characterized by small to medium pyramidal neurons and it is the primary source
of intracortical fibres that interconnect different areas of the cortex. The internal granular
layer contains many nonpyramidal neurons and it receives much of the sensory input
coming to the cortex (afferent fibres). The internal pyramidal layer is formed by the
largest pyramidal cells and it is the source of efferent fibres, which carry out of the brain
to various organs. The sixth layer has the greatest variety of cell types.

Figure 2.11: The six layers of the neocortex seen in section. At the top is the surface of
the brain, at the bottom the deepest layer. On the left, the different types of neuronal
cells.

2.10 Brain signal

Brain is a complex system and the brain activity extends over multiple temporal and
spacial scales. Electrophysiology analyzes brain activity and involves a wide set of
thechnologies to cover all these scales. We have three scales and different techniques
for each ones.

• At the microscale, it is possible to recognize the six layers of neocortex and we it
possible to obtain intracellular voltage recordings with direct measurements. It is
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a powerful, but tedious method and for this reason it is limited to a few neurons
per experiment. Patch clamp or sharp microelectrode techniques are used. Patch
clamp is a method to measure the currents that pass through individual ion channels
present in the cell membrane. Sharp microelectrode is a needle electrode inserted
inside the cell, so that the membrane potential can be measured.

• At the mesoscale it is possible to study a population of neurons with extracellular
recording techniques. It is obtained a signal that is formed by simultaneous and
long-term recordings of Local Field Potentials (LFPs) and Extracellular APs at ms
time scale. These could be done by Microelectrode Arrays (MEAs) and polytrodes.
The first are arrays of microelectrodes while the latter are instruments composed
of multiple electrodes arranged in a single structure, often aligned along a probe.

• At the macroscale it is possibile to study large areas of the brain with EEG
(electroencephalography) that detects spontaneous and evoked electrical activity
from the scalp with low spatial resolution (cm range). The main techniques of
acquisition are:

– Electrocorticography (ECoG) recording the electrical activity of the cerebral
cortex using electrodes placed directly on the surface of the brain. Its use
involves monitoring brain activity during surgery and to map cortical functions
in patients with epilepsy.

– Intracranial Electrocorticography (iEEG) is a technique of directly record-
ing the electrical activity of the brain using surgically implanted electrodes. It
is primarily useful for the presurgical evaluation of patients with drug-resistant
epilepsy.

– Functional Magnetic Resonance Imaging (fMRI) is a noninvasive imaging
technique that measures brain activity by detecting changes in blood flow
acquiring BOLD signal (Blood Oxygen Level Dependent). It is used to map
brain functions, study functional connectivity and identify brain regions acti-
vated during specific tasks.

– Positron Emission Tomography (PET) uses radioactive tracers that produce
gamma rays to visualize metabolic processes in the body. It is used to study
brain metabolism, blood perfusion, and to diagnose diseases such as cancer
and neurodegenerative diseases.

– Magnetoencephalography (MEG) measures the magnetic fields generated
by the neuronal activity of the brain. Used to map brain activity, study
cognitive functions, and localize areas prone to epileptic seizures.

In Figure 2.12 we can observe in (A) the different techniques for acquiring brain signals
belonging to the macroscale, both invasive and non-invasive.
Instead, in (B) the two intracellular and extracellular recording techniques belonging to
the microscale and mesoscale respectively are represented [19].
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Figure 2.12: Three levels of acquisition of brain signals and different techniquesb [19].

2.10.1 Electroencephalography(EEG)

Electroencephalography is a diagnostic test that measures the electrical activity of the
brain. In particular, it records variations in the electric field generated by groups of
pyramidal neurons.
The depolarization that occurs along the axon is not measured, but only the post-synaptic
potentials.
The synapse is a structure specialized in communication between cells, which leads to
the transfer of electrical potential towards the post-synaptic membrane. A chemical
transmission occurs in the synapses and in this area it is possible to measure a potential
that has greater amplitude and is slower. The EEG recording is a noninvasive technique,
relatively easy to use and it not require any surgery, as it can also be implemented in a
non-hospital environment.
It has several utility as diagnosis of epileptic seizures, monitoring of anesthesia during
surgery, evaluation of brain lesions, study of sleep disorders, evaluation of neurological
and psychiatric disorders, such as Alzheimer’s disease, Parkinson’s disease, schizophrenia
and depression, monitoring of patients’ brain activity in intensive care units and in the
application of therapies such as deep brain stimulation.
The first EEG recording machine was introduces to the world by Hans Berger in 1929.
Berger, a neuropsychiatrist of Jena University in Germany, used the German term ”elekt-
renkephalogramm” to describe the graphical representations of electrical currents gener-
ated in the brain. The Berger’s device consisted of a ”string galvanometer” that used
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the physical principle of a magnetic coil, which upon the passage of current, creates a
vibration of a quartz fiber [23]. To make the acquisition permanent, the vibrations were
reflected on a strip of photographic paper moving at a constant velocity in a light-tight
chamber. He suggested that the brain currents change depending on the functional state
of the brain, such as sleep, anesthesia and epilepsy. In fact the EEG signal is highly
correlated with the subject’s level of consciousness. If brain activity increases, the EEG
signal shows a higher main frequency and a lower amplitude. This was a revolutionary
idea that helped to create the new brench of medical science called neurophysiology.

2.10.2 EEG characteristcs

it is possible to identify various parameters and characteristics on the EEG signal:

• Amplitude: variable between 10 and 500, can be distinguished in normal EEG,
low (< 30 µV ), medium (30 µV-70 µV) and high (> 70 µV).

• Morphology: with which a repetitive signal of a given frequency manifests itself,
this can be described as ”polymorphic” or ”monomorphic”.

– By polymorphism we mean the succession of potentials belonging to the same
frequency band, but with non-regular periodicity and amplitude often different
from one component to another.

– By monomorphism we mean the regular succession of potentials having exactly
the same frequency and, often also the same amplitude.

• Topography: the definition of the brain areas in which an electrical event occurs.
It is identified by referring to the classic anatomical distinction of the cerebral
hemispheres into frontal, parietal, occipital and temporal, right and left lobes.

• Symmetry/Asymmetry:

– those signals are symmetrical which, appearing on both hemispheres (even if
at successive times), have the same characteristics of frequency, amplitude and
duration on both sides.

– those events that occur only in one hemisphere or, if bilateral, have different
characteristics on the two sides are asymmetrical.

• Synchrony/Asynchrony: synchrony concerns the moment of appearance of certain
electroencephalographic events and they are defined:

– Synchronous those that occur simultaneously on both sides.

– Asynchronous those that occur on the two hemispheres at different times.

2.10.3 Components of EEG signals

EEG is a complex signal that includes many frequency components. They are called also
”EEG rythms” and are used principally in sleep analysis because each band is associated
with a cognitive state of the subject. The main frequency components of the EEG signal
and their main characteristics will be reported in Table 2.1 below. Instead, in Figure 2.13
we can observe the waveforms of the frequency components of the EEG signal.
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Type of rhythm Frequency (Hz) Amplitude (µV) Associated status
delta (δ) 0.5-3 20-200 In pathological

conditions such as
epilepsy, during
anesthesia, or in
very deep sleep

theta (θ) 3-7 5-100 State of mental
relaxation or
altered state of
consciousness

alpha (α) 8-13 10-200 State of
wakefulness but
at mental rest

beta (β) 14-30 1-20 Attention,
concentration

gamma (γ) > 30 1-20 Associated with
learning process,
memory and higher
consciousness

Table 2.1: EEG rhythms and associated states.

Figure 2.13: Waveforms of the EEG rythms.
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2.10.4 Mu waves

Mu waves have relevance both in the development of the brain computer interface and in
neurorehabilitation therapies. These are waves with frequencies between 7 and 12.5 Hz
(very similar to alpha waves). These waves are present in the motor cortex, but when one
carries out a voluntary movement or with the intention of carrying it out they disappear.
They are easy to use because they have very specific in-band and topological localization.
Amputee patients, with spinal injuries, with stroke outcomes and with dystrophy could
benefit from these devices.

2.10.5 EEG recordings and International 10-20 System

There are two approaches for EEG recording: it can be done non-invasively by situating
electrodes on the scalp, or invasively through methods such as electrocorticography
(ECoG), where electrodes are implanted directly into the cerebral cortex.
Here, we will analyze the sampling of the EEG signal with the non-invasive technique.
This technique consists of placing electrode directly on the scalp of the subject; depending
on the type of electrode used, it is placed directly in contact with the skin (dry electrode),
or a conductive is placed between the skin and the surface of electrode, with the purpose
of lowering the impedence of contact (wet electrodes).The last are considered the ”gold
standard” because are the most used and usually consist of one combination of silver and
silver chloride (Ag/AgCl).

The International Federation’s 10-20 system is an internationally recognized method,
first presented at the Fourth International EEG Congress in Brussels in 1957 by Herbert
Jasper, to standardize the method of EEG placement as it ensures coverage of all regions
of the brain.
First, the distance along the sagittal plane of the subject is calculated between two
anatomical landmarks: ”inion” (prominence at the base of the occipital bone) and
”nasion” (upper nose junction). Also, starting from nasion and moving 10% of the
preliminarly calculated I-N distance (axis dividing the cranium into right and left hemi-
sphere), find the position of the fronto-polar (FP) electrode and moving along the meridian
intersecting that point, place one electrode on the right and one on the left moving 10%.
On the same z-line (sagittal axis), moving in steps of 20% you place the frontal electrode
(F), also you find the middle one (C), the parietal one (P) and, at the end, the level of
the right and left occipitals (+20%) (O1 and O2), with which you arrive at 90% of the
nasion-inion distance, at a distance of 10% from the inion. From each point linked on
the z-line (Fz, Cz and Pz) we move an additional 20% along the meridian identified, to
position the other lateral electrodes. Odd numbers identify the left hemisphere, while
indeed numbers identify the right hemisphere.
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Figure 2.14: Lateral (A) and dorsal (B) view of electrode placement on the scalp according
to Standard 10-20.

To make indeed more precise measures, the so-called ”extended 10-20 extended,” in
which others electrodes are inserted at positions intermediate between those provided by
the traditional 10-20 system; in this way, up to further than 70 possible positions for
electrode placement. In the figure below (Figure 2.15), using color coding it is possible
to observe the various areas of the brain covered by the electrodes.

Figure 2.15: Positioning of the 73 electrodes on the scalp according to the Extended 10-20
Standard.

2.10.6 Mono-polar vs bipolar acquisition

From the point of view of EEG signal acquisition, once the electrodes have been deposited,
it is necessary to choose the acquisition mode between mono-polar, i.e. the potential seen
by the exploring electrode compared to the reference electrode chosen for the setup, or
bipolar mode where, rather, the read potential is the difference between the potentials
read by adjacent individual scanning electrodes. The difference lies above all in the
withdrawal volume of the acquisition. In fact, if the bipolar mode is used there is a
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difference between two different electrodes, reducing the contribution from the more
distant sources of the electrodes, and maintaining the contribution of the sources closest
to the electrodes. Depending on the study you want to do, it may be more appropriate
to use one system rather than the other. In the figure below we have a bipolar sampling
in A, thus we see 4 electrodes and 3 signals given by the differences 1-2, 2-3 and 3-4, and
in B a mono-polar sampling. In the case of bipolar sampling, it is understood that the
source of the potential is located between electrodes 2 and 3 because they both read the
same signal and therefore the difference between the two will be an almost flat signal.
In the case of mono-polar sampling, it is possible to detect the source by observing the
amplitudes of the signals, as you will be very close to the electrode that captures the
largest signal.

Figure 2.16: Example of mono-polar acquisition (A) and bipolar acquisition (B).

2.10.7 EEG artifacts

Although the electroencephalograph is designed to record brain activity, one of the main
problems it suffers from is the contemporaneous detection of signals of different origins,
called artefacts, coming from other sources of an extra-cerebral nature. Artifacts are
disturbances (or noises) that contaminate the signal of interest, making it delicate to
determine and extract useful information of brain origin.
Based on their origin, artifacts can be classified into two classes: those of physiological
origin and those of extra-physiological origin. Artifacts of physiological origin come
from biological sources internal to the body, other than the brain, while those of extra-
physiological origin derive from sources external to the body, similar as the equipment
used for recording or the surrounding environment. By using appropriate ways, it is
possible to reduce or eliminate the artifacts present in the signal, therefore obtaining a
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clean signal that allows useful information to be recognized more clearly and accurately.

The main artifacts of physiological origin are:

• Eyeblinks are among the most frequent artifacts and manifest as negative waves of
very high amplitude in bi-frontal areas. This happens due to the Bell phenomenon.
The cornea, which has a positive charge, and the retina, which has a negative
charge, influence the signal: when you blink, your eyes lift slightly, bringing the
cornea closer to the frontal electrodes Fp1 and Fp2. As a result, these electrodes
detect a positive signal that is reflected in the EEG.When the subject closes his eyes,
the positive pole approaches the frontal electrodes, causing downward deviations
that are symmetrical and short-lived. As soon as he reopens his eyes, the positive
pole moves away from the frontal electrodes, producing an upward deflection.

• Lateral eye movements: Positive or negative waves appear on channels F8 and
F7. This is due, once again, to the positive charge of the cornea and the negative
charge of the retina. In particular, if the movement is to the right, the wave is
positive on F8 e negative on F7. When looking to the right, the right cornea
approaches the F8 electrode, which sees a positive charge; the left retina approaches
electrode F7, which therefore sees a negative charge.

• The ECG artifact is characterized by waveforms synchronized with the QRS
complex of the electrocardiogram. They generally occur mainly or exclusively on
the left side, since the heart is located in the left side of the chest, and have a
relatively low amplitude. This artifact is apparent in EEG signals as a small wave
peak corresponding to the QRS complex, and is generally more visible in posterior
channels, similar as the occipital ones.

• Myogenic potentials are among the most common artifacts. They can generally
be easily identified thanks to their morphology and duration. They are characterized
by high-frequency, often low-amplitude activity that overlaps with normal brain
rhythms, is usually most prominent in the waking state, and, furthermore, often
occurs in clusters.

• Chewing and tongue artifact (hypoglossal) are quite easy to notice on the
EEG. The masticatory artifact is actually just a muscular artifact of the temporalis
muscle and is characterized by sudden onsets, intermittent bursts of very fast
generalized activity (muscular artifact). It is easily identifiable through video
studies, as it is sufficient to watch the video to correlate it, but even without video
studies the masticatory artifact usually does not have a common morphology with
any other important physiological activity.

• Skin artifact: Sweat and other common physiological processes are capable of
change the impedance of the electrodes. This causes low-frequency (typically less
than 0.5 Hz) and relatively low-amplitude drifts of potentials and waves that occur
because the sodium chloride in sweat carries a charge, which is detected by the EEG
electrodes. But this artefact can also be created due to the presence of a hematoma
in the area under the electrode, in which case the signals are characterized by a
general attenuation. The sweat artifact does not follow a precise pattern in terms
of localization and can be bilateral, unilateral or even focal for small number of
electrodes.
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The main extra-physiological artefacts are:

• Network artifact: interference at 50 Hz (in Europe and elsewhere), or at 60 Hz
(in the United States) due to poor electrode-skin contact. The electrical artifact
is a very fast and monotonous activity, and it is possible to use the notch filter to
remove it selectively, furthermore this removed frequency content will not affect the
interpretation of the EEG signal as this frequency value is not related to no brain
activity.

• Movement of the electrical cables: during acquisition, care must be taken to
ensure that the cables are not dangling or under tension, because their movement
is add to the EEG signal creating an artifact;

• High electrode-skin impedance: artefact due to poor contact between the
electrode and the skin. To avoid such trouble first. During the acquisition of
EEG signals, the electrode-skin impedance is measured which normally should not
be less than 5 kOhm if wet contact electrodes are used.
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Figure 2.17: Example of eyeblink artifact.
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Figure 2.18: Example of cardiac artifact.

Figure 2.19: Example of Myogenic artifacts.
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Figure 2.20: Example of chewing and tongue artifact.
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2.11 BCI

A brain-computer interface (BCI) is a hardware and software communications system
that allows cerebral activity just to control computers or external devices. It creates a
new non-muscular channel for giving a person’s intentions to external devices [18]. The
main purpose of BCI research is to provide communications capabilities to disabled people
who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as
sclerosis, brain stem stroke, or spinal cord injury. Brain-computer interfaces use brain
signals to gather information on user intentions. To achieve this, BCIs require a recording
stage that measures brain activity and translates this information into electrical signals.
There are two types of brain activity that can be monitored: electrophysiological and
hemodynamic.
Electrophysiological activity is generated by electrochemical transmitters exchanging
information between neurons, which produce ionic currents.
This activity is measured using electroencephalography (EEG), electrocorticography
(ECoG), magneto-encephalography (MEG), and the acquisition of electrical signals in
single neurons.
Hemodynamic response, on the other hand, is a process where blood releases glucose
to active neurons at a higher rate than to inactive neurons. The delivered glucose and
oxygen result in a surplus of oxyhemoglobin in the active area and a change in the
local ratio of oxyhemoglobin to deoxyhemoglobin. These changes can be quantified using
neuroimaging methods such as functional magnetic resonance imaging (fMRI) and near-
infrared spectroscopy (NIRS).
These methods are considered indirect because they measure the hemodynamic response,
which, unlike electrophysiological activity, is not directly related to neuronal activity.
Most current BCIs obtain relevant information from brain activity through electro -
encephalography due to its high temporal resolution, relatively low cost, high portability,
and minimal risks to users. BCIs based on EEG consist of a set of sensors that acquire
EEG signals from different brain areas.
Non-invasive approaches have been used by severely and partially paralyzed patients to
regain basic forms of communication and to control neuroprostheses and wheelchairs.
These approaches are based on an endogenous method, which involves the self-regulation
of brain rhythms and potentials without external stimuli, achieved through neurofeedback.
Additionally, these methods are bidirectional, as they include both recording and stimulat-
ing.
Invasive recording techniques as electro - corticography or intracortical neuron recording
are used to control neuroprostheses with multiple degrees of freedom. Invasive modalities
require the implantation of microelectrode arrays inside the skull, which involves significant
health risks. In BCI research, there are two invasive modalities: electro - corticography,
which places electrodes on the surface of the cortex, and intracortical neuron recording,
which implants electrodes inside the cortex.
These methods are based on an exogenous approach that uses neuronal activity in
response to an external stimulus and are unidirectional [14].
The different steps that form a standard BCI as can be seen from:
1) signal acquisition: Electrical signals reflecting brain activity are acquired from the
scalp, from the cortical surface, or from within the brain.
2) preprocessing or signal enhancement: remove the artifacts in the control signals and
improve the performance.
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3) feature extraction and classification: The signals are analyzed to extract signal features
(such as amplitudes of EEG rhythms or firing rates of single neurons) that reflect the
user’s intent.
4) the control interface: Features are translated into commands that operate application
devices that replace, restore, enhance, integrate, or improve natural resources [24].

2.11.1 Control Signal Types in BCI

A BCI interprets user intentions by monitoring cerebral activity. Brain signals related
to cognitive tasks involve various simultaneous phenomena that can serve as control
signals for BCIs, such as visual evoked potentials, slow cortical potentials, P300 evoked
potentials, and sensorimotor rhythms. Event-related potentials (ERPs) in the EEG are
manifestations of neural activity triggered by specific events and can be extracted by
averaging multiple trials of similar events. ERPs include exogenous components (primary
sensory, < 150 ms) and endogenous components (information-processing activity, longer
latency).
Visual Evoked Potentials (VEPs)
VEPs are modulations of brain activity in the visual cortex following visual stimuli.
Their amplitude increases significantly when the stimulus moves closer to the central
visual field. VEPs can be classified by the morphology of optical stimuli, the frequency
of visual stimulation, and the area of stimulation. There are transient VEPs (TVEPs)
occurring at stimulation frequencies below 6 Hz and steady-state VEPs (SSVEPs) at
higher frequencies. SSVEPs are less susceptible to artifacts from eye movements and
electromyographic noise and allow users to select a target by gazing at it. An f-VEP-
based BCI uses unique stimulation frequencies for each target, requiring minimal training
but is not suitable for patients with severe visual or motor limitations.
Slow Cortical Potentials (SCPs)
SCPs are slow voltage changes in the EEG associated with changes in cortical activity.
Negative SCPs indicate increased neuronal activity, while positive SCPs indicate decreased
activity. SCPs can be self-regulated by both healthy users and paralyzed patients to
control external devices via a BCI. However, SCP-based BCIs provide relatively low
information rates and require long training periods and continuous practice.
P300 Evoked Potentials
P300 evoked potentials are positive EEG peaks caused by infrequent stimuli. They appear
around 300 ms after attending to a rare stimulus, with the amplitude being larger for
less probable stimuli. P300-based BCIs require no training and are useful for individuals
with limited eye movements, such as ALS patients. However, performance may decline
as users become accustomed to the infrequent stimuli.
Sensorimotor Rhythms (mu and beta rhythms)
Sensorimotor rhythms, including mu (7–13 Hz) and beta (13–30 Hz) rhythms, vary in
amplitude during motor tasks. These rhythms can be used to control BCIs because
people can learn to voluntarily modulate them. Amplitude modulation, known as event-
related desynchronization (ERD) and event-related synchronization (ERS), is generated
by sensory stimulation, motor behavior, and motor imagery. This allows the use of
sensorimotor rhythms for endogenous BCIs, which do not require actual movement but
rather imagined movement to produce similar ERD and ERS patterns.
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2.12 The enigma of Consciousness

Consciousness is one of the most fascinating and enigmatic mysteries of the human
experience. Its nature has led to endless analyses, explanations and debates by philoso-
phers, theologians and scientists since the time of the Greeks with Aristotle. In some
explanations it is synonymous with mind and other times an aspect of mind. In the past
it was ”soul”, the ”inner life”, the world of introspection, private thought, imagination
and volition [16]. Nowadays, consciousness relates to our awareness of our thoughts,
emotions, feelings, perceptions and surroundings environment at any one moment in
time. It shapes our perception of reality(what we believe to be real) and our sens of selfs.
It may or may not be ever-evolving awareness, awareness of awareness, or self-awareness.
A significant part of scientific research on consciousness is characterized by studies with
the aim of investigating the relationship between the experiences reported by the subjects
under study and the brain activity that occurs simultaneously. These studies, known as
studies on the neural correlates of consciousness, aim to identify that specific activity in
a certain area of the brain or in a particular pattern of global brain activity that can act
as an indicator and make it clear that the subject has conscious awareness. To measure
brain activity in such studies, various brain imaging techniques, such as EEG and fMRI,
have been employed.

2.12.1 What is Consciousness?

The term consciousness is often used interchangeably with the term mind, but they are
two different concepts. Mind is the marvelous space where are situated perceptions,
reasonings, where happen the translations of perceptions, for example,of objects and
actions in words. In his article, Andrej Ule defines mind as ”human ability and activity
to consciously grasp and understand specific contents and objects of human activity”
and and connects it to the concepts of ”intellectus”, associated with a type of intuitive
understanding and ”ratio”, associated with rational and logical thinking.
Antonio Damasio, director of the Brain and Creativity Institute at the University of
Southern California, where he is professor of neurology, neuroscience and psychology,
proposes that consciousness derives from the interactions between the brain, the body,
and the environment. According to this theory, consciousness is not a unitary experience,
but rather emerges from the dynamic interaction between different brain regions and their
corresponding bodily states [7]. In his seminar ”Exploring the Enigma of Consciousness:
Artificial Intelligence and the Mind” [3], A.D. argues that consciousness is the experience
of thoughts and life that occurs within our organism. This experience is subjective and
represents a unique perspective, which is usually the perspective of our self. The key
idea is that this perspective or consciousness is created by an asymmetric construction
within our brain and organism, which generates the self’s experiences and perspectives
on everything that happens in our mind.

2.12.2 States of consciousness

Scientist and philosophers have long tried to explain how th brain generates conscious
experiences. Some question whether the objective methods of science can ever fully
understand a phenomenon as subjective as consciousness. However, researchers have
started to identify the shifts in brain activity associated with awareness and have also
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developed some intriguing theories about the origins and evolution of consciousness. How
the brain evokes conscious awareness from the electrical activity of billions of individual
nerve cells remains one of the great unanswered questions. In the 1990s, philosopher
David Chalmers, described the impossibility to demonstrate somebody else that Each
of us knows that we are aware, in terms of thoughts, perceptions and feelings. This is
identified as the ”hard problem” of consciousness.

Three dimensions of consciousness Consciousness includes distinct dimensions that
can be measured. Among the three most important are:

• Awake or state of physiological activation.

• Awareness, or the ability to experience conscious mental experiences, including
perceptions, thoughts, and emotions.

• Sensory organization, or how different perceptions and more abstract concepts
intertwine to create a unified conscious experience.

These three dimensions interact dynamically to determine our overall state of consciousness
at any given moment. For example, during full wakefulness, we experience increased
awareness, but as we fall asleep during the night, both wakefulness and awareness decrease.

Figure 2.21: Interaction of the two major components of consciousness, wakefulness and
awareness, in different states of consciousness.On the X-axis is the level of wakefulness
and on the Y-axis is the content of awareness [14].

2.12.3 Disorders of consciousness

Medical conditions that repress consciousness are referred to as disorders of consciousness.
These conditions are often described as any deviation from full self-awareness, ranging
from a reduction in self-awareness and arousal to a complete absence of self-awareness.
These conditions can arise following severe brain injuries, head trauma, stroke or other
brain pathologies and neurodegenerative diseases.
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Minimally conscious state
The minimally conscious state is a state of altered consciousness in which a person
shows signs of reduced awareness and responsiveness, but less pronouncedly than a fully
conscious person. This state represents a higher level of consciousness than coma and the
vegetative state, but still less than complete awareness. People in a minimally conscious
state may exhibit limited behaviors or responses, such as opening their eyes, following
objects with their gaze, make sounds or respond in a very basic way to verbal or physical
commands. However, these responses are often inconsistent and do not indicate full
awareness of the self or surroundings.

Vegetative State
The vegetative state, also known as persistent unconsciousness, is a serious and complex
condition in which a person appears to be awake, but lacks awareness of himself and his
surroundings, is characterized by a significant loss of cognitive and conscious functions. In
the setting of a vegetative state, the patient may have cycles of sleep and wakefulness, may
open his eyes, and may perform reflex movements or involuntary behaviors, but shows
no signs of intentional consciousness or significant interaction with the environment. For
example, he may make sounds in response to stimuli, but does not demonstrate awareness
or complex communication skills.

Coma
Coma is an altered state of consciousness characterized by a profound and prolonged loss
of consciousness, in which the patient does not respond to external stimuli and is unable
to communicate or interact with the surrounding environment. Coma is an emergency
medical situation and requires immediate attention from a specialized medical team.
Doctors try to identify the underlying cause of coma through brain tests and imaging.
Treatment given after the onset of coma aims to stabilize the patient, manage underlying
conditions and protect the brain from further damage. The prognosis for patients in a
coma varies greatly based on the severity of the underlying cause and the effectiveness of
treatment. Some patients may emerge from a coma and recover fully, while others may
remain in a long-term state of altered consciousness. In some cases, coma can progress
to a vegetative state or a minimally conscious state.

Brain death Brain death is a medical condition defined as the complete and irreversible
loss of all brain function, including brainstem function. In this situation, the brain ceases
to function permanently, and the patient is clinically dead, although the heart and lungs
can be kept functioning artificially via life support devices. The diagnosis of brain death
requires an extremely rigorous and precise medical evaluation. Typically, doctors use
specific clinical criteria, including neurological tests and observation of brain reactions to
pain and visual stimuli, to determine brain death.

Locked-in syndrome Locked-in syndrome is a rare neurological condition in which
a person is fully conscious, but paralyzed and unable to move or communicate through
traditional means, such as speech or body movement. This state of paralysis is caused by
specific lesions or damage in the brainstem, which is the part of the brain responsible for
controlling body movements. Despite total paralysis, people with ”locked-in” syndrome
retain their full consciousness and cognition. Often they are only able to move their eyes or
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eyelids. Communication may be possible through the control of assistive communication
devices, for example with the help of Brain Computer Interface [14].

Figure 2.22: Comparison of levels of arousal and awereness of different states of disorder
of consciousness compared to the state of normal consciousness.

2.12.4 Scales for assessing the state of consciousness

The scales for evaluating states of consciousness are some of the tools used in the medical
field to evaluate the level of consciousness of an individual, particularly in cases of brain
lesions or alterations in the state of consciousness. These scales help health professionals
assess the level of impaired consciousness and monitor changes over time.

Glasgow Coma Scale (GCS)
The GCS is one of the most widely used scales of disorders of consciousness. It evaluates
three main aspects of the level of consciousness: eye opening, verbal response and motor
response. Each aspect is rated on a scale from 1 to 4 or from 1 to 6, depending on
the version used. The total score is expressed synthetically with a number which is the
sum of the ratings of each individual function and can vary from 3 (the worst) at 15 (the
best). The GCS is used to evaluate patients with brain injuries, strokes and other medical
conditions that can affect consciousness. The Glasgow scale is less suitable for children,
especially under 36 months of age, when the young patient has not yet developed mastery
of language: this is why the Pediatric Glasgow Coma Scale was eveloped [11] .

Reaction Level Scale (RLS)
The Reaction Level Scale is another scale used to evaluate the level of consciousness and
evaluates the patient based on the ability to respond to verbal and physical stimuli, also
evaluating the presence of reflexes. The RLS has a scale ranging from 1 (worst) to 8
(best) [21].

Coma Recovery Scale-Revised (CRS-R)
This scale includes specific ratings for several cognitive functions, including eye opening,
communication skills, motor response, and environmental awareness [4].

Full Outline of UnResponsiveness (FOUR) Score
The FOUR Score is a further scale that measures four main categories: ocular response,
motor response, brainstem reflex and breathing. It is used for patients with a wide range
of impaired consciousness [2].
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Chapter 3

Materials and Methods

3.1 Data

The data object of study of this project have been provided by ”Azienda Ospedaliero-
Universitaria Città della Salute e della Scienza di Torino”, to the “Ontonix” firm and
to the “Dipartimento di Scienze Applicate e Tecnologie of Politecnico di Torino”. The
dataset was composed of 54 subjects subjected to EEG in the years from 2011 to 2013.
Specifically, out of a total of 54 subjects, 14 were healthy subjects who in the same
years spontaneously underwent EEG, whose signals were recorded to create a reference
class of normal values, while 40 were patients suffering from disorders of consciousness at
different levels of severity. Pathological patiens defined as ”cases” were affected by severe
brain injuries, caused by trauma or vascular problems (such as internal or subarachnoidal
cerebral hemorrhages, ischemic strokes), which led to a persistent coma for at least 7
days in the acute post-trauma phase, followed by a state of minimal alertness or lack of
conscious response. Protocol included some exclusion criteria as age of subjects under 19
years or over 80 years, lack of sufficient clinical or anamnestic data at the time of EEG
evaluation and frequent presence of epileptiform abnormalities in the EEG, in particular
indicating status epilepticus. The EEG signals were also acquired in two conditions,
with eyes open (with the presence in the file name of the acronym OA which stands for
”occhi aperti”) and with eyes closed (acronym OC which stands for ”occhi chiusi”). They
came in two forms, raw (located in the ”interi” folder) and cut (located in the ”tagliati”
folder). The cut signals were previously cleaned by removing them extremely noisy or
abnormal parts. All signals had the same duration of 256 seconds, sampled at 256 Hz.
The first choice made concerned the dataset to use. It was chosen to work with raw time
series because the cut ones suffered from strict removal of the noisy parts, which could
have influenced the analysis. Although the raw signal could have included anomalous
parts, adequate pre-processing has been applied to overcome this problem. As regards
the acquisition condition, it was decided to include both patients with eyes closed and
those with eyes open even though the recordings made with eyes open could have been
influenced by any type of visual stimulus and blinking artifacts. Tracings in eyes closed
mode were not available for some subjects as the consciousness of some patients was very
compromised, so much so that it was difficult to ask them to keep their eyes closed. Data
were organized in three different folders:

• One for Open-Eyes condition (”subject number OA”, e.g., ”1 OA”).

• One for Closed-Eyes condition (”subject number OC”, e.g., ”1 OC”).
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• One for subjects with only one condition (usually Open-Eyes).

3.2 Channel selection

The recordings of the EEG signals were acquired with a non-homogeneous set of electrodes
for all patients. Therefore, to ease our analysis and to ensure consistency we have
eliminated the acquisitions of uncommon and non-informative channels from the files.
A subgroup of 17 channels has been selected as shown in Figure 3.2. Figure 3.1 was
obtained using the plot topography.m function, showing the final position of the channels
that satisfied the inclusion requirements.

Figure 3.1: Position of the electrodes on the scalp.
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Figure 3.2: Channels used for each subjects for the purpose of eliminating the non-
informative and uncommon ones.

45



3.3 Pre-processing

3.3.1 Downsampling

The first pre-processing operation performed is the downsampling of the EEG data from
the original sampling rate of 256 Hz to the final one of 16 Hz, used throughout our
analysis. This operation is aimed at reducing the data volume, decreasing the storage
space, allowing to make the data more manageable and obtaining a better computational
efficiency with a reduction in processing times.
The effects of this operation can be observed in the following figure that show the signal
of a subject and a random channel before and after the downsampling.

Figure 3.3: Comparison of the EEG signal of a random subject of a random channel
before and after downsampling.

3.3.2 Filtering

The signals were filtered with a band-pass filter of order in the frequency range 0.5 Hz -
40 Hz using the BandPassFilter.m function. The plots of the channels of the first subject
are shown below, respectively of the unfiltered signal and the post-filtering signal. The
upper cut-off frequency was set to 40 Hz because the Gamma band (> 30 Hz) is considered
not very informative for the type of patients we have available, as it is associated with
cognitive processes of learning, memory and states of high consciousness.
The effects of the filtering can be seen in Figure 3.4.
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Figure 3.4: Comparison of the EEG signal of a random subject of a random channel
before and after Band Pass Filtering.

3.3.3 Artefact detection

Gomez’s algorithm was adopted to remove EOG and EMG artifacts. It should be noted
that the EOG artefact may have already been avoided in patient acquisitions carried out
in eyes closed mode, or present in a reduced manner. Even regarding EMG artifacts, a
large part of them has previously been attenuated by low-pass filtering with the removal
of high frequencies.
The effects of the artefacts removal can be observed in the Figure 3.5, Figure 3.6 and
Figure 3.7.
The algorithm was implemented using the autobss.m function, with the following parame-
ters:
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1 % Removal of EOG artifact

2 opt_eog.wl = 200 * fs_new;

3 opt_eog.ws = opt_eog.wl;

4 opt_eog.bss_alg = ’sobi’;

5 opt_eog.bss_opt = [];

6 opt_eog.crit_alg = ’eog_fd ’;

7 opt_eog.crit_opt.wl = 0.1 * opt_eog.wl;

8 opt_eog.crit_opt.ws = opt_eog.crit_opt.wl;

9 opt_eog.crit_opt.method = ’sevcik_mean ’;

10

11 [single_output_eog] = autobss(eeg , opt_eog);

12 output_eog{subject} = single_output_eog;

13

14 % Removal of EMG artifact

15 opt_emg.wl = 3.12 * fs_new;

16 opt_emg.ws = opt_emg.wl;

17 opt_emg.bss_alg = ’bsscca ’;

18 opt_emg.bss_opt = [];

19 opt_emg.crit_alg = ’emg_psd ’;

20 opt_emg.crit_opt.femg = 15;

21 opt_emg.crit_opt.fs = fs_new;

22 opt_emg.crit_opt.ratio = 10;

23

24 [single_output_emg] = autobss(eeg , opt_emg);

25 output_emg{subject} = single_output_emg;

Listing 3.1: Parameters used in Gomez’s algorithm.
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Figure 3.5: Comparison of the Raw EEG and EEG after EMG artefact removal of a
random subject.
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Figure 3.6: Comparison of the Raw EEG and EEG after EOG artefact removal of a
random subject.
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Figure 3.7: Comparison of the Raw EEG and EEG after EMG+EOG artefact removal
of a random subject.
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3.3.4 Epochs division

The signals were divided into 51 epochs lasting 5 seconds. This choice was adopted to
facilitate the calculation of the subsequent parameters and features, thus guaranteeing the
stationarity of the signal, a fundamental prerequisite for the processing of electroencephalo-
graphic signals. In themselves, in fact, EEG signals having a long duration are not
stationary and their statistical properties change over time, on the other hand, on a small
scale they can be considered almost stationary. The chosen time duration is the result
of a compromise between the need to not have excessive amounts of data that, therefore
long processing times, and the need to have good temporal and spectral resolutions.

3.3.5 Frequency bands division

Subsequently, all signals were again band-passed to isolate all frequency bands: Delta
(0.5 - 3.9 Hz), Theta (4 - 7.9 Hz), Alpha (8 - 12.9 Hz) and Beta (13 - 40 Hz). Figure 3.8
depicts all frequency bands merged into the entire signal.

Figure 3.8: Plot of all the frequency bands for one channel of a random patient.

3.4 Features calculation

3.4.1 Time-domain features

The following statistical features in the time domain were calculated for each extracted
epoch and inserted into the MATLAB file time domain statistics.mat.
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Mean
The mean is the sum of all the values of the epoch divided by the total number of samples
it is made up of. It gives me the measure of the central value of the epoch.

µ =
1

N

N∑
i=1

xi (3.1)

Variance
It gives me a quantification of the dispersion of values within the epoch with respect to
the mean. Mathematically it is the average of the squares of the differences between each
value and the mean.

σ2 =
1

N

N∑
i=1

(xi − µ)2 (3.2)

Standard deviation
This is also a measure of dispersion and is represented by the square root of the variance.

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (3.3)

Kurtosis
It is a quantification of how much the distribution of values is concentrated around the
mean. In fact, high values of kurtosis indicate a distribution with high peaks and long
tails.

K =
1

N

N∑
i=1

(
xi − µ

σ

)4

− 3 (3.4)

Skeweness
It is a measure of the symmetry (or asymmetry) of the signal with respect to the
mean. Positive values indicate an asymmetric distribution with a longer tail on the
right, negative values represent the asymmetry of the values with a longer tail on the left.

S =
1

N

N∑
i=1

(
xi − µ

σ

)3

(3.5)

Range
It represents the difference between the maximum and minimum value of the signal and
therefore a measure of the peak-to-peak value.

R = max(x)−min(x) (3.6)
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3.4.2 Hjorth parameters

The following parameters are useful for understanding the temporal dynamics of EEG
signals without taking a transformation into the frequency domain. The Hjorth parameters
have been inserted into the MATLAB file Hjorth Parameters.mat

Activity
Activity is a measure of the variance of the signal over time. It represents the energy of
the EEG signal and indicates the overall amplitude of the brain’s electrical activity.

Mobility
It measures the rate of change of the signal, and is calculated as the square root of the
ratio between the variance of the first derivative of the signal and the variance of the signal
itself. It therefore describes the average frequency of the signal. It provides indications
of the predominance of high or low frequency components.

Mobility =
σderivata segnale

σsegnale

(3.7)

Complexity
It measures the change in Mobility over time and is an indicator of the change in the
dominant frequency of the signal. Mathematically it is calculated as the ratio of the
Mobility of the first derivative of the signal to the Mobility of the signal itself. This
measure reflects the amount of change in the waveforms of the EEG signal.

3.4.3 Frequency-domain features

The following parameters in the frequency domain were calculated for each extracted
epoch and inserted into the MATLAB file frequency domain parameters.mat.

Average Rectified Value
ARV is a measure of the average signal magnitude, obtained by taking the absolute value
of the EEG signal and averaging it.

ARV =
1

N

N∑
i=1

|xi| (3.8)

Root Mean Square
It represents the actual magnitude of the signal, it refers to a measure of its amplitude as
a whole, which takes into account not only the magnitude of the individual values of the
signal, but also their variability over time. The RMS is useful for quantifying the overall
energy of the EEG signal.

RMS =

√√√√ 1

N

N∑
i=1

x2
i (3.9)

54



Mean Frequency
The MNF was calculated with the fmean.m function and represents the mean frequency
of a signal in the frequency domain and indicates the dominant frequency.

MNF =

∑
f f · P (f)∑
f P (f)

(3.10)

Median Frequency
The MDF was calculated with the fmedian.m function and it is the frequency below
which 50% of the total spectral power of the signal is contained.

MDF = f such that

∫ f

0

P (f ′) df ′ =
1

2

∫ ∞

0

P (f) df (3.11)

3.4.4 Bandwidth Power calculation

When we talk about power in different frequency bands, we are referring to the spectral
analysis of a signal to determine how the energy or power of the signal is spread across
different frequency bands. The powers of the various frequency bands were extracted from
each epoch using the Welch method, which is common for estimating the power spectral
density (PSD) of the signal. These features have been inserted into the MATLAB file
powers.mat. The frequency bands analyzed are:

• Delta (0.5 Hz - 3.9 Hz): Low and slow waves.Delta activity is most prominent
during deep, dreamless sleep.

• Theta (4 Hz - 7.9 Hz): Waves always slow, but slightly faster than the previous
ones. Mostly present in states of relaxation, drowsiness (first stages of sleep), REM
phase, processing of emotions and memory activities.

• Alpha (8 Hz - 12.9 Hz): Fast waves associated with states of relaxation and
calm without any occupation in intense mental activities.

• Beta (13 Hz - 40 Hz):Very fast waves.

3.4.5 Relative powers

They indicate the proportion of the power of a certain band compared to the total power
of the signal. Mathematically it is calculated as the ratio of the power of a certain band
compared to the total power. It indicates how dominant that frequency interval is and
therefore the relative mental state associated with it compared to the total power of
the signal. The relative powers of the delta, theta, alpha and beta bands have been
calculated compared to the total power of the entire frequency spectrum of each epoch.
The following features have been inserted into the MATLAB file rel powers.mat.

3.4.6 Frequency-domain statistcs

As performed in the time domain, also in the frequency domain statistical parameters
were extracted, including the mean, median, variance, standard deviation, skewness and
kurtosis of the power spectral density of each epoch for each channel and subject. These
statistcs parameters have been saved in the MATLAB file frequency domain statistics.mat.
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3.4.7 Frequency band ratios

Frequency band ratios are measures that compare the spectral power of one frequency
band to that of another. The following band ratios have been calculated:

• Theta/Alpha Ratio:

PTheta

PAlpha

• Beta/Theta Ratio:

PBeta

PAlpha

• Alpha/Delta Ratio:

PTheta

PBeta

• (Theta + Alpha)/(Alpha + Beta) Ratio:

PTheta + PAlpha

PAlpha + PBeta

• (Theta + Alpha)/Beta Ratio:

PTheta + PAlpha

PBeta

The calculated features were subsequently saved in the MATLAB file Band ratios.mat .

3.4.8 Non-linear features

Hurst exponent
The Hurst exponent is a measure of persistence or antipersistence in a time series. A high
Hurst exponent (H > 0.5) may indicate a time series with high coherence or predictability
in brain activity, while a low value (H < 0.5) may suggest greater variability or chaos in
the signal. This parameter was calculated using the estimate hurst exponent.m function
and saved in the MATLAB file hurst exp.mat.
Lyapunov exponent
By definition, it quantifies the rate at which two initially close trajectories in a state
space diverge. A positive value of the Lyapunov exponent may indicate that the EEG
signal is chaotic and unpredictable, suggesting high variability and potential neurological
dysfunction. Conversely, a negative value may indicate greater stability and predictability
of the signal, associated with lower variability and more stable cognitive states. This
parameter was calculated using the lyapunovExponent.m MATLAB function and saved
in the lyapunov exp.mat file.
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3.5 Entropies calculation

Entropy is the measure used to quantify the uncertainty, variability, and complexity of
a system or signal. For EEG signals, being dynamic and nonlinear systems, entropy
allows to obtain useful information to identify the degree of disorder and can help to
analyze different brain conditions. In our analysis, the following entropy measures were
calculated:
Shannon Entropy
Shannon entropy is the most common measure of entropy and represents the uncertainty
associated with a random variable. It is defined for a discrete probability distribution
and is calculated as follows:

H(X) = −
n∑

i=1

p(xi) log p(xi) (3.12)

where:

• X is a random variable with n possible states;

• p(xi) is the probability of occurrence of state xi;

• the logarithm base can be 2 (for entropy in bits) or e (for entropy in nats).

Tsallis Entropy
Tsallis entropy is another generalization of Shannon entropy and is based on a different
assumption for the measurement of uncertainty. It is defined as:

Sq(X) =
1

q − 1

(
1−

n∑
i=1

p(xi)
q

)
(3.13)

where:

• q is a parameter that modulates the behavior of the entropy;

• p(xi) is the probability of state xi.

Rényi Entropy
Rènyi entropy is a generalization of Shannon entropy and is defined as:

Hα(X) =
1

1− α
log

(
n∑

i=1

p(xi)
α

)
(3.14)

where:

• α is a parameter that regulates the sensitivity of the entropy. When α approaches
1, Rényi entropy reduces to Shannon entropy;

• p(xi) is the probability of state xi.
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Modified Approximative Entropy
To better understand the Modified Approximative Entropy briefly describe the classical
version of Approximative entropy and analyze its limitations. Given a time series,
Approximate Entropy reveals the predictability (unpredictability) of the fluctuations and
its complexity. It looks for repetitive patterns that can make the signal less complex
and more predictable. Therefore, it allows to predict the behavior of a signal in future
moments, based on what happened in previous moments of time. Defining r as the
tolerance and m as the built-in dimension, ApEn represents the logarithmic difference
between the probability that two sub-sequences of length m and then two of length m+1
are similar within a margin of tolerance r. Considering a time series of length N:

Xm
i = [x(i), x(i+ 1), ..., x(i+m− 1)] (3.15)

where i varies from 1 to N −m+ 1. The distance between two vectors Xm
i and Xm

j is:

d(Xm
i ,X

m
j ) = max

k=1,...,m
|x(i+ k − 1)− x(j + k − 1)| (3.16)

Next, for each i, the function Cm
i (r) that counts the proportion of similar vectors within

a threshold r is:

Cm
i (r) =

number of Xm
j such that d(Xm

i ,X
m
j ) ≤ r

N −m+ 1
(3.17)

The function Φm(r) which represents the logarithmic mean of the values of Cm
i (r) is:

Φm(r) =
1

N −m+ 1

N−m+1∑
i=1

lnCm
i (r) (3.18)

For vectors of length m+ 1, we calculate Φm+1(r) in a similar way.
Therefore, the approximate entropy is defined mathematically as:

ApEn(m, r,N) = Φm(r)− Φm+1(r) (3.19)

The main limitations and problems that this approach entails are principally the strong
sensitivity to the parameters m and r. The embedding dimension must be large enough
to avoid false neighbors. Low m values could lead to projections of the trajectory towards
a lower dimension. False neighbors can influence the ApEn value, but they would not
be related to the complexity of the system and, therefore, would be misleading. Some
guidelines for the choice of parameters recommend setting:

• m set to 2 or 3;

• epoch duration greater than or equal to 10m or 20m samples;

• r equal to 20 % std of the signal.

High values for the embedding dimension, however, lead to a reduced probability of
finding recurrences.
Therefore, values that are too small may misunderstand the structure of the series, while
values that are too large may lead to uninformative measures that are very sensitive to
noise.
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Moreover, if r is too large, the two series may be very similar, while if the value is set to
very small, too few similar vectors may be obtained.
Furthermore, ApEn is susceptible to the value of the sampling frequency. In fact, ApEn
is lower if the signal is oversampled because a linearization of the signal occurs. More
samples imply that each sample is closer to the nearest one, making it more predictable
and less uncertain. In fact, the maximum value for ApEn is given by ln(N-m), which
increases as the sampling rate and, therefore, the value of ApEn with respect to its
maximum value is reduced with oversampling. The suggested sampling rate value is
around the Nyquist rate, with the embedded dimension equal to the ratio (sampling
rate)/(Nyquist limit).
Besides, ApEn may be sensitive to the length of the time series. For very short series, the
calculation may lead to unreliable values or may not accurately reflect the complexity of
the system.
Finally, the ApEn requires the time series to be stationary, i.e. its statistics do not
vary over time. For non-stationary series, ApEn may not accurately capture the overall
dynamics of the system.
According to the ApEn formulation, even values that are close in time are considered
close, which leads to singularities that can be removed. Self-recurrences for N-m-1 are
always found, shifting the result of ApEn towards lower values. This problem is overcome
in two ways:

• by introducing a Theiler window that defines a certain time interval in which no
recurrences can be found.

• by introducing other entropy measures, such as Sample Entropy (SampEn) or
Permutation Entropy, that can overcome some limitations of ApEn because instead
of relying on the logarithm operator they rely on a summation.

Modified ApEn overcomes some of its limitations[15]:

• When considering the time delay (τ) between points, a linear correlation with the
sampling rate can be adopted. Delays other than 1 compensate for oversampling,
avoiding self-recurrences in a given time window.

• To avoid finding too few similar segments, the tolerance (r) can be set to a specific
percentage of the recurring points found in the m dimension, instead of strictly
depending on the std. In some cases, r has been set to the maximum value of
ApEn, and this has shown both promising and unpromising results.

• In the two embedding dimensions, [N-(m+1) τ ] is the total number of embedded
vectors.

• A high-pass filter is used to eliminate low-frequency trends. It has a cutoff frequency
equal to the inverse of the epoch length.

• A Theiler window is used to not consider points closer than a delay as neighbors.
When a recurrence is found in dimension m but not in m+1, a single recurrence is
added to the correlation integral, while points that do not have similar segments in
dimension m are not directly considered.
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Nevertheless, the modified ApEn formulation does not guarantee better results than the
original one, because more tests would have to be performed on a wider range of conditions
and data. Furthermore, in certain cases, some parameter combinations led to unstable or
contradictory results. However, promising results have been obtained that demonstrate
some of the main advantages of using modified ApEn:

• Compensated oversampling, since the complexity is provided independently of the
sampling rate or data bandwidth.

• The embedding dimension does not have to remain low, since modified ApEn
provides acceptable values even if m increases, unlike the original ApEn that would
reduce the number of recurrences.

• The epoch length is an important issue for the original index, since it must remain
low to maintain a quasi-stationarity condition, but at the same time, the epoch
cannot be too short since the ApEn would not find enough similarities. This does
not happen with the modified ApEn when the correct embedding size is chosen.

• Compared to SampEn, self-occurrences are not required, so the local behavior of
the signal does not affect the results. In fact, temporally shorter signals and rare
events are represented as they should be.
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3.6 Spatio-temporal features

Spatio-temporal features are measures that capture both spatial and temporal variations
in signals, focusing on the dependencies between different brain regions. Unlike previously
computed temporal features, which measure the properties of a single signal over time,
spatio-temporal features take into account the interactions between multiple signals
recorded from different brain regions, thus allowing for insights into the functional connec-
tivity of the brain. Each feature was calculated for each channel pair and organized into
4D matrices with dimensions 95 x 51 x 17 x 17. (num subjects x num epochs x channels
x channels). The following connectivity features were calculated:

• Cross-correlation.

• Coherence.

• Lagged-Coherence.

• Mutual Information.

• Covariance.

• Pearson’s Correlation Coefficient.

• Phase Locking Value.

3.6.1 Cross-correlation

It measures the degree of similarity between two time series as a function of a time delay
(lag) applied to one of the two signals. High values can mean good connectivity between
two different areas depending on the channel pair on which it was calculated. Low values
indicate poor synchronization.It can be expressed as:

Rxy(k) =
∑
n

x(n) · y(n+ k) (3.20)

where:

• Rxy(k) is the cross-correlation between signals x and y at lag k;

• x(n) and y(n) are the two signals being analyzed;

• k is the lag or time shift.

3.6.2 Coherence

Similar to correlation but measures the synchronization in terms of frequency between
acquired brain electrical activity in different brain regions. In patients with disorders
of consciousness, a reduction in coherence in specific frequency bands may indicate
dysfunctions in communication between different brain regions. For example, low values
in the alpha band may be related to reduced cognitive abilities or alertness. Coherence
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may provide information on the functional connection between different brain areas. It
can be expressed mathematically as:

Cxy(f) =
|Pxy(f)|2

Pxx(f) · Pyy(f)
(3.21)

where:

• Cxy(f) is the coherence between signals x and y at frequency f ;

• Pxy(f) is the cross-spectral density between x and y;

• Pxx(f) and Pyy(f) are the power spectral densities of signals x and y, respectively.

3.6.3 Lagged-coherence

It measures the coherence between two EEG signals taking into account a time delay,
excluding the influence of zero-delay components (concurrent components). It is a measure
that attempts to assess functional connectivity that is not due to volume effects or
instantaneous conduction. It is defined mathematically as:

Clagged(f) =
|Pxy,lagged(f)|2

Pxx,lagged(f) · Pyy,lagged(f)
(3.22)

where:

• Clagged(f) is the Lagged Coherence between signals x and y at frequency f ;

• Pxy,lagged(f) is the cross-spectral density between x and y, calculated considering
only the lagged components;

• Pxx,lagged(f) and Pyy,lagged(f) are the power spectral densities of signals x and y,
respectively, after removing simultaneous components.

3.6.4 Mutual Information

MI It measures the statistical dependence and the shared information between two
variables, quantifying the amount of information present on one variable while observing
the other. It measures the degree of connectivity even in the absence of linear relationships
and evaluates how much the information contained in an EEG signal can predict or
explain the behavior of another EEG signal. It is expressed by the following formula:

MI(X;Y ) = H(X) +H(Y )−H(X, Y ) (3.23)

where:

• H(X) and H(Y ) are the entropies of signals X and Y ;

• H(X, Y ) is the joint entropy of X and Y .
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3.6.5 Covariance

Covariance measures the degree to which two variables vary together and in particular the
linear relationship between the two signals. It is a more general measure than correlation.
It is defined mathematically as:

Cov(X, Y ) =
1

N

N∑
i=1

(xi − µx)(yi − µy) (3.24)

where:

• N is the number of samples;

• xi and yi are the values of signals x and y at sample i;

• µx and µy are the means of signals x and y.

3.6.6 Pearson’s Correlation Coefficient

Often calculated in conjunction with covariance, the Pearson correlation coefficient mea-
sures the strength and direction of the linear relationship between two variables. It is
normalized between -1 and 1, with 1 indicating a perfect positive correlation, -1 a perfect
negative correlation, and 0 no correlation. It can be expressed mathematically as:

ρxy =
Cov(X, Y )

σxσy

(3.25)

where:

• ρxy is the Pearson correlation coefficient between X and Y .

• Cov(X, Y ) is the covariance between X and Y .

• σx and σy are the standard deviations of signals X and Y .

3.6.7 Phase-Locking Value

PLV measures the phase synchronization between two signals. A reduction in PLV may
indicate a disturbance in neural synchronization, common in conditions such as coma
or dementia, where functional connectivity is often compromised. It is expressed by the
following formula:

PLV =

∣∣∣∣∣ 1N
N∑

n=1

ej∆ϕ(n)

∣∣∣∣∣ (3.26)

where:

• PLV is the Phase Locking Value, a measure of phase synchronization between
signals x and y;

• N is the number of samples;

• ∆ϕ(n) is the phase difference between signals x and y at sample n.
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3.7 Features organization

The approach involves an organization of the features through the calculation of summary
statistical indicators, and therefore it was decided not to work on the raw values of the
features. In particular, after calculating each feature for each epoch of the signal, and
each connectivity matrix, it was decided to calculate statistical indicators of the first
three orders such as mean, variance and skewness on the epochs of each channel and each
subject. Therefore, the matrix of the features, which will be the input of the clustering
and classification algorithms that we will test, will have a size equal to num subject x
num features with num subject equal to the number of subjects included in the analysis
scenario and num features the number of features multiplied by the number of channels
and by the number of summary statistical indicators used.

3.8 Clustering algorithms

Clustering algorithms were applied to the extracted features to group the data based on
the similarities between the different data without using the predefined labels, provided
by the medical staff who performed the data acquisitions and made them available. This
unsupervised learning technique is essential to find hidden patterns or natural groupings
in the data, which may not be evident through visual inspection or traditional analysis
methods. Through data clustering, the study aims to discover groups of patients with
similar EEG characteristics, potentially corresponding to different states of consciousness
with different levels of severity. The clustering process was accompanied by feature
selection to identify the most relevant features to distinguish between the clusters. Feature
selection is crucial because it reduces the dimensionality of the data, improving the
performance of the clustering algorithm and providing a clearer interpretation of the
underlying patterns.

3.8.1 KMeans

The unsupervised clustering process can be described through the following steps:

1. Random assignment of samples to k clusters (hyperparameter initially defined).

2. Calculation of the distance between each sample and all class centroids (midpoints
of the clusters). Initially the centroids are initialized randomly and the number is
consistent with the set k value. Different distance measures can be used, from pi

3. Assignment of each element to the cluster with the closest centroid.

4. Recomputation of centroids based on the new assignment of elements to clusters.

5. Iteration of the assignment phase and recomputation until the algorithm converges,
i.e. no new assignment.

A common method for determining the value of K is to use the elbow plot, which graphs
the trend of the total squared error as the hyperparameter K varies [12].
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3.8.2 Agglomerative Clustering

Hierarchical clustering allows you to create a hierarchical structure between the data that
can be used to subsequently define the clusters [1]. The process can be outlined through
the following steps:

1. Initially, each data point represents a cluster in itself.

2. Calculate the distances for all pairs of data points available.

3. Merge the two data points with the smallest distance or the most similar.

4. Repeat the previous steps with merger of the two data points with the smallest
distance until there is only one cluster that merges all the points.

5. Representation of the clusters through the dendogram in which the x-axis represents
the data points and the y-axis the distance.

Among the advantages of this algorithm is the non-definition of an initial setting of
hyperparameters such as the number of clusters. On the other hand, it is computationally
expensive for large datasets and strong sensitivity to the similarity metric used.

3.8.3 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-
based algorithm, often used to identify clusters in a dataset that may contain noise
(anomalous data or outliers). It requires the setting of the following parameters: Main
parameters:

• Eps: Search radius, i.e. the maximum length of the radius of the circle that is
drawn starting from a point and that determines the points close to it. In fact, a
point that falls inside the circle of radius eps is defined as ’close’ to the first point.

• MinPts: Minimum number of points required to form a cluster. If a point has at
least MinPts neighbors within a radius of Eps, it becomes the ”center point” of a
cluster.

The following defines different ’types of points’:

• Core points: Points that have at least MinPts neighbors within the radius of Eps.

• Border points (Non-Core-Points): Points that are not themselves core points,
but are within the radius Eps of a core point.

• Noise points: Points that neither belong to a cluster nor are close to a core point.
These points are considered as noise or outliers.

For each point in the dataset, the algorithm checks whether it is a core point. If it
is, a new cluster is started that includes all reachable points (i.e. all points within the
distance Eps that are themselves core or boundary points).This process continues until
all core and boundary points are assigned to a cluster. Points that cannot be included
in any cluster are labeled as noise. The algorithm automatically identifies the number
of clusters, without the need to set a default value. It is able to handle those points
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that constitute noise and is able to handle very large datasets and clusters of arbitrary
size. On the other hand, it have an high sensitivity to the choice of hyperparameters that
determine its effectiveness and difficulty in managing clusters with different point density
[10].

3.9 Features selection method

Feature selection is a machine learning and data analysis technique useful to reduce the
dimensionality of the dataset, when a large number of features are available and many of
them could be irrelevant. The additional advantages of this technique are:

• improvement of the model performance

• reduction of the algorithm training time

• reduction of the risk of overfitting

• simplification of the model by eliminating redundant and superfluous features.

3.9.1 SelectKBest

SelectKBest is a feature selection technique that is part of the data pre-processing phase
in the field of machine learning. It evaluates the importance of the features and selects
the K most relevant features based on a scoring function [6]. The main scoring functions
used are:

• Chi-squared for categorical features.

• F-statistics (ANOVA) for numeric features.

• Mutual information measures the mutual dependence between two variables.

Therefore, the parameters to set are the scoring functionscore func and K, the maximum
number of features to select. The most common score func are:

• f regression used for linear regression problems.

• mutual info regression used for regression problems and calculates the mutual
information between two random variables.

• f classif used for classification problems.

• mutual info classif used for classification problems and calculates mutual informa-
tion.

• chi2 used for classification problems and calculates chi-square statistics.

• SelectPercentile used to select the highest X
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3.10 Classification Methods

To classify EEG signals between healthy subjects and subjects with different levels of
disorders of consciousness, some machine learning algorithms have been implemented to
find the most performing and effective one. Both supervised and unsupervised algorithms
have been tested to compare the different performances. Through our dataset, the
algorithm has been trained to recognize and correctly classify in a second moment the
data never seen by the model. For our purpose, the classification is not binary, between
healthy and sick subjects but multiclass, because in addition to the category ’healthy
subjects’, labeled with the code ’0’, we have 4 different classes of subjects with disorders
of consciousness with different levels of severity (labeled with a code from 1 to 4).

3.10.1 Multinomial Logistic Regression

The Multinomial Logistic Regression method is an extension of the Logistic Regression
algorithm (native for binary classifications), when the goal is to assign data to more than
two classes [13]. This algorithm uses an approach based on a linear combination of the
features as a discriminant function of each class, then the softmax function transforms the
generated scores into probabilities of belonging to a certain class and the log-likelihood
function as the objective function to be maximized.

Definition of variables
Let X = (x1, x2, . . . , xn) ∈ Rn be the input vector with n features.
Let Y ∈ {1, 2, . . . , K} represent the dependent variable (class), where there areK possible
classes.
Let θk = (θk0, θk1, . . . , θkn) ∈ Rn+1 represent the model’s coefficients for class k, including
the intercept θk0.

Linear Discriminant Function
Instead of modeling the probability directly for each class, a linear discriminant function
is used for each class k:

ηk(X) = θk0 + θk1x1 + θk2x2 + · · ·+ θknxn = θTk X

where ηk(X) is the linear score for class k.

Class probabilities using the Softmax Function
The probability of belonging to each class is modeled using the softmax function. The
probability that an observation X belongs to class k is given by:

P (Y = k | X) =
eηk(X)∑K
j=1 e

ηj(X)

where:

• ηk(X) is the linear value (logit) associated with class k for observation X. It is often
calculated as a linear combination of the characteristics of X

• eηk(X) is the exponential of that score.

• The denominator normalizes the probabilities to sum to 1.
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This type of strategy represented by the flowchart allows us to better understand the
decision-making process, allowing us to understand the reason for the decisions taken.

3.10.2 Random Forest

Random Forest is a supervised learning algorithm that consists of a set of decision trees.
It is an improved extension of the previous algorithm, which tries to solve some of its main
limitations, such as overfitting and instability. The key idea of Random Forest is to build
several independent decision trees during the training process and combine their results
to obtain a more robust and accurate prediction. This is done through two fundamental
techniques: bagging and feature randomization [5]. In bagging, a random subset of the
original dataset is created (bootstrap method). This means that each tree is trained on
a different sample of the data, allowing for repetitions. This helps to reduce the overall
variance and prevent overfitting. The top-rated class becomes the final prediction. With
feature randomization, in addition to sampling the data, Random Forest also randomly
selects features for each tree. Instead of considering all the features available at each
node, the algorithm chooses only a random subset of them.

Figure 3.9: Example of structure of the Random Forest.

3.10.3 Support Vector Machine

Support Vector Machine (SVM) is a powerful supervised machine learning algorithm
used for both classification and regression problems. Its main goal is to find an optimal
hyperplane that separates the data into different classes, with the goal of maximizing the
margin between the data points closest to the separation boundary, known as support
vectors. Having a larger margin generally results in better generalization of the model
[22].
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Figure 3.10: Illustration of the best hyperplane that separates two classes in a 2D chart.

If the classes are linearly separable, the goal of the SVM is to find the hyperplane that
maximizes the distance (margin) between the classes. The equation of the hyperplane in
an n-dimensional space is given by:

wTx+ b = 0 (3.27)

where:

• w is the vector of coefficients (weights) that define the hyperplane.

• b is the bias term (intercept),

• x is the feature vector (or a point in the feature space).

When the data is not linearly separable, the SVM introduces a penalty term to allow
for some classification error, trying to achieve a trade-off between maximum margin and
classification errors.
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Chapter 4

Procedure

The data were loaded from the respective MATLAB files, containing both the features in
numeric array format and the associated labels. Subsequently, the possible presence of
missing values (Nan) was checked and an imputation strategy was applied, if necessary,
based on the replacement of missing values with the mean of the columns using the
SimpleImputer tool of Scikit-learn. To avoid that some features had a greater weight
than others, for example due to different scales, a normalization of the features was
applied using the Normalizer tool, which reduces the feature values on a common scale
based on the L2 norm. Due to the high number of extracted features, the feature selection
technique called SelectKBest based on the mutual information between the features and
the labels was applied. This technique selects the most informative features by eliminating
influential ones. It was experimented with different values of the parameter k, representing
the number of features to extract. The parameter k was set to cover a range between
4 and 30. After selecting the best features, the Agglomerative Clustering, KMeans and
DBSCAN algorithms were applied.

Agglomerative Clustering and KMeans
For the first two algorithms, the parameter indicating the number of clusters (n clusters)
is set. Knowing the number of classes in which the data is divided, the parameter was
set to 5, for the ’all’, ’OA’ and ’OC’ scenarios. While, for the ’Only OA’ scenario,
characterized by a much lower number of data samples, with the possibility of not having
a sample available for each class within the dataset, n clusters was set to a range between
2 and 5.

DBSCAN
Different configurations of the eps parameters (0.1, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0) and
min samples (2, 3, 4, 5, 8, 10, 12, 15) were explored, looking for the optimal combination
that maximized the separation of the clusters.

Three metrics were calculated to evaluate the quality of the clustering:

• Silhouette Score: measures how well the points in a cluster are similar to each
other compared to the points of other clusters. Higher values indicate a better
separation between the clusters.

• Davies-Bouldin Index (DBI): measures the compactness and separation of the
clusters. A small value indicates a better configuration.

71



• Calinski-Harabasz Index: evaluates the density of clusters with respect to their
separation. Higher values indicate better performance.

The feature selection cycle was repeated for all combinations of k and possibly n clusters,
for the first two algorithms, and of eps and min samples for DBSCAN, and finally the
best combination that maximized the Silhouette Score value was extracted. After the
extraction of the best combination of parameters, each algorithm was retrained with the
set of features extracted from SelectKBest.

With the features extracted from the clustering algorithm that provided the best
values of the performance indices, different classification algorithms belonging to the
category of supervised learning methods were applied, with the aim of predicting the
class of membership of the samples constituting the dataset. The tested algorithms
are Random Forest, Support Vector Machine and Logistic Regression. Initially, a pre-
processing phase of the features extracted in the previous phase is planned.
Through the PowerTransformer method, the Yeo-Johnson transformation was applied
with the aim of reducing the variance and eliminating any non-uniform distributions.
This phase improves the model’s ability to generalize on unknown data. Subsequently,
MinMaxScaler was applied with the aim of normalizing the data by reducing them to a
range between 0 and 1. Through a preliminary analysis of the dataset, an imbalance of the
classes was noted, as some are represented by a much smaller number of samples than the
others. It was decided to use the SMOTE (Synthetic Minority Over-sampling Technique)
technique with the aim of generating synthetic samples for the minority classes through an
approach based on k-nearest neighbors, although this technique is mostly used in image
analysis and processing. In the code, k neighbors=2 was set. This parameter indicates
the number of closest samples to be considered to generate the synthetic samples of the
minority class. The resulting balanced dataset is then divided into train and test sets
with the train test split function, foreseeing 80% of the data for training the model and
20% for evaluation. To find the best configuration of the classifier parameters, the Grid
Search technique with 5-fold cross-validation (CV) (KFold) was used.
Parameters considered for tuning the Random Forest algorithm include:

• n estimators : number of trees in the forest.

• max depth : maximum depth of trees.

• min samples split : minimum number of samples required to split an internal
node.

• min samples leaf : minimum number of samples required to be a leaf.

• bootstrap: whether or not to bootstrap the data.

The parameters used for tuning the SVM algorithm are:

• C : The regularization parameter C controls the trade-off, that is, the relationship
between the classification accuracy on the training set and the ability of the model
to generalize. The values tested are: 0.1, 1, 10, 100.

• gamma : controls the influence of a single training sample. A high value of gamma
indicates that the model fits the individual points very well, while a low value means
that the influence of a single point is further away. The values tested are ’scale’
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which sets the gamma parameter as the inverse of the product of the number of
features and the variance of the dataset features; and ’auto’ which sets it as the
inverse of the number of features.

• kernel : Describes the function used for data transformations in the feature space.
The values tested are: ’rbf ’ to set nonlinear kernels and ’linear’ for linear kernels.

Whereas, the tuning parameters for the Logistic Regression algorithm are:

• C : controls the regularization. The values tested are: 0.1, 1, 10, 100.

• penalty : L2 regularization (ridge) is used, penalizing large weights.

• solver : Specifies the optimization algorithm; ’lbfgs’ is suitable for multiclass prob-
lems, while ’liblinear’ is often used for binary classification problems.

TheGridSearchCV function has the function of evaluating each combination of parameters
based on accuracy, selecting the one with the highest value in the cross-validation phase.
As for After identifying the best parameters, the optimized model is trained on the entire
training set. Predictions on the test data are run using the predict function to obtain
the predicted classes and with predict proba to obtain the predicted probabilities for each
class.

Subsequently, the following evaluation metrics are computed:

• Accuracy : the percentage of correct predictions on the test set.

• Multiclass AUC : the area under the ROC curve for multiclass problems, using
the one-vs-one (OVO) approach with a weighted average for each class. The AUC
provides a measure of the model’s ability to distinguish between different classes.

A classification report is also provided that includes the precision, recall, and F1 score
measures computed for each class. Finally, to visually evaluate the model performance,
the ROC curve is plotted for each class. The ROC curve shows the relationship between
the false positive rate (FPR) and the true positive rate (TPR) for each class. The area
under the curve (AUC) is also calculated for each curve, and a graph shows the different
curves, allowing performance comparisons between classes.
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Chapter 5

Results

5.1 Clustering Results

For the three analysis contexts, three clustering methods were evaluated: Agglomerative
Clustering, KMeans, and DBSCAN, calculating metrics such as the Silhouette Score,
the Davies-Bouldin Index, and the Calinski-Harabasz Index as reported in the following
tables.

5.1.1 Clustering performances - Scenario ’ALL’

The following table shows the values of the different performance evaluation parameters
of the clustering methods used.

Method
Silhouette
Score

Davies-Bouldin
Index

Calinski-
Harabasz
Index

Agglomerative
Clustering

0.9278 0.0 101634.5738

KMeans 0.9467 0.1242 9320.7024
DBSCAN 0.9464 0.1734 508.3439

Table 5.1: Values of performance indicators for the three clustering types referred to the
’ALL’ scenario.

It is possible to notice how KMeans and DBSCAN have provided almost similar
results in terms of Silhouette Score. Regarding the use of these two algorithms that
have provided the best results, we can highlight some advantages and disadvantages.
The KMeans algorithm requires the setting of the n clusters parameter, which could be
considered a disadvantage if you do not know the clusters present in the dataset, but
in our case, you know the number of existing classes. The DBSCAN algorithm is very
useful, however, in cases where this information is not available. Furthermore, KMeans
is limited in the search for spherical clusters. The DBSCAN algorithm is very effective in
managing noise and outliers, but may have difficulties in cases where the density within
the clusters varies.
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5.1.2 Cluster plots - Scenario ’ALL’

Figure 5.1: Cluster representation with Agglomerative Clustering method.

Figure 5.2: Cluster representation with KMeans method.
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Figure 5.3: Cluster representation with DBSCAN method.

5.1.3 Clustering performances - Scenario ’OA’

Method
Silhouette
Score

Davies-Bouldin
Index

Calinski-
Harabasz
Index

Agglomerative
Clustering

0.8902 0.1152 30805.50079

KMeans 0.8929 0.1130 5398.1257
DBSCAN 0.8560 0.2037 267.2200

Table 5.2: Values of performance indicators for the three clustering types referred to the
’OA’ scenario.

In this scenario, despite all three methods maintaining very high Silhouette Score values,
KMeans algorithm again proved to be the best. While DBSCAN had difficulty in ensuring
good results in terms of separability, dividing the dataset into only 2 clusters again, and
in terms of density, with a higher Davies-Bouldin Index than the other two.
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5.1.4 Cluster plots - Scenario ’OA’

Figure 5.4: Cluster representation with Agglomerative Clustering method.

Figure 5.5: Cluster representation with KMeans method.
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Figure 5.6: Cluster representation with DBSCAN method.

5.1.5 Clustering performances - Scenario ’OC’

Method
Silhouette
Score

Davies-Bouldin
Index

Calinski-
Harabasz
Index

Agglomerative
Clustering

0.8706 0.1806 102715.2469

KMeans 0.8676 0.1103 980315.5051
DBSCAN 0.5960 0.2909 16.5907

Table 5.3: Values of performance indicators for the three clustering types referred to the
’OC’ scenario.

Finally, in the last scenario, it is possible to observe a greater variability in the results
with Agglomerative Clustering and KMeans that produced similar values in terms of
Silhouette Score (0.8706 and 0.8676), but KMeans showed the best Davies-Bouldin Index
and Calinski-Harabasz Index, making it more effective in managing data separation
compared to DBSCAN, which had difficulty in distinguishing clusters, obtaining poor
values for all three parameters.
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5.1.6 Cluster plots - Scenario ’OC’

Figure 5.7: Cluster representation with Agglomerative Clustering method.

Figure 5.8: Cluster representation with KMeans method.
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Figure 5.9: Cluster representation with DBSCAN method.

5.2 Classification Results

As described in the previous chapter, three classification algorithms were tested: Random
Forest, Support Vector Machine (SVM) and Logistic Regression, comparing their performances
on the various scenarios. The calculated evaluation metrics include the Area Under the
Curve (AUC) and the accuracy on the test set. To complete the results, there are ROC
curve plots, confusion matrices and classification reports, for each method and for each
scenario, to better observe the differences of each one.

5.2.1 Classification performances - Scenario ’ALL’

Method AUC Accuracy test set

Random
Forest

0.8925 0.7576

SVM 0.9340 0.7272

Logistic
Regression

0.7431 0.5151

Table 5.4: Values of performance indicators for the three classification methods referred
to the ’ALL’ scenario.

In the ”ALL” Scenario, SVM achieved the best AUC (0.9340), while Random Forest
showed a good balance between accuracy (0.7576) and AUC (0.8925). Logistic Regression,
unlike the others, provided worse results, with an AUC of 0.7431 and an accuracy of
0.5151.
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5.2.2 Plot ROC Curve, Confusion Matrix and Classification
Report - Scenario ’ALL’

Figure 5.10: ROC Curve - Random Forest

Figure 5.11: ROC Curve - Support Vector Machine
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Figure 5.12: ROC Curve - Logistic Regression

Figure 5.13: Confusion Matrix - Random Forest
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Figure 5.14: Confusion Matrix - Support Vector Machine

Figure 5.15: Confusion Matrix - Logistic Regression
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Figure 5.16: Classification Report - Random Forest

Figure 5.17: Classification Report - Support Vector Machine

Figure 5.18: Classification Report - Logistic Regression
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5.2.3 Classification performances - Scenario ’OA’

Method AUC
Accuracy
test set

Random Forest 0.9811 0.8

SVM 0.9566 0.7333

Logistic
Regression

0.9955 0.9333

Table 5.5: Values of performance indicators for the three classification methods referred
to the ’OA’ scenario.

In the ”OA” Scenario, however, Logistic Regression outperformed the other two methods
with a very high AUC (0.9955) and an accuracy of 93.33%. Random Forest and SVM
showed AUCs of 0.9811 and 0.9566, respectively, with slightly lower accuracies.

5.2.4 Plot ROC Curve, Confusion Matrix and Classification
Report - Scenario ’OA’

Figure 5.19: ROC Curve - Random Forest
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Figure 5.20: ROC Curve - Support Vector Machine

Figure 5.21: ROC Curve - Logistic Regression
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Figure 5.22: Confusion Matrix - Random Forest

Figure 5.23: Confusion Matrix - Support Vector Machine
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Figure 5.24: Confusion Matrix - Logistic Regression

Figure 5.25: Classification Report - Random Forest
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Figure 5.26: Classification Report - Support Vector Machine

Figure 5.27: Classification Report - Logistic Regression

5.2.5 Classification performances - Scenario ’OC’

Method AUC
Accuracy
test set

Random
Forest

0.925 0.6667

SVC 0.7278 0.6

Logistic
Regression

0.6007 0.4666

Table 5.6: Values of performance indicators for the three classification methods referred
to the ’OC’ scenario.

Finally, in the “OC” Scenario, Random Forest again demonstrated good performance
with an AUC of 0.925, while SVM and Logistic Regression showed poorer performance,
with AUCs of 0.7278 and 0.6007, respectively. To conclude, the results indicate that the
Random Forest classifier is the most balanced and effective model overall in the three
scenarios in terms of AUC and accuracy.
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5.2.6 Plot ROC Curve, Confusion Matrix and Classification
Report - Scenario ’OC’

Figure 5.28: ROC curve - Random Forest

Figure 5.29: ROC Curve - Support Vector Machine
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Figure 5.30: ROC Curve - Logistic Regression

Figure 5.31: Confusion Matrix - Random Forest
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Figure 5.32: Confusion Matrix - Support Vector Machine

Figure 5.33: Confusion Matrix - Logistic Regression
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Figure 5.34: Classification Report - Random Forest

Figure 5.35: Classification Report - Support Vector Machine

Figure 5.36: Classification Report - Logistic Regression

94



Chapter 6

Discussions and Conclusions

This thesis conducted an analysis of EEG signals from patients belonging to different
classes, such as healthy subjects and subjects affected by disorders of consciousness,
through feature engineering and pattern recognition techniques, with the purpose of
determining the different states of consciousness. The work produced interesting and
promising results for research, both from the point of view of clustering and classification,
showing how the use of advanced techniques can contribute to a better understanding
and evaluation of EEG data and to the prediction of states of consciousness.
Examining the optimal features extracted for our three scenarios, “ALL” (all subjects),
“OA” (eyes-opened subjects) and “OC” (eyes-closed subjects) showed that there are some
commonalities between these scenarios, despite the contrasts in the channels on which
the features were computed. In the subsets of the extracted features (see Table 6.1), it is
possible to see the simultaneous presence in different groups of features based on frequency
and power in different bands. In fact, in the “ALL” dataset there are features measuring
the variance of power in the alpha and beta bands. Furthermore, in the “OA” dataset
it is possible to discover comparable measures, despite the fact that they are correlated
with the beta band, while in the “OC” the power variation in the theta band is shown.
This gives us insights into the significance of the power variance in different frequency
bands. Regarding Coherence and Correlation, it is possible to notice the presence of
coherence variables between EEG channels both in the ”ALL” and in the ”OA” dataset.
This leads to the argument that the relationship between brain activities recorded in
pairs of channels, even if different, is an important measure both for the ”OA” set and
for the one in which all subjects are present.
Mutual information and Pearson correlation are, moreover, two other features that we
find in more scenarios. For example, these two features are present both in the ”ALL”
set and in the ”OC” set. This suggests that the statistical relationship between activities
in different channels is significant for both measurement conditions.
Another feature, common in both the ”ALL” and ”OA” sets, is the delayed coherence.
This measure defines the synchronization between two EEG signals with a temporal delay.
The presence of Lagged Coherence in more scenarios indicates that brain interactions
with temporal delay are an incisive aspect both when the eyes are open and in general
acquisition conditions.
Finally, there are some features that are unique to a given single scenario. For example,
the phase-locked value (PLV) appears only in the ”OA” set, which may indicate that
phase synchronization between EEG signals is especially important when subjects have
their eyes open.
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Below are the results of the evaluation parameters of the Clustering methods and also
the plots of the cluster distribution.

ALL OA OC
mean ch7 skew MNF ch8 var theta power ch16

skew MNF ch2 var beta power ch5 Skew Std fd Ch14
var alpha power ch5 skew CrossCorr 9 16 skew MI 5 15
skew CrossCorr 13 11 skew CrossCorr 12 4 skew MI 15 5
skew Coherence 15 13 skew CrossCorr 16 9
avg Coherence 16 8 skew Coherence 3 12

skew Coherence 16 12 skew Coherence 9 12
var MI 4 17 skew Coherence 12 9
var MI 10 17 skew Pearson 9 16

var Pearson 9 11 avg Pearson 16 17
var Pearson 11 9 skew PLV 3 12

skew Pearson 11 16 skew PLV 3 13
skew Pearson 16 17 skew PLV 9 11
skew Pearson 17 16 skew PLV 12 3

skew LC 11 13 skew PLV 14 10
skew LC 13 11 skew LC 8 16

skew LC 9 16
skew LC 12 3
skew LC 16 8
skew LC 16 9

Table 6.1: Features extracted in different analysis scenarios.

Clustering methods, on the other hand, showed a good ability to group data based on
the extracted characteristics of EEG signals, with KMeans and Agglomerative Clustering
standing out for their performance in the various scenarios. However, the DBSCAN
method had more difficulties in handling the changeability within the clusters, especially
in contexts with variable densities in the data.
In detail, for the ’ALL’ scenario, a similarity in the results in terms of Silhouette Score
was observed between the KMeans and Agglomerative Clustering algorithms. Despite
this, the use of the former is preferable, as it managed to obtain a separability of the data
into 5 clusters equivalent to the number of classes in which the subjects were classified
a priori by the medical staff. The DBSCAN, instead, not having the need to set the
hyperparameter n clusters, divided the data into only two groups. For the ’OA’ scenario,
all three methods showed very poor results, slightly better for KMeans in terms of
Silhouette Score and Davies-Bouldin Index. Also in this case the number of clusters
identified by DBSCAN was equal to two. Finally, for the third scenario, KMEans again
provided higher results in terms of Davies-Bouldin Index and Calinski-Harabasz Index;
while Allomerative Clustering provided a slightly higher value of Silhouette Score. The
DBSCAN algorithm, on the other hand, struggled significantly in distinguishing clusters.
Regarding classification, Random Forest provided globally more balanced results regarding
accuracy and the ability to distinguish the different classes.
In detail, for the ’ALL’ scenario, higher performances were achieved with the Support
Vector Machine classifier, in terms of AUC, while considering the Accuracy on the test
set, Random Forest was slightly better. In the second scenario, the Logistic Regression
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algorithm significantly stood out compared to the other two methods. Finally, for the
third scenario, the only one to provide good performance was Random Forest.
Despite the promising results, the work presents some limitations that could be addressed
in future research. The dataset showed an imbalance in the classes, with some of them
represented by a too small number of samples. This could have affected the performance
of the classification models, despite the use of techniques to rebalance the data.
The DBSCAN method highlighted difficulties in handling clusters with different densities,
suggesting that more robust or mixed clustering methods could be explored to improve
the quality of the clustering.
The feature selection, despite already efficient with the SelectKBest method, could be
improved by exploring more advanced dimensionality reduction techniques, such as PCA
or machine learning-based methods, for a better understanding of the most informative
features of the EEG signals.
To further improve the work, several future approaches can be considered such as augmenting
the dataset with the inclusion of a larger number of samples, especially for the less
represented classes, and that would allow the models to generalize better and lead them
to improve the overall performance.
Furthermore, the use of more complex algorithms such as deep neural networks or
ensemble machine learning models could improve the predictive power, especially in the
presence of noisy or more complex signals.
Also, the incorporation of temporal information such as Recurrent Neural Network (RNN)
implementation techniques could provide a more dynamic view of EEG signals, improving
the precision in the predictions of levels of consciousness.
In conclusion, the obtained results confirm the validity of the adopted approaches, but
also showed the need for further developments to address the challenges related to the
complexity of EEG signals and the variability of the classes. If sufficiently improved, the
proposed techniques could significantly contribute to the development of research in the
field of brain signal analysis and the automatic detection of consciousness phenomena.

97



98



Chapter 7

Ringraziamenti
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guida, la disponibilità e l’incalcolabile supporto fornito in ogni fase di questo percorso.
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