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Summary

Obstructive Sleep Apnea Syndrome (OSAS) is a prevalent and significant disorder
characterized by repeated episodes of partial or complete upper airway obstruction
during sleep. It can lead to fragmented sleep, excessive daytime sleepiness, and vari-
ous long-term health complications, including cardiovascular diseases and metabolic
disorders. The disorder is primarily diagnosed through nocturnal polysomnography,
which provide objective data on the frequency and severity of respiratory events.
However, while Continuous Positive Airway Pressure (CPAP) therapy remains
the gold standard for managing moderate-to-severe OSAS, non-adherence to the
therapy remains a critical challenge. Despite its effectiveness, less than half of
patients achieve sufficient adherence to CPAP therapy, which is defined as at least
four hours of nightly use.

The clinical challenge of managing OSAS lies in the overwhelming number of
patients who need continuous monitoring to ensure adherence to treatment. CPAP
telemonitoring systems are used to track usage and detect potential issues, but they
generate a substantial amount of data, leading to information overload for clinicians.
This raises the need for a more streamlined, targeted approach to identify which
patients are likely to experience poor adherence and to focus on interventions that
could improve their treatment outcomes.

The hypothesis underlying this study is that CPAP adherence is significantly
influenced by psycho-behavioral factors, particularly in terms of how consistently a
patient uses the device over time. This variability in adherence, or the monthly
variance in CPAP usage, could serve as an important predictor of long-term
treatment outcomes. The aim of this research is to investigate whether a single
variable, the monthly variance in adherence (VarAdh), can stratify patients into
subgroups with distinct patterns of adherence and long-term outcomes. By doing
so, it would allow clinicians to focus their attention on patients who are most at
risk of non-adherence or ineffective therapy.

In this study, the potential of the VarAdh variable to serve as a predictive marker
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of CPAP adherence is examined. The analysis is focused on telemonitoring data
collected from a large population of OSAS patients over three separate months
(January, June, December). The methodology includes the clustering of patients
based solely on their adherence variance, with the goal of identifying clusters that
can differentiate between patients with differing adherence behaviors and clinical
outcomes.

The results of this study demonstrate the predictive potential of the VarAdh
variable in identifying long-term CPAP adherence patterns. In particular, a
Pearson correlation coefficient of -0.32 between VarAdh in January and monthly
mean adherence (MeanAdh) in December indicates that higher variance in early
adherence is associated with significantly lower long-term adherence. Furthermore,
the positive Pearson correlation of 0.39 between VarAdh and days without CPAP
use per month (NullAdh) underscores the role of adherence variance as a predictor
of device non-use. Both correlations are statistically significant, with p-values below
5%, confirming the robustness of these findings.

The significance of this study lies in its potential to enhance the management of
OSAS by providing clinicians with a simple, yet powerful, predictive marker that
can help target interventions more effectively.
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Chapter 1

Introduction

1.1 Definition of OSAS

Sleep-related Breathing Disorder (SBD) is a term used to describe a spectrum of
respiratory disturbances that occur during sleep [1].
The International Classification of Sleep Disorders (ICSD) has defined the two
major categories of SBD: central sleep apnea syndrome (CSAS) and obstructive
sleep apnea syndrome (OSAS) [2].

The fundamental difference between the major categories is the pathophysiologic
mechanism causing the respiratory disturbance. CSAS involves dysfunction of
ventilatory control in the central nervous system (loss of ventilatory effort); in
OSAS, the upper airway obstruction is most often caused by abnormal anatomy
and/or abnormal control of the muscles that maintain the patency of the upper
airway [1].

OSAS is characterized by discrete episodes of partial or complete airway collapse
during sleep, despite respiratory effort. It is diagnosed based on night-time symp-
toms (sleep-related breathing disturbances: snoring, snorting, gasping, or breathing
pauses) and daytime symptoms (excessive daytime sleepiness, fatigue unexplained
by sufficient sleep opportunity or other medical problems), as well as objective data
from a home sleep apnoea test (HSAT) or polysomnography study [3]. Further
details are discussed about the tests in section 1.2.

In order to gain a deeper understanding of the underlying causes of this disorder, it
is vital to undertake a detailed examination of the anatomy of the upper airways,
as their structure has a significant impact on the maintenance of airway patency.
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1.1.1 Anatomy
Upper airway obstruction during sleep often results from negative collapsing pressure
during inspiration. Additionally, progressive expiratory narrowing in the retro-
palatal area significantly contributes to this condition. The extent of upper airway
narrowing during sleep correlates with body mass index, highlighting the roles of
anatomical and neuromuscular factors in airway obstruction [4].
The airway consists of the organs that facilitate airflow during ventilation: from
the nares and buccal opening to the blind end of the alveolar sacs. The airway is
categorized into the upper and lower airway, with each category having further
subdivisions. This division ensures the respiratory system efficiently manages the
intake of oxygen and expulsion of carbon dioxide, supporting essential physiological
processes.
The upper airway includes critical structures that play essential roles in respiration
and speech production (figure 1.1). It spans from the base of the skull to the
esophagus and comprises the following subdivisions:

• Nasopharynx: Also known as the rhino-pharynx or post-nasal space, the
nasopharynx is a muscular tube that extends from the nares, encompassing
the posterior nasal cavity. It is separated from the oropharynx by the palate
and lined superiorly by the base of the skull.

• Oropharynx: Connecting the nasopharynx and hypopharynx, the oropharynx
is situated between the palate and the hyoid bone. It is anteriorly divided
from the oral cavity by the tonsillar arch, serving as a pathway for both air
and food.

• Hypopharynx: This portion links the oropharynx to the esophagus and the
larynx. Located below the hyoid bone, the hypopharynx directs the passage
of air to the lower respiratory tract and food to the esophagus.

• Larynx: Positioned between the pharynx and the trachea, the larynx contains
the organs responsible for speech production. Its cartilaginous structure is
made up of nine cartilages, including the epiglottis and vocal folds (vocal
cords), which regulate airflow and protect the airway during swallowing by
closing the glottis [5].

Current investigations into the pathophysiologic mechanisms of OSAS are exploring
various factors, including a structural susceptibility to upper airway collapse,
heightened ventilatory control instability (loop gain), lower arousal threshold,
dysfunctional upper airway dilator muscles or hypoglossal nerve activity, reduced
lung tethering, and nocturnal rostral fluid shift. Additionally, ongoing research
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Figure 1.1: Anatomy of the upper airway [6].

aims to identify biomarkers and genetic determinants that could predict negative
outcomes linked to OSAS [7, 8].
Given the intimate relationship between the anatomical structure and the onset of
the respiratory disorder, we will now proceed to examine the principal diagnostic
modalities, including polysomnography and HSAT, which facilitate the assessment
of the extent of this pathology.

1.2 Diagnosis tests for OSAS
Accurate diagnosis of OSAS is crucial for effective treatment and management.
This section provides an overview of the primary diagnostic tests used to evaluate
OSAS, namely polysomnography and home sleep apnea testing (HSAT). The choice
between these tests depends on various factors, including the patient’s condition
and the clinical context.
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1.2.1 Polysomnography
Polysomnography is an in-depth sleep test that usually takes place in a hospital
lab or off-site sleep clinic. It involves the collection of seven or more data channels:

• Electroencephalogram (EEG) and electrooculogram (EOG) for sleep staging,

• Electromyogram (EMG),

• Electrocardiogram (ECG),

• Respiratory channels.

It is the gold standard for the diagnosis of OSAS. Polysomnography is particularly
important when patients are at risk of CSAS or hypoventilation [9]. This test is
also recommended for evaluating suspected sleep disorders other than OSAS or
when HSAT is inconclusive in patients with a high pretest probability of OSA [10].

The figure 1.2 shows 5 possible signals that can be extracted from the polysomnog-
raphy test from a patient who suffer from severe OSAS. It’s possible to notice the
airflow pattern which is marked by frequent episodes where the airway becomes
partially or fully blocked (A), the patterns of movements between the chest and
abdomen are often (B) and intrathoracic pressure is characterized by significant
fluctuations (C). These respiratory disruptions cause intermittent reductions in
oxygen levels (D), result in awakenings from sleep (A), and trigger increases in
heart rate (E) [3].

1.2.2 Home sleep apnea testing
HSAT records a minimum of three channels of data while the patient sleeps at
home. This test usually monitors:

• Airflow,

• Snoring,

• Respiratory excursion,

• Body position,

• Heart rate,

• Oxygen saturation,

• Surrogate measurements [11].

4
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Figure 1.2: Polysomnographic features of severe OSAS: (A) obstructions of the
airway and arousals from sleep; (B) out-of-phase movements of the thorax and
abdomen; (C) large intrathoracic pressure swings; (D) intermittent drops in oxygen
saturation; (E) surges in heart rate [3].

Figure 1.3: HSAT traces: - movement, - snore, - airflow, - thoracic effort, - oxygen
saturation, - pulse, - position [12].

The figure 1.3 shows examples of signals that can be extracted from the patient
during an HSAT test [12].

The main differences between polysomnography and HSAT are the cost (HSAT is
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much more cost-effective), the location where the test is conducted, the accuracy
(polysomnography is much more accurate), and the recording of sleep (HSAT does
not record sleep). This last difference leads to another consequential difference: the
extractable metric. During polysomnography, the Apnea-Hypopnea Index (AHI)
can be determined, whereas during HSAT, the Respiratory Event Index (REI) is
measured [3]. These metrics are explored in depth in Section 1.3 where there are
more details about them.
Although HSATs are commonly used due to their lower cost, laboratory-based
polysomnography is used to evaluate patients with complex comorbidities, including
heart failure [3].
In Table 1.1, one can find a comprehensive tabulation of the diagnostic criteria for
OSAS, to facilitate the understanding of the parameters and thresholds used in
the diagnosis of this condition.
Table 1.2 provides a classification of the severity of OSAS based on the AHI. The
severity is categorized mainly into three levels: mild, moderate, and severe. This
classification helps in determining the appropriate treatment and management
strategies for patients with sleep apnea.
After reviewing the diagnostic methods, it is crucial to understand how the results
obtained from these tests are translated into severity metrics.

1.3 Severity metrics
• AHI:

Apnoea–hypopnoea index is defined as the number of obstructive respiratory
events (apnoea1 and hypopnoea2) per hour of sleep, recorded with polysomnog-
raphy [3].

AHI = apnoeas + hypopnoeas
hours of sleep (1.1)

• REI:
Respiratory event index is defined as the number of obstructive respiratory
events (apnoea1 and hypopnoea2) per hour of estimated sleep, recorded with
a HSAT [3].

REI = apnoeas + hypopnoeas
hours of estimated sleep (1.2)

1Apnoea: complete or nearly complete reduction in airflow lasting ≥ 10 s each.
2Hypopnoea: reductions ≥ 30% in airflow for ≥ 10 s, accompanied by an oxygen desaturation

or a respiratory arousal4.

6



Introduction

A The presence of one or more of the following:

• The patient reports sleepiness, nonrestorative sleep, fatigue, or
insomnia symptoms.

• The patient wakes with breath holding, gasping, or choking.

• The bed partner or other observer reports habitual snoring,
breathing interruptions, or both during the patient’s sleep.

• A diagnosis of hypertension, a mood disorder, cognitive dysfunc-
tion, coronary artery disease, stroke, congestive heart failure,
atrial fibrillation, or type 2 diabetes mellitus in the patient.

AND: Five or more predominantly obstructive respiratory events
per hour of sleep during polysomnography or per hour of monitoring
during HSAT.

B Polysomnography or HSAT shows:

• Fifteen or more predominantly obstructive respiratory events
per hour of sleep during polysomnography or per hour of mon-
itoring during HSAT.

Table 1.1: Diagnosing obstructive sleep apnea: A or B satisfy the criteria for a
diagnosis of OSAS [3, 13].

Severity Events per hour (AHI)
Mild 5 ≤ AHI ≤ 14
Moderate 15 ≤ AHI ≤ 30
Severe AHI > 30

Table 1.2: Severity of sleep apnea based on AHI [10].

When interpreting the results of HSATs, it is crucial to understand that they can
underestimate the AHI through REI by about 12%, with even greater underesti-
mation occurring in cases of poor sleep quality. Therefore, patients with a high
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pre-test probability of OSAS who receive a negative result from a home study
should undergo further evaluation [14].

New techniques for quantifying overnight hypoxemia, sleep fragmentation, diag-
nosing, and assessing OSAS have demonstrated prognostic value that surpasses
standard summary sleep metrics.

• ODI:
Oxygen Desaturation Index refers to the average number of desaturation
episodes3 occurring per hour [15].

• RDI:
Respiratory Disturbance Index accounts for respiratory effort-related arousals4

in addition to apnoea and hypopnoea [9].

• ESS:
The Epworth Sleepiness Scale (ESS) is a widely used tool for assessing the
general level of daytime sleepiness in individuals. The scale consists of 8
questions or scenarios. Each question describes a different activity, such as
watching TV, sitting and reading, or sitting in a public place, and asks how
likely the person is to fall asleep during that activity. Respondents rate their
likelihood of falling asleep in each situation on a scale from 0 to 3. The scores
for each of the 8 items are summed to produce a total score ranging from 0 to
24. An ESS score > 10 suggests excessive daytime sleepiness (EDS) [16].

• T90:
Time Below 90% Oxygen Saturation measures the total amount of time that
a patient’s oxygen saturation level drops below 90% throughout the entire
sleep period [17].

• HB:
The Hypoxic Burden is defined as the sum of individual areas under the oxygen
desaturation curve. In addition to the frequency of respiratory events, HB
captures the depth and duration of OSAS-related hypoxemia, not captured by
the conventional “frequency-based” metrics, such as AHI and ODI [18].

• ORP:
The Odds Ratio Product is a continuous measure of sleep depth developed

3Desaturation episodes: decrease in the mean oxygen saturation of ≥ 3% (over the last 120
seconds) that lasts for at least 10 seconds.

4Respiratory effort-related arousals: brief awakenings that occur after a change in breathing.
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using spectral analysis from the Fourier transform of EEG signals. It evaluates
the relative power in different EEG frequency ranges (delta, theta, alpha/sigma,
and beta). The ORP is calculated for consecutive 3-second epochs [19].

• ORP-9:
The Odds Ratio Product-9 is an index derived from the ORP, which is used
to measure sleep drive. ORP-9 specifically averages the ORP value 9 seconds
after an arousal or awakening. This metric reflects an individual’s ability to
return to sleep after an arousal; a lower ORP-9 indicates a quicker return
to deeper sleep, whereas a higher ORP-9 suggests a higher susceptibility to
repeated arousals or awakenings within the next 30 seconds [19].

These advanced metrics have the potential to modernize physiological biomark-
ers obtained from polysomnography or HSAT [19]. These biomarkers could be
integrated with other types of data, such as omics data, questionnaires, genetic
information, and imaging results, to provide a comprehensive understanding of
sleep mechanisms and their impact on clinical outcomes.
Once the gravity of the disorder has been established, an investigation will be made
into the available treatment options, which range from behavioural modifications
to surgical interventions, to effectively address OSAS.

1.4 Therapies
Once the diagnosis of OSAS is established, an adequate treatment strategy should
be decided. OSAS management typically involves behavioral modifications, positive
airway pressure (PAP) device therapy, mouth appliances, mandibular advancement
devices, supplement therapies, and surgeries in severe cases of OSAS.

1.4.1 PAP Therapies
PAP is a treatment for sleep apnea which uses a machine to help keep the patient’s
airways open while sleeping [9]. Types of PAP machines include CPAP (Continuous
Positive Airway Pressure), Auto-Adjusting Positive Airway Pressure (APAP),
Bilevel Positive Airway Pressure (BiPAP or BPAP), Adaptive Servo-Ventilation
(ASV), Expiratory Positive Airway Pressure (EPAP). PAP devices are utilized
to lower AHI values and are considered the primary treatment for managing
OSAS. These devices are particularly effective for moderate-to-severe cases of
OSAS. PAP machines come with a mask that is worn over the nose and mouth,
or sometimes just under the nose, delivering pressurized air either continuously or
intermittently during sleep. This increased air pressure prevents airway collapse,
ensuring uninterrupted breathing and reducing sleep fragmentation.
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Among all the different types of PAP devices, CPAP is the most frequently used.
CPAP machines maintain a constant airway pressure during both inhalation and
exhalation, achieved by a servo-controlled air compressor that adjusts the pressure
to remain as close to the target level as possible, regardless of the patient’s breathing
pattern [20].

1.4.2 Oral Appliances
Oral appliances are suggested for patients with mild to moderate OSAS who either
cannot tolerate CPAP or choose not to use it. These devices include mandibular
advancement devices and tongue-retaining devices [9].
The mandibular advancement device (MAD) has demonstrated considerable effec-
tiveness in treating snoring and OSAS. It is particularly beneficial for patients with
mild-to-moderate sleep apnea and can also reduce bruxism (nocturnal grinding).
Also referred to as mandibular repositioning appliances, MADs work by advanc-
ing the mandible forward, which alters the position of the tongue and mandible,
thereby preventing upper airway collapse. The design features of MADs significantly
influence their effectiveness in treating OSAS [20].
The tongue-retaining device (TRD) is a custom-made mouthpiece that pulls the
tongue forward by creating negative pressure, helping to prevent airway obstruction.
Its performance is comparable to mandibular advancement devices (MAD) and may
be recommended as an alternative to CPAP for patients with nasal obstruction,
though it is rarely used and primarily in Asia [21].

1.4.3 Surgery
Surgical treatment plans are tailored based on the anatomical sites of obstruc-
tion. Common procedures include nasal surgery, removal of excess tissue in the
oropharynx, tongue surgeries, craniofacial surgery, tracheostomy.
Surgical interventions for the nasal cavity include procedures such as correcting a
deviated septum, reducing inferior turbinates, reconstructing the alar valve, and
performing sinus surgery if sinus issues are present. The primary aim of these
surgeries is to enhance nasal airflow by addressing obstructive elements like a
deviated septum or enlarged turbinates. Although the literature indicates that
nasal surgery alone rarely provides a complete solution for OSAS, it has been shown
to improve sleep quality. Additionally, nasal surgery can facilitate better adherence
to CPAP therapy by reducing the required pressure and increasing the duration of
CPAP use.
Oropharyngeal surgery’s goal is to reduce the tissue excess and to increase the
stiffness of the soft tissues in the area. Patients with OSAS often have excess tissue
in the oropharynx, which is typically more lax and elongated.
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Procedures targeting the tongue include either tongue reduction techniques or
genioglossus muscle suspension methods. These procedures generally help alleviate
daytime sleepiness and improve overall quality of life. In retrolingual region
individuals with sleep apnea often have increased fat deposits in the tongue,
resulting in an enlarged base. Additionally, lingual tonsil hypertrophy may be
observed. The genioglossus muscle, which plays a key role in airway dilation,
is affected in sleep apnea patients. Research has indicated that the tone of the
genioglossus muscle in these individuals differs from that in healthy individuals
during sleep.
A tracheostomy, which bypasses the upper airway, is the most effective surgical
treatment for curing OSAS. However, patients with concurrent cardiopulmonary
conditions such as chronic obstructive pulmonary disease, congestive heart failure, or
obesity hypoventilation syndrome may still experience residual issues. A permanent
tracheostomy requires daily care and should be considered only for carefully selected
patients. In high-risk individuals, a temporary tracheostomy may be used as a
precautionary measure before undergoing other airway surgeries [22].

1.4.4 Lifestyle changing
Behavioral interventions for OSAS include: weight loss, diet and exercise, smoking
cessation, alcohol reduction and positional therapy
Reducing weight can significantly improve OSA by decreasing airway narrowing
associated with obesity. Intensive weight loss programs, including very low-calorie
diets and increased physical activity, have been shown to reduce OSAS severity
and improve sleep parameters.
A balanced diet combined with regular exercise helps manage weight, which in
turn reduces OSAS severity. Effective programs include healthy eating habits and
consistent physical activity, leading to improvements in apnea-hypopnea index
(AHI) and overall sleep quality.
Smoking exacerbates OSAS through airway inflammation and structural changes.
Quitting smoking can alleviate OSAS symptoms and enhance treatment outcomes,
as smoking cessation reduces the negative impacts on airway health.
Alcohol consumption worsens OSAS by increasing the frequency and duration
of apnea episodes, particularly during the first few hours of sleep. Reducing or
eliminating alcohol intake can improve OSAS severity and overall sleep quality.
Used as an alternative for patients intolerant to CPAP or those with positional
OSAS, positional therapy involves techniques to prevent sleeping on the back. In
some people with OSAS, airway collapse is worse when they sleep lying on their
back, so sleeping on their side is preferable. There are positioning devices that
can help people remain in an optimal position during sleep. Although effective in
reducing AHI and daytime sleepiness, long-term compliance can be challenging
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and requires regular follow-up.
These behavioral strategies, while beneficial, often need ongoing monitoring to
ensure effectiveness and adherence [20].

1.4.5 Nerve Stimulation Treatment
Hypoglossal nerve stimulation (HGNS) is an alternative treatment for moderate-
to-severe OSAS in patients who are either resistant to or cannot tolerate CPAP
therapy. This surgical approach involves implanting a stimulator that is connected
to the hypoglossal nerve, which controls the genioglossus muscle. Stimulation
of this nerve prompts the muscle to contract, thereby preventing upper airway
collapse. Research indicates that hypoglossal nerve stimulation notably enhances
quality of life, reduces the AHI, and improves the ODI [23].

1.5 Adherence to CPAP
CPAP is termed the gold standard for therapy of OSA and indeed when used as
prescribed, the health benefits are substantial. However, this modality of treatment
continues to be plagued by problems with adherence [24]. Clinical trial results [25]
indicate that less than half of patients continue using CPAP for more than four
hours per night after one year. This level of usage may be crucial for achieving
the full therapeutic benefits. Factors such as the severity of OSA, psychological
considerations, and the management of CPAP-related side effects have all been
linked to patient adherence to this treatment [26].
Patients in France are eligible to have CPAP prescribed if they have at least three
clinical symptoms (see item 1.) and meet one of the AHI criteria (see item 2.).

1. Clinical Symptoms :

• Daytime sleepiness;
• Severe and daily snoring;
• Sensations of choking during sleep;
• Daytime fatigue;
• Nocturia;
• Morning headaches.

2. AHI Criteria :

• AHI ≥ 30/h based on total sleep time during polygraphy or polysomnog-
raphy;
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• AHI ≥ 15/h and < 30/h based on total sleep time during polygraphy or
polysomnography with:

– Severe daytime sleepiness and/or risk of accidents;
– Severe cardiovascular or respiratory comorbidity (e.g., resistant hyper-

tension, atrial fibrillation, symptomatic heart failure, coronary artery
disease, history of stroke, severe COPD, or poorly controlled asthma)
[26].

National french guidelines for CPAP reimbursement stipulate that patients must
use the device for more than 4 hours per night to qualify for full reimbursement
(adherence hours can be monitored through automatic data extraction from the
device and telemonitoring explored in more depth in Section 1.5.1). Reimbursement
rates decrease progressively with lower adherence levels. However, CPAP can still
be delivered and reimbursed if the patient uses it between 2 and 4 hours per night,
provided there is ongoing patient education and support. The final decision regard-
ing the continuation of therapy, including the evaluation of adherence and perceived
benefits, is determined by the treating physician, considering both patient and
physician perspectives. Regular follow-up appointments are mandated, occurring 4
months after CPAP initiation and annually thereafter, to maintain reimbursement
eligibility [26]. The current definition of adherence is largely arbitrary and is mainly
used by third-party payers to determine CPAP reimbursement [27]. However,
real-world data demonstrate a clear dose-response relationship between CPAP
usage and healthcare resource utilization, with benefits observed even at 2–3 hours
per night [28]. This treatment modality relies heavily on patient acceptance and
adherence that’s why strategies to augment adherence, especially early in the course
of a CPAP trial, are needed in the management of OSAS.

1.5.1 Telemonitoring
The initial phase of CPAP therapy is crucial in determining long-term treatment
adherence. It has been shown that low adherence at the beginning of treatment
increases the risk of poor compliance or even discontinuation. Literature data
and the recommendations of the American Academy of Sleep Medicine emphasize
the importance of close monitoring during the first week to identify patients who
may require intensive follow-up. Most of the CPAP devices currently in use allow
telemonitoring of observance (compliance: daily duration of CPAP use in hours),
leaks and the AHI.
The total leak rate is defined as the combination of intentional leaks (necessary to
clear CO2 from the circuit) and unintentional leaks. There is significant variability
among manufacturers in how leaks are estimated and labeled (e.g., total leaks,
unintentional leaks, 90/95th percentile leaks, median leaks, average leaks, etc.).
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An excessive level of leaks is linked to an increased incidence of ear, nose, and
throat (ENT) side effects (such as nasal obstruction, rhinorrhea, dry mouth,
and headaches), sleep fragmentation, and potentially lower short-term adherence.
Intermittent leaks are likely more harmful than continuous leaks. Therefore, leaks
are categorized as either intentional or unintentional. Unintentional leaks are then
further divided into continuous and intermittent leaks:

– A continuous unintentional leak primarily suggests an issue with the circuit,
such as the tubing itself or the connections between the machine and the tubing,
the tubing and the mask, or the mask and its cushion. The correct fit of the
mask should then be checked on the patient in a lying position at therapeutic
pressure (considering mask size and appropriate harness tightening). Less
commonly, continuous unintentional leaks are caused by a slight, persistent
mouth opening.

– In the case of intermittent unintentional leaks, it’s important to first consider
either a problem with the mask shifting during the patient’s position changes
or mouth openings.

CPAP devices’ software calculates a residual AHI. Each manufacturer, and
sometimes each model, employs distinct methods for detecting respiratory events.
Definitions of apnea and especially hypopnea can vary between machine models,
making inter-device comparisons challenging. These "manufacturer definitions"
of events, which do not include measurements of oxygen desaturation or micro-
arousals, differ inherently from those proposed by professional societies. Typically,
machine software tends to overestimate the AHI when the polysomnographic AHI is
low and underestimate it when the polysomnographic AHI is high. The correlation
between machine-derived indices and PSG indices is considered acceptable for
apneas but is significantly lower for hypopneas. However, manufacturers agree that
high levels of leaks can impair the device’s ability to accurately identify events.
Although elevated AHI levels may not always align with polysomnographic events,
they may have clinical significance that warrants careful monitoring. The main
causes of residual obstructive events with CPAP can be:

– use of a full face mask: obstructive apneas primarily occur when lying on the
back. If switching to a nasal mask is not possible due to significant mouth
leaks, it is advisable to either sleep on the side or use a cervical collar. An
ENT consultation is recommended to assess nasal obstruction causing mouth
breathing.

– increased upper airway resistance: this can be due to chronic issues like
nasal septum deviation or nasal obstruction, or transient factors such as
viral infections, allergic rhinitis, or the use of sedatives, medications, or
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alcohol. Heated humidification is beneficial for patients with rhinitis or nasal
obstruction. Persistent nasal obstruction should be evaluated by an ENT
specialist to determine the specific obstructive anomalies and potential allergic
conditions.

– insufficient treatment pressure: this can occur with a prolonged pressure ramp
or comfort modes that may lead to residual obstructive events during pressure
drops.

– occurrence of residual events in clusters: this may indicate a connection with
sleeping position (e.g., supine position) or REM sleep.

Identifying these events is important because they are associated with an increased
risk of stopping treatment with CPAP [29].

1.5.2 Predictors - State of art
The adherence to CPAP therapy for OSAS is influenced by various factors that can
enhance or impede consistent usage. Understanding these predictors is crucial for
improving treatment adherence and, consequently, patient outcomes. This chapter
summarizes the current state of the art regarding the predictors of adherence to
CPAP therapy, drawing from recent literature.

Patient characteristics

Patient characteristics significantly influence adherence to CPAP therapy, although
certain demographic factors such as age, sex, and marital status have not consis-
tently shown a strong correlation with adherence levels [30].
Psychological traits also play a crucial role in adherence to CPAP therapy. Research
has shown that Type D personality, characterized by negative affectivity and social
inhibition, is prevalent in a significant portion of OSA patients and is associated
with lower adherence rates and a higher likelihood of treatment discontinuation
[31].
Perceptions of OSA symptoms and the risks associated with sleep-disordered
breathing, along with expectations regarding treatment outcomes, self-efficacy, and
coping strategies, are also critical. Patients who are proactive in seeking treatment
tend to use CPAP more consistently [32].
While aspects such as depression and anxiety do not appear to have a major
impact on adherence, claustrophobia may be a relevant factor. Patients with higher
claustrophobic tendencies are more likely to struggle with adherence, suggesting
that targeted interventions addressing these fears may be beneficial [33].
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Social Support Factors

Social support plays a crucial role in enhancing adherence to CPAP therapy, with
several studies highlighting its positive effects. For instance, research by Lewis et
al. [34] demonstrated that individuals living with partners showed higher CPAP
usage compared to those who lived alone.
Furthermore, Baron et al. [35] indicated that patients with high disease severity
who perceived support from their spouses regarding CPAP treatment were more
likely to adhere to therapy.
The quality of the couple’s relationship and the partner’s engagement in the treat-
ment process play a crucial role in CPAP adherence too. Research by Gentina et
al. [36] revealed that partner’s encouragement of CPAP usage and a stable rela-
tionship exceeding 30 years were independent factors predicting CPAP adherence.
Additionally, the study demonstrated that partner’s engagement directly impacted
CPAP adherence and improved symptoms, while CPAP adherence itself mediated
disease-specific health-related quality of life. Importantly, marital quality acted
as a moderator, with partner’s engagement improving adherence only when the
quality of marriage was high.

Clinical and Physiological Factors

The severity of OSAS, commonly assessed via AHI, has not consistently emerged
as a reliable predictor. Similarly, the relationship between REM sleep-related OSA
and adherence to CPAP therapy remains inconclusive, with mixed findings reported
in the literature [27]. However, there is stronger evidence suggesting that the initial
severity of daytime sleepiness can influence CPAP usage. Specifically, an ESS score
greater than 10 has been identified as an independent predictor of long-term CPAP
adherence [37]. Moreover, patients who exhibit the highest levels of adherence to
CPAP therapy often report significant improvements in OSA-related symptoms,
such as increased daytime energy levels and greater satisfaction with the treatment.
This observed improvement in symptoms appears to correlate positively with
continued CPAP usage, suggesting a potential bidirectional relationship between
symptom relief and treatment adherence [38]. Composite indices of baseline sleep
apnea severity have also been investigated and they better predict objective CPAP
adherence and subjective treatment outcomes than baseline AHI and baseline ESS
[39].

Technological factors

Despite the common assumption that side effects would negatively impact adherence,
evidence suggests that they do not significantly affect patient compliance [40].
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Mask-related problems such as improper fit, skin irritation, dry mouth, and nasal
congestion can deter effective use. Although the type of PAP mask used at the
start of treatment does not seem to significantly impact adherence, a variety of
interfaces are now available [40].
Heated humidification was designed to alleviate dryness, but current evidence does
not consistently demonstrate that this feature enhances adherence [41]. While
heated humidification may alleviate symptoms like dry nasal passages and throat
discomfort, its implementation should be tailored to individual needs.

Age-Related Factors

The influence of age on CPAP adherence presents a biphasic pattern. Research by
Prigent et al. [42] reveals that adherence generally increases with age until 80 years,
with a peak around 75-80 years. However, after 80 years, there is a significant decline
in adherence rates, indicating a potential shift in factors influencing compliance.
The study also found no correlation between adherence and gender, leaks, or
residual AHI in individuals over 80 years, suggesting that factors beyond these
traditional predictors may be at play in the elderly population.

Seasonal Factors

Seasonal changes can significantly impact CPAP adherence, particularly concerning
ambient temperature. Recent research by Prigent et al. [43] demonstrated a
notable decrease in PAP adherence during June compared to January, coinciding
with warmer temperatures. This decline in adherence was observed across various
mask types, age groups, and genders, suggesting a strong correlation with ambient
temperatures. These findings have significant implications for healthcare providers,
emphasizing the importance of addressing seasonal factors in patient education
and support.

Telemonitoring Data-Based Predictors

Recent studies have begun to leverage telemonitoring data to investigate predictors
of adherence to CPAP therapy, focusing on several parameters, including CPAP
usage variability, leak rates, residual AHI, and device usage events.

• CPAP Usage Variability: A study by Eguchi et al. [44] analyzed data from
telemonitoring systems: CPAP logs of 219 patients with OSAS were used. It
was found that standard deviation of daily usage duration in a week possibly
correlates to poor CPAP adherence. It means participants whose CPAP usage
duration varies greatly in a week may have poor CPAP adherence; however,
the sample size is insufficient to permit definitive conclusions to be drawn.
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A further study [45] comprising 195 patients indicates that, although there
was a moderate correlation between gender, the early patterns of CPAP use
and long-term adherence, suggesting that early usage patterns may have some
predictive value, there were instances where individuals with low initial usage
later became long-term users. This indicates the need for a longer trial in some
cases to make a definitive decision regarding long-term CPAP use. It suggests
that a one-month trial of CPAP might be too short for some individuals.

• Leak Rates and Residual AHI: A pilot study [44] revealed that average
daily air leakage in a week and average daily residual AHI in a week is possibly
correlated to poor CPAP adherence because participants who experienced
larger air leakage from a CPAP mask and higher residual AHI may have
poor CPAP adherence. Additionally, another study revealed that patients
exhibiting elevated levels of air leakage, adjusted for the delivered pressure,
were more likely to be non-adherent to autoPAP therapy [46].

In summary, telemonitoring data presents a framework for identifying predictors of
CPAP adherence by analyzing CPAP usage variability, leak rates, residual AHI,
and device usage event.

Current literature underscores the multifaceted nature of predictors influencing
CPAP adherence. Given the complexities of these factors, future research should
focus on developing tailored interventions that target these predictors, promoting
better adherence and improving overall health outcomes for patients with OSAS.

1.6 Objective
The goal of this thesis arises from addressing a clinical problem identified by
pulmonologists: the overwhelming number of alerts concerning patients using
devices [29], making it unfeasible to monitor each one effectively.
This research aims to characterize a new variable to divide patients into subgroups,
enabling healthcare providers to focus on those with a high probability of non-
adherence or poor treatment quality. While the literature has identified numerous
factors associated with predicting good or poor adherence, no decisive element
currently exists in daily practice to predict good adherence to CPAP.
The hypothesis posits that the psycho-behavioral aspect is the primary determinant
of adherence to CPAP. This study will explore this aspect by analyzing how patients
use CPAP, specifically investigating the variability in CPAP usage. This variability
can be quantified by calculating the monthly variance of adherence time series
obtained from telemonitoring data. This analysis seeks to determine whether CPAP
usage patterns provide a meaningful indication of adherence and, ultimately, patient
outcomes.
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This exploration into the psycho-behavioral realm of CPAP adherence represents
a novel approach to addressing the significant challenge faced by pulmonologists.
By defining a new variable based on individual adherence patterns, the aim is to
improve the ability of clinicians to predict and manage automatic device alerts,
thereby enhancing patient outcomes and optimizing healthcare resource use.
The psycho-behavioral aspect can be quantified more comprehensively and accu-
rately through a detailed characterization of the adherence time series, which may
involve extracting numerous features (as demonstrated by the use of the time series
feature extraction library in previous studies [47]). However, the limitation of this
approach lies in its clinical applicability, as the goal is to provide physicians with a
simple, intuitive, and practical method that can be applied without the need of
complex algorithms.
The study will therefore quantify the predictive potential of monthly variance, its
correlation with outcomes, and its capacity to categorize patients into subgroups.

1.6.1 Research Questions
1. Does monthly adherence variance correlate with short-, mid-, and long-term

adherence and treatment quality?

2. Can monthly adherence variance categorize patients into three distinct sub-
groups with differing short-, mid-, and long-term adherence and treatment
quality?

3. Are the patient clusters/subgroups identified using thresholds applied to
monthly adherence variance stable over time?
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Chapter 2

Methodology

2.1 Dataset description
The dataset used in this study is composed of telemonitoring data collected from
patients with OSAS who were prescribed CPAP therapy in France. The data was
provided by Elia Medical, a French company specializing in telemonitoring for
respiratory diseases. The e-QUALISAS study analyzed one-month de-identified
telemonitoring PAP-adherence data from a unique home-care provider (ELIA
Medical) database in January, June and December 2021, including PAP adherence,
device-reported residual AHI (AHIPAP) and 95th percentile non-intentional leaks.
All adults were above the age of 18 years and started PAP before September 2020
and were treated for at least 4 months before the beginning of the study. All data
were collected using the PAP-software (Airsense 10, Resmed, Australia). For each
patient, monthly PAP adherence, AHI residual and 95th percentile non-intentional
leaks means were calculated. PAP use (hours/night) was considered as the use
during the 24 hours. Age and sex were also available in the database. All included
adults gave their informed consent for data collection and anonymization. The
study had been registered on Health Data Hub platform (N° F20220715144543).
The dataset consists of two main parts:

• Cohorte_données hebdo & mensuelles_Version du 30082022_pour
Elia Medical.xlsx: This file contains monthly and weekly data for 36,265 pa-
tients (rows), covering a period of three months (January, June, and December
2021). These data have been previously processed from raw data (described
below). It includes the following variables (columns):

– SUBJID: patient identifier;
– Nb Mois télésuivis: number of telemonitoring months for the patient;
– Mois: month of data (January, June, December);
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– Num_mois: month number (1: January, 2: June, or 3: December);
– Age: patient age;
– Classe d’âge: age category (categorized in 5-year intervals);
– Classe d’âge (pas = 10ans): age category (categorized in 10-year

intervals);
– Sexe: patient gender ("Homme": Male, "Femme": Female);
– Agences: name of the company associated with the patient;
– Code postal: patient ZIP code;
– Région: region in France;
– Ville: city of the company;
– Zone allergie: allergy area;
– Nom_marque_machine: brand of CPAP device;
– Nom_machine: supplier of CPAP device;
– Modèle machine: model of CPAP device;
– Nom_masque: model of CPAP mask;
– Type_masque: type of CPAP mask (nasal, full-face);
– Nom_marque_masque: mask supplier;
– Observance mensuelle moy: monthly average CPAP adherence time

(in hours);
– IAH mensuel moy: monthly average AHI;
– Log10 IAH mensuel moy: logarithm of monthly average AHI;
– Fuites 95e perc mensuelle moy (L/min): monthly average leak rate

at the 95th percentile;
– Log10 Fuites 95e perc: logarithm of monthly average leak rate at the

95th percentile;
– Temps Fuites élevées mensuelle moy (min): time when the leak

rate was high;

• Requete_Extraction_2021_01.xlsx, Requete_Extraction_2021_06.xlsx,
Requete_Extraction_2021_12.xlsx: These files contain daily data (rows)
extracted from the telemonitoring system for each patient for each month
(January, June, and December 2021, respectively). Due to the large volume of
data (1154726, 1125852 and 1170822 lines, respectively), each file was split
into two sheets to accommodate all the entries. These files represent the raw
data used in the study as they are not previously processed, and the variables
(columns) included in these files are:
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– nom_agence: company name;

– id_patient: patient identifier;

– id_materiel: material identifier;

– id_masque: mask identifier;

– date_releve: date of data capture;

– iah (AHI): apnea-hypopnea index;

– fuites: leak rate at the 95th percentile;

– utilisation_h: CPAP usage time (in hours);

– age: patient age;

– sexe: patient gender.

The processed monthly and weekly data document is a subset of the raw data
document, comprising a smaller set of patients. Consequently, the raw data
document is the primary source for this study, the following section examines how
it was preprocessed.

2.2 Data preprocessing
This section details the steps taken to preprocess the raw telemonitoring data into
a format suitable for analysis. The preprocessing involved several stages, focusing
on data cleaning, transformation, and structuring.

Loading raw data

The raw data was initially loaded from three Excel files: Requete_Extraction_2021_01.xlsx,
Requete_Extraction_2021_06.xlsx, and Requete_Extraction_2021_12.xlsx.
These files represent daily data for January, June, and December 2021, respec-
tively. Each Excel file contained two sheets ("Result 1" and "Result 2") representing
different portions of the same dataset.
The data was then loaded into three tables: Gennaio (January), Giugno (June),
and Dicembre (December) which had different dimensions (1154726, 1125852 and
1170822 rows, respectively). This difference in number of rows reflects the fact
that there are not the same number of daily acquisitions for all three months. To
account for this variability and ensure a consistent dataset for analysis, a series of
inclusion criteria were applied to the data (see Section 2.2.2).
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Codification of strings into numbers

The agency_name and sex variables, which were initially categorical strings, were
transformed into numerical values using a defined mapping.
For agency_name, each unique company name was assigned a unique numerical
code, as shown in Table 2.1.

Agency Name Code
’AIR ACTION SANTE’ 1
’AUXILAIR NORD’ 2
’AUXILAIR PICARDIE’ 3
’ECVL’ 4
’ELIA AQUITAINE’ 5
’ELIA ATLANTIC’ 6
’ELIA BFC’ 7
’ELIA LCA’ 8
’ELIA MEDICAL EST’ 9
’ELIA MEDICAL OUEST’ 10
’ELIA MEDICAL PARIS SAVIGNY’ 11
’ELIA MEDITERRANEE - LUNEL’ 12
’ELIA MEDITERRANEE - SEPTEMES LES VALLONS’ 13
’ELIA NORD - PAS DE CALAIS’ 14
’ELIA NORMANDIE’ 15
’ELIA PACA’ 16
’ELIA PICARDIE’ 17
’ELIA RHONE ALPES’ 18
’ELIA SUD OUEST’ 19
’EMCA’ 20
’EMPE’ 21
’EMPO’ 22
’UNIVAIR BMP’ 23
’UNIVAIR GRAND EST’ 24
’UNIVAIR MEDICAL CERGY’ 25

Table 2.1: Mapping of agency names to numerical codes.

For sex, the Table 2.2 was applied. A review of the data revealed the existence
of patients for whom a ’Mèdical’ gender had been indicated, a designation that
only carries meaningless information. In the following sections the removal of these
patients from the study population will be highlighted (see Section 2.2.2).
The date variable was transformed to keep only the day of the month (dd-mm-yyyy).
This transformation allows for a more efficient representation of categorical data,
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Sex Code
’Homme’ 0
’Femme’ 1
’Autre’ 2
’Mèdical’ 3

Table 2.2: Mapping of sex values to numerical codes.

facilitating subsequent data analysis through matrices.

From tables to matrices

The three matrices were created to store the data in a format more suitable for
analysis in MATLAB. The size of these matrices remained the same as the original
tables, but they only contained numerical values (double).

From matrices to structure

The three matrices were transformed into three structures (one for each month):
Gennaio_struct, Giugno_struct, and Dicembre_struct. Each structure had a
substructure for each patient, containing vectors (as long as the length of the month
of the structure in days) for all variables:

• agency_name: vector containing company names associated with the patient;
• material_ID: vector containing material IDs for the patient;
• mask_ID: vector containing mask IDs for the patient;
• date: vector containing dates of data capture for the patient;
• AHI: vector containing AHI values for the patient;
• leaks: vector containing leak rates for the patient;
• daily_adherence: vector containing daily CPAP usage time for the patient;
• age: vector containing age values for the patient;
• sex: vector containing sex values for the patient.

The data from all three months structures was consolidated into a single structure,
database_struct which had a substructure for each patient, containing:

• agency_name: single value;
• material_ID: single value;
• mask_ID: single value;
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• AHI: structure containing three AHI vectors for each month;

• leaks: structure containing three leaks vectors for each month;

• daily_adherence: structure containing three daily CPAP usage time vectors
for each month;

• age: single value;

• sex: single value.

The final consolidated structure, database_struct, is visualized in Figure 2.1. This
structure contains substructures for each patient, such as database_struct.patient_142
which is shown as illustrative example in Figure 2.2. Expanding the substructure
for patient 142, we can see the field Daily_adherence (Figure 2.3). This field is
itself a structure containing three fields representing the daily adherence vectors
for each month: gennaio (January), giugno (June), and dicembre (December).

Figure 2.1: Visualization of the struc-
ture database_struct.

Figure 2.2: Visualization of the sub-
structure database_struct.patient_142.

Figure 2.3: Visualization of the sub-sub-structure
database_struct.patient_142.Daily_adherence.
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2.2.1 Analysis and management of daily residual AHI and
leaks values

This section addresses the analysis and handling of daily residual AHI and leak
rate values. Following discussions with clinicians, particular attention was paid to
these values due to the observation of anomalous patterns atuomatically measured
from the device. The presence of inconsistencies – such as residual AHI or leaks
recorded during periods of zero CPAP usage – necessitates careful management.
Our approach ensures that these inconsistencies are appropriately identified and
treated. The following subsections describe the specific steps taken to process these
values, including handling of missing data, detection of outliers, and imputation
strategies.

Inconsistent values

In the preprocessing stage, each daily value of residual AHI and leaks corresponding
to zero CPAP daily usage was replaced with an empty value (NaN) to eliminate
inconsistencies in the data. Prior to this correction, these values were set to
0, which introduced inconsistency. Specifically, the double null value both in
adhesion and residual AHI (or leaks) implies that achieving zero adhesion would
result in the optimal values for residual AHI (or leaks) as to achieve optimality,
these variables must be minimised. From this point onwards, all calculations (in
particular the extraction of monthly features) are conducted without considering
the empty values. In addition, a new feature is introduced which quantifies the
number of empty values (days of non-use of CPAP) per month. Adopting this
approach allows the additional feature to provide a direct measure of the non-use
of the device. However, this approach doesn’t solve the potential bias that could
arise from the monthly average of residual AHI and leaks, which does not take
into account empty values. An alternative approach could have involved using
a weighted average, where a quantity proportional to the number of monthly
missing values would be added to the average calculated without considering the
missing values. However, such a correction can be complex and requires a careful
evaluation of the parameters involved (in this case, the weight to be assigned to
the monthly number of missing values). This approach was not selected since a
suitable method for accurately determining the parameter in question had not
been identified. Additional potential methods include imputation and interpolation.
However, these were excluded because by definition when the device is not utilised,
no measurements are produced; a solution to the problem would have been achieved
at a more straightforward data processing stage, however, this approach would
have resulted in inconsistencies with the daily adherence feature. Given these
considerations, the solution ultimately adopted involves capturing the number of
non-use days as a distinct metric, while excluding these days from the calculations
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of monthly mean residual AHI and leaks.

Outlier values in literature

The reliability of residual AHI calculation by PAP devices has been the subject of
investigation in more than one study [48, 49, 50]. These studies compare the AHI
determined by the CPAP machine with the AHI determined by manual reading of
a polysomnography (AHI_PSG) during the same night. The findings demonstrate
that (i) software machines tend to overestimate the AHI when the AHI_PSG is
low and the AHI is underestimated when the AHI_PSG is high, (ii) the correlation
between the machine index and the AHI_PSG is found to be acceptable for apneas,
but markedly inferior for hypopnoeas, (iii) the precision of residual AHI calculation
by the device is reduced when higher pressure is applied to the patient.

Outlier detection

In light of the observations made, an investigation was conducted into the outliers
present in the device daily measurements of residual AHI and leaks. The data from
the consolidated structure (database_struct) was transformed into a single daily
matrix: the rows of the matrix represented the daily acquisition for each month for
each patient while the columns showed the features: patient_id, month of data
capture (1: January, 6: June, 12: December), day of the month, daily CPAP usage
time (in hours), daily AHI, daily leak rate. This transformation facilitated the
analysis of daily AHI and leaks values in relation to daily adherence.

The optimal approach for the identification of outliers would have been to use the
Mahalanobis distance, incorporating the information about the pressure delivered
by the device. This would have been advantageous due to the established rela-
tionship between the accuracy of the measurements and the delivered pressure, as
mentioned earlier. However, since the pressure data were unavailable, an alternative
outlier detection method based on a histogram analysis of the general trend of the
residual AHI and leaks variables was employed [51]. This approach is a univariate,
non-parametric statistical method, which relies on the distribution of the data
without making a priori assumptions about their trend, allowing for a more flexible
identification of outliers.
A threshold is defined and an outlier is defined as a daily measurement that exceeds
the threshold.
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Outlier imputation

The imputation strategy was based on clustering the data according to daily
adherence values, which can take on a finite number of values, specifically ranging
from 0h to 24h in increments of 0.1h. Each measurement belonging to the same
level of daily adherence was considered a single cluster, and outliers were imputed
within these clusters. The outlier values were imputed by replacing each outlier
within the cluster with the median of the remaining non-outlier values calculated
within the same cluster.

2.2.2 Inclusion criteria
These inclusion criteria were established to ensure the completeness and consistency
of the dataset, allowing for reliable analysis across all patients over the three
months. The criteria related to valid mask ID, gender, age, and daily adherence
were implemented to eliminate erroneous or incomplete data, improving the accuracy
of the results.
Furthermore, the criteria were refined through consultations with clinicians. More
detailed explanations regarding the rationale behind each specific criterion are
provided in section 3.2.
Patients were included in the analysis if they met the following criteria:

1. Complete data across all three months: the patient must have data for all
three months.

2. Complete data for the month: the number of data points in the daily_adherence
vector must equal the number of days in the month: 30 acquisitions for January,
31 for June and 30 for December.

3. Valid mask ID: the mask_id value must not be null.

4. Valid gender: the sex value must not be "Medical", indicating a data error.

5. Valid age: the age value must not be empty.

6. Daily adherence less than 24 hours: the daily_adherence values should not
exceed 24 hours.

7. Specific device: the nom_machine must be "S10 Resmed".

8. Minimum monthly adherence: the monthly mean of daily_adherence must
be greater than or equal to 2 hours.
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To conclude the data preprocessing and move towards feature extraction, the final
dataset has been consolidated into a structure named database_struct_8criteri,
which includes the patients who met the established inclusion criteria and for which
outlier imputation of daily values has been performed.

2.3 Feature extraction
In this paragraph, we describe the process of extracting features from the dataset
in order to prepare it for further analysis. This procedure uses the preprocessed
dataset, specifically database_struct_8criteri, where imputation and inclusion
criteria have already been applied. At the end of this step a matrix named
database_matr_8criteri is obtained: for each patient (row) 38 columns are
obtained. For each patient, key data such as agency name, material ID, age, and
sex (Electronic Health Record features) are extracted, followed by the computation
of various statistical and binary features related to adherence, leaks, and AHI.

EHR features

Each patient in the dataset is identified by a unique patient ID, which is extracted
by converting the patient’s alphanumeric string identifier into a numeric form. This
allows for efficient management of the data within the matrix. Additionally, the
basic information for each patient (: agency_name, material_ID, age, and sex) is
captured in the first five columns of the matrix.

Statistical features

For each patient, the variance in CPAP adherence (VarAdh) is computed for the
months of January, June, and December. This metric helps assess the fluctuation
in the number of hours of device usage on a day-to-day basis during these months.
Variance values are stored in the next three columns (6-8 columns) of the matrix.

The mean adherence (MeanAdh) in hours, 95th percentile leaks in L/min (Mean-
Leaks), and AHI (MeanAhi) for each month (January, June, and December) are
calculated as the monthly averages, ignoring any NaN values where applicable.
These mean values provide a summary of the patient’s usage, leakage, and AHI
performance over time. The computed averages are stored in the columns 9-17.

Monthly labels

In addition to the numerical features, we compute a series of binary labels that
provide a classification of each patient’s adherence, leak rate, and AHI values based
on certain thresholds which were defined in close collaboration with pulmonologists.
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Binary variables are calculated based on whether the monthly mean adherence
exceeds 4 hours per night (columns 18-20: Adh4) or 5 hours per night (columns
21-23: Adh5). These two thresholds were considered based on their clinical and
regulatory significance. The first threshold of 4 hours was selected because, as
explained in Section 1.5, the National French guidelines for CPAP reimbursement
stipulate that patients must use the device for more than 4 hours per night to qualify
for full reimbursement [26]. Although there is no consensus regarding the optimal
level of PAP usage relative to health outcomes, a threshold of daily adherence of
more than 4 h is commonly considered as an adequate level of treatment [52]. The
second threshold of 5 hours was introduced with the aim of identifying high-quality
treatment adherence. It serves as one of the three criteria (the other two are the
next two explained) combined to define whether a patient is receiving optimal
therapy which is correlated to blood pressure, symptoms, depression, road traffic
accidents, cardiovascular morbidity and mortality, all-cause hospitalization and
emergency visits, all-cause mortality, health costs [52] as shows figure 2.4.

Figure 2.4: Association between PAP usage and outcomes based on published
literature. Non-solid bars show studies in which PAP usage was analyzed as a
continuous variable. Plain bars show studies that evaluated the impact of PAP
usage above and below a predefined threshold [52].

The next set of binary indicators (columns 24-26: Leaks24) is calculated based on
whether the average leak rate for each month is less than 24 L/min. This threshold
is set based on the analysis by Schwab et al. [53], which considers this value of
leak rate at the 95th percentile for a ResMed device as acceptable. According to
the analysis, a leak rate below this threshold allows scheduling a follow-up clinical
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appointment between 6 months and one year, as it indicates that the patient’s
therapy is within the acceptable performance range.

Similarly, binary labels for AHI are computed based on whether the monthly mean
AHI is below 5 events per hour (columns 27-29: Ahi5) always defined from Schwab
et al. [53] a value considered to lead to an effective treatment.

Lastly, we calculate combined criteria (columns 30-33: CC), which combine adher-
ence, leak, and AHI metrics to assess patient performance under stricter conditions.
If all the three criteria are positive this metric is positive which means the patient
reached a good quality treatment.

Numerical features

The last three columns (33-35: NullAdh) in this subsection count the number of NaN
values in the AHI measurements for each month. These values indicate the number
of days in each month where CPAP usage was zero by directly quantifying the
number of days when the CPAP device was not used. The decision to include this
variable in the analysis is explained in Section 2.2.1, where it was determined that
capturing the number of non-use days as a distinct metric provides complementary
information to the monthly statistical variables.

2.4 Calculation of the correlation coefficients
In this section, the correlation coefficients are computed to examine the relationships
between various EHR features, VarAdh and outcomes metrics across three different
months (January, June, and December). Specifically, the correlation is calculated
between the following independent variables: agency name, material ID, age, sex,
and VarAdh for each month (JA: January, JU: June, DE: December), and the
dependent variables (along the rows) for each month (JA, JU, DE), which include
MeanAdh, MeanLeaks, MeanAhi, Adh4, Adh5, Leaks24, Ahi5, CC, and NullAdh.

The correlation is calculated using the Pearson method when the dependent vari-
able is continuous (MeanAdh, MeanLeaks, MeanAhi, NullAdh), and the Kendall
method when the dependent variable is binary (Adh4, Adh5, Leaks24, Ahi5, CC).
Specifically, the Pearson or Kendall correlation coefficient r can range from -1 to 1.
A value of r = 1 indicates a perfect positive correlation, r = −1 represents a perfect
negative correlation, and r = 0 signifies no correlation. For practical purposes, the
following ranges are used to classify the strength of the correlation:

• Weak correlation: |r| between 0 and 0.3
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• Moderate correlation: |r| between 0.3 and 0.7

• Strong correlation: |r| greater than 0.7

These thresholds provide a framework for evaluating the correlation coefficients
calculated in this analysis.

The principal objective of this calculation was to quantify and compare the correla-
tion between the novel variable VarAdh and the outcomes under examination, and
the correlation between the variables that had already been analysed in a previous
study [42] based on the same database and the outcomes. This preliminary analysis
was conducted to provide an early indication of whether the initial hypothesis
regarding the predictive potential of the VarAdh variable could indeed lead to the
desired results in subsequent analyses.

In addition to calculating the correlation coefficients, the p-value associated with
each correlation was computed to assess the statistical significance of the results.
The p-value determines whether the observed correlation could have occurred by
chance, with a lower p-value indicating a more statistically significant relationship.
For this analysis, a threshold of p < 0.05 was used to denote statistical significance.
The p-values were calculated for both the Pearson correlation (for continuous
variables such as MeanAdh, MeanLeaks, MeanAhi, and NullAdh) and the Kendall
correlation (for binary variables such as Adh4, Adh5, Leaks24, Ahi5, and CC).

2.5 Univariate clustering
Univariate clustering is an unsupervised method which involves defining clusters
within the population of the dataset based solely on a single variable, which in this
case is the VarAdhJA variable. This approach was employed to assess the ability of
VarAdhJA to separate patients into distinct clusters with differing characteristics
and to stratify them, particularly with regard to their long-term outcomes. By
focusing on this single variable, the goal was to understand its effectiveness in
differentiating patient groups and its potential in predicting future clinical results.
This method allows us to explore how a single key feature like VarAdhJA can influ-
ence patient stratification and contribute to meaningful distinctions in treatment
response or adherence patterns.

2.5.1 Hierical clustering
Initially, hierarchical clustering was employed because this type of clustering does
not require the number of clusters to be defined a priori. This method allows for
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an exploratory analysis, enabling the data structure to guide the determination of
appropriate clusters. Based on the analysis of the dendrogram generated by the
hierarchical clustering, a specific number of clusters to investigate was chosen. The
flexibility of this method provided a good foundation for the initial exploration of
the dataset.

Hierarchical agglomerative clustering is a method that builds a hierarchy of clusters
by iteratively merging the closest pairs of clusters. The process begins with each
data point as its own cluster, and in each step, the two clusters that are closest to
each other are merged. This continues until all data points are grouped into a single
cluster. The hierarchical structure is typically visualized using a dendrogram,
which shows how clusters are merged over the process, with the height of the
branches representing the distance between the merged clusters.
Clusters can be extracted from the dendrogram by making a "cut" at a certain
height, which divides the dendrogram into distinct clusters. There are two main
ways to perform this cutting:

• Natural Cutting: This method relies on identifying a natural gap in the
dendrogram where the distances between clusters increase significantly. By
visually inspecting the dendrogram, one can determine a level where the
structure of the data suggests a clear division of clusters. This natural
gap often represents the most meaningful division according to the inherent
properties of the data.

• Highest Distance Cutting: In this approach, the dendrogram is cut at the
highest possible distance between clusters. This ensures that the clusters
formed are maximally distinct from one another based on the distance metric
used. It is particularly useful when the goal is to maximize the separation
between groups.

By applying hierarchical agglomerative clustering, flexibility is provided in selecting
the most appropriate number of clusters based on the data structure and the
analysis goals.The distance metric used in this clustering process was the Euclidean
distance, which measures the straight-line distance between points in the dataset.
The linkage criterion was based on the complete method, where the distance
between clusters is determined by the maximum distance between any pair of
points in the clusters being merged.

2.5.2 K-means
Following the utilisation of the dendrogram for the visualisation of the data, the
decision was taken to apply the K-means clustering method with a pre-defined
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number of clusters (k). This was based on insights gained from the dendrogram
analysis and discussions with clinicians.

The K-means algorithm is a simple clustering method that seeks to minimize the
intra-cluster variability and maximize the inter-cluster distance in an iterative
process. The centroid, or prototype, represents the mean value of all the elements
that belong to a given cluster. Intra-cluster variability refers to the sum of all
distances between each element within a cluster and the centroid of that cluster. On
the other hand, inter-cluster distance is the distance between the centroids of two
different clusters. The algorithm was applied using the MATLAB function kmeans.
The function was executed with default settings, meaning that the algorithm
performed the clustering with the default number of 100 maximum iterations per
run and 5 repetitions (or restarts), this means the algorithm will run 5 times with
different initial centroid positions and return the solution with the lowest total sum
of distances within clusters.

The K-means algorithm operates in several steps. First, the number of clusters
k is defined. Then, k initial centroids are selected, either by assigning elements
arbitrarily to clusters or by choosing an arbitrary set of cluster centroids, with some
elements acting as centroids. Once the centroids are set, the algorithm computes
the centroid of each cluster. After this, it reassigns each element in the dataset
to the nearest centroid based on a predefined distance measure. This process of
recalculating centroids and reassigning elements continues iteratively until the
assignment of all elements no longer changes. If no change occurs, the algorithm
stops; otherwise, it repeats the process until convergence is achieved.

2.5.3 Single-threshold clustering

An additional method was explored to partition the dataset into only two clusters
using a single threshold. The optimal threshold was identified through the evalu-
ation of a ROC curve (Receiver Operating Characteristic curve). The ROC was
constructed by varying the threshold on the continuous variable VarAdhJA, which
dichotomises the dataset based on the binary variable Adh4DE. This means that
the ROC curve was calculated to identify the optimal threshold on the adherence
variance in January that could best classify patients in December as either adherent
or non-adherent (defined as having a monthly usage of more than 4 hours per
night).
Following the construction of the ROC curve, the threshold value applied to the
VarAdhJA variable was selected to maximise Youden’s Index.
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ROC Curve

A ROC curve is a graphical representation used to evaluate the performance of
a binary classification model at different threshold settings. It plots the True
Positive Rate (sensitivity) against the False Positive Rate (1 - specificity) for
various threshold values. The area under the ROC curve (AUC) provides a measure
of the model’s ability to distinguish between classes, with a value of 1 representing
perfect classification and 0.5 representing a model that performs no better than
random guessing. The ROC curve is particularly useful in determining the optimal
balance between sensitivity and specificity by visualizing the trade-off between
these two metrics at different threshold levels.

Youden’s Index

Youden’s Index is a summary measure used to determine the optimal threshold for
a classification model based on its ROC curve. It is calculated as:

Youden’s Index = Sensitivity + Specificity − 1

The index ranges from 0 to 1, with higher values indicating better performance.
The optimal threshold is the one that maximizes Youden’s Index, meaning it
provides the best balance between sensitivity (true positive rate) and specificity
(true negative rate).
Geometrically, Youden’s Index represents the vertical distance between a point on
the ROC curve and the diagonal line (also called the line of no-discrimination),
which represents random guessing. The diagonal corresponds to a scenario where
the classifier has no discriminative ability (i.e., a random classifier).This makes it
a useful metric for selecting the threshold that maximizes the model’s ability to
correctly classify both positive and negative cases.

2.6 Clusters characterization
Once the clusters were identified, they were characterized to understand the specific
properties and features of each group. Each cluster was characterized by:

• numerosity: number of patients within that cluster;

• % population: percentage of patients in that cluster relative to the entire
dataset population;

• Age: mean value and standard deviation of the age of patients within that
cluster;
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• Sex: percentages of ’Male’, ’Female’, and ’Others’ patients separately in that
cluster;

• VarAdh: mean value and standard deviation of the monthly variance of
adherence for each month for each cluster;

• MeanAdh: mean value and standard deviation of the monthly mean adherence
for each month for each cluster;

• MeanLeaks: mean value and standard deviation of the monthly mean unin-
tentional leaks at the 95th percentile for each month for each cluster;

• MeanAhi: mean value and standard deviation of the monthly mean AHI for
each month for each cluster;

• Adh4: percentages of patients meeting the adherence criterion (MeanAdh>4)
for each month for each cluster;

• Adh5: percentages of patients meeting the adherence criterion for good quality
treatment (MeanAdh>5) for each month for each cluster;

• Leaks24: percentages of patients meeting the leak criterion for good quality
treatment (MeanLeaks<24) for each month for each cluster;

• Ahi5: percentages of patients meeting the AHI criterion for good quality
treatment (MeanAhi<10) for each month for each cluster;

• CC: percentages of patients meeting the combined criterion (MeanAdh>5 &
MeanLeaks<24 & MeanAhi<10) for each month for each cluster;

• NullAdh: mean value and standard deviation of the number of nights per
month with no device usage for each month for each cluster.

For each variable, the p-value was also calculated:

- For the numerical variables (Age, VarAdh, MeanAdh, MeanLeaks, MeanAhi,
NullAdh), the p-value was computed using a one-way ANOVA test. This
test returns a p-value, which quantifies the statistical difference between at
least one cluster and the others for that specific variable. Additionally, from
one-way ANOVA test a structure is returned that is used in the multiple
comparison test, enabling us to determine which pairs of group means are
significantly different from each other.

- For the binary or categorical variables (Sex, Adh4, Adh5, Leaks24, Ahi5, CC),
the p-value was computed using a chi-squared test. First, a contingency table
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was created, followed by the chi-squared statistic calculation. The degrees of
freedom and the cumulative distribution function were then used to obtain
the p-value.

The p-values are reported for each variable only when greater than 0,001, otherwise,
’< 0,001’ is reported. The p-values are highlighted in bold when statistically
significant (less than 5%). Additionally, for each variable, next to the value of
each cluster, symbols are included to indicate which clusters share statistically
significant inter-cluster differences.
In addition to the general characterization of clusters, a specific analysis was
conducted on the distribution of the variable MeanAdhDE within and across the
identified clusters. This was performed by visualizing three overlapping histograms,
one for each cluster, with a bar width of 0,1h. The x-axis represents the values of
the MeanAdhDE variable (mean adherence in December), while the y-axis indicates
the occurrences (i.e., the number of patients) within that interval for each cluster.

2.6.1 Longitudinal analysis
An additional analysis was conducted on the clusters obtained through the single-
threshold method, focusing on a longitudinal temporal perspective. This analysis
aimed to quantify adherence outcomes and treatment quality based on how many
months (out of the three examined: January, June, and December) a patient
remained in the cluster characterized by lower adherence variance. Essentially, it
evaluates the outcomes as a function of membership in this cluster over time.

This was achieved by subdividing the clusters generated by applying the ROC-
determined threshold to the variable VarAdhJA (January adherence variance) into
sub-clusters. These sub-clusters were created by applying the same threshold to the
variable VarAdhJU (June adherence variance). Subsequently, further subdivision
into "sub-sub-clusters" was performed by applying the threshold to the variable
VarAdhDE (December adherence variance).

The "sub-sub-clusters" were then merged into four distinct clusters:

1. Patients who did not belong to the lower-variance cluster in any of the three
months.

2. Patients who belonged to the lower-variance cluster for one month.

3. Patients who belonged to the lower-variance cluster for two months.

4. Patients who belonged to the lower-variance cluster for all three months.
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For each of these four clusters, these outcomes were characterized: MenAdhDE
(mean adherence in December), percentage of patients meeting the adherence
criterion (%Adh4DE), and percentage of patients achieving optimal treatment
quality (%CCDE). The results were visualized using bar plots, with error bars
representing the standard deviation and statistical significance indicated by asterisks
placed above the bars when significant differences were found. The overall statistical
difference was quantified through the calculation of p-values (considered significant
when < 5%). Specifically, one-way ANOVA was used to test for differences in the
continuous variable MeanAdhDE, while chi-squared tests were employed to assess
the differences in the binary variables Adh4DE and CCDE. This approach follows
the methodology outlined in Section 2.6.

This longitudinal analysis provided valuable insights into how sustained membership
in the low-variance cluster influences adherence and treatment quality outcomes
over time.
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Results

In this chapter, the key findings from the analysis of telemonitoring data collected
from patients undergoing CPAP therapy are presented. The results chapter is
structured to address various aspects of the study, beginning with the identification
and treatment of outliers in daily measurements of AHI and leaks, followed by the
implementation of inclusion criteria to refine the dataset. The performance of the
proposed feature, Variance in Adherence (VarAdh), is evaluated, with correlations
and clustering techniques applied to assess its potential in predicting long-term
treatment outcomes. Finally, a detailed characterization of the patient clusters is
provided, offering insights into the relationship between adherence

3.1 Analysis and management of daily residual
AHI and leaks values

3.1.1 Inconsistent values

The correction applied to residual AHI and leaks values resulted in 275.172 data
points being marked as NaN out of 2.414.908 total values from patients who met
up to the seventh exclusion criterion (as outlined in Section 2.2.2), removing any
inconsistencies arising from periods of zero CPAP usage. This adjustment allowed
for a more accurate calculation of monthly averages, as empty values were excluded
from the analysis, ensuring that residual AHI and leak rates were not artificially
minimized.
Furthermore, the new feature quantifying the number of non-use days per month
will have its significance explained in the following sections.
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3.1.2 Outlier detection
Thresholds were set as the average value plus nine times the standard deviation of
the distribution of residual AHI for AHI outlier detection and the average value plus
six times the standard deviation of the distribution of leaks for daily measurements
of leaks outlier detection in order to set a quite conservative threshold. Figures
3.1 A, 3.2 A and figures 3.1 B, 3.2 B demonstrate the conservative nature of the
thresholds and show that only a small tail of the total distribution is actually
considered as outliers.

A) B)

Figure 3.1: A) Histogram of daily non-intentional leaks. B) Zoomed histogram of
daily non-intentional leaks between 0 and 250 (L/min).

A) B)

Figure 3.2: A) Histogram of daily AHI. B) Zoomed histogram of daily AHI
between 0 and 60 (1/h).
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Figures 3.3 A and 3.4 A depict a scatter plot illustrating the daily leaks measure-
ments and daily AHI measurement as a function of the hours of use of the CPAP
with the superimposed thresholds. The figures 3.3 B and 3.4 B depict a zoomed
scatter plot in the adherence range between 0 and 2 hours.
In figures 3.3 and 3.3, A) representation of data is given because a greater pres-
ence of outliers was noted when the hours of daily use were low. The purpose of
representation B) is twofold: firstly, to illustrate the trend of measurements in very
low daily adherence levels more precisely; secondly, to demonstrate the discrete
levels of adherence measured (rounding to the first decimal place in the calculation
of daily adherence). This observation will be employed at a later stage during the
imputation process (Sections 2.2.1 and 3.1.3).

A) B)

Figure 3.3: A) Scatter plot of daily leaks measurements as a function of hours of
CPAP use. B) Zoomed scatter plot of daily leaks measurements in the adherence
range between 0 and 2 hours.

3.1.3 Outlier imputation
Following the identification of outliers in the daily residual AHI and leaks val-
ues, which were classified as erroneous based on a review of the literature and
consultations with clinicians, an imputation strategy was implemented. Outliers
were imputed within each adherence cluster, based on the median values of the
remaining non-outlier measurements as explained in Section 2.2.1. This approach
aimed to preserve the integrity of the dataset by replacing extreme values that
could skew the overall results.

Finally, 3.164 and 119 daily AHI values and daily leaks values, respectively, where
imputed out of 2.414.908 daily measurements.
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A) B)

Figure 3.4: A) Scatter plot of daily AHI measurements as a function of hours of
CPAP use. B) Zoomed scatter plot of daily AHI measurements in the adherence
range between 0 and 2 hours.

3.2 Inclusion criteria
The figure 2.1 illustrates, in a flowchart, how the database was reduced from 37.790
patients to 24.253 patients.

Figure 3.5: Flowchart showing the steps of the reduction of the database from
37.790 patients to 24.253 patients through the eight criteria enumerated in Section
2.2.2.

The first two criteria (Complete data across all three months and Complete data
for the month) were established to ensure a comprehensive dataset. The subsequent
criteria (Valid mask ID, Valid gender, Valid age, and Daily adherence less than 24
hours) were implemented to eliminate missing or inconsistent values.
The seventh criterion addresses the variability in the definitions of leaks among
different manufacturers, as discussed in Section 1.5.1. Consequently, we decided
to focus our investigation on the model and device most prevalent in the dataset,
which is the Resmed S10.
The eighth criterion was adopted following the feature extraction phase. The
minimum monthly adherence criterion was implemented because, after consultation
with clinicians, patients who do not meet this standard are considered to be less
representative of the target population for this study. This is primarily due to
the fact that they may not qualify for government reimbursement [26], which can

42



Results

create significant barriers to ongoing treatment. Additionally, without sufficient
adherence to CPAP usage, these patients are less likely to experience meaningful
improvements in their condition [28, 52].

3.3 Correlation coefficients
The correlation coefficients between the independent variables (AgencyName, Mate-
rialID, Age, Sex, and VarAdh) and the dependent variables (MeanAdh, MeanLeaks,
MeanAhi, Adh4, Adh5, Leaks24, Ahi10, CC, and NullAdh) were calculated, as
described in Section 2.4. These calculations were performed on two datasets: one
containing patients with MeanAdhJA lower than 2 hours per night (7-criteria
database, Table 3.6) and another excluding these patients (8-criteria database,
Table 3.7). The aim was to quantify the relationships between the newly introduced
variable, VarAdh, and key dependent variables to assess its predictive potential
compared to already investigated independent variables, and to evaluate the impact
of applying 8 criteria instead of 7.
The correlation was measured across three different months (JA, JU, and DE). In
the tables (3.6 and 3.7), each cell represents the correlation coefficient calculated
between the independent variable (in the columns) and the dependent variable (in
the rows). The color of the cell indicates the time span of the correlation: yellow
for short-term (same month), blue for medium-term (six months), and green for
long-term (twelve months). Statistical significance is denoted by the boldness of the
coefficient, with bold indicating a p-value less than 0.05 (p-values were calculated
for all correlation coefficients and are reported in tables 3.8 and 3.9). The color of
the coefficient itself reflects the strength of the correlation: black for weak, orange
for moderate, and red for strong correlations.

The quantitative comparison clearly shows that VarAdh offers a much stronger
and consistent correlation with key dependent variables related to adherence and
treatment quality.
There is a difference in correlation when the dataset is reduced further to include
only patients with MeanAdhJA greater than two hours per night (the 8-criteria
dataset). In the table representing the correlations calculated on the reduced
dataset, the coefficients are significantly higher. By excluding these patients, we
observe a much stronger linear relationship between the independent and dependent
variables, particularly for VarAdh, whose correlation coefficients increase markedly,
as seen in the comparison between the two tables.

In table 3.7, the long-term correlations (green cells) offer a detailed comparison
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Figure 3.6: Correlation table calculated on the 7-criteria database.

Figure 3.7: Correlation table calculated on the 8-criteria database.

between VarAdhJA, Sex, and Age as independent variables, and key dependent
variables such as MeanAdh, Adh4, CC, and NullAdh. Focusing on the long-term
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Figure 3.8: P-value table relating to correlation coefficients calculated on the
7-criteria database.

Figure 3.9: P-value table relating to correlation coefficients calculated on the
8-criteria database.
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predictions, we can observe that VarAdhJA consistently demonstrates stronger
correlations across these variables compared to Sex and Age.
Starting with MeanAdh, VarAdhJA shows a correlation of -0.32, which is signifi-
cantly higher than both Sex (-0.05) and Age (0.05).
For Adh4, which represents the proportion of patients meeting the minimum
monthly adherence threshold of 4 hours per day , VarAdhJA again shows a higher
correlation -0.23 than either Sex (-0.05) or Age (0.02).
Looking at the combined criteria (CC), which evaluates adherence, leak rates, and
AHI together, VarAdhJA demonstrates a weak long-term correlation of -0.10 higher
than Sex but not than Age.
Lastly, in relation to long-term prediction of NullAdh, which quantifies the monthly
number of days without CPAP usage, VarAdhJA shows a moderate correlation of
0.39. This is markedly higher than both Sex (0.06) and Age (-0.05).

The Pearson correlation coefficient between VarAdhJA and MeanAdhDE is -0.32,
indicating a moderately negative correlation. The negative sign suggests that higher
variability in adherence in January is associated with lower average adherence in
December, meaning that patients with inconsistent adherence early on tend to have
worse adherence outcomes at the end of the year.
The Pearson correlation coefficient between VarAdhJA and NullAdhDE is 0.39,
indicating a moderate positive correlation. The positive sign suggests that greater
variance in adherence in January strongly predicts an increase in the monthly
number of days of non-use (NullAdh) in December.
Finally, the Kendall coefficient between VarAdhJA and CCDE is -0.10, which,
although weaker, still indicates a negative correlation. The coefficient suggests
that greater variance in adherence in January corresponds to a lower likelihood
of achieving the combined criteria (CC) in December. While the correlation is
not as strong as with MeanAdh, the negative sign confirms that higher adherence
variability is linked to poorer overall treatment quality, as measured by CC.

3.4 Univariate clustering
3.4.1 Hierarchical clustering
In the initial phase of the hierarchical clustering analysis, a cut based on the
highest distance was tested. The dendrogram obtained and the cut performed (at a
distance of 48,41 h), which divides the patients into clusters colored with different
colors, is shown below in figure 3.10.
Following the analysis based on the highest distance cut, a natural cut was tested,
as the initial approach was found to be unsatisfactory and inadequate, at a distance
of 8,6 h. This height was chosen because it allows for the division of the dataset
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Figure 3.10: Dendrogram of Hierarchical Univariate Clustering cut at the highest
distance (max_dist = 48,41) obtaining 2 clusters.

into a number of clusters that is not too high, yet still sufficiently stratifies the
data.
The dendrogram obtained and the natural cut performed, which resulted in a
division of the data into 8 clusters, is shown below in figure 3.11.

Figure 3.11: Dendrogram of Hierarchical Univariate Clustering cut through
natural cut (dist = 8,6) obtaining 8 clusters.

This natural cut provided the best way to explore the inherent structure of the
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data, allowing for the identification of the number of patient clusters that are likely
to have meaningful differences in terms of outcomes or other characteristics.

3.4.2 K-means clustering

This approach allows for the number of clusters to be chosen a priori, offering greater
control over the final grouping. Division into 3 clusters were investigated based on
discussions with clinicians and supported by the results of the dendrogram analysis.
The dendrogram graphic representation of data revealed a primary division of the
population into three large groups, with additional smaller secondary groups. This
evidence guided the selection of 3 clusters, striking a balance between capturing
key distinctions within the larger clusters and ensuring that the number of groups
remains manageable for practical application in clinical practice. This compromise
helps maintain high efficiency while allowing for detailed patient stratification.
The K-means algorithm was applied, and the function defined two thresholds to
distinguish between three clusters: Th1 = 3,8004 and Th2 = 9,7338 hours of
adherence variance in January.

The figure below (3.12) displays the results of the K-means clustering applied to
the VarAdhJA variable, with the patients grouped into three clusters. The x-axis
represents the variance in adherence during January (VarAdhJA), while the y-axis
represents patient IDs. The scatter plot visualizes the separation between clusters,
with each color corresponding to a distinct cluster: Cluster 1 in green with lowest
variance, Cluster 2 in orange with medium variance and Cluster 3 with highest
variance. This representation was chosen, despite the y-axis not conveying specific
information, to visually display the density of elements within the clusters based
solely on the VarAdhJA scale.
Figures 3.13 and 3.14 visualize the clustered data, in terms of MeanAdhJA vs
VarAdhJa and MeanAdhDE vs VarAdhJa.

These visualizations help us understand the qualitative relationship between VarAd-
hJA and MeanJA/MeanDE across the clusters. In particular, they highlight how
patients with higher variability in adherence tend to have lower mean adherence
values.
However, this graphical representation primarily serves as a preliminary exploration
of these relationships. The exact quantification of these differences between clusters,
including additional variables, is provided in detail in the next section (Section ??),
where the properties of each cluster are further analyzed and compared.
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Figure 3.12: K-means clustering of patients based on VarAdhJA. Two thresholds
(Th1=3,8h and Th2=9,7h) are shown, separating the three clusters.

Figure 3.13: K-means clustering re-
sults: the x-axis represents the variance
in adherence in January (VarAdhJA),
while the y-axis represents the mean ad-
herence in January (MeanJA).

Figure 3.14: K-means clustering re-
sults: the x-axis represents the variance
in adherence in January (VarAdhJA),
while the y-axis represents the mean ad-
herence in December (MeanDE).
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3.4.3 Single-threshold clustering
As outlined in the Methods chapter (Section 2.5.3), a ROC curve was constructed
by varying the threshold applied to the variable VarAdhJA and evaluating its
effects on the binary variable Adh4DE (monthly adherence greater than 4 hours in
December). The ROC curve allows us to assess the ability of the adherence variance
in January (VarAdhJA) to predict whether a patient will meet the adherence
criterion (Adh4DE) by December.

Figure 3.15: ROC curve obtained by varying the threshold applied to the variable
VarAdhJA and evaluating its effects on the binary variable Adh4DE (AUC =
0,7417). The optimal threshold ( = 3,1683 hours) with the maximum Youden’s
Index ( = 0,4357) is highlighted in red.

Figure 3.15 presents the ROC curve obtained from this analysis. The AUC
corresponding to this ROC is 0,7417, indicating a reasonably good ability of the
VarAdhJA to predict future adherence outcomes. The optimal threshold, which
maximizes Youden’s Index, is marked with a red circle on the graph. The optimal
threshold identified was 3,1683 hours of monthly adherence variance. This threshold
yields a Youden’s Index of 0,4357, representing the best balance between sensitivity
and specificity for predicting adherence behavior in December based on January’s
variance in adherence.

The optimal threshold value of 3,2 hours, being very close to the Th1 threshold
(3,8 hours as shown in Section 3.4.2) obtained during the K-means clustering
for distinguishing between Cluster 1 and Cluster 2, reinforces the significance of
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Cluster1.

Figures below (Figure 3.16,3.17 and 3.18) illustrate the results of the single-threshold
clustering applied to the VarAdhJA variable, using the optimal threshold of 3,2
hours identified in the previous ROC analysis.

Figure 3.16: Single-threshold clustering of patients based on VarAdhJA with the
threshold of 3,2h separating the two clusters: the x-axis represents the variance in
adherence during January (VarAdhJA), while the y-axis represents patient IDs.

Following this analysis, the two clusters derived from the single-threshold approach
will be characterized similarly to how the three clusters from the K-means clustering
were characterized. This includes evaluating numerosity, adherence patterns, and
other key metrics (detailed explanation in Section 2.6 and 3.5). Additionally, the
relevance of remaining within Cluster 1, not only in January but also in June
and December, will be assessed in terms of ensuring high-quality treatment and
adherence over time. This longitudinal perspective will help to identify patients
who consistently fall within Cluster 1 throughout the year.
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Figure 3.17: Single-threshold cluster-
ing results: the x-axis represents the
variance in adherence during January
(VarAdhJA), while the y-axis represents
mean adherence in January.

Figure 3.18: Single-threshold cluster-
ing results: the x-axis represents the
variance in adherence during January
(VarAdhJA), while the y-axis represents
mean adherence in December.

3.5 Clusters characterization

3.5.1 K-means cluster characterization
The identified three K-means clusters were analyzed to compare the characteristics
of each group. Table 3.19 provides a detailed summary of the variables for each
cluster, including numerosity, age , adherence patterns, and key therapy-related
metrics like AHI and leak rates.
To visualize the similarity between Cluster 2 and Cluster 3, Figure 3.21 shows
the distribution of the variable MeanAdhDE across the different clusters obtained
through K-means clustering.
From this graph, it is possible to qualitatively appreciate the extent to which
Cluster 1 differs from the other clusters in terms of mean adherence values and
standard deviation. This difference is more pronounced than that observed between
Cluster 2 and Cluster 3, which is relatively slight.

3.5.2 Single-threshold cluster characterization
The same characterization applied to the clusters obtained using the k-means
method has been performed on the clusters obtained with the single-threshold
method. The difference in this case is that only two clusters were identified instead
of three. Therefore, the use of multiple comparison tests is not necessary, and
statistical inter-cluster differences are already indicated by the p-value reported in
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Figure 3.19: Characterization of the clusters obtained through k-means clustering
applied to database_matr_8criteri. The table shows the variables across the
three clusters, along with the corresponding p-values for each variable. Significant
p-values are highlighted in bold, and symbols indicate inter-cluster differences.

the last column of the table.
The table below (Table 3.20) provides a detailed summary of the variables for
each of the two clusters, including numerosity, age, adherence patterns, and key
therapy-related metrics such as AHI and leak rates. As with the k-means clustering
results, p-values were calculated for each variable. The p-values in bold indicate
statistically significant differences between the two clusters.
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Figure 3.20: Characterization of the clusters obtained through single-threshold
clustering applied to database_matr_8criteri. The table shows the variables
across the two clusters, along with the corresponding p-values for each variable.
Significant p-values are highlighted in bold.
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Figure 3.21: Overlapping histograms showing the distribution of MeanAdhDE
across the three clusters obtained through K-means clustering.

Figure 3.22: Overlapping histograms showing the distribution of MeanAdhDE
across the three clusters obtained through single-threshold clustering.

The graph in Figure 3.22 illustrates the distribution of the MeanAdhDE variable
across the two clusters identified through the single-threshold method. This
overlapping histogram provides a qualitative visualization of how mean adherence
in December is spread within the two clusters. A difference in both the mean
value and standard deviation of MeanAdhDE can be observed between the clusters,
highlighting a distinction in mean adherence patterns. Cluster 1, with lower
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adherence variance in January, shows a higher mean adherence in December,
whereas Cluster 2 displays lower overall mean adherence in December.

Longitudinal analysis

An additional longitudinal analysis was conducted on the clusters obtained through
the single-threshold method, focusing on how adherence outcomes and treatment
quality evolved based on how many months (out of the three analyzed: January,
June, and December) a patient remained in the low-variance adherence cluster.

The diagram in Figure 3.23 illustrates the methods (explained in Section 2.6.1)
used to create 4 clusters. Initially, patients were divided into clusters by applying
the ROC-determined threshold to the adherence variance in January (VarAdhJA).
These clusters were then further divided based on the same threshold applied to
June (VarAdhJU) and finally to December (VarAdhDE). This subdivision resulted
in "sub-sub-clusters," which were subsequently merged into four distinct groups: 3
(out of 3) months spent in cluster1, 2 months spent in cluster1, 1 month spent in
cluster1 and 0 months spent in cluster1.

Figure 3.23: Diagram illustrating the sub-cluster generation process based on
adherence variance across three months: January (JA), June (JU), and December
(DE). Patients were grouped into clusters according to how many months they
remained in the low-variance adherence cluster.

For each of these four clusters, the following outcomes were characterized: MeanAd-
hDE (mean adherence in December), %Adh4DE (percentage of patients meeting the
adherence criterion in December), and %CCDE (percentage of patients achieving
optimal treatment quality in December). Figure 3.24 presents the results of this
analysis. The error bars indicate standard deviations, and statistical significance is
denoted by asterisks above the bars.

From this bar plot, patients who remained in the low-variance cluster for all three
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Figure 3.24: Comparison of adherence and treatment quality outcomes across the
four clusters, defined by how many months the patients remained in the low-variance
adherence cluster. The blue bars represent the MeanAdhDE (mean adherence
in December), green %CCDE (optimal treatment quality), and red %Adh4DE
(adherence criterion met). Error bars represent standard deviation, and statistical
significance is indicated by asterisks.

months (cluster "3 months") demonstrated the highest adherence outcomes, with
MeanAdhDE reaching 7,28 hours, %Adh4DE 96,28% and %CCDE 61,81%. As
the number of months spent in the low-variance cluster decreased, these values
consistently declined, with the "0 months" cluster showing the lowest outcomes:
MeanAdhDE of 5.14 hours, 45.15% for %CCDE, and 71.56% for %Adh4DE. All the
variables (%Adh4DE, %CCDE, and MeanAdhDE) showed statistically significant
differences across the clusters.

These results underscore the importance of maintaining low adherence variance
across multiple months to achieve optimal treatment outcomes.

3.6 Summary
This section presents the rationale behind the methodological choices that ultimately
shaped the final results.

This study aimed to explore the variability in CPAP adherence among OSAS
patients, using telemonitoring data to identify patterns that could predict long-
term adherence and treatment quality. The overall goal was to address a clinical

57



Results

challenge in managing the vast amount of data generated by CPAP devices and to
help focus healthcare resources on patients with a higher risk of non-adherence.

OSAS is a disorder characterized by repeated airway obstructions during sleep,
leading to interrupted breathing and sleep fragmentation. CPAP therapy is the
gold standard for treating moderate-to-severe OSAS, but its effectiveness is heavily
dependent on patient adherence. The challenge in clinical practice is managing the
large volume of alerts and data from telemonitoring systems, which often overwhelm
physicians. This research set out to find a new, quantifiable variable that could
help stratify patients based on their adherence behaviors, focusing on the variance
in CPAP usage over time.

To achieve this objective, an analysis was conducted using a large French telemoni-
toring database of patients undergoing CPAP therapy with the ResMed S10 device
during the months of January, June, and December 2021. The primary focus was
on characterizing the monthly variance in CPAP usage, with particular emphasis
on the variance in January, and its relationship to treatment outcomes calculated
from the data in December.
The analysis aimed to assess the ability of this newly introduced feature—the
monthly variance in adherence (VarAdh)—to effectively stratify patients into dis-
tinct clusters based solely on their adherence behavior. Furthermore, the study
explored the predictive power of VarAdh for long-term outcomes, evaluating whether
this single variable could reliably predict adherence and good quality treatment
(needing less attention from physicians).

In order to refine the dataset and ensure meaningful analysis, several inclusion
criteria were established. These criteria were designed to eliminate incomplete or
inconsistent data and focus on patients whose adherence patterns were representa-
tive of the target population. Specifically, criteria such as complete data across all
three months, valid demographic information, and adherence below 24 hours per
day were applied to maintain data reliability. Additionally, a key criterion requiring
a minimum monthly adherence in January of 2 hours was added after consulting
with clinicians and comparing the results between Table 3.6 and Table 3.7 . This
was crucial to ensure that the patients included in the study had meaningful CPAP
usage, as those with low adherence may not qualify for reimbursement and are less
likely to experience significant treatment benefits.
Tables 3.7 and 3.8, which compared correlation coefficients for seven and eight
inclusion criteria, were pivotal. By adding an eighth criterion (minimum monthly
adherence in January of 2 hours), the correlation between adherence variance
and key outcomes increased significantly, particularly for VarAdh. This suggests
that patients with MeanAdhJA below two hours exhibited patterns that diverged
significantly from the overall trend captured by the correlation coefficient.
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After establishing the inclusion criteria, the telemonitoring data underwent pre-
processing, paying special attention to daily residual AHI and leaks values. These
metrics are indicators of treatment quality, but inconsistencies—such as measure-
ments recorded during periods of zero CPAP usage— or outliers—such as really
high measurements recorded during short periods of CPAP usage— needed to be
addressed. A conservative approach was adopted to manage these outliers, it was
not reasonable to assume that these values were merely erroneous (given that there
is a scarcity of literature on the subject). The results showed a greater presence
of outliers was noted when the hours of daily use were low. This phenomenon is
likely attributable to the difficulty in hypothesising that the patient is actually
asleep in such a brief period of time. Additionally, errors in identifying apnoeas,
hypopnoeas or unintentional leaks are amplified in a shorter measurement period,
resulting in the alteration of the AHI and the 95th percentile of unintentional leaks
calculation, and consequently reducing the precision of these values. In the end a
limited impact on overall outcomes is highlighted, likely because the thresholds
were set conservatively to account for the possibility of meaningful outliers.

Regarding Table 3.7, in which each cell represents the correlation coefficient cal-
culated between the independent variable (in the columns) and the dependent
variable (in the rows) for the database obtained after the application of eight crite-
ria, it is worth focusing on the correlation coefficients of the dependent variables
MeanAdhDE, Adh4DE, CCDE, and NullAdhDE. It is evident that for each of
these variables, the highest long-term predictive correlation coefficient corresponds
to VarAdhJA, except for the dependent variable CCDE, which shows a higher
correlation with age. This suggests that the variability in device usage calculated
for the month of January (VarAdhJA) is a more powerful predictive tool compared
to other variables (such as age, gender, etc.). However, further analyses should be
conducted to examine the potential predictive power of VarAdhJA in combination
with age information.
Despite having a generally higher predictive power than the other variables, the cor-
relation coefficient values are mostly low (below 0,3), with two notable exceptions:
the correlation between VarAdhJA and MeanAdhDE, which is -0,32, indicating
a moderate inverse relationship, and the correlation between VarAdhJA and Nul-
lAdhDE, which is 0,39, indicating a moderate direct relationship. In contrast,
the relationships between VarAdhJA and Adh4DE, as well as between VarAdhJA
and CCDE, are weak and inverse (-0.23 and -0.10, respectively). These results
suggest that while VarAdhJA holds moderate predictive power for some treatment
outcomes, particularly continuous metrics like MeanAdhDE and NullAdhDE, its
relationship with binary variables like Adh4DE and CCDE is weaker.

To segment the patient population, hierarchical clustering was used to explore the
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divisions within the data. Figure 3.11, which shows the dendrogram from this
analysis, revealed that the optimal number of clusters worth studying in detail was
three. This exploratory step was crucial for understanding the structure of the
dataset and setting up the subsequent K-means clustering analysis. It provided
a clear starting framework for grouping patients based on their January monthly
adherence.

Following the hierarchical clustering analysis, K-means clustering was applied, and
Tables 3.19 and graph 3.21 highlighted the key characteristics of the resulting
clusters.
From the table 3.19, it is possible to observe that the p-values calculated are almost
all statistically significant (with the exception of MeanAhi and Ahi5JA), which
indicates that at least one cluster significantly differs from the others. Additionally,
it can be noted that, for most variables, all three clusters are statistically different
from each other (as indicated by the symbols within each cell), with some exceptions.
For instance, no significant differences are observed between Clusters 2 and 3 for
the variable gender, between Clusters 1 and 3 for MeanLeaks in both June and
December, between Clusters 1 and 2 for Leaks24, and only between Clusters 1 and
3 for Ahi5. This highlights that the distinction between Cluster 1 and the other two
clusters was significant and warranted further investigation. The characterization
of the variables related to residual leaks and AHI consistently shows that these
metrics have limited power and significance in distinguishing patient clusters.
This suggests that residual AHI and leaks might not be as informative as other
variables in predicting adherence patterns and treatment quality. Therefore, further
investigations should be conducted to better understand these data and their
potential role in patient stratification.
Therefore, the variable of greatest interest, MeanAdhDE, and its distribution within
the different clusters was visualized in Figure 3.21. The overlap between Clusters 2
and 3 is evident and it is the reason why it was decided to investigate a further
method that studied more thoroughly the difference between Cluster 1 and the
other two by combining them. The decision was taken not to pursue the application
of the K-means algorithm with two clusters only, due to the discrepancy between
the identified threshold (considering only two clusters) and the threshold between
Clusters 1 and 2 (considering three clusters).

This led to the decision to explore an alternative approach—using a single-threshold
method based on Receiver Operating Characteristic (ROC) curve analysis. This
method aimed to identify the optimal threshold for dividing patients into two
distinct clusters (adherent and not adherent in December) based on adherence
variance, while maximizing Youden’s Index to ensure both sensitivity and specificity.
The results, as highlighted by the ROC curve in Table 3.15, reconfirmed the
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significance of the threshold (Th1) that separates Cluster 1 from Cluster 2 in the
K-means analysis (Figure 3.12, reinforcing the importance of this division as the
most meaningful cutoff point for stratifying patients based on their adherence.
The third method, utilizing the single-threshold approach, thus provided strong
validation for the importance of the Th1 threshold in distinguishing between
patients with consistently high adherence (Cluster 1) and those with lower or more
variable adherence (Clusters 2 and 3). By applying this threshold, clinicians can
reduce the population of patients requiring intensive attention during treatment
by excluding those in Cluster 1, who exhibit low variability in device usage at the
beginning of the year.

The graph in Figure 3.22 illustrates the distribution of the MeanAdhDE variable
across the two clusters identified through the single-threshold method. This
overlapping histogram provides a qualitative visualization of how mean adherence
in December is spread within the two clusters. A difference in both the mean
value and standard deviation of MeanAdhDE can be observed between the clusters,
highlighting a distinction in mean adherence patterns. Cluster 1, with lower
adherence variance in January, shows a higher mean adherence in December,
whereas Cluster 2 displays lower overall mean adherence in December.

The final analysis aimed to quantify the importance of a patient’s continued
presence in Cluster 1 throughout the year. The graph in Figure 3.24 shows the
three primary outcomes—MeanAdhDE, CCDE, and Adh4DE—in relation to the
number of months patients remained in Cluster 1, ranging from 0 months to 3
months. The analysis was conducted using the data from January, June, and
December, which were available in the database.
From this bar plot, it is clear that patients who remained in the low-variance cluster
for all three months (cluster "3 months") demonstrated the highest adherence
outcomes, with MeanAdhDE reaching 7,28 hours, %Adh4DE 96,28%, and %CCDE
61,81%. As the number of months spent in the low-variance cluster decreased,
these values consistently declined, with the "0 months" cluster showing the lowest
outcomes: a MeanAdhDE of 5,14 hours, 45,15% for %CCDE, and 71,56% for
%Adh4DE.
All the variables (%Adh4DE, %CCDE, and MeanAdhDE) showed statistically
significant differences across the clusters, indicating that a patient’s adherence
patterns, and thus their overall treatment quality, improve when they consistently
remain in the low-variance cluster throughout the year.
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Chapter 4

Discussion

4.1 Principal Findings

To the best of our knowledge, this is the first study depicting adherence variance
as associated with high adherence and high-quality treatment. A low monthly
adherence variance (below 3.2) consistently correlates with a higher likelihood of
achieving high mean monthly adherence and high-quality treatment, defined as
daily CPAP usage for more than 5 hours, low leak levels (95th percentile leaks <24
L/min), and a low apnea-hypopnea index (AHI <10/h), as identified by the CPAP
device. Moreover, the longer patients maintain a low monthly adherence variance,
the greater the proportion of time they experience high-quality treatment.
Eguchi et al. [44] analyzed a small population of 219 CPAP-treated patients and
suggested that the standard deviation of daily usage duration over a week possibly
correlates with poor CPAP adherence. Similarly, Turnbull et al. [45] found that
early patterns of CPAP usage were predictive of long-term CPAP use.
These findings raise three key questions: what are the reasons for the association
between adherence variance and high treatment quality? What is the signifi-
cance of adherence variance? How could this new marker be applied in CPAP
telemonitoring?

An explanation of this association could be that adherence variance reflects the
behaviour of the patients in their life in general. Behaviour could explain the
way the patients use their device (e.g. regularity of the use) and how long they
use it. Among the possible explanations, it can be hypothesized that a patient
who maintains regular sleep/CPAP usage patterns also tends to adhere more
carefully to their therapeutic regimen. Low variance in adherence is associated with
better treatment quality. It is well known that irregular sleep is linked to greater
cardiovascular comorbidity, and the opposite is also true [54, 55, 56]. It is well
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established from both cardiovascular [57] and non-cardiovascular [58] clinical trials
that adherence per se, including adherence to placebo, is associated with markedly
improved health outcomes, an effect that is often substantially larger than that
of active therapy. Conversely, regarding non-invasive ventilation, a well-adjusted,
comfortable treatment with minimal leaks or residual respiratory events promotes
good quality of sleep [59], regular use without nocturnal awakenings, which can
otherwise provide opportunities to discontinue the use of non-invasive ventilation.

The interest in adherence variance lies in its simplicity for calculation and interpre-
tation. The precision of this metric also allows for the differentiation of populations
with significative different median adherence, significative different median leak
rates but a large overlapping. Men, who are known to have higher adherence rates
under CPAP compared to women [60] were slightly more frequent in cluster 1
compared to the other clusters.

The use of this new metric in telemonitoring should help focus attention on patients
with higher adherence variance, to better understand the causes of this irregularity
in use. Clearly, promoting regular use and encouraging regular sleep in these
patients should be a priority during therapeutic education sessions. Moreover, a
telemonitoring alert threshold for adherence variance around 3 in patients under
cpap could be set to trigger physical or tele-interventions.

4.2 Limitations
This study offers valuable insights into the predictive potential of monthly adher-
ence variance in CPAP therapy, but several limitations must be considered when
interpreting the results.

One of the primary limitations lies in the lack of consideration for potential
confounding factors and the interaction between multiple variables. Specifically,
the study does not account for how variables such as age, sex, or other clinical
characteristics may influence adherence variance or its predictive power. This
could lead to bias in the results, as the ability of the monthly adherence variance
quantified in January to stratify patients may not be entirely independent of these
other variables. It is possible that some of the predictive power attributed to
adherence variance could be partially explained by factors such as age or sex,
which were not thoroughly explored in this analysis. Consequently, the threshold
applied to adherence variance cannot be considered fully independent of other
patient characteristics, nor can it serve as a comprehensive summary of the patient’s
adherence behavior. This limitation suggests that monthly adherence variance
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alone may not be sufficient for a definitive classification of patients.

Another significant limitation is the lack of information on how many years the
therapy has been in use and the pressure settings applied during treatment. Patients
in the dataset did not all start their therapy at the same time, and although
information about how many years the therapy has been in use was available for a
small percentage of patients, it was not included as a variable in the analysis due
to its limited availability. This lack of data may influence the adherence variance
(VarAdh) observed in the study and could introduce bias into the final results
and conclusions. Additionally, the pressure settings used during therapy play a
critical role in the accuracy of measurements related to leaks and residual AHI,
as demonstrated in previous studies (see Section 2.2.1). Incorporating pressure
settings in future analyses would be beneficial, as it would enable a more precise
evaluation of outliers and distinguish between actual outliers and erroneous values.
Moreover, more literature is needed to comprehensively evaluate the accuracy of
the ResMed S10 device used for telemonitoring in detecting residual AHI and
leaks. A thorough comparison between the measurements of this device and ground
truth values obtained through polysomnography would help assess the potential
dependence of the device’s accuracy on variables such as pressure or mask type.

4.3 Future Developments
To address the limitations identified in this study, further research will be conducted
to enhance the methodology and obtain more comprehensive data. Specifically,
efforts will be made to request the missing information regarding the number
of years of CPAP usage and the pressure settings from the database providers.
Acquiring these additional data will enable two key improvements in the analysis.

First, it will refine the technique used for evaluating outliers in residual AHI and leak
measurements. Incorporating the pressure settings into the analysis will provide a
more accurate method for distinguishing between actual outliers and erroneous or
non accurate values, as pressure influences the precision of these measurements.
With better outlier understanding, the dataset will reflect more reliable combined
criteria metrics to quantify the quality of the treatment, ultimately improving the
study’s conclusions about VarAdh abilities.

Second, a more structured approach will be applied to study the relationships
between different variables and assess the potential biases they may introduce.
By incorporating variables such as age, sex, pressure, and years of CPAP use, it
will be possible to quantify the independence of the monthly adherence variance
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(VarAdh) from these factors. The goal will be to determine whether VarAdh
retains its predictive power and ability to stratify patients when controlling for
these confounding variables. To achieve this, an advanced method such as Inverse
Probability of Treatment Weighting (IPTW) will be employed. IPTW allows for
balancing the influence of confounding variables, thereby enabling a more accurate
assessment of VarAdh’s impact on adherence and treatment outcomes.

The objective of this refined analysis will be to identify a threshold for VarAdh that
can be used independently in clinical practice. A clinically applicable threshold
would allow physicians to stratify patients based on their adherence behavior
without needing to account for multiple variables simultaneously. This would
simplify the interpretation of telemonitoring data, making it easier to identify
patients at risk of poor adherence and those in need of additional support.

In summary, by incorporating the missing data and employing more robust analyt-
ical methods, future iterations of this study will aim to strengthen the conclusions
drawn from the current research.
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Chapter 5

Conclusions

In conclusion, this study demonstrates an association between a new variable
(adherence variance) and high adherence/high-quality treatment.

The interest in adherence variance lies in its simplicity for calculation and interpre-
tation. The precision of this metric also allows for the differentiation of populations
with median adherence that might otherwise seem similar.

The use of this new metric in telemonitoring should help focus attention on patients
with higher adherence variance, to better understand the causes of this irregularity
in use. Clearly, promoting regular use and encouraging consistent sleep in these
patients should be a priority during therapeutic education sessions. Moreover,
a telemonitoring alert threshold for adherence variance in patients under CPAP
therapy could be set to trigger physical or tele-interventions.
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