POLITECNICO DI TORINO

Degree in Automotive Engineering

Vﬁfﬂ&d

“llm TTM T |li! };i

! »
. . mll o i ”

"
N 1859 e
‘\‘\Q‘ ‘!’&"’

Master’s Degree Thesis

Electric Vehicles Powertrain Control and
Optimization

Gabriel Jenner De Faria Orsi

Supervised by
Prof. Dr. Carlo Novara
Prof. Dr. Angelo Bonfitto Phd. Michele Pagone

July 2024

Summary

In recent years, electric vehicles have gained significant attention as a sustainable
transportation solution. The shift towards electric vehicles has become increas-
ingly important in addressing environmental concerns and reducing dependence
on traditional fossil fuels. Vehicle manufacturers are now challenged to develop
advanced powertrain technologies that offer compact, energy-efficient, and environ-
mentally friendly solutions at affordable costs. This requires extensive research and
development efforts to design innovative technological solutions that cater to the
growing demand for low carbon emission transportation, essential for combating
global warming and enhancing urban air quality. This thesis specifically focuses on
the modeling and control of electric vehicle powertrain, using a model predictive
control as methodology for minimizing the battery consumption and optimizing
the acceleration performance.

Keywords: Electric vehicles, powertrain, Model Predictive Control, longitudinal
dynamics, optimization.

11

Table of Contents

List of Tables

List of Figures

Acronyms

1 Introduction

1.1
1.2

Objectives
Literature review

2 Electric Vehicle Powertrain Components

2.1
2.2
2.3
24
2.5
2.6
2.7

Power Source
Battery Management System
Inverters and Converters
Electronic Controllers
Electric Motor
Transmission system

Onboard Charger

3 Model Predictive Control (MPC)

3.1
3.2

Introduction to Model Predictive Control
MPC Methodology

4 Modeling

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Foreword Approach
Backward approach
Driving Cycle - WLTP3
Vehicle Parameters
Longitudinal Dynamics Model
Gearbox Model
Wheel Model

VI

VII

XI

10
10
11

4.8 Electric Motor Model oo
4.9 Battery Model
4.10 Polynomial fits
4.11 Car-Following Scenario Block
4.12 CTG Policy Controller
4.13 State Space Model
4.14 MPC Block
4.15 Model in the Loop (MIL) 500e

5 Simulations
5.1 Backward Model
5.2 Backward-Forward Reference Model
5.3 MPC Controlled Model
5.3.1 Velocity Reference
5.3.2 Position Reference
5.3.3 ACC Simplified Scenario
5.3.4 ACC Complete Scenario
5.4 Model in the Loop 500e with MPC controller

6 Conclusion
6.1 Next Steps

Bibliography
A Complete cycle plots
B MATLAB scripts

C Python scripts

73

76

84

115

List of Tables

4.1 Vehicle parameters oL
4.2 Battery parameterso

VI

List of Figures

2.1 Electric vehicle powertrain architecture 6
2.2 Battery pack with management system 7
4.1 Forword approach L 14
4.2 Backward approach Lo 15
4.3 WLTP3 drivingcycle o 16
4.4 Longitudinal dynamics diagram block - backward modeling 18
4.5 Longitudinal dynamics diagram block - forward modeling 18
4.6 Gearbox block - backward modeling 19
4.7 Gearbox block - forward modeling 20
4.8 Wheel block - forward modeling 21
4.9 Electric motor block oo 22
4.10 2D efficiency mapo 23
4.11 3D efficiency map 24
4.12 Battery Simulink modelo 26
4.13 Interpolation of battery voltage and resistance 26
4.14 3D efficiency map generated by polynomial equation 28
4.15 3D efficiency map with limits adjusted 29
4.16 2D efficiency map generated by polynomial equation 30
4.17 Car-following scenario Simulink model 31
4.18 Simplified CTG controller Simulink model 32
4.19 Complete CTG controller Simulink model 32
4.20 MPC Simulink blocko 35
4.21 Interpreted MATLAB function block parameters 36
4.22 MIL setup - Controller and Plant Simulink blocks 38
4.23 MIL setup - Controller Simulink model 38
4.24 MIL setup - High level controller Simulink model 39
4.25 MIL setup - Low level controller Simulink model 39
5.1 Vehicle and powertrain Simulink model - backward approach 41
5.2 Wheel torque and angular speed 42

VII

5.3
5.4
2.5
0.6
5.7
0.8
2.9
5.10
5.11

5.12
5.13

5.14
5.15

5.16
5.17
5.18

5.19
5.20
5.21

0.22
5.23
5.24
5.25
5.26
2.27
5.28
5.29
5.30

Al

A2

A3

Electric motor shaft torque and angular speed 43

Battery power and State of Charge 44
Backward-Forward Simulink model 45
Backward-Forward model states evolution 46
Backward-Forward model torque and acceleration evolution 47
MPC controlled Simulink model 48
MPC controlled Simulink powertrain plant 48
MPC controlled model states evolution - MPC default parameters . 49
MPC controlled model torque and acceleration evolution - MPC

default parameters 50
MPC controlled model states evolution - velocity reference 51
MPC controlled model control torque and vehicle acceleration evolu-

tion - velocity reference 52
MPC controlled model states evolution - position reference 54
MPC controlled model control torque and vehicle acceleration evolu-

tion - position reference L. 55
MPC controlled model ego and lead positions - position reference . 56
MPC controlled model states evolution - simplified ACC scenario . 57

MPC controlled model control torque and vehicle acceleration evolu-

tion - simplified ACC scenario 58
MPC controlled model ego and lead positions - simplified ACC scenario 59
MPC controlled model states evolution - complete ACC scenario . . 60
MPC controlled model control torque and vehicle acceleration evolu-

tion - complete ACC scenario 61
MPC controlled model ego and lead positions - complete ACC scenario 62
MIL setup with MPC - controller Simulink model 63
MIL setup with MPC - MPC Simulink model 63
MIL setup with MPC - low level controller Simulink model 64
MIL results - MPC and reference powertrain signals 65
MIL results - MPC and reference battery signals 66
MIL results - MPC and reference battery signals zoomed in 67
MIL results - MPC and reference relative distance signals 68

MIL results - MPC and reference relative distance signals zoomed in 69

MPC controlled simplified model results states evolution - velocity
reference 1800s 76
MPC controlled simplified model results torque and acceleration
evolution - velocity reference 1800s 7
MPC controlled simplified model results states evolution - position
reference 1800s 78

A4

A5

A6

A7

A8

MPC controlled simplified model results torque and acceleration
evolution - position reference 1800 s
MPC controlled simplified model results relative distance - position
reference 1800s L
MPC controlled simplified model results states evolution - simplified
ACC 18008 . . . v o o
MPC controlled simplified model results torque and acceleration
evolution - simplified ACC 1800s
MPC controlled simplified model results relative distance - simplified
ACC 18008 . . . v o o e

IX

Acronyms

EV

Electric Vehicle
HEV

Hybrid Electric Vehicle
MPC

Model Predictive Control
PMSM

Permanent Magnet Synchronous Motor
DTC

Direct Torque Control
FOC

Field Oriented Control
PMC

Power Management Control
MCU

Micro Controller Unit
SOC

State Of Charge
ACC

Adaptive Cruise Control

XI

CTG
Constant Time Gap

MIL
Model in the Loop

XII

Chapter 1

Introduction

In the past decades, electric vehicles (EVs) have emerged as a transformative force,
promising a cleaner and more sustainable future for transportation. With the
pressing need to combat climate change and reduce our dependence on fossil fuels,
the adoption of EVs has gained momentum worldwide and has witnessed significant
growth over the past decade, owing to advancements in battery technology, sup-
portive government policies, and a growing awareness of the environmental issues
among Consumers.

The powertrain, a crucial component of any vehicle, plays the main role in
determining the overall performance and efficiency of an electric vehicle. An EV
powertrain is composed of several interconnected subsystems, including the electric
motor, power electronics (usually a DC/AC converter), and the energy storage
system (usually lithium-ion batteries). Efficiently managing and optimizing these
subsystems is vital to achieve superior vehicle performance, extended driving range,
and enhanced energy efficiency.

In recent years, substantial advancements have been made in powertrain control
strategies and optimization techniques, owing to breakthroughs in technology,
computing power, and an increasing understanding of EV dynamics. The im-
plementation of sophisticated control algorithms, intelligent energy management
systems, and real-time optimization has revolutionized the way electric vehicles
perform on the road.

The study of new methods and advancement of existing ones regarding control
to increase performance of electric vehicle powertrain is essential for the future
of the transportation field. One of the main reasons for the advancements in the
field is the European Union Regulation of 2019, Regulation 2019/631 [1], which
states as target of reducing 100% of CO2 emissions from passengar cars and light
commercial vehicles by 2035 in the whole European Union territory.

In this Master’s thesis, the purpose is to use a non linear Model Predictive
Control (MPC) in order to control the whole powertrain system with the objective

1

Introduction

of optimizing the energy consumption of the battery to increase its range, and, thus,
the energetic efficiency of the powertrain as a whole. By analyzing the existing
literature and experimental data, this study seeks to provide comprehensive insights
into the following key aspects:

1. Powertrain components: description of the main powertrain components of an
electric vehicle and its functionalities, as well as the state-of-the art usage of
such components, highlighting their advantages and limitations.

2. Powertrain and vehicle dynamics models: description of the mathematical,
physical and computational modeling of the powertrain and vehicle daynamics,
that will be used for the implementation, tuning and testing of the controller,
and for the simulation of different scenarios to generate the desired results.

3. Model Predictive Control (MPC): general description of the non linear MPC
strategy, followed by its application for the EV powertrain control, emphasizing
the system states to be inputted and the control variables to be outputted by
the controller.

1.1 Objectives

The objectives of this Master Thesis is to elucidate the functionality of a Model
Predictive Controller, applied in the automotive field. The focus here is to use the
control strategy to predict the states of the longitudinal dynamics of a vehicle with
an electric powertrain, with the objective of minimizing the battery consumption
when following a given speed profile (WLTP3). Furthermore, car following scenarios
are studied, simulating a realistic ACC case, with the ego vehicle being controlled
by the MPC, and the reference being generated using a CTG policy. Finally, the
tuned MPC is used to generate the required torque for a complete 500e model in
the loop (MIL) provided by Politecnico di Torino. For that, the following objectives
are achieved:

Description of MPC strategy;
o development of longitudinal dynamics model using a backward approach;

o development of the electric powertrain with Electric Machine working as motor
and generator, and a battery model, that will provide SOC information as a
system state;

o simulation of the model following the reference speed profile to validate the
equations;

Introduction

o implementation of a forward model that has as input the EM torque provided
by the backward model. This dual approach model has the physical causality
of a real case scenario, and will serve as the states reference;

o implementation of the MPC controller with the powertrain plant modeled
with the forward approach, so that the plant has as input the control torque
provided by the controller;

o further implementation of the tuned MPC in a ACC scenario using CTG
policy;

« comparison of the results of the uncontrolled reference model, and the MPC
controlled model.

 simulation of the complete MIL 500e setup with the MPC controller generating
the required torque signal.

1.2 Literature review

There have been a lot of studies in a number of different fields of Electric and Hybrid
Vehicles in the past decade, and a great number of different control and optimization
strategies along multiple parts of the powertrain have been implemented. One of
the main problems with electric vehicles is related to the energy storage system
(battery system) in terms of weight and energy available for long distance driving
(driving range). Trying to overcome that main matter, different strategies of control
and optimization are available in the literature, as well as articles making a review
on the state of the art components of such powertrains.

Among the optimization strategies, [2] sets the travel time as a target, allowing
the transmission ratio to be adapted along the route. This approach is applicable
to transport vehicles meanly in different given routes, this way, the shifting strategy
or the optimal transmission itself can be designed depending on the route. The
main design objective in this article is the minimization of the battery weight.
Also in [3] the gear ratio is the object of the optimization, and the optimization
results are presented for two design examples presented - Tesla Model S and Mini
Cooper SE, the first with an induction motor, and the last with the most common
PMSM (Permanent Magnet Synchronous Motor) equipped. Furthermore, in [4] the
powertrain parameters are the objects of optimization, in a New European Driving
Cycle scenario, with dynamic and economic optimizations being the main goals.
The vehicle modeling is presents, the transmission control unit model for dynamic
and economic shift decisions is made, the vehicle control unit is modeled as well,
and the parameters of the powertrain are optimized based on a genetic algorithm.
Article [5] presents a platform for electric powertrain simulation, also a powertrain

3

Introduction

architecture with 3 degrees of freedom is presented and optimized with the objective
of inspect typical study cases, methodology and results. Furthermore a for the
degree of freedom is introduced to the model for scenarios when the battery is
partially discharged. Also, different results from different control strategies are
presented, a software optimization is made only adjusting control laws with a fixes
EV architecture, and a hardware optimization is performed by introducing the
extra degree of freedom in the architecture.

Furthermore, [6] and [7] discuss and make reviews on advanced traction motor
control strategies for the first case, and general trend for HEV’s and EV’s. [6]
makes a review on the evolution of different control techniques and concludes that
there is a great number of researches involving the application of Direct Torque
Control (DTC) and Field Oriented Control (FOC) to traction motors, also pros
and cons of the researches are presented. On the other hand, in [7] a overview on
the current researches on hardware optimization of HEV’s and EV’s, suggesting
the challenges and future researches that could be made.

Also in [8] a review on the state of the art control strategies for each component
in EV powertrain architectures is made. It is discussed that the main control issues
reside in the HEV torque management, EV battery management system, motor
drive technique and control of the energy recovery. For the torque management
in HEV’s the strategy is to coordinate the torque provided by the engine and
the electric motor, to supply the required torque by the driver, while optimizing
the efficiencies of the engine, the electric motor and battery consumption - it is
a constrained optimization problem to be addressed. In the battery management
system side, the main problem is the estimation of the State Of Charge (SOC) of
the battery, the main method are open circuit voltage measurement, resistance
method, Fuzzy logic method, neural network method and Kalman filtering method.
For the motor drive control (electric motor control) the main control strategies are
voltage/frequency ratio control, slip frequency control, vector control and Direct
Torque Control (DTC). In the regenerative breaking control field, three braking
force distribution control strategies are proposed: parallel regenerative breaking
control, ideal regenerative breaking control and maximum regenerative breaking
control.

Different control strategies for the powertrain of EV’s are found in the literature.
Different Fuzzy control strategies are applied in the scope of EV’s as reported
in [9] and [10]. The first presents the Fuzzy control logic applied in a Indirect
Vector Control technique, which calculates the slip speed of the electric machine,
an EV powertrain is controlled with the logic described, and the evaluation is made
using a FUDS driving cycle. The last performs a Fuzzy Control Multi-Objective
Optimization in a Dual Hybrid Energy Storage System (Dual-HESS) with the
objective of optimizing the batteries and ultracapacitors size. A novel Dual-HESS
is also proposed in the article, with one energy storage system for each axis (front

4

Introduction

and rear). A Power Management Control (PMC) with Fuzzy logic is applied to the
proposed architecture. The simulation model developed in [10] is similar to the one
developed in this thesis, with the longitudinal model, EM model with efficiency
map and the modeling of both the battery and the ultracapictors.Three driving
cycles are used to generate the speed profile used as reference for the simulation,
the driving cycles used are: FTP-75 (urban driving), HWFET (highway driving)
and USo6 (high speed and required acceleration). The reference acceleration is
obtained by the derivative in time of the speed profile, and this acceleration is
inputted as the required force for the simulation, as it is proposed in this thesis.
The Fuzzy PMC receives as inputs the required frontal and rear torques from the
drive systems, and also the overall efficiencies (electric motor and inverter) for each
axis. The output of the controller is the percentage of the required torque to be
fulfilled by each drive axis. The torques multiplied by their respective percentage
are applied to the EM’s equations to define the required torques from the machines.

Using Hardware in The Loop Platform, [11] developed a controller for EV pow-
ertrain. First a mathematical model of a PMSM (Permanent Magnet Synchronous
Motor) is developed, also a plant model of a power battery is constructed. A real
MCU is used to communicate with the electric motor model, and a real battery
management system is used to communicate with the battery plant model. In the
paper, all these components are combined with a real vehicle controller to provide
a complete test environment. A control software was developed.

Furthermore, the modeling and simulation of EV powertrain is discussed in
more detail in [12]

Predictive optimization strategies are also implemented in [13] with the focus on
the energy management system in a modeled random traffic scenario. A stochastic
MPC strategy is done to co optimize both the speed and the powertrain energy
management system in a driving environment with uncertainties.

Also a Constant Time Gap (CTG) policy for ACC and its modeling is discussed
both in [14] and [15].

The complete Model in the Loop (MIL) of the 500e has its modeling discussed
in [16].

Chapter 2

Electric Vehicle Powertrain
Components

This chapter provides an overview of the main components of an electric vehicle
powertrain.

The increasing market share of hybrid electric vehicles and electric vehicles
has elevated the importance of electric machines in powertrain development [17].
Examples of electrified powertrains include hybrid, plug-in hybrid, electric vehicles,
and fuel cell vehicles [18]. The primary constituents of an electric powertrain are
the power source with an management system (Battery Management System),
electronic controllers, electric motor, transmission system, and onboard charger for
batteries [19]. These components work together to provide the necessary power
and control for the operation of the electric vehicle. Figure 2.1 shows a generic
architecture of a electric vehicle powertrain.

Figure 2.1: Electric vehicle powertrain architecture

ELECTRIC VEHICLE POWERTRAIN ARCHITECTURE

Source: [20]

6

Electric Vehicle Powertrain Components

2.1 Power Source

The power source is a crucial component of an electric powertrain as it provides the
necessary energy to propel the vehicle. The more used power source is battery cells,
usually lithium-ion batteries, due to their high energy density and long cycle life.
Other power sources, such as fuel cells or supercapacitors, are also being explored
and implemented in certain electric vehicle models.

2.2 Battery Management System

The battery management system plays a vital role in the powertrain of electric
vehicles. It is responsible for monitoring and controlling the performance, efficiency;,
and safety of the battery pack.

This system ensures that each individual battery cell is operating within its
optimal range and prevents overcharging or discharging, which can lead to reduced
battery life and degraded performance.

Figure 2.2 elucidates the dimension of the battery pack along with the manage-
ment system.

Figure 2.2: Battery pack with management system

Source: [21]

2.3 Inverters and Converters

The traction converter is a electronic component responsible for converting the
energy DC output (voltage and current) into a AC input for the electric machine.

The DC-DC converter, on the other hand, does not change the nature of the
signal itself, but it steps down the DC voltage of the battery pack (usually very
high tension values - 100 up to 400 V) to much smaller values to be used in other

7

Electric Vehicle Powertrain Components

auxiliary electronics in the vehicle (such as air conditioning, sound system, etc) or
to charge the 12V auxiliary battery.

2.4 Electronic Controllers

The electronic controllers play a key role in managing and controlling the flow
of electrical energy within the powertrain. These controllers include the Battery
Management System, which monitors and controls the charging and discharging
of the battery, ensuring its optimal performance and longevity. Other electronic
controllers, such as the motor controller and power electronics, are responsible
for controlling the speed and torque of the electric motor, converting DC energy
from the battery to AC energy for the motor, and managing the overall power
distribution within the powertrain.

2.5 Electric Motor

The electric motor is the heart of the electric powertrain. It is responsible for
converting electrical energy into mechanical energy to propel the vehicle. Various
types of electric motors can be used in an electric powertrain, including permanent
magnet synchronous motors, induction motors, and switched reluctance motors.
The choice of motor depends on factors such as power requirements, efficiency, and
cost considerations.

The electric machine also works as a generator when the torque is negative
(breaking manouver) making it possible to generate power and charge the battery
while breaking - generative breaking. This is a great advantage of electric vehicles
powertrains.

2.6 Transmission system

The transmission system in an electric powertrain is responsible for transferring
the mechanical power from the electric motor to the wheels of the vehicle. This
system often consists of a single-speed or multi-speed transmission, depending on
the specific requirements of the vehicle. The transmission system plays a crucial
role in optimizing the power and torque delivery to the wheels, ensuring efficient
and smooth acceleration of the vehicle.

Electric Vehicle Powertrain Components

2.7 Onboard Charger

The onboard charger is another important component of the electric powertrain. It
is responsible for converting the AC power from an external power source, such as
a charging station, into DC power to charge the vehicle’s battery. This component
allows for convenient charging of the electric vehicle and is essential for maintaining
the battery’s state of charge.

In summary, the main components of an electric vehicle powertrain include
the driving motor, electronic controllers, electric motor, transmission system, and
onboard charger . These components work together to convert electrical energy
into mechanical energy, control the flow of power, and ensure efficient operation of
the electric vehicle.

Chapter 3

Model Predictive Control
(MPC)

3.1 Introduction to Model Predictive Control

Model Predictive Control is a control strategy widely used in various domains,
including the control of electric vehicle powertrains. This control strategy takes
into account the dynamic nature of the system and predicts future states and
inputs based on a mathematical model of the system. By explicitly considering
the system dynamics, MPC is able to optimize control inputs over a finite time
horizon to achieve desired objectives such as energy efficiency, performance, and
constraint satisfaction.

The use of Model Predictive Control in industrial processes is highly advanta-
geous due to its ability to handle constraints such as input saturation and rate
limits [22]. Model Predictive Control is capable of dealing with complex multi-input
multi-output systems with hard state and input constraints, making it suitable for
controlling electric vehicle powertrains with longitudinal dynamics [23]. Further-
more, Model Predictive Control has the ability to handle model uncertainty and
disturbances, which is essential in achieving robust and reliable control performance.

One of the major advantages of Model Predictive Control is its ability to
incorporate constraints on the inputs and outputs of the system [22].

This is particularly important in the context of controlling electric vehicle
powertrains, where constraints on the battery state of charge and motor torque
limits need to be taken into account. Using MPC for controlling an electric vehicle
powertrain with longitudinal dynamics allows for the optimization of control inputs
over a finite time horizon, taking into account system constraints and the varying
nature of the driving conditions.

Incorporating MPC in the control of electric vehicle powertrains allows for the

10

Model Predictive Control (MPC)

prediction and optimization of future states and inputs based on the system’s
dynamic model. This proves to be especially advantageous in achieving energy
efficiency and effective management of the powertrain components.

Furthermore, the ability of MPC to continuously update the model and control
strategy allows it to handle changes in system parameters, such as variations in
battery capacity or motor efficiency, without the need for extensive re-calibration.

3.2 MPC Methodology

Model Predictive Control is an optimization-based control method that uses a
dynamic model of the system to predict and optimize future states and inputs
based on a cost function and subject to constraints. The cost function typically
aims to minimize a combination of control effort, system error, and deviation from
desired operating conditions.MPC works by solving an optimization problem at
each control interval, where the objective is to find the optimal control inputs that
minimize the cost function while satisfying system constraints.

The optimization problem is solved over a finite time horizon, also known as
the prediction horizon, which allows for considering future system behavior and
making informed decisions. During the optimization process, the control inputs are
calculated for the current time step, but only the first set of inputs is applied to
the system. The remaining inputs are discarded, and the process is repeated at the
next control interval with updated measurements and predictions. This repeated
optimization process is known as a moving horizon approach. By using a moving
horizon approach, MPC can effectively handle changes in the system parameters
and adapt to varying driving conditions.

By incorporating a dynamic model of the electric vehicle powertrain into the
MPC framework, the control algorithm can effectively predict and optimize future
system states and inputs. The ability to handle changes in the system parameters
and adapt to varying driving conditions makes MPC a powerful tool for electric
vehicle powertrain control. It enables the prediction and optimization of future
states and inputs, allowing for efficient energy management and effective control of
the powertrain components.

To explain the math of MPC, let’s start with the basic formulation. In Model
Predictive Control, the optimization problem seeks to minimize a cost function
subject to system dynamics and constraints [24]. This can be expressed as:

minJ = SN L(z (i), u(i)) + é(z(N)) (3.1)
subject to:

w(i+1) = f(a(i), u(i))g(z(i), u(i)0
where:

11

Model Predictive Control (MPC)

J is the cost function to be minimized;

N is the prediction horizon;
 x(i) represents the system state at time i;
« u(i) represents the control input at time i;

» L is the stage cost function that quantifies the performance of the system at
each time step;

e ¢ is the terminal cost function that captures the desired final state of the
system- f represents the system dynamics, which describe how the state evolves
over time based on the current state and control input;

g represents the system constraints, which limit the feasible state and input
space.

By solving this optimization problem iterative, the MPC algorithm generates a
sequence of control inputs that minimizes the cost function while satisfying the
system dynamics and constraints. This approach allows the MPC algorithm to
effectively control the electric vehicle powertrain by dynamically adjusting the
control inputs based on real-time measurements and predictions.

In summary, Model Predictive Control is a control method that optimizes a cost
function based on system dynamics and constraints.

12

Chapter 4

Modeling

The modeling is made in Simulink and MATLAB scripts. The longitudinal dynamics
equations of the vehicle and of the electric motor are done based on [25] and [26].
The battery model equations are also based on [25].

Backward and forward approaches are used in the simulations. First, for the
validation of the model and parameters, a backward model is developed with the
reference speed profile and acceleration as inputs of the system. Then, for the
uncontrolled reference model, a backward model is used to produce the electric motor
torque command, which serves as the input for the complete forward powertrain
model (vehicle dynamics with electric powertrain components - electric motor and
battery). For the MPC controlled model, the complete system model is developed
in a state space form, which is set as a parameter of the MPC and will serve as
the prediction model for the controller. The controller result is a electric motor
torque, that will be the input of the forward complete powertrain model, where
the states (SOC, position and velocity) will be computed and compared with the
uncontrolled model.

The driving cycle that it is being imposed to the vehicle as a reference speed
profile is the WLTP3, which has a duration of 1800 seconds, and has a low speed
scenario, simulating urban driving, and a high speed scenario which simulates
highway driving condition.

The model of each powertrain component used in the simulation is depicted in
this section, as well as the interpolations, and polynomial fits done for the battery
and electric motor models.

The MATLAB scripts for all the models and parameters are available in the
appendix of this thesis B. And the polynomial fits necessary are made in Python,
and are available in the appendix C.

The MPC code is a closed .p file, and provided by Politecnico di Torino.
13

Modeling

4.1 Foreword Approach

In the foreword approach the physical casulity of the system is reproduced, so the
reference desired speed is compared to the actual vehicle speed and acceleration or
breaking commands are produced to achieve the desired reference, a driver model
is necessary to provide such commands, and a supervisor block is responsible for
issuing the actuators set points to the rest of the powertrain components which
is responsible to produce the traction force, such force is applied to the vehicle
dynamics. The acceleration is determined by the equation 4.1. Figure 4.1 shows
the scheme of such approach [25].

dvye
Mveh# = Ljnertia — Ftrac - F’/‘oll - Faero - Fgrade (41)

Fipertia 1 the inertial force, Fy.q. is the traction force, F,,y; is the rolling resistance
force, Fiero is the aerodynamic resistance and Fy,qq. is the slope/inclination force -
weight component.

Figure 4.1: Forword approach

Speed

Driving satpaint Driver > Vehicle Speed
cycle madel
Torque seipaiml
Torgue Torque Farca
— ")
i ivetrai Vehicle
snome] privetrein Wheel dynamics
- PrE—
Speed Wheel Vahicle
l Speed Speed
Fuel
Consumplion
Source: [25]

4.2 Backward approach

The backward approach no driver model is used and equation 4.1 is rearranged to
calculate the traction force that need to be produced for the vehicle to follow the
desired speed profile. In that way, the desired speed and acceleration is directly
inputted in the traction force equation 4.2, this way the motor torque and energy
consumption are the outputs. The tractive force to be applied is based on the
provided velocity, payload, grade profiles and vehicle characteristics. Based on that

14

Modeling

information the toque that the powertrain should provide is calculated and the
power /speed characteristics of the components are taken into account to determine
the operating point of the motor and the energy consumption, consequently.

Ftrac = Lpwt — Fbrake = Iinertia T Fgrade + Froll + Faero (42)

Figure 4.2 shows the backward approach modeling.

Figure 4.2: Backward approach

Speed
salpaoint Forcea ———— Torque Tarqua
Driving Vehicle . . .
cycle — dynamics Wheel Drivetrain Engine
. — —
Vahicle Yheal Speed
Speed Speed $
Fusl
Consurmption

Source: Onori 2016 [25]

4.3 Driving Cycle - WLTP3

The driving cycle that is used is the WLTP3, its speed and acceleration profile are
depicted in figure 4.3. The acceleration is obtained directly from the differentiation

of the speed profile.
15

Modeling

Figure 4.3: WLTP3 driving cycle

W\”\Mmﬂwmm |

I
0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]

N
o

w
S
T

1

Reference velocity [m/s]

Reference aceleration [m/sz]
- o

2 1 1 1 1 i 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Source: MATLAB (2023).

4.4 Vehicle Parameters

The vehicle used as reference is the Fiat 500e, and the parameters, provided by
[16] and Politecnico di Torino are exposed in table 4.1.

Table 4.1: Vehicle parameters

Parameter Symbol | Value | Unit
Vehicle Mass Myen 1400 kg
Front axle - CoG a 1 m
Rear axle - CoG b 1.3 m
Height CoG h 0.3 m
Static rolling coefficient | fy 4.5 N/kN
Wheel radius Tw 0.3 m
Drag coefficient Cy 0.33 -
Frontal area Ay 2.15 m2
Gear ratio Tgb 9.6 -
Gearbox efficiency Ngb 0.97 -

Source: [16]

16

Modeling

4.5 Longitudinal Dynamics Model

Based on the backward approach, the longitudinal dynamics of the vehicle can be
described by the inertial force (Myeparer) and by the resistive forces: grade force,
due to road inclination 4.6; aerodynamics resistance force 4.6; rolling resistance
forces 4.5. By summing all the contributions and given a desired acceleration it is
possible to compute the output or wheel torque by the backward approach 4.4.

Twheet = (Fyrade + Fron + Faero + MyenQref)Tw (4.3)
Fron = Myeng fo (4.4)

Fyradge = Myeng sin(a) (4.5)

Fuero = 0.5pA;Cqvl, (4.6)

In the forward approach, on the other hand, the equation can be rearranged,
so that the vehicle acceleration is computed as consequence of the tractive forces
provided by the powertrain, and also considering the effect of the resistive forces.
So the vehicle dynamic equation in the forward approach is exposed in 4.7.

dvfueh Twheel
Mve = — Lroll — F, rade — Faero 4.7
h e 1l grad (4.7)

The wheel angular speed is given by equation 4.8.

Wy = Vpef/Tw (4.8)

Twheer 18 the output torque that must be provided to make the vehicle follow
the reference, accounting for the resistive forces. r,, is the wheel radius, w,, is the
wheel angular speed, M, is the total vehicle mass, g is the gravity acceleration, «
is the road slope in radians, f; is the static rolling coefficient, p is the air specific
mass, Ay is the vehicle frontal area, Cy is the drag coefficient, and v,.f and @,y
are the reference speed and acceleration provided by the driving cycle.

The block diagram for the vehicle dynamics equation using the backward
modeling approach is shown in figure 4.4, while the forward modeling is shown in
figure 4.5.

17

Modeling

Figure 4.4: Longitudinal dynamics diagram block - backward modeling

D

I e

a_ret

W_veh

vehitle mass1

L L

M ven ‘[::\Ch"““- . F_ral

N
wvehice mass R L:/

F_aero

w_ret

cd I -I".s "haA_{

drag coeffoent

Py

T_wheel

Figure 4.5:

Source: Own authorship (2024).

Longitudinal dynamics diagram block - forward modeling

(@D =
v_veht
F_trac
vehicle mass F_trac FWD [N]
F_roll FWD [N] | T
M_veh 3
. F_inertia FWD [N] a_leh FWD [mis2] v_veh FWD ms] s | xvenFwom) -
x_ve
Vehicle mass1 F_grade FWD [N] X
road slope
(&D)
- »(_3
drag coeffcient a_veh
(2
v_veh

Source: Own authorship (2024).

18

Modeling

4.6 Gearbox Model

The gearbox model is a simple computation of the gearbox efficiency and gear ratio
for both the toque and angular speeds coming from the wheel. The torque and
wheel speed at the motor shaft level - after the gearbox - are given by equations
4.10 and 4.10 respectively.

_ Twheel
TEM - sign(%ﬁu;eeel) (49)
Mer Tgb
WEM = Wwheel Tgb (4.10)

Tgy and wgar are the torque and angular speed of the electric motor shaft, 7y,
is the gearbox ratio, and 7, is the gearbox efficiency.

The Simulink block with the equations for the gearbox dynamics using the
backward approach is shown in figure 4.6.

Figure 4.6: Gearbox block - backward modeling

1) Tout A TEM > 1)

T_wheel fcn T_EM
Gearbox Efficiency

- =| tau_gb »(2)

w_wheel w_EM

Source: Own authorship (2024).

The model showed in figure 4.7, the angular speed relation is the same, but the
efficiency is calculated by equation 4.11.

Tyheel = TpM (rye™ ™)) (4.11)
19

Modeling

Figure 4.7: Gearbox block - forward modeling

TEM AT wheel

T _EM fcn T _wheel

Gearbox Efficiency

tau_gb (2)

w_EM w_wheel

Source: Own authorship (2024).

4.7 Wheel Model

This simulink block is mainly used in the forward models, and it simply relates the
wheel torque with the wheel force, and the vehicle speed with the wheel angular
speed. Figure 4.8 shows the Simulink black that relates the described variables.

20

Modeling

Figure 4.8: Wheel block - forward modeling

T _wheel F_wheel

w_wheel v_veh

Source: Own authorship (2024).

It is a basic division by the wheel radius, as exposed in equations 4.13 and 4.13

Jai o Twheel
wheel —
Tw
o Vyeh
Wayheel =

w

Funeer is the wheel force, wypee is the wheel angular speed, v,e, is the vehicle
speed and r,, is the wheel radius in meters.

4.8 Electric Motor Model

The electric motor modeling is mainly dependent on the efficiency mapping based

on a given angular speed and shaft torque.
In the electric motor block of the model (elucidated in figure 4.9), both the

motor power and the battery power are the outputs. The motor power is given
by equation 4.15 and the battery power that is inputted into the battery block is

given by equation 4.15.

21

Modeling

Pey = Tenwen (4.14)
— Pep
P = e (W, TEM)Niny |8 FEM) (4.15)

Figure 4.9: Electric motor block

2-D T(u)
ut
rad/s rpm
w_EM Pl eta_EM
»{u2 ﬁ ‘&’jaﬂ
P_EMtcn P_batt
: \ Efficiency map
T_EM

|
. 5

A 4

Source: Own authorship (2024).

The efficiency map for the electric motor is a generic one provided by Politecnico
di Torino, for simulation purposes, the real efficiency map of the Fiat 500e is not
available. The 2D and 3D (surface plot) maps are exposed in figures 4.10 and 4.11.

22

Modeling

Shaft Torque [Nm]

Figure 4.10: 2D efficiency map

EM efficiency map
T T

2000

3000 4000 5000 6000 7000 8000 9000 10000
EM speed [rpm]

Source: Own authorship (2024).

23

Modeling

Figure 4.11: 3D efficiency map

Experimental efficiency map

i
08y fii
5 08 o
[&]
c
Q
o 04
=
w

0.2 4

0.l
400
10000
0 8000
6000
-200 4000
2000
Shaft Torque [Nm] 400 0

EM speed [rpm]

Source: Own authorship (2024).

The electric motor model is the same for both the forward and backward
modeling approaches.

4.9 Battery Model

The battery model follows the reference modeling exposed in [25]. The battery
parameters are shown in table 4.2.

24

Modeling

Table 4.2: Battery parameters

Parameter Symbol | Value | Unit

Number of series cells N, 108 -

Number of parallel cells | N, 1 -

Number of total cells Ny 108 -

Nominal capacity Qrnom 60 Ah

Coloumbic efficiency Ne 0.95 -
Source: [16]

The State of Charge (SOC), modeled by equation 4.17, is defined as the ration
between the current battery charge (), and the nominal battery capacity Qom-
When differentiating both sides it is possible to obtain the derivative of the SOC
as a function of the battery current [, as exposed in equation 4.17.

SOC = ¢ = B (4.16)

nom

SOC =¢=—— 1t D (4.17)
Y

sign(ly) Qnom
c

In this modeling, when the battery current is greater than 0, it is in discharge
mode, and when is lower than zero, it is in charge mode.

The battery is modeled as an ideal voltage source V,.; with series of input
resistance R,p, so it is possible to solve for the current [25] - equation 4.18.

o Voor = Vi = 4Roo Pras @18)
- 2R, '

Furthermore, the Simulink model that implements the equations is exposed in
figure 4.12. The equations are for one cell only. To perform a calculation for the
whole battery, the tension V,.;, must be multiplied by the number of series cell,
and the resistance by Ng/N,.

25

Modeling

1D T(u)

Figure 4.12: Battery Simulink model

Ib_controlled

V_och

1-D T(u)

V_ocv [V

Mo
L=

V_batt [v]

1_batt [A]

SOC_dot [

1
SOC_dot

Source: Own authorship (2024).

For obtaining the values a resistance and voltage for a single cell, experimental
value of resistance and voltage variation as function of the SOC where provided
by Politecnico di Torino. The interpolation was done using the griddedinterpolant

function from MATLAB, and the results are shown in figure 4.13.

4.2

s T T T

)

- L R N S N

34T

>

Fal

i)

538

o

.‘%‘

2

5 3.6 o
5 O Sample SOC points
=3 * Interpolated values
O34 I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SOC [

_ 107 RO interpolation
S 2365 T

2 N O sample SOC points

‘C“ 225 * _Interpolated values |
hz St

@ 2.2 &
=] S

& 215 A
=

©
S 21f s g
3

2 =
5 205 T A
c

by =
OG- 2 = | | | ! | | © & 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SOC[]

Figure 4.13: Interpolation of battery voltage and resistance

V__interpolation
oc

Source: Own authorship (2024).

26

Modeling

The same battery model is used for both the for the forward and the backward
modeling approaches.

4.10 Polynomial fits

Polynomial fits of the battery voltage and resistance equations, and of the electric
machine efficiency are developed in this section. These polynomials are used in the
state space equations of the system, which is used as prediction model by the MPC
controller. The polynomials generation code are done in Python and exposed in C.
The polynomial expressions are 4.19 through 4.21.

Epn(w,T) = 0.95 + (—1.11 x 10~)w + (161 x 107)T + (2.05 x 10~5)w?
+ (=8.74 x 107°)wT + (=5.05 x 107°)T? + (=1.14 x 10~ ?)w?

4+ (7.30 x 1071)w?T + (4.52 x 107°)wT? + (2.87 x 10°)T° (4.19)
V(&) = —0.40666 * £ + 1.0703 * £ + 3.4385 (4.20)
R(€) = 0.00041627 * £2 — 0.00071804 * £ 4 0.0023018 (4.21)

For the electric machine efficiency polynomial, different degrees are tested and
the Mean Absolute Error and Root Mean Squared Error are computed. The chosen
polynomial is the one with the lower value for both errors

MAFE = 0.13471

RMSE = 0.20122

and corresponds to the 3rd degree. The 3D and 2D (contour) efficiency maps
generated by the polynomial equation (as function of the shaft torque in [Nm] and
angular speed in [rpm]|) are illustrated in 4.14 and 4.16 respectively.

For comparison, the experimental surface plot with the adjusted Z-axis limits -
same limits of the polynomial result - is showed in figure 4.15

27

Modeling

Figure 4.14: 3D efficiency map generated by polynomial equation

Plynomial fitted efficiency map

0.9 4

Efficiency [-]
o
oo
/

0.7 4

10000
8000
6000
-200

Shaft Torque [Nm] 400 0

4000
2000

EM speed [rpm]

Source: Own authorship (2024).

28

Modeling

Figure 4.15: 3D efficiency map with limits adjusted

Experimental efficiency map

—_
/

o
w0
/

Efficiency [-]
o
oo
/

0.7 4

8000
6000
-200

Shaft Torque [Nm] 400 0

4000
2000

EM speed [rpm]

Source: Own authorship (2024).

29

10000

Modeling

Figure 4.16: 2D efficiency map generated by polynomial equation

Polynomial fit efficiency map
T T T

N
a
=]

[N
=]
=]

o
=]

Shaft Torque [Nm]
o 2
o o o

Il
a
o

-100

-150

-200

-250

|
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
EM speed [rpm]

Source: Own authorship (2024).

The main reason for the difference is the 0 efficiency points in the experimental
data , when the torque is close to 0. But, as it will be showed in the simulation
sections, the MPC controlled performed well with the described polynomial fit for
the EM efficiency.

4.11 Car-Following Scenario Block

This simple block is available in [16] in the model in the loop of the 500e, and
it’s objective is to simulate a more realistic response from the by adding a delay
into the lead vehicle via simple integrator blocks and rate transition blocks. The
Simulink model is exposed in figure 4.17.

30

Modeling

Figure 4.17: Car-following scenario Simulink model

E—LN =

N 0O
@D, > @ N x_lead [m] d_rel o 2 D

lead speed [m/s] - - I _{m d_rel

Rate Transition1
x_host [m]

&
initial distance [m] E—L>
¥ zon
/T O

> Junggiin] v_rel

& " (D

ego speed [m/s] I _[m v_host

Source: [16].

The integrator blocks all have a unitary integrator gain.

4.12 CTG Policy Controller

The CTG controller used is for the car following more realistic scenarios on the
MPC controlled model, and are based on the model in the loop of the 500e provided
by [16].

The CTG policy is mainly used for providing a acceleration reference based on
a constant time gap between the leading and the ego vehicles. It also ensures a
platoon stability, which a simple PID controller based only on the single vehicle
sensor information (without V2V communication) is not capable of doing.

Since this controller is not the main scope of this thesis, only the modeling and
the motivation will be described in the present section.

Figures 4.18 and 4.19 show the simpler and the more complete CTG model.
From the models, the CTG equations are exposed in 4.23 and 4.23.

31

Modeling

Figure 4.18: Simplified CTG controller Simulink model

default_distance

»(2)

spacing_error

¥
ego speed [m/s] :|7 +
p+| delta » -

1
a

ego position [m]

¥
o Au

@ J epsilon At epsilon_dot
»-

lead position [m]

Sum2

Source: [16]

Figure 4.19: Complete CTG controller Simulink model

T

Relal%g\ocn ‘{}J —
Source: [16]
acrac = _%(j:egoh + ddefault + 5) - % (422)
acrg = _(ddefault + j:leadh - Ad)Kmerr + vxgainA'U (423)

h is the time gap in seconds, x4 is the ego/following vehicle position, zjeqq is
the leading vehicle position, A is a tuned parameter, € = Zcgo — Zieqq is the relative
distance, Ad is the relative distance and Aw is the relative velocity, both from the
car-following scenario block described in 4.11, dgefqu: is the default distance set to
be maintained, K, is tuned spacing error gain, and vz g4, is the relative velocity
gain. All the parameter are tuned or provided by [16], and are exposed in the code
snipped below, and in the appendix B.

32

N

Modeling

% ACC and CTG Contoller parameters

default__distance = 50; % reference distance from leading vehicle
[m]

tau = 0.5; % vehicle LTI model [s]

h = 4xtau; % time gap [s] (h > 2xtau)

lambda = 0.5; % CIG parameter |[—|

Td = 0.01;

s = tf(’s7);

P = 1/(tauxs + 1); % Vehicle simplified plant

v_set = 40; % ACC set velocity [m/s]

time_gap = 3; % ACC time gap [s]

verr__gain = 0.1; % ACC velocity error gain — CIG
xerr_gain = 0.3; % ACC spacing error gain — CIG

vx_ gain = 0.5; % ACC relative velocity gain — CIG
max_acc = 2; % Maximum acceleration [m/s” 2]
min_ acc = -3, % Minimum acceleration [m/s” 2]

The saturation of the acceleration in the complete CTG model is defined by
the minimum value of -3 and 2 m/s®. The transfer function defined by P is the
vehicle plant for the simplified ACC scenario, the plant is given by 4.24, and it is
the responsible for inserting the delays in the model.

(4.24)

4.13 State Space Model

To be set as the prediction model of the MPC, the complete system is described
in a state space form, with the electric motor torque - that is the control output -
set as the input of the system. The three states set to the system, as mentioned
before, are:

 Battery State of Charge (SOC): z; = SOC.
» Vehicle position: xy = .
» Vehicle velocity: x3 = .

The SS model input is the electric motor torque (control output) in the previous
time instant - Tg,.
u = TEM

The rolling resistance force Fi.,; is given by equation 4.5 and the aerodynamic
force F.., is adapted to be computed as function of the state:

33

Modeling

Frero = 0.5CpAsas (4.25)

the grade force is not considered in this case, the road inclination is not considered
for the sake of simplicity.

The electric motor (EM) equations as functions of the states are showed in
equations 4.27 through 4.29.

Wem = 3 (4.26)
WEM,rpm = WEM 2 (4.27)
nem = Eey(Wesrpm, TEwm) (4.28)
Ppy = wenTepg (4.29)

The parameter ¢ is used to facilitate the development of the system equations
and is given by 4.30.

¢ = (4.30)

With respect to the battery, its power is given by 4.15. And the battery voltage,
resistance and current as function of the states are exposed in 4.32 through 4.34.

Py = (ﬂEM%iE)é\fg“(PEM) (4.31)
Voe = NV (1) (4.32)
Ro = 5 R(w1) (4.33)

fy = B R (4.34)

The functions Egy, V and R are polynomial fits of the efficiency, voltage and
resistance interpolated experimental data and are discussed in 4.10.

Finally, the state equations of the complete system are exposed in 4.36, 4.37
and 4.37.

34

Modeling

j?l = f(l'l,ﬂfg,u) = _ﬁ%ﬁ;ub) (435)
iy = f(xs) = a3 (4.36)
iy = f(flfg) _ (Ugb/(b)TEz]vé[;l;mu—Faem (4'37)

The state derivative vector is exposed in 4.38.

jjl B Qnomngigtr;(lb)
X = || = T3 (4.38)
{L'g (ngb/qb)TEI\{*Froll*Faero
Mvch
And the output vector is given by 4.39
Y1 T
Yy = |Y2| = |T2 (4.39)
Y3 3

4.14 MPC Block

The MPC block from Simulink is illustrated in figure 4.20. The unit delay block
has an initial condition of 0 and a sampling time as the one defined in the MPC
parameters T's = 0.05 s.

Figure 4.20: MPC Simulink block

D, >
X Interpreted @
MATLAB Fcn
@ » nmpc2 ’
r
1
z
Unit Delay

Source: Own authorship (2024).

The reference block input (r) is the values of the reference states in each
simulation time instant, while the states input (x) is feedback from the model plant.
The interpreted MATLAB function block has '"nmpc_ b2.p" file as parameter, and its

35

Modeling

arguments are the MATLAB struct "K" assembled using the "nmpc_ design_4b.p"
and the Mux virtual vector divided in states, control feedback and reference. Figure
4.21 shows the parameters of the MATLAB function block with the .p file in it.

Figure 4.21: Interpreted MATLAB function block parameters

Block Parameters: nmpc2 X
Interpreted MATLAB Function

Pass the input values to a MATLAB function for evaluation. The
function must return a single value having the dimensions specified
by 'Output dimensions' and 'Collapse 2-D results to 1-D'.

Examples: sin, sin(u), foo(u(1), u(2))

Parameters

MATLAB function:

nmpc_b2(K,u(1:K.nx),u(K.nx+1:K.nx+K.nc),u(K.nx+K.nc+1:end))

Output dimensions:

K.nc 1%

Output signal type: auto 7
B Collapse 2-D results to 1-D

oK Cancel Help Apply
Source: Own authorship (2024).

"K.nc" is the control output dimension, and the parameters of the "nmpc_ b2"
function follows the dimensions of the input Mux block, being the first argument
the states dimension, then the control output dimension that is feedback to the
block, and finally the reference dimension, that has the same dimension as the
system states (x).

The "K" struct parameters, or MPC parameters are the following:

Ts = 0.05; % Sampling time

par.nx = 3; % number of states
par.nu = 1; % control elements number
par.ny = 3; % number of outputs

par.model = @prediction_longitudinal _model; %Modello di
predizione

par.ub = 250; % Upper bound saturazione input —> maximum
value for control output

par.lb = —250; % Lower bound saturazione input —> minimum
value for control output

par. tol = 1; % Reference tolerance

par . Nfev = 150; % Iteration number of fmincon in cost

function (default 200)

36

14

15

16

Modeling

par.Ts = Ts;

par.R = 1; % definite positive matrix for cost function
par.P = diag ([0;0;1]); % definite positive matrix for cost
function

par.Q = diag ([0;0;1]); % definite positive matrix for cost
function

par.Tp = 5xTs; % Prediction horizon

K = nmpc_design_4b(par); %Generazione parametri design NMPC

as described in the code, 'nx’, 'nu’, and 'ny’ are the number of states, control
outputs (same as 'nc’) and number of outputs. The 'model’ parameter is the
prediction model function, or the state-space model of the powertrain, receiving
the control input as the EM torque, with its code exposed in B. Upper and lower
bounds of the torque control output are set in 'ub’ and ’lIb’ respectively. 'tol’ is the
refernce tolerance, 'Nfev’ the number of iterations in the cost function, 'Ts’ is the
sampling time, "Tp’ the prediction horizon (which is always an integer multiple of
the sampling time).

Finally, matrices P, Q and R are the ones that come from the Ricatti equation,
as in LQR controllers. They are all diagonal matrices, where Q and P control the
energy of the state error, while R matrix control the energy of the control input.

Since the P and (Q matrices control the states, and the reference is a state in a
time instant, the values are set to zero in the matrices diagonals according to the
set reference. For example in the first MPC controlled model simulation setup, the
velocity (third state) is set as the only reference, thus, matrices P and Q should
have zero for the other states, since they are inputted as null values in the state
reference vector.

Matrix R is the responsible to account for the control output/feedback input.

4.15 Model in the Loop (MIL) 500e

The complete model provided by Politecnico di Torino and [16] is briefly discussed.
The model is divided into the Controller block and the Plant block, as exposed in
figure 4.22.

37

Modeling

Figure 4.22: MIL setup - Controller and Plant Simulink blocks

500e Frugal - MIL Setup

CONTROLLER_Frugal_500e PLANT_Frugal_500e
500e Frugal - Controller

—»]Info n Ctrl Ctrl Info f|——

CONTROLLER_Frugal_500e PLANT_Frugal_500e

Source: [16]

Figure 4.23 shows the Controller block. The high level controller block is very
similar to the complete ACC scenario setup discussed in section 5, it has the car
following block with the CTG policy block in it, like the ones discussed in sections
4.11 and 4.12.

Figure 4.23: MIL setup - Controller Simulink model

A 4

VehSpd TrqCmd

TorqueCmd

EAD_Scenario a_ref Brake
v_act BrakeCmd

VehSpeed Low Level Controller

a_ref

=

VehAcc

Scenario + High Level Controller

Source: [16]

The low level controller block has as input the acceleration provided by the high
level controller, and through a backward model (very similar to the one discussed
in this thesis. The required torque is computed, and a driver model with a PI
controller simulates the driver required torque. These signals are summed and the
torque and brake commands are generated by the Torque Distribution block. These

38

Modeling

commands are sent to the complete vehicle plant and the simulations are done.
The high level controller block is exposed in figure 4.24, and the low level

controller is illustrated in figure 4.25.

Figure 4.24: MIL setup - High level controller Simulink model

Eco Approach and Departure (EAD) - Simplified Controller Test Bench

Vscenario }

2

lead speed [m/s]

lead speed [m/s] d_rel

relative distance [m]

¥ initial distance [m] v_rel

relative speed [m/s]

Relative Distance

Relative Velocity

Constant
acceleration reference [m/s2]
a_ref
1) ego speed [m/s] v_host Longitudinal Velocity
ego speed [m/s] ego speed [m/s]
v_act
Scenario
2 =| =N Longitudinal Acceleration
ego acceleration [m/s2] m m
a_act
Classical ACC
TLstate »—
Traffic Light State [-]
TLpreview »—
Traffic Light State Preview [

Source: [16]

Figure 4.25: MIL setup - Low level controller Simulink model

2) P a_des
a_ref EM Treq
Treq_FF + TrqCmd
+ Treq N*m
1@ V_ref [m/s] P Vref Brake Req
Brake
FF Acceleration Torque Distribution
V_ref
Treq FB
@ V_act
VehSpd
PI Driver

Source: [16]

39

Chapter 5
Simulations

The simulations made in this thesis where the following:

« Backward (BW) model: for a first validation of the model parameters and
equations, a simple backward approach simulation is made, using the WLTP3
driving cycle speed and accelerations profiles as reference and inputs of the
model.

« Backward and forward (BW-FW) model simulation: prior to the MPC con-
troller implementation, the backward model is used as an electric motor shaft
torque provider - which is the MPC control output. The EM shaft torque is
the input of the forward model (with the same parameters and force equations
as the backward model) and the resultant states of this model are used as
reference for the controlled model. The backward-forward model serves the
purpose of being the states reference provider.

e MPC controlled model: done with the MPC controlled model, and the reference
states for the comparison are provided by the BW-FW model. 4 different
setups are simulated in this case. A first setup with the WLTP3 velocity
profile as reference; second setup with the WLTP3 position profile as reference;
third setup with an ACC (Adaptive Cruise Control) simplified scenario using
simplified CTG (Constant Time Gap) controller and vehicle plant to compute
the positions and velocities; final scenario with an ACC realistic scenario with
the complete longitudinal dynamics vehicle plant to compute position and
velocities and a more complete CTG controller.

o MIL 500e with MPC: in the final simulation, the tuned MPC controller is
used in the complete 500e provided model, and it is responsible for generating
the required torque command.

40

Simulations

In the figures where there is a comparison between the controlled and uncontrolled
results, the signals go until the 400 seconds time instant of the cycle. This zoomed
in plot is done for better visualization and analysis of the comparison plots. The
complete cycle simulations are available in the appendix A of this thesis.

5.1 Backward Model

The backward model is depicted in figure 5.1, all the blocks have the equation
explained in chapter 4, and here, the longitudinal vehicle dynamics block is the
one defined in 4.4, using the backward approach.

Figure 5.1: Vehicle and powertrain Simulink model - backward approach

Simplified system without MPC
Backward approach

To Workspace

T_EM
T_wheel T_EM

Refspd v_ref T_wheel T_wheel TEM——e—>TEM S0C_dot o [:]
P_batt ¢ P_batt B
“M M efAcc P{a_ref w_wheel »{w_wheel w_EM ! S0
[{) Battery SOC1

WLTP3 Drive Cycle1 Longitudinal Vehicle Dynamics Gearbox Battery simplified modl 1
Workspace variable (1800 secon ds)

w_wheel [rad/s]

w_wheel

W_EM [rpm]

Source: Own authorship (2024).

From the simulation, the obtained signals are wheel and electric motor torque,
angular speeds, battery power and State of Charge. The wheel torque and angular
speed are exposed in 5.2, the electric motor shaft torque and angular speed (in
RPM) are shown in figure 5.3, and, finally, the battery signals of power and state
of charge are depicted in figure 5.4.

41

Simulations

1000

Torgue [Nm]

Angular speed [rad/s]

500

50

Figure 5.2: Wheel torque and

Wheel torque
T T

angular speed

I I I I I | I
200 400 600 800 1000 1200 1400 1600 1800
Time [s]
Wheel angular speed
I I
I | I I I |
200 400 600 800 1000 1200 1400 1600 1800
Time [s]

Source: Own authorship (2024).

42

Simulations

Angular speed [RPM]

50

Torque [Nm]

-50

12000

10000

8000

6000

4000

2000

Figure

5.3: Electric motor shaft torque and

Electric motor torque
T

angular speed

Source: Own

43

authorship (2024).

L | | | | | | |
200 400 600 800 1000 1200 1400 1600 1800
Time [s]
Electric motor angular speed in RPM
I I I I
| I | | | |
200 400 600 800 1000 1200 1400 1600 1800
Time [s]

Simulations

Figure 5.4: Battery power and State of Charge

w104 Battrey power
4F T T |
ok -
=
o]
2 0
[e]
o
2+ -
4 | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]
State of Charge
08 : i
0.78 =
0.76 - N
Q = -
3 0.74
(7]
072 — =
07 N
0.68 | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Source: Own authorship (2024).

By analyzing the simulation results it is possible to see that the torque and
angular speeds both follow the reference speed and acceleration as expected, but
with different magnitudes due the gearbox gains, vehicle mass and wheel radius.
The EM shaft torque has maximum absolute values around 75 Nm, which is bellow
the EM maximum torque of 250 Nm. Considering the battery, its signals of power
and SOC are the ones with more variations and don’t follow the reference profiles,
due to the higher non linearity in the model, and dependency on all the other
powertrain components combined. The state of charge finishes the cycle with
around 0.7 or 70% charge, with the highest consumption closest to the end of the
cycle, due to the higher velocities and consequent higher power and consumption
from the battery.

The EM torque result from this model is used as input for the backward-forward
(BW-FW) model, that serves as state reference generator and lead vehicle states
for the MPC controlled model scenarios.

5.2 Backward-Forward Reference Model

In this case, the backward model explained in 5.1 will be set as the electric
motor torque generator - which will be the role of the MPC controller in the final

44

Simulations

simulations. The torque is the input of a forward complete powertrain model,
described in section 4, and depicted in figure 5.5.

Figure 5.5: Backward-Forward Simulink model

Powertrain longitudinal model

BW-FW Simulator - model validation

s06 aot

Elocii Molor FWDT

Source: Own authorship (2024).

All the blocks present in this model are the ones explained in section 4, the
only difference would be the inputs and outputs of the blocks themselves, not the
equations. The inputs and outputs ought to be different to respect the physical
causality of the system in the forward modeling approach.

The vehicle longitudinal dynamics equation and Simulink blocks for the forward
model are shown in 4.5 and 4.7.

In this simulation setup, the evolution of the states are obtained, and provided
as reference for the controlled model afterwards. It is also used as the leading
vehicle complete model for the ACC scenario comparison between ego and lead
vehicle position and speed. The forward model is the complete plant of the vehicle
and from where the states are computed.

Figures 5.6 and 5.7 show respectively the states evolution of the model and the
vehicle acceleration (third state derivative) and EM torque evolution in time. The
torque is the same obtained in 5.3, since it is obtained from the backward model.

45

Simulations

0.8

SOC [

=15

Position

Velocity [m/s]

S
(=)

Now
S S

=)

o »

o

Figure 5.6: Backward-Forward model states evolution

BW-FW Reference Model states evolution

x1 (SOC) evolution
T T

Source: Own

authorship (2024).

46

—
= 1 | 1 I | | 1 | =
0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]
x10* X2 (position) evolution
T T
—_— | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]
x3 (Velocity) evolution
T T
| | I I I I
0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]

Simulations

Figure 5.7: Backward-Forward model torque and acceleration evolution

BW-FW Reference Model EM Torque and Acceleration
EM Torque
100 \ \

50

Torque [Nm]

-50 I I I I I | I

0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]

Acceleration
T T

]

a

Acceleration [m/sz]
5Y o

N

| | | | |
200 400 600 800 1000 1200 1400 1600 1800
Time [s]

o

Source: Own authorship (2024).

Since there is no delay, or control command, the model states just replicate the
reference, and the SOC is the same as obtained in the backward model. That is

the reason why this model is used as state reference and as the leading vehicle in
the ACC scenarios.

5.3 MPC Controlled Model

The controlled model Simulink is showed in figure 5.8. The different inputs that
set the simulation scenario via MPC reference states are controlled by a variable
in the script and by the switch Simulink block. There are four diferente scenarios
that are simulated, as explained in the beginning of this chapter:

« Velocity reference: velocity profile as the third state reference, other states
reference set to O.

o Position reference: position profile directly integrated from the WLTP3 cycle
speed profile set as second state reference. Other states set to 0.

o Simplified ACC: simplified CTG controller and simplified vehicle plant. The

simplified vehicle plant output position is the second state reference. Other
states set to 0.

47

Simulations

o ACC: realistic car following scenario with complete CTG controller. The
position resultant from the CTG acceleration integration is the second state
reference. Other states are set to 0.

Figure 5.8: MPC controlled Simulink model

Velocity Reference

= s
E—.
E}
9
=1 :
9

ACC Scenario

Source: Own authorship (2024).

The plant of the system, defined in the Powertrain block, has its Simulink model
exposed in 5.9. The blocks of the powertrain are defined in section 4, and are
modeled in the forward approach, as the forward model explained in 5.2.

Figure 5.9: MPC controlled Simulink powertrain plant

T_EM T_wheel T_wheel F_wheel F_trac -
v_veh 2
: . .

Em w_wheel (4 W Wheel voven [« v_vent

. >l
w_EMFWD [radis] | w_wheel FWD [rads] v_veh FWD [ms] |~ a 3| X state)

X (states)

TEM Gearbox FWD Whoo! FWD. Longitudinal Vehicle Dynamics FWD

TEM S0C_ ‘

o SOC_dot
at
P_t <batt (W) P_batt

Lol socf \

Battery simplified model FWD s PP
= o

Electric Motor FWD

Source: Own authorship (2024).

48

Simulations

5.3.1 Velocity Reference

In this first simulation setup, the speed profile from the WLTP3 cycle is the direct
input of the third state x5 reference. The other reference states are set to 0, as it
is possible to see in the Simulink model illustrated in 5.8.

First, to show the importance of the MPC parameters tuning, this first setup
with velocity as reference is simulated with the standard parameters showed in
section 4.14. The results of the states evolution of the controlled plant compared
with the reference model are exposed in figures 5.10 and 5.11. A shorter simulation
time is set, just for illustrate the importance of the tuning - 300 seconds from the

1800 second cycle.

Figure 5.10: MPC controlled model states evolution - MPC default parameters

Velocity [m/s]

Model states evolution

x1 (SOC) evolution
T

Controlled
Reference | |

100 150 200 250 300
Time [s]

x2 (position) evolution
T T T

Controlled
Reference

100 150 200 250 300

Time [s]
Controlled
Reference ||

x3 (Velocity) evolution
T

|
100 150 200 250 300
Time [s]

Source: Own authorship (2024).

49

Simulations

Figure 5.11: MPC controlled model torque and acceleration evolution - MPC
default parameters

MPC control torque output and plant acceleration
MPC control torque output

[}
=1

Controlled

S
o

b

E
=z 20
g
g ° v
(=]
=20 —

40 -

I 1 I 1 I
0 50 100 150 200 250 300
Time [s]

MPC model acceleration (x3d)

LT
oy vy

150 200 250 300
Time [s]

o

Controlled
Reference

bt
3}
T

Acceleration [m/sz]
S
W o
T

s3]
o

Source: Own authorship (2024).

It is possible to see that basically there is no control action, and there is no
track of the reference. The states go to negative position and velocities, while the
battery SOC remains the same. The torque control and acceleration both decrease
slowly.

For this setup, the tuned parameters for the controller are exposed in the code
section below.

Ts = 0.05; % Sampling time

par.nx = 3; % number of states
par.nu = 1; % control elements number
par.ny = 3; % number of outputs

par.model = @prediction_longitudinal _model; %Modello di
predizione

par.ub = 250; % Upper bound saturazione input —> maximum
value for control output

par.lb = —250; % Lower bound saturazione input —> minimum
value for control output

par. tol = 1; % Reference tolerance

par . Nfev = 150; % Interation number of fmincon in cost

function (default 200)

50

Simulations

par.Ts = Ts;

par.R = 0.05; % matrice diagonale definita positiva per cost
function

par.P = diag ([0;0;10000]); % matrice diagonale definita positiva
per cost function

par.Q = diag ([0;0;1]); % matrice diagonale definita positiva per
cost function

par.Tp = 10xTs; % Prediction horizon (sempre multiplo intero del
Ts)

K = nmpc_design_4b(par); %Generazione parametri design NMPC

The parameters are tuned via trial and error, adjusting the results to better follow
the reference states. Figure 5.12 and 5.13 show, respectively, the states evolution
and the electric motor torque and vehicle acceleration - being the derivative of the
system third state.

Figure 5.12: MPC controlled model states evolution - velocity reference

Model states evolution
x1 (SOC) evolution
T

Controlled
Reference

0.798 [~

0794 —

50 100 150 200 250 300 350 400
Time [s]

. x2 (position) evolution
3000 T

Position m]

1 1 1 1 1
50 100 150 200 250 300 350 400
Time [s]

x3 (Velocity) evolution
15— f

—— Controlled
Reference

3
T

Velocity [m/s]

1 1 1 1
0 50 100 150 200 250 300 350 400
Time [s]

Source: Own authorship (2024).

51

Simulations

Figure 5.13: MPC controlled model control torque and vehicle acceleration
evolution - velocity reference

MPC control torque output and plant acceleration

MPC control torque output
80 T T T

L ' L1 L L L 1
50 100 150 200 250 300 350 400
Time [s]

MPC model acceleration (x3,,,)

15 T

Acceleration [m/s?]

Time [s]

Source: Own authorship (2024).

By analyzing the results it is possible to conclude that the MPC control torque
command made the vehicle follow the reference velocity as desired, and the states
evolution are vary similar to the reference uncontrolled models. The torque
commands are a bit smoother than the ones from the uncontrolled models, but the
trace and the magnitudes are pretty similar.

The purpose of this first simulation by inputting the velocity profile directly as
reference, it is possible to conclude that the MPC controller works and it is able to
control the powertrain plant to follow a given reference.

The scenario is not realistic, but it accomplished its purposes.

5.3.2 Position Reference

Now, instead of setting directly the velocity from the profile as reference, the desired
leading vehicle position is set as reference, by integrating the WLTP3 profile directly.
The initial condition for the integrator is set to the desired default distance of 10
meters. This value is kept the same for the ACC simulation scenarios.

This is also a non realistic scenario, since the profile is being directly inputted
with no delays or proper treatment to mimic a car following case. It is just to test
the MPC controller when the second state (position) is set as refernece, and the

52

13

16

Simulations

other states are set to 0.

The parameters in this scenario are defined below:

Ts = 0.05; % Sampling time

par.nx = 3; % number of states
par.nu = 1; % control elements number
par.ny = 3; % number of outputs

par.model = @prediction_longitudinal_ model; %Modello di
predizione

par.ub = 250; % Upper bound saturazione input —> maximum
value for control output

par.lb = —250; % Lower bound saturazione input —> minimum
value for control output

par. tol = 1; % Reference tolerance

par . Nfev = 150; % Interation number of fmincon in cost
function (default 200)

par.Ts = Ts;

par.R = 0.05; % matrice diagonale definita positiva per cost
function

par.P = diag ([0;50000;0]); % matrice diagonale definita positiva
per cost function

par.Q = diag ([0;1;0]); % matrice diagonale definita positiva per
cost function

par.Tp = 10«Ts; % Prediction horizon (sempre multiplo intero del
Ts)

K = nmpc_design_4b(par); %Generazione parametri design NMPC

Figure 5.14 and 5.15 show, respectively, the states evolution in comparison with
the reference, and the control torque and vehicle acceleration evolution. Also, the
ego (controlled) and leading vehicle positions are computed in 5.16.

53

Simulations

Figure 5.14: MPC controlled model states evolution - position reference

Model states evolution - Position Profile Reference
x1 (SOC) evolution
I

08 | :
Controlled
—— Reference
0798 |
Q L
g o7s6
@
0794
0.792 | | | | |
50 100 150 200 250 300 350 400
Time [s]
3000 x2 (posl(lor‘ﬂ evolution

Controllea }:

Position [m]

-500
0 50 100 150 200 250 300 350 400
Time [s]
x3 (Velocity) evolution
15 f
Contrlled
g1 —
z
g
E
o . i |
] 50 100 150 200 250 300 350 400
Time [s]

Source: Own authorship (2024).

54

Simulations

Figure 5.15: MPC controlled model control torque and vehicle acceleration

evolution - position reference

MPC control torque output and plant acceleration - Position Profile Reference
MPC control torque output

300 350 400

50 100 150 200 250
Time [s]

MPC model acceleration (x3,,,)

Acceleration [m/s?]

Source: Own authorship (2024).

59

Simulations

Figure 5.16: MPC controlled model ego and lead positions - position reference

x10* Position profile from controlled model vs reference - Position Profile Reference

25 T T T

Position [m]

Time [s]

Source: Own authorship (2024).

From the results, it is possible to conclude that the MPC controller works
properly and the parameters are properly tuned when the given reference is the
second state (position) and the others are set to 0.

5.3.3 ACC Simplified Scenario

For a first ACC approach and to properly tune the parameters with a simpler
model, a simpler CTG controller is used to generate the acceleration reference
which is the input of the transfer function that represents the plant of the vehicle
response to the acceleration - described in equation 4.24 - and also simulates a
delay for the computation of the position profile.

The CTG controller inputs are the lead vehicle position, which is the same used
in the position reference case, and the feedback position and velocity from the ego
vehicle, generated from the simple transfer function from 4.24. This ego position

from the transfer function model is the one inputted as second state reference in
the MPC.

56

Simulations

Figure 5.17: MPC controlled model states evolution - simplified ACC scenario

Model states evolution - ACC Scenario - simplified
x1 (SOC) evolution
I

Controlled
—— Reference

0798 |
8 [-
g o7s6
@

0794

0.792 | | | | |

50 100 150 200 250 300 350 400
Time [s]
3000 x2 (posl(lor‘ﬂ evolution

Controlled
| —— Reference

Position [m]

-500
o 50 100 150 200 250 300 350 400
Time [s]
x3 (Velocity) evolution
15 f
g1
z
g
s
o
o 50 100 150 200 250 300 350 400

Time [s]

Source: Own authorship (2024).

57

Simulations

Figure 5.18: MPC controlled model control torque and vehicle acceleration
evolution - simplified ACC scenario

MPC control torque output and plant acceleration - ACC Scenario - simplified

Source: Own authorship (2024).

58

Simulations

Figure 5.19: MPC controlled model ego and lead positions - simplified ACC
scenario

Leading and preceding vehicles positions - ACC Scenario - simplified

Time [s]

Source: Own authorship (2024).

From the results exposed in 5.17, 5.18 and 5.19 it is possible to see the states
evolution, control torque and vehicle acceleration, and position traces and relative
distances, respectively. In this more realistic scenario, the MPC successfully followed
the reference, and there was no collision - relative distance is always positive and
the position traces do not intercept.

It is a more realistic scenario then the other two presented so far, and the tuned
parameters have been demonstrated as satisfactory for this simpler ACC scenario.

5.3.4 ACC Complete Scenario

In the more realistic case, the reference is given by the complete CTG policy block,
attached to a car-following scenario block and the complete longitudinal dynamics
of the vehicle.

The car-following block is detailed in 4.11, and it is responsible to generate the
inputs of the complete CTG policy block. By using simple Integral controls with
unitary integral gain and rate transition blocks, delays to the data signals and
smother transitions are obtained, simulating a more realistic sensor data acquisition
and transmission. It generates relative distance and velocity signals, as well as lead
velocity. Those information are provided as input for the CTG block.

59

Simulations

The complete CTG block, explained in section 4.12, provides the acceleration
reference that is integrated to generate the position reference for the MPC block.

Results for this simulation setup are exposed in 5.20, 5.21 and 5.22.

Figure 5.20: MPC controlled model states evolution - complete ACC scenario

Model states evolution - ACC Scenario
x1 (SOC) evolution
T

T T
Controled
Reference
0798 — —
)
8 0796
)
0704 —
0792 1 L L |
o 50 100 150 200 250 300 350 400
Time [s]
. x2 (position) evolution
3000
2500
2000
£
= 1500
]
(] 1000
&
500
o
500 I I I I
o 50 100 150 200 250 300 350 400
Time [s]
x3 (Velocity) evolution
15 I
—— Controled
Reference
ol
£ 10
8
2 5
0 | | 1 1

0 50 100 150 200 250 300 350 400
Time [s]

Source: Own authorship (2024).

60

Simulations

Figure 5.21: MPC controlled model control torque and vehicle acceleration
evolution - complete ACC scenario

MPC control torque output and plant acceleration - ACC Scenario
MPC control torque output

INm]

Torque

Acceleration [m/s?]
& o

Source: Own authorship (2024).

61

Simulations

Figure 5.22: MPC controlled model ego and lead positions - complete ACC
scenario

- Relative distance - ACC Scenario
T

Time [s]

Source: Own authorship (2024).

It is possible to see that the MPC produced a torque signal capable of making
the vehicle follow the lead vehicle. The stability around the 10 meters default
spacing is not obtained in this simulation, a better tuning of the CTG parameters
may enhance the capability of the model to keep the desired distance, but this is
not the focus of this thesis. Overall, the MPC strategy showed satisfactory results
in this more realistic case.

5.4 Model in the Loop 500e with MPC controller

The MPC controller with the simplified plant is inputted in the Controller block,
following the EAD Scenario block with the scenario and high level controller
modeling, which provides the reference acceleration signal. The simplified plant is
responsible for providing the states feedback for the controller, as in the simplified
plant simulations discussed previously.

Thus, for the MPC implementation, the original controller block exposed in 4.23
is modified, and the resultant controller model is exposed in 5.23. The acceleration
reference provided by the high level controller is now the reference input of the
MPC. Its integral is computed and the resultant velocity is set as the second state

62

Simulations

reference. The MPC block is exposed in figure 5.24, the components are the ones
discussed along this thesis, with the MPC block that has as input the reference
state, and the EV simplified plant that provides the feedback states. The low level
controller is modified, and it receives directly the control torque provided by the
MPC, there is no backward model anymore to compute the torque command. The
modified low level controlled block is exposed in figure 5.25.

Figure 5.23: MIL setup with MPC - controller Simulink model

»| Vehspd
TrqCmd 4@
TorqueCmd
ACC_Scenario a_ref] V_ref »|V_ref
! vt 2=
. ; Brake
VehSpeed Rel_distance P
T_EM_MPC Treq BrakeCmd
Rel_speed p MPC Controller Low Level Controller
a_act
VehAcc " Lead_speed p

Scenario + High Level Controller

Source: Own authorship (2024).

Figure 5.24: MIL setup with MPC - MPC Simulink model

— (2D
T_EM_MPC
X_dot
—— :
u » T_EM
» P X
CO— @5 e 1 T
a_ref MPC
Powertrain
D

V_ref

Source: Own authorship (2024).

63

Simulations

Figure 5.25: MIL setup with MPC - low level controller Simulink model

EM Treq 4}.
(3) »|+ TrqCmd
Treq + Tred N'm
Brake Req 4}.
Brake

Torque Distribution

2 V_ref
V_ref Treq FB

1 P V_act

Pl Driver

Source: Own authorship (2024).

Finally, the whole MIL setup is simulated with the MPC controller providing the
required torque. The signals acquired from the powertrain provided by the Simulink
model developed in [16] are: vehicle speed in m/s, electric motor speed in RPM
and torque in Nm, battery charge in Ah and electrical efficiency in kWh/100km,
and relative distance in meters. All this signals are obtained for the reference
(unmodified) model and for the MPC controlled model, where the controller is
responsible for generating the required torque from the inputted position reference,
as discussed previously. In both models the ACC scenario is tested with the
CTG policy. The results are exposed together, comparing the controlled with the
uncontrolled model.

Figure 5.26 show the powertrain signals comparison (vehicle speed, and electric
motor torque and angular speed). Figures 5.27 and 5.28 shows the result of the
battery signals, and a zoomed in signal, respectively. They expose the battrey
charge and electrical efficiency. Finally, figures 5.29 and 5.30 elucidate the relative
distance signals, and the zoomed in trace.

64

Simulations

Figure 5.26: MIL results - MPC and reference powertrain signals

Speed [mis]

Motor Speed [rpm]
g
8

500

Motor Torque [Nm]

MPC controlled and reference powertrain results
Speed profile

Controlled
—— Reference

50 100 150 200 250 300 350 400
Time [s]
Motor speed profile
|
Controtes
| Reeronce
| | | | |]‘

50 100 150 200 250 300 350 400

Time [s]

Electric Motor torque profile [Nm]

Time [s]

Source: Own authorship (2024).

65

Simulations

Figure 5.27: MIL results - MPC and reference battery signals

MPC controlled and reference battery results

Battery Charge

2835 T T T

Controlled
—— Reference
283.45

2834 —

28335 —

Al

2833 —

Charge

283.25 —

283.2

_— I I I I I
o 50 100 150 200 250 300 350 400
Time [s]

5 Electrical Efficiency
T

Controlled
45— —

Electrical Efficiency [kWh/100km]

Time [s]

Source: Own authorship (2024).

66

Simulations

Figure 5.28: MIL results - MPC and reference battery signals zoomed in

MPC controlled and reference battery results

Battery Charge
283.2 — f T T

Controlled | |
Reference
283.195 — —

283.19 —

283.185 |—

283.18 —

Charge [Ah]

283.475

283.17
283.165 —
283.16

283.155

. I I I I I I
355 360 365 370 375 380 385 390 395 400
Time [s]

Electrical Efficiency

-~
T

Controlled
Reference

PO N
o & & o
T

IS

Electrical Efficiency [KWh/100km]

Iy

-~
T

355 360 365 370 ars 380 385
Time [s]

390 305 400

Source: Own authorship (2024).

67

Simulations

Figure 5.29: MIL results - MPC and reference relative distance signals

. MPC controlled model vs. model - relative distance
T T T

Controlled
| —— Reference

ol -

Distance [m]

| | | 1 1 1
1
0 50 100 150 200 250 300 350 400
Time [s]

Source: Own authorship (2024).

68

Simulations

Figure 5.30: MIL results - MPC and reference relative distance signals zoomed in

MPC controlled model vs ntrolled model - relative distance
T T

Time [s]

Source: Own authorship (2024).

It is possible to conclude from the plots, that the signals are very similar, since
the same position is used as reference for both simulations. In the zoomed images
it is possible to see that the controlled model the battery charge is 0.005 Ah lower,
while the electrical efficiency is 0.1 kWh/100km higher. This difference is negligible
and the signals can be considered the same, for the powetrain, the electric motor
torque present a higher peak around 145 second mark of the cycle, but the overall
behavior is the same. The same happens for the vehicle speed profile and relative
distances.

As stated earlier in this report, all the simulation scripts are present in the
appendix of this report - appendix B.

69

Chapter 6
Conclusion

In this thesis, the longitudinal dynamics of the vehicle are developed and validated
with different modeling approaches.

First, for the model equations validation, a backward model is developed. The
backward model has as input the velocity and acceleration reference and produce
the torque signals along the powertrain. In this approach, the acceleration and
velocity are use in the vehicle longitudinal dynamics equations to compute the
resistive and inertial forces, then the powertrain force necessary to reach the desired
acceleration and overthrow the resistive forces is calculated, and, consequently, the
wheel torque. Then the wheel torque is converted into the shaft torque after the
gain of the gearbox, and the Electric Machine dynamics are computed with the
shaft torque and angular speed information and efficiency map. The EM power
is obtained and passed to the battery block, hence this power must be provided
by the battery. In the battery dynamics equation, State of Charge is computed.
This backward model is used as a EM torque generator to validate the forward
modeling approach, which is used in the MPC controlled model as plant.

The backward-forward model is used as states, EM torque and vehicle accelera-
tion reference signals to be compared with the controlled models. The forward part
is modeled with the opposite physical causality presented in the backward one. The
EM torque is the input of the vehicle dynamic equation, and the acceleration of the
vehicle is calculated from it, as the velocity and position by integration. The torque
provided as input also serves to feed the dynamic of the EM model, which outputs
a electric power signal (as in the backward model), which is inputted to the battery
dynamics. This backward forward model is used as reference or uncontrolled plant,
since it accounts for all the dynamics and reproduces the reference speed and
acceleration in the states, accounting for all the losses and non linearity of the
model.

The results of both models for equations validation and for reference (un-
controlled model) purposes are satisfactory, since the speed profile is followed

70

Conclusion

successfully, and the torque signals are generated properly and present reasonable
values bellow the EM shaft torque limit of around 250 Nm. And the wheel torque
are proportional to the acceleration profile of the WLTP3 cycle, as expected. The
battery has a small loss in SOC.

Then, for a first development and tuning of the MPC controller, the state space
model of the powertrain dynamics is developed and inputted into the controller as
a parameter, and the equations are modeled for the EM torque to be the control
output and feedback input of the controller. The forward model is used as plant to
be controlled and for the states computation. For a first tuning and testing of the
MPC, the speed profile is directly inputted as reference, and the other states have
no reference signal. Then, to test if the controller would respond well in position set
as reference, in a second case the speed profile from the cycle is integrated and the
position trace is provided as second state reference for the MPC block. Finally, in
the last 2 and more realistic car-following scenarios, a CTG policy is implemented
to provide the position reference. First a very simple modeling with no delays
or simulations of data acquisition and a very simple transfer function is used as
vehicle plant to compute the reference position profile. In the end, for the last test
case, a realistic CTG is implemented, with data acquisition delay simulation and
complete vehicle longitudynal dynamics block to compute the position reference
fed to the MPC block.

Furthermore, the MIL complete model is simulated with the MPC for a final
validation of the simplified powertrain modeling, and to check if the controller
would behave properly in a more complex and realistic vehicle model. The results
were very satisfactory, once that the MPC controller was able to generate a EM
required torque signal that made the vehicle follow the reference and keep the
desired distance from the leading vehicle.

In all the controlled model simulation, the controller performed well and produced
a smoother torque/acceleration signal then the reference model (except in the MIL
approach). The torque was very similar to the reference and the position and speed
traces are followed successfully in all cases. The SOC showed similar values in
the controlled and uncontrolled models, with the controlled one presenting higher
SOC values at the end of the cycle in some simulations. In the ACC scenarios, the
distance between the vehicles oscillated around the set distance, and there was no
collision in any point of the cycle.

6.1 Next Steps

For the next steps of this thesis, the MPC controller can be tested in vehicle model
with lateral dynamics as well and more complex electric components modeling to
check if it works properly in a more complete setup prior to be tested in a real

71

Conclusion

vehicle. Also, the desired battery profile can be provided as reference to the MPC
controller, to check if it can follows two state’s references. A platoon stability test
can also be done with the CTG policy providing the acceleration signals, with all
the vehicles in the platoon being controlled by a Model Predictive Controller.

72

Bibliography

EC-European Commission et al. «Regulation (EU) 2019/631 of the Euro-
pean parliament and of the council of 17 April 2019 setting CO2 emission
performance standards for new passenger cars and for new light commercial
vehicles, and repealing Regulations (EC) No 443/2009 and (EU) No 510/2011
(recast)». In: Official Journal of the European Union L 111 (2019), pp. 13-53
(cit. on p. 1).

Pablo Luque, Daniel A Mantaras, Jorge Roces, Luis Castejon, Hugo Malon,
and David Valladares. «Optimization of the powertrain of electric vehicles for
a given route». In: Transportation Research Procedia 58 (2021), pp. 246-253
(cit. on p. 3).

Grzegorz Sieklucki. «Optimization of Powertrain in EV». In: Energies 14.3
(2021), p. 725 (cit. on p. 3).

Yuhang Li, Bo Zhu, Nong Zhang, Hao Peng, and Yongzhong Chen. «Pa-
rameters optimization of two-speed powertrain of electric vehicle based on
genetic algorithmy. In: Advances in Mechanical Engineering 12.1 (2020),
p. 1687814020901652 (cit. on p. 3).

Noélle Janiaud, Francois-Xavier Vallet, Marc Petit, and Guillaume Sandou.
«Electric vehicle powertrain architecture and control global optimizationy. In:
World Electric Vehicle Journal 3.4 (2009), pp. 682-693 (cit. on p. 3).

Matthew Liam De Klerk and Akshay Kumar Saha. « A comprehensive review
of advanced traction motor control techniques suitable for electric vehicle
applications». In: IEEE Access 9 (2021), pp. 125080-125108 (cit. on p. 4).

Mehrdad Ehsani, Krishna Veer Singh, Hari Om Bansal, and Ramin Tafazzoli
Mehrjardi. «State of the art and trends in electric and hybrid electric vehiclesy.
In: Proceedings of the IEEE 109.6 (2021), pp. 967-984 (cit. on p. 4).

Chen Hong, Gong Xun, HU Yun-Feng, Liu Qi-Fang, Gao Bing-Zhao, and
Guo Hong-Yan. «Automotive control: the state of the art and perspectivey.
In: Acta Automatica Sinica 39.4 (2013), pp. 322-346 (cit. on p. 4).

73

BIBLIOGRAPHY

[12]

[13]

[16]

[17]

Joycer Osorio, Pedro Ponce, and Arturo Molina. «Electric Vehicle Powertrain
Control with Fuzzy Indirect Vector Control». In: 2012 11th Mexican Interna-
tional Conference on Artificial Intelligence. IEEE. 2012, pp. 122-127 (cit. on
p. 4).

Jony Javorski Eckert, Ludmila Correa de Alkmin Silva, Franco Giuseppe
Dedini, and Fernanda Cristina Corréa. «Electric vehicle powertrain and
fuzzy control multi-objective optimization, considering dual hybrid energy

storage systemsy. In: IEEE Transactions on Vehicular Technology 69.4 (2020),
pp. 3773-3782 (cit. on pp. 4, 5).

Wang Hongyu, Yuwen Zhigiang, Fang Yong, Qiao Yungian, and Li Zhiming.
«Development of pure electric vehicle powertrain controller based on hardware
in the loop platform». In: 2015 6th IEEE International Conference on Software
Engineering and Service Science (ICSESS). IEEE. 2015, pp. 498-502 (cit. on
p. 5).

Jian Zhou, Xiangming Shen, and Dong Liu. «Modeling and simulation for
electric vehicle powertrain controlsy. In: 2014 IEEE Conference and FExpo
Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). IEEE. 2014,
pp. 1-4 (cit. on p. 5).

Xingyu Zhou, Fengchun Sun, Chuntao Zhang, and Chao Sun. «Stochastically
predictive co-optimization of the speed planning and powertrain controls for
electric vehicles driving in random traffic environment safely and efficiently».
In: Journal of Power Sources 528 (2022), p. 231200 (cit. on p. 5).

Zhenhai Gao, Wei Yan, and Hongjian Li. «Design of the time-gap-dependent
robust headway control algorithm for ACC vehiclesy. In: International journal
of vehicle design 70.4 (2016), pp. 325-340 (cit. on p. 5).

Junmin Wang and Rajesh Rajamani. «Should adaptive cruise-control systems
be designed to maintain a constant time gap between vehicles?» In: IEFE
Transactions on Vehicular Technology 53.5 (2004), pp. 1480-1490 (cit. on

p. 5).

Raffaele Manca, Eugenio Tramacere, Stefano Favelli, Andrea Tonoli, and Luca
Camosi. «Impact of Rolling Resistance Modeling on Energy Consumption for
a Low Voltage Battery Electric Vehicle». In: 2023 International Symposium
on Electromobility (ISEM). IEEE. 2023, pp. 1-6 (cit. on pp. 5, 16, 25, 30-32,
37-39, 64).

Federico Millo, Luciano Rolando, and Maurizio Andreata. «Numerical Simu-
lation for Vehicle Powertrain Development». In: (Sept. 2011). URL: https:
//scite.ai/reports/10.5772/24111 (cit. on p. 6).

74

https://scite.ai/reports/10.5772/24111
https://scite.ai/reports/10.5772/24111

BIBLIOGRAPHY

[20]

21

23]

[24]

[25]

[26]

Alam Ms. «Golf Car Application Based Performance Analysis of a Generic
Neighborhood Fuel Cell Vehicle (NFCV) Powertrainy. In: (Jan. 2014). URL:
https://scite.ai/reports/10.4172/2167-7670.1000107 (cit. on p. 6).

Hicham El Hadraoui, Mourad Zegrari, Ahmed Chebak, Oussama Laayati, and
Nasr Guennouni. «A Multi-Criteria Analysis and Trends of Electric Motors
for Electric Vehiclesy. In: (Apr. 2022). URL: https://scite.ai/reports/
10.3390/wevj13040065 (cit. on p. 6).

Data by you. Electric Vehicle Powertrain Architecture. Accessed in November
2023. URL: https://www . exro.com/industry- insights/ev - power -
electronics-explained (cit. on p. 6).

Data by you. Battery Management System. Accessed in November 2023. URL:
https://www.transportenvironment.org/discover/ev-batteries-are-
getting-cleaner-%20and-cleaner-2-3-times-better-2-years-ago/
(cit. on p. 7).

Shiquan Zhao, Ricardo Cajo, Robain De Keyser, and Clara-Mihaela Ionescu.
«The Potential of Fractional Order Distributed MPC Applied to Steam/Water
Loop in Large Scale Ships». In: (Apr. 2020). URL: https://scite.ai/
reports/10.3390/pr8040451 (cit. on p. 10).

Johannes Kohler, Elisa Andina, Raffaele Soloperto, Matthias A. Miiller, and
Frank Allgéwer. «Linear robust adaptive model predictive control: Computa-
tional complexity and conservatismy. In: (Dec. 2019). URL: https://scite.
ai/reports/10.1109/cdc40024.2019.9028970 (Cit. on p. 10).

Karam Abughalieh and Shadi Alawneh. « A Survey of Parallel Implementations
for Model Predictive Controly. In: (Jan. 2019). poI: 10.1109/access.2019.
2904240. URL: https://scite.ai/reports/10.1109/access . 2019.
2904240 (cit. on p. 11).

Simona Onori, Lorenzo Serrao, and Giorgio Rizzoni. Hybrid electric vehicles:
Energy management strategies. Springer, 2016 (cit. on pp. 1315, 24, 25).

Pier Giuseppe Anselma and Giovanni Belingardi. «Enhancing Energy Saving
Opportunities through Rightsizing of a Battery Electric Vehicle Powertrain for
Optimal Cooperative Driving». In: SAFE International Journal of Connected
and Automated Vehicles 3.12-03-02-0007 (2020), pp. 71-83 (cit. on p. 13).

75

https://scite.ai/reports/10.4172/2167-7670.1000107
https://scite.ai/reports/10.3390/wevj13040065
https://scite.ai/reports/10.3390/wevj13040065
https://www.exro.com/industry-insights/ev-power-electronics-explained
https://www.exro.com/industry-insights/ev-power-electronics-explained
https://www.transportenvironment.org/discover/ev-batteries-are-getting-cleaner-%20and-cleaner-2-3-times-better-2-years-ago/
https://www.transportenvironment.org/discover/ev-batteries-are-getting-cleaner-%20and-cleaner-2-3-times-better-2-years-ago/
https://scite.ai/reports/10.3390/pr8040451
https://scite.ai/reports/10.3390/pr8040451
https://scite.ai/reports/10.1109/cdc40024.2019.9028970
https://scite.ai/reports/10.1109/cdc40024.2019.9028970
https://doi.org/10.1109/access.2019.2904240
https://doi.org/10.1109/access.2019.2904240
https://scite.ai/reports/10.1109/access.2019.2904240
https://scite.ai/reports/10.1109/access.2019.2904240

Appendix A

Complete cycle plots

The complete simulation for the whole 1800 seconds from the WLTP3 cycle are
exposed in this appendix.

Figure A.1: MPC controlled simplified model results states evolution - velocity
reference 1800 s

Model states evolution

x1 (SOC) evolution
082 T T

068 I | I I
o 200 400 800 800

1000 1200 1400 1600 1800
Time [s]

55 x2 (position) evolution

Position [m]

05 | I I |
(]

1
200 400 800 800 1000 1200 1400 1600 1800
Time [s]
x3 (Velocity) evolution
40 T T
—— Controled
Reference
30
w
E
Z20
3
3
2
10
o | I I
o 200 400 600 800 1000 1200 1400 1600 1800
Time [s]

Source: Own elaboration (2024).

76

Complete cycle plots

Figure A.2: MPC controlled simplified model results torque and acceleration
evolution - velocity reference 1800 s

MPC control torque output and plant acceleration

MPC control torque output
80 T T T T

Controllea
- Reference
40 —
=20
E
Z
g oF
g
5
" 20— i
a0
60 A
o5 I I I I I
200 400 600 800 1000 1200 1400 1600 1800
Time [s]
MPC model acceleration (x3,,,,)
2
T T T
—— Controled
15k Reference
1
g os —
2 0
g
2
3
§ 05— i
- |
e
15— —
,2 | | | | |
4 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Source: Own elaboration (2024).

7

Complete cycle plots

Figure A.3: MPC controlled simplified model results states evolution - position
reference 1800 s

Model states evolution - Position Profile Reference

x1 (SOC) evolution
o082 T T T T

Controlled
Reference

08 I I I I |
o 20 400 50 a0 1000 1200 1400 1600 1800
Time [s]

x10* X2 (position) evolution
25 T T

Position [m]

| | | | I
-05
0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]
x3 (Velocity) evolution
o I T
Cantrolios
2 Referonce
z
E 20—
2
8 ol
s 10
=
0
0 I | | | I
0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]

Source: Own elaboration (2024).

78

Complete cycle plots

Figure A.4: MPC controlled simplified model results torque and acceleration
evolution - position reference 1800 s

Torque [Nm]

Acceleration [m/s?]

MPC control torque output and plant acceleration - Position Profile Reference
MPC control torque output

Controlled
Reference

200 400 600 800 1000 1200
Time [s]

MPC model acceleration (x3,,,)

1400

—— Controlled
Reference

200 400 600 800 1000 1200
Time [s]

Source: Own elaboration (2024).

79

1400

Complete cycle plots

Figure A.5: MPC controlled simplified model results relative distance - position
reference 1800 s

25 10* Position profile from controlled model vs reference - Position Profile Reference
T T T T

Controlled

|—— Reference

Position [m]

L L 1 L L
05
0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Source: Own elaboration (2024).

80

Complete cycle plots

Figure A.6: MPC controlled simplified model results states evolution - simplified
ACC 1800 s

Model states evolution - ACC Scenario - simplified

x1 (SOC) evolution
o082 T T T T

Controlled
Reference

08 I I I I |
o 20 400 50 a0 1000 1200 1400 1600 1800
Time [s]

x 2 (positi i
2.5)\((position) evoluti o.‘|

Position [m]
- &
T T

°
&
T

1 1 1 1 1
05
o 200 400 600 800 1000 1200 1400 1600 1800
Time [s]

x3 (Velocity) evolution
0 T T T

Controlled
Reference

30—

M ALASYIR W | 7

200 400 600 800 1000 1200 1400 1600 1800
Time [s]

Velocity [mis]
N
8

Source: Own elaboration (2024).

81

Complete cycle plots

Figure A.7: MPC controlled simplified model results torque and acceleration
evolution - simplified ACC 1800 s

MPC control torque output a dpl nt acceleration - ACC Scenario - simplified

i“l l “ l h“lh l “mlL.th
Efﬂi] “'””' l”M l” A] W o

Time [s]

Time [s]

Source: Own elaboration (2024).

82

Complete cycle plots

Figure A.8: MPC controlled simplified model results relative distance - simplified
ACC 1800 s

25210" Leading and preceding vehicles positions - ACC Scenario - simplified
T T T T
Controled
Reference
2 |
15— —
E
g 1
]
g
&
05
0
05 I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]
5 210* Relative distance - ACC Scenario - simplified
T T
2
15
g
3
a1
05
" I I I I I
o 200 400 800 800 1000 1200 1400 1600 1800

Time [s]

Source: Own elaboration (2024).

83

Appendix B

MATLAB scripts

Script for plotting the EM efficiency map.

O I R

[e

-~

NN ONNN NN NN

[0

close all;
clear;
3| cle

s|load (" Efficiency .mat") ;
j| load (" Shaft_torque.mat") ;
7| load (" Speed .mat") ;

o| Speed__max = Speed (:,1);
Torque_max = Shaft_Torque (:,1);

2|F = scatteredInterpolant (Speed (:) ,Shaft_Torque (:) ,Efficiency (:));

% levels plot

s| figure

levels = [0:0.70:0.70 00.70:0.1:0.94 0.94:0.01:1]%100;
/IM = contourf(Speed,Shaft_Torque, Efficiency ,levels);
hold on

plot (Speed__max , Torque_max)

grid on

title ('EM efficiency map’)

xlabel (’EM speed [rpm]’)

ylabel (’Shaft Torque [Nm] ")

Efficiency (Efficiency==0) = 1;

% surface plot
figure

84

29

3(

3

32
38

]

34

oA W N =

[Pl |

11
12
13
14

16

17
18
19
20
21

22
23
24

25
26
27
28
29
30
31
32
33
34

MATLAB scripts

Y%surf ([Speed (:,1:27) Speed(:,32:end)] ,[Shaft_Torque (:,1:27)
Shaft__Torque (:,32:end)], [Efficiency (:,1:27) Efficiency (:,32:end)
/)

surf (Speed, Shaft_Torque , Efficiency)

title ('EM efficiency surface’)

xlabel (’EM speed [rpm])

ylabel (’Shaft Torque [Nm]’)

zlabel (" Efficiency [%]")

Backward model script.

clear

close all

clc

%% PARAMETERS

% adding folders to path and loading data

addpath("data’)

addpath ("Eff map’)

load (fullfile (’data’, "WLTP3.mat’)) % loading the speed profile (WLIP3
)

load ("Eff _map\ Efficiency .mat"); % loading the EM efficeincy map

load ("Eff map\Shaft_ torque.mat"); % loading shaft torque map

load ("Eff map\Speed.mat"); % loading speed map

% setting efficiency to 100% when T = 0
Efficiency (Efficiency==0) = 100;

% velocity and acceleration profiles

vehspeed = [time_ s,speed kmh/3.6]; % speed profile in [m/s]

dt = 1;

vehacc = (vehspeed(2:end,2)—vehspeed (1:end—1,2))./dt; %vehicle
acceleration [m/s™ 2]

vehacc = [0; vehacc];

% simulation parameters

t_sim = 1800; % simulation time [s]

g = 9.81; % Gravity acceleration [m/s” 2]

alpha = 0xpi/180; % road slope [rad]

rho = 1.25; % air density [kg/m 3] — from Onori HEV book

% battery parameters

N s = 108; % Number of series

N_p = 1; % Number of parallels

N_b = N_s*N_p; % number of battery cells

Q nom = 60«N_p; % nominal battery capacity [Ah]
eta_c = 0.95; % Coloumbic efficiency

85

36

39

4C

41

MATLAB scripts

load (’bat_Ro_vs_SOC_data.mat’); % Ro variation with SOC — single
battery cell

load ("bat_ Voc_vs SOC_data.mat’); % Voc variation with SOC — single
battery cell

F_Voc_s = griddedInterpolant (SOC_Voc_data(:,1) ,SOC_Voc_data(:,2)); %
interpolated Voc data for a single cell

F_Ro_s = griddedInterpolant (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2)); %
interpolated Ro data for a single cell

SOC_vec = linspace (0,1,500);

Voc_s = F_Voc_s(SOC_vec); % vector with interpolated values of Voc_ s
(single cell)

Ro_s = F_Ro_s(SOC_vec); % vector with interpolated values of Ro_s (
single cell)

Voc = N_bxVoc_s;

Ro = N_bxRo_s;

/% vehicle parameters

M veh = 1400; % vehicle mass [kg]

a = 1; % Front axle — CoG Front axle — CoG [m]
b= 1.3; % Rear axle — CoG [m]

h = 0.3; % Height of CoG [m]

f 0 =4.5x1e—3; % Static rolling coefficient [N/kN]
k = 0; % miscellanecous loss coeff [Ns/m]

r w= 0.3; % Wheel radius [m]

C.d= 0.33; % Drag coeff

A f=2.15; % Frontal area [m 2]

sitau_gb = 9.6; % Gear ratio
7leta_gb = 0.97; % Gearbox efficiency

eta_inv = 1; % Inverter efficiency

% electric motor parameters

Speed__max = Speed (:,1);

Torque_max = Shaft_Torque (:,1);

M_eff = [Speed (:) ,Shaft_Torque (:),Efficiency (:)];

F = scatteredInterpolant (Speed (:) ,Shaft_Torque (:) ,Efficiency (:));

% initial condition

SOC0 = 0.8;
%% SIMULATION

open ('simplified EV_model.slx ")
sim (’simplified EV__model.slx ")

%% PLOTS
directory = "C:\ Users\gabri\Documents\TCC — EV powertrain control\

Text\images";

86

MATLAB scripts

| fig = figure () ;

w| fig . Position = [100, 100, 1000, 600];

so| subplot (2,1,1);

s1| plot (T_wheel. Time, T_wheel.Data, ’b’, ’LineWidth’ ,1.5) ;
s2| grid on

s3| title ("Wheel torque’);

s4| xlabel ("Time [s]7);

ss| ylabel ("Torque [Nm]) ;

ss| subplot (2,1,2);

s7| plot (w_wheel. Time,w_ wheel .Data, 'r’, "LineWidth’ ,1.5) ;
ss| xlabel ("Time [s]7);

so| ylabel ("Angular speed [rad/s]’);

o0l grid on

ot| title ("Wheel angular speed’);

92
93| filename = ’'result. BW_ T and w_wheel.jpg’;

o1/ fullFileName = fullfile (directory, filename);
os| saveas (fig , fullFileName);

96
97
os| fig = figure();

99| fig . Position = [100, 100, 1000, 600];

10| subplot (2,1,1);

01| plot (T_EM. Time ,T EM. Data, b’ , ’LineWidth’ ,1.5) ;

102 grid on

03| title (’Electric motor torque’);

04| xlabel ("Time [s]7);

05| ylabel (?Torque [Nm]) ;

06| subplot (2,1,2);

17| plot (w_EM_1pm. Time ,w EM 1pm.Data, 'r’, LineWidth’ ;1.5);
10s| xlabel (’Time [s]’);

9| ylabel (7 Angular speed [RPM]’);

10| grid on

11| title (’Electric motor angular speed in RPM’);

112
113 filename = ’result. BW_ T and w EM.jpg’;

14| fullFileName = fullfile (directory , filename);
15| saveas (fig , fullFileName);

116
117
us| fig = figure () ;

19| fig . Position = [100, 100, 1000, 600];

20| subplot (2,1,1);

21| plot (P_batt.Time,P_batt.Data, ’b’, ' LineWidth’ ,1.5);
22| grid on

123 title (’Battrey power’);

24| xlabel ("Time [s]’);

125| ylabel ("Power [W]7);

26| subplot (2,1,2);

87

127
128
129
130
131
132
133
134

135

[L O R

-
e} © oo -3

cow

26
27
28
29
30
31
32
33
34

MATLAB scripts

plot (SOC. Time ,SOC.Data, 'r’, 'LineWidth’ ,1.5) ;
xlabel (’Time [s]’);

ylabel (’SOC [—]7);

grid on

title (’State of Charge’);

filename = ’result. BW_P_ b and SOC.jpg’;
fullFileName = fullfile (directory , filename);
saveas (fig , fullFileName);

Backward-Forward model script.

clear

close all

clc

%% PARAMETERS

% adding folders to path and loading data

addpath(’data’)

addpath ("data\Eff_map’)

load (fullfile (’data’,"WLTP3.mat’)) % loading the speed profile (WLTP3

load ("Eff map\Efficiency .mat"); % loading the EM efficeincy map
load ("Eff map\Shaft_torque.mat"); % loading shaft torque map
load ("Eff _map\Speed.mat"); % loading speed map

5|% setting efficiency to 100% when T = 0
| Efficiency (Efficiency = 0) = 10;

eff = Efficiency /100;

% velocity and acceleration profiles

vehspeed = [time s,speed kmh/3.6]; % speed profile in [m/s]

dt = 1;

vehacc = (vehspeed (2:end,2)—vehspeed (1:end—1,2))./dt; %vehicle
acceleration [m/s” 2]

vehacc = [0; vehacc];

5|/% simulation parameters

t_sim = 1800; % simulation time [s]

g = 9.81; % Gravity acceleration [m/s” 2]

alpha = 0xpi/180; % road slope [rad]

rho = 1.25; % air density [kg/m™ 3] — from Onori HEV book

% battery parameters

N_s = 108; % Number of series

N_p = 1; % Number of parallels

N_b = N_s*N_p; % number of battery cells

88

MATLAB scripts

35|Q_nom = 60«N_p; % nominal battery capacity [Ah]

ss|eta_c = 0.95; % Coloumbic efficiency

37| load ("bat_Ro_vs SOC_data.mat’); % Ro variation with SOC — single
battery cell

3s| load ("bat_ Voc_vs_SOC_data.mat’); % Voc variation with SOC — single
battery cell

39| F_Voc_s = griddedInterpolant (SOC_Voc_data(:,1) ,SOC_Voc_data(:,2)); %
interpolated Voc data for a single cell

10|F_Ro_s = griddedInterpolant (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2)); %
interpolated Ro data for a single cell

11| SOC_vec = linspace (0,1,500);

12| Voc_s = F_Voc_s(SOC_vec); % vector with interpolated values of Voc_s
(single cell)

13|Ro_s = F_Ro_s(SOC_vec); % vector with interpolated values of Ro_ s (
single cell)

11| Voc = N_bxVoc_s;

15/Ro = N_bxRo_s;

17|% vehicle parameters
1s|M_veh = 1400; % vehicle mass [kg]

wla = 1; % Front axle — CoG Front axle — CoG [m)]
s0lb = 1.3; % Rear axle — CoG [m]

silh = 0.3; % Height of CoG [m]

s2/f_0 = 4.5%x1e—3; % Static rolling coefficient [N/kN]
sslk = 0; % miscellaneous loss coeff [Ns/m]

salr_w = 0.3; % Wheel radius [m)]

551C_d = 0.33; % Drag coeff

se|lA_f = 2.15; % Frontal area [m” 2]

57 taTligb = 9.6; % Gear ratio
ss|eta_gb = 0.97; % Gearbox efficiency
soleta_inv = 1; % Inverter efficiency

% electric motor parameters

62| Speed_max = Speed (:,1);

63| Torque_max = Shaft__Torque(:,1);

61| M_eff = [Speed (:) ,Shaft_Torque (:) ,Efficiency (:)];

os|F = scatteredInterpolant (Speed (:) ,Shaft_Torque(:) ,Efficiency (:));

o

66
67|% initial condition
65| SOCO = 0.8;

70| %% SIMULATION

72| open ("EV_BW_FW _ reference_model. slx ”)
73| sim ("EV_BW_FW__reference_model. slx ”)

75| %% PLOTS

71x1 = X_ref.Data(:,1);

89

MATLAB scripts

7s|x2 = X_ref.Data(:,2);
79| x3 = X_ref.Data(:,3);
s0| sim__time = X_ ref.Time;

s2| directory = "C:\ Users\gabri\Documents\TCC — EV powertrain control)
Text\images";

sa| figl = figure () ;

ss| figl . Position = [100, 100, 1000, 600];

so| sgtitle ("BWFW Reference Model states evolution');
s7| subplot (3,1,1);

ss| plot (sim__time ,x1,’g’, LineWidth’ ,1.5) ;

so| ylabel (’SOC [—]7);

oo| xlabel ("Time [s]’);

o1 title ('x1 (SOC) evolution’)

92 grid on;

01| subplot (3,1,2);

o5 plot (sim__time ,x2,’r’, ’LineWidth’ ,1.5);
os| ylabel ("Position [m]’);

or| xlabel ("Time [s]’);

os| title ('x2 (position) evolution’)

90| grid on;

11| subplot (3,1,3);

02| plot (sim__time ,x3,’k’, LineWidth’ ,1.5);
03| ylabel (’Velocity [m/s]’);

4] xlabel ("Time [s]’);

05| title (’x3 (Velocity) evolution’);

16| grid on;

os| filename = ’result. BW_FW_ref model states.jpg’;
00| fullFileName = fullfile (directory , filename):;
10| saveas (figl , fullFileName);

112|% control torque and state derivative

| fig2 = figure () ;

15| fig2 . Position = [100, 100, 1000, 600];

16| sgtitle ("BWFW Reference Model EM Torque and Acceleration");
17| subplot (2,1,1)

1s| plot (sim_time, T EM ref.Data,’b’, ’'LineWidth’ ,1.5);

19| grid on;

20| xlabel ("Time [s]")

121] ylabel (" Torque [Nm]")

122| title ("EM Torque")

123
24| subplot (2,1,2)

125| plot (sim__time, a_ref.Data, ’r’, LineWidth’ ,1.5);

90

MATLAB scripts

126| grid on;

127 xlabel ("Time [s]")

125 ylabel (" Acceleration [m/s”2]")
120 title (" Acceleration)

130
131
132| filename = ’result. BW_FW_ref model acc_ T.jpg’;
133 fullFileName = fullfile (directory , filename);
134 saveas (fig2 , fullFileName);

Prediction model function script.

1| function [xdot, y] = prediction_longitudinal_model(t,X,U) % add y to
output eventually

% arguments: t, X: states,

% U: command in the previous instant

w N

% enviroment parameters

slg = 9.81; % Gravity acceleration [m/s”2]

alpha = 0xpi/180; % road slope [rad]

rho = 1.25; % air density [kg/m~ 3] — from Onori HEV book

ot

-~

0

10|% vehicle parameters

11|M _veh = 1400; % vehicle mass [kg]

i2la = 1; % Front axle — CoG Front axle — CoG [m]
13lb = 1.3; % Rear axle — CoG [m]

1a/h = 0.3; % Height of CoG [m]

15|f_0 = 4.5/1000; % Static rolling coefficient [N/kN]
16|k = 0; % miscellaneous loss coeff [Ns/m]

17lr_w = 0.3; % Wheel radius [m)]

15/C_d = 0.33; % Drag coeff

w|A f= 2.15; % Frontal area [m™2]

tau_gb = 9.6; % Gear ratio

21| eta_gb = 0.97; % Gearbox efficiency
2| eta_inv = 1; % Inverter efficiency
23| phi = r_w/tau_gb;

24
25|% battery parameters

26|N_s = 108; % Number of series

27|N_p = 1; % Number of parallels

2s)N_b = N_s«N_p; % number of battery cells

20|Q_nom = 60«N_px3600; % nominal battery capacity [As]
30l eta__batt = 0.95; % Coloumbic efficiency

31

2(

32|% state variables
33|x1 = X(1); % SOC
1| x2 = X(2); % Position
35 x3 = X(3); % Velocity

91

MATLAB scripts

37|% control input

35| T EM = U;

39

10|% Forces

11| F_roll = M_veh*xgxf 0; % rolling resistance force
12| F_aero = 0.5%xC_dsrhoxA_fxx372; % aerodynamic force
43

14|% EM equations

1s5|'w_EM = x3/phi;

s6|w_EM_1pm = w_EMx*30/ pi;

arleta_ EM = eff_poly (w_EM_rpm, T _EM);
15|P_EM = w_EM*T EM;

% battery equations

Pb = P EM/((eta_EMsx*eta_inv) (sign (P_EM)));

52| V_oc = N_s*V_poly(x1); % vector with interpolated values of Voc_s (
single cell)

53)R_o = N_s/N_p+«R_poly(x1); % vector with interpolated values of Ro_ s (
single cell)

51/ Ib = (V_oc — sqrt (V_oc™2 — 4xR_oxPb)) /(2+«R_o0);

<

56|/% state equations

s7{soc__dot = —Ib/(Q_nomxeta_batt " (sign(Ib)));

ss| x_dot = x3;

so|v_dot = ((eta_gb/phi)«T EM — F_roll — F_aero)/M_veh;
60
61|/% state derivative

62| xdot = [soc_dot;x_dot;v_dot];

63
oy = [x1;x2;x3];
65| end
Polynomial fit functions and testing script.
i clear;
2| cle
3
1|% testing polinomial fit with battery and EM efficiency data

ot

6|%% adding folders to path
addpath ("data\Eff _map’);
addpath("data’);

-~

0

10|%% loading data into vectors

11
12|%%6% loading EM parameters
13| load ("Efficiency .mat’); % loading the EM efficeincy map

92

S
S © 0 N o O A

=

A W N

N

NONONR NN NNN NN
: ® P 7

34

36

37

10

44

5| load (" Speed.mat"); % loading speed map

5| torq__flat = Shaft_Torque (:) ;

;5| speed__points =

MATLAB scripts

load (" Shaft__torque.mat"); % loading shaft torque map

9%%% loading battery params
load ("bat_Ro_vs_SOC_data.mat") ;
load ("bat_Voc_vs_SOC_data.mat") ;

%% EM efficiency polynomial polynomial fitting and testing

% EM efficiency ref (compare the results with the polinomial)
eff flat = Efficiency (:)/100;

speed_ flat = Speed (:) ;
F = scatteredInterpolant (Speed (:) ,Shaft_Torque (:) ,Efficiency (:) /100);

figure
surf(Speed, Shaft_Torque, Efficiency);

[500;750;1000;1250;1500;1750;2000;2250;2500;2750;3000;3250;
3500:3750;4000;4250;4500:4750;5000;5250;5500:5750;6000;6250;6500;67
7000;7250;7500;7750;8000:8250;8500;8750;9000;9250;9500;9750;10000];
torque_points = [287.315725265347;287.233717032146;287.151724602149;
287.069743739971;286.987771986552;286.905807734913;286.823849853203

286.741897501612;267.378269069311;243.071146629631;222.814866998334

205.674858958375;190.983337167297;178.250632202600;167.109517497491;

157.278993072683;148.540714541255;140.726295202330;133.690149986783;

127.323954482924;121.536502005985;116.252306265388;111.408460170112

106.952121758109;102.838578612008;99.0297423697019;95.4928054975261

93

50

’ ‘

? ‘

46

63

66
67

6

o

69
70

71

MATLAB scripts

92.1999538366269;89.1266218638583;86.2515686389848;83.5562072631545;

81.0242030664065;78.6411424126642;76.3942584067584;74.2722022887362;

72.2648518732074;70.3631501887848;68.55689689496418;66.844992489110

%/ testing and comparing the results of polynimial fit and
interpolant

number_ points = [];

for i=1:length (speed_points)
poly = [poly; eff_poly(speed_points(i),torque_points(i))];
eval = [eval; F(speed_points(i),torque_points(i))];
number_points = [number_points;i];

end

% plotting the diferentece between the evaluations

figure

plot (number_points,poly — eval, ’LineWidth’ 1.5);

title (’Difference from polynomial fit and interpolant evaluation of

EM efficiency ’);

5| xlabel (?Evaluations’);

ylabel (' Difference’)
9% Battery voltage and resistance polynomial fitting and testing

% interpolants for comparison and tests
F_Voc_s = griddedInterpolant (SOC_Voc_data(:,1) ,SOC_Voc_data(:,2)); %
interpolated Voc data for a single cell

F_Ro_s = griddedInterpolant (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2)); %
interpolated Ro data for a single cell

1|% Extracting data from files

SOC_ R = SOC_Ro_data(:,1);

76| R_data = SOC_Ro_data(:,2);

s|SOC_V = SOC_Voc_data(:,1

)5
V_data = SOC_Voc_data(:,2);

% Perform a 2nd—degree polynomial fit
degree = 2;

1

3| R_coefficients = polyfit (SOC_R, R_data, degree);

94

’ ‘

|

MATLAB scripts

31| V__coefficients = polyfit (SOC_V, V_data, degree);

5|/% Polynomial functions

s7| R__function = poly2str (R__coefficients , 'SOC’);

ss| V__function = poly2str(V__coefficients, 'SOC’);

so| disp (["Polynomial Equation: R(SOC) = > R_function]) ;

oo| disp (["Polynomial Equation: V(SOC) = ’ V_function]) ;

91

92|% Create a polynomial model using polyval

93| SOC_range_ R = linspace (min(SOC_R), max(SOC_R), 100); % Adjust the
range as needed

Resistance_fit = polyval (R__coefficients , SOC_range R);

S

9¢

95

96| SOC_range_ V = linspace (min(SOC_V), max(SOC_V), 100); % Adjust the
range as needed

Voltage fit = polyval(V__coefficients, SOC_range V);

9

-~

98
99|% Plot the original data points and the fitted curve

10| figure;

1| plot (SOC_R, R_data, ’o’, ’'DisplayName’, ’Original Data’);

102| hold on;

03| plot (SOC_range R, Resistance_ fit, ’r—’, ’'DisplayName’, ’2nd—degree
Polynomial Fit’);

104 xlabel (’State of Charge (SOC)’);

15| ylabel ("Resistance ’);

6| title (’2nd—degree Polynomial Fit: Resistance as a function of SOC’);
07| legend (*Location’, ’'Best’);

08| grid omn;

109
110
1| figure

12| plot (SOC_V, V_data, ’'o’, ’DisplayName’, ’'Original Data’);

113/ hold on;

14| plot (SOC_range V, Voltage fit, ’r—’, ’'DisplayName’, ’2nd—degree
Polynomial Fit’);

15| xlabel ("State of Charge (SOC)’);

16| ylabel (’Voltage 7);

7| title (’2nd—degree Polynomial Fit: Voltage as a function of SOC’);
15| legend (*Location’, ’Best’);

19| grid on;

121|%% Resultant polynomial functions

123|% EM polynomial fit

124

125| function eff = eff poly(w, T)

126 % eff = 2.07338239e—6+T — 3.84695020e—6%w + 8.63478964e—1;

127 e = 3.86559103e—6+T"2 —1.15468531e—9+w 2 — 6.64654450e—9+T*w +

3.14229679e—5+T + 1.63013222e—bxw + 7.71598709e—1;

95

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147

[LI O R

-~

22

MATLAB scripts

if e>1

eff = 1;
elseif e < 0

eff = 0;
else

eff = e;
end

end
% Battery resistance polynomial fit

function V_oc = V_poly(SOC)
V_oc = —0.40666xSOC™2 + 1.0703%xSOC + 3.4385;
end

% Battery voltage polynomial fit
function R_o = R_poly(SOC)

R o= 0.00041627%SOC"2 — 0.00071804%SOC + 0.0023018;
end

MPC controlled model script.

clear
close all
clc

5| %% PARAMETERS

% polynomial functions for battery voltage, resistance and EM
efficiency

% defined in the polynimial_fits.m file , and the funcions are saved

% separately to be used directly inside this model

addpath (" polynomial fits")
addpath ("data\Eff map")
addpath ("data")

addpath (" tests\")

5| addpath ("simulation_results_const_v_ref")

j| load (fullfile (’data’, "WLTP3.mat’)) % loading the speed profile (WLTP3

)

% velocity and acceleration profiles

vehspeed = [time s,speed kmh/3.6]; % speed profile in [m/s]

dt = 1;

vehacc = (vehspeed (2:end,2)—vehspeed (1l:end—1,2))./dt; %vehicle
acceleration [m/s”™ 2]

vehacc = [0; vehacc];

96

MATLAB scripts

23| speed__profile = vehspeed (:,2);
21| time__vector = vehspeed (:,1);

5|/% simulation parameters

271g = 9.81; % Gravity acceleration [m/s” 2]

sl alpha = 0xpi/180; % road slope [rad]

20|rtho = 1.25; % air density [kg/m~ 3] — from Onori HEV book

N

31|% battery parameters

32|N_s = 108; % Number of series

33|]N_p = 1; % Number of parallels

34|N_b = N_s*N_p; % number of battery cells

35|Q_nom = 60«N_p; % nominal battery capacity [Ah]

s6leta_c = 0.95; % Coloumbic efficiency

37| load ("bat_Ro_vs SOC_data.mat’); % Ro variation with SOC — single

battery cell

3s| load ("bat_Voc_vs_SOC_data.mat’); % Voc variation with SOC — single
battery cell

F_Voc_s = griddedInterpolant (SOC_Voc_data(:,1) ,SOC_Voc_data(:,2)); %
interpolated Voc data for a single cell

w|F_Ro_s = griddedInterpolant (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2)); %

interpolated Ro data for a single cell

11| SOC_vec = linspace (0,1,500);

12| Voc_s = F_Voc_s(SOC_vec); % vector with interpolated values of Voc s

(single cell)

13/Ro_s = F_Ro_s(SOC_vec); % vector with interpolated values of Ro s (

single cell)

3¢

% vehicle parameters
16|M_veh = 1400; % vehicle mass [kg]

'
o

arfla = 1; % Front axle — CoG Front axle — CoG [m]
ss|b = 1.3; % Rear axle — CoG [m]

19/h = 0.3; % Height of CoG [m]

s0lf_0 = 4.5%x1e—3; % Static rolling coefficient [N/kN]
silk = 0; % miscellaneous loss coeff [Ns/m]

s2lt_w = 0.3; % Wheel radius [m)]

53/C_d = 0.33; % Drag coeff

salA_f = 2.15; % Frontal area [m™2]

55 taTligb = 9.6; % Gear ratio
soleta_gb = 0.97; % Gearbox efficiency
s7leta_inv = 1; % Inverter efficiency

59|% electric motor parameters

60| load ("Eff_map\ Efficiency .mat"); % loading the EM efficeincy map
61| load ("Eff_map\Shaft_torque.mat"); % loading shaft torque map

62| load ("Eff _map\Speed . mat"); % loading speed map

63| Speed__max = Speed (:,1);

61| Torque_max = Shaft_Torque (:,1);

65| Efficiency (Efficiency = 0) = 10;

97

MATLAB scripts

6| eff = Efficiency /100;

67| M_eff = [Speed (:) ,Shaft_Torque (:) ,Efficiency (:)];

os|F = scatteredInterpolant (Speed (:) ,Shaft_Torque (:) ,Efficiency (:));
69
70
711% ACC and CTIG Contoller parameters

72| default distance = 50; % reference distance from leading vehicle [m]
sl tau = 0.5; % vehicle LTI model [s]

7alh = 4xtau; % time gap [s]| (h > 2xtau)

7s|lambda = 0.5; % CIG parameter [—]

76| Td = 0.01;

s = tf(7s7);

P = 1/(tauxs + 1); % Vehicle simplified plant

7| v_set = 40; % ACC set velocity [m/s]

so| time__gap = 3; % ACC time gap [s]

si| verr__gain = 0.1; % ACC velocity error gain — CIG

s2| xerr__gain = 0.3; % ACC spacing error gain — CIG

s3| vx__gain = 0.5; % ACC relative velocity gain — CIG
s4|max_acc = 2; % Maximum acceleration [m/s” 2]
s5|min_acc = —3; % Minimum acceleration [m/s” 2]

88|% initial conditions

59/ SOCO = 0.8;

90| x0 = —default__distance;
91| v0 = vehspeed (1) ;

02| xx0 = [SOCO; x0; vO];
93
94| %% PLOTS

95| directory = "C:\ Users\gabri\Documents\TCC — EV powertrain control)
Text\images";

96
97|% plotting Voc and Roc interpolations

os| fig = figure () ;

9| fig . Position = [100, 100, 1000, 600];

10| subplot (2,1,1);

01| plot (SOC_Voc_data(:,1),SOC_Voc_data(:,2), bo’ ,SOC_vec,Voc_s,’b.");

02| grid on

03| title ("V_{oc} interpolation’);

14| xlabel (’SOC [—]7);

15| ylabel (’Open circuit battery voltage [V]');

16| legend (’Sample SOC points’, Interpolated values’);

07| subplot (2,1,2) ;

10s| plot (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2),’ro’,SOC_vec,Ro_s, 'r.7);

19| xlabel (7SOC [—]7);

10| ylabel (’Open circuit battery resistance [\Omega]’);

11| grid on

2| title ('R_o interpolation’);

13| legend (’Sample SOC points’, Interpolated values’, ’Location’,’ best’);

98

MATLAB scripts

114
15| filename = ’'battrey_interpolation.jpg’;

16| fullFileName = fullfile (directory , filename);
17| saveas (fig , fullFileName);

118
119
120/% plotting driving cycle velocity and acceleration profiles
21| fig = figure () ;

122| fig . Position = [100, 100, 1000, 600];

23] subplot (2,1,1)

24| plot (vehspeed (:,1) ,vehspeed (:,2), LineWidth’ ,1.5)

125| grid on

26| xlabel (’Time [s]’);

127 ylabel ("Reference velocity [m/s]’);

25| subplot (2,1,2)

120| plot (vehspeed (:,1) ,vehacc, 'LineWidth’ ;1.5)

30| grid on

51| xlabel (’Time [s]’);

132| ylabel ("Reference aceleration [m/s”2]7);

133
34| filename = ’speed_profile.jpg’;

135| fullFileName = fullfile (directory, filename);
136| saveas (fig , fullFileName);

137
138
130|% electric motor efficiency map

0| fig = figure () ;

1] fig . Position = [100, 100, 1000, 600];

12| levels = [0:0.70:0.70 00.70:0.1:0.94 0.94:0.01:1]%100;
143M = contourf(Speed,Shaft Torque, Efficiency ,levels);

124 hold on

15| plot (Speed__max , Torque max)

46| grid on

7| title (’EM efficiency map’)

11s| xlabel ('EM speed [rpm]’)

10| ylabel (7 Shaft Torque [Nm]’)

150
51| filename = 'EM_eff map.jpg’;

152| fullFileName = fullfile (directory, filename);
53] saveas (fig , fullFileName) ;

154
155|% return
156
157| %% MPC
158
159| % PARAMETERS
160
61| t_sim = 100; % simulation time [s]

162

99

163
164
165
166
167
168
169

170

179
180
181
182
183
184

185

187

188

190

191

192

193

194

195

196

197

198

199

200

MATLAB scripts

Ts = 0.05; % Sampling time

par

par.

par

par.

par

par

par
par

par

.nX = 3; % number of states

nu = 1; % control elements number

.ny = 3; % number of outputs

model = @prediction_longitudinal model; %Modello di predizione
.ub = 250; % Upper bound saturazione input —> maximum
value for control output

.1b = —250; % Lower bound saturazione input —> minimum
value for control output

.tol = 1; % Reference tolerance

. Nfev = 150; % Interation number of fmincon in cost function

(default 200)

.Ts = Ts;

%% SIMULATION — CONTROLLED AND REFERENCE MODELS
ref _mode = 3;
disp (ref_mode)

switch ref mode

case 1
scenario = "Velocity Profile Reference";
% Velocity reference parameters
par.R = 0.05; % matrice diagonale definita positiva per cost

function

par.P = diag ([0;0;10000]); % matrice diagonale definita

positiva per cost function

par.Q = diag ([0;0;1]); % matrice diagonale definita positiva

per cost function

par.Tp = 10xTs; % Prediction horizon (sempre multiplo intero
del Ts)

K = nmpc_design_4b(par); %Generazione parametri design NMPC
case 2

scenario = "Position Profile Reference";

% Position reference parameters
par.R = 0.05; % matrice diagonale definita positiva per cost

function

par.P = diag ([0;50000;0]); % matrice diagonale definita

positiva per cost function

par.Q = diag ([0;1;0]); % matrice diagonale definita positiva

per cost function

par.Tp = 10xTs; % Prediction horizon (sempre multiplo intero

del Ts)

K = nmpc_design_4b(par); %Generazione parametri design NMPC

100

MATLAB scripts

201 case 3

202 scenario = "ACC Scenario — simplified";

203 % Position reference parameters

204 par.R = 0.01; % matrice diagonale definita positiva per cost
function

205 par.P = diag ([0;50000;0]); % matrice diagonale definita
positiva per cost function

206 par.Q = diag ([0;1;0]); % matrice diagonale definita positiva
per cost function

207 par.Tp = 10xTs; % Prediction horizon (sempre multiplo intero
del Ts)

208 K = nmpc_design_4b(par); %Generazione parametri design NMPC

209

210 case 4

211 scenario = "ACC Scenario";

212 % Position reference parameters

213 par.R = 0.01; % matrice diagonale definita positiva per cost
function

214 par.P = diag ([0;50000;0]); % matrice diagonale definita
positiva per cost function

215 par.Q = diag ([0;1;0]); % matrice diagonale definita positiva
per cost function

216 par.Tp = 10xTs; % Prediction horizon (sempre multiplo intero
del Ts)

217 K = nmpc_design_4b(par); %Generazione parametri design NMPC

215 end

219

220|% open (’Model MPC. slx 7)
221| sim ("Model_MPC. slx ")
202/ sim (" tests \EV_BW_FW_ reference_ model ")

223
224
225| %% SIMULATION RESULTS
226

227|% MPC model results
28| x1 = X.Data(:,1);
220 x2 = X.Data(:,2);
230/ x3 = X.Data(:,3);
231|x3_dot = X_dot.Data(:,3);
2321 sim__time = X.Time;

233
234|% reference model (BKD — FRD) reference
235| x1_ref = X_ref.Data(:,1);

236| x2__ref = X_ref.Data(:,2);

237| x3_ref = X_ref.Data(:,3);

235| sim__time_ref = X_ref.Time;

239
240
oa1] if ref mode = 1

101

NONON NN N N N
SIS S C N
s @ W

ot

~

285
286

287

MATLAB scripts

figl = figure();

figl.Position = [100, 100, 1000, 600];

sgtitle ("Model states evolution");

subplot (3,1,1);

plot (sim_time ,x1,’b’, sim_time_ref ,x1_ref,’k’, LineWidth’ ,1.5);
ylabel (’SOC [—]");

xlabel ("Time [s]’);

legend (" Controlled ", "Reference");

title (’x1 (SOC) evolution’)

grid on;

subplot (3,1,2);

plot (sim_time ,x2,’r’, sim_time_ref ,x2_ ref,’k’, ’LineWidth’ 1.5)
ylabel (’Position [m]’);

xlabel ("Time [s]’);

legend (" Controlled", "Reference");

title (’x2 (position) evolution’)

grid on;

subplot (3,1,3);

plot (sim_time ,x3, ’g’,sim_time_ref,x3_ref,’k’, ’LineWidth’,1.5);
ylabel (" Velocity [m/s]’);

xlabel ("Time [s]’);

legend (" Controlled", "Reference");

title (’x3 (Velocity) evolution’);

grid on;

% control torque and state derivative

fig2 = figure();

fig2.Position = [100, 100, 1000, 600];

sgtitle ("MPC control torque output and plant acceleration");
subplot (2,1,1)

plot (sim_time, T EM MPC.Data, "b", sim_time_ ref, T EM ref.Data, "
k", ’"LineWidth’,1.5);

grid on;

legend (" Controlled", "Reference")

xlabel ("Time [s]")

ylabel (" Torque [Nm]")

title ('MPC control torque output’)

subplot (2,1,2)

plot (sim_time, x3_dot, "r", sim_time_ref, a_ref.Data, "k",
LineWidth’ ,1.5);

grid on;

xlabel ("Time [s]")

ylabel (" Acceleration [m/s™2]")

7

102

288
289
290
291

292
293
294
295
296
297
298
299
300
301
302
303
304

305

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

324

333

MATLAB scripts

else

)

legend (" Controlled", "Reference")
title ('MPC model acceleration (x3_{dot})’)

if ref mode =— 2

figl = figure();

figl.Position = [100, 100, 1000, 600];

sgtitle ("Model states evolution — " + scenario);

subplot (3,1,1);

plot (sim_time ,x1,’b’, sim_time_ref ,x1_ref,’k’, LineWidth’ ,1.5);
ylabel (’SOC [—]");

xlabel (’Time [s]’);

legend (" Controlled", "Reference");

title (’x1 (SOC) evolution’)

grid on;

subplot (3,1,2);
plot (sim_time ,x2,’r’, sim_time_ref ,x2_ref,’k’, 'LineWidth’ ,1.5)

ylabel (’Position [m]’);

xlabel ("Time [s]’);

legend (" Controlled ", "Reference");
title (’x2 (position) evolution’)
grid on;

subplot (3,1,3);

plot (sim_time ,x3, ’g’,sim_time_ref, x3_ref,’k’, LineWidth’ ,1.5);
ylabel (" Velocity [m/s]’);

xlabel (’Time [s]’);

legend (" Controlled", "Reference");

title (’x3 (Velocity) evolution’);

grid on;

% control torque and state derivative

fig2 = figure();
fig2.Position = [100, 100, 1000, 600];
sgtitle ("MPC control torque output and plant acceleration — " +

scenario) ;

subplot (2,1,1)
plot (sim_time, T EM MPC.Data, "b", sim_time_ref, T EM_ ref. Data, "

k", ’'LineWidth’,1.5);

grid on;

legend (" Controlled", "Reference")
xlabel ("Time [s]")

ylabel (" Torque [Nm]")

title ('MPC control torque output’)

subplot (2,1,2)

103

334

335
336
337
338
339
340
341
342

343

MATLAB scripts

plot (sim_time, x3_dot, "r", sim_time_ref, a_ref.Data, "k",
LineWidth’ ,1.5);

grid on;

xlabel ("Time [s]")

ylabel ("Acceleration [m/s~2]")

legend (" Controlled", "Reference")

title ('MPC model acceleration (x3_{dot})’)

9

figd = figure();

fig3.Position = [100, 100, 1000, 600];

plot (sim_time, x2, 'm", pos_leading.Time, pos_leading.Data, "b",
"LineWidth’ ,1.5);

grid on;

xlabel ("Time [s]")

ylabel ("Position [m]")

legend (" Controlled ", "Reference")

title (’Position profile from controlled model vs reference — 7 +

scenario)

elseif ref mode — 3

figl = figure();

figl.Position = [100, 100, 1000, 600];

sgtitle ("Model states evolution — " 4 scenario);

subplot (3,1,1);

plot (sim_time ,x1, sim_time_ref ,x1_ref,’ LineWidth’ ,1.5);
ylabel (’SOC [—]");

xlabel ("Time [s]’);

legend (" Controlled", "Reference");

title (’x1 (SOC) evolution’)

grid on;

subplot (3,1,2);

plot (sim_time ,x2, pos_leading.Time ,pos_leading.Data, ’LineWidth
7,1.5);

ylabel (’Position [m]’);

xlabel ("Time [s]’);

legend (" Controlled ", "Reference");

title (’x2 (position) evolution’)

grid on;

subplot (3,1,3);

plot (sim_time ,x3,sim_time_ ref,x3 ref, LineWidth’ ,1.5);
ylabel (' Velocity [m/s]’);

xlabel ("Time [s]’);

legend (" Controlled", "Reference");

title (’x3 (Velocity) evolution’);

grid on;

% control torque and state derivative

104

MATLAB scripts

379

380 fig2 = figure();

381 fig2 . Position = [100, 100, 1000, 600];

382 sgtitle ("MPC control torque output and plant acceleration — " +
scenario);

383 subplot (2,1,1)

384 plot (sim_time, T EM MPC.Data, sim_time_ref, T_EM_ref. Data, ’
LineWidth’ ,1.5);

385 grid on;

386 legend (" Controlled ", "Reference")

387 xlabel ("Time [s]")

388 ylabel (" Torque [Nm]")

389 title ('MPC control torque output’)

390

391 subplot (2,1,2)

392 plot (sim_time, x3_dot, sim_time_ ref, a_ref.Data, ’LineWidth’ 1.5)

393 grid on;

394 xlabel ("Time [s]")

395 ylabel (" Acceleration [m/s”~2]")

396 legend (" Controlled", "Reference")

397 title ('MPC model acceleration (x3_{dot})’)

398

399 figd = figure();

400 fig3.Position = [100, 100, 1000, 600];

101 subplot (2,1,1)

102 plot (sim_time, x2,pos_leading.Time, pos_leading.Data, ’ LineWidth’
,1.5)5

403 grid on;

404 xlabel ("Time [s]")

105 ylabel ("Position [m]")

106 legend (" Controlled ", "Reference")

107 title (’Leading and precesding vehicles positions — ’ + scenario);

408

409 subplot (2,1,2)

410 plot (sim_time, pos_leading.Data — x2, LineWidth’ ,1.5);

411 grid on;

112 xlabel ("Time [s]")

413 ylabel ("Position [m]")

414 title ('Relative distance — ' + scenario);

115 else

116 figl = figure();

417 figl.Position = [100, 100, 1000, 600];

418 sgtitle ("Model states evolution — " 4 scenario);

119 subplot (3,1,1);

420 plot (sim_time ,x1, sim_time_ ref ,x1_ref,’ LineWidth’ 1.5);

121 ylabel (’SOC [—]");

422 xlabel ("Time [s]’);

123 legend (" Controlled", "Reference");

105

443
144
445
446

447

448

449

450
151
452
453
454
455
456

457

458
459
460
461
462
463
464
465
166

467

MATLAB scripts

title ('x1 (SOC) evolution’)
grid on;

subplot (3,1,2);

plot (sim_time ,x2, pos_leading.Time ,pos_leading.Data, ’'LineWidth
7,1.5);

ylabel (’Position [m]’);

xlabel ("Time [s]’);

legend (" Controlled ", "Reference");

title (’x2 (position) evolution’)

grid on;

subplot (3,1,3);

plot (sim_ time ,x3,sim_time_ref,x3_ref, LineWidth’ ,1.5);
ylabel (" Velocity [m/s]’);

xlabel ("Time [s]’);

legend (" Controlled", "Reference");

title (’x3 (Velocity) evolution’);

grid on;

% control torque and state derivative

fig2 = figure();

fig2 . Position = [100, 100, 1000, 600];

sgtitle ("MPC control torque output and plant acceleration — " +
scenario);

subplot (2,1,1)

plot (sim_time, T EM MPC.Data, sim_time_ref, T_EM_ref. Data, ’
LineWidth’ ,1.5) ;

grid on;

legend (" Controlled ", "Reference")

xlabel ("Time [s]")

ylabel (" Torque [Nm]")

title ('MPC control torque output’)

subplot (2,1,2)

plot (sim_time, x3_dot, sim_time_ref, a_ref.Data, ’LineWidth’ 1.5)
grid on;

xlabel ("Time [s]")

ylabel (" Acceleration [m/s™2]")

legend (" Controlled ", "Reference")

title ('MPC model acceleration (x3_{dot})’)

figd = figure();

fig3 .Position = [100, 100, 1000, 600];

subplot (2,1,1)

plot (sim_time, x2,pos_leading.Time, pos_leading.Data, ’ LineWidth’
,1.5)

106

MATLAB scripts

468 grid on;
469 xlabel ("Time [s]")
470 ylabel ("Position [m]")
a7 legend (" Controlled", "Reference")
472 title (’Leading and precesding vehicles positions — ' + scenario);
473
474 subplot (2,1,2)
475 plot (sim_time, pos_leading.Data — x2, LineWidth’ ,1.5) ;
476 grid on;
a77 xlabel ("Time [s]")
478 ylabel ("Position [m]")
479 title (’Relative distance — ' + scenario);
480
as1] end
MIL initialization, simulation and plotting
1 %% Model Parameters for Battery Electric Vehicle System Model
2l close all
s clear all
sl cle
5
s/ addpath ("..\500e_Frugal MIL— original\500e_Frugal MIL");
7
8| %% Maneuver
9| load ("’ DrivingCycles \WLTP. mat ’) ; % Speed and Time vectors
for desired Driving Cycle
10|% load (’DrivingCycles\custom_cycle.mat’) ;
1|T 2z =T 2z(1:1801); % [s] Time
12|V_z=V_2z(1:1801) /3.6; % [m/s]
Uncomment for RDE simulations
13|% t_WLTC = max(T_z) ; % [s] WLTC time
14|% t_ WLTC_city = 1000; % [s] WLTG-city
time
15|% t_RDE_Urban = 2326; % [s] RDE-Urban time
16|t_EDAS = max (T _2z);
17| Time = 400; % [s] Simulation Time
18
19|%% Vehicle, MPC and simplified vehicle powertrain paramters
20| run ("Init. FWD_ Frugal MPC.m") % 500e Frugal
21
22| %% Open Simulink Model
23] open ("MIL_ Frugal 500e_with_ MPC. slx ")
21/ open ("../500e_Frugal MIL— original/500e_Frugal MIL/MIL_Frugal 500e.
slx ")
25
26| %0 EAD SCENARIO CREATION

107

27
28
29

3(

3

32
33
34
35

36

MATLAB scripts

% Vscenario (:,1)
% Vscenario (:,2)

= _ 7

V 7z

—

%% General EAD Parameters
% TLpreview (:,1) = T z;

% TLpreview (:,2) = TLpreview_z;
% TLstate(:,1) = T z;

1) o
% TLstate (:,2) = TLstate z;

VA ACC SCENARIO CREATION
Vscenario (:,1) = T_z;
Vscenario (:,2) = V_z;

%% General ACC Parameters

1| Ts = 0.2; % Simulation sample time
12| v__set = 20; % ACC set speed URBAN
)
13| default__spacing = 2; % ACC default spacing URBAN
44| max_ spacing = 50; % ACC default spacing URBAN
15| time__gap = 3; % ACC time gap
46| max__ acc = 2; % Maximum acceleration
~2)
47/ min__acc = —3; % Minimum acceleration
~9)

64

% Classical ACC / CIG Parameters

verr__gain = 0.1; % ACC velocity error gain — CIG (N/A

)

xerr__gain = 0.3; % ACC spacing error gain — CIG (N/A

)

vx_ gain = 0.5; % ACC relative velocity gain — CTG (N/A

)

%% Simulations
sim ("MIL_ Frugal 500e_with_ MPC. slx)

")

s|sim ("../500e_Frugal MIL— original /500e_Frugal MIL/MIL_ Frugal 500e.slx

%% Parameters for Battery Electric Vehicle Forward Model

%% Vehicle

% 500e Frugal Parameters

vehicle .mass = 900 4+ 100 + 0.15%350; % [kg] WLIP test mass

vehicle . wheelbase = 2.322; % [m] wheelbase — Dati
500e LR

vehicle .aCG = 0.45xvehicle.wheelbase; % [m] front axle — CoG

distance — Dati 500e LR

108

MATLAB scripts

65| vehicle .bCG = 0.55% vehicle . wheelbase; % [m] rear axle — CoG
distance — Dati 500e LR

66| vehicle .hCG = 0.3; % [m] height CoG —
Dati 500e LR

67| vehicle .Af = 2.15; % [m2] Frontal area —
NEW Coast Down

6s| vehicle .Cd = 0.33; % [—] Drag coefficient
— NEW Coast Down

69| vehicle . tireRRcoeff = 0.006; % [—] Rolling
Resistance Coeff fO — Dati 500e LR

70| vehicle . tireRollingRadius = 0.3; % [m] Wheel Radius —

Dati 500e LR

711% 500e LR Original Coast Down

72| vehicle .roadLoadA_N = 55.78; % [N] FO — NEW Coast
Down a 1250kg

73| vehicle .roadLoadB_N_per_ kph = 0; % [N/kph] F1 — NEW Coast
Down

72| vehicle .roadLoadC_ N _ per kph2 = 0.0335; % [N/kph2] F2 — NEW Coast
Down

75|% Other

76| vehicle .roadLoad gravAccel m_per_s2 = 9.81;

77| smoothing . vehicle_speedThreshold kph = 1;

7s| smoothing . vehicle_axleSpeedThreshold rpm = 1;

79l initial .vehicle speed kph = 0;

so|road__grade = atan(0/100);

s2|%% 52V Battery

s3] battery52V .nominalVoltage V = 51.8;

s1| batteryb52V .internalResistance_ Ohm = 0.0056%2;

s5| battery52V . nominalCapacity kWh = 51.8%315/1000;

j| battery52V .voltagePerCell_V = 3.7; % Open Circuit Voltage. 3.5V to

3.7V assuming Lithium—ion

s7| battery52V .nominalCharge_ Ahr =

88 battery52V .nominalCapacity_kWh / battery52V .nominalVoltage V x
1000;

battery52V .mass_ kg = battery52V .nominalCapacity kWh / 0.172; % kWh /
(kWh/kg)

90|% Initial conditions

initial . Battery_ SOC_pct = 90;

92| initial . Battery_ Charge_ Ahr = battery52V .nominalCharge Ahr % initial.

Battery_ SOC_pct/100;

®

8¢

9

93
94| %% Reduction Gear

95| bevGear . gearRatio = 13;

96| bevGear . efficiency = 0.97;
97
98| %% 52V Motor Drive Unit —

90| load ("N42 . mat") ;

10| Speed_max = N42.MAX_Speed(:,1) ;

109

101

102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129

130

132
133
134
135
136
137
138
139
140
141

142

143

144

MATLAB scripts

Shaft__Torque_max = N42.MAX_Shaft_ Torque;
Shaft Power__max = N42.MAX_Shaft_ Power;
Speed__cont = N42.CONT_Speed (:,1) ;

Shaft Torque_cont = N42.CONT_Shaft Torque;
Shaft Power_cont = N42.CONT_ Shaft_Power;

motorDrive.simplePmsmDrv_trqMax_ Nm = max(N42. Shaft_Torque) ;
motorDrive .simplePmsmDrv_powMax W = max(N42. Shaft_Power) ;

motorDrive . simplePmsmDrv_ timeConst_s = 0.02;
motorDrive.simplePmsmDrv_ rotorInertia_kg m2 = 3.93%x0.0172;
motorDrive.simplePmsmDrv_rotorDamping Nm_ per_radps = le—5;
motorDrive.simplePmsmDrv_ initialRotorSpd_rpm = 0;

motorDrive .spdCtl_trqMax_Nm = motorDrive.simplePmsmDrv_trqMax_Nm;
motorDrive. gearRatioCompensation = 3/bevGear. gearRatio;

%% Controller & Environment
bevControl. MotorSpdRef_tireRadius_m = vehicle.tireRollingRadius;
bevControl. MotorSpdRef reductionGearRaio = bevGear. gearRatio;

bevControl.MotorSpdRef Ki = 10; %15;
bevControl.MotorSpdRef Kp = 0.2; %15;

%% Simplified EV powertrain and vehicle plant

addpath ("..\ Simplified EV model\model with MPC\polynomial fits")
addpath ("..\ Simplified EV model\model with MPC\data\Eff_map")
addpath ("..\ Simplified EV model\model with MPC\data")

311% simulation parameters

MPC.g = 9.81; % Gravity acceleration [m/s” 2]
MPC. alpha = 0xpi/180; % road slope [rad]
MPC.rho = 1.25; % air density [kg/m~ 3] — from Onori HEV book

% battery parameters

MPC.N_s = 108; % Number of series

MPC.N_p = 1; % Number of parallels

MPC.N_b = MPC.N_s+«MPC.N_p; % number of battery cells

MPC.Q_nom = 60«MPC.N_p; % nominal battery capacity [Ah]

MPC.eta_c = 0.95; % Coloumbic efficiency

load (’bat_ Ro_vs_ SOC data.mat’); % Ro variation with SOC — single
battery cell

load (’bat_Voc_vs_SOC_data.mat’); % Voc variation with SOC — single
battery cell

MPC.F_Voc_s = griddedInterpolant (SOC_Voc_data(:,1) ,SOC_Voc_data(:,2))

; % interpolated Voc data for a single cell

5\MPC.F_Ro_s = griddedInterpolant (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2)); %

interpolated Ro data for a single cell

110

146

147

148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180

181

182

183

184

185

186
187

188

MATLAB scripts

MPC.SOC_vec = linspace (0,1,500);

MPC. Voc_s = MPC.F_Voc_s(MPC.SOC_vec); % vector with interpolated
values of Voc_s (single cell)

MPC.Ro_s = MPC.F_Ro_s(MPC.SOC_vec); % vector with interpolated values
of Ro_s (single cell)

% vehicle parameters
MPC.M_veh = 1400; % vehicle mass [kg]

MPC.a = 1; % Front axle — CoG Front axle — CoG [m]
MPC.b = 1.3; % Rear axle — CoG [m]

MPC.h = 0.3; % Height of CoG [m]

MPC.f_0 = 4.5%x1e—3; % Static rolling coefficient [N/kN]
MPC.k = 0; % miscellancous loss coeff [Ns/m]

MPC.r_w = 0.3; % Wheel radius [m]

MPC.C_d = 0.33; % Drag coeff

MPC.A f = 2.15; % Frontal area [m 2]

MPC.tau_gb = 9.6; % Gear ratio
MPC.eta_gb = 0.97; % Gearbox efficiency
MPC. eta_inv = 1; % Inverter efficiency

% electric motor parameters

load ("Eff _map\ Efficiency .mat"); % loading the EM efficeincy map
load ("Eff _map\Shaft_torque.mat"); % loading shaft torque map
load ("Eff _map\Speed.mat"); % loading speed map

MPC. Speed__max = Speed (:,1);

MPC. Torque_max = Shaft_Torque (:,1);

MPC. Efficiency (Efficiency = 0) = 10;

MPC. eff = Efficiency /100;

%% MPC

% PARAMETERS

MPC.Ts = 0.05; % Sampling time

MPC. par . nx = 3; % number of states

MPC. par .nu = 1; % control elements number
MPC. par . ny = 3; % number of outputs

MPC. par . model = @prediction_longitudinal model; %Modello di
predizione

MPC. par .ub = 250; % Upper bound saturazione input —> maximum
value for control output

MPC. par . 1b = —250; % Lower bound saturazione input —> minimum
value for control output

MPC. par . tol = 1; % Reference tolerance

MPC. par . Nfev = 150; % Interation number of fmincon in cost
function (default 200)

MPC. par . Ts = MPC. Ts;

111

MATLAB scripts

189|% initial conditions

190/ MPC.SOC0 = 0.8;

191|MPC.x0 = 0;

102|MPC.v0 = 0;

103 MPC. xx0 = [MPC.SOC0; MPC.x0; MPC.v0];
194
195|% Position reference parameters

196/ MPC. par .R = 0.01; % matrice diagonale definita positiva per cost
function

107|MPC. par .P = diag ([0;50000;0]); % matrice diagonale definita positiva
per cost function

10s| MPC. par .Q = diag ([0;1;0]); % matrice diagonale definita positiva per
cost function

109|MPC. par . Tp = 10«MPC.Ts; % Prediction horizon (sempre multiplo intero
del Ts)

200l MPC.K = nmpc_ design_4b (MPC. par); %Generazione parametri design NMPC

202
203| %% Eco—Driving Analysis — MPC controlled model
204

205| directory = "C:\ Users\gabri\Documents\TCC — EV powertrain control)
Text\images";

206 screen__size = get (0,"ScreenSize") ;

27| fig position = [0 0 screen size(3) screen size(4)];
208

209

210|% run ("Init. MIL_Model MPC.m")
211 load ("simulation_results.mat") ;

213| %% PLOTS

214|% POWERTRAIN SIGNALS

215| figl = figure (1);

216| figl . Position = fig_position;

21| sgtitle ("MPC controlled and reference powertrain results")

210| subplot (3,1,1)

220| plot (veh_speed MPC. Time,veh_speed MPC.Data, ’'b’, veh_ speed.Time,
veh_speed.Data, 'r’, ’LineWidth’, 1.5)

21| title ("Speed profile");

222l xlabel ("Time [s]");

223 ylabel ("Speed [m/s]");

224| legend (" Controlled ", "Reference");

205| grid om;

227| subplot (3,1,2)

225| plot (motor__speed MPC. Time , motor_speed MPC.Data, ’b’, motor_speed.Time
, motor_speed.Data, ’r’, 'LineWidth’, 1.5)

220 title ("Motor speed profile");

230] xlabel ("Time [s]") ;

112

MATLAB scripts

231 ylabel ("Motor Speed [rpm]") ;

232l legend (" Controlled ", "Reference");

233l grid on;

234

235| subplot (3,1,3)

236| plot (T_EM_MPC. Time ,T EM MPC. Data, ’'b’, T EM.Time, T EM.Data, 'r’,’

LineWidth’, 1.5)

27| title (" Electric Motor torque profile [Nm]");
23s| xlabel (" Time [s]");

230| ylabel ("Motor Torque [Nm]") ;

210/ legend (" Controlled", "Reference");

grid on;

N

~
¥

3| filename = sprintf('result. MIL v.w_ T %d.jpg’, Time);
fullFileName = fullfile (directory , filename);
5| saveas (figl , fullFileName);

~

% BATTERY SIGNALS
fig2 = figure(2);
fig2 . Position = fig_position;

g e

o=

sgtitle ("MPC controlled and reference battery results")

subplot (2,1,1)

plot (battery MPC. Time, battery MPC.Data(:,1), 'b’, battery.Time,
battery.Data(:,1),’r’, LineWidth’, 1.5)

5| title ("Battery Charge");

j| xlabel ("Time [s]");

ylabel (" Charge [Ah]");

legend (" Controlled", "Reference");

grid on;

NONONONN NN N NN NN N
1 S Ut C >
@w 3

S

NONN NN
T ol v v ot
® N O

260
261| subplot (2,1 ,2)

262| plot (battery_ MPC. Time, battery_ MPC.Data (:,2), ’b’, battery.Time,
battery.Data(:,2),’r’, LineWidth’, 1.5)

23| title (" Electrical Efficiency");

264| x1label (" Time [s]");

265| ylabel (" Electrical Efficiency [kWh/100km]") ;

266 legend (" Controlled ", "Reference');

267 grid on;

200 filename = sprintf(’'result MIL battery %d.jpg’, Time);
o70| fullFileName = fullfile (directory , filename);
o1 saveas (fig2 , fullFileName);

273|% RELATIVE DISTANCE
ora| figd = figure (3);
o7 fig3 . Position = fig_ position;

113

03] 0 0 C
ST S

®

NN ONONN NN N

o]
-~

MATLAB scripts

s| plot (Rel__distance_ MPC . Time, Rel distance. MPC.Data, 'b’, Rel distance.
Time, Rel distance.Data, 'r’, LineWidth’, 1.5)

title ("MPC controlled model vs uncontrolled model — relative distance
comparison") ;

xlabel ("Time [s]");

ylabel ("Distance [m]");

legend (" Controlled", "Reference");

grid on;

filename = sprintf(’result MIL rel distance %d.jpg’, Time);
j| fullFileName = fullfile (directory , filename);
| saveas (figd , fullFileName);

114

Appendix C

Python scripts

Python code for EM efficiency polynomial fit:

import numpy as np

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

N}

6|# Step 1: Read the CSV files

7langular_velocity = pd.read_csv(’speed.csv’ /header=None, sep=";").
values

s| torque = pd.read_csv(’torque.csv’, header=None, sep=';’).values

ol efficiency = pd.read csv(’eff.csv’, header=None, sep=";’).values

11|# Step 2: Flatten the matrices and scale efficiency

12| angular__velocity_ flat = angular_velocity. flatten ()

13| torque__flat = torque. flatten ()

14| efficiency__flat = efficiency.flatten() / 100.0 # Scale efficiency to
be between 0 and 1

16|# Step 3: Create a meshgrid of the angular velocity and torque
17|X = np.column_ stack ((angular_velocity_ flat, torque_flat))

19|# Step 4: Polynomial fitting
poly = PolynomialFeatures(degree=3)
1| X_poly = poly.fit_transform (X)

NN

¥}

23l model = LinearRegression ()

21l model. fit (X_poly, efficiency_flat)

26|# Step 5: Extract polynomial coefficients
27| coefficients = model. coef__

25/ intercept = model.intercept__

115

v

Python scripts

feature_names = poly.get_feature_names_out ([’'w’, 'T7])

Function to predict efficiency using the polynomial model
def predict__efficiency (angular_velocity , torque):
X_new = np.column_stack ((angular_velocity. flatten (), torque.
flatten ()))
X_poly_new = poly.transform (X_new)
efficiency_ pred = model.predict (X_poly_ new)
return efficiency_pred.reshape(angular_velocity.shape)

terms = [f’{coef:.14f}«{name}’ for coef, name in zip(coefficients ,
feature__names) |
polynomial_expression = ' 4+ ’.join (terms)

polynomial expression = f’{intercept:.14f} + ~ +
polynomial expression

print ("Polynomial Fit for MATLAB: ")

print (polynomial_expression)

116

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Objectives
	Literature review

	Electric Vehicle Powertrain Components
	Power Source
	Battery Management System
	Inverters and Converters
	Electronic Controllers
	Electric Motor
	Transmission system
	Onboard Charger

	Model Predictive Control (MPC)
	Introduction to Model Predictive Control
	MPC Methodology

	Modeling
	Foreword Approach
	Backward approach
	Driving Cycle - WLTP3
	Vehicle Parameters
	Longitudinal Dynamics Model
	Gearbox Model
	Wheel Model
	Electric Motor Model
	Battery Model
	Polynomial fits
	Car-Following Scenario Block
	CTG Policy Controller
	State Space Model
	MPC Block
	Model in the Loop (MIL) 500e

	Simulations
	Backward Model
	Backward-Forward Reference Model
	MPC Controlled Model
	Velocity Reference
	Position Reference
	ACC Simplified Scenario
	ACC Complete Scenario

	Model in the Loop 500e with MPC controller

	Conclusion
	Next Steps

	Bibliography
	Complete cycle plots
	MATLAB scripts
	Python scripts

