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Summary

In recent years, electric vehicles have gained significant attention as a sustainable
transportation solution. The shift towards electric vehicles has become increas-
ingly important in addressing environmental concerns and reducing dependence
on traditional fossil fuels. Vehicle manufacturers are now challenged to develop
advanced powertrain technologies that offer compact, energy-efficient, and environ-
mentally friendly solutions at affordable costs. This requires extensive research and
development efforts to design innovative technological solutions that cater to the
growing demand for low carbon emission transportation, essential for combating
global warming and enhancing urban air quality. This thesis specifically focuses on
the modeling and control of electric vehicle powertrain, using a model predictive
control as methodology for minimizing the battery consumption and optimizing
the acceleration performance.

Keywords: Electric vehicles, powertrain, Model Predictive Control, longitudinal
dynamics, optimization.
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Chapter 1

Introduction

In the past decades, electric vehicles (EVs) have emerged as a transformative force,
promising a cleaner and more sustainable future for transportation. With the
pressing need to combat climate change and reduce our dependence on fossil fuels,
the adoption of EVs has gained momentum worldwide and has witnessed significant
growth over the past decade, owing to advancements in battery technology, sup-
portive government policies, and a growing awareness of the environmental issues
among Consumers.

The powertrain, a crucial component of any vehicle, plays the main role in
determining the overall performance and efficiency of an electric vehicle. An EV
powertrain is composed of several interconnected subsystems, including the electric
motor, power electronics (usually a DC/AC converter), and the energy storage
system (usually lithium-ion batteries). Efficiently managing and optimizing these
subsystems is vital to achieve superior vehicle performance, extended driving range,
and enhanced energy efficiency.

In recent years, substantial advancements have been made in powertrain control
strategies and optimization techniques, owing to breakthroughs in technology,
computing power, and an increasing understanding of EV dynamics. The im-
plementation of sophisticated control algorithms, intelligent energy management
systems, and real-time optimization has revolutionized the way electric vehicles
perform on the road.

The study of new methods and advancement of existing ones regarding control
to increase performance of electric vehicle powertrain is essential for the future
of the transportation field. One of the main reasons for the advancements in the
field is the European Union Regulation of 2019, Regulation 2019/631 [1], which
states as target of reducing 100% of CO2 emissions from passengar cars and light
commercial vehicles by 2035 in the whole European Union territory.

In this Master’s thesis, the purpose is to use a non linear Model Predictive
Control (MPC) in order to control the whole powertrain system with the objective
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of optimizing the energy consumption of the battery to increase its range, and, thus,
the energetic efficiency of the powertrain as a whole. By analyzing the existing
literature and experimental data, this study seeks to provide comprehensive insights
into the following key aspects:

1. Powertrain components: description of the main powertrain components of an
electric vehicle and its functionalities, as well as the state-of-the art usage of
such components, highlighting their advantages and limitations.

2. Powertrain and vehicle dynamics models: description of the mathematical,
physical and computational modeling of the powertrain and vehicle daynamics,
that will be used for the implementation, tuning and testing of the controller,
and for the simulation of different scenarios to generate the desired results.

3. Model Predictive Control (MPC): general description of the non linear MPC
strategy, followed by its application for the EV powertrain control, emphasizing
the system states to be inputted and the control variables to be outputted by
the controller.

1.1 Objectives

The objectives of this Master Thesis is to elucidate the functionality of a Model
Predictive Controller, applied in the automotive field. The focus here is to use the
control strategy to predict the states of the longitudinal dynamics of a vehicle with
an electric powertrain, with the objective of minimizing the battery consumption
when following a given speed profile (WLTP3). Furthermore, car following scenarios
are studied, simulating a realistic ACC case, with the ego vehicle being controlled
by the MPC, and the reference being generated using a CTG policy. Finally, the
tuned MPC is used to generate the required torque for a complete 500e model in
the loop (MIL) provided by Politecnico di Torino. For that, the following objectives
are achieved:

Description of MPC strategy;
o development of longitudinal dynamics model using a backward approach;

o development of the electric powertrain with Electric Machine working as motor
and generator, and a battery model, that will provide SOC information as a
system state;

o simulation of the model following the reference speed profile to validate the
equations;
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o implementation of a forward model that has as input the EM torque provided
by the backward model. This dual approach model has the physical causality
of a real case scenario, and will serve as the states reference;

o implementation of the MPC controller with the powertrain plant modeled
with the forward approach, so that the plant has as input the control torque
provided by the controller;

o further implementation of the tuned MPC in a ACC scenario using CTG
policy;

« comparison of the results of the uncontrolled reference model, and the MPC
controlled model.

 simulation of the complete MIL 500e setup with the MPC controller generating
the required torque signal.

1.2 Literature review

There have been a lot of studies in a number of different fields of Electric and Hybrid
Vehicles in the past decade, and a great number of different control and optimization
strategies along multiple parts of the powertrain have been implemented. One of
the main problems with electric vehicles is related to the energy storage system
(battery system) in terms of weight and energy available for long distance driving
(driving range). Trying to overcome that main matter, different strategies of control
and optimization are available in the literature, as well as articles making a review
on the state of the art components of such powertrains.

Among the optimization strategies, [2] sets the travel time as a target, allowing
the transmission ratio to be adapted along the route. This approach is applicable
to transport vehicles meanly in different given routes, this way, the shifting strategy
or the optimal transmission itself can be designed depending on the route. The
main design objective in this article is the minimization of the battery weight.
Also in [3] the gear ratio is the object of the optimization, and the optimization
results are presented for two design examples presented - Tesla Model S and Mini
Cooper SE, the first with an induction motor, and the last with the most common
PMSM (Permanent Magnet Synchronous Motor) equipped. Furthermore, in [4] the
powertrain parameters are the objects of optimization, in a New European Driving
Cycle scenario, with dynamic and economic optimizations being the main goals.
The vehicle modeling is presents, the transmission control unit model for dynamic
and economic shift decisions is made, the vehicle control unit is modeled as well,
and the parameters of the powertrain are optimized based on a genetic algorithm.
Article [5] presents a platform for electric powertrain simulation, also a powertrain
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architecture with 3 degrees of freedom is presented and optimized with the objective
of inspect typical study cases, methodology and results. Furthermore a for the
degree of freedom is introduced to the model for scenarios when the battery is
partially discharged. Also, different results from different control strategies are
presented, a software optimization is made only adjusting control laws with a fixes
EV architecture, and a hardware optimization is performed by introducing the
extra degree of freedom in the architecture.

Furthermore, [6] and [7] discuss and make reviews on advanced traction motor
control strategies for the first case, and general trend for HEV’s and EV’s. [6]
makes a review on the evolution of different control techniques and concludes that
there is a great number of researches involving the application of Direct Torque
Control (DTC) and Field Oriented Control (FOC) to traction motors, also pros
and cons of the researches are presented. On the other hand, in [7] a overview on
the current researches on hardware optimization of HEV’s and EV’s, suggesting
the challenges and future researches that could be made.

Also in [8] a review on the state of the art control strategies for each component
in EV powertrain architectures is made. It is discussed that the main control issues
reside in the HEV torque management, EV battery management system, motor
drive technique and control of the energy recovery. For the torque management
in HEV’s the strategy is to coordinate the torque provided by the engine and
the electric motor, to supply the required torque by the driver, while optimizing
the efficiencies of the engine, the electric motor and battery consumption - it is
a constrained optimization problem to be addressed. In the battery management
system side, the main problem is the estimation of the State Of Charge (SOC) of
the battery, the main method are open circuit voltage measurement, resistance
method, Fuzzy logic method, neural network method and Kalman filtering method.
For the motor drive control (electric motor control) the main control strategies are
voltage/frequency ratio control, slip frequency control, vector control and Direct
Torque Control (DTC). In the regenerative breaking control field, three braking
force distribution control strategies are proposed: parallel regenerative breaking
control, ideal regenerative breaking control and maximum regenerative breaking
control.

Different control strategies for the powertrain of EV’s are found in the literature.
Different Fuzzy control strategies are applied in the scope of EV’s as reported
in [9] and [10]. The first presents the Fuzzy control logic applied in a Indirect
Vector Control technique, which calculates the slip speed of the electric machine,
an EV powertrain is controlled with the logic described, and the evaluation is made
using a FUDS driving cycle. The last performs a Fuzzy Control Multi-Objective
Optimization in a Dual Hybrid Energy Storage System (Dual-HESS) with the
objective of optimizing the batteries and ultracapacitors size. A novel Dual-HESS
is also proposed in the article, with one energy storage system for each axis (front
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and rear). A Power Management Control (PMC) with Fuzzy logic is applied to the
proposed architecture. The simulation model developed in [10] is similar to the one
developed in this thesis, with the longitudinal model, EM model with efficiency
map and the modeling of both the battery and the ultracapictors.Three driving
cycles are used to generate the speed profile used as reference for the simulation,
the driving cycles used are: FTP-75 (urban driving), HWFET (highway driving)
and USo6 (high speed and required acceleration). The reference acceleration is
obtained by the derivative in time of the speed profile, and this acceleration is
inputted as the required force for the simulation, as it is proposed in this thesis.
The Fuzzy PMC receives as inputs the required frontal and rear torques from the
drive systems, and also the overall efficiencies (electric motor and inverter) for each
axis. The output of the controller is the percentage of the required torque to be
fulfilled by each drive axis. The torques multiplied by their respective percentage
are applied to the EM’s equations to define the required torques from the machines.

Using Hardware in The Loop Platform, [11] developed a controller for EV pow-
ertrain. First a mathematical model of a PMSM (Permanent Magnet Synchronous
Motor) is developed, also a plant model of a power battery is constructed. A real
MCU is used to communicate with the electric motor model, and a real battery
management system is used to communicate with the battery plant model. In the
paper, all these components are combined with a real vehicle controller to provide
a complete test environment. A control software was developed.

Furthermore, the modeling and simulation of EV powertrain is discussed in
more detail in [12]

Predictive optimization strategies are also implemented in [13] with the focus on
the energy management system in a modeled random traffic scenario. A stochastic
MPC strategy is done to co optimize both the speed and the powertrain energy
management system in a driving environment with uncertainties.

Also a Constant Time Gap (CTG) policy for ACC and its modeling is discussed
both in [14] and [15].

The complete Model in the Loop (MIL) of the 500e has its modeling discussed
in [16].



Chapter 2

Electric Vehicle Powertrain
Components

This chapter provides an overview of the main components of an electric vehicle
powertrain.

The increasing market share of hybrid electric vehicles and electric vehicles
has elevated the importance of electric machines in powertrain development [17].
Examples of electrified powertrains include hybrid, plug-in hybrid, electric vehicles,
and fuel cell vehicles [18]. The primary constituents of an electric powertrain are
the power source with an management system (Battery Management System),
electronic controllers, electric motor, transmission system, and onboard charger for
batteries [19]. These components work together to provide the necessary power
and control for the operation of the electric vehicle. Figure 2.1 shows a generic
architecture of a electric vehicle powertrain.

Figure 2.1: Electric vehicle powertrain architecture

ELECTRIC VEHICLE POWERTRAIN ARCHITECTURE

Source: [20]

6



Electric Vehicle Powertrain Components

2.1 Power Source

The power source is a crucial component of an electric powertrain as it provides the
necessary energy to propel the vehicle. The more used power source is battery cells,
usually lithium-ion batteries, due to their high energy density and long cycle life.
Other power sources, such as fuel cells or supercapacitors, are also being explored
and implemented in certain electric vehicle models.

2.2 Battery Management System

The battery management system plays a vital role in the powertrain of electric
vehicles. It is responsible for monitoring and controlling the performance, efficiency;,
and safety of the battery pack.

This system ensures that each individual battery cell is operating within its
optimal range and prevents overcharging or discharging, which can lead to reduced
battery life and degraded performance.

Figure 2.2 elucidates the dimension of the battery pack along with the manage-
ment system.

Figure 2.2: Battery pack with management system

Source: [21]

2.3 Inverters and Converters

The traction converter is a electronic component responsible for converting the
energy DC output (voltage and current) into a AC input for the electric machine.

The DC-DC converter, on the other hand, does not change the nature of the
signal itself, but it steps down the DC voltage of the battery pack (usually very
high tension values - 100 up to 400 V) to much smaller values to be used in other
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auxiliary electronics in the vehicle (such as air conditioning, sound system, etc) or
to charge the 12V auxiliary battery.

2.4 Electronic Controllers

The electronic controllers play a key role in managing and controlling the flow
of electrical energy within the powertrain. These controllers include the Battery
Management System, which monitors and controls the charging and discharging
of the battery, ensuring its optimal performance and longevity. Other electronic
controllers, such as the motor controller and power electronics, are responsible
for controlling the speed and torque of the electric motor, converting DC energy
from the battery to AC energy for the motor, and managing the overall power
distribution within the powertrain.

2.5 Electric Motor

The electric motor is the heart of the electric powertrain. It is responsible for
converting electrical energy into mechanical energy to propel the vehicle. Various
types of electric motors can be used in an electric powertrain, including permanent
magnet synchronous motors, induction motors, and switched reluctance motors.
The choice of motor depends on factors such as power requirements, efficiency, and
cost considerations.

The electric machine also works as a generator when the torque is negative
(breaking manouver) making it possible to generate power and charge the battery
while breaking - generative breaking. This is a great advantage of electric vehicles
powertrains.

2.6 Transmission system

The transmission system in an electric powertrain is responsible for transferring
the mechanical power from the electric motor to the wheels of the vehicle. This
system often consists of a single-speed or multi-speed transmission, depending on
the specific requirements of the vehicle. The transmission system plays a crucial
role in optimizing the power and torque delivery to the wheels, ensuring efficient
and smooth acceleration of the vehicle.
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2.7 Onboard Charger

The onboard charger is another important component of the electric powertrain. It
is responsible for converting the AC power from an external power source, such as
a charging station, into DC power to charge the vehicle’s battery. This component
allows for convenient charging of the electric vehicle and is essential for maintaining
the battery’s state of charge.

In summary, the main components of an electric vehicle powertrain include
the driving motor, electronic controllers, electric motor, transmission system, and
onboard charger . These components work together to convert electrical energy
into mechanical energy, control the flow of power, and ensure efficient operation of
the electric vehicle.



Chapter 3

Model Predictive Control
(MPC)

3.1 Introduction to Model Predictive Control

Model Predictive Control is a control strategy widely used in various domains,
including the control of electric vehicle powertrains. This control strategy takes
into account the dynamic nature of the system and predicts future states and
inputs based on a mathematical model of the system. By explicitly considering
the system dynamics, MPC is able to optimize control inputs over a finite time
horizon to achieve desired objectives such as energy efficiency, performance, and
constraint satisfaction.

The use of Model Predictive Control in industrial processes is highly advanta-
geous due to its ability to handle constraints such as input saturation and rate
limits [22]. Model Predictive Control is capable of dealing with complex multi-input
multi-output systems with hard state and input constraints, making it suitable for
controlling electric vehicle powertrains with longitudinal dynamics [23]. Further-
more, Model Predictive Control has the ability to handle model uncertainty and
disturbances, which is essential in achieving robust and reliable control performance.

One of the major advantages of Model Predictive Control is its ability to
incorporate constraints on the inputs and outputs of the system [22].

This is particularly important in the context of controlling electric vehicle
powertrains, where constraints on the battery state of charge and motor torque
limits need to be taken into account. Using MPC for controlling an electric vehicle
powertrain with longitudinal dynamics allows for the optimization of control inputs
over a finite time horizon, taking into account system constraints and the varying
nature of the driving conditions.

Incorporating MPC in the control of electric vehicle powertrains allows for the

10
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prediction and optimization of future states and inputs based on the system’s
dynamic model. This proves to be especially advantageous in achieving energy
efficiency and effective management of the powertrain components.

Furthermore, the ability of MPC to continuously update the model and control
strategy allows it to handle changes in system parameters, such as variations in
battery capacity or motor efficiency, without the need for extensive re-calibration.

3.2 MPC Methodology

Model Predictive Control is an optimization-based control method that uses a
dynamic model of the system to predict and optimize future states and inputs
based on a cost function and subject to constraints. The cost function typically
aims to minimize a combination of control effort, system error, and deviation from
desired operating conditions.MPC works by solving an optimization problem at
each control interval, where the objective is to find the optimal control inputs that
minimize the cost function while satisfying system constraints.

The optimization problem is solved over a finite time horizon, also known as
the prediction horizon, which allows for considering future system behavior and
making informed decisions. During the optimization process, the control inputs are
calculated for the current time step, but only the first set of inputs is applied to
the system. The remaining inputs are discarded, and the process is repeated at the
next control interval with updated measurements and predictions. This repeated
optimization process is known as a moving horizon approach. By using a moving
horizon approach, MPC can effectively handle changes in the system parameters
and adapt to varying driving conditions.

By incorporating a dynamic model of the electric vehicle powertrain into the
MPC framework, the control algorithm can effectively predict and optimize future
system states and inputs. The ability to handle changes in the system parameters
and adapt to varying driving conditions makes MPC a powerful tool for electric
vehicle powertrain control. It enables the prediction and optimization of future
states and inputs, allowing for efficient energy management and effective control of
the powertrain components.

To explain the math of MPC, let’s start with the basic formulation. In Model
Predictive Control, the optimization problem seeks to minimize a cost function
subject to system dynamics and constraints [24]. This can be expressed as:

minJ = SN L(z (i), u(i)) + é(z(N)) (3.1)
subject to:

w(i+1) = f(a(i), u(i))g(z(i), u(i)0
where:

11
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J is the cost function to be minimized;

N is the prediction horizon;
 x(i) represents the system state at time i;
« u(i) represents the control input at time i;

» L is the stage cost function that quantifies the performance of the system at
each time step;

e ¢ is the terminal cost function that captures the desired final state of the
system- f represents the system dynamics, which describe how the state evolves
over time based on the current state and control input;

g represents the system constraints, which limit the feasible state and input
space.

By solving this optimization problem iterative, the MPC algorithm generates a
sequence of control inputs that minimizes the cost function while satisfying the
system dynamics and constraints. This approach allows the MPC algorithm to
effectively control the electric vehicle powertrain by dynamically adjusting the
control inputs based on real-time measurements and predictions.

In summary, Model Predictive Control is a control method that optimizes a cost
function based on system dynamics and constraints.

12



Chapter 4

Modeling

The modeling is made in Simulink and MATLAB scripts. The longitudinal dynamics
equations of the vehicle and of the electric motor are done based on [25] and [26].
The battery model equations are also based on [25].

Backward and forward approaches are used in the simulations. First, for the
validation of the model and parameters, a backward model is developed with the
reference speed profile and acceleration as inputs of the system. Then, for the
uncontrolled reference model, a backward model is used to produce the electric motor
torque command, which serves as the input for the complete forward powertrain
model (vehicle dynamics with electric powertrain components - electric motor and
battery). For the MPC controlled model, the complete system model is developed
in a state space form, which is set as a parameter of the MPC and will serve as
the prediction model for the controller. The controller result is a electric motor
torque, that will be the input of the forward complete powertrain model, where
the states (SOC, position and velocity) will be computed and compared with the
uncontrolled model.

The driving cycle that it is being imposed to the vehicle as a reference speed
profile is the WLTP3, which has a duration of 1800 seconds, and has a low speed
scenario, simulating urban driving, and a high speed scenario which simulates
highway driving condition.

The model of each powertrain component used in the simulation is depicted in
this section, as well as the interpolations, and polynomial fits done for the battery
and electric motor models.

The MATLAB scripts for all the models and parameters are available in the
appendix of this thesis B. And the polynomial fits necessary are made in Python,
and are available in the appendix C.

The MPC code is a closed .p file, and provided by Politecnico di Torino.
13
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4.1 Foreword Approach

In the foreword approach the physical casulity of the system is reproduced, so the
reference desired speed is compared to the actual vehicle speed and acceleration or
breaking commands are produced to achieve the desired reference, a driver model
is necessary to provide such commands, and a supervisor block is responsible for
issuing the actuators set points to the rest of the powertrain components which
is responsible to produce the traction force, such force is applied to the vehicle
dynamics. The acceleration is determined by the equation 4.1. Figure 4.1 shows
the scheme of such approach [25].

dvye
Mveh# = Ljnertia — Ftrac - F’/‘oll - Faero - Fgrade (41)

Fipertia 1 the inertial force, Fy.q. is the traction force, F,,y; is the rolling resistance
force, Fiero is the aerodynamic resistance and Fy,qq. is the slope/inclination force -
weight component.

Figure 4.1: Forword approach
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Source: [25]

4.2 Backward approach

The backward approach no driver model is used and equation 4.1 is rearranged to
calculate the traction force that need to be produced for the vehicle to follow the
desired speed profile. In that way, the desired speed and acceleration is directly
inputted in the traction force equation 4.2, this way the motor torque and energy
consumption are the outputs. The tractive force to be applied is based on the
provided velocity, payload, grade profiles and vehicle characteristics. Based on that
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information the toque that the powertrain should provide is calculated and the
power /speed characteristics of the components are taken into account to determine
the operating point of the motor and the energy consumption, consequently.

Ftrac = Lpwt — Fbrake = Iinertia T Fgrade + Froll + Faero (42)

Figure 4.2 shows the backward approach modeling.

Figure 4.2: Backward approach
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Source: Onori 2016 [25]

4.3 Driving Cycle - WLTP3

The driving cycle that is used is the WLTP3, its speed and acceleration profile are
depicted in figure 4.3. The acceleration is obtained directly from the differentiation

of the speed profile.
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Figure 4.3: WLTP3 driving cycle
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4.4 Vehicle Parameters

The vehicle used as reference is the Fiat 500e, and the parameters, provided by
[16] and Politecnico di Torino are exposed in table 4.1.

Table 4.1: Vehicle parameters

Parameter Symbol | Value | Unit
Vehicle Mass Myen 1400 kg
Front axle - CoG a 1 m
Rear axle - CoG b 1.3 m
Height CoG h 0.3 m
Static rolling coefficient | fy 4.5 N/kN
Wheel radius Tw 0.3 m
Drag coefficient Cy 0.33 -
Frontal area Ay 2.15 m2
Gear ratio Tgb 9.6 -
Gearbox efficiency Ngb 0.97 -

Source: [16]
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4.5 Longitudinal Dynamics Model

Based on the backward approach, the longitudinal dynamics of the vehicle can be
described by the inertial force (Myeparer) and by the resistive forces: grade force,
due to road inclination 4.6; aerodynamics resistance force 4.6; rolling resistance
forces 4.5. By summing all the contributions and given a desired acceleration it is
possible to compute the output or wheel torque by the backward approach 4.4.

Twheet = (Fyrade + Fron + Faero + MyenQref)Tw (4.3)
Fron = Myeng fo (4.4)

Fyradge = Myeng sin(a) (4.5)

Fuero = 0.5pA;Cqvl, (4.6)

In the forward approach, on the other hand, the equation can be rearranged,
so that the vehicle acceleration is computed as consequence of the tractive forces
provided by the powertrain, and also considering the effect of the resistive forces.
So the vehicle dynamic equation in the forward approach is exposed in 4.7.

dvfueh Twheel
Mve = — Lroll — F, rade — Faero 4.7
h e 1l grad (4.7)

The wheel angular speed is given by equation 4.8.

Wy = Vpef/Tw (4.8)

Twheer 18 the output torque that must be provided to make the vehicle follow
the reference, accounting for the resistive forces. r,, is the wheel radius, w,, is the
wheel angular speed, M, is the total vehicle mass, g is the gravity acceleration, «
is the road slope in radians, f; is the static rolling coefficient, p is the air specific
mass, Ay is the vehicle frontal area, Cy is the drag coefficient, and v,.f and @,y
are the reference speed and acceleration provided by the driving cycle.

The block diagram for the vehicle dynamics equation using the backward
modeling approach is shown in figure 4.4, while the forward modeling is shown in
figure 4.5.
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Figure 4.4: Longitudinal dynamics diagram block - backward modeling
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Longitudinal dynamics diagram block - forward modeling
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Source: Own authorship (2024).
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4.6 Gearbox Model

The gearbox model is a simple computation of the gearbox efficiency and gear ratio
for both the toque and angular speeds coming from the wheel. The torque and
wheel speed at the motor shaft level - after the gearbox - are given by equations
4.10 and 4.10 respectively.

_ Twheel
TEM - sign(%ﬁu;eeel) (49)
Mer Tgb
WEM = Wwheel Tgb (4.10)

Tgy and wgar are the torque and angular speed of the electric motor shaft, 7y,
is the gearbox ratio, and 7, is the gearbox efficiency.

The Simulink block with the equations for the gearbox dynamics using the
backward approach is shown in figure 4.6.

Figure 4.6: Gearbox block - backward modeling
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Source: Own authorship (2024).

The model showed in figure 4.7, the angular speed relation is the same, but the
efficiency is calculated by equation 4.11.

Tyheel = TpM (rye™ ™)) (4.11)
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Figure 4.7: Gearbox block - forward modeling
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Source: Own authorship (2024).

4.7 Wheel Model

This simulink block is mainly used in the forward models, and it simply relates the
wheel torque with the wheel force, and the vehicle speed with the wheel angular
speed. Figure 4.8 shows the Simulink black that relates the described variables.
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Figure 4.8: Wheel block - forward modeling
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Source: Own authorship (2024).

It is a basic division by the wheel radius, as exposed in equations 4.13 and 4.13

Jai o Twheel
wheel —
Tw
o Vyeh
Wayheel =

w

Funeer is the wheel force, wypee is the wheel angular speed, v,e, is the vehicle
speed and r,, is the wheel radius in meters.

4.8 Electric Motor Model

The electric motor modeling is mainly dependent on the efficiency mapping based

on a given angular speed and shaft torque.
In the electric motor block of the model (elucidated in figure 4.9), both the

motor power and the battery power are the outputs. The motor power is given
by equation 4.15 and the battery power that is inputted into the battery block is

given by equation 4.15.

21



Modeling

Pey = Tenwen (4.14)
— Pep
P = e (W, TEM )Niny |8 FEM) (4.15)

Figure 4.9: Electric motor block
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The efficiency map for the electric motor is a generic one provided by Politecnico
di Torino, for simulation purposes, the real efficiency map of the Fiat 500e is not
available. The 2D and 3D (surface plot) maps are exposed in figures 4.10 and 4.11.
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Shaft Torque [Nm]

Figure 4.10: 2D efficiency map
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Figure 4.11: 3D efficiency map
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The electric motor model is the same for both the forward and backward
modeling approaches.

4.9 Battery Model

The battery model follows the reference modeling exposed in [25]. The battery
parameters are shown in table 4.2.
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Table 4.2: Battery parameters

Parameter Symbol | Value | Unit

Number of series cells N, 108 -

Number of parallel cells | N, 1 -

Number of total cells Ny 108 -

Nominal capacity Qrnom 60 Ah

Coloumbic efficiency Ne 0.95 -
Source: [16]

The State of Charge (SOC), modeled by equation 4.17, is defined as the ration
between the current battery charge (), and the nominal battery capacity Qom-
When differentiating both sides it is possible to obtain the derivative of the SOC
as a function of the battery current [, as exposed in equation 4.17.

SOC = ¢ = B (4.16)

nom

SOC =¢=—— 1t D (4.17)
Y

sign(ly) Qnom
c

In this modeling, when the battery current is greater than 0, it is in discharge
mode, and when is lower than zero, it is in charge mode.

The battery is modeled as an ideal voltage source V,.; with series of input
resistance R,p, so it is possible to solve for the current [25] - equation 4.18.

o Voor = Vi = 4Roo Pras @18)
- 2R, '

Furthermore, the Simulink model that implements the equations is exposed in
figure 4.12. The equations are for one cell only. To perform a calculation for the
whole battery, the tension V,.;, must be multiplied by the number of series cell,
and the resistance by Ng/N,.
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1D T(u)

Figure 4.12: Battery Simulink model
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For obtaining the values a resistance and voltage for a single cell, experimental
value of resistance and voltage variation as function of the SOC where provided
by Politecnico di Torino. The interpolation was done using the griddedinterpolant

function from MATLAB, and the results are shown in figure 4.13.
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The same battery model is used for both the for the forward and the backward
modeling approaches.

4.10 Polynomial fits

Polynomial fits of the battery voltage and resistance equations, and of the electric
machine efficiency are developed in this section. These polynomials are used in the
state space equations of the system, which is used as prediction model by the MPC
controller. The polynomials generation code are done in Python and exposed in C.
The polynomial expressions are 4.19 through 4.21.

Epn(w,T) = 0.95 + (—1.11 x 10~)w + (161 x 107)T + (2.05 x 10~5)w?
+ (=8.74 x 107°)wT + (=5.05 x 107°)T? + (=1.14 x 10~ ?)w?

4+ (7.30 x 1071)w?T + (4.52 x 107°)wT? + (2.87 x 10°)T° (4.19)
V(&) = —0.40666 * £ + 1.0703 * £ + 3.4385 (4.20)
R(€) = 0.00041627 * £2 — 0.00071804 * £ 4 0.0023018 (4.21)

For the electric machine efficiency polynomial, different degrees are tested and
the Mean Absolute Error and Root Mean Squared Error are computed. The chosen
polynomial is the one with the lower value for both errors

MAFE = 0.13471

RMSE = 0.20122

and corresponds to the 3rd degree. The 3D and 2D (contour) efficiency maps
generated by the polynomial equation (as function of the shaft torque in [Nm] and
angular speed in [rpm]|) are illustrated in 4.14 and 4.16 respectively.

For comparison, the experimental surface plot with the adjusted Z-axis limits -
same limits of the polynomial result - is showed in figure 4.15
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Figure 4.14: 3D efficiency map generated by polynomial equation
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Figure 4.15: 3D efficiency map with limits adjusted
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Figure 4.16: 2D efficiency map generated by polynomial equation
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The main reason for the difference is the 0 efficiency points in the experimental
data , when the torque is close to 0. But, as it will be showed in the simulation
sections, the MPC controlled performed well with the described polynomial fit for
the EM efficiency.

4.11 Car-Following Scenario Block

This simple block is available in [16] in the model in the loop of the 500e, and
it’s objective is to simulate a more realistic response from the by adding a delay
into the lead vehicle via simple integrator blocks and rate transition blocks. The
Simulink model is exposed in figure 4.17.
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Figure 4.17: Car-following scenario Simulink model

E—LN =

N 0O
@D, > @ N x_lead [m] d_rel o 2 D

lead speed [m/s] - - I _{m d_rel

Rate Transition1
x_host [m]

&
initial distance [m] E—L>
¥ zon
/T O

> Junggiin] v_rel

& " (D

ego speed [m/s] I _[m v_host

Source: [16].

The integrator blocks all have a unitary integrator gain.

4.12 CTG Policy Controller

The CTG controller used is for the car following more realistic scenarios on the
MPC controlled model, and are based on the model in the loop of the 500e provided
by [16].

The CTG policy is mainly used for providing a acceleration reference based on
a constant time gap between the leading and the ego vehicles. It also ensures a
platoon stability, which a simple PID controller based only on the single vehicle
sensor information (without V2V communication) is not capable of doing.

Since this controller is not the main scope of this thesis, only the modeling and
the motivation will be described in the present section.

Figures 4.18 and 4.19 show the simpler and the more complete CTG model.
From the models, the CTG equations are exposed in 4.23 and 4.23.
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Figure 4.18: Simplified CTG controller Simulink model
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Figure 4.19: Complete CTG controller Simulink model

T

Relal%g\ocn ‘{}J —
Source: [16]
acrac = _%(j:egoh + ddefault + 5) - % (422)
acrg = _(ddefault + j:leadh - Ad)Kmerr + vxgainA'U (423)

h is the time gap in seconds, x4 is the ego/following vehicle position, zjeqq is
the leading vehicle position, A is a tuned parameter, € = Zcgo — Zieqq is the relative
distance, Ad is the relative distance and Aw is the relative velocity, both from the
car-following scenario block described in 4.11, dgefqu: is the default distance set to
be maintained, K, is tuned spacing error gain, and vz g4, is the relative velocity
gain. All the parameter are tuned or provided by [16], and are exposed in the code
snipped below, and in the appendix B.
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% ACC and CTG Contoller parameters

default__distance = 50; % reference distance from leading vehicle
[m]

tau = 0.5; % vehicle LTI model [s]

h = 4xtau; % time gap [s] (h > 2xtau)

lambda = 0.5; % CIG parameter |[—|

Td = 0.01;

s = tf(’s7);

P = 1/(tauxs + 1); % Vehicle simplified plant

v_set = 40; % ACC set velocity [m/s]

time_gap = 3; % ACC time gap [s]

verr__gain = 0.1; % ACC velocity error gain — CIG
xerr_gain = 0.3; % ACC spacing error gain — CIG

vx_ gain = 0.5; % ACC relative velocity gain — CIG
max_acc = 2; % Maximum acceleration [m/s” 2]
min_ acc = -3, % Minimum acceleration [m/s” 2]

The saturation of the acceleration in the complete CTG model is defined by
the minimum value of -3 and 2 m/s®. The transfer function defined by P is the
vehicle plant for the simplified ACC scenario, the plant is given by 4.24, and it is
the responsible for inserting the delays in the model.

(4.24)

4.13 State Space Model

To be set as the prediction model of the MPC, the complete system is described
in a state space form, with the electric motor torque - that is the control output -
set as the input of the system. The three states set to the system, as mentioned
before, are:

 Battery State of Charge (SOC): z; = SOC.
» Vehicle position: xy = .
» Vehicle velocity: x3 = .

The SS model input is the electric motor torque (control output) in the previous
time instant - Tg,.
u = TEM

The rolling resistance force Fi.,; is given by equation 4.5 and the aerodynamic
force F.., is adapted to be computed as function of the state:
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Frero = 0.5CpAsas (4.25)

the grade force is not considered in this case, the road inclination is not considered
for the sake of simplicity.

The electric motor (EM) equations as functions of the states are showed in
equations 4.27 through 4.29.

Wem = 3 (4.26)
WEM,rpm = WEM 2 (4.27)
nem = Eey(Wesrpm, TEwm) (4.28)
Ppy = wenTepg (4.29)

The parameter ¢ is used to facilitate the development of the system equations
and is given by 4.30.

¢ = (4.30)

With respect to the battery, its power is given by 4.15. And the battery voltage,
resistance and current as function of the states are exposed in 4.32 through 4.34.

Py = (ﬂEM%iE)é\fg“(PEM) (4.31)
Voe = NV (1) (4.32)
Ro = 5 R(w1) (4.33)

fy = B R (4.34)

The functions Egy, V and R are polynomial fits of the efficiency, voltage and
resistance interpolated experimental data and are discussed in 4.10.

Finally, the state equations of the complete system are exposed in 4.36, 4.37
and 4.37.
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j?l = f(l'l,ﬂfg,u) = _ﬁ%ﬁ;ub) (435)
iy = f(xs) = a3 (4.36)
iy = f(flfg) _ (Ugb/(b)TEz]vé[;l;mu—Faem (4'37)

The state derivative vector is exposed in 4.38.

jjl B Qnomngigtr;(lb)
X = || = T3 (4.38)
{L'g (ngb/qb)TEI\{*Froll*Faero
Mvch
And the output vector is given by 4.39
Y1 T
Yy = |Y2| = |T2 (4.39)
Y3 3

4.14 MPC Block

The MPC block from Simulink is illustrated in figure 4.20. The unit delay block
has an initial condition of 0 and a sampling time as the one defined in the MPC
parameters T's = 0.05 s.

Figure 4.20: MPC Simulink block
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Source: Own authorship (2024).

The reference block input (r) is the values of the reference states in each
simulation time instant, while the states input (x) is feedback from the model plant.
The interpreted MATLAB function block has '"nmpc_ b2.p" file as parameter, and its
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arguments are the MATLAB struct "K" assembled using the "nmpc_ design_4b.p"
and the Mux virtual vector divided in states, control feedback and reference. Figure
4.21 shows the parameters of the MATLAB function block with the .p file in it.

Figure 4.21: Interpreted MATLAB function block parameters

Block Parameters: nmpc2 X
Interpreted MATLAB Function

Pass the input values to a MATLAB function for evaluation. The
function must return a single value having the dimensions specified
by 'Output dimensions' and 'Collapse 2-D results to 1-D'.

Examples: sin, sin(u), foo(u(1), u(2))

Parameters

MATLAB function:

nmpc_b2(K,u(1:K.nx),u(K.nx+1:K.nx+K.nc),u(K.nx+K.nc+1:end))

Output dimensions:

K.nc 1%

Output signal type: auto 7
B Collapse 2-D results to 1-D

oK Cancel Help Apply
Source: Own authorship (2024).

"K.nc" is the control output dimension, and the parameters of the "nmpc_ b2"
function follows the dimensions of the input Mux block, being the first argument
the states dimension, then the control output dimension that is feedback to the
block, and finally the reference dimension, that has the same dimension as the
system states (x).

The "K" struct parameters, or MPC parameters are the following:

Ts = 0.05; % Sampling time

par.nx = 3; % number of states
par.nu = 1; % control elements number
par.ny = 3; % number of outputs

par.model = @prediction_longitudinal _model; %Modello di
predizione

par.ub = 250; % Upper bound saturazione input —> maximum
value for control output

par.lb = —250; % Lower bound saturazione input —> minimum
value for control output

par. tol = 1; % Reference tolerance

par . Nfev = 150; % Iteration number of fmincon in cost

function (default 200)
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par.Ts = Ts;

par.R = 1; % definite positive matrix for cost function
par.P = diag ([0;0;1]); % definite positive matrix for cost
function

par.Q = diag ([0;0;1]); % definite positive matrix for cost
function

par.Tp = 5xTs; % Prediction horizon

K = nmpc_design_4b(par); %Generazione parametri design NMPC

as described in the code, 'nx’, 'nu’, and 'ny’ are the number of states, control
outputs (same as 'nc’) and number of outputs. The 'model’ parameter is the
prediction model function, or the state-space model of the powertrain, receiving
the control input as the EM torque, with its code exposed in B. Upper and lower
bounds of the torque control output are set in 'ub’ and ’lIb’ respectively. 'tol’ is the
refernce tolerance, 'Nfev’ the number of iterations in the cost function, 'Ts’ is the
sampling time, "Tp’ the prediction horizon (which is always an integer multiple of
the sampling time).

Finally, matrices P, Q and R are the ones that come from the Ricatti equation,
as in LQR controllers. They are all diagonal matrices, where Q and P control the
energy of the state error, while R matrix control the energy of the control input.

Since the P and (Q matrices control the states, and the reference is a state in a
time instant, the values are set to zero in the matrices diagonals according to the
set reference. For example in the first MPC controlled model simulation setup, the
velocity (third state) is set as the only reference, thus, matrices P and Q should
have zero for the other states, since they are inputted as null values in the state
reference vector.

Matrix R is the responsible to account for the control output/feedback input.

4.15 Model in the Loop (MIL) 500e

The complete model provided by Politecnico di Torino and [16] is briefly discussed.
The model is divided into the Controller block and the Plant block, as exposed in
figure 4.22.
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Figure 4.22: MIL setup - Controller and Plant Simulink blocks
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Source: [16]

Figure 4.23 shows the Controller block. The high level controller block is very
similar to the complete ACC scenario setup discussed in section 5, it has the car
following block with the CTG policy block in it, like the ones discussed in sections
4.11 and 4.12.

Figure 4.23: MIL setup - Controller Simulink model
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Source: [16]

The low level controller block has as input the acceleration provided by the high
level controller, and through a backward model (very similar to the one discussed
in this thesis. The required torque is computed, and a driver model with a PI
controller simulates the driver required torque. These signals are summed and the
torque and brake commands are generated by the Torque Distribution block. These
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commands are sent to the complete vehicle plant and the simulations are done.
The high level controller block is exposed in figure 4.24, and the low level

controller is illustrated in figure 4.25.

Figure 4.24: MIL setup - High level controller Simulink model
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Figure 4.25: MIL setup - Low level controller Simulink model
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Chapter 5
Simulations

The simulations made in this thesis where the following:

« Backward (BW) model: for a first validation of the model parameters and
equations, a simple backward approach simulation is made, using the WLTP3
driving cycle speed and accelerations profiles as reference and inputs of the
model.

« Backward and forward (BW-FW) model simulation: prior to the MPC con-
troller implementation, the backward model is used as an electric motor shaft
torque provider - which is the MPC control output. The EM shaft torque is
the input of the forward model (with the same parameters and force equations
as the backward model) and the resultant states of this model are used as
reference for the controlled model. The backward-forward model serves the
purpose of being the states reference provider.

e MPC controlled model: done with the MPC controlled model, and the reference
states for the comparison are provided by the BW-FW model. 4 different
setups are simulated in this case. A first setup with the WLTP3 velocity
profile as reference; second setup with the WLTP3 position profile as reference;
third setup with an ACC (Adaptive Cruise Control) simplified scenario using
simplified CTG (Constant Time Gap) controller and vehicle plant to compute
the positions and velocities; final scenario with an ACC realistic scenario with
the complete longitudinal dynamics vehicle plant to compute position and
velocities and a more complete CTG controller.

o MIL 500e with MPC: in the final simulation, the tuned MPC controller is
used in the complete 500e provided model, and it is responsible for generating
the required torque command.
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In the figures where there is a comparison between the controlled and uncontrolled
results, the signals go until the 400 seconds time instant of the cycle. This zoomed
in plot is done for better visualization and analysis of the comparison plots. The
complete cycle simulations are available in the appendix A of this thesis.

5.1 Backward Model

The backward model is depicted in figure 5.1, all the blocks have the equation
explained in chapter 4, and here, the longitudinal vehicle dynamics block is the
one defined in 4.4, using the backward approach.

Figure 5.1: Vehicle and powertrain Simulink model - backward approach
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Source: Own authorship (2024).

From the simulation, the obtained signals are wheel and electric motor torque,
angular speeds, battery power and State of Charge. The wheel torque and angular
speed are exposed in 5.2, the electric motor shaft torque and angular speed (in
RPM) are shown in figure 5.3, and, finally, the battery signals of power and state
of charge are depicted in figure 5.4.
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Figure 5.4: Battery power and State of Charge
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By analyzing the simulation results it is possible to see that the torque and
angular speeds both follow the reference speed and acceleration as expected, but
with different magnitudes due the gearbox gains, vehicle mass and wheel radius.
The EM shaft torque has maximum absolute values around 75 Nm, which is bellow
the EM maximum torque of 250 Nm. Considering the battery, its signals of power
and SOC are the ones with more variations and don’t follow the reference profiles,
due to the higher non linearity in the model, and dependency on all the other
powertrain components combined. The state of charge finishes the cycle with
around 0.7 or 70% charge, with the highest consumption closest to the end of the
cycle, due to the higher velocities and consequent higher power and consumption
from the battery.

The EM torque result from this model is used as input for the backward-forward
(BW-FW) model, that serves as state reference generator and lead vehicle states
for the MPC controlled model scenarios.

5.2 Backward-Forward Reference Model

In this case, the backward model explained in 5.1 will be set as the electric
motor torque generator - which will be the role of the MPC controller in the final
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simulations. The torque is the input of a forward complete powertrain model,
described in section 4, and depicted in figure 5.5.

Figure 5.5: Backward-Forward Simulink model
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Source: Own authorship (2024).

All the blocks present in this model are the ones explained in section 4, the
only difference would be the inputs and outputs of the blocks themselves, not the
equations. The inputs and outputs ought to be different to respect the physical
causality of the system in the forward modeling approach.

The vehicle longitudinal dynamics equation and Simulink blocks for the forward
model are shown in 4.5 and 4.7.

In this simulation setup, the evolution of the states are obtained, and provided
as reference for the controlled model afterwards. It is also used as the leading
vehicle complete model for the ACC scenario comparison between ego and lead
vehicle position and speed. The forward model is the complete plant of the vehicle
and from where the states are computed.

Figures 5.6 and 5.7 show respectively the states evolution of the model and the
vehicle acceleration (third state derivative) and EM torque evolution in time. The
torque is the same obtained in 5.3, since it is obtained from the backward model.
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Figure 5.7: Backward-Forward model torque and acceleration evolution
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Since there is no delay, or control command, the model states just replicate the
reference, and the SOC is the same as obtained in the backward model. That is

the reason why this model is used as state reference and as the leading vehicle in
the ACC scenarios.

5.3 MPC Controlled Model

The controlled model Simulink is showed in figure 5.8. The different inputs that
set the simulation scenario via MPC reference states are controlled by a variable
in the script and by the switch Simulink block. There are four diferente scenarios
that are simulated, as explained in the beginning of this chapter:

« Velocity reference: velocity profile as the third state reference, other states
reference set to O.

o Position reference: position profile directly integrated from the WLTP3 cycle
speed profile set as second state reference. Other states set to 0.

o Simplified ACC: simplified CTG controller and simplified vehicle plant. The

simplified vehicle plant output position is the second state reference. Other
states set to 0.
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o ACC: realistic car following scenario with complete CTG controller. The
position resultant from the CTG acceleration integration is the second state
reference. Other states are set to 0.

Figure 5.8: MPC controlled Simulink model
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The plant of the system, defined in the Powertrain block, has its Simulink model
exposed in 5.9. The blocks of the powertrain are defined in section 4, and are
modeled in the forward approach, as the forward model explained in 5.2.

Figure 5.9: MPC controlled Simulink powertrain plant
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5.3.1 Velocity Reference

In this first simulation setup, the speed profile from the WLTP3 cycle is the direct
input of the third state x5 reference. The other reference states are set to 0, as it
is possible to see in the Simulink model illustrated in 5.8.

First, to show the importance of the MPC parameters tuning, this first setup
with velocity as reference is simulated with the standard parameters showed in
section 4.14. The results of the states evolution of the controlled plant compared
with the reference model are exposed in figures 5.10 and 5.11. A shorter simulation
time is set, just for illustrate the importance of the tuning - 300 seconds from the

1800 second cycle.

Figure 5.10: MPC controlled model states evolution - MPC default parameters
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Source: Own authorship (2024).
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Figure 5.11: MPC controlled model torque and acceleration evolution - MPC
default parameters
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It is possible to see that basically there is no control action, and there is no
track of the reference. The states go to negative position and velocities, while the
battery SOC remains the same. The torque control and acceleration both decrease
slowly.

For this setup, the tuned parameters for the controller are exposed in the code
section below.

Ts = 0.05; % Sampling time

par.nx = 3; % number of states
par.nu = 1; % control elements number
par.ny = 3; % number of outputs

par.model = @prediction_longitudinal _model; %Modello di
predizione

par.ub = 250; % Upper bound saturazione input —> maximum
value for control output

par.lb = —250; % Lower bound saturazione input —> minimum
value for control output

par. tol = 1; % Reference tolerance

par . Nfev = 150; % Interation number of fmincon in cost

function (default 200)
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par.Ts = Ts;

par.R = 0.05; % matrice diagonale definita positiva per cost
function

par.P = diag ([0;0;10000]); % matrice diagonale definita positiva
per cost function

par.Q = diag ([0;0;1]); % matrice diagonale definita positiva per
cost function

par.Tp = 10xTs; % Prediction horizon (sempre multiplo intero del
Ts)

K = nmpc_design_4b(par); %Generazione parametri design NMPC

The parameters are tuned via trial and error, adjusting the results to better follow
the reference states. Figure 5.12 and 5.13 show, respectively, the states evolution
and the electric motor torque and vehicle acceleration - being the derivative of the
system third state.

Figure 5.12: MPC controlled model states evolution - velocity reference
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Figure 5.13: MPC controlled model control torque and vehicle acceleration
evolution - velocity reference
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By analyzing the results it is possible to conclude that the MPC control torque
command made the vehicle follow the reference velocity as desired, and the states
evolution are vary similar to the reference uncontrolled models. The torque
commands are a bit smoother than the ones from the uncontrolled models, but the
trace and the magnitudes are pretty similar.

The purpose of this first simulation by inputting the velocity profile directly as
reference, it is possible to conclude that the MPC controller works and it is able to
control the powertrain plant to follow a given reference.

The scenario is not realistic, but it accomplished its purposes.

5.3.2 Position Reference

Now, instead of setting directly the velocity from the profile as reference, the desired
leading vehicle position is set as reference, by integrating the WLTP3 profile directly.
The initial condition for the integrator is set to the desired default distance of 10
meters. This value is kept the same for the ACC simulation scenarios.

This is also a non realistic scenario, since the profile is being directly inputted
with no delays or proper treatment to mimic a car following case. It is just to test
the MPC controller when the second state (position) is set as refernece, and the
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other states are set to 0.

The parameters in this scenario are defined below:

Ts = 0.05; % Sampling time

par.nx = 3; % number of states
par.nu = 1; % control elements number
par.ny = 3; % number of outputs

par.model = @prediction_longitudinal_ model; %Modello di
predizione

par.ub = 250; % Upper bound saturazione input —> maximum
value for control output

par.lb = —250; % Lower bound saturazione input —> minimum
value for control output

par. tol = 1; % Reference tolerance

par . Nfev = 150; % Interation number of fmincon in cost
function (default 200)

par.Ts = Ts;

par.R = 0.05; % matrice diagonale definita positiva per cost
function

par.P = diag ([0;50000;0]); % matrice diagonale definita positiva
per cost function

par.Q = diag ([0;1;0]); % matrice diagonale definita positiva per
cost function

par.Tp = 10«Ts; % Prediction horizon (sempre multiplo intero del
Ts)

K = nmpc_design_4b(par); %Generazione parametri design NMPC

Figure 5.14 and 5.15 show, respectively, the states evolution in comparison with
the reference, and the control torque and vehicle acceleration evolution. Also, the
ego (controlled) and leading vehicle positions are computed in 5.16.
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Figure 5.14: MPC controlled model states evolution - position reference
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Figure 5.15: MPC controlled model control torque and vehicle acceleration

evolution - position reference
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Figure 5.16: MPC controlled model ego and lead positions - position reference
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From the results, it is possible to conclude that the MPC controller works
properly and the parameters are properly tuned when the given reference is the
second state (position) and the others are set to 0.

5.3.3 ACC Simplified Scenario

For a first ACC approach and to properly tune the parameters with a simpler
model, a simpler CTG controller is used to generate the acceleration reference
which is the input of the transfer function that represents the plant of the vehicle
response to the acceleration - described in equation 4.24 - and also simulates a
delay for the computation of the position profile.

The CTG controller inputs are the lead vehicle position, which is the same used
in the position reference case, and the feedback position and velocity from the ego
vehicle, generated from the simple transfer function from 4.24. This ego position

from the transfer function model is the one inputted as second state reference in
the MPC.
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Figure 5.17: MPC controlled model states evolution - simplified ACC scenario
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Figure 5.18: MPC controlled model control torque and vehicle acceleration
evolution - simplified ACC scenario
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Figure 5.19: MPC controlled model ego and lead positions - simplified ACC
scenario
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Source: Own authorship (2024).

From the results exposed in 5.17, 5.18 and 5.19 it is possible to see the states
evolution, control torque and vehicle acceleration, and position traces and relative
distances, respectively. In this more realistic scenario, the MPC successfully followed
the reference, and there was no collision - relative distance is always positive and
the position traces do not intercept.

It is a more realistic scenario then the other two presented so far, and the tuned
parameters have been demonstrated as satisfactory for this simpler ACC scenario.

5.3.4 ACC Complete Scenario

In the more realistic case, the reference is given by the complete CTG policy block,
attached to a car-following scenario block and the complete longitudinal dynamics
of the vehicle.

The car-following block is detailed in 4.11, and it is responsible to generate the
inputs of the complete CTG policy block. By using simple Integral controls with
unitary integral gain and rate transition blocks, delays to the data signals and
smother transitions are obtained, simulating a more realistic sensor data acquisition
and transmission. It generates relative distance and velocity signals, as well as lead
velocity. Those information are provided as input for the CTG block.
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The complete CTG block, explained in section 4.12, provides the acceleration
reference that is integrated to generate the position reference for the MPC block.

Results for this simulation setup are exposed in 5.20, 5.21 and 5.22.

Figure 5.20: MPC controlled model states evolution - complete ACC scenario
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Figure 5.21: MPC controlled model control torque and vehicle acceleration
evolution - complete ACC scenario
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Figure 5.22: MPC controlled model ego and lead positions - complete ACC
scenario
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Source: Own authorship (2024).

It is possible to see that the MPC produced a torque signal capable of making
the vehicle follow the lead vehicle. The stability around the 10 meters default
spacing is not obtained in this simulation, a better tuning of the CTG parameters
may enhance the capability of the model to keep the desired distance, but this is
not the focus of this thesis. Overall, the MPC strategy showed satisfactory results
in this more realistic case.

5.4 Model in the Loop 500e with MPC controller

The MPC controller with the simplified plant is inputted in the Controller block,
following the EAD Scenario block with the scenario and high level controller
modeling, which provides the reference acceleration signal. The simplified plant is
responsible for providing the states feedback for the controller, as in the simplified
plant simulations discussed previously.

Thus, for the MPC implementation, the original controller block exposed in 4.23
is modified, and the resultant controller model is exposed in 5.23. The acceleration
reference provided by the high level controller is now the reference input of the
MPC. Its integral is computed and the resultant velocity is set as the second state
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reference. The MPC block is exposed in figure 5.24, the components are the ones
discussed along this thesis, with the MPC block that has as input the reference
state, and the EV simplified plant that provides the feedback states. The low level
controller is modified, and it receives directly the control torque provided by the
MPC, there is no backward model anymore to compute the torque command. The
modified low level controlled block is exposed in figure 5.25.

Figure 5.23: MIL setup with MPC - controller Simulink model
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Figure 5.24: MIL setup with MPC - MPC Simulink model
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Figure 5.25: MIL setup with MPC - low level controller Simulink model
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Finally, the whole MIL setup is simulated with the MPC controller providing the
required torque. The signals acquired from the powertrain provided by the Simulink
model developed in [16] are: vehicle speed in m/s, electric motor speed in RPM
and torque in Nm, battery charge in Ah and electrical efficiency in kWh/100km,
and relative distance in meters. All this signals are obtained for the reference
(unmodified) model and for the MPC controlled model, where the controller is
responsible for generating the required torque from the inputted position reference,
as discussed previously. In both models the ACC scenario is tested with the
CTG policy. The results are exposed together, comparing the controlled with the
uncontrolled model.

Figure 5.26 show the powertrain signals comparison (vehicle speed, and electric
motor torque and angular speed). Figures 5.27 and 5.28 shows the result of the
battery signals, and a zoomed in signal, respectively. They expose the battrey
charge and electrical efficiency. Finally, figures 5.29 and 5.30 elucidate the relative
distance signals, and the zoomed in trace.
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Figure 5.26: MIL results - MPC and reference powertrain signals
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Figure 5.27: MIL results - MPC and reference battery signals
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Figure 5.28: MIL results - MPC and reference battery signals zoomed in

MPC controlled and reference battery results

Battery Charge
283.2 — f T T

Controlled | |
Reference
283.195 — —

283.19 —

283.185 |—

283.18 —

Charge [Ah]

283.475

283.17
283.165 —
283.16

283.155

. I I I I I I
355 360 365 370 375 380 385 390 395 400
Time [s]

Electrical Efficiency

-~
T

Controlled
Reference

PO N
o & & o
T

IS

Electrical Efficiency [KWh/100km]

Iy

-~
T

355 360 365 370 ars 380 385
Time [s]

390 305 400

Source: Own authorship (2024).

67



Simulations

Figure 5.29: MIL results - MPC and reference relative distance signals
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Figure 5.30: MIL results - MPC and reference relative distance signals zoomed in
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Source: Own authorship (2024).

It is possible to conclude from the plots, that the signals are very similar, since
the same position is used as reference for both simulations. In the zoomed images
it is possible to see that the controlled model the battery charge is 0.005 Ah lower,
while the electrical efficiency is 0.1 kWh/100km higher. This difference is negligible
and the signals can be considered the same, for the powetrain, the electric motor
torque present a higher peak around 145 second mark of the cycle, but the overall
behavior is the same. The same happens for the vehicle speed profile and relative
distances.

As stated earlier in this report, all the simulation scripts are present in the
appendix of this report - appendix B.
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Chapter 6
Conclusion

In this thesis, the longitudinal dynamics of the vehicle are developed and validated
with different modeling approaches.

First, for the model equations validation, a backward model is developed. The
backward model has as input the velocity and acceleration reference and produce
the torque signals along the powertrain. In this approach, the acceleration and
velocity are use in the vehicle longitudinal dynamics equations to compute the
resistive and inertial forces, then the powertrain force necessary to reach the desired
acceleration and overthrow the resistive forces is calculated, and, consequently, the
wheel torque. Then the wheel torque is converted into the shaft torque after the
gain of the gearbox, and the Electric Machine dynamics are computed with the
shaft torque and angular speed information and efficiency map. The EM power
is obtained and passed to the battery block, hence this power must be provided
by the battery. In the battery dynamics equation, State of Charge is computed.
This backward model is used as a EM torque generator to validate the forward
modeling approach, which is used in the MPC controlled model as plant.

The backward-forward model is used as states, EM torque and vehicle accelera-
tion reference signals to be compared with the controlled models. The forward part
is modeled with the opposite physical causality presented in the backward one. The
EM torque is the input of the vehicle dynamic equation, and the acceleration of the
vehicle is calculated from it, as the velocity and position by integration. The torque
provided as input also serves to feed the dynamic of the EM model, which outputs
a electric power signal (as in the backward model), which is inputted to the battery
dynamics. This backward forward model is used as reference or uncontrolled plant,
since it accounts for all the dynamics and reproduces the reference speed and
acceleration in the states, accounting for all the losses and non linearity of the
model.

The results of both models for equations validation and for reference (un-
controlled model) purposes are satisfactory, since the speed profile is followed
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Conclusion

successfully, and the torque signals are generated properly and present reasonable
values bellow the EM shaft torque limit of around 250 Nm. And the wheel torque
are proportional to the acceleration profile of the WLTP3 cycle, as expected. The
battery has a small loss in SOC.

Then, for a first development and tuning of the MPC controller, the state space
model of the powertrain dynamics is developed and inputted into the controller as
a parameter, and the equations are modeled for the EM torque to be the control
output and feedback input of the controller. The forward model is used as plant to
be controlled and for the states computation. For a first tuning and testing of the
MPC, the speed profile is directly inputted as reference, and the other states have
no reference signal. Then, to test if the controller would respond well in position set
as reference, in a second case the speed profile from the cycle is integrated and the
position trace is provided as second state reference for the MPC block. Finally, in
the last 2 and more realistic car-following scenarios, a CTG policy is implemented
to provide the position reference. First a very simple modeling with no delays
or simulations of data acquisition and a very simple transfer function is used as
vehicle plant to compute the reference position profile. In the end, for the last test
case, a realistic CTG is implemented, with data acquisition delay simulation and
complete vehicle longitudynal dynamics block to compute the position reference
fed to the MPC block.

Furthermore, the MIL complete model is simulated with the MPC for a final
validation of the simplified powertrain modeling, and to check if the controller
would behave properly in a more complex and realistic vehicle model. The results
were very satisfactory, once that the MPC controller was able to generate a EM
required torque signal that made the vehicle follow the reference and keep the
desired distance from the leading vehicle.

In all the controlled model simulation, the controller performed well and produced
a smoother torque/acceleration signal then the reference model (except in the MIL
approach). The torque was very similar to the reference and the position and speed
traces are followed successfully in all cases. The SOC showed similar values in
the controlled and uncontrolled models, with the controlled one presenting higher
SOC values at the end of the cycle in some simulations. In the ACC scenarios, the
distance between the vehicles oscillated around the set distance, and there was no
collision in any point of the cycle.

6.1 Next Steps

For the next steps of this thesis, the MPC controller can be tested in vehicle model
with lateral dynamics as well and more complex electric components modeling to
check if it works properly in a more complete setup prior to be tested in a real
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vehicle. Also, the desired battery profile can be provided as reference to the MPC
controller, to check if it can follows two state’s references. A platoon stability test
can also be done with the CTG policy providing the acceleration signals, with all
the vehicles in the platoon being controlled by a Model Predictive Controller.
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Appendix A

Complete cycle plots

The complete simulation for the whole 1800 seconds from the WLTP3 cycle are
exposed in this appendix.

Figure A.1: MPC controlled simplified model results states evolution - velocity
reference 1800 s
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Complete cycle plots

Figure A.2: MPC controlled simplified model results torque and acceleration
evolution - velocity reference 1800 s
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Complete cycle plots

Figure A.3: MPC controlled simplified model results states evolution - position
reference 1800 s
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Complete cycle plots

Figure A.4: MPC controlled simplified model results torque and acceleration
evolution - position reference 1800 s
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Complete cycle plots

Figure A.5: MPC controlled simplified model results relative distance - position
reference 1800 s
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Complete cycle plots

Figure A.6: MPC controlled simplified model results states evolution - simplified
ACC 1800 s
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Complete cycle plots

Figure A.7: MPC controlled simplified model results torque and acceleration
evolution - simplified ACC 1800 s
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Complete cycle plots

Figure A.8: MPC controlled simplified model results relative distance - simplified
ACC 1800 s
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Appendix B

MATLAB scripts

Script for plotting the EM efficiency map.

O I R

[ e

-~

NN ONNN NN NN

[0

close all;
clear;
3| cle

s|load (" Efficiency .mat") ;
j| load (" Shaft_torque.mat") ;
7| load (" Speed .mat") ;

o| Speed__max = Speed (:,1);
Torque_max = Shaft_Torque (:,1);

2|F = scatteredInterpolant (Speed (:) ,Shaft_Torque (:) ,Efficiency (:));

% levels plot

s| figure

levels = [0:0.70:0.70 00.70:0.1:0.94 0.94:0.01:1]%100;
/IM = contourf(Speed,Shaft_Torque, Efficiency ,levels);
hold on

plot (Speed__max , Torque_max)

grid on

title ('EM efficiency map’)

xlabel (’EM speed [rpm]’)

ylabel (’Shaft Torque [Nm] ")

Efficiency (Efficiency==0) = 1;

% surface plot
figure
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MATLAB scripts

Y%surf ([Speed (:,1:27) Speed(:,32:end) ] ,[Shaft_Torque (:,1:27)
Shaft__Torque (:,32:end)], [Efficiency (:,1:27) Efficiency (:,32:end)
/)

surf (Speed, Shaft_Torque , Efficiency)

title ('EM efficiency surface’)

xlabel (’EM speed [rpm] )

ylabel (’Shaft Torque [Nm]’)

zlabel (" Efficiency [%]")

Backward model script.

clear

close all

clc

%% PARAMETERS

% adding folders to path and loading data

addpath( "data’)

addpath ( "Eff map’)

load (fullfile (’data’, "WLTP3.mat’)) % loading the speed profile (WLIP3
)

load ("Eff _map\ Efficiency .mat"); % loading the EM efficeincy map

load ("Eff map\Shaft_ torque.mat"); % loading shaft torque map

load ("Eff map\Speed.mat"); % loading speed map

% setting efficiency to 100% when T = 0
Efficiency (Efficiency==0) = 100;

% velocity and acceleration profiles

vehspeed = [time_ s,speed kmh/3.6]; % speed profile in [m/s]

dt = 1;

vehacc = (vehspeed(2:end,2)—vehspeed (1:end—1,2))./dt; %vehicle
acceleration [m/s™ 2]

vehacc = [0; vehacc];

% simulation parameters

t_sim = 1800; % simulation time [s]

g = 9.81; % Gravity acceleration [m/s” 2]

alpha = 0xpi/180; % road slope [rad]

rho = 1.25; % air density [kg/m 3] — from Onori HEV book

% battery parameters

N s = 108; % Number of series

N_p = 1; % Number of parallels

N_b = N_s*N_p; % number of battery cells

Q nom = 60«N_p; % nominal battery capacity [Ah]
eta_c = 0.95; % Coloumbic efficiency
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36

39

4C

41

MATLAB scripts

load (’bat_Ro_vs_SOC_data.mat’); % Ro variation with SOC — single
battery cell

load ( "bat_ Voc_vs SOC_data.mat’); % Voc variation with SOC — single
battery cell

F_Voc_s = griddedInterpolant (SOC_Voc_data(:,1) ,SOC_Voc_data(:,2)); %
interpolated Voc data for a single cell

F_Ro_s = griddedInterpolant (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2)); %
interpolated Ro data for a single cell

SOC_vec = linspace (0,1,500);

Voc_s = F_Voc_s(SOC_vec); % vector with interpolated values of Voc_ s
(single cell)

Ro_s = F_Ro_s(SOC_vec); % vector with interpolated values of Ro_s (
single cell)

Voc = N_bxVoc_s;

Ro = N_bxRo_s;

/% vehicle parameters

M veh = 1400; % vehicle mass [kg]

a = 1; % Front axle — CoG Front axle — CoG [m]
b= 1.3; % Rear axle — CoG [m]

h = 0.3; % Height of CoG [m]

f 0 =4.5x1e—3; % Static rolling coefficient [N/kN]
k = 0; % miscellanecous loss coeff [Ns/m]

r w= 0.3; % Wheel radius [m]

C.d= 0.33; % Drag coeff

A f=2.15; % Frontal area [m 2]

sitau_gb = 9.6; % Gear ratio
7leta_gb = 0.97; % Gearbox efficiency

eta_inv = 1; % Inverter efficiency

% electric motor parameters

Speed__max = Speed (:,1);

Torque_max = Shaft_Torque (:,1);

M_eff = [Speed (:) ,Shaft_Torque (:),Efficiency (:) ];

F = scatteredInterpolant (Speed (:) ,Shaft_Torque (:) ,Efficiency (:));

% initial condition

SOC0 = 0.8;
%% SIMULATION

open ( 'simplified EV_model.slx ")
sim ( ’simplified  EV__model.slx ")

%% PLOTS
directory = "C:\ Users\gabri\Documents\TCC — EV powertrain control\

Text\images";
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MATLAB scripts

| fig = figure () ;

w| fig . Position = [100, 100, 1000, 600];

so| subplot (2,1,1);

s1| plot (T_wheel. Time, T_wheel.Data, ’b’, ’LineWidth’ ,1.5) ;
s2| grid on

s3| title ("Wheel torque’);

s4| xlabel ("Time [s]7);

ss| ylabel ( "Torque [Nm] ) ;

ss| subplot (2,1,2);

s7| plot (w_wheel. Time,w_ wheel .Data, 'r’, "LineWidth’ ,1.5) ;
ss| xlabel ("Time [s]7);

so| ylabel ( "Angular speed [rad/s]’);

o0l grid on

ot| title ( "Wheel angular speed’);

92
93| filename = ’'result. BW_ T and w_wheel.jpg’;

o1/ fullFileName = fullfile (directory, filename);
os| saveas (fig , fullFileName);

96
97
os| fig = figure();

99| fig . Position = [100, 100, 1000, 600];

10| subplot (2,1,1);

01| plot (T_EM. Time ,T EM. Data, b’ , ’LineWidth’ ,1.5) ;

102 grid on

03| title (’Electric motor torque’);

04| xlabel ("Time [s]7);

05| ylabel (?Torque [Nm] ) ;

06| subplot (2,1,2);

17| plot (w_EM_1pm. Time ,w EM 1pm.Data, 'r’, LineWidth’ ;1.5);
10s| xlabel (’Time [s]’);

9| ylabel (7 Angular speed [RPM]’);

10| grid on

11| title (’Electric motor angular speed in RPM’);

112
113 filename = ’result. BW_ T and w EM.jpg’;

14| fullFileName = fullfile (directory , filename);
15| saveas (fig , fullFileName);

116
117
us| fig = figure () ;

19| fig . Position = [100, 100, 1000, 600];

20| subplot (2,1,1);

21| plot (P_batt.Time,P_batt.Data, ’b’, ' LineWidth’ ,1.5);
22| grid on

123 title (’Battrey power’);

24| xlabel ("Time [s]’);

125| ylabel ("Power [W]7);

26| subplot (2,1,2);
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MATLAB scripts

plot (SOC. Time ,SOC.Data, 'r’, 'LineWidth’ ,1.5) ;
xlabel (’Time [s]’);

ylabel (’SOC [—]7);

grid on

title (’State of Charge’);

filename = ’result. BW_P_ b and SOC.jpg’;
fullFileName = fullfile (directory , filename);
saveas (fig , fullFileName);

Backward-Forward model script.

clear

close all

clc

%% PARAMETERS

% adding folders to path and loading data

addpath( ’data’)

addpath ( "data\Eff_map’)

load (fullfile (’data’,"WLTP3.mat’)) % loading the speed profile (WLTP3

load ("Eff map\Efficiency .mat"); % loading the EM efficeincy map
load ("Eff map\Shaft_torque.mat"); % loading shaft torque map
load ("Eff _map\Speed.mat"); % loading speed map

5|% setting efficiency to 100% when T = 0
| Efficiency (Efficiency = 0) = 10;

eff = Efficiency /100;

% velocity and acceleration profiles

vehspeed = [time s,speed kmh/3.6]; % speed profile in [m/s]

dt = 1;

vehacc = (vehspeed (2:end,2)—vehspeed (1:end—1,2))./dt; %vehicle
acceleration [m/s” 2]

vehacc = [0; vehacc];

5|/% simulation parameters

t_sim = 1800; % simulation time [s]

g = 9.81; % Gravity acceleration [m/s” 2]

alpha = 0xpi/180; % road slope [rad]

rho = 1.25; % air density [kg/m™ 3] — from Onori HEV book

% battery parameters

N_s = 108; % Number of series

N_p = 1; % Number of parallels

N_b = N_s*N_p; % number of battery cells
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35|Q_nom = 60«N_p; % nominal battery capacity [Ah]

ss|eta_c = 0.95; % Coloumbic efficiency

37| load ( "bat_Ro_vs SOC_data.mat’); % Ro variation with SOC — single
battery cell

3s| load ( "bat_ Voc_vs_SOC_data.mat’); % Voc variation with SOC — single
battery cell

39| F_Voc_s = griddedInterpolant (SOC_Voc_data(:,1) ,SOC_Voc_data(:,2)); %
interpolated Voc data for a single cell

10|F_Ro_s = griddedInterpolant (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2)); %
interpolated Ro data for a single cell

11| SOC_vec = linspace (0,1,500);

12| Voc_s = F_Voc_s(SOC_vec); % vector with interpolated values of Voc_s
(single cell)

13|Ro_s = F_Ro_s(SOC_vec); % vector with interpolated values of Ro_ s (
single cell)

11| Voc = N_bxVoc_s;

15/Ro = N_bxRo_s;

17|% vehicle parameters
1s|M_veh = 1400; % vehicle mass [kg]

wla = 1; % Front axle — CoG Front axle — CoG [m)]
s0lb = 1.3; % Rear axle — CoG  [m]

silh = 0.3; % Height of CoG [m]

s2/f_0 = 4.5%x1e—3; % Static rolling coefficient [N/kN]
sslk = 0; % miscellaneous loss coeff [Ns/m]

salr_w = 0.3; % Wheel radius [m)]

551C_d = 0.33; % Drag coeff

se|lA_f = 2.15; % Frontal area [m” 2]

57 taTligb = 9.6; % Gear ratio
ss|eta_gb = 0.97; % Gearbox efficiency
soleta_inv = 1; % Inverter efficiency

% electric motor parameters

62| Speed_max = Speed (:,1);

63| Torque_max = Shaft__Torque(:,1);

61| M_eff = [Speed (:) ,Shaft_Torque (:) ,Efficiency (:) ];

os|F = scatteredInterpolant (Speed (:) ,Shaft_Torque(:) ,Efficiency (:));

o

66
67|% initial condition
65| SOCO = 0.8;

70| %% SIMULATION

72| open ( "EV_BW_FW _ reference_model. slx ”)
73| sim ( "EV_BW_FW__reference_model. slx ”)

75| %% PLOTS

71x1 = X_ref.Data(:,1);
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7s|x2 = X_ref.Data(:,2);
79| x3 = X_ref.Data(:,3);
s0| sim__time = X_ ref.Time;

s2| directory = "C:\ Users\gabri\Documents\TCC — EV powertrain control)
Text\images";

sa| figl = figure () ;

ss| figl . Position = [100, 100, 1000, 600];

so| sgtitle ("BWFW Reference Model states evolution');
s7| subplot (3,1,1);

ss| plot (sim__time ,x1,’g’, LineWidth’ ,1.5) ;

so| ylabel (’SOC [—]7);

oo| xlabel ("Time [s]’);

o1 title ('x1 (SOC) evolution’)

92 grid on;

01| subplot (3,1,2);

o5 plot (sim__time ,x2,’r’, ’LineWidth’ ,1.5);
os| ylabel ("Position [m]’);

or| xlabel ("Time [s]’);

os| title ('x2 (position) evolution’)

90| grid on;

11| subplot (3,1,3);

02| plot (sim__time ,x3,’k’, LineWidth’ ,1.5);
03| ylabel (’Velocity [m/s]’);

4] xlabel ("Time [s]’);

05| title (’x3 (Velocity) evolution’);

16| grid on;

os| filename = ’result. BW_FW_ref model states.jpg’;
00| fullFileName = fullfile (directory , filename):;
10| saveas (figl , fullFileName);

112|% control torque and state derivative

| fig2 = figure () ;

15| fig2 . Position = [100, 100, 1000, 600];

16| sgtitle ("BWFW Reference Model EM Torque and Acceleration");
17| subplot (2,1,1)

1s| plot (sim_time, T EM ref.Data,’b’, ’'LineWidth’ ,1.5);

19| grid on;

20| xlabel ("Time [s]")

121] ylabel (" Torque [Nm]")

122| title ("EM Torque")

123
24| subplot (2,1,2)

125| plot (sim__time, a_ref.Data, ’r’, LineWidth’ ,1.5);
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126| grid on;

127 xlabel ("Time [s]")

125 ylabel (" Acceleration [m/s”2]")
120 title (" Acceleration )

130
131
132| filename = ’result. BW_FW_ref model acc_ T.jpg’;
133 fullFileName = fullfile (directory , filename);
134 saveas (fig2 , fullFileName);

Prediction model function script.

1| function [xdot, y] = prediction_longitudinal_model(t,X,U) % add y to
output eventually

% arguments: t, X: states,

% U: command in the previous instant

w N

% enviroment parameters

slg = 9.81; % Gravity acceleration [m/s”2]

alpha = 0xpi/180; % road slope [rad]

rho = 1.25; % air density [kg/m~ 3] — from Onori HEV book

ot

-~

0

10|% vehicle parameters

11|M _veh = 1400; % vehicle mass [kg]

i2la = 1; % Front axle — CoG Front axle — CoG [m]
13lb = 1.3; % Rear axle — CoG [m]

1a/h = 0.3; % Height of CoG [m]

15|f_0 = 4.5/1000; % Static rolling coefficient [N/kN]
16|k = 0; % miscellaneous loss coeff [Ns/m]

17lr_w = 0.3; % Wheel radius [m)]

15/C_d = 0.33; % Drag coeff

w|A f= 2.15; % Frontal area [m™2]

tau_gb = 9.6; % Gear ratio

21| eta_gb = 0.97; % Gearbox efficiency
2| eta_inv = 1; % Inverter efficiency
23| phi = r_w/tau_gb;

24
25|% battery parameters

26|N_s = 108; % Number of series

27|N_p = 1; % Number of parallels

2s)N_b = N_s«N_p; % number of battery cells

20|Q_nom = 60«N_px3600; % nominal battery capacity [As]
30l eta__batt = 0.95; % Coloumbic efficiency

31

2(

32|% state variables
33|x1 = X(1); % SOC
1| x2 = X(2); % Position
35 x3 = X(3); % Velocity
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37|% control input

35| T EM = U;

39

10|% Forces

11| F_roll = M_veh*xgxf 0; % rolling resistance force
12| F_aero = 0.5%xC_dsrhoxA_fxx372; % aerodynamic force
43

14|% EM equations

1s5|'w_EM = x3/phi;

s6|w_EM_1pm = w_EMx*30/ pi;

arleta_ EM = eff_poly (w_EM_rpm, T _EM);
15|P_EM = w_EM*T EM;

% battery equations

Pb = P EM/((eta_EMsx*eta_inv) (sign (P_EM)));

52| V_oc = N_s*V_poly(x1); % vector with interpolated values of Voc_s (
single cell)

53)R_o = N_s/N_p+«R_poly(x1); % vector with interpolated values of Ro_ s (
single cell)

51/ Ib = (V_oc — sqrt (V_oc™2 — 4xR_oxPb)) /(2+«R_o0);

<

56|/% state equations

s7{soc__dot = —Ib/(Q_nomxeta_batt " (sign(Ib)));

ss| x_dot = x3;

so|v_dot = ((eta_gb/phi)«T EM — F_roll — F_aero)/M_veh;
60
61|/% state derivative

62| xdot = [soc_dot;x_dot;v_dot];

63
oy = [x1;x2;x3];
65| end
Polynomial fit functions and testing script.
i clear;
2| cle
3
1|% testing polinomial fit with battery and EM efficiency data

ot

6|%% adding folders to path
addpath ( "data\Eff _map’);
addpath( "data’);

-~

0

10|%% loading data into vectors

11
12|%%6% loading EM parameters
13| load ("Efficiency .mat’); % loading the EM efficeincy map
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44

5| load (" Speed.mat"); % loading speed map

5| torq__flat = Shaft_Torque (:) ;

;5| speed__points =

MATLAB scripts

load (" Shaft__torque.mat"); % loading shaft torque map

9%%% loading battery params
load ("bat_Ro_vs_SOC_data.mat") ;
load ("bat_Voc_vs_SOC_data.mat") ;

%% EM efficiency polynomial polynomial fitting and testing

% EM efficiency ref (compare the results with the polinomial)
eff flat = Efficiency (:)/100;

speed_ flat = Speed (:) ;
F = scatteredInterpolant (Speed (:) ,Shaft_Torque (:) ,Efficiency (:) /100);

figure
surf(Speed, Shaft_Torque, Efficiency);

[500;750;1000;1250;1500;1750;2000;2250;2500;2750;3000;3250;
3500:3750;4000;4250;4500:4750;5000;5250;5500:5750;6000;6250;6500;67
7000;7250;7500;7750;8000:8250;8500;8750;9000;9250;9500;9750;10000];
torque_points = [287.315725265347;287.233717032146;287.151724602149;
287.069743739971;286.987771986552;286.905807734913;286.823849853203

286.741897501612;267.378269069311;243.071146629631;222.814866998334

205.674858958375;190.983337167297;178.250632202600;167.109517497491;

157.278993072683;148.540714541255;140.726295202330;133.690149986783;

127.323954482924;121.536502005985;116.252306265388;111.408460170112

106.952121758109;102.838578612008;99.0297423697019;95.4928054975261
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92.1999538366269;89.1266218638583;86.2515686389848;83.5562072631545;

81.0242030664065;78.6411424126642;76.3942584067584;74.2722022887362;

72.2648518732074;70.3631501887848;68.55689689496418;66.844992489110

%/ testing and comparing the results of polynimial fit and
interpolant

number_ points = [];

for i=1:length (speed_points)
poly = [poly; eff_poly(speed_points(i),torque_points(i))];
eval = [eval; F(speed_points(i),torque_points(i))];
number_points = [number_points;i];

end

% plotting the diferentece between the evaluations

figure

plot (number_points,poly — eval, ’LineWidth’ 1.5);

title (’Difference from polynomial fit and interpolant evaluation of

EM efficiency ’);

5| xlabel (?Evaluations’);

ylabel (' Difference’)
9% Battery voltage and resistance polynomial fitting and testing

% interpolants for comparison and tests
F_Voc_s = griddedInterpolant (SOC_Voc_data(:,1) ,SOC_Voc_data(:,2)); %
interpolated Voc data for a single cell

F_Ro_s = griddedInterpolant (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2)); %
interpolated Ro data for a single cell

1|% Extracting data from files

SOC_ R = SOC_Ro_data(:,1);

76| R_data = SOC_Ro_data(:,2);

s|SOC_V = SOC_Voc_data(:,1

)5
V_data = SOC_Voc_data(:,2);

% Perform a 2nd—degree polynomial fit
degree = 2;

1

3| R_coefficients = polyfit (SOC_R, R_data, degree);
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31| V__coefficients = polyfit (SOC_V, V_data, degree);

5|/% Polynomial functions

s7| R__function = poly2str (R__coefficients , 'SOC’);

ss| V__function = poly2str(V__coefficients, 'SOC’);

so| disp ([ "Polynomial Equation: R(SOC) = > R_function]) ;

oo| disp ([ "Polynomial Equation: V(SOC) = ’ V_function]) ;

91

92|% Create a polynomial model using polyval

93| SOC_range_ R = linspace (min(SOC_R), max(SOC_R), 100); % Adjust the
range as needed

Resistance_fit = polyval (R__coefficients , SOC_range R);

S

9¢

95

96| SOC_range_ V = linspace (min(SOC_V), max(SOC_V), 100); % Adjust the
range as needed

Voltage fit = polyval(V__coefficients, SOC_range V);

9

-~

98
99|% Plot the original data points and the fitted curve

10| figure;

1| plot (SOC_R, R_data, ’o’, ’'DisplayName’, ’Original Data’);

102| hold on;

03| plot (SOC_range R, Resistance_ fit, ’r—’, ’'DisplayName’, ’2nd—degree
Polynomial Fit’);

104 xlabel (’State of Charge (SOC)’);

15| ylabel ("Resistance ’);

6| title (’2nd—degree Polynomial Fit: Resistance as a function of SOC’);
07| legend ( *Location’, ’'Best’);

08| grid omn;

109
110
1| figure

12| plot (SOC_V, V_data, ’'o’, ’DisplayName’, ’'Original Data’);

113/ hold on;

14| plot (SOC_range V, Voltage fit, ’r—’, ’'DisplayName’, ’2nd—degree
Polynomial Fit’);

15| xlabel ("State of Charge (SOC)’);

16| ylabel (’Voltage 7);

7| title (’2nd—degree Polynomial Fit: Voltage as a function of SOC’);
15| legend ( *Location’, ’Best’);

19| grid on;

121|%% Resultant polynomial functions

123|% EM polynomial fit

124

125| function eff = eff poly(w, T)

126 % eff = 2.07338239e—6+T — 3.84695020e—6%w + 8.63478964e—1;

127 e = 3.86559103e—6+T"2 —1.15468531e—9+w 2 — 6.64654450e—9+T*w +

3.14229679e—5+T + 1.63013222e—bxw + 7.71598709e—1;
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if e>1

eff = 1;
elseif e < 0

eff = 0;
else

eff = e;
end

end
% Battery resistance polynomial fit

function V_oc = V_poly(SOC)
V_oc = —0.40666xSOC™2 + 1.0703%xSOC + 3.4385;
end

% Battery voltage polynomial fit
function R_o = R_poly(SOC)

R o= 0.00041627%SOC"2 — 0.00071804%SOC + 0.0023018;
end

MPC controlled model script.

clear
close all
clc

5| %% PARAMETERS

% polynomial functions for battery voltage, resistance and EM
efficiency

% defined in the polynimial_fits.m file , and the funcions are saved

% separately to be used directly inside this model

addpath (" polynomial fits")
addpath ("data\Eff map")
addpath ("data")

addpath (" tests\")

5| addpath ("simulation_results_const_v_ref")

j| load (fullfile (’data’, "WLTP3.mat’)) % loading the speed profile (WLTP3

)

% velocity and acceleration profiles

vehspeed = [time s,speed kmh/3.6]; % speed profile in [m/s]

dt = 1;

vehacc = (vehspeed (2:end,2)—vehspeed (1l:end—1,2))./dt; %vehicle
acceleration [m/s”™ 2]

vehacc = [0; vehacc];
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23| speed__profile = vehspeed (:,2);
21| time__vector = vehspeed (:,1);

5|/% simulation parameters

271g = 9.81; % Gravity acceleration [m/s” 2]

sl alpha = 0xpi/180; % road slope [rad]

20|rtho = 1.25; % air density [kg/m~ 3] — from Onori HEV book

N

31|% battery parameters

32|N_s = 108; % Number of series

33|]N_p = 1; % Number of parallels

34|N_b = N_s*N_p; % number of battery cells

35|Q_nom = 60«N_p; % nominal battery capacity [Ah]

s6leta_c = 0.95; % Coloumbic efficiency

37| load ( "bat_Ro_vs SOC_data.mat’); % Ro variation with SOC — single

battery cell

3s| load ( "bat_Voc_vs_SOC_data.mat’); % Voc variation with SOC — single
battery cell

F_Voc_s = griddedInterpolant (SOC_Voc_data(:,1) ,SOC_Voc_data(:,2)); %
interpolated Voc data for a single cell

w|F_Ro_s = griddedInterpolant (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2)); %

interpolated Ro data for a single cell

11| SOC_vec = linspace (0,1,500);

12| Voc_s = F_Voc_s(SOC_vec); % vector with interpolated values of Voc s

(single cell)

13/Ro_s = F_Ro_s(SOC_vec); % vector with interpolated values of Ro s (

single cell)

3¢

% vehicle parameters
16|M_veh = 1400; % vehicle mass [kg]

'
o

arfla = 1; % Front axle — CoG Front axle — CoG [m]
ss|b = 1.3; % Rear axle — CoG [m]

19/h = 0.3; % Height of CoG [m]

s0lf_0 = 4.5%x1e—3; % Static rolling coefficient [N/kN]
silk = 0; % miscellaneous loss coeff [Ns/m]

s2lt_w = 0.3; % Wheel radius [m)]

53/C_d = 0.33; % Drag coeff

salA_f = 2.15; % Frontal area [m™2]

55 taTligb = 9.6; % Gear ratio
soleta_gb = 0.97; % Gearbox efficiency
s7leta_inv = 1; % Inverter efficiency

59|% electric motor parameters

60| load ("Eff_map\ Efficiency .mat"); % loading the EM efficeincy map
61| load ("Eff_map\Shaft_torque.mat"); % loading shaft torque map

62| load ("Eff _map\Speed . mat"); % loading speed map

63| Speed__max = Speed (:,1);

61| Torque_max = Shaft_Torque (:,1);

65| Efficiency (Efficiency = 0) = 10;
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6| eff = Efficiency /100;

67| M_eff = [Speed (:) ,Shaft_Torque (:) ,Efficiency (:) ];

os|F = scatteredInterpolant (Speed (:) ,Shaft_Torque (:) ,Efficiency (:));
69
70
711% ACC and CTIG Contoller parameters

72| default distance = 50; % reference distance from leading vehicle [m]
sl tau = 0.5; % vehicle LTI model [s]

7alh = 4xtau; % time gap [s]| (h > 2xtau)

7s|lambda = 0.5; % CIG parameter [—]

76| Td = 0.01;

s = tf(7s7);

P = 1/(tauxs + 1); % Vehicle simplified plant

7| v_set = 40; % ACC set velocity [m/s]

so| time__gap = 3; % ACC time gap [s]

si| verr__gain = 0.1; % ACC velocity error gain — CIG

s2| xerr__gain = 0.3; % ACC spacing error gain — CIG

s3| vx__gain = 0.5; % ACC relative velocity gain — CIG
s4|max_acc = 2; % Maximum acceleration [m/s” 2]
s5|min_acc = —3; % Minimum acceleration [m/s” 2]

88|% initial conditions

59/ SOCO = 0.8;

90| x0 = —default__distance;
91| v0 = vehspeed (1) ;

02| xx0 = [SOCO; x0; vO];
93
94| %% PLOTS

95| directory = "C:\ Users\gabri\Documents\TCC — EV powertrain control)
Text\images";

96
97|% plotting Voc and Roc interpolations

os| fig = figure () ;

9| fig . Position = [100, 100, 1000, 600];

10| subplot (2,1,1);

01| plot (SOC_Voc_data(:,1),SOC_Voc_data(:,2), bo’ ,SOC_vec,Voc_s,’b.");

02| grid on

03| title ("V_{oc} interpolation’);

14| xlabel (’SOC [—]7);

15| ylabel (’Open circuit battery voltage [V]');

16| legend (’Sample SOC points’, Interpolated values’);

07| subplot (2,1,2) ;

10s| plot (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2),’ro’,SOC_vec,Ro_s, 'r.7);

19| xlabel (7SOC [—]7);

10| ylabel (’Open circuit battery resistance [\Omega]’);

11| grid on

2| title ('R_o interpolation’);

13| legend (’Sample SOC points’, Interpolated values’, ’Location’,’ best’);
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114
15| filename = ’'battrey_interpolation.jpg’;

16| fullFileName = fullfile (directory , filename);
17| saveas (fig , fullFileName);

118
119
120/% plotting driving cycle velocity and acceleration profiles
21| fig = figure () ;

122| fig . Position = [100, 100, 1000, 600];

23] subplot (2,1,1)

24| plot (vehspeed (:,1) ,vehspeed (:,2), LineWidth’ ,1.5)

125| grid on

26| xlabel (’Time [s]’);

127 ylabel ("Reference velocity [m/s]’);

25| subplot (2,1,2)

120| plot (vehspeed (:,1) ,vehacc, 'LineWidth’ ;1.5)

30| grid on

51| xlabel (’Time [s]’);

132| ylabel ("Reference aceleration [m/s”2]7);

133
34| filename = ’speed_profile.jpg’;

135| fullFileName = fullfile (directory, filename);
136| saveas (fig , fullFileName);

137
138
130|% electric motor efficiency map

0| fig = figure () ;

1] fig . Position = [100, 100, 1000, 600];

12| levels = [0:0.70:0.70 00.70:0.1:0.94 0.94:0.01:1]%100;
143M = contourf(Speed,Shaft Torque, Efficiency ,levels);

124 hold on

15| plot (Speed__max , Torque max)

46| grid on

7| title (’EM efficiency map’)

11s| xlabel ('EM speed [rpm]’)

10| ylabel (7 Shaft Torque [Nm]’)

150
51| filename = 'EM_eff map.jpg’;

152| fullFileName = fullfile (directory, filename);
53] saveas (fig , fullFileName) ;

154
155|% return
156
157| %% MPC
158
159| % PARAMETERS
160
61| t_sim = 100; % simulation time [s]

162
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Ts = 0.05; % Sampling time

par

par.

par

par.

par

par

par
par

par

.nX = 3; % number of states

nu = 1; % control elements number

.ny = 3; % number of outputs

model = @prediction_longitudinal model; %Modello di predizione
.ub = 250; % Upper bound saturazione input —> maximum
value for control output

.1b = —250; % Lower bound saturazione input —> minimum
value for control output

.tol = 1; % Reference tolerance

. Nfev = 150; % Interation number of fmincon in cost function

(default 200)

.Ts = Ts;

%% SIMULATION — CONTROLLED AND REFERENCE MODELS
ref _mode = 3;
disp (ref_mode)

switch ref mode

case 1
scenario = "Velocity Profile Reference";
% Velocity reference parameters
par.R = 0.05; % matrice diagonale definita positiva per cost

function

par.P = diag ([0;0;10000]); % matrice diagonale definita

positiva per cost function

par.Q = diag ([0;0;1]); % matrice diagonale definita positiva

per cost function

par.Tp = 10xTs; % Prediction horizon (sempre multiplo intero
del Ts)

K = nmpc_design_4b(par); %Generazione parametri design NMPC
case 2

scenario = "Position Profile Reference";

% Position reference parameters
par.R = 0.05; % matrice diagonale definita positiva per cost

function

par.P = diag ([0;50000;0]); % matrice diagonale definita

positiva per cost function

par.Q = diag ([0;1;0]); % matrice diagonale definita positiva

per cost function

par.Tp = 10xTs; % Prediction horizon (sempre multiplo intero

del Ts)

K = nmpc_design_4b(par); %Generazione parametri design NMPC
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201 case 3

202 scenario = "ACC Scenario — simplified";

203 % Position reference parameters

204 par.R = 0.01; % matrice diagonale definita positiva per cost
function

205 par.P = diag ([0;50000;0]); % matrice diagonale definita
positiva per cost function

206 par.Q = diag ([0;1;0]); % matrice diagonale definita positiva
per cost function

207 par.Tp = 10xTs; % Prediction horizon (sempre multiplo intero
del Ts)

208 K = nmpc_design_4b(par); %Generazione parametri design NMPC

209

210 case 4

211 scenario = "ACC Scenario";

212 % Position reference parameters

213 par.R = 0.01; % matrice diagonale definita positiva per cost
function

214 par.P = diag ([0;50000;0]); % matrice diagonale definita
positiva per cost function

215 par.Q = diag ([0;1;0]); % matrice diagonale definita positiva
per cost function

216 par.Tp = 10xTs; % Prediction horizon (sempre multiplo intero
del Ts)

217 K = nmpc_design_4b(par); %Generazione parametri design NMPC

215 end

219

220|% open (’Model MPC. slx 7)
221| sim ("Model_MPC. slx ")
202/ sim (" tests \EV_BW_FW_ reference_ model ")

223
224
225| %% SIMULATION RESULTS
226

227|% MPC model results
28| x1 = X.Data(:,1);
220 x2 = X.Data(:,2);
230/ x3 = X.Data(:,3);
231|x3_dot = X_dot.Data(:,3);
2321 sim__time = X.Time;

233
234|% reference model (BKD — FRD) reference
235| x1_ref = X_ref.Data(:,1);

236| x2__ref = X_ref.Data(:,2);

237| x3_ref = X_ref.Data(:,3);

235| sim__time_ref = X_ref.Time;

239
240
oa1] if ref mode = 1
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figl = figure();

figl.Position = [100, 100, 1000, 600];

sgtitle ("Model states evolution");

subplot (3,1,1);

plot (sim_time ,x1,’b’, sim_time_ref ,x1_ref,’k’, LineWidth’ ,1.5);
ylabel (’SOC [—]");

xlabel ("Time [s]’);

legend (" Controlled ", "Reference");

title (’x1 (SOC) evolution’)

grid on;

subplot (3,1,2);

plot (sim_time ,x2,’r’, sim_time_ref ,x2_ ref,’k’, ’LineWidth’ 1.5)
ylabel (’Position [m]’);

xlabel ("Time [s]’);

legend (" Controlled", "Reference");

title (’x2 (position) evolution’)

grid on;

subplot (3,1,3);

plot (sim_time ,x3, ’g’,sim_time_ref,x3_ref,’k’, ’LineWidth’,1.5);
ylabel (" Velocity [m/s]’);

xlabel ("Time [s]’);

legend (" Controlled", "Reference");

title (’x3 (Velocity) evolution’);

grid on;

% control torque and state derivative

fig2 = figure();

fig2.Position = [100, 100, 1000, 600];

sgtitle ("MPC control torque output and plant acceleration");
subplot (2,1,1)

plot (sim_time, T EM MPC.Data, "b", sim_time_ ref, T EM ref.Data, "
k", ’"LineWidth’,1.5);

grid on;

legend (" Controlled", "Reference")

xlabel ("Time [s]")

ylabel (" Torque [Nm]")

title ('MPC control torque output’)

subplot (2,1,2)

plot (sim_time, x3_dot, "r", sim_time_ref, a_ref.Data, "k",
LineWidth’ ,1.5);

grid on;

xlabel ("Time [s]")

ylabel (" Acceleration [m/s™2]")

7
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else

)

legend (" Controlled", "Reference")
title ('MPC model acceleration (x3_{dot})’)

if ref mode =— 2

figl = figure();

figl.Position = [100, 100, 1000, 600];

sgtitle ("Model states evolution — " + scenario);

subplot (3,1,1);

plot (sim_time ,x1,’b’, sim_time_ref ,x1_ref,’k’, LineWidth’ ,1.5);
ylabel (’SOC [—]");

xlabel (’Time [s]’);

legend (" Controlled", "Reference");

title (’x1 (SOC) evolution’)

grid on;

subplot (3,1,2);
plot (sim_time ,x2,’r’, sim_time_ref ,x2_ref,’k’, 'LineWidth’ ,1.5)

ylabel (’Position [m]’);

xlabel ("Time [s]’);

legend (" Controlled ", "Reference");
title (’x2 (position) evolution’)
grid on;

subplot (3,1,3);

plot (sim_time ,x3, ’g’,sim_time_ref, x3_ref,’k’, LineWidth’ ,1.5);
ylabel (" Velocity [m/s]’);

xlabel (’Time [s]’);

legend (" Controlled", "Reference");

title (’x3 (Velocity) evolution’);

grid on;

% control torque and state derivative

fig2 = figure();
fig2.Position = [100, 100, 1000, 600];
sgtitle ("MPC control torque output and plant acceleration — " +

scenario ) ;

subplot (2,1,1)
plot (sim_time, T EM MPC.Data, "b", sim_time_ref, T EM_ ref. Data, "

k", ’'LineWidth’,1.5);

grid on;

legend (" Controlled", "Reference")
xlabel ("Time [s]")

ylabel (" Torque [Nm]")

title ('MPC control torque output’)

subplot (2,1,2)

103




334

335
336
337
338
339
340
341
342

343

MATLAB scripts

plot (sim_time, x3_dot, "r", sim_time_ref, a_ref.Data, "k",
LineWidth’ ,1.5);

grid on;

xlabel ("Time [s]")

ylabel ("Acceleration [m/s~2]")

legend (" Controlled", "Reference")

title ('MPC model acceleration (x3_{dot})’)

9

figd = figure();

fig3.Position = [100, 100, 1000, 600];

plot (sim_time, x2, 'm", pos_leading.Time, pos_leading.Data, "b",
"LineWidth’ ,1.5);

grid on;

xlabel ("Time [s]")

ylabel ("Position [m]")

legend (" Controlled ", "Reference")

title (’Position profile from controlled model vs reference — 7 +

scenario)

elseif ref mode — 3

figl = figure();

figl.Position = [100, 100, 1000, 600];

sgtitle ("Model states evolution — " 4 scenario);

subplot (3,1,1);

plot (sim_time ,x1, sim_time_ref ,x1_ref,’ LineWidth’ ,1.5);
ylabel (’SOC [—]");

xlabel ("Time [s]’);

legend (" Controlled", "Reference");

title (’x1 (SOC) evolution’)

grid on;

subplot (3,1,2);

plot (sim_time ,x2, pos_leading.Time ,pos_leading.Data, ’LineWidth
7,1.5);

ylabel (’Position [m]’);

xlabel ("Time [s]’);

legend (" Controlled ", "Reference");

title (’x2 (position) evolution’)

grid on;

subplot (3,1,3);

plot (sim_time ,x3,sim_time_ ref,x3 ref, LineWidth’ ,1.5);
ylabel (' Velocity [m/s]’);

xlabel ("Time [s]’);

legend (" Controlled", "Reference");

title (’x3 (Velocity) evolution’);

grid on;

% control torque and state derivative
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379

380 fig2 = figure();

381 fig2 . Position = [100, 100, 1000, 600];

382 sgtitle ("MPC control torque output and plant acceleration — " +
scenario);

383 subplot (2,1,1)

384 plot (sim_time, T EM MPC.Data, sim_time_ref, T_EM_ref. Data, ’
LineWidth’ ,1.5);

385 grid on;

386 legend (" Controlled ", "Reference")

387 xlabel ("Time [s]")

388 ylabel (" Torque [Nm]")

389 title ('MPC control torque output’)

390

391 subplot (2,1,2)

392 plot (sim_time, x3_dot, sim_time_ ref, a_ref.Data, ’LineWidth’  1.5)

393 grid on;

394 xlabel ("Time [s]")

395 ylabel (" Acceleration [m/s”~2]")

396 legend (" Controlled", "Reference")

397 title ('MPC model acceleration (x3_{dot})’)

398

399 figd = figure();

400 fig3.Position = [100, 100, 1000, 600];

101 subplot (2,1,1)

102 plot (sim_time, x2,pos_leading.Time, pos_leading.Data, ’ LineWidth’
,1.5)5

403 grid on;

404 xlabel ("Time [s]")

105 ylabel ("Position [m]")

106 legend (" Controlled ", "Reference")

107 title (’Leading and precesding vehicles positions — ’ + scenario);

408

409 subplot (2,1,2)

410 plot (sim_time, pos_leading.Data — x2, LineWidth’ ,1.5);

411 grid on;

112 xlabel ("Time [s]")

413 ylabel ("Position [m]")

414 title ('Relative distance — ' + scenario);

115 else

116 figl = figure();

417 figl.Position = [100, 100, 1000, 600];

418 sgtitle ("Model states evolution — " 4 scenario);

119 subplot (3,1,1);

420 plot (sim_time ,x1, sim_time_ ref ,x1_ref,’ LineWidth’  1.5);

121 ylabel (’SOC [—]");

422 xlabel ("Time [s]’);

123 legend (" Controlled", "Reference");
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title ('x1 (SOC) evolution’)
grid on;

subplot (3,1,2);

plot (sim_time ,x2, pos_leading.Time ,pos_leading.Data, ’'LineWidth
7,1.5);

ylabel (’Position [m]’);

xlabel ("Time [s]’);

legend (" Controlled ", "Reference");

title (’x2 (position) evolution’)

grid on;

subplot (3,1,3);

plot (sim_ time ,x3,sim_time_ref,x3_ref, LineWidth’ ,1.5);
ylabel (" Velocity [m/s]’);

xlabel ("Time [s]’);

legend (" Controlled", "Reference");

title (’x3 (Velocity) evolution’);

grid on;

% control torque and state derivative

fig2 = figure();

fig2 . Position = [100, 100, 1000, 600];

sgtitle ("MPC control torque output and plant acceleration — " +
scenario);

subplot (2,1,1)

plot (sim_time, T EM MPC.Data, sim_time_ref, T_EM_ref. Data, ’
LineWidth’ ,1.5) ;

grid on;

legend (" Controlled ", "Reference")

xlabel ("Time [s]")

ylabel (" Torque [Nm]")

title ('MPC control torque output’)

subplot (2,1,2)

plot (sim_time, x3_dot, sim_time_ref, a_ref.Data, ’LineWidth’ 1.5)
grid on;

xlabel ("Time [s]")

ylabel (" Acceleration [m/s™2]")

legend (" Controlled ", "Reference")

title ('MPC model acceleration (x3_{dot})’)

figd = figure();

fig3 .Position = [100, 100, 1000, 600];

subplot (2,1,1)

plot (sim_time, x2,pos_leading.Time, pos_leading.Data, ’ LineWidth’
,1.5)
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468 grid on;
469 xlabel ("Time [s]")
470 ylabel ("Position [m]")
a7 legend (" Controlled", "Reference")
472 title (’Leading and precesding vehicles positions — ' + scenario);
473
474 subplot (2,1,2)
475 plot (sim_time, pos_leading.Data — x2, LineWidth’ ,1.5) ;
476 grid on;
a77 xlabel ("Time [s]")
478 ylabel ("Position [m]")
479 title (’Relative distance — ' + scenario);
480
as1] end
MIL initialization, simulation and plotting
1 %% Model Parameters for Battery Electric Vehicle System Model
2l close all
s clear all
sl cle
5
s/ addpath ("..\500e_Frugal MIL— original\500e_Frugal MIL");
7
8| %% Maneuver
9| load ("’ DrivingCycles \WLTP. mat ’) ; % Speed and Time vectors
for desired Driving Cycle
10|% load (’DrivingCycles\custom_cycle.mat’) ;
1|T 2z =T 2z(1:1801); % [s] Time
12|V_z=V_2z(1:1801) /3.6; % [m/s]
Uncomment for RDE simulations
13|% t_WLTC = max(T_z) ; % [s] WLTC time
14|% t_ WLTC_city = 1000; % [s] WLTG-city
time
15|% t_RDE_Urban = 2326; % [s] RDE-Urban time
16|t_EDAS = max (T _2z);
17| Time = 400; % [s] Simulation Time
18
19|%% Vehicle, MPC and simplified vehicle powertrain paramters
20| run ("Init. FWD_ Frugal MPC.m") % 500e Frugal
21
22| %% Open Simulink Model
23] open ( "MIL_ Frugal 500e_with_ MPC. slx ")
21/ open ("../500e_Frugal MIL— original/500e_Frugal MIL/MIL_Frugal 500e.
slx ")
25
26| %0 EAD SCENARIO CREATION
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% Vscenario (:,1)
% Vscenario (:,2)

= _ 7

V 7z

—

%% General EAD Parameters
% TLpreview (:,1) = T z;

% TLpreview (:,2) = TLpreview_z;
% TLstate(:,1) = T z;

1) o
% TLstate (:,2) = TLstate z;

VA ACC SCENARIO CREATION
Vscenario (:,1) = T_z;
Vscenario (:,2) = V_z;

%% General ACC Parameters

1| Ts = 0.2; % Simulation sample time
12| v__set = 20; % ACC set speed URBAN
)
13| default__spacing = 2; % ACC default spacing URBAN
44| max_ spacing = 50; % ACC default spacing URBAN
15| time__gap = 3; % ACC time gap
46| max__ acc = 2; % Maximum acceleration
~2)
47/ min__acc = —3; % Minimum acceleration
~9)

64

% Classical ACC / CIG Parameters

verr__gain = 0.1; % ACC velocity error gain — CIG (N/A

)

xerr__gain = 0.3; % ACC spacing error gain — CIG (N/A

)

vx_ gain = 0.5; % ACC relative velocity gain — CTG (N/A

)

%% Simulations
sim ( "MIL_ Frugal 500e_with_ MPC. slx )

")

s|sim ("../500e_Frugal MIL— original /500e_Frugal MIL/MIL_ Frugal 500e.slx

%% Parameters for Battery Electric Vehicle Forward Model

%% Vehicle

% 500e Frugal Parameters

vehicle .mass = 900 4+ 100 + 0.15%350; % [kg] WLIP test mass

vehicle . wheelbase = 2.322; % [m] wheelbase — Dati
500e LR

vehicle .aCG = 0.45xvehicle.wheelbase; % [m] front axle — CoG

distance — Dati 500e LR

108




MATLAB scripts

65| vehicle .bCG = 0.55% vehicle . wheelbase; % [m] rear axle — CoG
distance — Dati 500e LR

66| vehicle .hCG = 0.3; % [m] height CoG —
Dati 500e LR

67| vehicle .Af = 2.15; % [m2] Frontal area —
NEW Coast Down

6s| vehicle .Cd = 0.33; % [—] Drag coefficient
— NEW Coast Down

69| vehicle . tireRRcoeff = 0.006; % [—] Rolling
Resistance Coeff fO — Dati 500e LR

70| vehicle . tireRollingRadius = 0.3; % [m] Wheel Radius —

Dati 500e LR

711% 500e LR Original Coast Down

72| vehicle .roadLoadA_N = 55.78; % [N] FO — NEW Coast
Down a 1250kg

73| vehicle .roadLoadB_N_per_ kph = 0; % [N/kph] F1 — NEW Coast
Down

72| vehicle .roadLoadC_ N _ per kph2 = 0.0335; % [N/kph2] F2 — NEW Coast
Down

75|% Other

76| vehicle .roadLoad gravAccel m_per_s2 = 9.81;

77| smoothing . vehicle_speedThreshold kph = 1;

7s| smoothing . vehicle_axleSpeedThreshold rpm = 1;

79l initial .vehicle speed kph = 0;

so|road__grade = atan(0/100);

s2|%% 52V Battery

s3] battery52V .nominalVoltage V = 51.8;

s1| batteryb52V .internalResistance_ Ohm = 0.0056%2;

s5| battery52V . nominalCapacity kWh = 51.8%315/1000;

j| battery52V .voltagePerCell_V = 3.7; % Open Circuit Voltage. 3.5V to

3.7V assuming Lithium—ion

s7| battery52V .nominalCharge_ Ahr =

88 battery52V .nominalCapacity_kWh / battery52V .nominalVoltage V x
1000;

battery52V .mass_ kg = battery52V .nominalCapacity kWh / 0.172; % kWh /
(kWh/kg)

90|% Initial conditions

initial . Battery_ SOC_pct = 90;

92| initial . Battery_ Charge_ Ahr = battery52V .nominalCharge Ahr % initial.

Battery_ SOC_pct/100;

®

8¢

9

93
94| %% Reduction Gear

95| bevGear . gearRatio = 13;

96| bevGear . efficiency = 0.97;
97
98| %% 52V Motor Drive Unit —

90| load ("N42 . mat") ;

10| Speed_max = N42.MAX_Speed(:,1) ;
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Shaft__Torque_max = N42.MAX_Shaft_ Torque;
Shaft Power__max = N42.MAX_Shaft_ Power;
Speed__cont = N42.CONT_Speed (:,1) ;

Shaft  Torque_cont = N42.CONT_Shaft Torque;
Shaft Power_cont = N42.CONT_ Shaft_Power;

motorDrive.simplePmsmDrv_trqMax_ Nm = max(N42. Shaft_Torque) ;
motorDrive .simplePmsmDrv_powMax W = max(N42. Shaft_Power) ;

motorDrive . simplePmsmDrv_ timeConst_s = 0.02;
motorDrive.simplePmsmDrv_ rotorInertia_kg m2 = 3.93%x0.0172;
motorDrive.simplePmsmDrv_rotorDamping Nm_ per_radps = le—5;
motorDrive.simplePmsmDrv_ initialRotorSpd_rpm = 0;

motorDrive .spdCtl_trqMax_Nm = motorDrive.simplePmsmDrv_trqMax_Nm;
motorDrive. gearRatioCompensation = 3/bevGear. gearRatio;

%% Controller & Environment
bevControl. MotorSpdRef_tireRadius_m = vehicle.tireRollingRadius;
bevControl. MotorSpdRef reductionGearRaio = bevGear. gearRatio;

bevControl.MotorSpdRef Ki = 10; %15;
bevControl.MotorSpdRef Kp = 0.2; %15;

%% Simplified EV powertrain and vehicle plant

addpath ("..\ Simplified EV model\model with MPC\polynomial fits")
addpath ("..\ Simplified EV model\model with MPC\data\Eff_map")
addpath ("..\ Simplified EV model\model with MPC\data")

311% simulation parameters

MPC.g = 9.81; % Gravity acceleration [m/s” 2]
MPC. alpha = 0xpi/180; % road slope [rad]
MPC.rho = 1.25; % air density [kg/m~ 3] — from Onori HEV book

% battery parameters

MPC.N_s = 108; % Number of series

MPC.N_p = 1; % Number of parallels

MPC.N_b = MPC.N_s+«MPC.N_p; % number of battery cells

MPC.Q_nom = 60«MPC.N_p; % nominal battery capacity [Ah]

MPC.eta_c = 0.95; % Coloumbic efficiency

load (’bat_ Ro_vs_ SOC data.mat’); % Ro variation with SOC — single
battery cell

load (’bat_Voc_vs_SOC_data.mat’); % Voc variation with SOC — single
battery cell

MPC.F_Voc_s = griddedInterpolant (SOC_Voc_data(:,1) ,SOC_Voc_data(:,2))

; % interpolated Voc data for a single cell

5\MPC.F_Ro_s = griddedInterpolant (SOC_Ro_data(:,1) ,SOC_Ro_data(:,2)); %

interpolated Ro data for a single cell
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MPC.SOC_vec = linspace (0,1,500);

MPC. Voc_s = MPC.F_Voc_s(MPC.SOC_vec); % vector with interpolated
values of Voc_s (single cell)

MPC.Ro_s = MPC.F_Ro_s(MPC.SOC_vec); % vector with interpolated values
of Ro_s (single cell)

% vehicle parameters
MPC.M_veh = 1400; % vehicle mass [kg]

MPC.a = 1; % Front axle — CoG Front axle — CoG [m]
MPC.b = 1.3; % Rear axle — CoG [m]

MPC.h = 0.3; % Height of CoG [m]

MPC.f_0 = 4.5%x1e—3; % Static rolling coefficient [N/kN]
MPC.k = 0; % miscellancous loss coeff [Ns/m]

MPC.r_w = 0.3; % Wheel radius [m]

MPC.C_d = 0.33; % Drag coeff

MPC.A f = 2.15; % Frontal area [m 2]

MPC.tau_gb = 9.6; % Gear ratio
MPC.eta_gb = 0.97; % Gearbox efficiency
MPC. eta_inv = 1; % Inverter efficiency

% electric motor parameters

load ("Eff _map\ Efficiency .mat"); % loading the EM efficeincy map
load ("Eff _map\Shaft_torque.mat"); % loading shaft torque map
load ("Eff _map\Speed.mat"); % loading speed map

MPC. Speed__max = Speed (:,1);

MPC. Torque_max = Shaft_Torque (:,1);

MPC. Efficiency (Efficiency = 0) = 10;

MPC. eff = Efficiency /100;

%% MPC

% PARAMETERS

MPC.Ts = 0.05; % Sampling time

MPC. par . nx = 3; % number of states

MPC. par .nu = 1; % control elements number
MPC. par . ny = 3; % number of outputs

MPC. par . model = @prediction_longitudinal model; %Modello di
predizione

MPC. par .ub = 250; % Upper bound saturazione input —> maximum
value for control output

MPC. par . 1b = —250; % Lower bound saturazione input —> minimum
value for control output

MPC. par . tol = 1; % Reference tolerance

MPC. par . Nfev = 150; % Interation number of fmincon in cost
function (default 200)

MPC. par . Ts = MPC. Ts;
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189|% initial conditions

190/ MPC.SOC0 = 0.8;

191|MPC.x0 = 0;

102|MPC.v0 = 0;

103 MPC. xx0 = [MPC.SOC0; MPC.x0; MPC.v0];
194
195|% Position reference parameters

196/ MPC. par .R = 0.01; % matrice diagonale definita positiva per cost
function

107|MPC. par .P = diag ([0;50000;0]); % matrice diagonale definita positiva
per cost function

10s| MPC. par .Q = diag ([0;1;0]); % matrice diagonale definita positiva per
cost function

109|MPC. par . Tp = 10«MPC.Ts; % Prediction horizon (sempre multiplo intero
del Ts)

200l MPC.K = nmpc_ design_4b (MPC. par); %Generazione parametri design NMPC

202
203| %% Eco—Driving Analysis — MPC controlled model
204

205| directory = "C:\ Users\gabri\Documents\TCC — EV powertrain control)
Text\images";

206 screen__size = get (0,"ScreenSize") ;

27| fig  position = [0 0 screen size(3) screen size(4)];
208

209

210|% run ("Init. MIL_Model MPC.m")
211 load ("simulation_results.mat") ;

213| %% PLOTS

214|% POWERTRAIN SIGNALS

215| figl = figure (1);

216| figl . Position = fig_position;

21| sgtitle ("MPC controlled and reference powertrain results")

210| subplot (3,1,1)

220| plot (veh_speed MPC. Time,veh_speed  MPC.Data, ’'b’, veh_ speed.Time,
veh_speed.Data, 'r’, ’LineWidth’, 1.5)

21| title ("Speed profile");

222l xlabel ("Time [s]");

223 ylabel ("Speed [m/s]");

224| legend (" Controlled ", "Reference");

205| grid om;

227| subplot (3,1,2)

225| plot (motor__speed MPC. Time , motor_speed MPC.Data, ’b’, motor_speed.Time
, motor_speed.Data, ’r’, 'LineWidth’, 1.5)

220 title ("Motor speed profile");

230] xlabel ("Time [s]") ;
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231 ylabel ("Motor Speed [rpm]") ;

232l legend (" Controlled ", "Reference");

233l grid on;

234

235| subplot (3,1,3)

236| plot (T_EM_MPC. Time ,T EM MPC. Data, ’'b’, T EM.Time, T EM.Data, 'r’,’

LineWidth’, 1.5)

27| title (" Electric Motor torque profile [Nm]");
23s| xlabel (" Time [s]");

230| ylabel ("Motor Torque [Nm]") ;

210/ legend (" Controlled", "Reference");

grid on;

N

~
¥

3| filename = sprintf('result. MIL v.w_ T %d.jpg’, Time);
fullFileName = fullfile (directory , filename);
5| saveas (figl , fullFileName);

~

% BATTERY SIGNALS
fig2 = figure(2);
fig2 . Position = fig_position;

g e

o=

sgtitle ("MPC controlled and reference battery results")

subplot (2,1,1)

plot (battery MPC. Time, battery  MPC.Data(:,1), 'b’, battery.Time,
battery.Data(:,1),’r’, LineWidth’, 1.5)

5| title ("Battery Charge");

j| xlabel ("Time [s]");

ylabel (" Charge [Ah]");

legend (" Controlled", "Reference");

grid on;
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260
261| subplot (2,1 ,2)

262| plot (battery_ MPC. Time, battery_ MPC.Data (:,2), ’b’, battery.Time,
battery.Data(:,2),’r’, LineWidth’, 1.5)

23| title (" Electrical Efficiency");

264| x1label (" Time [s]");

265| ylabel (" Electrical Efficiency [kWh/100km]") ;

266 legend (" Controlled ", "Reference');

267 grid on;

200 filename = sprintf(’'result MIL battery %d.jpg’, Time);
o70| fullFileName = fullfile (directory , filename);
o1 saveas (fig2 , fullFileName);

273|% RELATIVE DISTANCE
ora| figd = figure (3);
o7 fig3 . Position = fig_ position;
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s| plot (Rel__distance_ MPC . Time, Rel distance. MPC.Data, 'b’, Rel distance.
Time, Rel distance.Data, 'r’, LineWidth’, 1.5)

title ("MPC controlled model vs uncontrolled model — relative distance
comparison") ;

xlabel ("Time [s]");

ylabel ("Distance [m]");

legend (" Controlled", "Reference");

grid on;

filename = sprintf(’result MIL rel distance %d.jpg’, Time);
j| fullFileName = fullfile (directory , filename);
| saveas (figd , fullFileName);
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Python scripts

Python code for EM efficiency polynomial fit:

import numpy as np

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

N}

6|# Step 1: Read the CSV files

7langular_velocity = pd.read_csv(’speed.csv’ /header=None, sep=";").
values

s| torque = pd.read_csv(’torque.csv’, header=None, sep=';’).values

ol efficiency = pd.read csv(’eff.csv’, header=None, sep=";’).values

11|# Step 2: Flatten the matrices and scale efficiency

12| angular__velocity_ flat = angular_velocity. flatten ()

13| torque__flat = torque. flatten ()

14| efficiency__flat = efficiency.flatten() / 100.0 # Scale efficiency to
be between 0 and 1

16|# Step 3: Create a meshgrid of the angular velocity and torque
17|X = np.column_ stack ((angular_velocity_ flat, torque_flat))

19|# Step 4: Polynomial fitting
poly = PolynomialFeatures(degree=3)
1| X_poly = poly.fit_transform (X)

NN

¥}

23l model = LinearRegression ()

21l model. fit (X_poly, efficiency_flat)

26|# Step 5: Extract polynomial coefficients
27| coefficients = model. coef__

25/ intercept = model.intercept__
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feature_names = poly.get_feature_names_out ([’'w’, 'T7])

# Function to predict efficiency using the polynomial model
def predict__efficiency (angular_velocity , torque):
X_new = np.column_stack ((angular_velocity. flatten (), torque.
flatten ()))
X_poly_new = poly.transform (X_new)
efficiency_ pred = model.predict (X_poly_ new)
return efficiency_pred.reshape(angular_velocity.shape)

terms = [f’{coef:.14f}«{name}’ for coef, name in zip(coefficients ,
feature__names) |
polynomial_expression = ' 4+ ’.join (terms)

polynomial expression = f’{intercept:.14f} + ~ +
polynomial expression

print ("Polynomial Fit for MATLAB: ")

print (polynomial_expression)
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