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Abstract

This thesis advances the field of structural engineering by developing advanced nu-

merical models to simulate the behavior of prestressed concrete beams, specifically

focusing on the dynamics of steel tendon breakage. Employing the Finite Element

Method (FEM) through LS-DYNA, the present study integrates both implicit and

explicit analysis methods to achieve a detailed representation of steel and concrete

interactions under stress and failure conditions.

The research begins with the application of prestress to the steel tendon, followed

by an implicit analysis aimed at establishing a static solution for the interaction

between the steel and concrete parts. This phase is critical for understanding the

pre-failure stress distribution within the beam. Subsequently, an explicit analysis

introduces a simulated tendon rupture, employing a cohesive contact model to effec-

tively simulate the slippage effect between steel and concrete. This model accounts for

realistic interaction dynamics, crucial for assessing changes in acceleration and other

dynamic responses, which are essential for SHM systems to detect and accurately

recognize failure events.

The explicit phase is particularly focused on capturing the propagation of accelera-

tion waves following tendon breakage, a phenomenon that has significant implications

for real-time structural health monitoring and predictive maintenance. Through the

results, findings suggest the following conclusions:

FEM as a Predictive Tool: FEM proves to be an effective approach for generat-

ing synthetic data post steel tendon breakage. This technique accurately simulates the

dynamics of acceleration wave propagation, ensuring that the synthetic data closely

resemble real-life behaviors in prestressed concrete beams.

Insights into Structural Dynamics: The model’s ability to capture the imme-

diate effects of tendon breakages provides critical insights into the dynamic responses

of prestressed concrete structures. The data collected and analyzed from the nu-

merical simulations provide a valuable dataset for developing advanced monitoring

technologies that detect and respond to failures in real time, thereby enhancing the

safety and durability of critical infrastructure elements.

Keywords: Finite Element Method (FEM), Prestressed Concrete, LS-DYNA,

Structural Health Monitoring, Steel Tendon Breakage, Wave Propagation, Cohesive

Contact Model, Implicit Analysis, Explicit Analysis
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Chapter 1

Introduction

1.1 Background and Significance

Prestressed concrete technology has been gaining significance and being widely

used in a variety of structural applications. This method has proven particularly

effective for structures requiring a larger span-to-depth ratio, such as bridges and

viaducts, due to its ability to accelerate construction timelines and enhance overall

performance. Furthermore, by employing prestressed concrete, there is a notable

improvement in the mechanical performance of structural members, which helps in

significantly reducing cracking, increasing stiffness and enhancing the durability of

constructions.

Structural failures pose severe risks, with bridge collapses providing clear examples

of the potential consequences. These incidents not only lead to significant economic

losses and disruptions but also, more critically, to loss of life. Such failures under-

score the vital importance of both designing and continuously monitoring structural

elements, especially in the case of prestressed concrete members. Various factors can

precipitate these failures, from design flaws and material fatigue to improper main-

tenance practices. Therefore, is of crucial importance that these structures are not

only designed based on the criteria stated in the design codes but also subject to

rigorous ongoing inspections and maintenance. Implementing robust monitoring sys-

tems can help detect early signs of distress in prestressed concrete structures, thereby

preventing deterioration and averting potential collapses. Ensuring the safety and in-

tegrity of these critical infrastructures is essential, making the development of effective

predictive tools and methodologies a priority in the field of structural engineering.

While prevention of structural failures is a fundamental aspect of engineering, un-
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derstanding the dynamics that occur after such failures is equally critical. This knowl-

edge can significantly enhance the resilience of infrastructure by contributing to more

effective response strategies and recovery plans. In the field of prestressed concrete,

where failures can have profound implications, accurately simulating and predicting

the behavior following tendon breakage is essential. This approach not only helps in

assessing the immediate impacts, but also in comprehending the behaviors leading up

to a total collapse, so that preventive actions can be implemented. By focusing on

the post-failure behavior of these structures, this research aims to contribute to safer,

more reliable engineering practices, ultimately leading to structures that are better

equipped to handle this kind of stress.

1.2 Prestressed Concrete Overview

Concrete is inherently strong in compression but weak in tension, with compressive

strength approximately ten times greater than its tensile strength. Under flexural

loading, cracks can rapidly form in concrete members. To mitigate this, steel is

introduced into the tensile zone of the member, applying a longitudinal force that

considerably reduces crack formation. This not only enhances the bending, shear,

and torsional capacity of the section but also optimizes the utilization of concrete’s

compressive properties. The applied longitudinal force, known as the prestressing

force, is introduced by tensioning the steel tendons before external loads are applied

to the member.

Prestressing systems are primarily categorized into two types: pre-tensioning and

post-tensioning. In pre-tensioning, the steel tendons are tensioned before the concrete

is poured. This is achieved through the use of anchorages that are supported by

bulkheads, capable of sustaining the high tension forces exerted on the tendons. This

process can involve tensioning individual steel strands or simultaneous tensioning of

all strands in one jacking operation [1].

On the other hand, post-tensioning involves tensioning the strands after the con-

crete has hardened. This method requires the installation of special ducts along the

longitudinal axis of the concrete member, facilitating the tensioning of the strands

once the concrete has hardened. There are two main variations in post-tensioning:

bonded, where corrugated steel ducts are filled with cementitious grout to secure the

strands, and unbonded, which uses grease to allow relative movement of the strand

within the structural member.

Prestressed concrete is extensively utilized in structures requiring large span-to-
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depth ratios, such as bridges and large-span buildings. While this technology offers

significant structural advantages, it also presents unique challenges, particularly re-

garding the corrosion and deterioration of the steel tendons. These issues are more

critical in prestressed concrete than in non-prestressed elements because the structural

strength of prestressed concrete members is directly dependent on the prestressing

force, which in turn is function of the area of the prestressing tendons [1]. Con-

sequently, any compromise in tendon integrity can significantly impact the overall

durability and safety of the structure, underscoring the importance of thorough mon-

itoring and maintenance to prevent such deterioration.

The prestressing load should be high enough to be able to compensate for the losses

in concrete given by high creep, and shrinkage. For this, high-strength steel is used

to provide such high stresses, with values of initial prestressing range in the order of

1000 MPa [1].

Failures in these structural elements, especially in critical infrastructure like bridges,

have a profoundly negative impact. One common mode of failure is tendon breakage,

often initiated by corrosion. Corrosion can occur under various conditions, such as

exposure to atmospheric condition, stress, or temperature variations, making control

of these parameters is crucial for maintaining structural integrity. The prestressing

elements, composed of high-tensile steel wires unified form tendons, these are crucial

to the structure’s strength. It is important to note that the failure of a single wire or

tendon does not necessarily result in the collapse of the entire structural member or

structure, but it could significantly compromise its integrity and safety.

1.3 Structural Health Monitoring

Structural Health Monitoring (SHM) is essentially the integration of traditional ex-

perimental and theoretical structural mechanics with electronics, material science, and

information and communication technologies [2]. Is a vital process in civil engineer-

ing that involves the continuous observation, evaluation, and analysis of a structure’s

condition to ensure its safety, functionality, and longevity. Structural health moni-

toring uses sensors and data processing techniques to detect, analyze, and interpret

changes in a structure’s condition, enabling the early identification of damage, dete-

rioration, or failure. In essence, SHM allows for timely maintenance, reduces the risk

of catastrophic failure, and extends the lifespan of critical infrastructure. SHM can

be understood as a tool performing the task shown in Figure 1.1, where the lifetime

functions represent a priori assumed decay of the performance index starting from the
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design value [2].

Figure 1.1: SHM task [2]

In this study, the focus is on developing a numerical model to simulate the behavior

of a prestressed concrete beam following the breakage of a steel tendon. While SHM

could utilize this approach to monitor the condition of the beam by detecting changes

through wave propagation, the primary goal here is to generate data and insights that

can support such applications. Understanding wave propagation patterns in materials,

as explored in this thesis, provides essential information that can be used in future

SHM efforts to identify and assess damage more effectively, potentially enhancing the

early detection of failures and improving structural safety

1.4 Objectives

The primary objective of this thesis is to analyze and understand the post-breakage

behavior of prestressed concrete beams following steel tendon rupture. To achieve this,

several advanced numerical models are developed using the Finite Element Method

(FEM), facilitated through the use of LS-DYNA. The specific objectives to fulfill this

goal include:

- Developing a Numerical Model: Construct an accurate numerical model

using LS-DYNA that incorporates advanced meshing techniques, detailed con-

tact definition, and in general comprehensive modeling parameters. This model

will accurately represent the behavior of real structural members, capturing the

essential dynamics of prestressed concrete beams post-tendon rupture.

- Analyzing and Wave Propagation: Utilize both implicit and explicit FEM

analysis to investigate the wave propagation within prestressed concrete beams

under failure conditions. This analysis aims to provide a deeper understanding

of the structural impacts of tendon breakage, specifically in wave propagation.
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Chapter 2

Literature Review

2.1 Finite Element Method in Prestressed Con-

crete Structures

The Finite Element Method (FEM) is a powerful computational tool widely used

in engineering to simulate and analyze complex physical phenomena and geometries.

FEM has evolved from a modest method for solving simple structural problems into

a sophisticated, versatile technique capable of addressing a wide range of engineering

challenges. This section reviews its application in structural engineering, particularly

focused on its role in analyzing the behavior of prestressed concrete structures, damage

and failure mechanisms.

FEM is implemented through various finite element software platforms, which

incorporate numerical models designed to represent the real behavior of structural

elements. Some of the earliest work done by Faherty in 1972 utilized FEM to ana-

lyze both reinforced and prestressed concrete beams, incorporating nonlinear concrete

properties and a linear bond-slip relationship [3]. This early application highlighted

the method’s capacity to account for complex material interactions and provided a

foundational understanding of how prestressed concrete behaves under various load

conditions.

Nonlinear finite element analysis (FEA) techniques are fundamental in model-

ing the complex behavior of prestressed concrete structures under various loading

conditions. Mang and Meschke (1991) [4] provide a comprehensive review of the

development of these techniques. Their study introduces significant advancements,

such as the ”smeared-crack concept,” which allows for practical large-scale analyses
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of concrete structures under ultimate load. They emphasize the importance of ten-

sion stiffening due to bond slip between concrete and steel reinforcement, which plays

a crucial role in predicting structural behavior accurately, especially under complex

loading as thermal gradients and wind loads. The introduction of a nonlocal failure

criterion for concrete further enhances the precision of failure predictions in finite

element models. The authors highlight the necessity of incorporating realistic mate-

rial models to improve the reliability of structural assessments under diverse loading

conditions.

In a complementary approach, Lee and Fenves (1998) [5] propose a plastic-damage

model adjusted for concrete structures subjected to cyclic loading. This model in-

tegrates fracture-energy-based damage mechanics with stiffness degradation to sim-

ulate the material’s response under various loading conditions. It uses two damage

variables, one for tensile damage and another for compressive damage, allowing a sep-

arate representation of damage change in tension and compression. The model also

accounts for stiffness recovery during unloading, effectively simulating crack closure

and reopening under cyclic loads. Numerical simulations demonstrate the model’s

capacity to capture the behavior of concrete structures under both monotonic and

cyclic loading, providing accurate predictions of stiffness degradation and recovery

due to microcrack formation and closure.

Accurately modeling the bond-slippage behavior between steel reinforcement and

concrete is crucial for understanding the performance of prestressed concrete struc-

tures. Arab, Badie, and Manzari (2011) [6] offer a detailed study of this behavior

through two primary FEM techniques: the extrusion technique and the embedment

technique. The extrusion technique employs friction-based contact simulations to cap-

ture detailed local effects, such as bond slippage, effectively simulating nonlinear stress

variations and local phenomena like slippage and pressure at the interface. However,

this method is computationally expensive. In contrast, the embedment technique,

though less detailed, provides an efficient approximation of the overall response, mak-

ing it suitable for broader applications where computational resources are limited.

The study also identifies optimal friction coefficients and notes that bond stresses

follow a nonlinear distribution rather than the linear approximation often assumed in

practice.

Continuing on this topic, Yapar et al. (2015) [7] develop an advanced nonlinear

finite element model specifically for pretensioned prestressed concrete beams, which

incorporates plasticity and damage behavior of concrete along with slip-bond failure

mechanisms of strands. Their model, validated against experimental data, accurately
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captures interfacial bond characteristics, bond-slip behavior, and damage evolution

at the concrete-steel interface. It effectively predicts stress transfer mechanisms such

as adhesion, friction, and the Hoyer effect, demonstrating its importantce in assessing

the performance of prestressed beams throughout their service life and after repair.

Padmarajaiah and Ramaswamy (2002) [8] focus on the bond-slip behavior in pre-

stressed concrete beams reinforced with steel fibers. Their FEM analysis study the

effects of varying prestressing levels, fiber volume fractions, and fiber locations. The

study finds that the strategic placement of steel fibers, particularly over partial depths

on the tensile side, enhances both the flexural capacity and ductility of the beams.

The research highlights the importance of considering bond-slip effects in the design

of prestressed beams to optimize their structural performance, offering insights into

the effective placement of reinforcement for enhanced load-bearing capacity.

2.2 Wire breakage monitoring

Monitoring wire breakage in prestressed concrete structures is crucial for ensur-

ing their safety and structural integrity. The development of effective monitoring

techniques has gained significant attention in recent years due to the need for early

detection and prevention of catastrophic failures. This subchapter reviews key studies

that have advanced the field of wire breakage monitoring, emphasizing the relevance of

integrating these methods with finite element modeling (FEM) to assess post-breakage

behavior.

Recent research has focused on utilizing acoustic event detection and machine

learning techniques to monitor wire breakage in prestressed concrete structures effec-

tively. Farhadi et al. (2023) [9] propose a novel approach using sound event detection

(SED) techniques to identify wire breakage events in prestressed concrete bridges.

This method leverages Mel-frequency cepstral coefficients (MFCCs) to extract acous-

tic features from the signals generated during wire breakage, which are then classified

using a back-propagation neural network (BPNN). Experimental validation using data

from two bridges in Italy demonstrated that the combination of MFCCs and BPNN

provides accurate real-time monitoring and diagnosis of bridge safety. This method

offers significant advantages over traditional approaches by enabling continuous, auto-

mated, and non-invasive monitoring, even in noisy environments, potentially leading

to safer and more durable infrastructure.

Building on this approach, Farhadi et al. (2024) [10] introduce an innovative

method for automated monitoring of prestressing tendon breakage in concrete bridges,
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utilizing acoustic event detection and classification (AE/DC). This study employs ad-

vanced signal processing techniques and deep learning models, such as pretrained

convolutional neural network (CNN) architectures (e.g., VGG19, ResNet50, Incep-

tion, Xception), enhanced with a Bottleneck Attention Mechanism to improve clas-

sification performance. Additionally, the authors developed a custom hybrid model,

AcousticNet, which incorporates dilated convolutional layers, gated recurrent units,

and multihead attention mechanisms to enhance event classification accuracy. The

proposed models were validated through extensive laboratory and real-world data,

demonstrating robustness and adaptability in real-time structural health monitor-

ing scenarios. This advancement marks a significant step forward in integrating deep

learning with signal processing, providing a reliable, non-invasive method for the early

detection of wire breakage in prestressed concrete structures.

Acoustic Emission (AE) techniques are widely recognized for their effectiveness

in detecting crack formation and damage in concrete structures. The work by the

RILEM Technical Committee (2010) [11], [12]and [13] underscores the critical role of

AE and related non-destructive evaluation (NDE) techniques in crack detection and

damage evaluation of concrete structures. The guidelines emphasize the importance

of AE data in monitoring and assessing the integrity of concrete under in-service con-

ditions, highlighting its ability to detect elastic waves generated by dynamic events,

such as crack nucleation, delamination, and micro-crack formation. The study out-

lines methods for measuring AE signals, including parameters like peak amplitude,

rise time, and duration, which are essential for classifying and quantifying crack activ-

ity. Additionally, the guidelines propose a standardized approach for the classification

of active cracks and damage qualification using AE, providing early warning of struc-

tural deterioration. These recommendations highlight the value of AE techniques for

real-time, continuous monitoring of concrete structures, thus enhancing safety and

enabling proactive maintenance strategies.

2.3 Proposed Methodology

Significant research has been conducted in the field of structural behavior analysis

using the Finite Element Method (FEM) as a predictive tool to understand various be-

haviors within the field of prestressed concrete. However, despite these advancements,

there remains a notable gap in the literature specifically concerning the development

of insights into the post-breakage phenomenon. Particularly, the wave propagation

and subsequent behaviors following steel tendon rupture are not extensively studied.

This research aims to address this gap by focusing on the detailed simulation of these
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specific dynamics, providing new insights into the structural responses post-tendon

failure.

Understanding the dynamic response of prestressed concrete beams following ten-

don rupture requires a carefully designed methodological approach. The methodology

of this thesis is focused on creating detailed numerical simulation models using Finite

Element Method (FEM) in LS-DYNA. these simulations are designed to accurately

model the post-breakage behavior of the prestressed concrete beams and investigate

wave propagation and structural dynamics in response to tendon rupture.

The methodology is based on several key components:

1. Numerical Model development: The numerical model is elaborated in LS-

DYNA using linear elastic material definitions for both the concrete and steel

components. Prestressing is applied as an initial stress state to the steel tendons.

The meshing process is adjusted to the specific needs of the analysis, with mesh

size being determined by the maximum frequency of interest. A denser mesh is

used near the steel tendon rupture area due to the smaller geometry, allowing

for an accurate representation of stress concentrations. Uniform tetrahedral

elements are applied across the model to maintain consistency.

2. Wave Propagation Simulation: Simulating wave propagation after the ten-

don rupture begins with an implicit analysis, designed to reach an equilibrated

state for the initial stress condition. This equilibrated solution is then used

as the starting configuration for the explicit analysis, which captures the rapid

wave propagation following the rupture. The explicit analysis is particularly

well-suited for these short-duration dynamic events and ensures that both static

and dynamic behaviors are accurately modeled.

3. Model Validation: Validation of the numerical model is a critical part of this

thesis. The process involves several steps:

- Mesh quality validation according to established literature thresholds.

- Mesh sensitivity analysis, where different mesh sizes are tested to confirm

consistent results in both time and frequency domains.

- Energy balance validation, ensuring that the model behaves according to

physical principles.

- Semi-qualitative comparison of simulation results with real-world experi-

mental data from beam tests, reinforcing the accuracy of the model.
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4. Data Collection and Post-Processing: The primary data collected from

the simulations is acceleration response, which is analyzed using both Fourier

Transform and Short-Time Fourier Transform (STFT) techniques. This enables

the evaluation of structural behavior in both time and frequency domains.
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Chapter 3

Theoretical Framework

3.1 Finite Element Method

The Finite Element Method (FEM) serves as a powerful tool, enabling the approx-

imation of solutions to real-world problems that are governed by physical laws. These

problems are often expressed through algebraic, differential, or integral equations [14].

FEM addresses several limitations of traditional variational methods by facilitating

the derivation of approximation functions within subregions of the domain. Three

main characteristics underline its advantages:

1. Geometric Complexity Management: FEM approximates a geometrically com-

plex domain as a collection of simpler, manageable subdomains known as finite

elements. This subdivision simplifies the overall problem into smaller, more

manageable parts.

2. Approximation Functions: Over each subdomain, the approximation functions

are derived based on the premise that any continuous function can be repre-

sented as a linear combination of algebraic polynomials. This approach allows

for a flexible and accurate representation of complex functions across the do-

main.

3. Interpolation and Governing Equations: The relationships among undetermined

nodal values are established by ensuring that the governing equations are satis-

fied for each element. The approximation functions, derived from interpolation

theory, are therefore named interpolation functions. This methodical approach

ensures that the FEM model sticks closely to the physical behaviors described

by the governing equations.
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3.1.1 Theoretical Notes on FEM

In Finite Element Method, the general aim is to find an approximate solution u to

a differential equation of the form [14]:

u ≈
n∑

j=1

ujψj (3.1)

Where u represents the solution fo a particular differential equation, uj are the

values of u at the element nodes, and ψj are the interpolation functions. In the finite

element method, the given domain is divided into subdomains, for which an approxi-

mate solution is developed for each one of the defined subdomains [14]. Substitution

of equation 3.1 into the governing differential equation does not always result in the

required number of linearly independent algebraic equations for the unknown coeffi-

cients uj. In order to ensure the same amount of equations as unknowns is to use

weighted integrals of the error in the equation to be zero [14].

Variational method by means of the use of integral statements provides and help

for obtaining as many algebraic equations as there are unknown coefficients in the

approximation. Variational methods differs from each other in the choice of the weight

function w and the integral statement, which decree the choice of the approximation

function [14]. Finite Element Method follows variational method in the search for an

approximatie solution for a given subdomain (i.e. element) of the domain.

Finite element Method applied in the linear analysis of solids, has for standard

formulation the displacement method, other methods such as mixed formulations,

where not only the displacements are employed as unknown variables, are preferred

for other specific types of problems [15]. The principle of virtual work is the basic

relationship used for the finite element formulation.
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Figure 3.1: General 3-dimensional body [15]

Considering the equilibrium of a generic three-dimensional body, located in the

fixed coordinate system X, Y, Z, as shown in figure 3.1. The body is supported on

the area Su with prescribed displacement USu and subjected to surface tractions fSf

on the surface area Sf . In addition, the body is subjected to body forces fB, and

concentrated loads Ri
C (where i is the point of load application).

Given the geometry of the body, the applied loads, the support condition on Su,

the material stress-strain law, and the initial stresses in the body it is computed the

displacements U of the body and the corresponding strains and stresses, establishing

the governing differential equations of equilibrium, which then would have to be solved

subjected to the boundary conditions [15].

The foundation of the displacement-based finite element solution lies in the princi-

ple of virtual work. This principle states that the equilibrium of the body referenced

in figure 3.1 requires that for any small and compatible virtual displacements imposed

on the body in its state of equilibrium, the total internal virtual work generated by

the imposed displacement must equal the total external virtual work.

∫
V

D
T
TdV =

∫
V

U
T
fBdV +

∫
Sf

U
Sf

T
fSfdS +

∑
i

U
iT
Ri

C (3.2)

Where U are the virtual displacements and D are the corresponding virtual strains.

When the principle of virtual work is satisfied, equilibrium, compatibility, and stress-

strain law hold.
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From equation 3.1 considering each subdomain (i.e. element), and a generalize

matrix form, element strains are:

D = BÛ (3.3)

Where B is the strain-displacement matrix, Û is a column vector containing the

nodal values uj.

Stresses are:

T = CD + T I (3.4)

Where C is the elasticity matrix.

From the assumption of the displacement shown in equation 3.1 it is possible to

derive the equilibrium equations corresponding to the nodal point displacements of

the assemblage of finite elements, for a single element (m).

∑
m

∫
V

D
T
T dV =

∑
m

∫
V

uTfB dV +
∑
m

∫
S1,...,Sq

uS
T
fS dS +

∑
i

ui
T
Ri

C (3.5)

Where S1, . . . , Sq are the element surfaces that are part of the body surface S.

Finally by means of equation 3.1 and equation 3.3, equilibrium equation is obtained

of the form:

KU = R (3.6)

The load vector R involves the effect of element body forces, initial stresses, and

concentrated loads. The general equilibrium equation, considering inertial forces (by

means of D’Alembert principle) and damping forces is of the form:

MÜ + CU̇ +KU = R (3.7)

Where
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C =
∑
m

∫
V

kHTH dV =
∑
m

C(m) (3.8)

M =
∑
m

∫
V

ρHTH dV =
∑
m

M (m) (3.9)

K =
∑
m

∫
V

BTCB dV =
∑
m

K(m) (3.10)

Where two properties must be met, since in general, in finite element analysis,

differential equilibrium is not exactly satisfied at all points of the domain, but it must

be met [15]:

- Nodal point equilibrium.

- Element equilibrium.

The solution to a problem by FEM, starts from the discretization of the domain,

into finite elements whose solution type is known. FEM computes filed variables at

node level for which the interpolation functions (called shape functions) are needed

to know the variables on the domain of each element.

3.1.2 FEM Analysis phases

Once the fundamental principles of the Finite Element Method (FEM) have been

revised, the application via a computational program, as demonstrated in this thesis

with LS-DYNA, follows the next framework:

1. Pre-processing Phase:

In this initial phase, the structural model is developed, incorporating all nec-

essary parameters for the analysis. This includes the creation of the mesh and

the specification of boundary conditions, material properties, type of elements,

etc. The goal is to prepare a detailed and accurate representation of the phys-

ical system to be analyzed, ensuring that all relevant physical and geometric

properties are correctly modeled.

2. Processing Phase:

During this phase, the problem is solved numerically. Based on the type of

analysis specified, the solver, for this case, LS-DYNA, processes the input data,

which includes mesh configurations, material properties, and boundary condi-
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tions. The solver computes the solution to the governing equations of the model,

effectively simulating the behavior of the structure under loading condition es-

tablished.

3. Post-processing Phase:

This final phase involves analyzing and interpreting the results obtained from the

solver. The outputs from the numerical model are evaluated to determine their

relevance and accuracy in representing the real-world scenario. This may include

visualizing stress distributions, deformations, wave propagation, or other critical

parameters, and validating these results to ensure that the model provides an

accurate and useful approximation of reality.

3.2 Time Integration Algorithms

Time integration algorithms are key tools in numerical analysis, helping solve and

converge into solutions of nonlinear dynamic response. It is possible to distinguish

two main types of algorithms, Implicit time integration methods, and Explicit time

integration methods.

Transient analysis of nonlinear problems requires a stable and accurate solution of

the equation 3.7, a possibility for the solution of the equilibrium equation is by means

of direct time integration in which the equilibrium relations are satisfied at discrete

time points ∆t. The solution is stepped forward in time by assuming time variation

of displacements, velocities, and accelerations within the specified time interval ∆t

[16].

3.2.1 Explicit Analysis

Typically, explicit analysis is employed for short-period dynamic simulations, such

as impact and crash analyses, due to its computational efficiency in these contexts.

However, this method is generally considered too resource-intensive for long-duration

or static analyses. Unlike implicit methods, explicit analysis does not require iterative

convergence to reach a solution, as nodal accelerations are directly calculated.

Assuming that the solution have being determined at the discrete time intervals

∆t up to to time t, explicit integration techniques applies equation 3.7 at the time

for which the displacements are known to obtain the solution at time t+∆t [16].

Softwares such us LS-DYNA, which is utilized for the current study, solve via

explicit algorithm considering internal and external forces summed at each nodal
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point. Nodal acceleration is then computed by dividing by the nodal mass. The

solution follows by integrating this acceleration over time [17]. The solution process

initiates with the computation of nodal acceleration at time t, followed by calculation

of velocities at time t+1/2, and displacements at time t+1. From these displacements,

strains are derived, and subsequently stresses [18]. This cycle is realized for each time

step.

LS-DYNA uses the explicit central difference scheme to integrate the equations of

motion, in which is assumed that

Ü t =
1

∆t2
(U t−∆t − 2U t + U t+∆t) (3.11)

U̇ t =
1

2∆t
(−U t−∆t + U t+∆t) (3.12)

The displacement solution for time t+∆t is obtained by considering equation 3.7

at time t.

MÜ t + CU̇ t +KU t = Rt (3.13)

Substituting the relations for Ü t and U̇ t from 3.11 and 3.12 into equation 3.13 it

is obtained

(
1

∆t2
M +

1

2∆t
C)U t+∆t = Rt − (K − 2

∆t2
M)U t − (

1

∆t2
M − 1

2∆t
C)U t−∆t (3.14)

From which we can solve for U t+∆t, which is computed considering the conditions

at time t i.e. equation 3.13, reason why the scheme is called explicit method. A

special consideration to the Central Difference scheme is that it requires that the

selected time step ∆t be smaller than the critical value ∆tcr which is function of the

smallest period of the finite element model. For this consideration, Central Difference

is said to be conditionally stable [15].

∆t ≤ ∆tcr =
Tn
π

(3.15)
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3.2.2 Implicit Analysis

Contrary to explicit integration techniques, implicit ones use equation 3.7 at a time

for which the solution is not known, to obtain the response at time t+∆t [16]. Solvers

using implicit analysis require a numerical solver to invert the stiffness matrix over

the course of a time step, always a matrix factorization has to be performed for the

solution of the equation within an iteration, even when the mass matrix is a diagonal

matrix [19].

LS-DYNA employs a similar solution algorithm for both nonlinear implicit static

and dynamic analyses. The primary distinction lies in the inclusion of dynamic terms

in the calculation of residual forces, which are functions of displacement U , velocity

U̇ , and acceleration Ü . This approach utilized the Newmark time integration scheme,

the dependence of the last two is set by

U̇ t+∆t = U̇ t + [(1− δ)Ü t + δÜ t+∆t] (3.16)

U t+∆t = U t + U̇ t∆t+ [(
1

2
− α)Ü t + αÜ t+∆t]∆t2 (3.17)

Where ∆t is the time step size, α and δ are the parameters of the integration

method, which determine the integration accuracy and stability. In addition, the

equilibrium equation 3.7 is considered at time t + ∆t, accounting for displacements,

velocities and accelerations at time t+∆t [15].

MÜ t+∆t + CU̇ t+∆t +KU t+∆t = Rt+∆t (3.18)

Solving equation 3.17 for Ü t+∆t in terms of U t+∆t, after substitution in equation

3.16 it is obtained Ü t+∆t and U̇ t+∆t in terms of U t+∆t which can be solved by equation

3.18 [15].

3.3 Wave Propagation in Materials

Given that the focus of this study is on the post-breakage behavior, particularly

how waves propagate through concrete, a thorough review of the theoretical frame-

work is essential. Analyzing wave propagation provides insights into the energy dis-

tribution and stress concentrations within a structure immediately after failure.
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3.3.1 Governing Equations

Wave propagation in solids is primarily described by the equations of motion de-

rived from continuum mechanics and the principles of elasticity. The basic governing

equation for an elastic wave in a solid medium is called equation of motion for a

continuum, a set of three equations derived from the equilibrium on a cubic element

in a continuum undergoing internal motions and the application of Newton’s law to

the medium [20].

ρ
∂2u

∂t2
= ∇ · σ + f (3.19)

Where ρ is the material density, u is the displacement vector field, ∇ · σ is the

divergence of the stress tensor (internal stresses), and f is the body forces per unit

volume (external forces).

The need for a relationship between stress and displacement is essential, and it is

provided by the constitutive laws, that relate stress to strain, hence stress to displace-

ment gradients, which for isotropic, homogeneous materials Hooke’s law is followed

(the most general form of constitutive law for linear elasticity) [20].

σij = Cijklϵkl (3.20)

The constant Cijkl are known as elastic moduli and characterize the material prop-

erties of the medium. In its general form Cijkl is a third-order tensor which relates

the nine elements of the strain and stress tensors resulting in nine equations, which

by symmetry can be reduced to six. Recalling the one-dimensional Hooke’s Law.

σ = Eϵ (3.21)

This allows the formulation of wave equations specifically Longitudinal waves (P-

waves), transverse (S-waves), and surface waves (Rayleigh and Love waves). The

velocity of these waves depends upon the material’s elastic modulus, Poisson’s ratio,

and density.

3.3.2 Types of Waves in Solids

On one hand, longitudinal waves, or primary waves (P-waves), involve particle

motion parallel to the direction of the wave propagation, and represent the fastest
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type of elastic waves. The velocity of P-waves in a solid is given by:

vp =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(3.22)

On the other hand, transverse waves, or secondary waves (S-waves), involve particle

motion perpendicular to the direction of wave propagation. S-waves are slower than

P-waves and their velocity is given by:

vs =

√
G

ρ
=

√
E

2ρ(1 + ν)
(3.23)

Rayleigh waves combine longitudinal and vertical shear motion, while Love waves

involve horizontal shear motion. They travel along the surface of a solid material and

decay exponentially with depth.
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Chapter 4

On LS-DYNA & Model

Development Basis

4.1 Model Development

In this thesis, LS-DYNA, now a part of ANSYS, serves as the primary software for

developing the simulation and finite element model. The integration of LS-DYNA with

other ANSYS software tools enhances the capabilities of our modeling processes. This

collaboration allows for the utilization of specialized programs such as SpaceClaim,

a computer-aided design (CAD) tool with better mesh generation capabilities. The

subsequent sections will detail the software parameters and how SpaceClaim and other

tools complement LS-DYNA to optimize model development.

4.2 Detailed Software Considerations

4.2.1 Contact Types

In finite element analysis, accurately defining how different parts of a model interact

is crucial for obtaining reliable simulations and actual representation of reality. This

section explores two primary methods used to define contact in finite element models,

each specified to different types of interactions and modeling requirements. These

methods are the kinematic constraint method, and the penalty method, each offering

distinct advantages and suitable for specific applications within LS-DYNA.
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Kinematic Constraint Method

In the kinematic constraint method, constraints are imposed on the global equa-

tions by a transformation of the nodal displacement components of the slaves nodes

along the contact interface which eliminates the normal degree of freedom of the nodes

[21]. This contact type is primarily employed for tying interface together, where the

slaves nodes are constrained to follow the movements of the master side nodes. This

method is particularly useful for situations where no relative motion between the

connected parts is desired.

Penalty Method

The penalty method provides a way to simulate contact by introducing a stiffness-

based penalty factor between the interacting surfaces by placing normal interface

springs between all penetrating nodes and the contact surface, then the spring stiffness

matrix must be assembled into the global stiffness matrix [21]. This method does not

strictly enforce a no-penetration condition as the kinematic constraint does; instead,

it allows a certain degree of interpenetration, which is resisted by a force proportional

to the penetration depth (i.e. by the spring). The penalty method is widely used for

simulating contacts where small penetrations can be tolerated, such as in the case of

rubber seals or gaskets in engineering applications.

In LS-DYNA, the tiebreak contact type is categorized within the penalty-based

contacts. This approach allows for the simulation of contact behaviors that include

the potential for separation and failure at the interface, providing a realistic modeling

of physical contacts that can degrade under stress. The tiebreak contact type enables

the specification of contact stress, σ both normal and tangential, as a function of the

separation distance at an interface, as set in the predefined interface contact law. The

law is characterized by the energy release rate (energy per unit required to release the

contact) and the maximum interface stress (peak contact stress before the softening

phase). The contact law utilized in the present study is described as follows.
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Figure 4.1: Bilinear cohesive mixed-mode law

Where Qmax represents either the normal failure stress or the shear failure stress,

E is the normal or tangential stiffness, and Gc is either the normal or shear energy

release rate, the relationships are shown above.

L =
Qmax

E
(4.1)

u =
2Gc

EL
(4.2)

To ensure the maximum is not past the failure point it is set u/L > 1

u

L
=

2Gc

ELxL
=

2Gc

E(Qmax

E
)2
> 1 (4.3)

4.2.2 Element Formulation

In finite element analysis (FEA), choosing the right type of element is important,

since it affects how accurate and efficient the simulation will be. Solid elements are

often used to build most models that comes with different topologies, each designed

for different kinds of analyses. The typical solid elements used are tetrahedral and

hexahedral elements, in which many categories are to be selected from, depending on

the type of analysis and mesh desired.

In this study, tetrahedral elements were chosen due to their flexibility in mesh

sizing compared to hexahedral elements. This flexibility is especially beneficial for
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models where different components demand varying levels of detail. For instance,

the steel tendons in the prestressed concrete beams require a finer mesh because

of their reduced size. Contrary, the concrete parts can be modeled with a coarser

mesh. Tetrahedral elements are ideally suited for this task, as they easily adjust to

diverse meshing requirements, thus enabling precise and efficient modeling of distinct

components within the same framework.

For the development of the finite element model using LS-DYNA, element 13 was

selected, which corresponds to a nodal pressure tetrahedron.

Node Pressure Tetrahedral Element

Standard formulations for tetrahedral elements often exhibit volumetric locking

phenomena and stiff behavior, due to the fact that the volume of the elements must

remain constant [22], which can adversely affect the accuracy of simulations, especially

under compressive load conditions. To address this issue, the advanced tetrahedral

element, which incorporates nodal pressure variables, offers a significant improvement.

This element type effectively alleviates volumetric locking, ensuring more reliable

simulations, with a better performance overall than the standard 4-node tetrahedral

element.

Figure 4.2: Four node tetrahedron
[22]

The four-node tetrahedron element shown in figure 4.2 is a standard isoparametric

tetrahedron, the formulations for the node pressure tetraheral element are expressed

below, extracted from [22]. Starting from the standard four-node tetrahedron element,

the geometry is interpolated in terms of the shape functions Na, and the isoparametric

coordinates ξ1, ξ2 , and ξ3, where a represents the nodes.
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X(e) =
n∑

a=1

Na(ξ1, ξ2, ξ3)Xa (4.4)

The volumetric strain energy is approximated by assuming that the volume ratio

J remains constant over the volume attached to each node

Πvol(x) =
n∑

a=1

U(Ja)Va (4.5)

Where J is expressed in terms of current and initial nodal volumes

Ja = νa/Va, νa =
ma∑
e=1

1

4
ν(e) (4.6)

From where the corresponding volumetric internal forces are obtained by differ-

entiation in the direction of the virtual velocities to obtain the volumetric internal

virtual work (D being the differentiation operator)

δWvol = DΠvol[δv] =
n∑

a=1

paVaDJa[δv] (4.7)

Where the average nodal pressure is represented as follows

pa =
dU

dJ

∣∣∣
J=νa/Va

= k

(
νa − Va
Va

)
(4.8)

The directional derivative of the average nodal volumetric strain in the direction

of δv is obtained from equation 4.6 and 4.9

DJa[δv] = Ja div [δv] (4.9)

DJa[δv] =
1

Va
Dνa[δv] =

1

Va

ma∑
e=1

1

4
ν(e) div δv(e) (4.10)

From equation 4.10, equation 4.7 can be written as

δWvol =
n∑

a=1

ma∑
e=1

1

4
paν

(e) div δv(e) =
m∑
e=1

p(e)ν(e) div δv(e) (4.11)
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Where

p(e) =
1

4

4∑
a=1

p(e)a (4.12)

Is the average element pressure and would correspond with the pressure at the

centroid of the element obtained from a linear interpolation from nodal values. On

the other hand, the internal equivalent forces in terms of the average element pressure

is defined as

T
(e)
vol,a = p(e)ν(e)∇N (e)

a (4.13)

The employment of the described advanced element does not significantly increase

computational expenses in comparison to the standard four-node tetrahedron element.

Additionally, the issue of locking, is effectively mitigated for sufficiently large meshes

[22].

4.2.3 Element Size

Element size plays a crucial role in finite element (FE) models as it directly im-

pacts the accuracy and convergence of the simulation results to real solutions. A key

criterion for defining the maximum element size is wavelength resolution; the elements

must be sufficiently small to capture the specified and desired maximum frequency of

interest. This ensures that the model accurately represents the dynamic behavior of

the structure, particularly in scenarios involving high-frequency wave propagation. in

order to obtain the step size, the following condition is imposed [23]

∆x ≤ λmin

n
(4.14)

Where λmin is the minimum wavelength in the configuration that can be computed

from the maximum frequency of interest and the velocity of the wave, n is a param-

eter that controls the accuracy, with typical values ranging from 10 - 20, and ∆x

corresponds to the element size.

Regarding element size distribution along the geometry, following the recommen-

dations from Cook, et al [24], element size should not change abruptly, in cases where

it does, the discrete mass matrix will be a poor representation of the real continuous

mass matrix. This will arise in wave reflection and additional numerical noise when
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waves cross boundaries between elements.

4.2.4 Damping

Since the model aims to simulate real behavior as closely as possible, introducing

damping is essential to replicate the energy dissipation that occurs in actual scenarios.

In LS-DYNA, two main options are relevant to our study: stiffness-weighted damp-

ing and mass-weighted damping. Stiffness-weighted damping is introduced through

Rayleigh damping, which accounts for energy dissipation based on the material stiff-

ness and mass properties. Mass-weighted damping, on the other hand, is applied

globally to the nodes as a mass-weighted nodal damping, providing a damping effect

proportional to the mass of the structure.

The damping matrix on Rayleigh damping can be defined as [17]

C = αM + βK (4.15)

Where C, M and K are the damping, mass and stiffness matrices, respectively and

the constants α and β are the mass and stiffness proportional damping constants [17].

While for the mass proportional damping, the damping matrix is defined as [17]

C = 2ωiξiδij (4.16)

Where ωi is the i-th frequency and ξi is its corresponding modal damping param-

eter.

Generally, stiffness-proportional damping is more effective at higher frequencies

and is orthogonal to rigid body motion. In contrast, mass-proportional damping is

more effective at lower frequencies and will damp rigid body motion [17].

4.2.5 Mesh Control

In the field of finite element analysis, the quality of the mesh is of prime impor-

tance. Effective mesh control is crucial as it directly influences the accuracy, efficiency,

and reliability of a model. A well-constructed mesh accurately represents the physi-

cal characteristics of the modeled structure. To ensure the creation of a high-quality

mesh, various parameters must be carefully considered and optimized. These param-

eters determine how well the mesh obeys to the geometry of the structure, how it
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behaves under load, and how accurately it represents the physical phenomena being

studied. Knupp [25] defines mesh quality as ”the characteristics of a mesh that permit

a particular numerical partial differential equation (PDE) simulation to be efficiently

performed, with fidelity to the underlying physics, and with the accuracy required for

the problem”. The upcoming sections will detail these critical parameters.

Element Jacobians

The element Jacobians, which represent the determinant of the Jacobian matrix,

contain critical information about the volume, shape, and orientation of the elements.

These Jacobians provide insight into the volume distortion when compared to an

ideally shaped reference element [26]. A negative Jacobian indicates that the element

is inverted, and will not enable the analysis to continue since stability at element

level involves the requirement of Jacobian positiveness and rank sufficiency [27]. The

criteria established by literature regarding analysis via element Jacobians, states the

following:

- They be positive in value [27], [25]

- Preferably greater than 0.2 in magnitude [28]

- The majority of element Jacobians should fall above 0.7 in magnitude [28]

Aspect Ratio

Aspect ratios (AR) are a key geometrical metric used to evaluate the shape quality

of finite elements. The computation of the aspect ratio varies depending on the type

of element being analyzed. In this study, for tetrahedral elements, the aspect ratio

is determined by dividing the length of the longest edge by the minimum altitude of

the smallest side figure 4.3. For optimal model accuracy, the following considerations

are to be followed

- The most accurate solutions are achieved when the aspect ratio is close to unity

[29]

- The majority of elements should have aspect ratios between 1 and 4 [30]

- Elements with the poorest aspect ratios should be positioned away from critical

areas of interest to minimize their impact on the results [26]
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Figure 4.3: Tetrahedral Aspect Ratio Calculation

Skewness

Skewness is measured by the angle related to two lines that passes through the

midpoints [31]. It is one of the primary ways to define element quality and can be

checked by the comparison with an idea equilateral element [32]. For the evaluation

of the parameter, the following considerations are to be followed

- Maximum value is unity

- Minimum value is zero

- All values should be below 0.95

- The majority should be below 0.5 [32]

4.2.6 Time step

Courant-Friedrichs-Lewy Condition

Defining the time step is crucial in finite element simulations as it directly impacts

both the accuracy and stability of the results. Richard Courant, Kurt Friedrichs,

and Hans Lewy demonstrated that for an explicit numerical scheme, stability and

convergence to the correct solution depend on meeting the Courant-Friedrichs-Lewy

(CFL) condition [33]. This condition specifies that the time step must be small enough

relative to the spatial discretization and wave speeds within the model to ensure that

information propagates correctly through the computational domain, 4.15.

∆t ≤ CCFL
∆x

v
(4.17)

Where v is the magnitude of the velocity of interest, ∆t is the time step, ∆x is the
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length interval, typically the element length, and CCFL is the Courant number. In

other words, the CFL condition gives an upper limit of the time step, referenced to

the wave propagation over a defined FE length. The value assumed of the Courant

coefficient is typically 1, but it may be lower in order to obtain higher accuracy.
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Chapter 5

Finite Element Model

5.1 Finite Element Models

This chapter outlines the criteria and parameters selected for the creation of the dif-

ferent developed models, highlighting the considerations that influenced these choices.

Additionally, the methodology and analysis procedures followed in the model’s devel-

opment are presented, offering a comprehensive view of the steps taken to ensure the

accuracy and reliability of the simulations.

5.1.1 Geometry

The first model’s geometry is based on a typical reinforced concrete beam with a

rectangular cross-section measuring 200 millimeters in width and height. A steel ten-

don with a diameter of 12 millimeters is included within the beam 50 millimeters from

the centroid. Additionally, two steel plates at each face of the prestressed reinforced

concrete beam with a diameter of 80 millimeters and a thickness of 10 millimeters

were incorporated to limit slippage between concrete and steel to the second stage

of the analysis (explicit analysis, see Section 3.2.1). Detailed section and geometrical

properties of the beam and tendon are illustrated in Figure 5.1.

In contrast, the second model features a larger geometry, with a total length of

20 meters. This model does not include the steel plates used in the first model.

Instead, the slip between steel and concrete is controlled by merging the nodes at the

boundary between the steel and concrete sections during both the implicit and explicit

phases of the analysis. This approach adapts to the condition of a larger model while

significantly reducing the amount of unknowns introduced into the system.
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The geometry of Model 1 is shown in Figure 5.1, where the geometrical properties

of both the steel are displayed. The geometry of Model 2 is not illustrated due to its

substantial similarity to the first model.

(a)

(b)

Figure 5.1: Geometrical properties of the prestressed RC beam

As shown in Figure 5.1b, the cut is introduced at 1/3 of the length from the left

end, geometrically, at this point, a discontinuity in terms of parts is introduced. In

other words, the steel tendon is divided in two different parts connected by a contact

as defined in Subsection 5.1.4.
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5.1.2 Mesh Generation

The mesh for first the model’s geometry presented in the previous subsection 5.1.1,

was generated using ANSYS CAD system SpaceClaim, selected for its advanced mod-

eling capabilities. As established in 4.2.5, tetrahedral elements were employed across

all model components due to their superior adaptability to complex geometries. Based

on the criteria established in the Element Size subsection (see 4.2.3), and considering a

maximum frequency of interest of 20,000 Hz with an accuracy factor of 10, Equation

4.14 indicates that the maximum allowable element size to capture that frequency

should be no more than 25 millimeters, the selected size was 22 millimeters.

Given the steel tendon’s diameter of 12 millimeters, applying a 25-millimeter ele-

ment size was unrealistic. To address this, a constant element size of 6 millimeters was

used for the steel tendon (see 5.2c) to ensure accurate representation. Consequently,

the concrete mesh was designed to be consistent, with element sizes gradually increas-

ing from 6 millimeters at the contact elements with the steel tendon to 22 millimeters

at the outer face of the concrete (see 5.2a, 5.2b). This way the accuracy needed for

the interaction between the different material parts is maintained while optimizing

the overall mesh for computational efficiency.

(a) (b)

(c) (d)

Figure 5.2: Meshed geometry - Model 1
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Additionally, the steel plates, which serve as supporting elements, were primarily

intended to control slip behavior during the implicit analysis rather than to contribute

significantly during the explicit run. Therefore, a constant mesh size of 6 millimeters

was chosen for the plates, using tetrahedral elements to maintain consistency across

the model (see 5.2d). This size was selected to balance the need for mesh uniformity

with the plate’s role in the simulation.

In the second model, due to its larger geometrical size, it was not possible to

create a mesh with the same level of refinement as in the first model, figures 5.3b

and 5.3b show the meshed geometry. The total number of elements and nodes in a

mesh with similar characteristics would not allow a model of that size to run efficiently.

Therefore, a maximum concrete element size of 35 millimeters was used, with the steel

tendon elements set at 8 millimeters. Also, the use of steel plates was omitted, instead,

nodes at the section boundary between concrete and steel were merged, reducing the

amount of contacts in the model, thus the complexity of it.

(a) (b)

Figure 5.3: Meshed geometry - Model 2

5.1.3 Material Properties

The material type selected for the models, both for concrete and steel parts, is an

elastic material, specificallyMAT 001 in LS-DYNA (refer to Appendix A for the exact

definition of the command). To accurately define this material, three key properties

were specified: mass density, Young’s modulus, and Poisson’s ratio. These properties

are essential for characterizing the elastic behavior of the material in the model. The

specific values used for these properties are detailed in Table 5.1, and 5.2 below.
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Table 5.1: Concrete material characterization

Parameter Value
Mass Density [ρ] 2400kg/m3

Young’s Modulus [E] 19.4GPa
Poisson’s ratio [ν] 0.1414

Table 5.2: Steel material characterization

Parameter Value
Mass Density [ρ] 7750kg/m3

Young’s Modulus [E] 200GPa
Poisson’s ratio [ν] 0.3

5.1.4 Contact Definition

As outlined in Subsection 4.2.1, two primary contact types were defined within the

models, defined to the specific material connectivity and desired behaviors. The first

type is the kinematic constraint contact, which is commonly used for tying entities in

contact. In this model, the specific contact type employed was (refer to Appendix A

for the exact definition of the command):

CONTACT TIED SURFACE TO SURFACE CONSTRAINED OFFSET

The second type is the penalty-based contact, which allows the inclusion of a failure

criterion within the contact definition (see 4.2.1, Penalty-Based Method). The specific

contact type utilized for this purpose was (refer to Appendix A for the exact definition

of the command):

CONTACT AUTOMATIC SURFACE TO SURFACE TIEBREAK

On one hand, the kinematic constraint contact was applied between the two defined

steel tendons. To simulate tendon breakage, this contact definition was designed to

die by its control parameter Death Time at a given time of the simulation, so the

modeling of the steel tendon was realized as two separate bodies connected by this

contact definition. On the other hand, the penalty-based contact was implemented to

simulate slippage behavior at the concrete-steel interface. This approach included a

failure criterion based on the parameters specified in Table 5.3, allowing for a more

realistic representation of the interface behavior between the two defined materials.

With the defined parameters stated in table 5.3, the bilinear cohesive law for the

contact for both failure modes is the one shown in Figure 5.4.
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Table 5.3: Tiebreak contact characterization

Parameter Value
Normal failure stress [NFLS*] 2 MPa
Shear failure stress [SFLS*] 2 MPa
Normal energy release rate [ERATEN*] 1000J/m2

Shear energy release rate [ERATES*] 1000J/m2

Normal Stiffness [CN*] 2000MPa/m
Shear Stiffness [CT*] 2000MPa/m

* Parameter as defined in LS-DYNA control cards see in [17]

Figure 5.4: Bilinear cohesive law

The contact definition plays a critical role in the simulation by also determining

the exact moment of the steel tendon rupture during the explicit run. This is achieved

through the death time parameter within the contact type definition. The steel ten-

don was modeled as two independent geometries (Steel A and Steel B) as shown in

Figure 5.1b connected by a kinematic constraint contact (tied contact). The release

of this contact (i.e., contact death) is specified at a predetermined time, triggering

the rupture event (see Appendix A for details on the ’DT’ parameter in contact defi-

nition).

5.1.5 Prestressing Load

A prestressed concrete element is defined by the prestressing load applied to its

steel tendons, which is then transferred to the concrete. This prestressing load can

be achieved through the methodologies discussed in Section 1.2. In the developed

model, the application of the pretensioning load was implemented using the LS-DYNA

command (refer to Appendix A for the exact definition of the command):

42



INITIAL STRESS SOLID SET

This command primarily requires as input parameter the stresses σ in the different

directions for a given set of finite elements. For the developed model, the relevant

stress direction referred to in the reference system was σzz. Referring to the theory

detailed in Section 1.2, and considering that the prestress in the steel tendon is ap-

proximately 80% of its strength, Table 5.4 shows the specific value of the prestressing

load used in the model.

Table 5.4: Prestressing load definition

Parameter Value
Prestressing load [σzz] 800 MPa

5.1.6 Damping Definition

Throughout the simulations, various values of the damping coefficients and different

types of damping (stiffness and/or mass-weighted damping) were applied. The same

geometry and conditions were used across different cases, with varying types and

levels of damping for the first model, to enable comparison and contrast with real

data. Table 5.5 summarizes the different types of damping introduced in the first

model and their respective damping coefficient values ζK or ζM if is Rayleigh or mass-

weighted damping, respectively. As for the second model, just one case of damping

definition was utilized, equal to case 7 of the first model.

Table 5.5: Damping types and values for different models

Case Damping type Value (ζK, ζM)
1 None 0%
2

Rayleigh
2%

3 4%
4

Mass-weighted
2%

5 4%
6

Both
2% + 2%

7 4% + 4%

The application of them was introduce by two different comands. In one hand, the

Rayleigh damping was implemented with the command (refer to Appendix A for the

exact definition of the command):

DAMPING PART STIFFNESS
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The second type, mass-weighted damping, was introduced using the command

(refer to Appendix A for the exact definition of the command):

DAMPING GLOBAL
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Chapter 6

Results

6.1 Overview of the Analysis

This chapter presents the results obtained from the finite element simulations, using

LS-DYNA. The simulations where conducted in two distinct phases: an initial implicit

analysis (see Section 3.2.2) followed by an explicit analysis (see section 3.2.1). The

implicit phase aimed to apply the prestressing load to the steel tendon, as described in

Section 5.1.5. This phase, typically used for static or quasi-static conditions, ensured

that equilibrium was reached between the steel tendon and the concrete, with the

tendon in tension and the concrete in compression.

Due to the nature of prestressed concrete technology and the behavior to be an-

alyzed, it was necessary to transition from an implicit to an explicit analysis. The

implicit analysis, which involves longer analysis times, was used to reach an equili-

brated solution. Upon achieving this state, a dynain file within LS-DYNA containing

the equilibrated solution was generated. This file served as the starting point for

the explicit analysis, which is commonly used to simulate dynamic, and short-period

events, such as the work of the present study, that occur over a very short period

(tenths of milliseconds). The explicit analysis allows for accurate modeling of these

rapid events, which would be impractical to achieve with a static or quasi-static ap-

proach.

To ensure a seamless transition from the implicit to the explicit analysis, it was

crucial to maintain consistency in the parameters between both stages. The analysis

began with an undeformed geometry to which the initial prestress was applied. Af-

ter the implicit analysis, a deformed equilibrated configuration was achieved, which

then served as the initial state for the explicit analysis. A short verification period
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was included at the beginning of the explicit analysis to confirm that the geometry

was truly in equilibrium, with minimal vibrations. It was also essential to maintain

consistent element formulations and contact definitions between the two phases. Any

changes to these parameters could introduce perturbations, leading to incorrect data

and unrealistic behavior in the simulation. After verifying equilibrium, the explicit

phase proceeded by introducing a cut through the ’death’ of the contact tying the two

independent steel geometries, as explained in Section 5.1.4 (Contact Definition).

6.2 Type of Results and Relevance

The primary results of interest from this model are the nodal accelerations, as

these are directly comparable to experimental datasets obtained from accelerometers.

Acceleration was chosen as the main data type because it is a critical indicator of dy-

namic response, providing insights into how the structure reacts to sudden changes.

Acceleration data is particularly useful for structural health monitoring, as it can

help detect damage, assess the integrity of the structure, and predict potential fail-

ures. Furthermore, the experimental datasets available for comparison were collected

using accelerometers, making acceleration the most relevant metric for validating the

numerical model.

To capture a representative sample of the dynamic response of the beam, a finite

number of key nodes were selected along the boundaries of both the concrete and steel

components for both of the realized models. For the first model (shortest one) three

nodes were chosen on the concrete boundary, the first one located 0.5 meters from

the cut, at the middle of the beam length, then the other two were evenly spaced 0.75

meters from each other. As for the steel boundary, a node 1.25 meters from the cut

was selected. This selection was made to observe how the stress waves propagate and

reflect along the length of the beam, taking into account factors like wave reflections,

attenuation due to damping, and other dynamic effects. Placing nodes at regular

intervals allows for a clearer understanding of these wave behaviors over the entire

length of the beam. Additionally, selecting at least one node near the cut location

was essential to closely monitor the immediate effects of rupture phenomena.

In the second model, three nodes were also selected for the concrete boundary: the

first one 1 meter from the cut, the second 2.5 meters from the cut, and the third 4

meters from the cut. In steel one node was analyzed, selected 2.5 meters from the

cut. The primary motivation for developing two different models was to analyze and

observe the variation in results when fewer wave reflections are present. Since the
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length of the first model is significantly shorter than that of the second model, it

experiences numerous wave reflections from the geometry section boundary during

the analysis time, given the speed of the propagating wave. In contrast, the larger

model, due to its increased size, involves very few reflections during the same analysis

period.

The analysis referred to the first geometry also included multiple models with

varying levels of damping introduced into the system. Damping is a crucial parameter

as it affects wave propagation, energy dissipation, and overall structural response. To

evaluate the impact of damping, simulations were performed with different damping

ratios and different damping types, as specified in section 5.1.6 in table 5.5. These

variations in damping were particularly important to compare against experimental

data and understand how different damping conditions affect the overall accuracy and

reliability of the simulation.

6.3 Results

The results presented below focus on three key concrete nodes, as shown in Fig-

ure 6.1 for the first Model and one node for Model 2. These results are primarily

in terms of nodal accelerations, providing crucial insights into the dynamic response

of the structure. In addition to nodal data, global model data will also be included

to compute the velocity of the primary waves propagating through the steel tendon,

which serves as an additional means to verify the accuracy of the model. Also, data

related to slippage between concrete and steel after the steel tendon rupture is pre-

sented. Subsequent chapters will go deeper into model validation, addressing any

discrepancies between the simulated and experimental results.

Figure 6.1: Points for data recollection - Model 1
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6.3.1 Nodal Accelerations - Concrete Boundary

This section presents the results of the nodal acceleration data in the concrete

boundary nodes from the finite element simulations. The results are presented in three

formats to facilitate a comprehensive understanding of the data: the time-domain

representation of the nodal acceleration signals, their corresponding frequency-domain

representation obtained through the Fourier transform and the short time fourier

transform representation to evaluate the evolution of frequency over time. Due to the

extensive data collection, only a selected portion of the results is presented below as

representative examples. For a complete set of graphs and data extracted from all

the models, please refer to Appendix B.

Model 1

Images from 6.2 to 6.8 correspond to the results obtained from Model 1 from the

same concrete node, positioned 0.5 meters from the cut, for varying values of damping.

Figure 6.2: Acceleration of concrete node A, ζ = 0% - Model 1
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Figure 6.3: Acceleration of concrete node A, ζK = 2% - Model 1

Figure 6.4: Acceleration of concrete node A, ζK = 4% - Model 1
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Figure 6.5: Acceleration of concrete node A, ζM = 2% - Model 1

Figure 6.6: Acceleration of concrete node A, ζM = 4% - Model 1
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Figure 6.7: Acceleration of concrete node A, ζM = 2%, ζK = 2% - Model 1

Figure 6.8: Acceleration of concrete node A, ζM = 4%, ζK = 4% - Model 1

From the presented results, a clear trend is evident, with two main aspects de-

pending on the damping type definition. First, in the undamped result, it is apparent

that very little attenuation is present. As stiffness-proportional damping increases,

higher frequencies tend to be filtered, and some vibration attenuation is observed.

In contrast, as mass-proportional damping increases, lower frequencies are filtered,

resulting in a higher degree of attenuation. This is consistent with the fact that the

dominant frequencies for the system’s vibration tend to be lower ones, meaning this

type of damping has a more significant effect on energy dissipation. This behavior

aligns with the theoretical understanding that stiffness-proportional damping primar-

ily affects higher frequencies, while mass-proportional damping influences the lower

ones.
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Model 2

Images 6.9 to 6.11 illustrate the results for the larger Model, for these results, the

analysis time is equal as for Model 1, and the damping type is the same as for the

last case, meaning 4% for both stiffness and mass proportional damping. As for the

position of the nodes, relative to the position of the cut, node A is located 1 meter

away, node B 2.5 meters, and node C 4 meters.

Figure 6.9: Acceleration of concrete node A, ζM = 4%, ζK = 4% - Model 2

Figure 6.10: Acceleration of concrete node B, ζM = 4%, ζK = 4% - Model 2
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Figure 6.11: Acceleration of concrete node C, ζM = 4%, ζK = 4% - Model 2

Some observations can be made from the results of the developed larger model.

Considering that the purpose of this model was to be able to achieve a cleaner wave

without reflections from the section boundary for a significant period of time, it can

be seen in the time-domain representation that there is a moment in which the wave

reaches the node in analysis, followed by a dissipation phase and once again the wave

which has traveled from the point in analysis to the section boundary comes back, this

is evident due to the amplitude increase of the peaks past the attenuation phase. As

for the frequency-domain plots the results are coherent with the smaller model given

that the concentration of dominant frequencies is primarily focused on the lower ones.

6.3.2 Nodal Accelerations - Steel Boundary

The present section displays the nodal data from the selected nodes on the steel

boundary for both developed models. As for Model 1, similar to the previous section,

data will be presented for a single node positioned 1.25 meters from the cut, in

total, seven datasets are shown each one representing each of the submodels defined

by different damping definitions. Data from Model 2 is referred also to just one

node located 2.5 meters from the cut. Contrary to the displayed datasets from the

concrete boundary, since steel acts as a waveguide, this section will only display the

accelerations in the longitudinal direction (Z-axis for the defined coordinate system).

Model 1

Figures 6.12a and 6.12b summarize the data collected from the node of Model 1

for all the different cases of damping used. The data is displayed both in time and

53



frequency-domain.

(a)

(b)

Figure 6.12: Acceleration of steel node - Model 1

Regarding the acceleration data from the steel node, several interesting observa-

tions can be made. First, there is a clear distinction between waves propagating

through the steel compared to those in the concrete. Since the steel tendon acts

as a waveguide, it is possible to observe each individual wave passing through the

node under analysis. Furthermore, in the absence of damping, the wave maintains

high-frequency components for a longer duration. As stiffness-proportional damp-
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ing is introduced, higher frequencies are gradually suppressed, with a value of 4%

being the most effective in suppressing the higher frequencies of the system. In con-

trast, the introduction of mass-proportional damping has a minimal effect on the

higher frequencies. Also, the spectrogram provided by short time Fourier transform

(STFT) offers insightful information, near the time of the cut is observable that not

just the lower frequencies are the ones with the most power spectral density but a

broad range of frequencies are being exited. Finally, the combination of both mass

and stiffness-proportional damping at 4% provides the most stable response in the

frequency domain.

Model 2

As for Model 2, figure 6.13 displays the results obtained for the node positioned

2.5 meters from the cut on the steel boundary.

Figure 6.13: Acceleration of steel node - Model 2

Given the larger size and, consequently, the greater distances the propagating wave

must travel before reflecting back, it is easier to observe each individual wave as it

reaches the node under analysis. Since the position of the node is closer to the cut than

to the section boundary, it is clear when the wave passes through the node, allowing

us to distinguish whether the reflection is caused by the section boundary or the steel

cut location. The first peak represents the initial instance when the wave reaches the

node coming from the cut location. Subsequently, the wave travels through the steel

tendon twice the distance from the node to the section boundary, reaching the node

again (evident in the second peak). It then continues traveling to the cut location

and returns (a distance of 5 meters), which is indicated by the third peak, closely

separated from the second peak by a few milliseconds.

As a means of validating the model, it is possible to compute the velocity of the

wave based on the traveled distance and the time it takes to reach the node (derived

from the different peaks and node location), and compare it to the theoretical primary

wave velocity computed from equation 3.22 for the steel material properties.
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vptheoretical =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
= 5890m/s (theoretical) (6.1)

vpnumerical
=

2× (Zend − Znode)

tpeak2 − tpeak1
=

2× (20− 12.5)

0.00415− 0.00152
= 5700m/s (numerical) (6.2)

The theoretical primary wave velocity calculated from equation 3.22 for the steel

material properties is 5890 m/s, while the results from the numerical model indicate

5700 m/s. There is a slight discrepancy between the theoretical and numerical val-

ues, which falls within an acceptable range. Considering factors such as numerical

approximation, time step used, and mesh discretization, the difference between the

computed values remains at around 3%. Overall, the close numerical relation between

these values supports the accuracy of the model and its reliability in representing wave

propagation.

Additionally, something more evident from the results of the larger model compared

to the smaller one is the presence of residual higher frequencies, noticeable in the

frequency domain plot of figure 6.13. A deeper analysis revealed that these residual

frequencies originate from the transient effects caused by the initial release of energy

due to the steel tendon’s rupture, also observable from the STFT spectrogram. In

figure 6.14, which represents a section of the data presented in figure 6.13 without

considering the first arrival of the wave to the node, the results indicate that this first

peak is responsible for generating the residual higher frequencies, just as the STFT

spectrogram shows, coming from the immediate and transient response of the steel

rupture.

Figure 6.14: Trimmed acceleration of steel node - Model 2

6.3.3 Slippage behavior - Steel separation

This section is dedicated to evaluating the slippage behavior in the contact between

steel and concrete for both models. Displacement data is important as it allows us to

verify if the contact definition between concrete and steel has been properly defined,
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and whether the values from the numerical simulations are coherent with the expected

values from the real phenomenon. Figures 6.15 and 6.16 display the results for the

two developed models.

(a)

(b)

Figure 6.15: Steel parts separation - Model 1
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(a)

(b)

Figure 6.16: Steel parts separation - Model 2

Based on the results presented above, both models show similar values of maxi-

mum separation between the cut steel tendons, roughly averaging 1 centimeter. This

outcome is consistent with the expected values from real behavior, suggesting that

the contact definition between material parts was well defined. Even though the sizes

of both models differ significantly, the separation between steel parts primarily de-

pends on the anchorage length. This is because not all of the contact length between

material parts will be equally affected by the rupture phenomenon. Referring to the

bilinear cohesive law defined in figure 5.4, near the cut, the contact behaves plastically

(2nd phase of the bilinear behavior), which is where slippage occurs, while the rest of

the contact behaves elastically (1st phase of the contact), with no plastic deformation
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or slippage. Therefore, if the contact length is sufficiently large to develop the neces-

sary anchorage, enlarging the problem in the longitudinal axis should not significantly

affect the separation between steel tendon parts.
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Chapter 7

Model & Data Validation

7.1 Mesh

As stated in Section 4.2.5, mesh control is of primary importance in ensuring that

the model accurately represents real-world behavior. From the parameters defined in

the referenced section, we can validate that the model’s mesh is appropriately defined.

The quality of the mesh is crucial because it directly influences both the geometric and

physical characteristics of the problem. If the mesh parameters significantly deviate

from the recommended thresholds, it is a clear indicator that the results may be

inaccurate or unreliable.

7.1.1 Mesh Control Parameters Verification

Two key parameters are defined for evaluating the mesh and element quality: the

element Jacobians and the aspect ratio. The element Jacobians provide essential

information about the shape and geometry of the mesh elements, helping to detect

any distortions that could affect the simulation’s accuracy. The aspect ratio serves as

a metric to assess the shape quality of the elements, ensuring they meet the required

standards for reliable modeling.

Elements Jacobians

Following the recommended values for element Jacobians described by the litera-

ture, specified in Section 4.2.5, for the realized mesh, Figure 7.1 show the results for

the element Jacobians.
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Figure 7.1: Element Jacobians

It is also shown using the histogram referenced in Figure 7.2 the total amount of

elements for each value, as seen, all of the elements Jacobians belong to the value of

unity which states that the mesh evaluated by this means is of good quality.

Figure 7.2: Element Jacobians Histogram

Aspect Ratio

The verification of the aspect ratio for the different elements of the mesh was

realized once again following the criteria stated in the different literature, expressed

in Section 4.2.5. Figure 7.3 shows the different results obtained for the different values

of aspect ratio of the elements, specifically Figure 7.3a shows the elements with values
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of aspect ratios close to 1.6, Figure 7.3b shows aspect ratios of 2.5, and Figure 7.3c

shows elements with aspect ratios above 4.

(a) (b)

(c)

Figure 7.3: Aspect ratio results

Similarly to the analysis done for element Jacobian verifications, it is presented in

Figure 7.4 a histogram in which is posible to apreciate the different values of aspect

ratios with its corresponding number of elements

Figure 7.4: Aspect Ratio Histogram

Consequently is is verified the mesh quality by means of the pre-established criteria,
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99% of the element’s aspect ratios are below the value of 4, where 73% have aspect

ratios of 1.6, and less than 1% are above 4.

Skewness

The skewness value should be near zero for a better-defined mesh and below 0.9 in

every case, for best accuracy the majority of the elements should have values below 0.5.

Figure 7.5 shows the results for the different threshold values. Figure 7.5a illustrates

the elements with skewness below 0.5, Figure 7.5b elements with more than 0.5, and

Figure 7.5c shows elements with skewness values above 0.65.

(a) (b)

(c)

Figure 7.5: Skewness results

Finally, the data is also presented in the histogram illustrated in Figure 7.6.
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Figure 7.6: Skewness Histogram

The total amount of elements with skewness values above 0.5 is 2.2%, and 58% of

the total number of elements have skewness values below 0.25, which is sufficient to

establish the validation of the model in terms of mesh shape and geometry.

7.1.2 Mesh Sensitivity

Mesh sensitivity analysis is a critical aspect of FEA, which involves evaluating

how the results of a simulation vary with changes in the mesh size and configuration.

The accuracy, convergence, and computational cost of FEM solutions heavily depend

on the choice of mesh elements, their size, and the refinement strategy employed.

Mesh sensitivity is directly related to with the influence of numerical diffusion on the

solution [34] which can be understand as the variation from the simulation results

compared to the real physical system.

Mesh sensitivity analysis is essential to ensure the reliability and accuracy of FEM

results. The discretization of a continuous domain into finite elements introduces

numerical errors that can affect the solution. These errors are influenced by the

element type, size, shape, and distribution within the mesh. Numerical diffusion needs

to be minimized by either refining the mesh and/or using higher-order discretization

schemes [34].

For the present study, since element size is directly correlated to wave propagation

and wavelength resolution (see section 4.2.3) a variation in the mesh size was applied

in order to appreciate how the utilization of a finer mesh affects the simulation results.
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A model following the same parameters from them ones used to obtain the results

was made with the distinction of the size, going from 35 milimeters of maximum size

at the boundary of the concrete to 15 milimeters, in this way a reduction of 55%

was realized for the maximum element size. As for the steel, element size was varied

between models between 8 to 6 milimeters. In total 6 models were developed Table

7.1 specified the considerations for each one of them.

Table 7.1: Sensitivity Analysis Models

Model
Element Size [mm] Total
Concrete Steel Elements Nodes Running Time

1 35 8 61,497 14,854 51 min
2 35 6 75,111 18,202 1 hr 18 min
3 25 8 90,241 20,716 1 hr 5 min
4 25 6 103,629 24,029 1 hr 35 min
5 15 8 264,309 54,086 2 hr 20 min
6 15 6 277,020 57,280 3 hr 46 min

The comparison analysis between models will be done regarding system energy and

acceleration at points equally spaced from the cut for all the models.

First, acceleration data is ploted, figures 7.7 and 7.8 show the data in time and

frequency domain for all the cases considered.

Figure 7.7: Acceleration Models 1, 2 and 3
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Figure 7.8: Acceleration Models 4 and 5

From the model’s data collection, a summarized table with the relevant results

is shown, the total energy referred to in table 7.2 is computed approximating the

area under the time-history curve with trapezoidal rule, and the root mean square

amplitude represents a measure to determine the magnitude variation between signals.

Table 7.2: Time Domain Sensitivity Results

Model Max Amplitude Time at Max (s) RMS Amplitude Total Energy

1 10973.0 0.00212 2832.4 88376
2 11722.0 0.00213 2861.0 90131
3 9957.5 0.00299 2338.7 60246
4 9877.4 0.00298 2394.6 63162
5 7362.8 0.00299 1980.8 43247
6 7413.6 0.00299 2075.8 47474

From the time domain results, key aspects between models are present. First, the

variation between max amplitude and RMS amplitude values, with the coarser Models

1 and 2 having the greater ones signifying a greater degree of energy in the system.

In contrast, as mesh size decreases, in Models 5 and 6 a clear reduction in amplitude

is observed, highlighting how finer meshes lead to a more accurate representation of
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the system’s energy, due to its limited resolution, coarser meshes tend to overestimate

the system’s energy.

Table 7.3: Frequency Domain Sensitivity Results

Model Dominant Frequency (Hz) 2nd Dominant Frequency (Hz)

1 5798.2 3834.3
2 5818.9 3848.0
3 5793.8 3831.4
4 5819.8 3848.6
5 5798.4 3834.4
6 3848.7 5819.9

From the frequency domain analysis, an interesting pattern arises. The relation

between mesh size and dominant frequency is evident, coarser meshes such as Model

1 and 2 tend to both intensify higher frequencies and diminish or not accurately

capture lower frequencies. This pattern is appreciable as higher frequencies tend to

be the dominant ones for coarser meshes while lower frequencies are for the finer mesh

models. As the element size is reduced the second dominant frequency becomes the

dominant one. this shift highlights the capability of finer meshes to better represent

and capture the lower frequency content of the system.

Finally, the systems energy data are also plotted, from figure 7.9 to 7.14 the relevant

energy components variation for each model are displayed.
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Figure 7.9: Energy Components Variation - Model 1

Figure 7.10: Energy Components Variation - Model 1
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Figure 7.11: Energy Components Variation - Model 1

Figure 7.12: Energy Components Variation - Model 1
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Figure 7.13: Energy Components Variation - Model 1

Figure 7.14: Energy Components Variation - Model 1

As a comparative way, the plots between the coarser model (Model 1) and the finer
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one (Model 6) are plotted superposed in figure 7.15.

Figure 7.15: Energy Components Comparison - Model 1 and 6

From the energy components comparison between Model 1 and Model 6, significant

differences are evident. Concerning the kinetic energy plot, the coarser Model shows

higher initial peaks indicating its tendency to retain and amplify kinetic energy. As for

the total energy, Model 1 shows a faster energy decay than Model 6, which is consistent

with higher numerical dissipation and less controlled energy decay, this pattern is also

evident in the damping energy plot. Finally, the internal energy plot further supports

this trend. As seen in Table 7.2 Model 1 amplifies the energy, contributing to the

observed shift in the system’s energy and the higher less controlled energy decay.

7.2 Energy Balance

The present section focuses on verifying the developed models through an energy

balance approach. Ensuring that the models aligns with the fundamental principles

of physics is essential to validating their accuracy and reliability. The energy balance

method is a crucial step in model verification as it assesses whether the system’s en-

ergy remains consistent throughout the simulation, indicating that the model behaves

as expected under the conditions imposed. This chapter presents the energy data ob-
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tained from the numerical simulations and discusses how these results support the

validity of the model. Given the nature of ensuring precise model behavior results

presented in this section will be limited to the larger model, Model 2, being the coarser

one.

Model assurance verification searches to confirm that the model behaves the fol-

lowing the basic laws of physics [23], for this, the total energy must be checked for

balance, to be certain that no major inconsistencies in the energy of the system are

present on the model [26]. This can be achieved by considering a variation less than

10% on the total energy of the system [23].

Energy data of the system over time is summarized in a condensed table, referenced

in table 7.4.

Table 7.4: Energy data

Time (s) Kinetic Internal Damping Sliding Total

1.51e-05 6.69 -117.26 0.05 0.15 -110.37
1.35e-03 89.35 -578.79 2.18 373.49 -113.77
2.68e-03 36.61 -654.49 5.62 498.15 -114.11
4.01e-03 45.63 -503.28 9.05 334.12 -114.49
5.34e-03 45.53 -506.55 12.03 334.35 -114.64
6.67e-03 26.65 -637.76 14.91 481.46 -114.74
8.00e-03 43.45 -602.32 17.34 426.65 -114.89
9.33e-03 19.91 -470.91 19.80 316.23 -114.98
1.07e-02 47.08 -579.80 22.31 395.37 -115.04
1.20e-02 20.90 -648.27 24.74 487.49 -115.13

From the extended data collected from the model, the different energy components

are plotted in figure 7.16 and 7.17.
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Figure 7.16: Energy components - Model 2

Figure 7.17: Energy Balance - Model 2

Several key observations can be made from the energy data. First, the kinetic
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energy initially remains low, indicating minimal displacement, but it significantly

increases after the introduction of the cut, as expected. Subsequent, energy levels

noticeable start decreasing returning to lower levels, this behavior is coherent with

the transient effect given by the introduction of the cut. This rise reflects the dynamic

response of the system.

Secondly, the internal energy remains negative, which aligns with the model’s be-

havior, as the system is primarily in a compressive state, releasing stored strain en-

ergy, also the internal energy oscillating by a lower value rather than the initial one

follows the real behavior, as some permanent deformations are present even though

the material is elastic. The nature of the separation of the steel tendons induces an

unrecoverable deformation.

On the other hand, the damping energy, which consistently shows positive values

contributes decreasing the internal energy as the event proceeds. The sliding energy,

related primarily to the cohesive contact behavior defined in Section 5.1.4, represents

the energy loss due to relative movement between contact interfaces. Lastly, the

total energy, resulting from the combination of these components, remains primarily

negative, driven by the internal energy but stays relatively constant, without spikes

or unusual behavior, the overall variation of total energy of the system is less than

5% which confirms that the system behaves in a physically coherent manner.

7.3 Data Validation

The results are validated through comparison with experimental data. This data

was obtained by physically cutting a tendon in a prestressed reinforced concrete beam,

with accelerometers placed approximately 4.5 meters from the cut to collect the data.

The measurements were processed as an audio signal. to be able to compare them

with the numerical data, the same format as the one used in Section 6.3 is presented.

7.3.1 Experimental Results

From Figure 7.18 to 7.27 experimental results are displayed.
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Figure 7.18: Acceleration - Experimental dataset 1

Figure 7.19: Acceleration - Experimental dataset 2

Figure 7.20: Acceleration - Experimental dataset 3

Figure 7.21: Acceleration - Experimental dataset 4
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Figure 7.22: Acceleration - Experimental dataset 5

Figure 7.23: Acceleration - Experimental dataset 6

Figure 7.24: Acceleration - Experimental dataset 7

Figure 7.25: Acceleration - Experimental dataset 8
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Figure 7.26: Acceleration - Experimental dataset 9

Figure 7.27: Acceleration - Experimental dataset 10

From the real datasets, some relevant observations are noticeable. First, the time

it takes for the signal to significantly reduce is around 10 milliseconds. Dominant

frequencies are located in the lower frequency range, and for most of the datasets, a

highly dominant frequency is present. There are some high-frequency components,

but they are significantly lower in magnitude compared to the lower frequencies.

7.3.2 Comparison Between Experimental and Numerical Data

Given the discrepancies between geometries, boundary conditions, and other fac-

tors in the numerical models compared to the experimental real case, a direct quanti-

tative comparison could lead to misleading conclusions. for this reason, a qualitative

approach offers a more suitable means of achieving a representative comparison.

Building on this qualitative approach, several similarities between the numerical

damped cases and experimental data are apparent. Both share predominant frequen-

cies in the low-frequency range (i.e. between 0 and 20,000 Hz). However, while the

numerical results display a broader range of predominant frequencies, the experimen-

tal data generally shows just one dominant frequency. It’s also worth noting that in

the numerical undamped case displayed in figure 6.2, the higher frequency components

77



observed do not align with the experimental results. In contrast, the damped cases,

especially those involving stiffness-proportional damping, such as the one shown in

figure 6.8, align more closely with the experimental data. This highlights the impor-

tance of including damping to achieve a behavior close to reality of the model. As for

Model 2 also lower frequencies are the dominant ones visible even in the time domain

plots (see 6.9) but they are located in much smaller values than for the experimental

results.

Furthermore, in the time domain, the results from Model 1 appear to be more

consistent with of the experimental ones because, qualitatively, the waveform are

more similar between results. This is based on visual analysis, as the shape of the

wave in Model 1 closely resembles that of the experimental data. It’s important to

note that this model includes many wave reflections from the geometry boundaries

during the analysis period, which seems to be contributing to its similarity with the

experimental behavior.

On the other hand, the purpose of Model 2 was to extend the length of the model

to track a wave without reflections for a significant period of time. However, when

comparing its results to the experimental case, they do not align as well. In Model

2, wave dissipation, meaning the loss of acceleration over time, occurs much more

quickly than in the experimental results. This could suggest that in the experimental

case, there are also reflections present that help maintain the wave with a gradually

decreasing amplitude over a longer period of time.

Additionally, when comparing Model 2 to the experimental data, before the re-

flected wave arrives, the acceleration amplitude in Model 2 has already significantly

decreased. In contrast, in the experimental case, the amplitude has not yet reduced as

much by that time, further suggesting that reflections may play a role in prolonging

the wave behavior in the experimental results.
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Chapter 8

Conclusion and Recommendations

8.1 Summary of Findings

This work has developed a series of numerical models, exploiting modern simulation

software to simulate real behaviors accurately. Utilizing LS-DYNA, the numerical

models have proved reliable in simulating the behavior of prestressed concrete beams,

specifically modeling and analyzing the post-breakage dynamics. The integration of

both implicit and explicit analyses was critical, with the implicit phase simulating the

initial construction and stress equilibrium between the concrete and steel parts, and

the explicit phase examining the dynamic rupture phenomena.

The comparison of numerical and experimental data shows an accurate alignment,

validating the finite element models for simulating failure scenarios in the dynamic

regime. To further validate the model and the result conveyed an analysis in terms

of energy balance, mesh quality and mesh sensitivity was developed showing and

reinforcing the validity of the results and its possibility to be used in structural health

monitoring systems (SHM) as a predictive tool.

The study’s focus on wave propagation, specifically on post-breakage dynamics

offers key insights into how stress waves measured through acceleration travel through

both steel and concrete parts, being crucial information for SHM applications as they

can inform designed monitoring systems focused on detecting changes in wave patterns

caused by structural damage. As the theoretical values align with the results found

in the models, specifically in regards to wave speed for the different materials parts,

key insights can serve to refine SHM systems by identifying distinct damage material-

based wave propagation.

While an exact representation of a real system may be unattainable, the data
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obtained from the numerical models aligned consistently with the results from real

datasets. Geometry and boundary conditions of the beam elements play significant

roles in how waves propagate, the presence and understanding of wave reflections from

the different boundaries are essential for SHM systems to be calibrated.

Validation of the numerical model was achieved by comparison with experimental

acceleration data recorded from a real beam. Even though the direct quantitative com-

parison was not realized given the differences between problems, the semi-qualitative

comparison showed a sufficient degree of agreement, supporting the model’s reliability

in simulating the involved phenomenon. Specifically, the model’s ability to replicate

nodal acceleration patterns was critical, as these parameters are directly related to

SHM sensors for analyzing structural integrity.

Energy balance analysis served as a tool for both validating the model and acquiring

a better understanding of the phenomenon. Analyzing different energy components

such as damping, internal, and kinetic energy, and their interactions helped determine

if the model behavior aligns with the fundamental principles of physics while offering

insights into how the models were behaving.

The cohesive type of contact used in the models yielded values consistent with

real-world expectations. It accurately represented the behavior between steel and

concrete after breakage, specifically the slippage, enhancing the model’s conformity

with actual scenarios.

A detailed analysis was conducted to understand the effects of different damping

definitions and values on the system. Given that damping, and energy dissipation

in general, is not a straightforward phenomenon in real systems, it was essential to

analyze how changes in damping affected the overall results. Damping coefficients,

particularly stiffness and mass-proportional damping, were varied to study their im-

pact on energy dissipation. It was observed that both damping definitions, due to

their distinct effects on the model’s behavior, aligned in obtaining results compatible

with those from real cases.

A comprehensive sensitivity analysis was done to understand the effects of differ-

ent mesh sizes on the model’s accuracy. As expected, finer mesh sizes resulted in

more accurate wave propagation and representation, primarily in regards to lower

frequencies. However, as the mesh size was increased, lower frequencies were partially

filtered, and its amplitude was diminished. In contrast, as the mesh size decreased the

computational demand was greatly increased, highlighting the importance of finding

an efficient tradeoff between precision and efficiency.

80



One of the primary objectives of the present study was to be able to produce syn-

thetic data that could be directly applied to SHM systems for real-time monitoring

of prestressed concrete structures, an objective that was achieved and thoughtfully

validated. This data allows the understanding of how the waves produced post ten-

don breakage propagate through the different material parts, SHM systems can be

calibrated to detect these changes and allow sufficient time for maintenance and in-

tervention and work as a prevention tool.

8.2 Study Limitations

Several considerations and limitations arise from numerical modeling, as it is always

an approximated representation of reality. Aiming for a model that exactly mirrors

real life is not realistic, since real case scenarios often involve a higher degree of

heterogeneity. In the developed models, linear material properties were assumed for

both steel and concrete, which do not fully account for the complex behavior of these

materials, particularly under localized effects such as the steel rupture. Furthermore,

nonlinearities in material behavior such as plastic deformation, were not considered,

limiting the capacity of the models to represent the real scenario.

Boundary conditions were simplified to reduce computational complexity. In re-

ality boundary conditions in bridges can be far more complex, including the type of

connections, and varying load, this simplification may limit the model’s applicability

to highly detailed real conditions. Additionally, assuming homogeneity in materials,

particularly in concrete, does not accurately represent the material real character-

istics. The presence of different size aggregates directly affects the way the waves

propagate through the medium and the waves sensors would be able to record.

Due to the high computational cost of explicit simulations, as the grade of fineness

increases, the size of the problem had to be reduced. This was explicitly seen between

Model 1 and Model 2. Model 1 utilized elements up to 35% smaller than those in

Model 2. The coarsening of the mesh allowed the realization of a model 200% longer

while maintaining acceptable running times but at the cost of reduced precision.

Larger models with finer meshes required significantly more computational resources,

exceeding the scope of this thesis. This tradeoff between computational efficiency

and simulation accuracy was a key limitation, particularly in large-scale simulations,

highlighting the need for more efficient computational methods or higher-performance

computing resources in future studies.

Environmental and other external factors such as temperature and traffic loads
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were not included in the simulations. Even though the rupture phenomenon is a

”quasi-instantaneous” event, external factors can influence the material properties and

existing stress states of the structure, potentially affecting the conditions under which

the rupture occurs. When these factors are combined with the system’s response,

they can produce varied outcomes. Therefore, considering the combination of these

external factors could lead to simulations that more accurately represent real-world

behaviors.

The experimental validation was based on a limited amount of datasets, which may

not fully capture the entire structural behavior. Contrary to the results provided by

the models, the experimental datasets were all derived from just one accelerometer

positioned in a constant location. Expanding the experimental datasets could provide

a better means to further validate the model.

8.3 Practical Applications

The results of the present work could, as previously stated, be integrated into SHM

systems for monitoring bridges, specifically the structural elements developed with

prestressed concrete. By analyzing and collecting data on wave propagation, these

systems could detect signs of tendon rupture, which are useful for damage prevention

and early intervention. The specific data developed, mainly in terms of acceleration,

serve as a mean to calibrate SHM systems for recognition of the phenomenon both in

position and time of occurrence.

The findings of this study could contribute to enhancing the overall safety of critical

infrastructure by providing more accurate methods for detecting structural failure.

The numerical model could be used to set safety thresholds for prestressed concrete

beams.

8.4 Recommendation for Future Research

Future research should focus on incorporating external factors, to achieve a more

representative model. Factors such as temperature changes and the complexity of

boundary conditions could be included in simulations to provide a more complete

and comprehensive understanding of structural behavior.

Expanding the selection of material models to include nonlinearities and plastic

deformation would improve the accuracy of the model. Additionally, a higher degree

of mesh refinement could yield more accurate results for larger models. Although
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the geometrical characteristics were under actual dimensions, increasing the variety

of models varying both the section of the concrete beam and the diameter of the steel

tendon would provide a broader range of information and results. Finally, variation

both in prestressing load and contact shear strength across different models could add

to the completeness and depth of the analysis.
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Appendix

- Appendix A: Includes the input cards used for the LS-DYNA model

- Appendix B: Includes Figures showing nodal accelerations in time and fre-

quency domain for the different realized models for different definitions of damp-

ing values
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A Input Cards on LS-DYNA

The following appendix outlines the command cards used for the development of the model

following the inputs from [35], and [17]. Input units are meters, kilograms, and seconds, the ”-”

over a parameters means it’s being unused, so default values are introduced.

Command:

CONTACT AUTOMATIC SURFACE TO SURFACE TIEBREAK

Card:

Variable OPTION NFLS SFLS PARAM ERATEN ERATES CT2CN CN

Type 9 2 ∗ 106 2 ∗ 106 1 1 ∗ 104 1 ∗ 104 1 2 ∗ 109

Where:

- OPTION 9: Defines a discrete crack model type of contact

- NFLS: Normal failure stress

- SFLS: Shear failures stress

- PARAM: 1 when shell thickness offsets are to be ignored

- ERATEN: Normal energy release rate

- ERATES: Shear energy release rate

- CT2CN: Ratio tangential stiffness to the normal stiffness

- CN: Normal stiffness

Command:

CONTACT TIED SURFACE TO SURFACE CONSTRAINED OFFSET

Card:

4

Variable SSID MSID STYP MSTYP SBOXID MBOXID SPR MPR

Type SET ID SET ID - - - - - -

5

Variable FS FD DC VC VDC PENCHK BT DT

Type - - - - - - 0 **

6
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Varibale SFS SFM SST MST SFST SFMT FSF VSF

Type - - −1 −1 - - - -

Where:

- SSID: Slave segment set ID

- MSID: Master segment set ID

- BT: Birth time

- DT: Death time (** longer than the termination time for Plate - Concrete contact, 0.002

seconds for Steel A - Steel B contact = time of tendon breakage)

- SST: Thickness of slave surface (negative value for determination if nodes are tied)

- MST: Thickness of master surface (negative value for determination if nodes are tied)

Command:

INITIAL STRESS SOLID SET

Cards:

1

Variable SID NINT NHISV LARGE IVEFLG IALEGP NTHINT NTHHSV

Type SET ID 1 - - - - - -

2

Variable SIGXX SIGYY SIGZZ SIGXY SIGYZ SIGZX EPS

Type - - 8 ∗ 108 - - - -

Where:

- SID: Solid set ID

- NINT: Number of integrations points

- SIGZZ: Initial stress 33 component

Command:

MAT ELASTIC

Cards:

1

Where:
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Variable MID RO E PR DA DB NOT USED
Type MAT ID ** ** ** - - -

** Refer to Subsection 5.1.3 for specific values depending on the material defined

- MID: Material ID

- RO: Mass density

- E: Young’s Modulus

- PR: Poisson’s ratio

Command:

DAMPING PART STIFFNESS

Card:

1

Variable PID COEF
Type PART ID **

** Refer to Subsection 5.1.6 (Damping Definition) for specific values depending on the model

Where:

- PID: Part ID

- COEF: Rayleigh damping coefficient

Command:

DAMPING GLOBAL

Card:

1

Variable LCID VALDMP STX STY STZ SRX SRY SRZ
Type - ** - - - - - -

** Refer to Subsection 5.1.6 (Damping Definition) for specific values depending on the model

Where:

- VALDMP: System damping constant
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B Nodal Accelerations

The following appendix presents the results obtained from the different models (7 in total),

with the key variations being the damping parameters. These variations include both the damp-

ing values — 0%, 2%, and 4% — and the types of damping applied: stiffness proportional

damping and mass proportional damping.

Model 1: ζK = 0%, and ζM = 0%

Nodes in concrete:

Figure 1: Acceleration of node A, ζ = 0%
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Figure 2: Acceleration of node B, ζ = 0%

Figure 3: Acceleration of node C, ζ = 0%
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Model 2: ζK = 2%, and ζM = 0%

Nodes in concrete:

Figure 4: Acceleration of node A, ζK = 2%
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Figure 5: Acceleration of node B, ζK = 2%

Figure 6: Acceleration of node C, ζK = 2%
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Model 3: ζK = 4%, and ζM = 0%

Nodes in concrete:

Figure 7: Acceleration of node A, ζK = 4%
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Figure 8: Acceleration of node B, ζK = 4%

Figure 9: Acceleration of node C, ζK = 4%
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Model 4: ζK = 0%, and ζM = 2%

Nodes in concrete:

Figure 10: Acceleration of node A, ζM = 2%
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Figure 11: Acceleration of node B, ζM = 2%

Figure 12: Acceleration of node C, ζM = 2%
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Model 5: ζK = 0%, and ζM = 4%

Nodes in concrete:

Figure 13: Acceleration of node A, ζM = 4%
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Figure 14: Acceleration of node B, ζM = 4%

Figure 15: Acceleration of node C, ζM = 4%
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Model 6: ζK = 2% and ζM = 2%

Nodes in concrete:

Figure 16: Acceleration of node A, ζM = 2%, ζK = 2%
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Figure 17: Acceleration of node B, ζM = 2%, ζK = 2%

Figure 18: Acceleration of node C, ζM = 2%, ζK = 2%
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Model 7: ζK = 4% and ζM = 4%

Nodes in concrete:

Figure 19: Acceleration of node A, ζM = 4%, ζK = 4%
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Figure 20: Acceleration of node B, ζM = 4%, ζK = 4%

Figure 21: Acceleration of node C, ζM = 4%, ζK = 4%
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