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Abstract
Pushing the boundaries of the design phase beyond the physical constraints to satisfy
the needs imposed by the modern complex structures has led to ongoing advancements
in data-processing performance and the development of high-tech software. These tools
allow engineers to perform non-linear numerical analysis (NLNA) for reinforced concre-
te (RC) elements through an exhaustive investigation of the overall structural response
under potential load cases. By accounting for non-linearities in material, geometric pro-
perties, and boundary conditions, NLNA offers the highest level of approximation for
defining the structural model, constitutive laws, and resistance mechanisms. The Codes
have proposed several safety formats for the NLNAs of RC structures to address the
corresponding source of uncertainty, providing a general framework for integrating them
within the Global Resistance Format (GRF) and thus ensuring a balanced tradeoff among
safety, efficiency, and cost.
The thesis aims to investigate the discrepancy between numerical models and actual
structures’ performance by analyzing RC beams that fail in a flexural and shear mode.
Comparing experimental results in terms of maximum load with those from NLFE mo-
dels, this work quantifies the uncertainties that arise during the modeling phase, known as
epistemic uncertainties. By assuming 3 model hypotheses that include all possible tensile
concrete behaviors and cover any analyst assumptions for its constitutive law in 2 diffe-
rent software, Atena and Diana, the results from 210 Non-Linear Finite Element Analyses
(NLFEAs) were gathered. The approach allows us to obtain 6 solution strategies that
guarantee a comprehensive characterization of the global resistance model uncertainty
random variable. Consequently, a probabilistic analysis was conducted employing the
Bayesian method, avoiding the possibility of making a work that is just a representation
of a narrow set of RC structures. The purpose is to pursue general outcomes that could
contribute to the development of the next generation of Eurocodes. The overarching idea
of this strategy is to first apply a statistical inference procedure to detect the appropriate
probabilistic model and fit it to the data sample through the estimation of its parameters.
After that, the process involves the calibration of the model uncertainty safety factor by
generating new information using the Bayesian updating process. The result is the defi-
nition of posterior probability functions, which reflect both the prior information and the
new data. The strength of this approach lies in its ability to incorporate into the analysis
existing knowledge from the literature. This procedure performs the updating operation
twice, leading to more robust results and a reduction of model uncertainty, enhancing
the reliability of the findings.
Finally, after estimating the average posterior probability distribution, which is adop-
ted to represent the resistance modeling uncertainty random variable θ and deleting the
influence of experimental uncertainty from its key statistical parameters, the resistance
model uncertainty partial safety factor γRd can be estimated. The assessment assumes
3 different reliability indexes, 2 FORM factor scenarios, and various service life cases, in
line with the GRF of the fib Model Code for concrete structures 2010. These options
ensure safety, reliability, and feasibility in the design process by choosing a conservative
value that adequately tackles model uncertainties.

Keywords: NLNA, RC Beams, Safety Formats, Epistemic Uncertainty, Safety Factor,
Bayesian Approach
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Introduction

Non-linear numerical analysis (NLNA) for reinforced concrete (RC) structural elements
is an advanced method for designing and evaluating new and existing structures. It ena-
bles a more accurate analysis of structural behavior under real-world loading conditions
by accounting for non-linearities in material, geometric properties, and boundary condi-
tions [26]. Material non-linearity occurs when the constitutive law no longer follows the
linear stress-strain relationship and the induced stress causes deformations beyond the
yield point. It leads to permanent changes in the initial material’s shape, necessitating
ongoing updates to the stiffness matrix throughout the deformation process, considerably
increasing computational demand. By considering geometric non-linearity, NLNA allo-
ws for structural analyses under large displacements and rotations, accounting for load
redistributions and changes in the interaction among the different structural elements.
Non-linearity in boundary conditions occurs when the supports or the constraints wi-
thin the structure change their properties and responses under the loading phase. An
example of this can be observed during the modeling of soil-structure interaction through
non-linear spring stiffness. The non-linear approach can be particularly useful in scena-
rios where structures are exposed to dynamic forces like seismic actions or strong winds,
as well as in foundation and retaining wall designs [48].
In the field of structural engineering, the current research is focused on overcoming phy-
sical limitations in designing increasingly complex structures. This pursuit is helped by
ongoing advancements in computational capabilities, deeper knowledge of new advanced
materials and their resistance mechanisms, and the development of smarter software.
Furthermore, automated and parametric design techniques, such as Building Information
Modeling (BIM) and finite element analysis, are rapidly advancing and becoming integral
to the field. This growth is driven by increasing concerns for sustainability, efficiency, and
safety, which are now essential for a project in all its stages. In parallel with these ad-
vancements in computational tools, there is the introduction of non-linear finite element
analysis (NLFEA). This method typically yields higher design resistances compared to
local structural analysis because failure in the most critical cross-section of a structure
does not necessarily imply the failure of the overall structure. Instead, this latter can
undergo plastic deformations and force redistributions, which often prevent immediate
failure. Considering the real material properties, this method can reveal the "hidden"
bearing capacity of the structures, neglected instead in linear calculations, empowering
the engineers to push the boundaries of present and future design possibilities. There-
fore, in evaluating the global behavior of a structural member, like columns or beams,
or an entire structure, adopting NLFEA turns out to be an effective computational tool.
This effectiveness is demonstrated by [30], where a comparison between local and global
structural analyses of several beams, showed that higher design loads were obtained with
non-linear analysis [15].
Concrete is a widely used construction material and one of the major contributors to
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global greenhouse gas emissions. The European Cement Association, commonly known
as Cembureau, has drawn up a 5C approach to reduce concrete’s environmental im-
pact by fully exploiting its mechanical properties and minimizing unnecessary usage [10].
Implementing successfully this strategy requires a comprehensive understanding of the
material’s performance as well as the software’s accuracy during the design and mainte-
nance phases [44]. This is shown by Slobbe et al.’s study [47], which illustrates how a
detailed physical concrete model can reveal significant structural reserves compared to
standardized methods. The fib Model Code further highlights how the effort, in terms
of time spent on an analysis, is correlated with its accuracy. This concept is depicted in
figure 1, which introduces the “level of approximation” approach: increasing the level of
approximation, so does the accuracy and the time required to solve the problem. The
NLNA, being an advanced numerical simulation, operates at the highest levels of appro-
ximation.

Figure 1: Levels of approximation [22]

In a country like Italy, which boasts a rich architectural heritage and numerous buildings
from the last century, there is a growing need to re-assess old concrete structures. Ensu-
ring that these facilities remain safe for use, even beyond their design lifetime, is leading
the interest in this type of advanced analysis technique. These approaches can compre-
hensively account for factors such as aging, long-term effects, environmental conditions,
and retrofitting measures, accurately predicting how these alterations affect structural
behavior [13]. Similarly, also other countries are working on it, to ensure their infra-
structures meet the population’s needs and comply with the new Codes. For example,
in the Netherlands, the Dutch Ministry of Infrastructure and the Environment demon-
strated the effectiveness of using NLFEAs over traditional methods by reassessing the
load-bearing capacity of existing RC bridges. This need emerged from the increase in
heavy traffic and the requirement to readjust emergency lanes. Safety verifications during
this project showed that traditional local analysis methods did not fulfill the standards
for some structures. This could have induced changes, significantly impacting economic,
environmental, and socio-functional spheres. However, by adopting alternative methods
such as NLFEA to verify structural carrying capacity, these structures could continue
to safely bear loads for several more years with just refurbishment and periodic checks.
The Dutch Ministry has pursued this approach, despite the lack of restrictive and specific
norms and regulations in building codes for implementing this new method and conduc-
ting non-linear analyses [3].
This innovative method of designing and verifying the structures gathers global atten-
tion. A notable example is the project undertaken by Chile following one of the worst
natural disasters in the country’s history: the 2010 earthquake. This tragedy underlined
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the weaknesses of RC walls in buildings that were not designed to meet the latest codes,
revealing their vulnerability to strong ground motions with resulting flexural damages.
Consequently, numerous static and dynamic nonlinear analyses were conducted to evalua-
te the effects of various design enhancements, such as thicker walls, increased steel ratios,
and the decoupling of the main wall. These improvements aimed to enhance durability
and minimize earthquake-related damage to residential buildings. These enhancements
involve refining the level of detail on the mechanical behavior of the RC preventing the
structure’s poor performance during future earthquakes. The building’s seismic perfor-
mance was predicted using Performance-Based Design (PBD), which employed non-linear
modeling of structural components. This approach generated valuable data for structural
engineers, helping to minimize future building damages during extreme events. Moreo-
ver, non-linear static and time-history analyses provided an accurate assessment of the
material’s mechanical behavior, including the detection of undesired phenomena such as
sudden brittle failures, like those seen in shear failure [39].
Aligning with the ideas behind these projects and the objective to bridge the performan-
ce gap between the numerical models realized with software, which are mathematical
representations, and real-world structures, this thesis analyzes RC beams exhibiting both
flexural and shear failure. Comparing experimental results in terms of maximum load
with those from software, this study helps future users minimize the uncertainties related
to the model, known as epistemic uncertainties. Accurately predicting the actual beha-
vior of a structure and determining the most probable value of the resistance, which is
the mean value, enables the engineers to tackle the main challenge in performing this
type of analysis: quantifying epistemic uncertainties. Even a perfect model is subject
to numerical approximations and inherent uncertainties, which must be well-known and
weighted when aiming to precisely represent the real structure in all its endless complexi-
ties. Each non-linear analysis involves a solution strategy drawn up by the analysts based
on their experience and knowledge of the specific case. Different modelers can implement
various solution strategies for the same structure, with different assumptions, and there
is no universally better approach. Engen et al. [18] described the solution strategy as
"choices regarding force equilibrium, kinematic compatibility, and constitutive relations".
Each of these choices in a finite element solution contribute to the model uncertainty, ei-
ther explicitly or implicitly: explicit contributions arise because different models include
different approximations of physical reality, instead the implicit part emerges from eve-
rything not explicitly considered but still affecting the epistemic uncertainty. Therefore,
it’s crucial to be aware of these factors and understand how they impact the results. By
using 3 model hypotheses that encompass all possible actual tensile concrete behaviors
and embrace any analyst assumptions for the tensile concrete constitutive law, the results
from 210 Non-Linear Finite Element Analyses (NLFEAs) are collected. This information
is derived from the non-linear models implemented by applying the 3 different solution
strategies in 2 software, Atena and Diana. Dividing the analysis into 2 cases, flexural
failure and shear failure, the model uncertainty is defined as the ratio between the expe-
rimental result and the result assessed with NLFEA. According to the literature, such as
the JCSS Probabilistic Model Code [31], the model uncertainty is a random variable that
fits a log-normal probability distribution. Therefore, for each of the 3 model assump-
tions adopted, the key distribution parameters are determined and updated with new
information through the Bayesian method. It involves 2 distinct approaches: Approach
A uses non-informative prior distributions to allow the data to speak for themselves wi-
thout the influence of strong prior beliefs. In contrast, Approach B assumes informative
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prior distributions based on existing knowledge from previous research. As described
in the MC2020 draft, the Bayesian updating procedure is used to determine the model
uncertainty safety factor γRD for 3 different reliability indexes, 2 FORM factor cases, and
multiple service life scenarios [15].
Even though the thesis’ objective is to accurately evaluate γRD, the process of achieving
this coefficient involves more than just considering the relationship between the predic-
ted and experimental failure loads. Another crucial factor in assessing a finite element
solution strategy is its ability to approximate the entire experimental load-deformation
curve, closely matching both the load and deformation at the yield and failure points.
This requirement is essential because one of the main purposes of adopting a non-linear
approach is to provide engineers with a more accurate insight into real structural beha-
vior.
Below, scheme 2 shows a summary of the entire process developed throughout this ma-
ster’s thesis.

Understanding the 
concept of NLNA

Experimental Benchmark
35 RC beams

NLN modeling
210 NLFE models

ATENA DIANA

6 Solution Strategies 
Determined with modeling
assumptions able to minimize the
related model uncertainty

Bayesian updating
Approach A and Approach B

Model Uncertainty Safety Factor
γRd

According to 
specific target of:
-Reliability index β
-FORM factor αR

Global Resistance Safety Factor
γR

𝑅𝑑 =
𝑅𝑁𝐿𝑁𝐴 𝑓𝑚; 𝑎𝑛

𝛾𝑅 ⋅ 𝛾𝑅𝑑

Design value of Global Structural
Resistance Rd

Framework for evaluating the design value of Global Structural Resistance Rd

15 with a flexural failure mode
20 with a shear failure mode

Figure 2: Framework for evaluating the design value of Global Structural Resistance Rd
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Symbol and Notation Glossary

Symbol Description
Rd global structural resistance
Fd global design external actions
Ed design acting forces in the local analysis
Rd sectional resistance in the local analysis

RNLNA global structural resistance estimated by nonlinear
numerical analysis

Rexp experimental value of the global structural resistance
RNLFEA,i global structural resistance estimated by non-linear nu-

merical analysis with reference to the ith modeling
hypothesis i = 1–6

Mj jth modeling hypothesis to define the non-linear
structural model with j = 1–6

X vector of basic variables included into the resistance
model

Y vector of variables that may affect the resisting
mechanism but are neglected in the resistance model

β first-order-reliability-method (FORM) sensitivity factor
Z quantile of the reliability index
θ global resistance model uncertainty random variable

(observed) with i = 1–15 for the flexural case and
i = 1–20 for the shear one

µϑ mean value of the resistance model uncertainty random
variable

CVϑ coefficient of variation of the resistance model uncertain-
ty random variable

σϑ variance of the resistance model uncertainty random
variable (observed)

ϵ experimental uncertainty random variable
µε mean value of the experimental uncertainty random

variable
CVε coefficient of variation of the experimental uncertainty

random variable
θact actual resistance model uncertainty random variable
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Symbol Description
δR,m mean-to-mean deviation
VR coefficient of variation of the global structural resistance

µϑ,act mean value of the actual resistance model uncertainty
random variable

CVϑ,act coefficient of variation of the actual resistance model
uncertainty random variable

zj vector which groups the statistical parameters of the
lognormal distributions associated to the updating
information for each structural model with j = 1–6

ZA vector of the average statistical parameters for the
Approach A

ZB vector of the average statistical parameters for the
Approach B

As cross-sectional area of the longitudinal reinforcement in
the compression area

A′
s cross-sectional area of the longitudinal reinforcement in

the tensile area
L total length of the RC columns
d effective height of RC beam
ρ longitudinal reinforcement ratio
ρsw stirrups reinforcement ratio
s longitudinal spacing between shear reinforcements
fc experimental value of the cylinder concrete compressive

strength
fy experimental value of the reinforcement tensile yielding

strength
fu experimental value of the reinforcement tensile ultimate

strength
Py beam yield point
Pu beam ultimate point
δy beam deformation at the yield point
δy beam deformation at the ultimate point
γRd Model Uncertainty Safety Factor
γR Global Resistance Safety Factor

εs,max peak strain attained in the tensile primary reinforcement
at failure

γFM failure mode-based safety factor
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Capitolo 1

Chapter 1

1.1 Global Resistance Format (GRF)

1.1.1 General aspects

The fib Model Code MC2010 [22] introduces a new method based on four levels of ap-
proximations (LoA), as shown in the image 1, for evaluating the design resistance of RC
beams: levels I, II, III, and IV. As the level increases, so do the complexity, accuracy,
and time needed to evaluate structural safety. Level I is grounded on the limit states
approach and partial safety factor method, which continues to remain valid and widely
used in practical applications and Codes. It’s based on cross-sectional analysis: design
acting forces Ed are compared against resisting forces Rd, such as bending moment, shear,
and axial forces, ensuring always Ed < Rd. In this context, internal actions are assessed
using linear elastic analysis, which combines the effects of external loads through linear
superposition. On the other hand, the sectional internal resistance is evaluated based on
the ultimate limit state considered. This method is known as the local approach because
it focuses exclusively on sectional verifications of structural members, without accounting
for the overall behavior of the entire element or the possibility of a progressive redistribu-
tion of internal forces within the RC structure. This type of analysis is useful and efficient
when lower levels of approximation are tolerable since it relies on simplified assumptions
for defining the structural model, constitutive laws, and resistance mechanisms. On the
positive side, it significantly increases time efficiency and cost-effectiveness [8].
Unlike, a global approach becomes indispensable when greater accuracy and precision in
structural reliability assessments are needed. This procedure, ranked as level IV, invol-
ves advanced numerical methods like NLFEAs, which allow the engineers to encompass
the progressive damage and the structure’s ability to redistribute internal forces under
specific loading conditions. The underlying principle is that failure in the most critical
cross-section of a structure does not necessarily lead to the failure of the entire building.
Neglecting the structure’s capacity for rearrangement of internal stresses can cause an
important underestimation of its resistance, potentially generating unnecessary cost infla-
tions and environmental damages. The method is based on the comparison between the
global design external actions Fd, under a specific loading combination, with the global
design structural resistance Rd through the following equation:

Fd ≤ Rd with Rd =
Rrep

γR · γRd

(1.1)

Where:
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Chapter 1

• Rrep is the global resistance of the structure.

• γR represents the global resistance safety factor for the aleatory uncertainties.

• γRd corresponds to the global safety factor for the epistemic uncertainties.

The calibration process of these 2 safety factors is conducted separately, without any kind
of interaction or influence between them, as demonstrated in this thesis and [26].
Nowadays, the global resistance format is regarded as the most effective design tool for
the safety assessment of RC members. It allows for the management of the different sour-
ces of uncertainties through appropriate global safety factors, which are used to define
the global design resistance of a structure [8]. Moreover, there is no unique procedure
to evaluate Rd: various approaches can be implemented, each based on different levels of
deepening of the probability theory. The accuracy in the estimate of the structural beha-
vior can be progressively refined through a more accurate assessment of the uncertainties
involved in the process. Consequently, in line with the general approach of the Global
Resistance Format (GRF) proposed by fib Model Code 2010, the design resistance Rd
may be evaluated via different safety formats, such as [2]:

• Probabilistic Method (PM)

• Partial Factor Method (PFM)

• Estimate of the Coefficient of Variation (ECOV)

• Global Resistance Factor (GRF)

• Global Safety Format (GSF)

• Strain-Based Method (SBM)

By applying the probabilistic method, the global structural resistance R is fully described
by a suitable probabilistic distribution, which is tailored using NLFEAs. Based on the
required level of reliability and depending on whether the structure is new or existing,
the global design structural resistance can be assessed as follows:

Rd =
1

γRd

·R(αR, β) (1.2)

Where:

• R(αR, β) represents the quantile of R distribution corresponding to a target relia-
bility index β, and a FORM sensitivity factor αR

Although this procedure demands a high computational effort, it sometimes appears to
be the only safety format capable of accurately assessing R. This is because it can consi-
der factors such as the variability in the material’s strength within the structure, which
may be affected, among other factors, by interactions of different materials strengths (i.e.
dowel action, tension stiffening effect) and aging. Being able to consider these variations
the PM can provide an accurate and comprehensive evaluation of the structure’s reliabi-
lity, effectively capturing the actual variability of material properties and the effects of
their combination.
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1.1 – Global Resistance Format (GRF)

Reducing computational demands is possible and highly desired by adopting global re-
sistance methods (GRMs), which are the alternative safety formats mentioned earlier.
These simplified approaches are valuable only if they can effectively capture the funda-
mental mechanical aspects that control the structural behavior of RC structures, like
crack propagation and the failure mode. This latter is strongly influenced by the selec-
tion of the material properties adopted to set up the NLFEAs. The choice of the correct
information and an accurate model calibration phase can result in changes in the failure
mode, as different resisting mechanisms may involve concrete or reinforcement steel and
even different regions of the structure [46].

Figure 1.1: Local structural analysis VS Global structural analysis [8]

1.1.2 NLNA procedure

Although the introduction of NLNA may offer several advantages already highlighted in
detail previously, it would entail likewise some disadvantages, especially in terms of time,
cost, and expertise required to fully interpret the outcomes. Gradually more engineers,
designers, and modelers will opt to approach projects using non-linear numerical analysis,
whether for new construction or just refurbishment. Despite the initial problems that
there may be dealing with non-linear analysis, only through this consistent effort, it will
become the standard in design practice. Moreover, the next generation of international
codes is expected to integrate into the standard structural verification procedure, the
option of using NLNA, further encouraging its adoption.
This diffusion process shares many points in common with the adoption of the Building
Information Modeling (BIM) methodology. With the support of new regulations, it is
increasingly becoming mandatory to participate in public works contracts above a certain
amount of money. For the BIM, Europe has published a “Handbook for the Introduction of
Building Information Modelling by the European Public Sector", which provides training,
support, and guidance to the stakeholders. The handbook guarantees a harmonized and
standardized procedure that allows them to manage information with BIM methodology
throughout the entire lifecycle of a built asset [27].
Similarly, for NLNA, a well-defined procedure must be set up and declared. The process
currently in use involves three stages:
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Chapter 1

i. Characterization of input variables and model definition (i.e., parameters, consti-
tutive laws used)

ii. NLFE simulations with software like ATENA, and DIANA

iii. Post-processing of the results

These steps ensure a non-misleading and systematic approach to non-linear analysis, fa-
cilitating its effective application in structural design. The final step, iii, should be seen
as a critical phase: if the results don’t fulfill the initial expectations that an engineer
must have before tackling any problem, an iterative process between ii and iii has to be
undertaken. This would allow for achieving final results that are critically investigated
and only then accepted.
Analyzing each step in more detail, the first implies gathering all the necessary infor-
mation and knowledge about the structure to be analyzed. This includes the modeler’s
choice, based on his experience, of the representative values for mechanical and geome-
trical properties, and the definition of the solution strategy. This latter encompasses
making modeling assumptions about the iterative solution methods to be adopted, en-
suring equilibrium and kinematic compatibility through appropriate constitutive models.
This initial step has to be meticulously suited to the specific problem the designer is
addressing and it’s crucial for a well-done NLNA. The subsequent phases are intrinsically
dependent on this one and even if in the future there may be guidelines and a handbook
to help the designers, it will remain heavily based on their expertise. It’s important to
underline that there is not only a unique correct solution universally valid, but the dif-
ferent possible outcomes are shaped by the designer’s skills and judgment. The second
step involves the structural analysis itself, implementing within the software the choices
selected in the previous phase. This part is strongly dependent on the used software, and
with a deep knowledge of the system, the analyst can enhance the accuracy and precision
of the solution. The last part entails a critical analysis of the NLNA outcomes. This in-
vestigation is even more crucial in a priori analyses, where the real structural behavior of
the RC element is unknown, and no information about the real failure mode is available.
The analyst has to be capable of differentiating between pure numerical failure and phy-
sical collapse. The number of iterations needed to reach the satisfaction of convergence
criteria can provide important insights: a high number of iterations could indicate the
development of important cracks but at the same time it may signal a numerical error.
Therefore, in such cases, the results obtained by the software from that point onward
can’t be considered reliable [21].
According to Castaldo et al. [8], the failure mode identified through an NLNA is unequi-
vocally characterized by achieving the ultimate strain of concrete and/or steel reinforce-
ment in specific areas of the element under investigation, consequently leading to a global
failure mechanism. For this reason, reaching the ultimate material strain simultaneously
with the global failure can be assumed as an indicator that the analysis has successfully
captured the real structural response. However, as mentioned in the previous subsection,
the NLNA is sensitive to the values of material properties chosen to run the simulation.
This sensitivity can result in different failure modes within, for instance, the probabilistic
set of NLNAs as shown in [26].
In the following sections, the entire process will be explored step by step, with a post-
processing phase dedicated to assessing the model uncertainty using the Bayesian ap-
proach. The entire path has been followed twice: once by running the simulations with
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1.1 – Global Resistance Format (GRF)

ATENA and then with DIANA, ending the journey by analyzing and comparing the
statistical parameters.

1.1.3 Safety Formats within the Global Resistance Method (GRM)

The limit state condition within the Global Resistance Format can be reformulated,
following the equation 1.1, as follows:

Fd ≤ Rd where Rd =
RNLNA (frep; arep)

γR · γRd

(1.3)

The RNLNA(frep; arep) above mentioned is simply the explicit representation of Rrep in
equation 1.1. Indeed, it indicates the global resistance of the structure estimated through
the selected safety format. The frep and arep are, respectively, the representative values
of materials and geometric properties used as input in the NLNAs. The uncertainties,
placed in the denominator of equation 1.3, have been already divided earlier according
to their sources:

• γRd has been estimated in this thesis and other research papers, achieving a com-
prehensive characterization for 2D and 3D NLNAs of slender members, such as
beams, and columns, subjected to quasi-static monotonic or cyclic loads. This sa-
fety coefficient remains constant and invariant across all the various safety formats
presented and the next chapters are dedicated to its analysis and assessment [19].

• γR is evaluated starting from the hypothesis that the global structural resistance
fits a log-normal probabilistic distribution, using the following equation:

γR =
exp (αRβt · VR)

δR
≥ 1.00 with VR ≤ 0.3 (1.4)

Equation 1.4 is not an exact expression but rather an approximation, which remains valid
until the value of VR equals 0.20. It shows minimal discrepancies compared to the actual
equation for values up to 0.30. In equation 1.4, δR encompasses the influence related
to the bias factors of geometrical properties deviations. Specifically, it’s obtained by
multiplying δR,g and δR,m as shown in equation 1.5:

δR = δR,m · δR,g (1.5)

Where:

• δR,m is known as mean-to-mean deviation. It quantifies the ratio between the mean
value of the global structural resistance obtained from a probabilistic analysis, µR,m,
and the value derived from performing an NLNA, setting as representative values for
material properties the mean values, and for geometric characteristics the nominal
values, RNLNA(fm; an) [9]:

δR,m =
µR,m

RNLNA (fm; an)
(1.6)

• δR,g can be set equal to 1 for most cases, excluding the cases involving strongly
slender systems (a/d ≫ 1).
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In equation 1.4, the term VR represents the coefficient of variation of the global structural
resistance, accounting for uncertainties in both materials and geometrical properties [9].
The value is evaluated as follows:

VR =
√

V 2
R,m + V 2

R,g (1.7)

Where:

• VR,m represents the portion of VR related to the aleatory uncertainty of material
properties.

• VR,g accounts for the percentage of VR linked to the aleatory uncertainty of the
geometric properties.

Starting from this point, the choice of a different safety format leads to a different value of
VR. According to Diego et al.[19], the VR,g value can be set equal to 0.05 for non-slender
RC elements. Instead, VR,m has to be defined according to the specific safety format
selected from those proposed within the GRMs or statistically derived through the PM.
Below, the different safety formats are reported and analyzed:

i. Partial Factor Method (PFM) [5]: enables safety verification by performing
just one NLNA. It uses as representative values the design ones for both materials
and geometrical properties, fd and ad, respectively. The design values fd should be
derived according to the Fib Model Code 2010 (Fib Model Code), depriving them
of the model uncertainty contribution. This method applies the equation 1.3 and
sets γR as a unit and γRd as an appropriate value.

ii. Standard Estimation of Coefficient of Variation Method (ECoV) [5] [26]:
adopts the mean values of material properties, fm, and the nominal values of geo-
metrical ones, an, as representative. The value γR can be evaluated using the
equations provided earlier in this subsection, while γRd has to be assessed separa-
tely. Regarding VR,m, 2 NLNAs need to be run: in the first, the mean values of
material properties, fm, and nominal values of geometrical properties, an, are used
as representative values; in the second one, the characteristic and nominal values,
fk and an, are implemented.

iii. Global Safety Format (GSF) [8]: In the initial phase, it uses the same approach
as the ECoV method. The main difference lies in the evaluation of VR,m. The GSF
method assesses the coefficient of variation of the global structural resistance as
the ratio between the standard deviation, σR, and the mean value, µR, considering
the hypothesis of log-normal distribution as always valid. The two statistical pa-
rameters are estimated through several NLFEAs, run using the Latin Hypercube
Sampling method, which accounts for the aleatory uncertainties related to material
properties. Although the approach may recall the one used in the PM, the GSF
method is based on mean values of material properties and involves performing a
first-order approximation of the Taylor expansion function of the ultimate global re-
sistance. On the other hand, the PM directly refers to a quantile of the appropriate
probabilistic distribution. This is the procedure adopted in [5].

iv. Global Resistance Factor (GRF) [8]: employs the global safety factor γGL set
equal to 1.27, assuming a unitary value for γRd. To estimate the representative
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1.1 – Global Resistance Format (GRF)

value of the global resistance, it uses the mean value of the reinforcement, fym,
and the reduced compressive strength for concrete, fcmd. The partial factors are
equalized, and beyond this step, the method becomes essentially like the PFM.

v. Stain-Based Method (SBM) [26]: is a recent methodology that aims to estima-
te the coefficient of variation VR,m that accounts for aleatory uncertainty associated
with material properties within the GRM. This approach has been developed by
Gino et al. [26] and starting from a benchmark that encompasses brittle and ducti-
le failure modes, it offers an exhaustive probability analysis to accurately estimate
Rd. If the initial sample is made of n RC structural elements, through this process
the same number of NLFE models is implemented, each with different modeling
assumptions that reduce the epistemic uncertainty. After that, a probabilistic ana-
lysis is carried out on the models, differentiating between relevant and basic as-
sumptions. These latter regard statistical parameters of material properties such
as concrete quality. Indeed, the coefficient of variation of the concrete cylinder
compressive strength, Vc, usually is assumed to be equal to 0.15, considering all
the uncertainties that involve the casting phase, and the construction procedure
followed by the company. On the other hand, it does not consider factors like aging
and degradation phenomena that may be present in existing structures. For this
reason, the strain-based method assumes 3 different CV values: 0.15, 0.20, and
0.25. Therefore, the probabilistic analysis adopts for each of the 3 cases the Latin
Hypercube Sampling (LHS) for each of the n specimens. The 30 samples generated
from each different case describe the probability distribution of the global structural
resistance through its key statistical parameters (i.e., µR,m, VR,m). These values are
intrinsically related to the peak strain εs,max observed in the primary reinforcement
during the failure mechanism. Investigating 2 types of failure modes, the primary
reinforcement involved within the global resistance mechanism changes as follows:

• In the bending failure, the primary tensile reinforcement can be considered the
longitudinal bars placed in the bottom part of the cross-section.

• In the shear failure, the reinforcement that acts as a primary resistance me-
chanism is the stirrup.

The analysis in this safety format is performed using the mean values fm for material
properties and nominal values an for geometrical ones. The positive advantage of
this method is that, at the end of the procedure, VR,m depends solely on εs,max

observed in the NLFEAs.

To understand if the GRMs can be applied to estimate the design’s ultimate load instead
of the more complicated PM, the analyst can implement 2 preliminary NLFEAs: the
first uses the mean values for the concrete properties and the design values for the rein-
forcement properties, the second simulation vice-versa. If the failure modes from these
two analyses are the same, the modeler can use one of the GRMs following the standard
procedure, instead, if they are different, an additional safety factor is necessary.
The PM is considered the benchmark safety format, but from a computational point of
view, the effort required from the GRMs is significantly lower than the PM. Therefore,
to be able to implement them also when the 2 failure modes of the preliminary NLFEAs
differ, an additional failure mode-based safety factor, denoted as γFM , is introduced. This
factor has been calibrated to ensure a perfect correspondence between the Rd value as-
sessed through the PM and that from one of the GRMs. For this reason, γFM can range
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between 1.00 and 1.18. Under the hypotheses of β = 3.8, moderate consequences in the
case of failure, a lifetime of 50 years, and αR = 0.8 the γFM is set equal to 1.15 [8]. This
is shown in the image 1.2b that proposes the 2 alternatives to estimate the structural
resistance Rd: with and without γFM [26].
Images 1.2 summarize the strain-based safety format, highlighting the procedure necessa-
ry to assess the design value Rd. It can be considered the complementary part of scheme
2 presented in the introduction section.

(a) (b)

Figure 1.2: (a) Calibration methodology for the strain-based approach to estimate the VR,m and
(b) Calibration procedure for the strain-based approach to estimate Rd
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Capitolo 2

Chapter 2

2.1 Experimental benchmark

2.1.1 Selection Criteria

As previously mentioned, the Bayesian approach to work effectively needs as extensive
as possible database. For this reason, 35 RC beams have been selected for the analyses.
Even if the choice of the papers may seem a trivial phase, it requires an accurate selection
of reliable information to ensure the success of the entire process. To guarantee this level
of confidence, the main bibliographic databases used include:

• ScienceDirect

• ResearchGate

• Wiley

• Semantic Scholar

• Webthesis Polytechnic University of Turin

The thesis aims to evaluate the model uncertainty safety factor γRd for standard RC
beams. Therefore alterations, such as fiber reinforcement within the concrete, high-
performance concrete, deep beams, and carbon fiber reinforced polymer (CFRP) tied
with stirrups, have not been accounted for in the analysis. This decision was made to
avoid the introduction of an excessive number of variables into the process with the risk
of not being able to capture the fundamental mechanical aspects. When several para-
meters come into play, it becomes challenging to understand how each factor affects the
result, leading to a possible loss of accuracy. On the other hand, within these boundaries,
it’s essential to analyze RC beams with scattered mechanical and geometrical properties,
such as the a/d ratio, stirrup spacing s, reinforcement ratio ρ, and shear reinforcement
ratio ρsw. This approach enables a more comprehensive analysis, ensuring the generality
that the thesis is looking for, without the risk of finding conclusions only valid under
restrictive assumptions.
Another important aspect is the completeness of the information: some papers, even if re-
liable and accurate in the experimental procedure, omit some values, such as the effective
depth. Although these parameters can also be estimated through correlation or drawings
of the beam scheme in AutoCAD, such estimates may introduce unknown uncertainties.
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In some cases, experiments want to focus on specific failure mechanisms, like the shear
one. To analyze this failure mode, it’s essential to avoid the flexural one. To do this, the
beams are heavily reinforced in the bottom part of the section, ensuring enough longitu-
dinal reinforcement that the stirrups reach the yield point earlier and shear failure occurs.
Eurocode 2 establishes a range within which the longitudinal tension reinforcement must
fall [42]:

As,min ≥ 0.0013 · bt · d (a)
As,max ≤ 0.04 · Ac (b)

Where:

• bt denotes the mean width of the tension zone.

• d is the effective depth.

• Ac refers to the gross cross-sectional area of concrete.

These are the extreme recommended parameters, but their values may vary according to
each country’s National Annex.
The selected beams align with these criteria and will be presented in the following sub-
sections.

2.1.2 Test typologies

All the beams analyzed in this work have been tested with one of the following types of
tests:

• 3-point bending test

• 4-point bending test

These tests are commonly used to evaluate the stiffness of materials. In both cases, the
beams are simply supported, but the different setups in the load application induce within
RC different stress distributions, as follows:

• The 3-point bending test, the beam is subjected to a triangular distribution of
bending moment and the peak occurs under the applied load. Instead, the shear
stress value is constant throughout the entire beam, changing the sign in the middle
point. The central area has the highest bending moment and shear stress; therefore,
it is the location where the failure likely may occur

• The 4-point bending test creates a constant bending moment and zero shear force
between the 2 loading points, leading to a symmetrical combined bending and shear
stress in the RC within the area between the support and the loading point. This
latter region is where potentially the failure may occur

Both tests can be conducted using either load control or displacement control methods,
depending on the objective of the investigation. This thesis aims to investigate the beam
behavior, with a focus on the region between the yield point and the peak load, which can
be investigated using both approaches. Regarding the load control method, the universal
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testing machine (UTM) applies a load to the specimen, increasing it at a controlled rate.
The strain gauges or linear variable differential transformers (LVDT) are placed along
the beam to measure the resulting displacement. This method is optimal when the main
interest of the analysis is the material’s response to an increasing load. With a decreasing
post-peak branch, the machine stops the loading phase when it reaches the maximum load
that the RC beam can bear. On the other hand, the displacement control approach uses
the UTM to impose an increase in the displacement at a controlled rate, while the load
cells measure the force needed to do this. It’s useful to conduct the test in this way
when the material analyzed has a ductile behavior and large deformations occur after
yielding. In an NLNA a good understanding of what happens in the post-yield branch
and analyzing a complete load-displacement curve is crucial. This enables the assessment
of the material’s ductility and toughness: mechanical properties that reflect the ability
of a material to provide a "buffer" before its failure.

Figure 2.1: Three-point bending test and four-point bending test

2.1.3 Database

In this subsection, all the specimens are described. In line with the thesis’ approach
of analyzing the beams separately according to the failure mode, the beams have been
divided into two groups:

• 15 beams subjected to flexural failure

• 20 beams subjected to shear failure

The following pages report only the information implemented in the NLFE models, such
as geometry and mechanical properties. To get a more detailed view of the experimental
procedure, the types of beams analyzed, and the comments on the experiment results of
each specimen, please refer to the paper from which this information has been sourced.
Even if the load-deformation curve it’s important to have a comprehensive analysis of
the beam, showing how it behaves during the loading phase, it will be presented later in
Chapter 4 with the results of the NLNAs. This enables an easier comparison between
the 6 modeling hypotheses and the experimental curve.
The last constraint to consider, which also depends on country by country, is the α angle
of the stirrups. In the context of Italian legislation, the only α angle admitted is 90°.
Italy is situated in a seismically active zone where the risk of an earthquake is significant,
especially in some regions. If the stirrups had a different angle, they could potentially
align with the direction of crack formation during seismic activity and be completely
useless. For this reason, even if an α angle of 90° may not be the most efficient choice
under normal conditions, it allows the stirrups to work effectively during an earthquake,
preventing or at least delaying the failure of the structure.
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Specimens experiencing flexural failure

Giuseppe Campione [4]

Figure 2.2: 5.0.1 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

5.0.1 2Φ12 2Φ12 133 1.13
Table 2.1: 5.0.1 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

5.0.1 Φ6 50 0.76
Table 2.2: 5.0.1 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

5.0.1 32.50 467 546
Table 2.3: 5.0.1 mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

5.0.1 115 3 133 1
Table 2.4: 5.0.1 ultimate load, yield point, and corresponding deformations
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Qian Chunxiang [12]

Figure 2.3: CF/CS/CT geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

CF/CS/CT 2Φ6 2Φ16 127 2.64
Table 2.5: CF/CS/CT longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

CF/CS/CT Φ6 125 0.38
Table 2.6: CF/CS/CT shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

CF 58.32 390 448
CS 61.29 390 448
CT 58.14 390 448

Table 2.7: CF/CS/CT mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

CF 53 15 56 31
CS 51 16 54 28
CT 53 17 54 28

Table 2.8: CF/CS/CT ultimate load, yield point, and corresponding deformations
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Hussein M. Elsanadedy [17]

Figure 2.4: BF-1 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

BF-1 2Φ10 2Φ10 175 0.60
Table 2.9: BF-1 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

BF-1 Φ6 75 0.51
Table 2.10: BF-1 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

BF-1 20.00 578 684
Table 2.11: BF-1 mechanical properties (only longitudinal reinforcement)

Specimen Yielding Ultimate
strength fy strength fu
[N/mm2] [N/mm2]

BF-1 238 372
Table 2.12: BF-1 stirrup mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

BF-1 41 12 43 86
Table 2.13: BF-1 ultimate load, yield point, and corresponding deformations
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Alberto Meda [40]

Figure 2.5: BP-C-2/BP-C-4 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

BP-C-2 2Φ10 2Φ16 260 0.77
BP-C-4 2Φ10 4Φ16 260 1.55

Table 2.14: BP-C-2/BP-C-4 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

BP-C-2 Φ8 100 0.50
BP-C-4 Φ8 100 0.50

Table 2.15: BP-C-2/BP-C-4 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

BP-C-2 33.50 534 630
BP-C-4 33.50 534 630

Table 2.16: BP-C-2/BP-C-4 mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

BP-C-2 81 20 90 110
BP-C-4 160 23 168 67

Table 2.17: BP-C-2/BP-C-4 ultimate load, yield point, and corresponding deformations
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Luis Evangelista [20]

Figure 2.6: RC-1 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

RC-1 2Φ6 3Φ10 185 1.06
Table 2.18: RC-1 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

RC-1 Φ6 100 0.48
Table 2.19: RC-1 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

RC-1 33.56 525 670
Table 2.20: RC-1 mechanical properties (only longitudinal reinforcement)

Specimen Yielding Ultimate
strength fy strength fu
[N/mm2] [N/mm2]

RC-1 597 746
Table 2.21: RC-1 stirrup mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

RC-1 70 10 77 20
Table 2.22: RC-1 ultimate load, yield point, and corresponding deformations
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M. A. Rashid and M. A. Mansur [45]

Figure 2.7: A211/B312/B313/B321/C211/C311/C411 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

A211 2Φ13 4Φ25 380 2.07
B312 2Φ13 6Φ25 380 3.10
B313 2Φ13 6Φ25 380 3.10
B321 4Φ13 6Φ25 380 3.10
C211 2Φ13 4Φ25 + 2Φ16 380 2.49
C311 2Φ13 4Φ25 + 4Φ16 380 2.91
C411 2Φ13 4Φ25 + 2Φ20 380 2.73

Table 2.23: A211/B312/B313/B321/C211/C311/C411 longitudinal reinforcement
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Specimen Asw s ρsw
[mm2] [mm] [%]

A211 Φ10 200 0.31
B312 Φ10 100 0.63
B313 Φ10 67 0.94
B321 Φ10 200 0.31
C211 Φ10 200 0.31
C311 Φ10 200 0.31
C411 Φ10 200 0.31

Table 2.24: A211/B312/B313/B321/C211/C311/C411 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

A211 42.80 460 575
B312 72.80 460 575
B313 72.80 460 575
B321 77.00 460 575
C211 85.60 460 575
C311 88.10 460 575
C411 85.60 460 575

Table 2.25: A211/B312/B313/B321/C211/C311/C411 mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

A211 439 15 462 37
B312 712 22 732 24
B313 733 22 745 27
B321 732 24 767 34
C211 638 25 650 44
C311 722 22 731 28
C411 889 26 898 29

Table 2.26: A211/B312/B313/B321/C211/C311/C411 ultimate load, yield point, and corre-
sponding deformations
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Specimens experiencing shear failure

C.G Karayannis [33]

Figure 2.8: ST80/ST120 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

ST80/ST120 2Φ14 4Φ18 270 1.88
Table 2.27: ST80/ST120 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

ST80 Φ5.5 80 0.30
ST120 Φ5.5 120 0.20

Table 2.28: ST80/ST120 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

ST80/ST120 28.50 550 690
Table 2.29: ST80/ST120 mechanical properties (only longitudinal reinforcement)

Specimen Yielding Ultimate
strength fy strength fu
[N/mm2] [N/mm2]

ST80/ST120 310 430
Table 2.30: ST80/ST120 stirrup mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

ST80 237 6.1 251 7.3
ST120 206 6.9 215 7.6

Table 2.31: ST80/ST120 ultimate load, yield point, and corresponding deformations
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Liu Jin [37]

Figure 2.9: S-0.157/S-0.314/S-0.628/S-0.942 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

S-0.157/S-0.314/S-0.628/S-0.942 2Φ12 4Φ18 250 4.07
Table 2.32: S-0.157/S-0.314/S-0.628/S-0.942 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

S-0.157 Φ6 360 0.16
S-0.314 Φ6 180 0.32
S-0.628 Φ6 90 0.63
S-0.942 Φ6 60 0.95
Table 2.33: S-0.157/S-0.314/S-0.628/S-0.942 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

S-0.157/S-0.314/S-0.628/S-0.942 33.1 456 593
Table 2.34: S-0.157/S-0.314/S-0.628/S-0.942 mechanical properties of concrete and longitudinal
reinforcement in tension
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Specimen Yielding Ultimate
strength fy strength fu
[N/mm2] [N/mm2]

S-0.157/S-0.314/S-0.628/S-0.94 408 584
Table 2.35: S-0.157/S-0.314/S-0.628/S-0.942 mechanical properties of longitudinal reinforcement
in compression

Specimen Yielding Ultimate
strength fy strength fu
[N/mm2] [N/mm2]

S-0.157/S-0.314/S-0.628/S-0.94 406 590
Table 2.36: S-0.157/S-0.314/S-0.628/S-0.942 stirrup mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

S-0.157 299 4.7 311 4.9
S-0.314 309 5.0 340 5.8
S-0.628 399 6.4 409 6.6
S-0.942 412 6.5 422 6.9

Table 2.37: S-0.157/S-0.314/S-0.628/S-0.942 ultimate load, yield point, and corresponding de-
formations
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Mostefa Hamrat [29]

Figure 2.10: B44-1.5W/B44-2W geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

B44-1.5W/B44-2W 2Φ6 2Φ14 127 243
Table 2.38: B44-1.5W/B44-2W longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

B44-1.5W/B44-2W Φ6 90 0.63
Table 2.39: B44-1.5W/B44-2W shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

ST80/ST120 44.20 508 581
Table 2.40: B44-1.5W/B44-2W mechanical properties (only longitudinal reinforcement)

Specimen Yielding Ultimate
strength fy strength fu
[N/mm2] [N/mm2]

B44-1.5W/B44-2W 512 620
Table 2.41: B44-1.5W/B44-2W stirrup mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

B44-1.5W 169 3.2 174 3.5
B44-2W 135 4.5 142 5.3

Table 2.42: B44-1.5W/B44-2W ultimate load, yield point, and corresponding deformations
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Chadon Lee [34]

Figure 2.11: S06/S10 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

S06/S10 2Φ6 2Φ22 205 2.47
Table 2.43: S06/S10 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

S06 Φ6 100 0.40
S10 Φ10 100 0.50

Table 2.44: S06/S10 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

S06/S10 32.50 400 500
Table 2.45: S06/S10 mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

S06 233 4.7 242 5.5
S10 284 5.0 301 6.6

Table 2.46: S06/S10 ultimate load, yield point, and corresponding deformations
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Rui Guo [28]

Figure 2.12: F0S0 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

F0S0 2Φ18 3Φ18 160 3.18
Table 2.47: F0S0 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

F0S0 Φ6 250 0.19
Table 2.48: F0S0 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

F0S0 31.60 400 540
Table 2.49: F0S0 mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

F0S0 99 2.0 115 5.0
Table 2.50: F0S0 ultimate load, yield point, and corresponding deformations
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Calogero Cucchiara [14]

Figure 2.13: A01/A02/B02 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

A01/A02/B02 2Φ10 2Φ20 219 1.67
Table 2.51: A01/A02/B02 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

A01 Φ6 200 0.19
A02/B02 Φ6 60 0.63

Table 2.52: A01/A02/B02 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

A01/A02/B02 41.2 610 671
Table 2.53: A01/A02/B02 mechanical properties (only longitudinal reinforcement)

Specimen Yielding Ultimate
strength fy strength fu
[N/mm2] [N/mm2]

A01/A02/B02 510 561
Table 2.54: A01/A02/B02 stirrup mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

A01 164 11.6 178 13.9
A02 199 14.1 228 19.2
B02 272 13.5 284 15.0

Table 2.55: A01/A02/B02 ultimate load, yield point, and corresponding deformations
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Cha-Don Lee [36]

Figure 2.14: B1S06/B1S10/B2S06 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

B1S06/B1S10/B2S06 2Φ6 2Φ22 206 2.46
Table 2.56: B1S06/B1S10/B2S06 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

B1S06/B2S06 Φ6 100 0.43
B1S10 Φ10 100 0.95

Table 2.57: B1S06/B1S10/B2S06 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

B1S06/B1S10 24.0 420 500
B2S06 30.0 420 500

Table 2.58: B1S06/B1S10/B2S06 mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

B1S06 192 3.7 203 4.6
B1S10 229 5.1 247 7.1
B2S06 225 6.3 223 7.0

Table 2.59: B1S06/B1S10/B2S06 ultimate load, yield point, and corresponding deformations
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Muhammad Tahir [49]

Figure 2.15: S8-90 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

S8-90 2Φ22 5Φ22 433 2.19
Table 2.60: S8-90 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

S8-90 Φ8 200 0.25
Table 2.61: S8-90 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

S8-90 40.0 460 570
Table 2.62: S8-90 mechanical properties (only longitudinal reinforcement)

Specimen Yielding Ultimate
strength fy strength fu
[N/mm2] [N/mm2]

S8-90 380 470
Table 2.63: S8-90 stirrup mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

S8-90 438 5.8 470 6.41
Table 2.64: S8-90 ultimate load, yield point, and corresponding deformations
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Hui Ma [38]

Figure 2.16: RCTB1-RCTB3 geometry and rebar schedule

Specimen A’s As d ρ
[mm2] [mm2] [mm] [%]

RCTB1-RCTB3 6Φ16 6Φ22 380 1.26
Table 2.65: RCTB1-RCTB3 longitudinal reinforcement

Specimen Asw s ρsw
[mm2] [mm] [%]

RCTB1-RCTB3 Φ8 100 0.21
Table 2.66: RCTB1-RCTB3 shear reinforcement

Specimen Compressive Yielding Ultimate
strength fc strength fy strength fu
[N/mm2] [N/mm2] [N/mm2]

RCTB1-RCTB3 46.8 458 648
Table 2.67: RCTB1-RCTB3 mechanical properties of concrete and longitudinal reinforcement
in tension

Specimen Yielding Ultimate
strength fy strength fu
[N/mm2] [N/mm2]

RCTB1-RCTB3 464 662
Table 2.68: RCTB1-RCTB3 mechanical properties of longitudinal reinforcement in compression

Specimen Yielding Ultimate
strength fy strength fu
[N/mm2] [N/mm2]

RCTB1-RCTB3 347 517
Table 2.69: RCTB1-RCTB3 stirrup mechanical properties

Specimen Py δy Pu δu
[kN] [mm] [kN] [mm]

RCTB1 1857 5.0 2179 7.3
RCTB3 1015 6.3 1140 9.5

Table 2.70: RCTB1-RCTB3 ultimate load, yield point, and corresponding deformations
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Chapter 3

3.1 ATENA and DIANA: Modeling Assumptions and
General Framework

This thesis used two software programs to perform 2D plane stress NLFEAs on RC
beams: Atena and Diana. All 35 beams were modeled using both programs to repro-
duce the experimental outcomes described in the previous section and to compare these
computational results with the experimental ones. The following section presents and
explains the assumptions taken in the modeling phase: the analyst must be fully aware
of them and confident with the methodology investigated. For well-done work, it’s es-
sential to approach this problem with consistency in the method of all the RC beams.
However, it’s equally important to acknowledge that different software tools can requi-
re different precautions to minimize epistemic uncertainties, thus obtaining reliable and
accurate outcomes. The modeling assumptions involve two main spheres:

• Material characterization

• Geometry definition

3.1.1 Material hypothesis

It implies the identification of the most appropriate equilibrium, kinematic, and consti-
tutive laws. Each software integrates several parameters into its framework, which allows
it to model different mechanical behaviors of a material with precision. In Atena and
Diana, the numerical simulations employ four-node quadrilateral iso-parametric plane
stress finite elements, CCIsoQuad and Q8MEM, obtained through a linear polynomial in-
terpolation within a 2x2 Gauss point’s integration scheme. The FE meshes have been
carefully defined after a mesh-sensitivity analysis to avoid misleading results. While a
finer mesh may appear more accurate and effectively capture the failure mechanism and
crack propagation, if its dthe outcomes can’t be considered reliable if its dimension is
smaller than the concrete’s aggregates because the mechanical behavior of a single aggre-
gate is completely different from the overall response of the beam. On the other hand, a
coarser mesh enables the replication of the actual concrete behavior but, especially near
the supports, it may lead to inaccurate predictions of the beam’s response [23] and [16].
The non-linear system of equations is solved using the standard Newton-Raphson itera-
tive method, which operates under the hypothesis of linear approximation. The loading
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procedure is divided into a finite number of load stepording to the experimental procedu-
re, minimizing the differences between the numerical simulation and the real procedure.
The integration method moves on to the next step once it reaches a displacement error
tolerance of 1% or after completing 500 iterations, whichever comes first [23].
Concerning the constitutive models used to reproduce the non-linear material behavior,
the main characteristics are the following:

• For concrete, a linear-elastic model using the software material type Sbeta Material
has been defined. The constitutive law, known as LCS, describes a non-linear be-
havior in compression until the peak, followed by a linear decreasing branch [16].
The linear compression softening law (LCS) implies that the resistance at the ϵu is
reduced to half of the peak resistance. Each software package allows the analyst to
account for the reduction in concrete’s resistance due to cracking by fixing a mini-
mum value as a percentage of the peak resistance. According to [16], this parameter
ranges between 0.45 and 0.8 in Atena; instead, Diana adopts Vecchio and Collins’
model [16], a diffusive crack model that attributes the reduction of resistance to
lateral crack formation. The constitutive law for the tension concrete behavior is
bilinear, with three possible different branches after the peak, corresponding to the
three hypotheses outlined in the thesis:

– Elastic-brittle

– Elastic with post-peak linear tension softening (LTS)

– Elastic with a perfectly plastic response

These hypotheses have been adopted to cover the possible choices made by an
analyst in the modeling phase to account for the influence of the “tension stiffening
effect” in structural mechanisms during numerical simulations. A comprehensive
explanation of the implications of each assumption in the outcomes will be provided
in Chapter 5; here, the focus is on explaining how the software can implement these
hypotheses effectively. Atena controls the different tension-softening behaviors with
the parameter C3, which represents the ultimate strain under tension; in contrast,
Diana has built-in options for various concrete behaviors, so it’s only necessary to
change the setting to simulate the desired model. Regarding the concrete shear
behavior, a fixed shear retention factor was selected with a value equal to 0.2 in
Diana; in contrast in Atena, where a rotated crack model has been adopted, there
was no need for defining a fixed shear retention factor. The first crack model allows
the modeler to analyze in the post-processing phase the progressive development
and rotation of the cracks because of the applied load. Instead, in the fixed crack
model, once a crack forms in the beam, its orientation remains fixed throughout
the entire load stage. Therefore, the material behavior is controlled by the crack
orientation and the principal stress directions maintain a constant direction.

• For reinforcement rebars, a bilinear σ − ϵ curve with a hardening effect is used,
assuming a perfect bond between the reinforcement and the surrounding concrete.
To proceed with a standardized procedure, in cases where the papers don’t provide
the σu, it has been assumed to be equal to 1.15 σy. Although the software offers
options to model the reinforcement bars in a smeared or discrete manner, the latter
has been adopted to minimize the discrepancy between the analytical model and
the actual RC beam.In all cases, the ϵu was set to 9%. As a rule of thumb, when
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certain information is missing, such as the yield strain, and the concrete’s Young’s
modulus, these values are assessed starting from the available experimental data,
such as the concrete compressive strength, by implementing the formula provided
by EN1991-1-1 [41].

• For steel plates, the constitutive law is linear, with a Young’s Modulus much higher
than that used for the rebars (i.e., 200 GPa). This ensures that the force applied
to the upper face of the plates is uniformly distributed across the contact surface
with the beam, and the high value of stiffness prevents excessive deformation and
failure of the plates during the loading steps.

3.1.2 Geometry characterization

The geometry of each RC beam aligns perfectly with the details provided in the literature:
in most cases, the images attached in the papers have been reproduced to scale in Auto-
CAD to verify the correctness of the reported measurements. The greatest uncertainty
is given by the steel plates used for support and load application, as none of the papers
contains precise information about their dimensions and shape. Especially in the case of
shear failure, where the steel plates are often placed close to the beam section subjected
to the highest stress and where the failure mechanism is triggered, therefore they must
be modeled with accuracy.
The rebars are modeled as lines, whose coordinates correspond to the central axis of the
actual rebars. Being a 2D plane, each stirrup is represented as a double element that
encircles the longitudinal reinforcement.
One of the last steps in the pre-processing phase involves the definition of the various ty-
pes of load cases. For this work, only 3 of them come into play: external forces, supports,
and body forces. The first 2 cases have already been discussed; instead, it’s important to
highlight the third one. In the experimental procedure, the UTM is calibrated after the
beam is placed, meaning that the self-weight of the beam is already accounted for in the
experiment. In contrast, the software doesn’t automatically recognize the self-weight of
the beam. Therefore, before running the analysis, the first load step has to be set as only
self-wight. During the post-processing phase, the deformations provided by the software
have to be adjusted to exclude those induced by the self-weight, to be coherent with the
experimental outcomes. Regarding the constraints, a statically determinate scheme has
been implemented with a roller and a hinge, placed directly in the middle point of the
steel supports. Even if technically just 2 rollers would have been enough to create an
isostatic scheme from an equilibrium point of view because the axial force doesn’t come
into play and there is the orthogonality of constraints.
The next subsection contains tables 3.1 and 3.2, which summarize the main modeling
assumptions made in Atena and Diana. These tables help analysts to compare the two
software’s approaches, highlighting the differences and similarities. It’s essential to ack-
nowledge the 2 different approaches in the NLFEA to properly interpret the results and
the discrepancy between the experimental and the analytical outcomes presented in the
following chapters.
From this chapter onwards, the 2 software will not be mentioned anymore with their name
to avoid any type of advertising. The names will be replaced by software A and software
B to maintain objectivity, avoiding any positive or negative involuntary promotion. This
decision aligns perfectly with the master thesis’s objective, which focuses on the technical
aspects rather than commercial considerations.
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3.1.3 Overview of the Proposed Hypotheses

Software: ATENA 2D 5.9.0
Equilibrium

• Standard Newton-Raphson based on the hypothesis of linear
approximation

• Convergence criteria based on displacements (with tolerance
set equal to 1%);

• Load step sizes defined in compliance with the experimental
procedure

Compatibility FINITE ELEMENTS

• CCIsoQuad iso-parametric plane stress 4 nodes (2x2 Gauss
points integration scheme with linear interpolation)

• Discrete reinforcements

• Element size defined through an iterative process of numerical
accuracy (2.5-7.5 cm)

Constitutive
laws

CONCRETE

• Rotated crack model, smeared cracking

• Mono-dimensional model extended to the biaxial stress state

• Compression: non-linear with post-peak linear softening
branch

• Tensile response of concrete reproduced through 3 different
hypotheses:

– Brittle (C3 ≈ εct)

– LTS (C3 = [2− 14] · εct)
– Plastic (C3 ≫ εct)

REINFORCEMENT STEEL

• Bi-linear constitutive law for the reinforcement in tension and
compression

STEEL PLATE

• Linear constitutive law in tension and compression, with E ≈
2× 106

Table 3.1: Modeling hypotheses for the non-linear simulations of the 35 RC columns in Atena
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Software: DIANA 10.8
Equilibrium

• Standard Newton-Raphson based on the hypothesis of linear
approximation

• Convergence criteria based on displacements(with tolerance
set ranging between 1% and 2%);

• Load step sizes defined in compliance with the experimental
procedure

Compatibility FINITE ELEMENTS

• Q8MEM iso-parametric plane stress 4 nodes (2x2 Gauss poin-
ts integration scheme with linear interpolation)

• Discrete reinforcements

• Element size defined through an iterative process of numerical
accuracy (2.5-9.5 cm)

Constitutive
laws

CONCRETE

• Fixed crack model, smeared cracking, constant shear reten-
tion factor = 0.2

• Mono-dimensional model extended to the biaxial stress state

• Compression: non-linear with post-peak linear softening
branch

• Tensile response of concrete reproduced through three diffe-
rent hypotheses:

– Brittle (εctu ≈ εct)

– LTS (εctu = [2− 14] · εct)
– Plastic (εctu ≫ εct)

REINFORCEMENT STEEL

• Bi-linear constitutive law for the reinforcement in tension and
compression

STEEL PLATE

• Linear constitutive law in tension and compression, with E ≈
2× 106

Table 3.2: Modeling hypotheses for the non-linear simulations of the 35 RC columns in Diana

39



Chapter 3

3.1.4 General framework for modeling a beam in Atena and
Diana

Figure 3.1: Comprehensive framework for modeling 2D structures in ATENA and DIANA

40



Capitolo 4

Chapter 4

4.1 NLFE Models

4.1.1 Identification of failure mechanism in RC beams

During experiments of RC beams approaching their ultimate limit state, various failure
modes can occur. Making choices in a solution strategy requires understanding which
phenomena need to be modeled, and in the post-processing phase, it is necessary to
verify that the failure mechanisms observed in the analytical model correspond to those
described in the experimental results.

In this thesis, 2 main collapse mechanisms have been investigated:

• Bending failure

• Shear failure

Bending failure

It arises when the cross-section is no longer able to withstand the bending moment. Ini-
tially, flexural cracks take place in the middle of the beam, where the bending moment is
at its maximum. When the cracking stage reaches a stalemate and the load progressively
increases, the reinforcement begins to yield at one or more of these cracks. This leads
to large deformations while the load is still sustained. Consequently, 2 phenomena may
occur: in over-reinforced beams, the compression zone crushes, or the bottom reinforce-
ment fails in tension and in these cases, the beam is under-reinforced. The first case is a
clear example to debunk the myth that the “more steel there is, the better it is”. In an
over-reinforced beam, there is more tensile reinforcement than what is needed to balance
the compressive strength of the concrete. Therefore, the failure mechanism is brittle,
with the cracking of the concrete and the rebars that are unstressed. From a design point
of view, this is not the optimal choice because it’s not a safe solution for the users, due
to the sudden failure that doesn’t allow for the implementation of preventive measures.
Moreover, it doesn’t exploit completely the mechanical properties of the steel, which is
the most expensive material in an RC beam. Regarding the second case, the beam fails
in a ductile manner, and a well-done design procedure should prefer this option to gua-
rantee time for implementing containment measures when the structure shows clear signs
of upcoming failure. During the loading steps, the tensile reinforcement yields, and the
concrete in the compression zone doesn’t crush because the amount of steel under tension
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is less than what is needed to balance the compressive strength of the concrete [15].
A clear example of an under-reinforced beam is the BF-1. Image 4.1 illustrates its failure
mode in the experiment, image 4.1a, where the concrete is crushed in the upper part of
the beam. On the right side instead, the image 4.1b shows the results from the NLFEA
in software A. It’s quite evident how the same region highlighted in 4.1a is subjected to
higher stress values, represented by a darker grey shade. The problem emphasized in the
previous chapter regarding the steel plates, which are often surrounded by areas with
important stresses, is also visible.

(a) (b)
Figure 4.1: (a) BF-1 experimental failure (b) BF-1 failure in NLFE model

Specimen Failure mode
EXP FEM

BF-1 CC CC
CC: concrete crushing

Table 4.1: BF-1 mode of failure

Shear failure

Shear failure of RC beams remains challenging to predict accurately and for this reason
over the years, extensive experimental research has been conducted and despite the help
of the newest sophisticated computational modeling tools, it is still not fully clear. In
the case of a beam not properly designed for shear reinforcement, a brittle collapse due
to the shear mechanisms is likely once it reaches its peak load. The shear analysis in
RC structural elements is much more complex than the investigation for axial load and
flexure. For those, the analysis is based on the 3 fundamental mechanical principles that
must be fulfilled simultaneously to guarantee the stability, strength, and serviceability of
structural elements:

i. Equilibrium between internal and external forces

ii. Compatibility of strains in both concrete and steel

iii. Constitutive relationships of materials

The conventional analysis for shear instead, is just based on simple equilibrium equations
of forces; on the other hand, the second and third principles don’t come into play during
this type of analysis. The strength of concrete under shear is primarily based on test
results, rather than assessed through mechanical relationships. In beams, shear stresses
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are triggered by bending or twisting and these two types of shear stress are called respec-
tively flexural and torsional shear stresses. However, in this thesis, performing 2D plane
stress NLFEAs, only the first case has been investigated (type of shear failure).

Diagonal tension failure
The entire process of shear failure in an RC beam can be divided into three main stages:
in the initial one, the oblique cracks have not formed yet and there is a linear relationship
between applied force and displacement equal to the concrete’s young modulus. It indica-
tes that, before the oblique cracks appear, the beam shear bearing capacity is primarily
governed by the concrete’s mechanical properties. Indeed, the empirical observations
clearly show that the cracking loads of various RC beams, with the same concrete but
different shear reinforcement ratios, are roughly the same because the stirrup ratios have
little influence on them. This phase finishes when the cracking load is achieved. During
the loading phase, the tensile stress increases, and when the tensile strength of concrete
is overcome, the cracks start to occur in the direction perpendicular to the direction of
principal tensile stress. They are vertical flexural cracks, and they arise first in the mid-
span area, followed by the shear ones. Increasing the load, a few more diagonal cracks
arise and one of them may grow into a dominant diagonal crack, going from the support
to the loading point [37].
The second stage starts with the crack formation, leading to a slight decrease in the shear
force, and a sudden increase in the corresponding displacement. These oblique cracks cau-
se an internal force redistribution, which helps maintain the linear relation between force
and displacement but with a reduction of beam stiffness. The experimental observations
demonstrate that if the stirrup ratio is greater, the stirrups guarantee a better restraint
effect on RC beams, also demonstrated by a weaker degradation of their stiffness. After
oblique cracks appeared, stirrups began to play a shear role due to limiting the develop-
ment of oblique cracks. The high stirrup ratio improves the shear bearing capacity of RC
beams, and the displacement corresponding to peak-load is improved. This indicates that
stirrups can effectively inhibit the development of cracks inside beams, thus enhancing
the bite force between aggregates and improving the shear-bearing capacity of RC beams
[37]. When the stirrup ratio is higher, it means that more stirrups are involved in shear
resistance, enhancing the restraint effect on RC beams, and at the same time each of
them must support a smaller shear force. The literature has demonstrated during the
experiments that with the increase of beam height, the strain of stirrups increases signi-
ficantly, which indicates that the shear contribution of stirrups in large-size RC beams
is more considerable. This is probably due to the formation of more and larger oblique
cracks in this type of beam, which makes the stirrup contribution to shear resistance
significant [32].
The third stage involves the descending branch after the peak load. After reaching the
peak load, the supported load decreases suddenly, and so does the stiffness. The shear
failure occurs, and the beam loses its entire bearing capacity. With the increase in stirrup
ratio, the descending section exhibits a relatively soft behavior, indicating that the pre-
sence of stirrups also affects the beam’s behavior after the peak, improving its ductility
and deformation capacity [37].
A good example of this phenomenon can be observed in specimen S8-90, previously de-
scribed. After a certain level of load, roughly 300 kN, the beam’s stiffness dropped, likely
due to the yielding of stirrups. The deformations of the beam have a high dependency on
the diameter, type of shear reinforcement, and its inclination α. In this specific case, the
beam was reinforced only with steel stirrups, reaching the ultimate load of 470 kN. Image
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4.2a shows the beam at the end of the experiment, characterized by an evident shear
failure mechanism with its characteristic diagonal development of the crack pattern. On
the right instead, image 4.2b illustrates the FEM, which replicates quite accurately what
happens in the test. While the load on the beam increases, the cracks grow both in width
and length, turning diagonally and propagating to the upper part of the beam toward
the loading point. Immediately after reaching the peak load, the stage of shear tension
failure occurs with a characteristic sudden failure. This mechanism is typical in beams
with low shear reinforcement or when the shear-span-to-depth ratio (a/d) is greater than
2, as in this case.

(a) (b)
Figure 4.2: (a) S8-90 experimental failure (b) S8-90 failure in NLFE model

Specimen Failure mode
EXP FEM

S8-90 DT DT
DT: diagonal tension failure
Table 4.2: S8-90 mode of failure

Shear compression failure
As mentioned earlier, after the flexural cracks form, the concrete stops contributing to
the bearing capacity in the cracked area, and the structural element can no longer be
considered an elastic body. At this point, the tensile forces are carried by longitudinal
reinforcement, and therefore the state of stress remains elastic but with a different stiff-
ness. By increasing the load, the flexural crack propagates into the compression zone
of the beam. In both side spans, the inclined cracks begin to develop and when these
appear, the tensile force carried by concrete is released [37]. After this stage, two possible
resistance mechanisms can emerge:

• If the reinforcement in the direction of principal tensile stress is absent or insuffi-
cient, the beam will fail suddenly due to a diagonal tension failure, and it will fall
in the case of previously analyzed specimen S8-90.

• If the element can withstand the increasing load after the development of diagonal
cracks, the stress state evolves into a compression arch formed by diagonal cracks.
In this scenario, the load is transferred through the arch system and the beam
fails when it crushes under an excessive diagonal compression. This failure mode is
known as shear compression failure.

Both mechanisms strongly depend on the (a/d) ratio, and the shear compression failure
usually happens when it ranges between 1 and 2. For instance, specimen B44-1.5W failed
exactly in this way and the image 4.6a shows the beam after the experiment. On the right
side instead, the image 4.6b displays the results obtained with the FEM, which faithfully
reproduces what happened in the experiment.

44



4.1 – NLFE Models

Indeed, beam B44-1.5W has a shorter shear span and a smaller stirrup spacing compa-
red to the S8-90, leading to the formation of diagonal cracks extending almost the full
beam depth, from the support to the loading point. However, thanks to the relatively
high shear reinforcement which acts as a tie, these diagonal cracks remained narrow and
did not widen so much during the loading stage. Other diagonal cracks arose alongside
the first one as the load was increased, resulting in a series of inclined concrete struts.
This behavior closely follows the principles of the Strut-and-Tie Model (STM) and the
transverse steel, working effectively in restraining diagonal shear cracking, enables the
shift from a diagonal tension failure to shear compression failure. The model mentioned
above describes how the forces are transferred from the point of load application to the
supports: through the inclined compression struts and the transverse steel ties. This
highlights the importance of a well-designed shear reinforcement, which allows the beam
to fail with a more gradual mechanism when the concrete’s compressive capacity in the
nodal zones is exceeded.
The empirical observations demonstrate that in the case of RC beams with shear rein-
forcement, the number of cracks increases as the compressive strengths of concrete rise,
indicating a better redistribution of internal forces in the beams made of high-strength
concrete. A possible explanation of this phenomenon may be the stronger bond between
concrete and steel rebars, which translates to a relatively better efficiency in the use of
reinforcing steel. Consequently, the beam can maintain its serviceability conditions and
resist cracking more effectively up to the ultimate state [37].

(a) (b)
Figure 4.3: (a) B44-1.5W experimental failure (b) B44-1.5W failure in NLFE model

Specimen Failure mode
EXP FEM

B44-1.5W SC SC
SC: Shear-compression failure

Table 4.3: B44-1.5W mode of failure

To have a comprehensive understanding of all possible failure modes that happened du-
ring the modeling phase of this work, several representative examples are shown below.
In each case, the experimental failure mode coincides with the one observed in the NLFE
model, including key characteristics like crack pattern.
In the next subsection, each beam will be analyzed through its load-deformation curve
and categorized according to its failure mode. Therefore, for each of the 35 beams, af-
ter the NLFEA with both software, the resulting crack pattern, deformation, and stress
zones can be attributed to one of three distinct failure modes just mentioned above.
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(a) (b)
Figure 4.4: (a) BP-C-4 experimental failure (b) BP-C-4 failure in NLFE model

Specimen Failure mode
EXP FEM

BP-C-4 CC CC
CC: concrete crushing

Table 4.4: BP-C-4 mode of failure

(a) (b)
Figure 4.5: (a) F0S0 experimental failure (b) F0S0 failure in NLFE model

Specimen Failure mode
EXP FEM

F0S0 DT DT
DT: diagonal tension failure
Table 4.5: F0S0 mode of failure

(a) (b)
Figure 4.6: (a) B1S10 experimental failure (b) B1S10 failure in NLFE model

Specimen Failure mode
EXP FEM

B1S10 SC SC
SC: Shear-compression failure
Table 4.6: B1S10 mode of failure
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4.1.2 Finite Elements Models: NLNAs results

Specimens experiencing flexural failure

Specimen Experiment Software A Software B
Brittle LTS Plastic Brittle LTS Plastic

[-] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
S-501 127 109 110 130 110 115 140
CF 56 60 62 78 57 57 65
CS 54.2 56 56 64 45 58 66
CT 53.8 56 58 64 45 58 61

BF1-1 43 48 48 54 36 37 48
B-PC-2 89 98 98 112 96 97 141
B-PC-4 168 174 174 178 179 184 215
RC-1 76 74 74 82 63 64 77
A211 462 490 500 540 445 468 530
B312 732 710 710 820 710 718 798
B313 745 740 740 820 720 723 803
B321 767 760 760 850 730 735 823
C211 650 640 640 770 605 610 710
C311 731 710 720 840 681 703 795
C411 898 890 890 960 620 875 955

Table 4.7: Comparison of experimental and software results

Table 4.7 summarizes the results in terms of the maximum load sustained by the beams,
comparing the experimental results shown in the second column and the outcomes from
the software A and B, both implementing the 3 modeling hypotheses. This table allows
for a visual evaluation of how well the NLFE models can reproduce the behavior of each
beam and the following load-deformation curves provide an insight into their structural
response and failure mechanisms, underlying not just the final number of failure loads
but the entire loading process. As expected, the 2 software are not able to accurately
predict the behavior of each RC structure, and the reason behind these discrepancies can
be explained by looking at both structures:

• The experimental element may present particularly high-performance thanks to
many aspects, such as severe intergranular interactions and strong bonding between
steel reinforcement and concrete, which lead to performance levels beyond what
might be typical for another RC structure with equal mechanical properties. Even
employing the most sophisticated tools, like the NLNA, it’s never easy to capture
the endless aspects and complexity of each structure that result in being unique.

• In some cases, the NLFE model doesn’t accurately catch the exact resistance me-
chanism and/or the resulting failure mode, therefore the analysts have to interpret
and evaluate the results according to their knowledge, establishing if they are relia-
ble. This highlights the key concept of the right approach to this advanced method:
while there will be more and more sophisticated simulations that faithfully repli-
cate the mechanical behavior of structures, the analyst’s role remains crucial, and
it will probably be even more essential. Through his knowledge, he can interpret
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and select the right safety formats to ensure optimal design choices, suited to that
specific project. No software can’t substitute this fundamental judgment phase.

It’s reasonable to expect that these discrepancies enlarge when the RC structures are
made with particular concrete and reinforcement, like high-performance concrete and
FRP rebar because many factors come into play and the actual resistance mechanisms
become more difficult to predict by an NLN software. At the same time, it may happen
with a more complex failure mechanism, as shown in table 4.8, for the shear failure mode.

Load-deformation curves
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Figure 4.7: (a) Specimen S-501: Load vs. Displacement Curve (b) Specimen CF: Load vs.
Displacement Curve
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Figure 4.8: (a) Specimen CS: Load vs. Displacement Curve (b) Specimen CT: Load vs. Displa-
cement Curve

48



4.1 – NLFE Models

0 20 40 60 80 100
Displacement [mm]

0

10

20

30

40

50

60

Lo
ad

 [k
N

]

 Experimental
 Model 1
 Model 2
 Model 3
 Model 4
 Model 5
 Model 6

 Yield Point
x Failure Point

BF-1
Hussein M. Elsanadedy, 2013

(a)

0 20 40 60 80 100 120
Displacement [mm]

0

50

100

150

Lo
ad

 [k
N

]

 Experimental
 Model 1
 Model 2
 Model 3
 Model 4
 Model 5
 Model 6

 Yield Point
x Failure Point

B-PC-2
Alberto Meda, 2012

(b)

Figure 4.9: (a) Specimen BF-1: Load vs. Displacement Curve (b) Specimen B-PC-2: Load vs.
Displacement Curve
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(b)

Figure 4.10: (a) Specimen B-PC-4: Load vs. Displacement Curve (b) Specimen B-PC-2: Load
vs. Displacement Curve
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Figure 4.11: (a) Specimen A211: Load vs. Displacement Curve (b) Specimen B312: Load vs.
Displacement Curve
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Figure 4.12: (a) Specimen B313: Load vs. Displacement Curve (b) Specimen B321: Load vs.
Displacement Curve
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Figure 4.13: (a) Specimen C211: Load vs. Displacement Curve (b) Specimen C311: Load vs.
Displacement Curve (c) Specimen C411: Load vs. Displacement Curve
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Specimens experiencing shear failure

Specimen Experiment Software A Software B
Brittle LTS Plastic Brittle LTS Plastic

[-] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
S-0.157 311 333 333 382 186 200 256
S-0.314 340 361 361 378 265 275 365
S-0.628 409 428 428 450 306 333 351
S-0.942 422 430 430 450 297 378 414
B1S06 203 204 210 228 180 192 192
B1S10 247 216 222 222 209 230 223
B2S06 236 246 246 252 210 222 216
S06 242 220 220 260 177 197 182
S10 296 260 260 275 180 207 216

S8-90 470 450 450 510 364 420 519
F0S0 115 122 122 152 84 112 136
ST80 251 280 280 302 206 230 234
ST120 215 160 225 300 148 190 222
B44W2 142 130 132 142 100 100 92

B44W1.5 174 172 174 184 195 213 222.5
A01 178 224 224 260 162 162 186
A02 228 264 264 272 198 228 186
B02 284 302 302 302 234 258 252

RCTB1 2179 2460 2480 2880 2200 2280 2360
RCTB3 1140 1160 1200 1440 1020 1040 1060

Table 4.8: Comparison of experimental and software results

Table 4.8, as already mentioned earlier, compares the experimental results (second co-
lumn) with the outcomes from the software A and B, both implementing the 3 modeling
hypotheses, in terms of maximum load sustained by the beams. The possible reasons
behind the discrepancies are the same as in the previous case, but most likely the NLFE
models are affected by higher uncertainties than the flexural case. This is proven by
a larger discrepancy between results obtained through experimental tests and NLFEA.
This is in line with the previous sections where it’s emphasized the unknowns regarding
the shear failure mode on both sides, in literature and, as a direct consequence, also in
the modeling process.
In analyzing beams that fail with a shear mode, the primary reinforcement that comes
into play as a resistance mechanism is the stirrup. Therefore, it’s fundamental to identify
which stirrups undergo plastic deformations or fail, considering their pivotal role in the
beam’s overall shear resistance. After the creation of the first crack, concrete’s contribu-
tion to load bearing starts decreasing hand in hand with the development of subsequent
cracks, and in this area, the steel reinforcement starts working. Immediately after the
formation of the first crack, the steel entirely bears the force in the cracked area and
the stress in the concrete falls to 0. In the region adjacent to the crack, an intermediate
region known as the transfer length exists, and it’s characterized by partial bond break-
down. There, the concrete and steel stresses vary significantly due to the released stress
in concrete and, if the axial load overcomes the threshold that causes the first crack, new
primary cracks continue to form. This process continues until the final crack pattern is
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fully developed. Table 4.9 shows which stirrup was the first to experience plastic deforma-
tion: the numbering can start from both sides, left or right being symmetric structures.
In most cases, the numbers are the same in software A and software B, proving that both
tools’ resistance mechanisms are the same.

Specimen First reinforcement yielding point
[-] Software A Software B

S-0.157 4 4
S-0.314 4 4
S-0.628 5 4
S-0.942 6 6
B1S06 5 7
B1S10 5 4
B2S06 5 5
S06 5 4
S10 6 6

S8-90 4 4
F0S0 2 2
ST80 4 4
ST120 3 4
B44W2 3 3

B44W1.5 3 3
A01 2 2
A02 2 2
B02 4 4

RCTB1 4 4
RCTB3 4 5

Table 4.9: First yielding stirrup for different specimens using Software A and Software B
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Figure 4.14: (a) Specimen ST80: Load vs. Displacement Curve (b) Specimen ST120: Load vs.
Displacement Curve
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Figure 4.15: (a) Specimen S-0.157: Load vs. Displacement Curve (b) Specimen S-0.314: Load
vs. Displacement Curve
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Figure 4.16: (a) Specimen S-0.628: Load vs. Displacement Curve (b) Specimen S-0.942: Load
vs. Displacement Curve
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Figure 4.17: (a) Specimen B44-1.5W: Load vs. Displacement Curve (b) Specimen B44-2W:
Load vs. Displacement Curve
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Figure 4.18: (a) Specimen S06: Load vs. Displacement Curve (b) Specimen S10: Load vs.
Displacement Curve
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Figure 4.19: (a) Specimen F0S0: Load vs. Displacement Curve (b) Specimen A01: Load vs.
Displacement Curve
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(b)

Figure 4.20: (a) Specimen A02: Load vs. Displacement Curve (b) Specimen B02: Load vs.
Displacement Curve
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Figure 4.21: (a) Specimen B1S06: Load vs. Displacement Curve (b) Specimen B1S10: Load vs.
Displacement Curve
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(b)

Figure 4.22: (a) Specimen B2S06: Load vs. Displacement Curve (b) Specimen S8-90: Load vs.
Displacement Curve
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Figure 4.23: (a) Specimen RCTB1: Load vs. Displacement Curve (b) Specimen RCTB3: Load
vs. Displacement Curve
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Chapter 5

5.1 Uncertainty in NLNA Models of RC Beams

5.1.1 Model uncertainty safety factor

Real behavior prediction of an RC structure is the primary goal of the NLNA, considering
its components’ nonlinear effects. However, numerical models inherently contain uncer-
tainties, making them just an accurate idealization of physical reality. This happens due
to neglected aspects or informed choices in the model’s resolution. These uncertainties
are known as epistemic.
The thesis focuses on a comprehensive and accurate assessment of the model uncertainty
safety factor, γRd. It comes into play in the Global Resistance Format (GRF) for eva-
luating the global design structural resistance Rd, as shown earlier in the equations 1.1
and 1.3. This coefficient considers all the uncertainties related to the model: numerical
approximations in solving nonlinear equations, incomplete knowledge that leads to as-
sumptions, and simplifications throughout defining the structural model and software’s
limitations.
In this phase, the analysis concentrates solely on epistemic uncertainties. In contrast,
aleatory ones are not being considered in this work. Still, they are explored by my collea-
gue Stefano in his thesis and the references 16, and 17 (Model uncertainty in non-linear
numerical).
Quantifying the epistemic uncertainties in the model involves introducing a new varia-
ble: the resistance model uncertainty θ. This variable represents the ratio between the
resistance given by the experimental tests, Rexp,(X, Y ), and the one obtained from the
nonlinear analysis, RNLFEA,(X). X and Y are vectors where the first contains variables
considered in the models, while Y gathers variables that, though influencing resistance
mechanisms, are neglected. For example, the confinement in beams, achieved through
stirrups encircling the longitudinal reinforcement and enhancing in that way the overall
beam performance, has not been explicitly incorporated into numerical models. However,
the vector θ, statistically characterized by a mean µθ and variance σ2

θ , is influenced by
both X and Y , indirectly accounting for the contribution of unknowns [6].

θi ≈
Rexp,i(X, Y )

RNLFEA,i(X)
(5.1)
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With knowledge of both the first and second-order central moments of the distribution,
it’s possible to determine the model uncertainty safety factor:

γRd
=

1

µθ · exp(−αRβVθ)
(5.2)

5.1.2 Assessing model uncertainty

For this analysis, two groups of beams are examined:

• 15 beams subjected to flexural failure

• 20 beams subjected to shear failure

The experimental results, Rexp,i, were obtained through three-point or four-point ben-
ding tests. The ultimate load capacities of the beams, as determined experimentally,
were compared with the results from Nonlinear Finite Element Analyses (NLFEAs) con-
ducted using software A and B, RNLFEA,i. To achieve a more robust and comprehensive
calibration of the model uncertainty safety factor, and to align with the approach outlined
in references [6], it is essential to differentiate between different modeling hypotheses. In
this way, the thesis encompasses the wholeness of possibilities that an analyst can ex-
plore during the modeling process. It’s worth noting that model uncertainty is related
to the solution strategy adopted, therefore choices that involve physical, geometrical, or
other uncertainties are integrated with different uncertainty factors, such as the Global
Resistance Safety Factor γR.
Typically, concrete shows quasi-brittle compressive responses and brittle behavior under
tensile forces. The steel bars, indeed, are always integrated within the concrete structure
to compensate for its lack of tensile strength. These elements work well because they
can create heavy bonds with concrete, promoted by the rib on their surface, ensuring the
tension-stiffening effect. Like the dowel effect, where cracked concrete allows rebars to
transfer load across the cracks, enhancing the overall shear resistance; tension stiffening
arises from the strong interaction between steel and concrete. It improves significan-
tly the beam’s stiffness and only modestly its tensile resistance, reducing crack widths
and spacing. To incorporate this effect in numerical simulations, the constitutive tensile
model can be modified by adopting different tension-softening laws, which simulate the
post-peak behavior of concrete in tension [11]. Therefore, 3 distinct hypotheses regarding
the concrete behavior in tension have been discussed:

• elastic-brittle

• elastic with post-peak linear tension softening (LTS)

• elastic with a perfectly plastic response

The first and third hypotheses embody the two extreme possibilities of concrete’s tensile
performance. Although they can’t be considered real physical representations of possi-
ble failure mechanisms of RC beams, they are necessary for outlining boundary limits,
encompassing the epistemic uncertainty associated with material modeling. Instead, the
LTS case has been calibrated to closely match the experimental load-displacement curve
for each beam. The calibration assumes that Young’s modulus of concrete in tension is
equal to that in compression, using the elastic modulus and the concrete tensile strength
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Figure 5.1: Uniaxial tensile stress-strain behavior for concrete and its softening branch assump-
tions.

as per EN1992-1-1:36 when no specific information is provided in the literature [42].
It’s worth noting that different assumptions made during the modeling phase to descri-
be the material’s actual behavior impacts the constitutive models, kinematic laws, and
equilibrium equations.

Beams experiencing flexural failure

In this case, therefore, 6 different structural models, Mj, have been defined for each beam,
with j ranging from 1 to 6. Specifically, 3 models were created using software A, and three
with software B. The result is a matrix [15 x 6] as shown in table 5.1.

Figure 5.2: Prior information scheme

Table 5.1 shows that even when considering the theoretical extreme hypotheses about
concrete’s tensile behavior, they are not completely sufficient to encompass the expe-
rimental peak load, especially regarding the lower limit. In both software analyses, as
predicted, θ never exceeds 1 for the plastic case but it overcomes the predicted bound,
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Table 5.1: Resistance model uncertainty random variables
Software A B

Brittle LTS Plastic Brittle LTS Plastic
Model 1 2 3 4 5 6
S-501 1.165 1.155 0.977 1.155 1.104 0.907
CF 0.933 0.903 0.718 0.982 0.982 0.862
CS 0.968 0.968 0.847 1.200 0.931 0.818
CT 0.961 0.928 0.841 1.200 0.931 0.885
BF1-1 0.896 0.896 0.796 1.194 1.162 0.896
B-PC-2 0.908 0.908 0.795 0.927 0.918 0.631
B-PC-4 0.966 0.966 0.944 0.939 0.913 0.781
RC-1 1.027 1.027 0.927 1.222 1.203 1.000
A211 0.943 0.924 0.856 1.038 0.987 0.872
B312 1.031 1.031 0.893 1.031 1.019 0.917
B313 1.007 1.007 0.909 1.035 1.030 0.928
B321 1.009 1.009 0.902 1.051 1.044 0.932
C211 1.016 1.016 0.844 1.074 1.066 0.915
C311 1.030 1.015 0.870 1.073 1.040 0.919
C411 1.009 1.009 0.935 1.448 1.026 0.940

falling below 1, when the elastic-brittle tension-softening law is implemented, as indicated
in the first and third columns of table 5.1. The anomalies in the results and the challenge
in capturing entirely the beam’s failure mode may derive from the necessity of further
boundary conditions and multiple NLNAs to explore the combined influence of various
parameters. The approach carried on in this thesis will establish a background for future
NLN analyses, ensuring that the outcomes will reflect accurately the experimental resul-
ts.
The obtained discrepancies observed in the peak load estimation when comparing nume-
rical simulation with experimental results vary according to the solution strategy and the
software considered. It’s worth highlighting some possible outliers like θ equal to 0.718
and 1.448 in the third and fourth models, respectively. This difference clearly shows that
finite element models may not always accurately replicate experimental behavior and only
a post-processing investigation can reveal the reason behind it. On the other hand, it is
reasonable to expect that not all the beams, and more in general, RC structures, can be
faithfully replicated with NLFE software. Therefore, it’s essential to work with as large a
sample as possible to draw conclusions that behave as general rules, rather than a simple
description of a limited number of cases. The bias becomes potentially harmful when
it derives from overestimations of concrete beam peak resistances, leading to potentially
unsafe design choices. The only solution to prevent this risk is a meticulous calibration
of the software, followed by applying at the final stage an appropriate conservative value
for the resistance modeling uncertainty partial safety factor in NLFEAs. This approach
proves effective: in the second and fifth columns in table 5.1, which correspond to the
LTS models, most of the theta values are nearly equal to the unity, meaning a strong
alignment between reality and the numerical model.
Except for just one case, both software, A and B behave similarly: in the LTS column,
they consistently either overestimate or underestimate the peak load. Hence, any further
adjustment subsequently implemented to achieve a θ equal to unity could work effectively

59



Chapter 5

for both.
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Figure 5.3: Modelling hypotheses and benchmark NLNAs

5.1.3 Statistic Inference

The choice to consider the 2 extreme tension-softening laws, elastic-brittle and elastic
with perfectly plastic response, derives from the need to encompass engineers’ choices
during the modeling phase. As shown in figure 5.13, the process results in 90 non-linear
simulations. The outcomes of these analyses are the RNLNA values, which are then used as
input data for the subsequent phase. The resistance model uncertainty random variable
θ can be assessed by taking the ratio between the experimental resistance, Rexp, already
known from the experiments, and the RNLNA results. According to the literature and as
suggested in the JCSS model code [31], a log-normal distribution is commonly assumed
to describe its variability. However, the statistic inference procedure includes a series of
sequential tests to ensure that our sample follows the general trend and avoids making
assumptions. They confirm or reject the hypothesis that the log-normal distribution can
appropriately fit the random variable θ before proceeding with the probabilistic analysis
[35].
The statistical inference procedure aims to suit the probabilistic model to the data sample.
To accomplish this, an optimization process is pursued, fitting the distribution through a
correct assessment of its parameters. Before doing so, which is computationally intensive,
it’s preferable to first draw probability plots for each distribution under consideration.
This type of graphical tool visually allows the analyst to realize how well a probabilistic
model fits the data sample. It’s a quantile-quantile (Q-Q) plot, that compares empirical
and theoretical distributions. If the differences between them are only due to location
and scale, governed by the parameters, the plot represents approximately a straight line
[35].
The generic log-normal equations are:

P (θ) =
1

λ2

√
2π

∫ θ

−∞

1

θ
e
− 1

2

(
ln(θ)−λ1

λ2

)2

dθ, (5.3)

p(θ) =
1

θλ2

√
2π

e
− 1

2

(
ln(θ)−λ1

λ2

)2

, θ > 0 (5.4)

θ(F ) = eλ1+λ2Φ−1(F ), λ2 > 0 (5.5)

The graphical check of the random variable theta, depicted in images 5.4 and 5.5, suggests
that the log-normal distribution may provide an appropriate description of its variability.
Only after this step, it’s worth proceeding with the optimization process. Specifically,
figures 5.4a and 5.5a juxtapose the frequency histogram derived from the data with the
log-normal probability density function. Meanwhile, the probability plots, in figures
5.4b and 5.5b, confirm the alignment of points. Similar behavior has been detected in the
remaining sets of modeling hypotheses, which collectively constitute the prior information
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set. A consistency test was also implemented: the six models were analyzed together,
treating them as a unique sample of 90 random variables. Any misalignment in these
graphs would lead to a change in the probabilistic model and restart the entire statistical
inference process. However, even if the probability plots 5.4b and 5.5b show an alignment,
it doesn’t guarantee success in the tests.
For this procedure, 4 tests of adaptation have been selected:

• Chi-squared

• Anderson-Darling

• Jarque-Bera

• Lilliefors

For each test, the null hypothesis H0 assumes that the sample is drawn from a log-normal
distribution.
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Figure 5.4: (a) Frequency Histogram vs. Lognormal PDF of θ for prior information in Model 2,
and (b) Probability Plot of θ for prior information in Model 2
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Figure 5.5: (a) Frequency Histogram vs. Lognormal PDF of θ for prior information in Model 4,
and (b) Probability Plot of θ for prior information in Model 4
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Chi-Squared (Pearson) Test

This test is based on subdividing the sample into k classes, with the optimal number of
classes rounded to the closest integer [35]:

k = 2 · n0.4 (5.6)

To proceed with the test, the classes need to be defined. Equiprobable classes are used,
where Ei is the expected frequency in the i-th class and qi is the probability associated
with the i-th class:

Ei = n · qi (5.7)

qi =
1

k
(5.8)

After determining the expected frequencies, Ei, when H0 is true and the number of sample
elements falling into the i-th class (Oi), the weighted sum (X2) can be estimated with
the following formula:

X2 =
k∑

i=1

(Oi − Ei)
2

Ei

(5.9)

X2 follows a χ2 distribution, which is a sum of squares of a normal variable. The degrees
of freedom of the test are represented by the distribution parameter k−np− 1, where np
is the number of estimated parameters. To evaluate the acceptance of the hypothesis, it
is necessary to identify the limit of acceptance:

χ2
lim = χ2(k − np− 1, α) (5.10)

with the level of significance (α), which quantifies the probability of rejecting a true
hypothesis, set at 5%.
After identifying it:

• if χ2 ≤ χ2
lim, we accept the hypothesis H0 that the sample is drawn from the

distribution, and the distribution is suitable to describe the sample.

• otherwise, we reject the hypothesis H0, and the distribution is not suitable to
describe the sample.

Passing this type of test is relatively straightforward, and multiple distributions can pass it
for the same sample; hence, additional tests are necessary, such as the Anderson-Darling,
Jarque-Bera test, and Lilliefors test.

Anderson-Darling Test

Based on the cumulative distribution function, the Anderson-Darling test is applied to
distributions that pass the Chi-Squared test to analyze the distance between the curves
further. Unlike the Chi-Squared test, it is not subdivided into classes to avoid the loss of
information [35]. The test statistic is defined as:

A2 = n

∫ ∞

−∞

[P (x)− F (x)]2

P (x) · [1− P (x)]
· p(x) dx (5.11)
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This integral is numerically approximated by substituting the plotting position for the
frequency F in the analytical expression:

A2 = −n− 1

n

n∑
i=1

{
(2i− 1) · ln[P (x(i))] + (2n+ 1− 2i) · ln[1− P (x(i))]

}
(5.12)

Where:

• x(i) are the elements of the sorted sample in increasing order.

• P (x(i)) is the cumulative probability at x(i)) from the distribution being tested.

To accept the hypothesis H0, it is necessary to compare the test statistic A2 with a
critical value A2

lim, which can be found in statistical tables because it depends on the
distribution. Otherwise, the calculation of the variable ω, whose limit depends only on
the level of significance, can provide further insight into the test results.

Jarque-Bera Test

The Jarque-Bera test evaluates whether sample data exhibit skewness and kurtosis similar
to a normal distribution. To conduct this test, it is necessary first to transform the data
into the logarithm of the θ values.From these converted numbers it’s possible to compute
the third standardized moment (skewness) and the fourth standardized moment (kurtosis)
using the following formulas:

γ1 =
1
n

∑n
i=1(Xi − X̄)3(

1
n

∑n
i=1(Xi − X̄)2

)3/2 (5.13)

γ2 =
1
n

∑n
i=1(Xi − X̄)4(

1
n

∑n
i=1(Xi − X̄)2

)2 − 3 (5.14)

Where:

• Xi are the sample data points

• X̄ is the sample mean

• n is the sample size

These standardized moments are dimensionless measures that enable assessment of the
Jarque-Bera statistic value JB as:

JB =
n

6

(
γ2
1 +

1

4
γ2
2

)
(5.15)

Comparing it to a critical value JBlim:

JBlim = χ2(2, α) (5.16)

The value approximately follows a chi-squared distribution with 2 degrees of freedom and
fixing a significance level of 5%, 2 scenarios can occur:

• If JB ≤ JBlim, accept the null hypothesis H0 that the data are normally distributed.

• If JB > JBlim, reject H0 and conclude that the data are not normally distributed.
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Lilliefors Test

The Lilliefors test is a goodness-of-fit test based on subdividing the sample into clas-
ses, similar to the Chi-squared test. However, in this case, the comparison between
the observed frequencies Oi with the expected frequencies Ei is conducted using the
Kolmogorov-Smirnov (KS) test statistic:

D = max
i

∣∣∣∣Fn(X(i))−
i

n

∣∣∣∣ (5.17)

Where:

• Fn(X(i)) is the Empirical Cumulative Distribution Function (ECDF) of the sample

• X(i) is the i-th ordered observation in the sample

• i
n

is the expected cumulative probability

The critical value of the test Dlim is determined from tables of the Lilliefors distribution
and it is associated with different sample sizes and significance levels (always assumed
equal to 5%). In line with all the previous tests, the scenarios can be:

• if D exceeds the critical value, the hypothesis H0 that the sample follows the
hypothesized distribution is rejected

• if D is less than or equal to the critical value, H0 is accepted and according to the
test the sample is drawn by the tested distribution.

The analysis of the prior information involves these four statistical tests, applying them
separately to each structural model and collectively to all models combined. The proba-
bility distribution has to pass all tests in sequence, starting from the least to the most
restrictive. Additionally, the tests were repeated on posterior information using Bayesian
updating, as detailed in the following subsection. Similarly to the case explained earlier
of possible misalignment in the probability plot, if no distribution passes all the tests,
the analyst should first try to change the parameter estimation method (i.e. moments,
L-moments, Maximum Likelihood methods). If also after this adjustment, there is no
distribution accepted by all, the entire statistical inference procedure must be restarted
[35].
Fortunately, all the tests have been successfully passed as shown in table 5.2, and the
p-value, for each case, has been estimated. This latter is a standardized measure that
indicates the probability that the observed data would occur if the null hypothesis H0

were true, quantifying how well the sample fits the chosen distribution. In a certain way,
it complements the level of significance α: while α is chosen by the analyst before con-
ducting the tests to set a threshold for the maximum acceptable probability of incorrectly
rejecting the null hypothesis, the p-value is derived from the test results and is strongly
influenced by the assumptions made previously. It quantifies the strength of the evidence
against H0.
In practical terms, if the p-value is less than or equal to the chosen α level, for this
analysis assumed equal to 0.05, it indicates that the sample offers sufficient information
to reject the hypothesis whereby it has been drawn from a log-normal distribution. It’s
important to emphasize this last concept: it doesn’t mean that the H0 hypothesis is not
necessarily true, rather, it indicates only that there is not sufficient information to accept
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it, not allowing the procedure to proceed forward. On the other hand, if the p-value is
greater than the α level, there is not enough information to reject the null hypothesis.
As shown in Table 5.2, the p-value for each model is always greater than the α. This
aligns with the literature, as reported in reference [11], which indicates that a log-normal
probabilistic distribution can effectively capture the statistical variability of the realiza-
tions of the variable θ. Following the procedure suggested in Reference [11], when prior
information already exists but needs to be updated with new information to strengthen
the model, a Bayesian updating approach can be implemented. The method yields to
the analyst the average distribution of θ and its statistical parameters like mean value
µθ and standard deviation σθ. After that, the model uncertainty safety factor γRd can be
determined [7].

Models Name Tests
Chi-Squared Anderson-Darling Jarque-Bera Lilliefors

M1 Passed Passed Passed Passed
P-value 0.243 0.348 0.148 0.340
M2 Passed Passed Passed Passed
P-value 0.214 0.192 0.500 0.270
M3 Passed Passed Passed Passed
P-value 0.084 0.608 0.230 0.500
M4 Passed Passed Passed Passed
P-value 0.151 0.365 0.330 0.267
M5 Passed Passed Passed Passed
P-value 0.645 0.540 0.505 0.500
M6 Passed Passed Passed Passed
P-value 0.050 0.052 0.051 0.090
Mtot Passed Passed Passed Passed
P-value 0.057 0.098 0.364 0.055

Table 5.2: Test results

5.1.4 Calibration of model uncertainty safety factor

Bayes approach A

The Bayesian approach offers the analyst a comprehensive and robust probabilistic un-
derstanding of the random variable θ, as mentioned previously [7]. It involves several
steps, each of which is strongly dependent on the previous one. Indeed, the idea behind
the process is to evaluate the probability of A occurring, given that event B has been
observed, as described by Engen et al. [43].
Initially, 6 log-normal probability distributions are defined, each corresponding to a dif-
ferent model hypothesis, denoted as F (θ | Mj) for j = 1, . . . , 6. All these models are
assumed equally probable, meaning that there is not a favorite single model over ano-
ther. The second step involves the assessment of the updating information: for each
model Mj, it is derived from the data of all other models, excluding Mj itself. This is
achieved using the average statistical parameters, grouped in vector zj, from the probabi-
listic distributions of the other models through a leave-one-out approach. This method,
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by enlarging the data sample from which information is drawn, enhances the robustness
of the Mj models by validating them against external data. The result is a probability
function FMj

(θ | zj) for j = 1, . . . , 6, each representing the updating information for the
corresponding Mj model. The parameters of the lognormal distributions for the prior
distributions and the new information were assessed using the maximum likelihood me-
thod, ML, thereby representing the maximum likelihood estimators, MLEs.
The Bayesian updating process leads, therefore, to the definition of a posterior log-normal
probability function F (θ | Mj, zj), which reflects both the prior information and the new
data. On the other hand, its parameters were obtained in closed form using a prelimina-
ry joint distribution of the same form as the likelihood. This is called a conjugate prior
distribution [16]. A new vector Z was defined, which collects the key statistical charac-
teristics from the six posterior models, such as mean value and standard deviation. It
allows the analyst to finally estimate the average log-normal posterior probability distri-
bution F (θ | Z) that is adopted to represent the resistance modeling uncertainty random
variable θ.
Indeed, by averaging the parameters of the posterior log-normal distributions, the para-
meters of the final distribution F (θ | Z) are derived:

µLN,POST =
1

6

6∑
i=1

µLN,post,i (5.18)

σLN,POST =
1

6

6∑
i=1

σLN,post,i (5.19)

Table 5.3: Statistical parameters of the prior information distribution functions and statistical
uncertainty

Models Prior distributions F (ϑ|Mj) Statistical uncertainty

µϑ [-] σϑ [-] CVϑ [-] C(1,1) C(2,2)

1 0.99 0.06 0.07 2.8E-04 5.6E-04
2 0.99 0.07 0.07 3.1E-04 6.2E-04
3 0.87 0.07 0.08 4.3E-04 8.7E-04
4 1.11 0.13 0.11 9.2E-04 1.8E-03
5 1.02 0.09 0.08 4.6E-04 9.2E-04
6 0.88 0.10 0.11 7.8E-04 1.6E-03

Tables 5.3,5.4, and 5.5 summarize the information and respectively present the prior,
updating, and posterior statistical parameters of the related probabilistic distributions.
Generally, the posterior mean values tend to fall between the prior and updating values,
demonstrating the Bayesian updating approach’s ability to merge prior and new infor-
mation. As a rule of thumb, prior values tend to be more dispersed, with mean values
ranging from 0.87 to 1.11. In contrast, the posterior distributions are more concentrated,
with mean values ranging from 0.93 to 1.02. The lower σθ in the posterior log-normal
distributions indicate a significant reduction in uncertainty compared to the updating in-
formation. The posterior coefficients of variation tend to be slightly higher than the prior
ones but lower than the updating values, indicating a balanced integration of uncertainty.
Looking at the results, one can question the need to apply the Bayesian method, given
that the posterior CV theta is slightly higher than the prior ones. However, this is not the
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Table 5.4: Statistical parameters of the updating information distribution functions and stati-
stical uncertainty

Models Updating information FMj
(θ|zj) Statistical uncertainty

µϑ [-] σϑ [-] CVϑ [-] C(1,1) C(2,2)

1 0.97 0.13 0.13 2.2E-04 4.4E-04
2 0.97 0.13 0.13 2.2E-04 4.4E-04
3 1.00 0.11 0.12 1.8E-04 3.5E-04
4 0.95 0.10 0.11 1.5E-04 2.9E-04
5 0.97 0.12 0.12 2.1E-04 4.1E-04
6 1.00 0.11 0.11 1.7E-04 3.4E-04

Table 5.5: Statistical parameters of the posterior information distribution functions and stati-
stical uncertainty

Models Posterior distributions F (ϑ|Mj, zj) Statistical uncertainty

µϑ [-] σϑ [-] CVϑ [-] C(1,1) C(2,2)

1 0.98 0.10 0.10 1.1E-05 2.4E-06
2 0.98 0.10 0.10 1.1E-05 2.4E-06
3 0.93 0.11 0.12 1.4E-05 4.4E-06
4 1.02 0.14 0.13 1.8E-05 7.0E-06
5 1.00 0.11 0.11 1.2E-05 3.2E-06
6 0.94 0.12 0.13 1.6E-05 5.4E-06

primary goal of the approach: going from a data sample of 15 elements for each model to
75 strengthens the reliability and accuracy of the model even if the results may appear
less precise. The values C(1,1) and C(2,2), derived from the inverse of Fischer’s matrix
C, represent the variance of the statistical parameters µθ and σθ, respectively. The tables
5.3,5.4, and 5.5 clearly show that the posterior values are generally smaller than both the
prior and updating values, demonstrating that the Bayesian updating method enhances
the precision and confidence in set estimates. They clearly show the power of this ap-
proach, which can seamlessly integrate diverse sources of information.
It is noteworthy that both software A and software B have effectively captured the real
behavior of the beams: the posterior mean is very close to unity, indicating a nearly
perfect correspondence between Rexp and Rnlfea. The low CVθ also signifies minimal data
dispersion, even though the posterior analysis incorporates significantly more data than
the prior step. However, software A demonstrates lower standard deviations and mean
values closer to 1, with consequently lower coefficients of variation, indicating more pre-
cise estimates. The lower accuracy in software B’s results is emphasized by the statistical
uncertainty values, C(1,1) and C(2,2) which in a few cases are nearly an order of ma-
gnitude greater than those obtained by software A. The observed differences between
the two software programs may likely be attributed to the numerical methods and al-
gorithms used by software A, which may be better suited to the specific characteristics
of the beams being analyzed. Additionally, the choices adopted for the mesh, including
the dimensions and shapes of the elements, play a crucial role in the modeling phase.
Software A uses advanced material models and meshing techniques, incorporating three
types of meshes with three types of finite elements, contributing to its more accurate and

67



Chapter 5

Table 5.6: Average statistical parameters FZ(θ |)

Posterior distribution FZ(θ|Z)
µϑ [–] CVϑ [–]

Average statistical parameters 0.98 0.12

consistent results.
The prior distribution for model 1 has a mean value µθ lower than unity, indicating an
unsafe bias. The NLFEA overestimates the global structural resistance, even when con-
sidering tensile concrete behavior as elastic-brittle. Conversely, for model 4, despite the
mean being even farther from 1 and the CVθ being larger, it causes less risk. This is be-
cause software B underestimates the beam’s resistance, thereby providing engineers with
a safe margin. Regarding model 1, the updating information does not correct this bias,
which has a mean value even farther from 1, resulting in a posterior distribution mean
equal to 0.98. In contrast, models 4 and 6, assuming elastic-brittle and elastic-perfectly
plastic behavior for concrete tension respectively, behave as expected. They underestima-
te global resistance in prior information since concrete contributes to tensile resistance,
making post-peak behavior not entirely brittle. However, concrete is never completely
elastoplastic, and thus, this tension-softening assumption tends to overestimate beam
performance in the NLNA. The Bayesian method balances these initial biases, resulting
in posterior mean values much closer to unity. Like the results obtained with model 6,
in case 3 where the prior value was much lower than 1, 0.87, the entire process led to an
unsafe bias reduction, bringing it up to 0.93.
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Figure 5.6: (a) Frequency Histogram vs. Lognormal PDF of θ for updating information in Model
2, and (b) Probability Plot of θ for updating information in Model 2

As demonstrated by the PDF and CDF of Models 2 and 4 in images 5.6 and 5.7, the
log-normal distribution fits the larger samples of the updating information quite well.
This is particularly evident in images 5.6b and 5.7b, where most points align closely
with the line, except for a few outliers. These misaligned values may be attributed to
the limited amount of prior data, which complicates the fitting process and can create a
cascade effect, resulting in outliers in subsequent steps. This effect may diminish with
a larger initial dataset or by incorporating prior information from literature sources, as
demonstrated in the following subsection using Approach B.
The entire process, from the initial prior probability distributions to the updating and
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Figure 5.7: (a) Frequency Histogram vs. Lognormal PDF of θ for updating information in Model
4, and (b) Probability Plot of θ for updating information in Model 4
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Figure 5.8: Probabilistic distributions related to prior, posterior, and updating information:
Probability Density Functions (PDFs) (a) and Cumulative Distribution Functions (CDFs) (b)

posterior distributions, is illustrated in figure 5.8. These figures highlight the final log-
normal probability distribution in red and table 5.12 its key statistical parameters. These
values will be used in the next section to assess the model uncertainty safety factor γRd.
The posterior distributions, illustrated in blue in charts 5.8, fall between the more di-
spersed prior distributions (shown in gray) and the concentrated updating distributions
(depicted in green). This behavior was predictable, as the posterior distributions are
essentially the weighted average of the prior information and the new data.
The log-normal distribution is the most suitable probabilistic model to represent the θ
sample, with a mean, µθ, of 0.98 and a coefficient of variation, CVθ, of 0.12, as shown
in table 5.12. These values will be used to calibrate the resistance model uncertainty
safety factor γRd in the next section. But before using them, as explained later, the
results obtained at the end of the Bayesian approach must be purified by the effect of
the experimental uncertainty. The mean value below 1 indicates that the nonlinear finite
element analyses (NLFEAs) tend to slightly overestimate the beam’s resistance. The low
CVθ signifies that the data points are closely clustered around this mean value. However,
using these tools does not necessarily imply a risk of overestimating the performance of
structural elements. This is because certain positive effects, such as confinement, are
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completely neglected in the analysis.

Bayes approach B

To create a more comprehensive assessment of the random variable θ, 2 ways can be
implemented:

• Expand the prior information

• Incorporate results from existing scientific literature

Regarding the first approach, it would take a considerable amount of time and be less
general. It would encompass a larger sample but all of them would be modeled by the
same analyst, with consistent choices and therefore, limiting the diversity that can be
generated by different approaches. The aim of this work is not to create a procedure,
and results specifically tailored to these selected beams, but rather to develop a universal
method completely unrelated to the original sample, that can be always used within the
sphere of beams subjected to flexural failure. This approach broadens the initial sample
size and enhances the degree of confidence in the prior information. Known as Approach
B, this methodology is like the previous Approach A but includes the Bayesian updating
process based on the information assessed in the reference [15]. Table 5.7 summarizes
all key properties, drawn from the reference. In A. de Putter’s thesis, 101 beams were
analyzed, and approximately 2000 nonlinear finite element analyses were conducted to
determine the sensitivity of nonlinear models to specific aspects of solution strategies.

Table 5.7: Statistical parameters

F9 - (101 Beams)

µϑ [–] CVϑ [–]

Statistical parameters 1.075 0.098

While the prior information remains the same as previously used, this approach dif-
fers in the initial step of updating information. Instead of using the average statistical
parameters from the probabilistic distributions of the other models through a leave-one-
out approach, here, all six modeling hypotheses Mj have been updated using a unique
log-normal probabilistic distribution F ′(ϑ), which has the key statistical parameters pre-
sented in table 5.7, according to [15]. In this way, the 6 initial phase-conditional posterior
log-normal distributions F ′(ϑj|Mj) are evaluated using the updating procedure outlined
in the previous subsection. They are derived from a combination between the conjugate
prior distributions with the new information, as summarized in tables 5.3,5.8, and 5.9.
During the initial phase, the update shifts the mean values closer to 1, thereby reducing
potential unsafe bias and uncertainty. This is evidenced by the lower values of C(1,1)
and C(2,2) in the probability distributions F ′(ϑj|Mj). The rightward shift of the curves
with the increase in mean values is clearly shown in graph 5.9, where the prior, A. de
Putter, and updating PDFs and CDFs are plotted.
In the second phase, the entire process mirrors the one applied in Approach A. However,
instead of the initial prior information, it uses the updated results from the end of the
previous phase, F ′(ϑj|Mj), as the new prior information. Tables 5.10 and 5.11 summarize
the results obtained from Approach B.

70



5.1 – Uncertainty in NLNA Models of RC Beams

Table 5.8: Statistical parameter of the updating information distribution function and statistical
uncertainty in the First Phase

Models Updating information F ′(θ) Statistical uncertainty

µϑ [-] σϑ [-] CVϑ [-] C(1,1) C(2,2)

1 1.075 0.10 0.097 - -
2 1.075 0.10 0.097 - -
3 1.075 0.10 0.097 - -
4 1.075 0.10 0.097 - -
5 1.075 0.10 0.097 - -
6 1.075 0.10 0.097 - -

Table 5.9: Statistical parameters of the posterior information distribution functions and stati-
stical uncertainty in the First Phase and statistical parameters of the updated prior information
distribution functions and statistical uncertainty in the Second Phase

Models Posterior distributions F ′(ϑ|Mj) Statistical uncertainty

µϑ [-] σϑ [-] CVϑ [-] C(1,1) C(2,2)

1 1.06 0.10 0.10 8.2E-05 1.6E-04
2 1.06 0.10 0.10 8.4E-05 1.7E-04
3 1.01 0.12 0.12 1.2E-04 3.6E-04
4 1.08 0.11 0.10 8.7E-05 1.8E-04
5 1.06 0.10 0.10 8.1E-05 1.6E-04
6 1.00 0.12 0.12 1.2E-04 3.7E-04

As shown in the tables, in the second phase the updating information is almost identi-
cal to that of the previous approach. However, the posterior distributions have changed
significantly. For instance, models 3, 4, and 6 initially have mean values quite far from
unity. During the second phase, the Bayesian method improves the precision of the data,
bringing the mean values closer to 1, reaching 1.01, 1.06, and 1.00, respectively. This is
reflected in the average posterior log-normal distribution, which has a mean value of 1.04
and a coefficient of variation of 0.11. Compared to Approach A, this method eliminates
unsafe bias, achieving a good correspondence between the Rexp and Rnlnas. Even if the
mean value is not exactly 1, the analysis falls into the safe region. Regarding the CV θ,
it is slightly lower, decreasing from 0.12 to 0.11, but in both cases it remains relatively
low. Similarly to Approach A, also in this case before using these results, they must
be purified by the effect of the experimental uncertainty. These results are fully consi-
stent with AdePutter’s thesis, which also examines the impact of the constitutive model,
specifically regarding crack orientation. As illustrated in image 5.10, A. de Putter’s pro-
bability model exhibits a safer bias, demonstrated by the rightward shift of the PDF.
This contributes to the increased robustness and reliability of our model, especially given
the larger number of RC beams analyzed. Examining the graphs, it’s possible to observe
that A. de Putter’s information heavily affects the mean values of the models, which is
graphically expressed in a shift of the PDF curves. This is caused by the large number of
prior information that he has, which during the Bayesian procedure weights much more
than the 15 models of this thesis. This is exactly the aim of the approach B: to create
a new sample, even larger than the original datasets, that can be exploited for further

71



Chapter 5

0 0.
2

0.
4

0.
6

0.
8 1 1.

2
1.
4

1.
6

1.
8 2 2.

2

i
 [-]

0

1

2

3

4

5

6

7

p
(
 
 )

(a)

0 0.
4

0.
8

1.
2

1.
6 2

i
 [-]

0

0.2

0.4

0.6

0.8

1

P
(
 
)

(b)
Figure 5.9: Probabilistic distributions related to prior, AdePutter’s model, and posterior in-
formation: Probability Density Functions (PDFs) (a) and Cumulative Distribution Functions
(CDFs) (b)

Table 5.10: Statistical parameters of the updating information distribution functions and stati-
stical uncertainty in the Second Phase

Models Updating information F ′
Mj

(θ|zj) Statistical uncertainty

µϑ [-] σϑ [-] CVϑ [-] C(1,1) C(2,2)

1 0.97 0.13 0.13 2.2E-04 4.4E-05
2 0.97 0.13 0.13 2.2E-04 4.4E-05
3 1.00 0.12 0.12 1.8E-04 3.5E-05
4 0.95 0.10 0.11 1.5E-04 2.9E-05
5 0.97 0.12 0.12 2.1E-04 4.1E-05
6 1.00 0.11 0.11 1.7E-04 3.4E-05

analysis. In this way, the procedure becomes increasingly reliable.

5.1.5 Influence of Experimental Uncertainty

The thesis aims to estimate and minimize the impact of model uncertainty, also known as
epistemic uncertainty, in global resistance assessment. By exploring the effects of various
modeling options that are available to engineers during the modeling phase, this work
seeks to identify a partial safety factor. This value appears from the need to mitigate the
effects of subjectivity in the modeling process. However, it is important to acknowledge
that the starting data collected during several experiments are subject to uncertainties,
including those arising from experimental inaccuracies [43].
One of the key positive aspects of approaching the analysis with the Global Resistance
Format is the ability to study each type of uncertainty independently and refine the results
only at the end deleting all of them through a specific safety factor. This is the case of the
experimental uncertainty ε, which encompasses all uncertainties related to the test, such
as procedural variations, accuracy of test methods and conductions, measurement errors,
and geometrical deviations of the specimens. These factors may contribute to eccentri-
cities in the applied loads and variations in the actual support configuration, collectively
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Table 5.11: Statistical parameters of the posterior information distribution functions and stati-
stical uncertainty in the Second Phase

Models Posterior distributions F ′(ϑ|Mj, zj) Statistical uncertainty

µϑ [-] σϑ [-] CVϑ [-] C(1,1) C(2,2)

1 1.05 0.11 0.10 8.4E-05 1.9E-06
2 1.05 0.12 0.11 8.5E-05 2.0E-06
3 1.01 0.12 0.12 1.2E-04 3.7E-06
4 1.06 0.11 0.11 9.1E-05 2.3E-06
5 1.04 0.10 0.10 8.4E-05 1.9E-0
6 1.00 0.12 0.12 1.2E-04 3.8E-06

Table 5.12: Average statistical parameters FZ(θ |)

Posterior distribution F ′
Z(θ|Z)

µϑ [–] CVϑ [–]

Average statistical parameters 1.04 0.11

affecting the reliability of the test results. To accurately assess the impact of experimen-
tal uncertainty and evaluate the actual values of the resistance model uncertainty θ, it is
essential to separate the experimental uncertainty component from the evaluated mean
values µθ and the coefficient of variation CVθ. If the experimental uncertainty ε follows
a log-normal probability distribution with a mean value µε, and a coefficient of variation
CVε, the detachment of this component can be assessed. At the end of the process, the
partial safety factor γRd precisely reflects the model’s intrinsic uncertainty, without being
affected by any other components. It represents, therefore, a standardized way to present
the outcomes, allowing a comparison with other results available in the literature. Even
if it may seem obvious, one of the most common and easily overlooked mistakes that one
can make is to compare similar results without acknowledging all the components that
contributed to them. It would harm completely the work done experiments are subject
to uncertainties, including those arising from experimental inaccuracies [43].
Regarding the mean of the experimental uncertainty, µε, is assumed conventionally equal
to 1.00: the actual mean value µθ,act corresponds exactly with the one assessed through
the process, µθ. Evaluating the coefficient of variation for ε, instead, is more challenging,
and the literature suggests a likely range from 0.05 to 0.15 [43]. With both statistical
metrics known, the resistance model uncertainty random variable θ can be decoupled
from the influence of experimental uncertainty. The actual values of the key statistical
metrics can then be determined using equations through the following equations:

µϑ,act ≈
µϑ

µε

(5a)

CVϑ,act ≈
√

CV 2
ϑ − CV 2

ε (5b)

With µε equal to 1, the µθ assessed during approaches A and B coincides with the actual
µθ. Instead, to ensure precision, it is necessary to consider both extremes of the range for
the coefficient of variation. For example, in Alberto Meda’s study of 4-meter-long beams
with a cross-section of just 200 x 300 mm, the influence of geometric imperfections, such
as asymmetry in concrete properties due to imperfect casting procedures, misplacement
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Figure 5.10: Probabilistic distributions related to updated prior, updating, posterior and avera-
ged posterior information: Probability Density Functions (PDFs) (a) and Cumulative Distribu-
tion Functions (CDFs) (b)

of reinforcement and imperfections related to load application, can be significantly higher
compared to beams with a lower a/d value, like those analyzed by Giuseppe Campione.
The impact of a well-conduction of the experiment becomes even more significant when
the ultimate load is low as in the case of Alberto Meda’s study.
In this thesis, only the so-called limited experimental uncertainty has been considered,
opting not to address scenarios with significant experimental uncertainty, where CVε is
set equal to 0.10. This choice derives from the results obtained through the Bayesian
process. Given that the CV theta is already low, giving a coefficient of variation of the
experimental uncertainty too high wouldn’t be coherent. This approach may lead to
an underestimation of the actual uncertainty, making it incoherent with the modeling
results. Moreover, the limited assumption aligns with the idea of taking the data from
prestigious papers, where procedures are executed meticulously. This ensures complete
confidence in the conduction of experiments. In any case, any uncertainty arising from
the experimental procedure provides an additional safety margin, further reducing the
CVθ.
In the case of a limited experimental uncertainty, CVε is considered to be 0.05. Therefore,
by applying equation 5b, the CVθ,act becomes a bit lower than the observed one. This
enables the analyst to completely neglect the influence of experimental uncertainty on
both key parameters when it’s much lower than the assessed values, as demonstrated in
the case study [25]. This approach aligns with reference [24], which states that experimen-
tal uncertainty can be ignored when the observed coefficient of variation of the averaged
posterior distributions, CVθ, exceeds 0.10. This is because the variability from modeling
assumptions and methodology is significantly greater than that from experimental errors.
In such cases, modeling uncertainties dominate the overall uncertainty in the system, ju-
stifying the exclusion of other uncertainties. In our case, the CVθ slightly exceeds this
threshold, but since it’s immediately above, it’s still excluded from the observed values.
Table 5.13 summarizes the key metrics for the log-normal probabilistic distributions ob-
tained by applying the 2 approaches. These metrics represent the resistance model un-
certainty random variable ϑ, not accounting for the influence of experimental uncertainty
ε. These are the results that will be used in the next subsection to assess the partial
safety factor for resistance model uncertainty.
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Actual statistical parameters for
resistance model uncertainty

random variable ϑ

Approach Experimental
uncertainty ε

µϑ,act CVϑ,act

A Limited Vε ≤ 0.05 0.98 0.104

B Limited Vε ≤ 0.05 1.04 0.098
Table 5.13: Actual statistical parameters for resistance model uncertainty random variable ϑ

5.1.6 Assessment of the partial safety factor for resistance model
uncertainty

The value of the resistance model uncertainty partial safety factor, γRd, for RC beams, is
determined based on the target reliability index (β) set by design codes. This value varies
depending on whether the analysis involves, as referenced in sources [7] and [25], existing
or new structures. In the first case, it represents the design working life, in the latter
instead the remaining working life. Design codes establish specific probabilities of failure
that structures must not exceed to ensure they meet acceptable safety and performance
standards. These probabilities are influenced by the consequences of potential failure,
which include the impact on human life, economic losses, environmental damage, and the
intended service life of the structure, as highlighted in sources [7] and [22].
Based on the results obtained in the previous section and summarized in table 5.13,
γRd can be evaluated using equation 5.2 by adopting different target reliability values. A
crucial parameter in its evaluation process is the FORM sensitivity factor αR, which mea-
sures the influence of the structure’s resistance on the reliability index β. In this specific
case, αR is set to 0.32, as derived from Hasofer and Lind [1]. This value is chosen because
modeling uncertainties are assumed to be non-dominant variables. They have less in-
fluence on the overall probability of failure compared to aleatory uncertainties, which are
related to the random variability of material properties and actions. This non-dominant
hypothesis is supported by a CVθ,act value in both cases lower than the CV value of 0.15
associated with the upper limits in the aleatory uncertainties, as noted in [23]. This indi-
cates that the overall uncertainty in global resistance is primarily influenced by aleatory
uncertainties.
The choice of adopting fixed values for the FORM sensitivity factors, with αR set at 0.8
for dominant variables and α′

R at 0.32 for non-dominant variables, is aimed at achieving
an extra level of safety. However, this approach may not always be the optimal solution,
particularly when economic considerations are extremely important in the design process.
Engineers must always balance the need for safety with economic feasibility, ensuring that
the design is both safe and cost-effective. The adoption of a too-conservative design ap-
proach might be the safest option but could be at the same time unfeasible because it’s
too expensive, on the other hand, economical designs might compromise safety [1].
The fib Model Code 2010 outlines three distinct approaches to determine the global safety
factor, γRGL, and the procedure discussed previously is known as Approach 1. Approach
2, on the other hand, utilizes the same input data as Approach 1 but does not distinguish
between dominant and non-dominant variables. Consequently, Approach 2 typically re-
sults in a global safety factor that is, on average, 2% higher than that obtained using
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Approach 3. This comparison underscores that Approach 2 incorporates an additional
safety margin compared to the purely probabilistic Approach 3. However, this margin is
slightly less than the extra safety provided by Approach 1. These different approaches
help engineers choose the appropriate level of safety and conservatism based on specific
project requirements and constraints. For critical infrastructures, the probability of fai-
lure must be much lower, which implies the use of a more conservative design approach.
This is reflected in the calculation using higher partial safety factors [1].
Tables 5.14 and 5.16 present the various values of γRd applicable to different design sce-
narios under Approach A and Approach B, respectively. For a more detailed analysis,
Tables 5.15 and 5.17 provide γRd values based on the assumption that model uncertain-
ties dominate over aleatory uncertainties, with a FORM sensitivity factor of 0.8. This
assumption results in a 22% increase in γRd for both new and existing structural systems:
this approach would increase the amount of steel and/or concrete, leading to unbalancing
the previously balanced trade-off between safety and economic feasibility. If the designer
chooses to adopt this assumption, the partial factors for aleatory uncertainties related to
material strengths (i.e., γc, and γs) would be significantly reduced.
As discussed in the previous section, A. de Putter’s research has notably reduced uncer-
tainty while enhancing both robustness and reliability. This progress is evident in the
γRd values, with Approach B yielding slightly lower values than Approach A. For new
structural systems with moderate failure consequences, a 50-year design lifetime, and
β = 3.8, γRd values proposed are 1.16 for Approach A and 1.08 for Approach B. For exi-
sting structural systems, γRd ranges from 1.14 to 1.16 for Approach A and from 1.06 to
1.08 for Approach B. As shown in the tables, the partial safety factor for existing structu-
res is expressed as a range due to the inherent uncertainties and variabilities in assessing
their reliability. For instance, evaluating the extent of degradation in a structure can be
challenging. Aging, along with environmental factors such as corrosion, weathering, and
mechanical components like fatigue, can cause significant variations in the condition of
different parts of the structure.
A γRd value of 1.08 for RC beams in NLNAs can be reputed as a satisfactory and con-
sistent result, especially when comparing it with outcomes from other studies on RC
structural elements, such as those in [25] and [16]. These values reflect a moderately
conservative approach that effectively addresses model uncertainties, ensuring safety and
reliability in the design process. However, the Bayesian method is based on a robust fra-
mework, and it gains strength and accuracy by gathering more and more literature data,
particularly with Approach B. Therefore, these results should be viewed as a preliminary
benchmark, and likely future analyses will further refine them.
Flow chart 5.11 provides a comprehensive overview of the process used to assess the mo-
del uncertainty factor γRd, illustrating both approaches in a schematic format. To avoid
redundancy in the use of images, this scheme will not attach in the subsequent subsection,
even if it is still valid. The beams with a shear failure have been investigated, but only
approach A will be implemented, due to the difficulty of finding in literature papers that
analyze this kind of collapse. The only difference is the following:

• Experimental results: i = 1 . . . 20

Regarding the modeling hypotheses, there will always be 6, with j = 1 . . . 6.
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Table 5.14: Partial safety factors γRd for RC beams in the hypothesis of non-dominant resistance
variable depending on the target reliability level - Approach A

Service Consequences Reliability FORM factor Partial safety factor
New life of failure index β αR γRd

structures [Years] [-] [-] [-] [-]

50 Low 3.1 Non-dominant 0.32 1.14
50 Moderate 3.8 Non-dominant 0.32 1.16
50 High 4.3 Non-dominant 0.32 1.18

Service Reliability FORM factor Partial safety factor
Existing life index β αR γRd

structures [Years] [-] [-] [-]

50 3.1–3.8 Non-dominant 0.32 1.14–1.16
15 3.4–4.1 Non-dominant 0.32 1.15–1.18
1 4.1–4.7 Non-dominant 0.32 1.18–1.20

Table 5.15: Partial safety factors γRd for RC beams in the hypothesis of dominant resistance
variable depending on the target reliability level - Approach A

Service Consequences Reliability FORM factor Partial safety factor
New life of failure index β αR γRd

structures [Years] [-] [-] [-] [-]

50 Low 3.1 Dominant 0.8 1.33
50 Moderate 3.8 Dominant 0.8 1.41
50 High 4.3 Dominant 0.8 1.47

Service Reliability FORM factor Partial safety factor
Existing life index β αR γRd

structures [Years] [-] [-] [-]

50 3.1–3.8 Dominant 0.8 1.33–1.41
15 3.4–4.1 Dominant 0.8 1.36–1.44
1 4.1–4.7 Dominant 0.8 1.44–1.52
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Table 5.16: Partial safety factors γRd for RC beams in the hypothesis of non-dominant resistance
variable depending on the target reliability level - Approach B

Service Consequences Reliability FORM factor Partial safety factor
New life of failure index β αR γRd

structures [Years] [-] [-] [-] [-]

50 Low 3.1 Non-dominant 0.32 1.06
50 Moderate 3.8 Non-dominant 0.32 1.08
50 High 4.3 Non-dominant 0.32 1.10

Service Reliability FORM factor Partial safety factor
Existing life index β αR γRd

structures [Years] [-] [-] [-]

50 3.1–3.8 Non-dominant 0.32 1.06–1.08
15 3.4–4.1 Non-dominant 0.32 1.07–1.09
1 4.1–4.7 Non-dominant 0.32 1.09–1.11

Table 5.17: Partial safety factors γRd for RC beams in the hypothesis of dominant resistance
variable depending on the target reliability level - Approach B

Service Consequences Reliability FORM factor Partial safety factor
New life of failure index β αR γRd

structures [Years] [-] [-] [-] [-]

50 Low 3.1 Dominant 0.8 1.23
50 Moderate 3.8 Dominant 0.8 1.30
50 High 4.3 Dominant 0.8 1.35

Service Reliability FORM factor Partial safety factor
Existing life index β αR γRd

structures [Years] [-] [-] [-]

50 3.1–3.8 Dominant 0.8 1.23–1.30
15 3.4–4.1 Dominant 0.8 1.26–1.33
1 4.1–4.7 Dominant 0.8 1.33–1.39
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Figure 5.11: Flow-chart representing the Approach A and Approach B for the estimation
of the model uncertainty safety factor [25]
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5.2 Beams experiencing shear failure

In this case, 20 beams were analyzed, resulting in a [20 x 6] matrix, as presented in table
5.18.

Figure 5.12: Prior information scheme

Table 5.18: Resistance model uncertainty random variables
Software A B

Brittle LTS Plastic Brittle LTS Plastic
Model 1 2 3 4 5 6
S-0.157 0.933 0.933 0.814 1.671 1.554 1.214
S-0.314 0.942 0.942 0.899 1.283 1.236 0.932
S-0.628 0.956 0.956 0.909 1.337 1.228 1.165
S-0.942 0.981 0.981 0.938 1.444 1.135 1.036
B1S06 0.995 0.967 0.890 1.122 1.052 1.052
B1S10 1.144 1.113 1.113 1.172 1.065 1.099
B2S06 0.959 0.959 0.937 1.129 1.068 1.097
S06 1.100 1.100 0.931 1.367 1.228 1.330
S10 1.138 1.138 1.076 1.644 1.430 1.370
S8-90 1.044 1.044 0.922 1.294 1.121 0.908
F0S0 0.943 0.943 0.757 1.369 1.027 0.846
ST80 0.896 0.896 0.831 1.214 1.087 1.068
ST120 1.344 0.956 0.717 1.446 1.126 0.964
B44W2 1.092 1.076 1.000 1.420 1.420 1.543
B44W1.5 1.012 1.000 0.946 0.892 0.817 0.782
A01 0.795 0.795 0.685 1.099 1.099 0.957
A02 0.864 0.864 0.838 1.152 1.000 1.226
B02 0.940 0.940 0.940 1.214 1.101 1.127
RCTB-1 0.886 0.879 0.757 0.990 0.956 0.923
RCTB-3 0.983 0.950 0.792 1.118 1.096 1.075

Table 5.18 clearly shows that even in the case of beams that fail in a shear mode, the
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theoretical extreme hypotheses about concrete’s tensile behavior are not sufficient to en-
compass the experimental peak load. In both software analyses, as predicted, θ is lower
than 1 in the case of brittle behavior and it exceeds 1 in the plastic case. This is clear
evidence of the ongoing challenge to capture with accuracy the shear failure mode, even
having access to the most advanced NLNA tools. Especially software B struggles du-
ring the processing phase since the stirrups start playing a crucial role in the structural
mechanism. The discrepancies discovered in the peak load estimation when comparing
numerical simulation with experimental results underscore the difficulty in precisely pre-
dicting this complex behavior.
Compared to the flexural case, a possible explanation for the higher uncertainty in the
outcomes could be the nature of the resistance mechanism. Indeed, it is not solely deter-
mined by the concrete properties or the reinforcement ones, but rather by the interaction
and cooperation between these two materials. These numerous uncertainties may signi-
ficantly affect the finite element models’ accuracy in replicating experimental behavior,
and only an accurate post-processing investigation can reveal the reason behind an un-
successful analysis.
Each time, especially in these types of analyses, the post-processing phase becomes the
crucial part of the entire process because even the most precise modeling phase cannot al-
ways guarantee correct, or at least realistic, outcomes. To address this problem, four key
characteristics have been considered when analyzing the results provided by the software:

• crack pattern development

• number of iterations per step

• strain in the reinforcement

• stress and strain distribution in the beam

Indeed, in some analyses, the last steps have been neglected because the provided results
were not reliable, showing a high number of iterations, an unusual crack pattern, and
an unlikely physical behavior. At this stage, software A helps the modeler because it di-
splays the beam deformations and the crack development in real time during the analysis.
This constant feedback makes it quite immediate to understand if the high number of
iterations is a numerical issue or comes from the progressive opening of significant cracks.
In table 5.18, most of the data values are farther from the unity compared to the previous
case, indicating a larger uncertainty in the outcomes. This uncertainty may be compen-
sated in terms of safety for the higher bias. This latter can become problematic not
only when it arises from overestimation of the peak resistances but also when it leads to
overly conservative and costly design decisions that may be inefficient and unsustainable.
When comparing columns 2 and 4, which correspond to the LTS models obtained through
a meticulous software calibration, it’s evident that software A captures more precisely
than B the experimental results in terms of load. The same observations can be made
for the other columns. By contrast, as shown by the θ values equal to 0.685 and 1.671
in the third and fourth models, respectively, even software A addresses some problems
in replicating faithfully during the NLFEA the actual behavior of some RC structures.
Moreover, it’s noteworthy that in both cases, most of the time, the properties with which
the software performs better are the same, such as mesh dimensions and applied load for
step. This consistency helps the analyst reduce the time needed to implement the same
structure across different NLNA tools, facilitating the comparison of the different results
and leading to a comprehensive post-processing phase.
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Figure 5.13: Modelling hypotheses and benchmark NLNAs

5.2.1 Statistic Inference

Also, in this case, the null hypothesis H0 assumes that the sample is drawn from a
log-normal distribution, according to the literature. The entire procedure regarding the
statistical inference is the same as the flexural analysis, including all four sequential tests
to prove that our sample, despite the uncertainty, fits well with the chosen probability
distributions, avoiding making flimsy assumptions.
Before proceeding, the graphical check of the random variable θ, as shown in images
5.14 and 5.15, confirms that the log-normal distribution may provide an appropriate de-
scription of its variability, and it’s worth moving forward with the optimization process.
Figures 5.14a and 5.15a juxtapose the frequency histogram derived from the data with
the log-normal probability density function. Meanwhile, the probability plots, in Figu-
res 5.14b and 5.15b, confirm the alignment of points. In this case, the sample is even
larger than in the flexural case; therefore, the good alignment of each point makes it
an even more robust visual test to confirm the good choice of assuming this probability
distribution. Similar behavior has been detected in the remaining modeling hypotheses,
constituting the prior information. The consistency test was also implemented in line
with the previous chapter: the six combined models were analyzed collectively, treating
them as a unique sample of 120 random variables. Fortunately, all the tests have been
passed, as shown in table 5.19, and the p-value has been evaluated for each case. To
be consistent with the previous approach, the chosen α level for the analysis is assumed
equal to 0.05, and as displayed in table 5.19, the p-value for all the models is greater
than α, confirming that the models pass the statistical tests with an adequate margin of
reliance.
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Figure 5.14: (a) Frequency Histogram vs. Lognormal PDF of θ for prior information in Model
2, and (b) Probability Plot of θ for prior information in Model 2
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Figure 5.15: (a) Frequency Histogram vs. Lognormal PDF of θ for prior information in Model
4, and (b) Probability Plot of θ for prior information in Model 4

Models Name Tests
Chi-Squared Anderson-Darling Jarque-Bera Lilliefors

M1 Passed Passed Passed Passed
P-value 0.223 0.320 0.107 0.302
M2 Passed Passed Passed Passed
P-value 0.265 0.270 0.500 0.314
M3 Passed Passed Passed Passed
P-value 0.185 0.482 0.500 0.291
M4 Passed Passed Passed Passed
P-value 0.083 0.925 0.500 0.500
M5 Passed Passed Passed Passed
P-value 0.348 0.086 0.500 0.059
M6 Passed Passed Passed Passed
P-value 0.061 0.965 0.500 0.500
Mtot Passed Passed Passed Passed
P-value 0.258 0.051 0.068 0.195

Table 5.19: Test results

The results obtained in the subsection align perfectly with the literature, which suggests
that a log-normal probabilistic distribution can effectively capture the statistical variabi-
lity of the realizations of the variable θ [7].

5.2.2 Calibration of model uncertainty safety factor

Bayes approach A

The number of beams analyzed in the shear failure case is more than in the flexural case,
but it is still not sufficient to generalize the results obtained from this sample without
further strengthening the model. It is important to get applicable results as generally as
possible, rather than a representation of a limited number of RC structures. The reason
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is that the approach developed in this thesis aims to create a background for future NLN
analyses, ensuring a stronger alignment of the outcomes with the experimental results,
but also that they contribute to the development of the next generation of international
Codes. Therefore, engineers will be sure that their cases during a project have been
encompassed by the established new standards.

Table 5.20: Statistical parameters of the prior information distribution functions and statistical
uncertainty

Models Prior distributions F (ϑ|Mj) Statistical uncertainty

µϑ [-] σϑ [-] CVϑ [-] C(1,1) C(2,2)

1 1.00 0.11 0.11 6.2E-04 1.2E-03
2 0.97 0.09 0.09 3.6E-04 7.3E-04
3 0.89 0.11 0.13 7.8E-04 1.6E-03
4 1.26 0.20 0.16 1.2E-03 2.5E-03
5 1.14 0.17 0.15 1.0E-03 2.0E-03
6 1.08 0.18 0.17 1.3E-03 2.6E-03

Table 5.21: Statistical parameters of the updating information distribution functions and stati-
stical uncertainty

Models Updating information FMj
(θ|zj) Statistical uncertainty

µϑ [-] σϑ [-] CVϑ [-] C(1,1) C(2,2)

1 1.07 0.19 0.18 3.1E-04 6.2E-04
2 1.07 0.20 0.18 3.2E-04 6.3E-04
3 1.09 0.18 0.16 2.5E-04 5.0E-04
4 1.02 0.16 0.15 2.2E-04 4.4E-04
5 1.04 0.18 0.18 2.9E-04 5.8E-04
6 1.05 0.18 0.18 2.9E-04 5.8E-04

As already described in the previous section, to update the prior information with new in-
formation, the Bayesian updating approach is needed. This method gives the analyst the
average distribution of θ and its statistical parameters like mean value µθ and standard
deviation σθ. After that, the last phase requires the assessment of the model uncertainty
safety factor γRd [43]. The procedure is the same as that used in the flexural analysis and
therefore, to avoid redundancy, the entire procedure is not repeated here. Instead, the
focus is to highlight the results and the main differences from the previous case. The only
difference is that here approach B is not carried on because it’s still challenging to find
literature dealing with shear failure in NLFEA with a substantial number of elements.
It’s not worth including in this work through approach B a case with fewer elements: it
wouldn’t add significant value to this work in terms of reduction of uncertainty. Tables
5.20,5.21 and 5.22 summarize the information and respectively present the prior, upda-
ting, and posterior statistical parameters of the related probabilistic distributions. The
posterior mean values tend to fall between the prior and updating values, demonstra-
ting the Bayesian updating approach’s ability to merge prior and new information. But
in this case, the method aims to reduce the excessive positive bias present in the prior
information, bringing the mean value closer to unity. This is quite evident in models 4
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5.2 – Beams experiencing shear failure

Table 5.22: Statistical parameters of the posterior information distribution functions and stati-
stical uncertainty

Models Posterior distributions F (ϑ|Mj, zj) Statistical uncertainty

µϑ [-] σϑ [-] CVϑ [-] C(1,1) C(2,2)

1 1.02 0.15 0.14 1.7E-04 7.4E-06
2 1.01 0.14 0.14 1.5E-04 5.8E-06
3 0.96 0.16 0.17 2.3E-04 1.4E-05
4 1.17 0.19 0.16 2.9E-04 2.1E-05
5 1.09 0.18 0.16 2.1E-04 1.2E-05
6 1.06 0.18 0.17 2.3E-04 1.4E-05

Table 5.23: Average statistical parameters FZ(θ |)

Posterior distribution FZ(θ|Z)
µϑ [–] CVϑ [–]

Average statistical parameters 1.05 0.16

and 5: the µθ values in the priors are 1.26 and 1.14 respectively, 1.02 and 1.04 in the
updating, and 1.17 and 1.09 in the posterior distributions. Similar considerations involve
the σθ values in models 2 and 3: starting with prior information of 0.09 and 0.11, the
updating values increase up to 0.20 and 0.18, but the final posterior distributions show a
significant reduction to 0.14 and 0.16.
These changes illustrate how the Bayesian updating process can refine the initial statisti-
cal parameters through each step, leading to more accurate estimates. This is explicitly
highlighted by the reduction of the values C(1,1) and C(2,2) from an order of magnitude
of 10−3 and 10−4 in the prior to 10−5 and 10−6 in the posterior distributions. Despite the
decrease being significant, these values remain an order of magnitude higher than those
evaluated in the flexural case.
Software A demonstrates lower standard deviations and mean values closer to 1, with
consequently lower coefficients of variation. This is an indicator of more precise estima-
tes and the statistical uncertainty values C(1,1) and C(2,2), which are in the first three
models an order of magnitude lower than those obtained by software B. This significant
difference may likely be attributed to the fact that software A is more specific for 2D RC
structure analysis, where the stirrups play a key role in the failure mechanism. Software
A demonstrates lower standard deviations and mean values closer to 1, with consequen-
tly lower coefficients of variation. This is an indicator of more precise estimates and the
statistical uncertainty values C(1,1) and C(2,2), which are in the first three models an
order of magnitude lower than those obtained by software B. This significant difference
may likely be attributed to the fact that software A is more specific for 2D RC structure
analysis, where the stirrups play a key role in the failure mechanism. As demonstrated
by the PDF and CDF of Models 2 and 4 in images 5.16 and 5.17, the log-normal distri-
bution fits well with the larger samples of the updating information, as highlighted by
images 5.16b and 5.17b, where most points align closely with the line, indicating an even
better alignment than in the previous case, despite the increased amount of data.
The entire process, from the prior probability distributions to the updating and posterior
distributions, is illustrated in figure 5.18. The figures underline in red the final log-normal
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Figure 5.16: (a) Frequency Histogram vs. Lognormal PDF of θ for updating information in
Model 2, and (b) Probability Plot of θ for updating information in Model 2
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Figure 5.17: (a) Frequency Histogram vs. Lognormal PDF of θ for updating information in
Model 4, and (b) Probability Plot of θ for updating information in Model 4

probability distribution, and table 5.23 presents its key statistical parameters. The next
section will use these values to assess the model uncertainty safety factor γRd. The poste-
rior distributions, illustrated in blue in charts 5.18, fall between the more dispersed prior
distributions (shown in gray) and the concentrated updating distributions (depicted in
green).
According to our work, the log-normal distribution is the most suitable probabilistic mo-
del to represent the θ sample, with a mean, µθ, of 1.05 and a coefficient of variation,
CVθ, of 0.16. Before using them to calibrate γRd, as explained later, the results obtained
at the end of the Bayesian approach must be purified by the effect of the experimental
uncertainty. The mean value above 1 indicates that the NLFEAs in the shear mechanism
tend to underestimate the beam’s resistance slightly, but on the other hand, the data
points are quite scattered as shown by the high CVθ. This greater variability implies a
wider PDF bell, with a right-side tail that extends further into the unsafe zone, with
values lower than 1. For these cases, it’s important to note that some positive effects,
such as confinement, are also completely omitted in this analysis.
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Figure 5.18: Probabilistic distributions related to prior, posterior, and updating information:
Probability Density Functions (PDFs) (a) and Cumulative Distribution Functions (CDFs) (b)

5.2.3 Influence of Experimental Uncertainty

To estimate and minimize the impact of epistemic uncertainty in the GRF, a fundamen-
tal step before evaluating the model uncertainty safety factor is to isolate each type of
uncertainty independently and refine the outcomes only at the end, deleting all of them
through a specific safety factor. The experimental uncertainty is one of them (Reference
44 Model Uncertainty). As was done in the previous case, ε is treated as a random va-
riable that follows a log-normal probability distribution with a mean value µε equal to 1,
and a coefficient of variation CVε of 0.05.
Experimental uncertainty arises from various factors, including geometric imperfections,
misplacement of reinforcement, and imperfections related to load application. For instan-
ce, the stirrups are often assembled on-site, and their spacing may differ slightly from the
technical drawings provided by the structural engineer. Similar problems can involve the
angle α as well, especially during the casting phase, where it may deviate slightly from
90°.
By applying equations 5b, the CVθ,act becomes slightly lower than the observed CVθ,
while the mean value µθ,act remains exactly equal to µθ. Table 5.24 summarizes the key
metrics for the log-normal probabilistic distributions obtained using the Bayesian me-
thod. These metrics reflect the resistance model uncertainty random variable θ, without
considering the influence of experimental uncertainty ε. These results will be used in the
next subsection to assess the γRd.

Actual statistical parameters for
resistance model uncertainty

random variable ϑ

Approach Experimental
uncertainty ε

µϑ,act CVϑ,act

A Limited Vε ≤ 0.05 1.05 0.15
Table 5.24: Actual statistical parameters for resistance model uncertainty random variable ϑ
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5.2.4 Assessment of the partial safety factor for resistance model
uncertainty

The value of the resistance model uncertainty partial safety factor, γRd, for RC beams,
is determined by considering the target reliability index, the consequences of failure, and
the FORM factor as prescribed by design codes. Another important aspect is whether
the analysis involves existing or new structures, as this can affect the knowledge of the
structural system’s state of the art and therefore the safety factor that it needs. Ba-
sed on the results of the previous section and summarized in the table 5.24, γRd can be
evaluated using equation 5.2 by adopting different target reliability values following the
requirements imposed by the Codes.
The procedure follows the same method as described for the flexural case, but here, in
line with the challenges highlighted during the modeling phase and the high level of un-
certainty reflected by the significant CVθ,act, the modeling uncertainties are assumed to
be dominant variables. They have more influence on the overall probability of failure
compared to aleatory uncertainties, which are related to the random variability of mate-
rial properties and actions. This shift in the dominant case underlines the critical task
of accurately implementing NLFEAs in the shear failure analysis and relying on the out-
comes.
This dominant hypothesis is supported by a CVθ,act value higher than the CV value of
0.15 associated with the upper limits in the aleatory uncertainties, as noted in Bergetto’s
thesis. This indicates that the overall uncertainty in global resistance in the shear case,
in contrast with the previous case, is primarily influenced by epistemic uncertainties, and
therefore, the analyst has to choose to adopt a FORM sensitivity factor set at 0.8.
Table 5.26 presents the various values of γRd applicable to different design scenarios, and
for a more detailed analysis, table 5.25 provides γRd values based on the assumption that
model uncertainty does not dominate over aleatory uncertainty, with a FORM sensitivity
factor of 0.32. For new structural systems with moderate failure consequences, a 50-year
design lifetime, and β = 3.8, γRd values proposed are 1.52 for the dominant case and 1.15
for the non-dominant case.
It is evident how the choice between the two approaches can impact the final design of the
structure, reducing the resistance model uncertainty partial safety factor by roughly 25%.
In practical terms, this reduction would decrease the amount of steel and/or concrete,
resulting in a significant reduction in costs. However, this potential for savings may lead
designers to adopt an inappropriate non-dominant factor for RC structures subjected to
shear mechanisms, thereby unbalancing the previously balanced trade-off between safety
and economic feasibility.
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Table 5.25: Partial safety factors γRd for RC beams in the hypothesis of non-dominant resistance
variable depending on the target reliability level - Approach A

Service Consequences Reliability FORM factor Partial safety factor
New life of failure index β αR γRd

structures [Years] [-] [-] [-] [-]

50 Low 3.1 Non-dominant 0.32 1.11
50 Moderate 3.8 Non-dominant 0.32 1.15
50 High 4.3 Non-dominant 0.32 1.17

Service Reliability FORM factor Partial safety factor
Existing life index β αR γRd

structures [Years] [-] [-] [-]

50 3.1–3.8 Non-dominant 0.32 1.11–1.15
15 3.4–4.1 Non-dominant 0.32 1.12–1.16
1 4.1–4.7 Non-dominant 0.32 1.16–1.20

Table 5.26: Partial safety factors γRd for RC beams in the hypothesis of dominant resistance
variable depending on the target reliability level - Approach A

Service Consequences Reliability FORM factor Partial safety factor
New life of failure index β αR γRd

structures [Years] [-] [-] [-] [-]

50 Low 3.1 Dominant 0.8 1.39
50 Moderate 3.8 Dominant 0.8 1.52
50 High 4.3 Dominant 0.8 1.61

Service Reliability FORM factor Partial safety factor
Existing life index β αR γRd

structures [Years] [-] [-] [-]

50 3.1–3.8 Dominant 0.8 1.39–1.52
15 3.4–4.1 Dominant 0.8 1.44–1.57
1 4.1–4.7 Dominant 0.8 1.57–1.69
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This thesis explores the application of the Global Resistance Format to estimate the
design value of the global structural resistance, Rd, for RC beams subjected to flexural
and shear failure. The global approach in the resistance mechanisms, involving advan-
ced numerical methods such as NLFEAs, encompasses the progressive damage and the
structure’s ability to redistribute internal forces within the structures under different loa-
ding conditions. The research investigates the discrepancy between NLFE models and
actual structures’ performance by analyzing structural elements that show both, flexural
and shear failure. The approach is based on comparing experimental results in terms of
maximum load with those predicted by NLFE models and by examining these two sets
of data, through the statistical inference procedure to validate the use of the log-normal
distribution and the Bayesian updating process, it is possible to quantify the epistemic
uncertainties that arise during the modeling phase. By assuming 3 model hypotheses
that include all possible tensile concrete behaviors and cover any analyst assumptions for
its constitutive law in software A and B, the results from 210 NLFEAs were gathered.
The outcome of this methodology is the posterior probability function, which statistical-
ly represents the resistance modeling uncertainty random variable θ. Substituting in the
Rd formula the key statistical parameters of θ, the resistance model uncertainty partial
safety factor γRd can be evaluated according to the necessary target reliability level.
When analyzing the results, it’s essential to distinguish the conclusions for the flexural
case and the shear one. Regarding the first failure mode, partial safety factors γRd values
equal to 1.16 for Approach A and 1.08 for Approach B are found and they can be assumed
as a satisfactory and consistent result, demonstrating a high level of reliability on both
software. Approach B is analogous to the standard Approach A but includes 2 different
phases in the Bayesian updating process, gathering information from the literature to
further strengthen the model. In this case, the model uncertainty is non-dominant com-
pared to the aleatory uncertainty, as demonstrated by a CVθ,act of 0.104 and 0.098 for the
approaches A and B respectively. The main difference between the 2 approaches lies in
the mean values µθ,act, switching from a negative bias equal to 0.98 in approach A to 1.04
in approach B. On the other hand, the results of the shear analysis can be considered
satisfactory and trustworthy as well. However, the level of uncertainty related to the mo-
deling phase for shear failure is significantly greater, becoming the dominant factor with
respect to the aleatory uncertainty. Indeed, the dominant hypothesis derives from the
evaluated CVθ,act, which is equal to 0.15, the same value that is associated with the upper
limits in the aleatory uncertainties. This means that, in the shear failure mode, the overall
uncertainty in global resistance is mainly influenced by epistemic uncertainties. In this
case, considering the higher level of uncertainty, the γRd is set equal to 1.15. In the case
of shear failure, only Approach A has been carried out due to the lack of comprehensive
information in the literature that could help to enhance the model. Anyway, this case,
even without the use of Approach B, has a positive bias with a mean value µθ,act equal
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to 1.05. Both cases are estimated under standard conditions: a new structural system,
moderate failure consequences, a 50-year design lifetime, and a reliability index β = 3.8.
These values reflect a moderately conservative approach that effectively addresses model
uncertainties, ensuring safety and reliability in the design process. However, the Bayesian
method is based on a robust framework, and it gains strength and precision by gathering
more and more literature data, particularly with Approach B which can be implemented
using these data as updating information in the first phase. For this reason, these out-
comes should also be viewed as a preliminary benchmark, with future analyses that will
further enhance them. Thankfully, with advancements in RC structural analysis, and the
development and improvement of NLFE software, the research will be able to investigate
deeper the shear failure mechanism in all its aspects.
The driving idea behind this research has been the objective of quantifying and mini-
mizing the performance discrepancies between the numerical models and real structures
during their service life, helping future users reduce the uncertainties related to the mo-
deling aspect. Every model, even if the one realized with the most advanced and sophi-
sticated tools, suffers numerical approximations and intrinsic uncertainties. This work
will enable engineers to tackle the challenge of quantifying these epistemic uncertainties
in NLFE analyses more efficiently.
In conclusion, image 5.19 clearly shows the dependency between the reliability index β
and partial safety factor γRd for both cases, the dominant and non-dominant hypotheses.
This visualization allows to explore the trend of the safety factor varying one of the main
variables that comes into play in its formula. It’s worth noting the intersection for the
non-dominant case between flexural problem Approach A and shear problem Approach
A: the reason for this lies in the mean value µθ,act. While the flexural problem is cha-
racterized by a lower uncertainty, as highlighted by a CVθ,act lower than the shear one;
at the same time, the mean value of the flexural case is lower than zero, introducing a
negative bias that increases the safety factor compared to the shear problem. Since the
mean value appears in the denominator of the γRd formula, it causes the intersection
between the 2 curves, despite the overall lower uncertainty in the flexural case.
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Figure 5.19: (a) Correlation between Reliability index β and Partial safety factor γRd for non-
dominant case, and (b) Correlation between Reliability index β and Partial safety factor γRd for
dominant case
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