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Summary

This thesis explores the structural analysis of the central wing box of the Cirrus
SR22 aircraft using both the Carrera Unified Formulation (CUF) and Abaqus
software. The Cirrus SR22 is a widely respected single-engine aircraft, known for
its composite construction and the integration of critical components such as the
central wing box, which plays a pivotal role in the aircraft’s structural integrity.
The central wing box is essential for connecting the wings to the fuselage and
supports the forces generated during flight, making it a critical focus for analysis.

The study begins by introducing the Cirrus SR22, detailing its design and the
importance of the central wing box. It then discusses the materials used in the
wing box, including isotropic and composite materials, which are evaluated for
their performance under various conditions. The thesis emphasizes the significance
of material selection in aerospace applications, where the balance between weight,
strength, and durability is crucial for optimizing aircraft performance.

The core of the thesis is dedicated to the application of CUF, a powerful and
versatile approach within the Finite Element Method (FEM). CUF is highlighted
for its ability to handle complex geometries and material behaviours, particularly in
the context of advanced aerospace materials like composites. The study contrasts
CUF with traditional FEM methods, showing how CUF’s use of higher-order
polynomial expansions leads to more accurate and computationally efficient analyses,
particularly for structures like the central wing box.

Failure analysis is also a key component of the thesis, where different failure
criteria, such as the Tsai-Wu and Maximum Stress Criteria, are applied to predict
the onset of failure in composite materials. The integration of failure indices into
the analysis enhances the understanding of potential weak points in the structure,
which is critical for ensuring the safety and reliability of the aircraft.

Overall, this thesis provides a comprehensive analysis of the central wing box,
demonstrating the effectiveness of CUF and Abaqus in evaluating the structural
integrity and failure potential of this critical component. The findings contribute
valuable insights into the design and optimization of aerospace structures, with
implications for improving the performance and safety of modern aircraft.
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Chapter 1

Introduction

1.1 Cirrus SR22 Aircraft
Cirrus Aircraft, based in Duluth, Minnesota, has been manufacturing the Cirrus
SR22, a composite single-engine aircraft with seating for four to five passengers,
since 2001. The SR22 is an enhanced version of the Cirrus SR20, featuring a
larger wing, increased fuel capacity, and a more powerful engine rated at 310
horsepower (231 kW), or 315 horsepower (235 kW) for the turbocharged model.
It also pioneered the use of a full glass cockpit in light aircraft within the general
aviation (GA) sector. [1].

Figure 1.1: Cirrus SR22-G6 turbo 2023 model [2].

The SR22, which received certification in November 2000, serves as a more
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Introduction

robust version of its predecessor, the SR20. Production began in 2001. The SR22
is a low-wing cantilever monoplane constructed from composite materials, featuring
fixed tricycle landing gear, a castering nose wheel, and differential braking on the
main wheels for steering control. Its engine, a Continental IO-550-N with 310
horsepower (231 kilowatts), is mounted at the aircraft’s front. The cabin, which
seats four, is accessible through doors on both sides of the fuselage. [3]. Similar
to the SR20, the Cirrus SR22 is equipped with the Cirrus Airframe Parachute
System (CAPS), which allows the entire aircraft to descend safely to the ground
in emergencies.[4]. The Cirrus SR22 is widely regarded as a high-performance
aircraft with several critical components. Key elements of the SR22 include the
fuselage, wings, empennage (tail section), engine, propeller, landing gear, avionics
(instrumentation and control systems), control surfaces (ailerons, elevators, rudder),
fuel system, and electrical system. This study focuses on the central wing box, an
important structural component of the wing, evaluating various materials using
different analytical methods.

1.2 Central Wing Box
In aviation, the center wing box is a crucial structure that connects the main wings
to the fuselage. It also integrates parts such as the main landing gear doors and
the wing-to-body fairing. A schematic representation of the wing and wing box is
shown in the Figure 1.2. The wings are attached to the center wing box, which is
housed within the fuselage structure. Under bending loads, the maximum stress is
concentrated on the wing box.

The primary role of the central wing box goes beyond just structural support,
as it distributes the significant forces generated during flight. This compact yet
critical component not only securely fastens the wings but also accommodates vital
systems like fuel storage, hydraulic lines, and electrical wiring. Such an intricate
design optimizes space, which is essential for maintaining the aircraft’s balance
and efficiency. [5]. Additionally, the central wing box showcases a fine balance
in engineering, emphasizing both structural durability and weight efficiency. The
design prioritizes reducing weight without sacrificing strength, which contributes to
fuel efficiency and environmental performance improvements. This weight reduction
approach also decreases drag, thereby improving aerodynamic performance through
its smooth integration with the wing structure. As a result, the central wing
box stands as a hallmark of modern aerospace engineering, combining functional
necessity with technological advancements in aircraft design. [5].

The wing box consists of two major components. The internal wing structure is
made up of spars and ribs, while the external wing structure is the skin. Wing Skin:
In many aircraft, the wing skin performs multiple roles. It provides the aerodynamic
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Figure 1.2: Central wing box [6].

shape, carries part of the structural loads, supports torsional loads, serves as fuel
tanks, and facilitates inspection and maintenance. Ribs: In an aircraft, ribs form
key structural elements within the wing. Typically, ribs help maintain the aerofoil
shape of the wing, with the skin adopting this form when stretched over the ribs.
These ribs are essential for supporting wing panels, ensuring and preserving the
aerodynamic shape, transmitting large forces, adding strength, preventing buckling,
and separating individual fuel tanks within the wing. Spar: In fixed-wing aircraft,
the spar is the main structural member of the wing, running lengthwise, usually
perpendicular to the fuselage (or at an angle depending on wing sweep). The spar
bears the loads experienced during flight and supports the weight of the wings
while on the ground, primarily handling shear forces and bending moments.[7].

Moreover, the spar functions as the backbone of the wing, enduring flight loads
and supporting wing weight during both flight and ground operations. This critical
function highlights its role in maintaining the structural integrity of the central
wing box, where the integration of spars, ribs, and skin creates a sturdy framework
capable of withstanding considerable aerodynamic forces and operational stress.
This section will detail the way each component, including the spar, contributes
to the strength of the central wing box, ensuring the aircraft remains safe and
functional across varying conditions. The upcoming sections will investigate how
different materials influence the structural integrity of the central wing box.

1.3 Materials and Model used in thesis
Finite Element Analysis (FEA) is a vital computational method commonly used in
engineering and applied sciences to predict how structures and materials behave
under various physical conditions. This technique breaks down a complex structure
into smaller, manageable finite elements, which are then analyzed both individually
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and collectively to understand the system’s overall response. A crucial aspect of
FEA is selecting the appropriate element types, as this choice significantly affects
the accuracy and efficiency of the analysis. Different types of elements, such as 1D,
2D, and 3D, are suited for specific applications and geometries, allowing for detailed
modeling of diverse structural challenges. Careful selection of the right element type
ensures the model accurately captures necessary physical behaviors while optimizing
computational resources. In this regard, understanding the characteristics and
uses of various elements, especially solid and shell types, is essential. This section
will explore these two fundamental element types, emphasizing their significance,
applications, and considerations for different structural analyses [8].

Solid models offer detailed representations through the use of three-dimensional
elements. These models are especially useful for capturing complex stress states,
including stress distribution through the thickness of a material. For example, solid
models can accurately predict the behavior of adhesive bonds and delamination in
composite materials, often found in wind turbine blades. However, these models
require significant computational resources due to the high number of elements
and the complexity of the simulations. Solid models are ideal for instances where
detailed local stress analysis is required, particularly under torsional loads or when
evaluating damage progression.

Shell models, in contrast, use two-dimensional elements to represent a three-
dimensional structure. These models are less complex and more computationally
efficient compared to solid models. They are commonly used to analyze the global
structural behavior of blades, specifically for assessing overall displacement and
longitudinal strain. Shell models are typically sufficient for many types of analysis,
particularly those involving bending loads, and are often used in the early stages
of design due to their computational efficiency.

In summary, while both solid and shell models can yield similar overall results,
solid models provide more detailed local insights at a higher computational cost,
whereas shell models strike a balance between accuracy and efficiency, making them
well-suited for global structural analysis [9]. Selecting the appropriate material for
a component based on its application is essential due to various critical factors,
such as performance, durability, weight, cost, and the specific environmental and
operational conditions. This decision directly impacts the component’s efficiency,
safety, and lifespan, which is particularly important in industries like aerospace,
automotive, and civil engineering. In aviation, for instance, the choice of material
affects an aircraft’s weight, fuel efficiency, structural integrity, and resistance to
harsh operational conditions. Materials like isotropic, orthotropic, and composite
materials have distinct properties that make them suitable for specific purposes.
Isotropic materials, such as aluminum and titanium, exhibit uniform properties in
all directions and are valued for their reliability and predictability, making them
common in many aircraft structural components. Aluminum, prized for its excellent
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strength-to-weight ratio and corrosion resistance, is extensively used in airframes,
while titanium, though more costly, offers superior strength and heat resistance,
making it ideal for high-performance parts like jet engine components. Orthotropic
materials, found in many composites, have different properties along three mutually
perpendicular axes. These materials are designed to provide maximum strength
and stiffness where it’s needed most while minimizing weight. In aerospace, carbon
fiber-reinforced polymers (CFRPs) are a prime example of orthotropic materials,
widely used in modern aircraft due to their excellent strength-to-weight ratio,
fatigue resistance, and adaptability to specific structural needs. CFRPs play a
crucial role in primary structures like wings and fuselages, seen in aircraft like
the Boeing 787 and Airbus A350. Their use in these areas demonstrates their
importance in achieving advanced aerodynamic performance and fuel efficiency.
The advancement of computational structures technology and composite materials
over the past 30 years has led to improvements in structural performance, reduced
operational risk, and faster development times. Design challenges for new systems
include cost-effectiveness, safety, and environmental sustainability. For military
aircraft, emphasis is shifting from maximum performance to acceptable performance
at a lower cost. In space exploration, the focus is moving from long-term, complex
missions to simpler, more cost-effective, and faster missions. For future aeronautical
and space systems, materials and structural innovations will remain crucial to
determining reliability, performance, and cost-efficiency. In some future aircraft,
advancements in structural technologies may significantly lower operating costs
and reduce overall weight more than other technological improvements[10].

Figure 1.3: Aircraft components that incorporate composite materials [11].

The use of composite materials provides significant advantages, as these materials
often have superior specific properties compared to traditional metals. For example,
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a composite structure can have up to ten times the stiffness and half the density
of an aluminum structure. This is why "full composite" designs are common in
advanced vehicles. Designers are constantly looking for lighter, stronger materials to
improve performance, with reducing material density being one of the most effective
ways to reduce weight and enhance efficiency. Understanding the behaviour and
appropriate application of these materials is not only fundamental for structural
integrity but also for optimizing the overall performance and efficiency of the
components. The below table shows all the materials used and their material
properties.

Material ID Material Density
rho [kg/m3]

1 Std CF Fabric 1600
2 E glass Fabric 1900
3 Kevlar Fabric 1400
4 Std CF UD 1600
5 HMCF UD 1600
6 M55 UD 1650
7 E glass UD 1900
8 Kevlar UD 1400
9 Boron UD 2000

Material ID Young’s Modulus (Pa) Shear Modulus(Pa) Poisson’s Ratio
E1 E2 E3 G12 G13 G23 NU12 NU13 NU23

1 7.00E+11 7.00E+11 5.19E+10 5.00E+10 2.29E+10 2.29E+10 0.1 0.13 0.13
2 2.50E+11 2.50E+11 5.00E+10 4.00E+10 1.98E+10 1.98E+10 0.2 0.26 0.26
3 3.00E+11 3.00E+11 2.40E+10 5.00E+10 9.52E+09 9.52E+09 0.2 0.26 0.26
4 1.35E+12 8.00E+11 1.00E+11 5.00E+10 5.00E+10 3.60E+10 0.3 0.3 0.39
5 1.75E+12 8.00E+10 8.00E+10 5.00E+10 5.00E+10 2.88E+10 0.3 0.3 0.39
6 3.00E+11 1.20E+11 1.20E+11 5.00E+10 5.00E+10 4.32E+10 0.3 0.3 0.3
7 4.00E+11 8.00E+10 8.00E+10 4.00E+10 4.00E+10 3.02E+10 0.25 0.25 0.325
8 7.50E+11 6.00E+11 6.00E+10 2.00E+10 2.00E+10 2.08E+10 0.34 0.34 0.442
9 2.00E+12 1.50E+11 1.50E+11 5.00E+10 5.00E+10 5.77E+10 0.23 0.23 0.299

1.4 Overview of CUF
The Carrera Unified Formulation (CUF) is a versatile and powerful approach within
the finite element method (FEM) framework designed to handle a wide range of
structural analysis problems [12]. Developed by Erasmo Carrera and detailed in the
provided document, CUF offers a unified methodology for formulating finite element
models that can efficiently handle complex geometries and material behaviours,
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including isotropic, orthotropic, and composite materials. The core advantage of
CUF lies in its ability to generalize the governing equations of structural mechanics
in a consistent manner across different structural theories, such as beam, plate, and
shell models. This flexibility allows CUF to seamlessly transition between different
structural theories within the same framework, ensuring consistency and reducing
potential errors in the modelling process, particularly for aerospace structures that
often involve intricate assemblies of various components and materials.

One of the primary reasons for the increased accuracy of CUF compared to
traditional FEM methods is its ability to employ higher-order polynomial expansions
in the displacement field representation [13]. Traditional FEM methods typically
rely on linear or low-order polynomial approximations, which can limit their
ability to capture complex variations in displacement, stress, and strain within the
elements. CUF, on the other hand, can utilize higher-order terms to more precisely
model these variations, leading to a more accurate representation of the structural
behaviour. This is especially important in regions with high stress gradients or
complex geometries, where traditional methods might fall short. Additionally,
CUF’s capability to accurately represent the anisotropic properties of advanced
composite materials, such as orthotropic materials, enhances its precision. This
accurate representation is achieved through refined kinematic models that can
capture detailed local phenomena, such as interlaminar stresses and deformation
patterns, which are critical for reliable design and analysis in aerospace engineering.

Furthermore, CUF enhances the computational efficiency of finite element anal-
yses by enabling higher-order approximations and reducing the number of elements
required to achieve accurate results. This computational efficiency is particularly
beneficial when dealing with large-scale problems, such as the analysis of entire
aircraft structures, where computational resources and time are significant consider-
ations. The ability to incorporate various kinematic models and degrees of freedom
within the same framework allows CUF to capture detailed local phenomena crucial
for aerospace components. By allowing for finer meshes and more detailed analyses
within practical timeframes, CUF makes it feasible to conduct comprehensive and
precise analyses that might be computationally prohibitive with traditional FEM
methods. This combination of higher accuracy and computational efficiency makes
CUF an indispensable tool for modern structural analysis, particularly in complex
and demanding fields like aerospace engineering [14].

In summary, the Carrera Unified Formulation (CUF) represents a significant
advancement in finite element analysis, offering a robust, adaptable, and efficient
method for analysing a wide range of structural problems. CUF’s application to the
analysis of the central wing box in this thesis highlights its capability to handle both
isotropic materials like aluminium and complex orthotropic materials. This unified
approach integrates various structural theories—such as beam, plate, and shell
models—within a single framework, ensuring consistency and reducing potential

7
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errors. The use of higher-order polynomial expansions in the displacement field
representation allows CUF to more accurately capture variations in displacement,
stress, and strain, particularly in regions with high stress gradients or complex
geometries. Furthermore, CUF’s precise modelling of advanced material behaviours,
including the accurate representation of anisotropic properties in composite materi-
als, enhances the reliability of the analysis. The computational efficiency of CUF,
achieved through higher-order approximations and reduced element requirements,
enables detailed and comprehensive analyses of large-scale structures, making it
particularly suitable for complex structural analyses in aerospace engineering where
accurate predictions of structural performance and behaviour are critical.

1.5 Overview of failure index
Composite materials are increasingly being used in many engineering fields since
their excellent specific properties are advantageous for the design of many structures,
such as aircraft or cars. The characterization of failure mechanisms is a crucial issue
to fully exploit composite material capabilities. As shown in Figure 1.4, various
phenomena as matrix micro cracking, delamination between plies, debonding
between fibre and matrix material (pull-out) can lead to the failure of composite
structures. A failure index is a crucial numerical value used in the analysis and

Figure 1.4: Failure Phenomena[15]

design of composite materials to predict the onset and location of failure under
specific loading conditions. This predictive capability ensures the safety and
reliability of structures made from composites by identifying potential weak points
and enabling their reinforcement. Unlike traditional strength analysis methods,
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which are often designed for homogeneous and isotropic materials, failure indices
are tailored for the anisotropic and heterogeneous nature of composites. This allows
for a more accurate prediction of failure under complex, multi-axial stress states
typical in composite applications. Furthermore, failure indices offer a more efficient
alternative to empirical testing, reducing costs and time associated with extensive
physical tests. They provide detailed insights into different failure modes, enhancing
the design optimization process and material efficiency. In advanced applications
such as aerospace and automotive industries, failure indices are integrated into
Finite Element Analysis (FEA) software, offering a comprehensive approach to
understanding local failure mechanisms and enabling the development of high-
performance, lightweight structures. Thus, the failure index not only ensures the
structural integrity and longevity of composite materials but also facilitates their
innovative use in various high-stakes applications.

9



Chapter 2

Carrera Unified Formulation
and Failure analysis

This chapter is devoted to the description of the Finite Element Method and
Carrera Unified Formulation. For decades, many efforts have been dedicated to
the derivation of advanced theories able to tackle various structural problems. To
solve some of the issues related to classical approaches, CUF was introduced as a
generator of structural theories for beams, plates and shells [16].

The Carrera Unified Formulation (CUF) is a generalised hierarchical framework
to derive higher-order 1D (beam) and 2D (plate, shell) structural theories. The
fundamental concept of the framework is the introduction of expansion functions, in
addition to standard finite element interpolation functions, to enrich the kinematic
description of the beam cross-section and plate/shell thickness. This approach
leads to 1D and 2D CUF models which are similar to 3D-FEA in terms of solution
accuracy, but require considerably less computational effort [17] [18].

2.1 Governing equations in matrix form

2.1.1 Geometrical relations
The adopted rectangular cartesian coordinate system is shown in Figure 2.1, together
with the geometry of a beam structure. The cross-section of the beam lies on the
xz-plane and it is denoted by W, whereas the boundaries over y are 0 ≤ y ≤ L.

Let u be the continuous displacement field of the body, the function of the
material point expressed as column vector:

u = u(x, y, z) =
î
u(x, y, z), v(x, y, z), w(x, y, z)

ïT
(2.1)

10
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Figure 2.1: Geometry and adopted reference system [19].

As both the strain and stress tensors are symmetric, they may be represented
in vector form using Voigt’s notation as follows:

ϵ =
î
ϵxx, ϵyy, ϵzz, 2γxz, 2γyz, 2γxy

ïT
=

î
ϵxx, ϵyy, ϵzz, ϵxz, ϵyz, ϵxy

ïT
(2.2)

σ =
î
σxx, σyy, σzz, σyz, σxz, σxy

ïT
(2.3)

When dealing with large displacements/rotations of highly flexible structures,
accurate definitions of strains and stresses are needed to carry out reliable nonlinear
analyses. The Lagrangian formulations are typically used in pure geometrically
nonlinear analyses. Two incremental Lagrangian formulations are adopted to
compute the deformation and stress states in continuum problems: 1. the total
Lagrangian (TL) formulation and 2. the updated Lagrangian (UL) formulation.
In detail, in the first approach, strains are written in terms of the undeformed
configuration. In the second approach, strains are expressed as a function of
deformed configurations in the UL approach [20]. A detailed description of the
many advantages of adopting a Lagrangian method is given in Pai’s book [21].

Regarding the geometrical relations, the Green-Lagrange strains are taken into
consideration. In this manner, the relation between the strains and the displacement
can be expressed as

ϵ = (bl + bnl) u (2.4)

where the matrices bl and bnl are the formal matrix of the linear derivatives
operator, the complete form of these two matrices are different for 1D and 2D
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models and non-linear derivative operators for 1D model defined as follows:

bl =



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂z

0 ∂
∂x

∂
∂z

∂
∂y

0
0 ∂

∂y
∂

∂x


bnl =



1
2

1
∂

∂x

22 1
2

1
∂

∂x

22 1
2

1
∂

∂x

22

1
2

1
∂

∂y

22 1
2

1
∂

∂y

22 1
2

1
∂

∂y

22

1
2

1
∂
∂z

22 1
2

1
∂
∂z

22 1
2

1
∂
∂z

22

∂
∂x

∂
∂z

∂
∂x

∂
∂z

∂
∂x

∂
∂z

∂
∂y

∂
∂z

∂
∂y

∂
∂z

∂
∂y

∂
∂z

∂
∂x

∂
∂y

∂
∂x

∂
∂y

∂
∂x

∂
∂y



where ∂x stands for the derivative along the x direction, so that ∂x = ∂(.)
∂x

The
same symbol is assumed for y and z directions [22] . For 2D model, The complete
Expression of bl and bnl are:

bl =



∂α

Hα
0 1

HαRα

0 ∂β

Hβ

1
HβRβ

0 0 ∂z

∂z − 1
HαRα

0 ∂α

Hα

0 ∂z − 1
HβRβ

∂β

Hβ
∂β

Hβ

∂α

Hα
0



bnl =



1
2H2

α

1
(∂α)2 + 2uz∂α

Rα
+ uα

R2
α

2
(∂α)2

2H2
α

1
2H2

α

1
(∂α)2 − 2uα∂α

Rα
+ uz

R2
α

2
(∂β)2

2H2
β

1
2H2

β

3
(∂β)2 + 2uz∂β

Rβ
+ uβ

R2
β

4
1

2H2
β

3
(∂β)2 − 2uβ∂β

Rβ
+ uz

R2
β

4
1
2 (∂z)2 1

2 (∂z)2 1
2 (∂z)2

1
Hα

1
∂α∂z + uz∂z

Rα

2
∂α∂z

Hα

1
Hα

1
∂α∂z − uz∂z

Rα

2
∂β∂z

Hβ

1
Hβ

1
∂β∂z + uz∂z

Rβ

2
1

Hβ

1
∂β∂z − uβ∂z

Rβ

2
1

HαHβ

1
∂α∂β + uz∂β

Rα
+ uβ

RαRβ

2
1

HαHβ

1
∂α∂β + uz∂β

Rβ

2
1

HαHβ

1
∂α∂β − uα∂β

Rβ
− uβ∂α

Rβ

2


where Hα =

1
1 + z

Rα

2
, and Hβ =

1
1 + z

Rβ

2
.
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2.1.2 Constitutive equation

The present work focuses on constitutive linear elastic materials to obtain stress
components. The constitutive equation in Voigt’s notation can be expressed as:

σ = Cϵ (2.5)

where C is the symmetric elasticity tensor defined as:

C =



C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66


(3.1.6)

In the current work, predominantly isotropic materials are addressed; in this
particular scenario, the elasticity tensor assumes a simpler equation based solely
on two constants:

C =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


(2.6)

In which each component is expressed in terms of Lamé parameters, Young’s
modulus, and Poisson’s coefficient.

C11 = C22 = C33 = 2G+λ; C12 = C13 = C23 = λ; C44 = C55 = C66 = G; (2.7)

G = E

2(1 + ν) ; λ = νE

(1 + ν)(1 − 2ν) (2.8)

For completeness, the elasticity tensor for orthotropic materials (with a primary
direction) is presented. The properties of the fiber in the transversal direction
differ from those in the main direction; therefore, Young moduli and additional
coefficients must be defined for each direction [23]. The elasticity tensor takes this
form:
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C =



C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


(2.9)

The generic element of the elasticity tensor will be function of (in general) all
this coefficient just defined:

Cij = Cij(E1, E2, E3, G23, G13, G12, ν23, ν13, ν12) (2.10)

Coefficients Cij depend on Young and Poisson moduli as well as on the fiber
orientation angleθ that is graphically defined in Figure 2.2 where 1,2,3 represents
the axis of the material.

Figure 2.2: Fiber Orientation angle [19].

The prior expression refers to the material reference frame. To represent the
same elasticity tensor in the global reference frame, use the following rotation:
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T =



cos2 θ sin2 θ 0 0 0 − sin 2θ
sin2 θ cos2 θ 0 0 0 sin 2θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin θ cos θ − sin θ cos θ 0 0 0 cos 2θ


(2.11)

Applying this rotation, Hooke’s law written in the global ref. frame becomes:

σ = TT CTε = Qε (2.12)

Where the compact global matrix is:

Q =



Q11 Q12 Q13 0 0 Q16
Q21 Q22 Q23 0 0 Q26
Q31 Q32 Q33 0 0 Q36
0 0 0 Q44 Q45 0
0 0 0 Q54 Q55 0

Q16 Q26 Q36 0 0 Q66


(2.13)

For the sake of brevity, the expressions for the components of the matrix
Q are not reported here, but can be referred to in [23],[24] . Furthermore, it
should be noted that models with constant and linear distributions of the in-plane
displacement components ux and uz, are require modified material coefficients to
overcome Poisson locking [25].

2.2 Carrera Unified Formulation approach
In the last years, different theories have been implemented within the CUF frame-
work. Thanks to their capabilities, polynomial expression have been mostly used
in CUF-based analyses [26]. According to Carrera Unified Formulation, the dis-
placement field is expressed as an expansion of fundamental polynomial terms,
with the order of expansion increasing as needed. The displacement field is then
written as a combination of the finite element’s nodal displacements, and it varies
depending on the model used: in 1D CUF models, thickness functions are used to
approximate the displacement field along the cross-section of the beam, whereas
in 2D models, thickness functions are used to approximate the displacement field
along the thickness of the plate. The choice of cross-section/thickness expansion
function is entirely arbitrary, but it characterizes the model used: when Taylor
polynomials are used, structure is solved by considering an equivalent single layer
for the entire cross-section (ESL models), whereas when Lagrange polynomials are
used, a Layer-Wise description of the displacement field is permitted (LW models).
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2.2.1 Beam 1D CUF-FEM Finite Element
Consider beam and plate models described in a Cartesian reference frame (x, y,z).1D
CUF models are used in elongated structures, specifically beam constructions, where
the characteristic length is significantly bigger than the cross-section dimensions.
In this model, the 3D displacement field’s major variables are discretized along the
axis using a traditional FEM approximation, which is then utilized to interpolate
the nodal cross-section displacement components. The derivation of the following

Figure 2.3: Beam structure.

theoretical formulation is independent of the choice of the cross-section or thickness
[16] .If y is the direction of the beam axis and x′, z′ is the reference plane for
the cross-section, according to Carrera Unified Formulation The 3D stationary
displacement field of an arbitrary point within the structural domain can be
expressed as follows:

u(x, y, z) = Fτ (x, z)uτ (y) = Fτ (x, z)Ni(y)qri τ = 1, 2, . . . , K (2.14)

where Fτ (x, z) are the cross-section expansion functions, K is the order of
expansion in the thickness direction.The indexes τ stand for the summing convention
qri are the nodal discrete displacements and Ni(y) are the classical 1D shape
functions involved in FEM used for the approximation along the beam axis.The
choice of Fτ is purely arbitrary and determines the theory of structure adopted for a
given problem. In the context of geometrically non-linear elasticity, the geometrical
relations can be rewritten as:

ϵ = (bl + bnl)u = (bl + bnl)Fτ (x, z)Ni(y)qri = (Bτi
1 + Bτi

nl)qri (2.15)
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where Bτi
1 and Bτi

nl are the formal matrices of derivatives operators applied to
shape functions and cross-section functions, that can be rewritten then as:

Bτi
1 =



Fτ,xNi 0 0
0 Fτ Ni,y 0
0 0 Fτ,zNi

Fτ,zNi 0 Fτ,xNi

0 Fτ,zNi Fτ Ni,y

Fτ Ni,y Fτ,xNi 0


(2.16)

Bτi
nl = 1

2



ux,xFτ,xNi uy,xFτ,xNi uz,xFτ,xNi

ux,yFτ Ni,y uy,yFτ Ni,y uz,yFτ Ni,y

ux,zFτ,zNi uy,zFτ,zNi uz,zFτ,zNi

ux,xFτ,zNi + ux,zFτ,xNi uy,xFτ,zNi + uy,zFτ,xNi uz,xFτ,zNi + uz,zFτ,xNi

ux,yFτ,zNi + ux,zFτ Ni,y uy,yFτ,zNi + uy,zFτ Ni,y uz,yFτ,zNi + uz,zFτ Ni,y

ux,xFτ Ni,y + ux,yFτ,xNi uy,xFτ Ni,y + uy,yFτ,xNi uz,xFτ Ni,y + uz,yFτ,xNi


(2.17)

2.2.2 Plate 2D CUF-FEM Finite Element
In structures where only the thickness is at least one order of dimension less than
the other dimensions, 2D CUF models are adopted. In this model, the primary
variables of the 3D displacement field are expressed adopting through-the-thickness
expansion of finite nodes on the mid-surface of the plate, already discretized by a
classical FEM approximation. If z is the thickness direction, and x, y is the reference
plane for the mid-surface of the plate, according to Carrera Unified Formulation
the displacement field is written as:

u(x, y, z) = Fτ (z)uτ (x, y) = Fτ (x)Ni(x, y)qri τ = 1, 2, . . . , K (2.18)

where Fr(z) are the thickness expansion function, used for the approximation
of the displacement field along the thickness, K is the order of expansion, qri are
the nodal discrete displacements and Ni(x, y) are the classical 2D shape functions
involved in FEM used for the approximation of the displacement field along the
mid-surface. In the context of geometrically non linear elasticity, the geometrical
relations can be rewritten as:

ϵ = (bl + bnl)u = (bl + bnl)Fτ (x, z)Ni(y)qri = (Bri
1 + Bri

nl) qri (2.19)

Where Bri
1 and Bri

nl are the formal matrices of derivatives operators applied to
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Figure 2.4: Plate 2D model.

shape functions and thickness function that can be rewritten then as:

Bri
1 =



Fτ Ni,x 0 0
0 Fτ Ni,y 0
0 0 Fτ,zNi

Fτ,zNi 0 Fτ Ni,x

0 Fτ,zNi Fτ Ni,y

Fτ Ni,y Fτ Ni,x 0


(2.20)

Bri
nl = 1

2



ux,xFτ Ni,x uy,xFτ Ni,x uz,xFτ Ni,x

ux,yFτ Ni,y uy,yFτ Ni,y uz,yFτ Ni,y

ux,zFτ,zNi uy,zFτ,zNi uz,zFτ,zNi

ux,xFτ,zNi + ux,zFτ Ni,x uy,xFτ,zNi + uy,zFτ Ni,x uz,xFτ,zNi + uz,zFτ Ni,x

ux,yFτ,zNi + ux,zFτ Ni,y uy,yFτ,zNi + uy,zFτ Ni,y uz,yFτ,zNi + uz,zFτ Ni,y

ux,xFτ Ni,y + ux,yFτ Ni,x uy,yFτ Ni,y + uy,yFτ Ni,x uz,xFτ Ni,y + uz,yFτ Ni,x


(2.21)

2.2.3 Taylor Expansion Model
According to Carrera Unified Formulation (CUF), the generic displacement field can
be expressed in a compact manner as an expansion in terms of arbitrary functions,
Fτ , [19]

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1,2, . . . , M (2.22)
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where Fτ are the functions of the coordinates x and z on the cross-section; uτ

is the vector of the generalized displacements; M stands for the number of terms
used in the expansion; and the repeated subscript, τ , indicates summation. The
choice of Fτ determines the class of the 1D CUF model.

Taylor Expansion (TE) 1D CUF models consist of MacLaurin series that uses
the 2D polynomials xizj as Fτ basis. Table 2.1 shows M and Fτ as functions of
the expansion order, N , which represents the maximum order of the polynomials
used in the expansion.

According to CUF, Eqs. (2.7) to (2.11) consist of particular cases of TE theories.
For example, it should be noted that Eqs. (2.7), (2.8), and (2.10) are degenerated
cases of the linear (N = 1) TE model, which can be expressed as:

ux = ux1 + x ux2 + z ux3,

uy = uy1 + x uy2 + z uy3,

uz = uz1 + x uz2 + z uz3.

(2.23)

where the parameters on the right-hand side (ux1, uy1, uz1, ux2, etc.) are the
displacements of the beam axis and first derivatives of displacements. Higher order
terms can be taken into account according to Eq.(2.22).

Figure 2.5: Cross section L-elements in natural geometry.

2.2.4 Lagrange Expansion Model
Lagrange Expansion (LE) models use Lagrange polynomials to interpolate dis-
placement variables: in 1D/2D models, unknowns over the cross-section/thickness
domain are interpolated, whereas in 3D models, the displacement field is expressed
as an expansion over all the unknown nodal displacements of the finite element.
In the code, different LE orders elements are implemented for 1D/2D elements,
namely Q4 (four node element), Q9 (nine node element), and Q16 (sixteen node
element); in the case of 3D LE elements, instead H8 (eight node element), H20
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(twenty node element), and H27 (twenty-seven node element) are implemented.
[23]. In general, the expansion is defined in the natural reference frame: each
polynomial is defined in the real interval [−1, 1]: physical quantities depending on
the Lagrange expansions need a change of variable where the Jacobian is required.

Figure 2.6: Lagrange Q4 linear phase element: from material to natural ref.frame.

As an example, in the case of linear Q4 element as shown in Figure. 2.6, Lagrange
polynomials in the natural reference frame are expressed as follows:

N1(ξ, η) = 1
4(1 − ξ)(1 − η) (2.24)

N2(ξ, η) = 1
4(1 + ξ)(1 − η) (2.25)

N3(ξ, η) = 1
4(1 + ξ)(1 + η) (2.26)

N4(ξ, η) = 1
4(1 − ξ)(1 + η) (2.27)

Therefore, once the nodal displacements are computed, the displacement field
of a Q4 domain in the physical reference frame is written as:

ux = N1ux1 + N2ux2 + N3ux3 + N4ux4 (2.28)

uy = N1uy1 + N2uy2 + N3uy3 + N4uy4 (2.29)

uz = N1uz1 + N2uz2 + N3uz3 + N4uz4 (2.30)
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2.3 Failure Analysis

Composites offer remarkable mechanical strength and lightweight properties, making
them an appealing option for structural applications with the potential to enhance
performance and increase efficiency. However, despite these numerous benefits,
composites can present challenges due to their complex nature and heterogeneous
composition, which makes understanding their failure mechanisms more difficult.
The analysis of failures in composite materials is significantly more complicated
than in isotropic materials. This added complexity is due to their orthotropic
behavior and the existence of multiple possible failure modes, including fibre and
matrix failures. There are numerous criteria available to assess and, in some cases,
predict various failure modes. This chapter delves into the failure analysis of
composites using a range of independent and polynomial criteria [10], [27]

2.3.1 Failure criteria

Different failure criteria are employed to estimate the strength of materials and
systems under multiaxial loading conditions. These criteria define a relationship
between the material’s strength limits, which are usually identified for uniaxial
tension, compression, and shear, and the overall stress-strain state caused by
multiaxial loads. Failure criteria are often expressed through mathematical formulas
known as failure criterion functions (f), which are based on stresses (or strains)
and the material’s strength parameters [10].

2.3.2 Maximum Stress Criterion

The Maximum Stress criterion (MS) does not consider any interaction between
different stress components. It is based on the concept that the failure occurs when
the stress in at least one direction exceeds the correspondent critical value [28].
This theory, like Rankine’s maximum normal stress theory and Tresca’s maximum
shearing stress theory, applies to isotropic materials [29]. Stresses on a lamina are
divided into normal and shear stresses on the local axes.

The conditions for the MS of an anisotropic material can be summed up as
follows :
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σ11 ≥ 0 ⇒ σ11 ≥ XT

or σ11 < 0 ⇒ σ11 ≤ XC

σ22 ≥ 0 ⇒ σ22 ≥ YT

or σ22 < 0 ⇒ σ22 ≤ YC

σ33 ≥ 0 ⇒ σ33 ≥ ZT

or σ33 < 0 ⇒ σ22 ≤ ZC

τ12 ≥ SL
12

τ13 ≥ SL
13

τ23 ≥ SL
23

(2.31)

where X, Y , and Z are respectively the strength parameter in 1-, 2-, and
3-directions. X, Y , and Z can also be addressed as "Failure Coefficients", FC. For
anisotropic materials, these parameters are different depending on the direction.
Furthermore, different values can be found for traction or compression loadings;
the superscripts T, C indicate the corresponding values in the axial traction and
compression cases, while the superscript L indicates a strength parameter in a shear
direction. In particular, if anisotropic materials are taken into account, for the
shear case three different strength values have to be considered, L1 = 12, L2 = 13,
L3 = 23. For the Maximum Stress criterion, the FI is obtained as follows, points in
which the index becomes greater or equal to one indicate that failure occurred [30].

FI = max
5

σij

FCT,C

6
(2.32)

2.3.3 Tsai-Wu Criterion
The Tsai-Wu (TW) is a quadratic interaction tensor polynomial failure criterion.
This criterion was theoretically formulated starting from the basic assumption that
there exists a failure surface in the stress-space in the following scalar form:

f(σk) = Fiσi + Fijσiσj = 1 i, j, k + 1, . . . ,6 (2.33)

where Fi and Fij are strength tensors respectively of second and fourth orders.
In this criterion, the linear part, σi, takes into account the difference between the
sign of the stress who induces the failure while the quadratic term, σiσj , defines an
ellipsoid in the stress space [31]. By expanding Equation 6.8, the criterion becomes:

A11σ
2
11 + A22σ

2
22 + A33σ

2
33 + B1σ11 + B2σ22 + B3σ33 + 2A12σ11σ22

+2A13σ11σ33 + 2A23σ22σ33 + A66τ
2
12 + A55τ

2
13 + A44τ

2
23 ≥ 1

(2.34)
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where the coefficients, A11, . . . , A66 reported in Equation 2.35 can be obtained
as:

A11 = 1
XT XC

A22 = 1
Y T Y C

A33 = 1
ZT ZC

B1 = 1
XT

− 1
XC

B2 = 1
Y T

− 1
Y C

B3 = 1
ZT

− 1
ZC

A12 = 1
2
√

XT XCY T Y C

A13 = 1
2
√

XT XCZT ZC

A23 = 1
2
√

Y T Y CZT ZC

A44 = A55 = A66 = 1
SLSL

(2.35)

2.3.4 Tsai-Hill Criterion

The Tsai-Hill (TH) is an interactive quadratic criterion. It represents the extension
to composites of the Von Mises criterion used to analyse metals. This criterion
was formulated by referring to distortional energy. It is known that total strain
energy in a body is composed of two parts: the distortion energy which cause
change in shape and the second that is a dilation energy which causes the change
in size or volume. In the Von Mises criterion it is assumed that the material fails
when the maximum distortion energy of the body exceeds the distortion energy
corresponding to yielding of the same material in tension. Hill extended the von
Mises distortion energy criterion of isotropic materials to anisotropic materials;
later Tsai extended this criterion for anisotropic materials to unidirectional laminae.

3
σ11

X

42
+

3
σ22

Y

42
+

3
σ33

Z

42
− Aσ11σ22 − Bσ11σ33 − Cσ22σ33+3

σ23

S23

42
+

3
σ31

S13

42
+

3
σ12

S12

42
≥ 1

(2.36)
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A = 1
X2 + 1

Y 2 − 1
Z2

B = 1
X2 − 1

Y 2 + 1
Z2

C = 1
Y 2 + 1

Z2 − 1
X2

(2.37)

24



Chapter 3

Analysis

3.1 Analysis Using Abaqus

The 3D model of the component was initially developed using specialized design
software and subsequently imported into Abaqus for advanced analysis. Once
the model was successfully imported, the next step involved assigning material
properties.

To enhance the precision of the analysis, a structured mesh was generated for
the model. Structured meshing was selected because it provides a more uniform
and organized grid, leading to higher accuracy in the results, especially in critical
areas of the model.

Following the meshing process, boundary conditions were applied based on the
specific requirements of the analysis. At one end of the model, both rotational
and deformation movements were constrained to simulate the actual operational
conditions of the structure and the other end was completely free.

The load conditions were then applied, determined by the most critical point
identified from the flight envelope [32], known as the maximum manoeuvre point.
The flight envelope is a plot that illustrates the relationship between load factor and
airspeed, including important curves such as the stall curve and the maximum load
factor curve. The intersection of these two curves defines the maximum manoeuvre
point, which represents the most critical aerodynamic and structural conditions
the aircraft might encounter during flight. At this point, all the relevant loads were
calculated using the numerical model, reflecting the extreme operating conditions
that the structure must endure.

These loading conditions, along with the defined constraints and boundary
conditions, were thoroughly depicted in the accompanying figure 3.1, 3.2, 3.3, 3.4,
3.5. After setting up the model with all these parameters, the analysis was conducted
to evaluate the maximum displacement of the central wing box when subjected
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to these conditions, considering different material scenarios. This comprehensive
approach ensures that the structural integrity of the wing box is thoroughly assessed
under the most demanding operational circumstances.

Figure 3.1: Boundary Condition.

Figure 3.2: Load Condition 1.
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Figure 3.3: Load Condition 2.

Figure 3.4: Load Condition 3.
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Figure 3.5: Load Condition 4.

Figure 3.6: Load Condition 5.
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Figure 3.7: Gravity.

3.2 Analysis Using CUF

For the CUF (Carrera Unified Formulation) analysis, we utilized an executable file
to perform the necessary computations. The process involved several important
steps to ensure the analysis was conducted accurately. First and foremost, it
was essential to organize all the input files correctly, following a specific order as
depicted in the accompanying figure. This organization is crucial because it allows
the executable to correctly interpret and utilize the data for the analysis. Within
this setup, the PATH_Input variable plays a vital role. This variable is configured
to include the path addresses of all relevant files associated with the analysis. By
specifying these path addresses, PATH_Input ensures that the executable file can
accurately locate and read all the files required for the analysis process, regardless
of their location in the directory structure.This meticulous setup is crucial for the
successful execution of the CUF analysis, as it guarantees that all components
of the analysis are accessible and correctly integrated, allowing for a smooth and
error-free computational process.
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Figure 3.8: Input Folder
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Figure 3.9: Structural Model Requirements

ANALYSIS.dat: This file is used to define the type of analysis to be per-
formed, such as linear static analysis, free vibration analysis, dynamic analysis,
thermo-mechanical analysis, and others. Each type of analysis is identified by a
specific numerical code within the software. For example, a linear static analysis is
represented by the code 101, while free vibration analysis is denoted by 103. You
select the desired analysis type by specifying its corresponding code in this file.
POSTPROCESSING.dat: In this file, the post-processing parameters are de-
fined. The software outputs the calculated displacements, strains, and stresses at
specified points, as listed in this file, into a text document. Additionally, the file
allows you to request results formatted for visualization in ParaView, enabling
detailed analysis and interpretation of the simulation outcomes.
VERSORS.dat: This file defines the local reference frames for the elements.
These reference frames are assigned during the element definition process and are
crucial for accurately representing the orientation and behaviour of elements within
the global structural framework.
BC.dat: The‘BC.dat‘ file is where you define both the geometric and mechanical
boundary conditions for the analysis. These conditions are specified using a set
of predefined commands within the software interface, allowing you to accurately
describe how the structure is constrained, supported, and loaded during the analysis.

• F-POINT: Concentrated force, located at the node of coordinates x, y, z (it
has to be a node of the mesh), expressed in terms of components
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• D-POINT: One can specify the displacement components of a single node

• D-PLANE: One can specify the displacement components for all the points
laying on the specified plane

• F-PRESS: Surface pressure, applied for all the points on the specified physical
surface

Figure 3.10: Boundary Condition.DAT file with D-point.

In the figure 3.10 3.11, the first number indicates the total number of boundary
conditions applied to the structure. The first column specifies the type of boundary
condition, and in this particular case, it shows that type of boundary conditions
have been applied labelled as D and F point. The second column provides the
identification (ID) of these points. The third, fourth, and fifth columns represent
the coordinates (x, y, z) of these points in the respective directions. The remaining
columns detail the specific degrees of freedom that are constrained or restricted at
each of these points.

Figure 3.11: Boundary Condition.DAT file with F-point.
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In the Carrera Unified Formulation (CUF), when solving a problem, we can
choose either the beam approach or the plate approach. In the beam approach, we
first model the cross-section of the beam. CUF then extends this cross-section using
a Finite Element Method (FEM) approach in the third direction, capturing the
beam’s behavior in three dimensions. On the other hand, in the plate approach, we
start by modeling the thickness of the plate. Here, we design in one dimension, and
the CUF automatically expands this model into the other dimensions, effectively
capturing the plate’s behavior across its surface.

Figure 3.12: Nodes.DAT file

In the connectivity and nodes files, particularly for the beam approach, we
observe that the expansion occurs in the third direction, which is handled using
the Finite Element Method (FEM). In the beam approach, this third direction is
consistently the y-axis. In the ‘nodes.dat‘ file, the first column represents the node
ID, while the subsequent three columns correspond to the x, y, and z coordinates
of each node. The term "LE" stands for the Lagrange model used in the analysis.
In the ‘CONNECTIVITY.dat‘ file, the finite elements of the structure are defined,
and for each element, the associated nodes are specified. These nodes are listed in
a specific order, according to a local numbering system that depends on the type of
element being used. Importantly, the list of element nodes is expressed in terms of
global numbering, which references the overall node identification within the entire
structure.
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Figure 3.13: Connectivity.DAT file

In the figure 3.13, the first column indicates the element type. In our case, it is
labelled as B2, which denotes linear elements that connect two nodes. The second
column represents the element ID, while the third and fourth columns specify the
nodes associated with the element. The fifth column provides the versor, and the
sixth column details the ’exp_mesh’ and ’exp_connectivity’ parameters.

EXP_MESH_0X.dat: This file contains the enumerated list of expansion nodes.
Each node in this list is assigned a unique number according to a global numbering
rule. The global list of these expansion nodes is specifically defined along the x
and z directions, ensuring that the nodes are correctly positioned and referenced
within the overall structure.

Figure 3.14: Exp_mesh.DAT file.

EXP_CONN_0X.dat: This file defines the expansion elements and specifies the
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associated nodes for each element. The nodes of each element are listed in an
ordered sequence, following a local numbering system that depends on the type of
element. The list of nodes for each element is expressed using global numbering,
ensuring consistency across the entire structure.

Figure 3.15: Exp_CONN.DAT file.

In the file ’MATERIAL.dat’, the number of materials used in the analysis and
their mechanical properties are defined and initialized within the code. For isotropic
materials, designated as ’ISO-M’, only three parameters need to be specified: the
Young’s modulus (E), Poisson’s ratio (ν), and material density as shown in the
Figure3.16

Figure 3.16: ISO-M Material.DAT file.

For orthotropic materials, designated as ORT-M, a more comprehensive set of
parameters is required. This includes the Young’s moduli along different axes,
shear moduli, and all relevant Poisson’s ratios as specified on the screen Figure 3.17
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Figure 3.17: Ort-M.DAT file.

The results, requested in the input “POSTPROCESSING.dat” are printed at
the end of the analysis in the folder /STATIC (for 101, 111, . . . analysis) and
/DYNAMIC (for 103, 106, . . . analysis) of the main code folder Figure 3.9.

Figure 3.18: MUL2
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3.3 Modal analysis of Central Wing Box

3.3.1 Analysis overview

Modal analysis is a critical aspect of structural engineering and dynamics, focusing
on understanding and characterizing the vibrational behaviour of structures and
components. This analytical technique identifies the natural frequencies and mode
shapes of a system, which are essential for predicting how structures respond to
various dynamic loads. The importance of modal analysis lies in its ability to
ensure the safety, reliability, and performance of structures by preventing resonance,
which can lead to catastrophic failures. Resonance occurs when the frequency of
external forces matches a structure’s natural frequency, leading to large ampli-
tude oscillations. This foundational knowledge allows for better prediction and
mitigation of dynamic responses, ensuring structural integrity and performance
throughout the lifecycle of the component or structure. The significance of modal
analysis extends to various fields, aerospace, automotive, civil engineering, and
mechanical systems. By performing modal analysis, engineers can design structures
that avoid resonant conditions, enhance durability, and optimize performance. It
is particularly important in the design of aircraft, and machinery, where dynamic
loads such as wind, and operational vibrations are prevalent. Understanding the
modal characteristics helps in improving noise and vibration performance, leading
to quieter and more comfortable products.

The central wing box is a critical structural component in an aircraft, acting as
the main load-bearing element connecting the wings to the fuselage. Understanding
its dynamic behaviour is essential for ensuring structural integrity and performance
under various operational conditions. Free vibration analysis involves studying
the natural oscillation of a structure when it is disturbed from its equilibrium
position and then allowed to vibrate without external forces acting on it. The
main parameters of interest in free vibration analysis are the natural frequencies
(eigenfrequencies) and mode shapes (eigenmodes). These parameters help identify
the dynamic characteristics of the structure and are vital for designing components
that can withstand dynamic loads and avoid resonance. For the initial analysis,
aluminium is chosen as the material for the central wing box due to its isotropic
properties. Isotropic materials have uniform mechanical properties in all directions,
simplifying the analysis and focusing on the fundamental vibration characteristics.
Aluminium is widely used in aerospace applications because of its high strength-to-
weight ratio, good corrosion resistance, and ease of fabrication. While conducting
modal analysis for my thesis, I chose to use the Carrera Unified Formulation (CUF)
instead of Abaqus. The primary reason for this decision was the nature of the
modes obtained from each method. In Abaqus, the computed modes often tend to
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be localized, meaning that the vibration patterns are confined to specific regions of
the structure. These localized modes do not provide a clear understanding of the
overall dynamic behaviour of the structure, as they may overlook important global
deformation patterns. As a result, the analysis may miss critical insights into the
structural dynamics that are essential for accurate evaluation and optimization.
In contrast, the Carrera Unified Formulation offers a more refined approach to
modal analysis. CUF provides a higher level of accuracy in capturing the global
modes of the structure. By leveraging advanced mathematical techniques, CUF
ensures that the modal shapes are well-defined and representative of the entire
structure’s dynamic behaviour. This comprehensive representation allows for a
more accurate assessment of the structural performance under dynamic loading
conditions. Therefore, to achieve more reliable and insightful results in my modal
analysis, I utilized the Carrera Unified Formulation instead of Abaqus. This choice
ensured that the obtained modes accurately reflected the global behaviour of
the structure, providing a better foundation for subsequent analyses and design
decisions.

Mode shape Frequency (Hz)
Frequency 1: 449.78
Frequency 2: 510.14
Frequency 3: 573.11
Frequency 4: 620.48
Frequency 5: 663.45
Frequency 6: 718.81
Frequency 7: 742.54
Frequency 8: 749.33
Frequency 9: 753.22
Frequency 10: 771.26
Frequency 11: 776.87
Frequency 12: 800.57
Frequency 13: 823.56
Frequency 14: 865.32
Frequency 15: 883.21
Frequency 16: 897.37
Frequency 17: 948.79
Frequency 18: 993.32
Frequency 19: 996.83
Frequency 20: 1064.81

Table 3.1: Frequency Table.
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Figure 3.19: Mode Shape 1.

Figure 3.20: Mode Shape 2.
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Figure 3.21: Mode Shape 3.

Figure 3.22: Mode Shape 4.
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Figure 3.23: Mode Shape 5.

Figure 3.24: Mode Shape 6.
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Figure 3.25: Mode Shape 7.

Figure 3.26: Mode Shape 8.
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Figure 3.27: Mode Shape 9.

Figure 3.28: Mode Shape 10.

3.3.2 Conclusion
The mode shape corresponding to a frequency, indicates the specific pattern of
deformation that the central wing box undergoes at this particular natural frequency.
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This mode shape is characterized by
Deformation Pattern: The visualization of the mode shape shows that certain

areas of the wing box experience larger displacements compared to others.
Nodal Points/ lines: Points or lines where maximum displacement and no

movement occurs (nodes) are observed. These are critical as they define regions of
zero displacement amidst vibrating areas. During the modal analysis of the central
wing box, it was observed that the maximum displacement occurs in three key
areas:

Displacement at the skin The skin acts as the primary surface exposed to
aerodynamic forces and plays a crucial role in maintaining the aerodynamic shape
and overall structural integrity of the wing box. The deformation observed in
the skin suggests a bending mode, where the outer surfaces are more flexible and
relatively lower stiffness compared to the internal structure. This bending leads to
significant displacements on the skin. The maximum displacement typically occurs
in areas furthest from support points, such as the mid-span sections between ribs.
This behaviour aligns with the principles of beam bending, where the maximum
deflection is observed at the centre of the span for a simply supported beam.

Displacement at the centre rib structure The ribs provide the necessary
support and distribute the load from the skin to the rest of the wing box structure.
The centre rib, in particular, is crucial for maintaining the overall shape and stiffness.
The centre rib might show maximum displacement in response to torsional modes
or combined bending-torsion modes due to its role in providing lateral support and
transferring loads between upper and lower skins.

Spar deformation The spars, acting as the primary load-bearing components,
experience displacements influenced by both bending and torsional loads. displace-
ment in the spars is generally at the mid span, depending on the mode. Spars
can be analysed using beam theory. The deformation pattern often exhibits a
combination of flexural and torsional modes, especially at higher frequencies.

In modal analysis of a wing box, understanding the maximum displacement
in the skin, centre rib structure, and spars is critical for predicting the dynamic
behaviour and ensuring the structural and operational integrity of the wing. By
describing the deformation patterns in terms of structural mechanics, engineers can
better assess the potential implications and take appropriate measures to enhance
the durability and performance of the wing box.

3.4 Static Analysis of Central Wing Box

3.4.1 Analysis Overview
In this study, I performed a comprehensive static analysis to assess the structural
integrity and performance of a central wing box under expected load conditions,
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excluding dynamic effects such as vibration or impact. Using two different modelling
approaches—solid and shell models—I analysed the displacements to ensure they
remained within safe limits, as excessive deformations can alter the aerodynamic
profile of the wing, leading to reduced efficiency and performance. Identifying
potential failure points is crucial to reinforce these areas and prevent catastrophic
failure during operation. The analysis was conducted using isotropic aluminium,
characterized by uniform properties in all directions, and an equivalent orthotropic
material, which has direction-dependent properties to mimic composite materials.
Simulations were executed in Abaqus, a sophisticated finite element analysis (FEA)
software that supports complex material models and nonlinear behaviour. To further
validate the results obtained for the solid model in Abaqus, I employed the Carrera
Unified Formulation (CUF). CUF is preferred over traditional FEA methods due to
its higher-order formulation capabilities, which provide more accurate and efficient
modelling of complex structures and anisotropic materials. The higher-order terms
in CUF capture detailed stress distributions and deformation behaviours with fewer
computational resources, ensuring robust analysis for both isotropic and orthotropic
materials. This dual-approach analysis helps ensure the structural integrity and
reliability of the wing box, thereby enhancing the safety and performance of the
aircraft.

Material and
Material ID

Solid model
Deformation

CUF Model
Deformation

Shel
Deformation

Aluminium 3.50E-03 3.40E-03 3.13E-03
1 6.80E-04 8.10E-04 6.02E-04
2 1.33E-03 1.40E-03 1.18E-03
3 1.19E-03 1.80E-03 9.65E-04
4 4.82E-04 5.00E-04 4.60E-04
5 4.40E-04 5.60E-04 4.34E-04
6 3.93E-04 3.90E-04 3.87E-04
7 9.36E-04 9.30E-04 8.80E-04
8 1.00E-03 9.60E-04 1.06E-03
9 4.20E-04 3.40E-04 4.20E-04
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Figure 3.29: Aluminium solid deformation Using Classical FEM.

Figure 3.30: Aluminium shell deformation using Classical FEM.
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Figure 3.31: Aluminium deformation Using CUF.

Figure 3.32: STD CF Fabric solid deformation using Classical FEM.
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Figure 3.33: STD CF Fabric Shell deformation using Classical FEM.

Figure 3.34: STD CF Fabric deformation using CUF.
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Figure 3.35: E Glass Fabric solid deformation using Classical FEM.

Figure 3.36: E Glass Fabric Shell deformation using Classical FEM.
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Figure 3.37: E Glass Fabric deformation using CUF.

Figure 3.38: Kevlar Fabric solid deformation using Classical FEM.
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Figure 3.39: Kevlar Fabric shel deformation using Classical FEM.

Figure 3.40: Kevlar Fabric deformation using CUF.
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Figure 3.41: STD CF UD solid deformation using Classical FEM.

Figure 3.42: STD CF UD shell deformation using Classical FEM.
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Figure 3.43: STD CF UD deformation using CUF.

Figure 3.44: HMCF UD solid deformation using Classical FEM.
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Figure 3.45: HMCF UD Shell deformation using Classical FEM.

Figure 3.46: HMCF UD deformation using CUF.
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Figure 3.47: M55 UD solid deformation using Classical FEM

Figure 3.48: M55 UD shell deformation using Classical FEM.
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Figure 3.49: M55 UD deformation using CUF.

Figure 3.50: E Glass UD solid deformation using Classical FEM.
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Figure 3.51: E Glass UD Shell deformation using Classical FEM.

Figure 3.52: E Glass UD deformation using CUF.
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Figure 3.53: Kevlar UD solid deformation using Classical FEM.

Figure 3.54: Kevlar UD Shell deformation using Classical FEM.
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Figure 3.55: Kevlar UD Deformation Using CFU.

Figure 3.56: Boron UD solid deformation using Classical FEM.
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Figure 3.57: Boron UD Shell deformation using Classical FEM.

Figure 3.58: Boron UD deformation using CUF .

3.4.2 Conclusion
The deformation results across various materials and modelling approaches highlight
the robustness of both Abaqus and the Carrera Unified Formulation (CUF) in
predicting the structural behaviour of the central wing box. The deformation
values obtained from both the solid model in Abaqus and the CUF model are
remarkably similar, underscoring the accuracy and reliability of these methods.
This consistency in deformation predictions across different models and materials
demonstrates the effectiveness of Abaqus and CUF in structural analysis and their
capability to produce precise and dependable results.
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The shell model results consistently showed slightly lower deformations compared
to the solid models, which is expected due to the reduced dimensionality and
associated assumptions in shell modeling. This reinforces the importance of selecting
the appropriate modeling approach based on the specific requirements of accuracy
and computational efficiency.

Additionally, the figure in the results shows a model with one end constrained
and the other end free, leading to greater deformation at the free end. Technically,
this observation aligns with the concept that stress is maximized at the constrained
end due to the fixed boundary condition.

3.5 Failure Analysis For The Composite Materi-
als

3.5.1 Analysis Overview
The Tresca and von Mises criteria are commonly used to predict yielding in isotropic,
ductile materials such as metals. However, when dealing with composite materials,
these criteria are generally not appropriate due to the anisotropic nature of com-
posites, which have different properties in different directions. Composite materials,
particularly Fiber-reinforced composites, exhibit complex failure mechanisms due
to their heterogeneous nature. For such materials, more specialized criteria are
used

• Maximum Stress Criterion.

• Tsai-Wu Criterion.

• Tsai-Hill Criterion.

In this comprehensive study, the failure indices for seven different composite
materials under six distinct stacking sequences were meticulously analysed to
understand their structural performance under load and to facilitate computational
efficiency, especially given the need to account for the stacking sequence of composite
materials and the associated numerical limitations, I opted to use a shell model.
The shell model is advantageous in this context because it significantly reduces the
computational complexity compared to a solid model, making it a more suitable
choice for intricate simulations. The stacking sequences evaluated were

• 90◦/45◦/ − 45◦/0◦,

• 90◦/0◦/45◦/ − 45◦,

• 45◦/ − 45◦/0◦/90◦,
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• 90◦/0◦/90◦/0◦,

• 45◦/ − 45◦/45◦/ − 45◦,

• 60◦/30◦/ − 30◦/ − 60◦.

Material ID Material Density
rho [kg/m3]

1 Std CF Fabric 1600
2 E glass Fabric 1900
3 Std CF UD 1600
4 M55 UD 1650
5 E glass UD 1900
6 Kevlar UD 1400
7 Boron UD 2000

Table 3.2: Properties and Densities of the materials used.

Material ID Young’s Modulus (Pa)
E1 E2 E3

1 7.00E+11 7.00E+11 5.19E+10
2 2.50E+11 2.50E+11 5.00E+10
3 1.35E+12 1.00E+11 1.00E+11
4 3.00E+12 1.20E+11 1.20E+11
5 4.00E+11 8.00E+10 8.00E+10
6 7.50E+11 6.00E+10 6.00E+10
7 2.00E+12 1.50E+11 1.50E+11

Table 3.3: Mechanical properties of materials: Young’s Modulus.

Material Stacking Sequence von Mises (Pa) Deformation

Std CF Fabric

90°/45°/-45°/0° 2.23E+08 4.30E-04
90°/0°/45°/-45° 2.23E+08 4.38E-04
45°/-45°/0°/90° 1.23E+08 4.30E-04
90°/0°/90°/0° 1.74E+08 6.02E-04

45°/-45°/45°/-45° 1.43E+08 6.60E-04
60°/30°/-30°/-60° 1.31E+08 4.90E-04

Table 3.7: Stacking Sequence, von Mises stress, and Deformation for Std CF
Fabric.
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Material ID Shear Modulus (Pa)
G12 G13 G23

1 5.00E+10 2.29E+10 2.29E+10
2 4.00E+10 1.98E+10 1.98E+10
3 5.00E+10 5.00E+10 3.60E+10
4 5.00E+10 5.00E+10 4.32E+10
5 4.00E+10 4.00E+10 3.02E+10
6 2.00E+10 2.00E+10 2.08E+10
7 5.00E+10 5.00E+10 5.77E+10

Table 3.4: Mechanical properties of materials: Shear Modulus.

Material ID Poisson’s Ratio
NU12 NU13 NU23

1 0.10 0.13 0.13
2 0.20 0.26 0.26
3 0.30 0.33 0.39
4 0.30 0.33 0.39
5 0.25 0.25 0.325
6 0.34 0.34 0.442
7 0.23 0.23 0.299

Table 3.5: Mechanical properties of materials: Poisson’s Ratio.

Material Stacking Sequence von Mises (Pa) Deformation

E glass Fabric

90°/45°/-45°/0° 2.13E+08 1.16E-03
90°/0°/45°/-45° 2.14E+08 1.15E-03
45°/-45°/0°/90° 1.52E+08 1.81E-03
90°/0°/90°/0° 1.83E+08 1.17E-03

45°/-45°/45°/-45° 1.75E+08 1.30E-03
60°/30°/-30°/-60° 1.34E+08 1.12E-03

Table 3.8: Stacking Sequence, von Mises stress, and Deformation for E glass
Fabric
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Material ID Ultimate Strength (Pa)
S1+ S1- S2+ S2- S12 S23

1 6.00E+08 5.70E+08 6.00E+08 5.70E+08 9.00E+07 4.13E+07
2 4.40E+08 4.25E+08 4.40E+08 4.25E+08 7.04E+07 1.98E+07
3 1.50E+09 1.20E+09 5.00E+07 2.50E+08 7.00E+07 5.04E+07
4 1.60E+09 1.30E+09 5.00E+07 2.50E+08 7.50E+07 6.47E+07
5 1.00E+09 6.00E+08 3.00E+07 1.00E+08 4.50E+07 6.24E+07
6 1.30E+09 2.80E+08 3.00E+07 1.00E+08 4.50E+07 1.62E+07
7 1.40E+09 2.80E+09 9.00E+07 2.80E+08 1.40E+08 1.62E+08

Table 3.6: Ultimate Strength of Materials.

Material Stacking Sequence von Mises (Pa) Deformation

Std CF UD

90°/45°/-45°/0° 3.67E+08 3.60E-04
90°/0°/45°/-45° 3.65E+08 3.66E-04
45°/-45°/0°/90° 4.46E+07 3.73E-04
90°/0°/90°/0° 3.20E+08 5.50E-04

45°/-45°/45°/-45° 6.40E+07 5.00E-04
60°/30°/-30°/-60° 2.60E+08 3.40E-04

Table 3.9: Stacking Sequence, von Mises stress, and Deformation for Std CF UD.

Material Stacking Sequence von Mises (Pa) Deformation

M55 UD

90°/45°/-45°/0° 3.95E+08 1.74E-04
90°/0°/45°/-45° 3.92E+08 1.74E-04
45°/-45°/0°/90° 3.30E+07 1.71E-04
90°/0°/90°/0° 3.64E+08 4.27E-04

45°/-45°/45°/-45° 4.60E+07 2.70E-04
60°/30°/-30°/-60° 2.30E+08 2.00E-04

Table 3.10: Stacking Sequence, von Mises stress, and Deformation for M55 UD.
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Material Stacking Sequence von Mises (Pa) Deformation

E glass UD

90°/45°/-45°/0° 3.06E+08 1.04E-03
90°/0°/45°/-45° 3.05E+08 1.04E-03
45°/-45°/0°/90° 7.93E+07 1.05E-03
90°/0°/90°/0° 2.75E+08 1.12E-03

45°/-45°/45°/-45° 1.06E+08 1.20E-03
60°/30°/-30°/-60° 1.76E+08 1.13E-03

Table 3.11: Stacking Sequence, von Mises stress, and Deformation for E glass
UD.

Material Stacking Sequence von Mises (Pa) Deformation

Kevlar UD

90°/45°/-45°/0° 3.73E+08 6.70E-04
90°/0°/45°/-45° 3.70E+08 6.70E-04
45°/-45°/0°/90° 3.60E+07 6.70E-04
90°/0°/90°/0° 3.37E+08 1.22E-03

45°/-45°/45°/-45° 5.82E+07 1.00E-03
60°/30°/-30°/-60° 2.08E+08 7.34E-04

Table 3.12: Stacking Sequence, von Mises stress, and Deformation for Kevlar UD.

Material Stacking Sequence von Mises (Pa) Deformation

Boron UD

90°/45°/-45°/0° 3.75E+08 2.50E-04
90°/0°/45°/-45° 3.73E+08 2.52E-04
45°/-45°/0°/90° 3.60E+07 2.51E-04
90°/0°/90°/0° 3.42E+08 4.78E-04

45°/-45°/45°/-45° 5.62E+07 3.73E-04
60°/30°/-30°/-60° 2.10E+08 2.74E-04

Table 3.13: Stacking Sequence, von Mises stress, and Deformation for Boron UD.
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Material Max Stress Tsai-Wu Tsai-Hill

Std CF Fabric

0.38 0.17 0.18
0.38 0.17 0.18
0.28 0.12 0.14
0.34 0.17 0.18
0.57 0.38 0.39
0.32 0.13 0.15

Table 3.14: Failure Index values for Std CF Fabric.

Material Max Stress Tsai-Wu Tsai-Hill

E glass Fabric

0.51 0.48 0.49
0.51 0.48 0.49
1.03 1.14 1.15
0.69 0.63 0.64
1.59 2.62 2.63
1.33 1.80 1.81

Table 3.15: Failure Index values for E glass Fabric.

Material Max Stress Tsai-Wu Tsai-Hill

Std CF UD

0.24 0.08 0.08
0.24 0.09 0.08
0.04 0.39 0.21
0.34 0.24 0.19
0.53 0.16 0.42
0.33 0.27 0.18

Table 3.16: Failure Index values for Std CF UD.

Material Max Stress Tsai-Wu Tsai-Hill

M55 UD

0.25 0.05 0.06
0.25 0.04 0.06
0.23 0.20 0.06
0.32 0.19 0.15
0.33 0.27 0.15
0.16 0.10 0.06

Table 3.17: Failure Index values for M55 UD.
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Material Max Stress Tsai-Wu Tsai-Hill

E glass UD

0.43 0.26 0.33
0.43 0.31 0.36
1.51 2.4 3.05
0.6 0.6 0.63
1.5 3.44 4.07
1.13 1.99 2.14

Table 3.18: Failure Index values for E glass UD.

Material Max Stress Tsai-Wu Tsai-Hill

Kevlar UD

0.29 0.0 0.13
0.29 0.0 0.11
0.73 0.61 0.57
0.38 0.0 0.34
0.66 0.88 0.71
0.43 0.0 0.27

Table 3.19: Failure Index values for Kevlar UD.

Material Max Stress Tsai-Wu Tsai-Hill

Boron UD

0.27 0.18 0.07
0.27 0.18 0.07
0.23 0.19 0.06
0.25 0.23 0.09
0.22 0.2 0.09
0.15 0.17 0.05

Table 3.20: Failure Index values for Boron UD.
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Figure 3.59: Failure index chart with respect to material and stacking sequence.

3.5.2 Conclusion
The analysis revealed critical insights into the failure behaviour of specific materials
under certain stacking sequences. For the E-glass fabric, it was found that the
stacking sequences 45/-45/0/90, 45/-45/45/-45, and 60/30/-30/-60 led to failure
as shown in the Figure 3.60, 3.61, 3.62. This suggests that these particular
orientations did not provide adequate balance between the different directional
strengths required to handle the applied loads effectively. The inclusion of ±45°
layers typically aims to improve shear performance, while 0° and 90° layers balance
the longitudinal and transverse properties. However, in this case, the combinations
were insufficient to prevent failure, likely due to the inherent properties of the
E-glass fabric.

Furthermore, the E-glass UD composite failed under the stacking sequences
45/-45/0/90, 45/-45/45/-45, and 60/30/-30/-60 as show in the Figure 3.63, 3.64,
3.65. The consistency of these failures across different forms of E-glass indicates
that the inherent material properties or the chosen stacking sequences were not
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sufficient to provide the necessary balance of longitudinal, transverse, and shear
strengths required for the applied loading conditions.

In conclusion, the failure of these composite materials under specific stacking
has been observed and the chosen sequences aimed to optimize performance in
particular directions but failed to provide the required multi-directional strength
and stiffness. This study highlights the importance of carefully balancing ply
orientations to enhance the overall load-bearing capacity and failure resistance of
composite laminates. Future work should explore alternative stacking sequences or
hybrid composites to achieve a more resilient structural performance, considering
their applications.

Figure 3.60: E Glass Fabric 45◦/ − 45◦/0◦/90◦.
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Figure 3.61: E Glass Fabric 45◦/ − 45◦/45◦/ − 4◦.

Figure 3.62: E Glass Fabric 60◦/30◦/ − 30◦/ − 60◦.
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Figure 3.63: E Glass UD 45◦/ − 45◦/0◦/90◦.

Figure 3.64: E Glass UD 45◦/ − 45◦/45◦/ − 45◦.
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Figure 3.65: E Glass UD 60◦/30◦/ − 30◦/ − 60◦.
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Chapter 4

Conclusion and Future
Perspectives

The thesis concludes that the application of the Carrera Unified Formulation
(CUF), in conjunction with Abaqus software, represents a significant advancement
in the structural analysis of aerospace components, particularly the central wing
box of the Cirrus SR22 aircraft. Through comprehensive analysis, CUF has been
demonstrated to offer superior accuracy and computational efficiency compared to
traditional Finite Element Methods (FEM). The primary advantage of CUF lies in
its ability to simulate the kinematics of a single element with greater detail and
precision, leading to more reliable and accurate results. This increased accuracy
in representing the behavior of structural elements is critical in the design and
optimization of aerospace structures, where precision is paramount.

The study confirms the crucial role of material selection in aerospace engineering,
highlighting the benefits of using advanced composites. The use of these materials
significantly enhances the performance and efficiency of structural components like
the central wing box, enabling weight reduction and improved fuel efficiency without
compromising structural integrity. The thesis provides a detailed analysis of the
central wing box under various loading conditions, underscoring the importance of
optimizing material choices to balance strength, durability, and weight.

Furthermore, the failure analysis conducted using various criteria, including
Tsai-Wu and Maximum Stress, has provided valuable insights into the potential
failure modes of the central wing box. These insights are essential for developing
safer and more reliable aircraft structures. By incorporating failure indices into the
analysis, the study identified potential weak points within the structure, allowing
for targeted reinforcements and design optimizations.

From a computational perspective, the advantage of CUF is evident in its
efficiency regarding both time and cost compared to the classical FEM approach.
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The increased accuracy and reduced computational resources make CUF a highly
effective method in structural analysis, particularly in the context of complex
aerospace structures.

In summary, this thesis highlights the importance of advanced analytical methods
like CUF in modern aerospace engineering. The findings contribute to the ongoing
development of more efficient, reliable, and high-performance aircraft structures,
with significant implications for the aerospace industry. The successful application of
CUF and Abaqus in this study paves the way for further research and development,
potentially leading to new innovations in aircraft design and safety.

The structural analysis of the Cirrus SR22 wing box using both classical Finite
Element Method (FEM) and the Carrera Unified Formulation (CUF) provides
a robust foundation for advancing research in several critical areas of aerospace
engineering. The findings of this thesis can be expanded upon in the following
technical domains:

Exploration of Advanced Composite Materials: The thesis primarily
investigates isotropic, Orthotropic and conventional composite materials. Future
research could focus on the integration of advanced composite materials, such as
hybrid composites, nanocomposites, and smart materials, into the structural analy-
sis framework. These materials exhibit superior mechanical properties, including
enhanced specific strength, stiffness, and thermal stability. By incorporating these
advanced materials into the CUF and FEM analyses, future studies could opti-
mize the structural performance of the wing box under complex loading scenarios,
contributing to the development of lighter and more resilient aerospace structures.

Development of Multi-Scale and Multi-Physics Models: The applica-
tion of multi-scale modelling techniques within the CUF framework represents a
promising avenue for future research. By bridging the gap between micro-scale
material behaviour and macro-scale structural response, researchers can achieve
a more accurate representation of failure mechanisms, including matrix cracking,
fibre-matrix debonding, and delamination. Additionally, extending the analysis to
multi-physics domains—such as thermo-mechanical coupling, aeroelasticity, and
acoustic-structural interactions—can provide a comprehensive understanding of
the wing box’s behaviour under diverse operational conditions, paving the way for
more robust and multifunctional aircraft components.

Application of CUF to Other Aircraft Components: The methodologies
developed in this thesis can be extended to other critical aircraft components, such
as the fuselage, empennage, and landing gear. Each component presents unique
challenges, including different loading conditions, geometric complexities, and
material behaviours. By applying CUF to these components, future studies could
achieve a holistic optimization of the entire air-frame, leading to improvements in
overall structural integrity, weight reduction, and aerodynamic performance.

Additionally, future research could investigate more complex loading conditions,
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such as those encountered during extreme flight maneuvers or in cases of structural
damage. This would involve more sophisticated simulations.

In conclusion, the technical contributions of this thesis provide a solid platform
for future research in aerospace structural analysis. By building on the method-
ologies and insights developed here, subsequent studies can drive innovation in
aircraft design, leading to more efficient, durable, and high-performance aerospace
structures.
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