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Abstract

External gear pumps are widely utilized in various applications due to their simplicity, robustness,
and versatility. This thesis presents the development of a MATLAB application designed to optimize
the dimensions of external gear pump gears under specific dimensional constraints, with a primary
focus on achieving the required pump displacement. The application efficiently calculates essential
gear parameters, such as module, number of teeth, and center distance. It also evaluates the flow
ripple, a critical factor influencing pump behavior and noise levels.

The optimization process incorporates user-defined constraints, ensuring that the resulting gear de-
sign meets the operational requirements, in case the input parameters cannot achieve a solution
within the constraints, it offers the closest possible solution. Additionally, the application can be
used to automatically generate drawings of the optimized gears. These drawings can be visualized
on the app or be exported in formats compatible with leading CAD software, facilitating seamless
integration into the design and manufacturing workflow. Also, they have great utility for simulation
in CFD software.

The proposed MATLAB application permits rapid iteration in simulation environments instead of
experimentally obtaining the pump characteristics. This will be an extremely useful tool for research
and rapid prototyping work, saving time and resources.
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Chapter 1

Introduction

1. Introduction

Fluid power technology, encompassing both hydraulics and pneumatics, plays a crucial role in mod-
ern industrial and mobile applications due to its unmatched power density, precise control, and relia-
bility. Hydraulic systems, in particular, offer significant advantages in terms of power transmission,
especially in applications requiring high force and torque in a small package. From construction
machinery to aerospace systems, fluid power is integral to the operation of a wide range of equip-
ment. As industries continue to evolve, the demand for more efficient, compact, and quiet hydraulic
systems is growing, pushing the boundaries of fluid power technology.

Often wrongly believed to be a dirty technology, fluid power will be an integral part of future
technology despite the advance of electrification. While this latter technology offers significant
advantages in low power applications, it will not replace hydraulic power in most applications for
the foreseeable future. These technologies will work in combination with each other, increasing the
energy efficiency and reducing emissions and waste.

In the context of hydraulic systems, external gear pumps are a fundamental component, converting
shaft power into hydraulic power, valued for their simplicity, durability, and ability to operate un-
der a wide range of conditions. Despite their widespread use, the design of external gear pumps
presents several challenges, particularly in optimizing the gear dimensions to meet specific opera-
tional and dimensional requirements while minimizing undesired effects such as flow ripple. This
phenomenon, associated with pressure fluctuations in the hydraulic system, can lead to increased
noise, vibration, and fatigue, thereby affecting the overall performance and longevity of the hy-
draulic system.

The future of fluid power technology lies in the continuous improvement of components like ex-
ternal gear pumps, where optimization and automation play key roles. Advances in computational
tools have opened new avenues for enhancing the design process, allowing engineers to achieve
higher levels of precision and efficiency. This thesis addresses the need for an advanced tool that
can optimize the design of external gear pump gears.

The work is based on a previous application built on the AMESim environment, while this was a
groundbreaking tool in its time, the application resulted highly challenging to update and debug.
Therefore it was decided to implement a similar tool in MATLAB, which offers several advantages.
Among them, the possibility to easily upgrade and troubleshoot the software as well as the ability to
run the program as a standalone application without having additional software beyond the Windows
operating system. Additional features that were not present in the preceding app were developed
and incorporated into this version.

A MATLAB application has been developed to automate the optimization of gear dimensions for
external gear pumps. The application is composed of three primary components.

The first component calculates the gear parameters based on user-defined constraints, such as the
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maximum width of the pump and the maximum diameter of the gears, while targeting a specific
pump displacement. Additional constraints, including fixed inter-axial distance, fixed external di-
ameter of the gears, or both simultaneously, can also be applied. This process results in a set of gear
parameters that can be further utilized within the app. Since both gears in an external gear pump are
identical, only one set of parameters needs to be calculated.

The second component evaluates the kinematic flow rate of the external gear pump. This process
includes calculating the angular derivatives of the delivery, suction, and trapped volumes of the
pump, which are essential for simulating the unit using a lumped parameters approach. The method
relies on knowing the lengths of the vector rays between the centers of the gears and the contact
points. From the geometric parameters the pump displacement and the kinematic flow ripple index
are derived and plotted.

Finally, the third module utilizes the gear parameters calculated in the first step, or any user-provided
parameters, to generate the gear designs. It checks for impossible geometries and teeth interference.
Additionally, it exports the gear designs as a set of coordinates compatible with leading CAD soft-
ware. The gears can also be visualized in 2D directly within the application, eliminating the need
for external software.

With recent advancements in the strength and precision of parts produced through additive manu-
facturing techniques like 3D printing and sintering, it is now feasible to create gears without the
traditional need for a rack cutter. These modern processes allow for simpler geometry at the root
radius of the gears, as clearance for the rack is no longer necessary. This application supports the
use of gears produced by both traditional rack cutting and alternative methods such as additive
manufacturing across all modules.

As the demand for more efficient and quieter hydraulic systems continues to rise, tools like the one
presented in this thesis will become increasingly important. By automating the design process and
ensuring optimal gear dimensions, this MATLAB application contributes to the advancement of
fluid power technology, positioning it to meet the challenges and opportunities of the future.

10



2. Geometry of the external gears

2.1 Gear description

External gear pumps consist of two inter meshing straight cut gears housed within a casing. Both
gears are identical and rotate in opposite directions. One gear, known as the driving gear, is powered
by an external prime mover, while the other, called the driven gear, rotates in response to the driving
gear. As the gears rotate, fluid is trapped between the teeth and the casing, creating a vacuum at the
pump inlet. This vacuum draws fluid into the pump, where it is then carried around the perimeter of
the gears to the outlet. The meshing action of the gear teeth forces the fluid out of the outlet under
pressure.

2.2 Nomenclature and input parameters

The following basic parameters of the gear set are the minimum necessary to unequivocally define
the dimensions of each gear and their center distance.

• Nd: number of teeth of each gear

• m0: module

• θ0: nominal pressure angle

• lk: operating center distance

• hsn: normal play between the teeth

• b: axial thickness of the gears

• Re: external radii

• h f : tip chamfer height

• A: tool addendum coefficient

• D: tool dedendum coefficient

• hr: tool fillet height coefficient

2.3 Additional derived geometric parameters

From the aforementioned parameters, it is possible to derive additional characteristics and parame-
ters useful to draw and characterize the gear set.

• Pitch Radius:
Rp0 =

Ndm0

2
(1.1)

• Nominal Center Distance:
I = 2Rp0 (1.2)

• Working Pressure Angle:

θk = arccos
(

I
Ik

cosθ0

)
(1.3)
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Figure 1.1: Spur gear geometry and main parameters

• Working Module:

m = m0
cosθ0

cosθk
(1.4)

• Working Pitch Radius:

Rpl = Rp0
cosθ0

cosθk
(1.5)

• Base Radius:
ρ = Rp0 cosθ0 (1.6)

Figure 1.2: Engagement between two gears: geometry and main parameters

• Root Radii:
R f = Rp0 −Am0 + xgm0 (1.7)

Where xg is the correction factor with play which will be defined and calculated later
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• Length of the Contact Segment:
T T ′ = 2ρ tanθk (1.8)

• Circular Pitch:
p = πm0

cosθ0

cosθk
(1.9)

• Tooth Thickness at the Pitch Circle:

sRp0 =
πm0

2
+2xgm0 tanθ0 (1.10)

• Angular Pitch:

∆ϕ =
2π

Nd
(1.11)

• Play at the Working Pitch:

hs =
hsn

cosθk
(1.12)

• Angular Phasing of the Driven Gear with Respect to the Driving Gear:

∆ϕd =
∆ϕ

2
− hs

2Rp1
(1.13)

3. Typical Dimensions of Involute Profile Gears

3.1 Gear Profile

The gears found in external gear pumps are involute gears. This means the teeth are shaped accord-
ing to an involute of a circle, specifically, the base circle of radius ρ . This is the most common gear
profile used in modern mechanical systems because of its ability to maintain smooth transmission
of power and torque between meshing gears.

Involute gears can handle slight variations in center distance between gears without significantly
affecting performance. The contact between two teeth occurs along a straight line, inclined to the
gear center line. The angle of this contact line is called the pressure angle, which is typically 20° or
25°.

inv(θ) = tan(θ)−θ (1.14)

It is possible to calculate the tooth thickness at any point of the involute profile using the following
relation:

s∗

R∗ =
s0

Rp0
+2ζ (1.15)

where the quantity ζ is defined by the equation:

ζ = ϕ0 −ϕ = inv(θ0)− inv(θ ∗) (1.16)

The angle θ0 is the nominal pressure angle ; the angle θ ∗, based on simple geometric considerations,
can be derived as a function of the radius for which the thickness is required:

θ
∗ = arccos

(
ρ

R∗

)
(1.17)
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Figure 1.3: Tooth thickness along its length

From the previous relations, the final expression for the calculation of tooth thickness is obtained:

s∗ = R∗
[

s0

Rp0
+2(inv(θ0)− inv(θ ∗))

]
(1.18)

3.2 Calculation of Profile Correction Factor

Profile shifting in gears refers to the intentional displacement of the gear tooth profile along the
radial direction, either outward or inward, relative to the pitch circle. The correction factor xg must
be calculated.

When the correction factor is greater than 0, we have positive profile shifting. In this case, the gear
teeth are cut larger than normal, moving the tool radially outward. This increases the strength of the
teeth and reduces the risk of interference.

Conversely, when negative profile shifting (xg < 0), the tool is moved inwards. The teeth became
smaller than normal and interference is more likely to happen.

To calculate xg, first we define a condition of no play within the teeth. Meaning the pitch of the gear
is equal to double the tooth thickness.

s1 + s2 = p (1.19)
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where s and p are respectively the circular thickness and pitch of the two inter meshing gears. From
equation eq.( 1.15), the tooth thicknesses can be substituted at a generic radius:

s1 + s2 = R1

(
s0

Rp0
+2ζ1

)
+R2

(
s0

Rp0
+2ζ2

)
= p (1.20)

Since both gears are identical and because we are on the working pitch radius of the gear, equation
eq.( 1.20) is modified as follows:

s1 + s2 =
Nd p

π

(
s0

Rp0
+2ζ

)
= p (1.21)

The angle θ used to calculate the quantity ζ is the working pressure angle θk; therefore it results
that:

ζ = inv(θk)− inv(θ0) (1.22)

knowing that:

sRp0 =
p0

2
+2xm0 tanθ0 (1.23)

with the appropriate substitutions and simplifying:

xg =
Nd

2tanθ0
[inv(θk)− inv(θ0)] (1.24)

The previous equation started from assuming teeth engagement without play, if we introduce a play
hs between the teeth we obtain:

s1 + s2 +hs = p (1.25)

The final result is:

xg =
Nd

2tanθ0

[
inv(θk)− inv(θ0)−

hsn

2m0Nd cosθ0

]
(1.26)

3.3 Calculation of the Length of the Engagement Segment

The involute of the base circle does not constitute the entire profile of the gear. It has a radius of
starting of the involute profile a radius at the end. There are Ri and Rt respectively.

The meaning and calculation of this radii will be discussed in the next chapter.

To calculate the length of the engagement segment, it is necessary to know the unused parts of the
contact segment; these can be functions of the radius of the start of the involute of the gear or of the
external radius.

Based on fig. 1.4, the following relations are derived:

δ = max
(

T T −
√

R2
t −ρ2,

√
R2

i −ρ2
)

(1.27)

Thus, the length of the engagement segment is defined by:

l = T T −2δ (1.28)
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Figure 1.4: Engagement and contact segments

3.4 Contact ratio

The contact ratio is a dimensionless parameter that expresses the number of teeth simultaneously in
engagement during one rotation of the gear equal to one angular pitch.

Thus, using the length of the engagement segment, we obtain:

ε =
l

ρ∆ϕ
(1.29)

To ensure a smooth operation, ε must be greater than one, although it is optimal that ε > 1.1.
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Chapter 2

Automatic Design of Profiles for External Gears

1. Manufacturing Processes of Gears

The gears used for this type of pumps can be produced in various ways; for example, using cutting
tools or by additive manufacturing. A key objective of this thesis is to automatically generate two
types of gear profiles:

• In this method, a tool rack is employed for cutting the gear. The root circle is connected to
the involute segment by a curve, which is shaped directly by the cutting tool.

• Additive Manufacturing (e.g., Sintering): In this approach, the involute section begins at the
base radius, and a straight radial segment connects it to the root circle. Additionally, an
optional fillet may be introduced at the junction between the root and the involute to enhance
the transition.

The graphical comparison between the two profiles is shown in fig. 2.1.

Figure 2.1: Comparison of profiles

For automatic profile generation, a text file (.txt) must be created containing two column vectors
that represent the sequence of the desired profile coordinates in a Cartesian reference system. The
resulting gear profile is then constructed by connecting successive points with straight line segments.

The length of these segments, and consequently the accuracy of the profile, can be controlled by the
user. Specifically, the user defines the minimum number of points (Np) that should be calculated

17



over the angular pitch of the gear as input data, which implicitly determines the precision of the
profile.

In the following paragraphs, a variable ϕ will always appear; it represents the revolution of the gear
during the cutting process and is used to calculate the profile coordinates in the various sections.
The angular increment dϕ is therefore imposed by the equation:

dϕ =
∆ϕ

Np
(2.1)

2. Profile Obtained by Cutting

This type of profile can be selected during the data entry phase by choosing the ”Rack cutter” mode
from the drop-down menu corresponding to the ”Manufacturing Process” parameter.

2.1 Tool Geometry

The reference tool chosen to determine the profile geometries is a rack: during the assumed cutting,
the motions considered are:

• rotation with angular velocity ω of the gear to be cut

• translation of the tool with velocity v

The ratio between the velocity of the tool and that of the gear is precisely the pitch radius Rp0:

v
ω

= Rp0 =
Ndm0

2
(2.2)

Therefore, the bases of the motion are the circumference of radius Rp0 and a line parallel to the tool
reference line but shifted by a quantity equal to xgm0.

From fig. 2.2, it can be seen that the rack is composed of two straight segments: one inclined at
angle θ0 and the other perpendicular to the tooth axis. These two segments are connected by a
radius:

q =
hrac

1− sinθ0
(2.3)

The straight segments are responsible for generating the involute and the root circle of the gear,
while the connection between them generates the fillet.
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Figure 2.2: Geometry of the rack cutter

The straight segment dedicated to the creation of the involute is the one inclined at angle θ0, meaning
it defines the nominal pressure angle.

The geometry of the tool is identified by coefficients that correspond to the ratio between the di-
mension they refer to and the module; the user will define the proportions of the rack using these
coefficients.

a = Am0 ; d = Dm0 ; hrac = hrm0 (2.4)

2.2 Reference Systems and Rotation Matrices

The profile drawing is developed only on a plane as only straight cut gears are of concern in this
case, but for the general case, spatial coordinates will be needed; moreover, there will be three
reference systems:

• fixed reference system f

• reference system fixed to the gear 2

• reference system fixed to the cutting tool 1

To find the coordinates of the points that describe the profile, two different approaches can be taken:

• represent the locus of contact points between gear and gear or between tool and gear in the
fixed reference system and then rotate, with a coordinate transformation, the points obtained
in the gear reference system.

• represent the profile of the tool in its own reference system and rotate the coordinates obtained
in the gear reference system.
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Using the second approach, the coordinates of a generic point must be expressed with a column
vector of four elements; the last of which will be taken as unity:

rm =
[
xm ym zm 1

]T (2.5)

From fig. 2.3, it can be seen that a rotation ϕ of the gear corresponds to a translations of the tool;
the two quantities are related by the following relation:

s = Rp0ϕ (2.6)

Figure 2.3: Reference system

To switch from one reference system to another, a matrix rotation approach is used; the notation
adopted for these matrices is of the type M f 1, which indicates the coordinate transformation matrix
from the reference system 1 to the fixed reference system f.

Below are the matrices for a reference change from system 2 to system 1; to obtain the opposite
reference change, it will be sufficient to invert the matrices.

• Rotation matrix from 2 to f :

M f 2 =


cosϕ −sinϕ 0 0
sinϕ cosϕ 0 0

0 0 1 0
0 0 0 1

 (2.7)

• Translation matrix from f to 1:

Ml f =


1 0 0 ϕρ

0 1 0 −ρ

0 0 1 0
0 0 0 1

 (2.8)
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• Rotation-translation matrix from 2 to 1:

Ml2 =


cosϕ −sinϕ 0 ϕρ

sinϕ cosϕ 0 −ρ

0 0 1 0
0 0 0 1

 (2.9)

3. Gear Profile Equations

For simplicity of calculation and computational time, it was chosen to draw only half of an angular
pitch of the gear, mirror it with respect to the tooth axis, and repeat all the found points, rotating
them, for a number of times equal to the number of teeth of the gear.

A tooth, produced by a cutting tool, consists of four sections:

• an arc of a circle of radius Re

• an involute section of a circle from radius Re to radius Ri

• a connecting section between the involute and the root circle generated by the fillet or tool’s
corner

• an arc of a circle of radius R f

3.1 Tip Circle Equations

Using the center of the gear as a reference point and the Cartesian coordinate system it is possible
to determine the location of each point of each section of the profile. Once the external radius Re is
known, the equations for the tip section of the tooth are:

x = Re sinϕ ; y = Re cosϕ (2.10)

3.2 Involute Section Equations

With reference to fig. 2.4, for a parametric representation of the involute section, the following
equations are used:

α = tanβ −β ; R =
ρ

cosβ
(2.11)

For a representation using implicit functions, however, it is necessary to use a function or a system
capable of defining the tool profile coordinates. These points must be related to the rotation ϕ of
the gear being generated, that is, with the angle by which the reference system 2 rotates during the
cutting process.

To find the desired system of equations, some kinematic considerations are necessary; knowing that
the profiles, in the involute section, are conjugated:

• The tangents to the two profiles (gear-gear or gear-tool) at the contact point are coincident.

• The normals to the profiles at the contact point are coincident and pass through the center of
instantaneous rotation.
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Given any point in the plane belonging to a generic curve, it is possible to derive the equation of the
tangent and the normal to the curve at that point.

Figure 2.4: Involute of a circle

For the tangent, we can write:
X − x

Tx
=

Y − y
Ty

(2.12)

where:

• x,y are the coordinates of the point in question

• X ,Y are the coordinates of point D

• Tx,Ty are the components of the unit vectors i and j that identify the tangent in the plane
reference system.

Figure 2.5: Normal and tangent versors of a curve

For the normal, we can write:
X − x

Nx
=

Y − y
Ny

(2.13)

where:
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• x,y are the coordinates of the point in question

• X ,Y are the coordinates of point E

• Nx,Ny are the components of the unit vectors i and j that identify the normal in the plane
reference system.

By imposing that the normal to the two profiles at the contact point passes through the center of
instantaneous rotation, a meshing equation is obtained, i.e., an expression capable of relating the
coordinates of the contact point of the tool and gear as a function of the parameter ϕ .

Therefore, in our case, equation eq.( 2.13) will be used, where:

• x, y are the coordinates of the contact point in the tool reference system

• X, Y are the coordinates of the center of instantaneous rotation in the tool reference system

• Nx,Ny are the components of the unit vectors i and j that identify the normal to the two profiles
in the plane reference system.

Based on fig. 2.6, the components of the unit vectors i and j in the tool reference system for the
tangent and the normal to the tool profile can be derived:

Tx = sinθ0 ; Ty = cosθ0 (2.14)

Therefore, the components referred to the normal are:

Nx = cosθ0 ; Ny =−sinθ0 (2.15)

From fig. 2.7, it can be seen how the contact point between the gear and the tool moves along the
flank of the latter within two limit positions M∗ and M, which correspond to the distances −u1 and
u2 relative to the origin.

Figure 2.6: Components of a normal and tangent versors
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By introducing an auxiliary coordinate u, which varies from −u1 to u2, it is possible to express the
coordinates of the contact point in the tool’s own reference system:

x1 = usinθ0 ; y1 = ucosθ0 (2.16)

Figure 2.7: Contact points of the involute profile

From fig. 2.3, it is possible to derive the coordinates of the center of instantaneous rotation in the
tool reference system:

X = Rp0ϕ ; Y = 0 (2.17)

Substituting the expressions from eq.( 2.15) to eq.( 2.17) into eq.( 2.13), the desired meshing equa-
tion is obtained:

f (u,ϕ) =
Rp0ϕ −usinθ0

cosθ0
− ucosθ0

sinθ0
= 0 (2.18)

which simplifies to:
f (u,ϕ) = u−Rp0ϕ sinθ0 = 0 (2.19)

At this point, it is necessary to find the tooth shape equations: it is sufficient to transfer the coordi-
nates of the contact point, already found for the tool, to the gear reference system; to do this, the
coordinate transformation matrices derived in the previous paragraph can be used. Therefore, the
expression is:

r1 = M2 f M f 1r2 = M21r2 (2.20)

The rotation-translation matrix M12 is invertible, and its inverse M21 is:

M21 =

 cosϕ sinϕ Rp0(sinϕ −ϕ cosϕ)
−sinϕ cosϕ Rp0(cosϕ +ϕ sinϕ)

0 0 1

 (2.21)

Based on what has been previously stated, the coordinate transformation matrix should be a 4x4,
but since the problem is planar, the third row and third column, which refer to the calculation of the
z coordinate, have been preemptively eliminated.
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Thus, two equations are obtained that, solved with respect to x2 and y2, are able to provide us with
the involute profile referred to the gear’s base circle:

x2 = usin(ϕ +α)+Rp0(sinϕ −ϕ cosϕ) (2.22)

y2 = ucos(ϕ +α)+Rp0(cosϕ +ϕ sinϕ) (2.23)

The two derived expressions are still functions of both the parameter ϕ and the parameter u; to
eliminate this double dependency, we use the meshing equation, eq.( 2.32). The equations then
transform into:

x2 = Rp0 sinϕ −Rp0ϕ cosϕ cos(α +ϕ) (2.24)

y2 = Rp0 cosϕ −Rp0ϕ cosα sin(α +ϕ) (2.25)

Fillet Equations

The fillet of the gear is generated by the corner of the rack tool or by the connection between the
two straight segments. Below, only the treatment referring to the second case is proposed since the
tool with a sharp corner generates a fillet that can be derived by simplifying the more complex case.

Conceptually, the procedure does not differ much from that used for the involute section; this time,
however, the contact point does not move along the straight flank of the tool but along the fillet
from point M1 to point M2. The auxiliary variable u is thus replaced by an auxiliary variable α

which, once the fillet radius is known, identifies the coordinates of the contact point in the tool’s
own reference system.

Figure 2.8: Contact points of the fillet

the relationships expressing these coordinates can be derived:

x1 = a+qsinα ; y1 =−b−qcosα (2.26)

where a and b are two constants that depend on the geometry of the tool and are given by:
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b = Am0 −q− xgm0 (2.27)

a =
π

4
m0 −

q
cosθ0

− (b+ xgm0) tanθ0 (2.28)

As for the calculation of the involute section, the coordinates of the center of instantaneous rotation
are:

X = Rp0ϕ ; Y = 0 (2.29)

The components of the unit vectors referred to the profile normal are:

Nx = qsinα ; Ny =−qcosα (2.30)

In this case, the meshing equation is:

Rp0ϕ −a−qsinα

qsinα
+

b+qcosα

qcosα
= 0 (2.31)

which simplifies to:
Rp0ϕ −a+b tanα = 0 (2.32)

Thanks to a coordinate transformation very similar to that for the involute section, the equations of
the fillet in the gear reference system are obtained:

x2 = qsin(α −ϕ)+acosϕ −bsinϕ +Rp0(sinϕ −ϕ cosϕ) (2.33)

y2 =−qcos(α −ϕ)−asinϕ −bcosϕ +Rp0(cosϕ +ϕ sinϕ) (2.34)

This time, however, the meshing equation does not allow an easy substitution of the auxiliary vari-
able α , so the value of the latter must be calculated as a function of the variable ϕ .

The resulting system from the previous considerations is:

x2 = qsin(α −ϕ)+acosϕ −bsinϕ +Rp0(sinϕ −ϕ cosϕ) (2.35)

y2 =−qcos(α −ϕ)−asinϕ −bcosϕ +Rp0(cosϕ +ϕ sinϕ) (2.36)

Rp0ϕ −a+b tan(α) = 0 (2.37)

3.3 Root Circle Equations

For the calculation of the coordinates, it is necessary to know in advance the value of the root radius;
this, based on the geometric characteristics of the tool and the operating conditions of the two gears,
is calculated using:

R f = Rp0 −Am0 + xgm0 (2.38)

The coordinates are calculated in a manner entirely analogous to the external or tip circle section:

x = R f sinϕ ; y = R f cosϕ (2.39)
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4. Phasing and Existence Field of the Equations of the Various Sec-
tions

The profile equations obtained in the previous section have defined existence fields and, moreover,
the coordinates need to be rotated to correctly compose the various sections of the tooth.

In this section, relationships are sought that allow defining the rotation angles necessary to correctly
phase the various sections and the existence limits imposed on the parameter ϕ .

4.1 Rotation of Various Sections

Using a rotation matrix very similar to M f 2, the equation used to rotate the coordinates of various
sections is:

The final relationship to be applied is:[
Xr
Yr

]
=

[
cos χ −sin χ

sin χ cos χ

][
x
y

]
(2.40)

where:

• x,y are the coordinates of the profile still to be rotated

• Xr,Yr are the already rotated coordinates

• χ is the angle by which the various sections need to be rotated and will be calculated from
time to time in the following paragraphs.

4.2 Tip Circle

The drawn profile may or may not have a chamfer on the tooth tip: in the case of zero-height
chamfer, the tip thickness of the tooth is calculated and once the outer radius of the gear is known,
it is easy to calculate the existence limits of this section:

sRe = Re

[
sprim

Rp0
+2(inv(θ0)− inv(θRe))

]
(2.41)

where:

θRe = cos−1
(

ρ

Re

)
(2.42)

sprim =
πm0

2
−2xgm0 tan(θ0) (2.43)

The angle for which the equations eq.( 2.10) are valid results is:

β =
sRe

2Re
(2.44)

and therefore the parameter ϕ must vary in the range:

−β

2
< ϕ < 0 (2.45)

27



If, on the other hand, there is a chamfer on the tooth tip, the existence field of the equations eq.( 2.10)
is:

−α
′
1 < ϕ < 0 (2.46)

This section does not require any phasing.

4.3 Involute

To determine the existence limits on the parameter ϕ , it is enough to impose that the involute
coordinates belong to a circumference of radius Re or radius Ri depending on whether the upper or
lower limit of the involute section is desired.

It is therefore necessary to solve the following equation with respect to the parameter ϕ:

X2 +Y 2 =W 2 (2.47)

where X and Y are the coordinates of the involute already derived earlier eq.( 2.24) and eq.( 2.25),
while W is replaced with Re or Ri.

Figure 2.9: Phasing of the involute segment

Solving, we find:

ϕ =
1

2Rp0((sinα)2 −1)
[2Rp0 cosα sinα

−2
√
(Rp0 cosα sinα)2 +(Rp0 sinα)2 − (W sinα)2 −R2

p0
+W 2

] (2.48)

At this point, it is necessary to find an angle χinv, which is obtained by substituting the value of ϕ

found with eq.( 2.48) (for radius Re) in equations eq.( 2.24) and eq.( 2.25) and thus:

χinv = arctan
(

Xinv(ϕRt )

Yinv(ϕRt )

)
(2.49)

28



By rotating by this angle, summed with β

2 , the coordinates of the involute derived earlier are cor-
rectly phased.

4.4 Root Circle

This section, like the tip circle, does not require any phasing but only existence limits; being the last
section, the lower limit is represented by half the angular pitch of the gear. The upper limit χroot is
found, instead, considering that the root circle is generated only by the straight section of the tool
parallel to the direction of motion.

−∆ϕ

2
< ϕ < χroot (2.50)

where:
χroot =

a
Rp0

(2.51)

Figure 2.10: Phasing of the root segment

4.5 Fillet

Regarding the existence limits on the parameter ϕ , the approach is different; in fact, not having been
able to eliminate a parameter thanks to the meshing equation, a treatment similar to that used for
the involute section is not feasible.

It is known from previous paragraphs that the section in question is generated by the fillet between
the two straight flanks of the tool; as already mentioned, the contact point between the tool and the
gear moves between points M1 and M2 fig. 2.8, consequently, it is possible to deduce the existence
field of the parameter ϕ , necessary for the calculation of the fillet, deriving the existence limits of
the auxiliary variable α .

Therefore, knowing that:

0 < α <
π

2
−θ0 (2.52)
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from the meshing equation eq.( 2.32), we get:

a
Rp0

< ϕ <
b−a tan

(
π

2 −θ0
)

Rp0
(2.53)

To find the correct phasing, the coordinates found with equations eq.( 2.35), eq.( 2.36) and eq.( 2.37)
must be rotated by an angle equal to χroot . This latter is obtained by substituting the lower limit value
of ϕ in the aforementioned equations to then derive the corresponding angle, in a manner completely
analogous to what has been done for the involute; considering that the root circle is generated by
the straight tool section parallel to the reference line, the sought rotation angle ϕ corresponds to a
tool translation equal to the quantity a (equation eq.( 2.28)).

Figure 2.11: Phasing of the fillet segment

ϕ
∗ =

a
Rp0

(2.54)

And by substituting, we find:

χbase =
Xbase(ϕ

∗)

Ybase(ϕ∗)
(2.55)

So the angle by which the coordinates eq.( 2.35) and eq.( 2.36) need to be rotated to obtain the
correct phasing is:

χtot = χbase +
∆ϕ

2
− a

Rp0
(2.56)

The upper limit for calculating the fillet can only be obtained if the radius at which the involute
section and fillet intersect is known; this is called the conjugation radius or also the initial involute
radius (Ri) and is calculated in the next subsection.
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4.6 Calculation of the Starting of Involute Radius

Due to cutting, the tooth profile may be hollowed at the base with consequent structural weakening;
if this occurs, it is in a condition of undercutting.

To avoid the problem and strengthen the profile, instead, one must fall into a condition where
the tooth thickness is always increasing from the tip radius to the root radius (condition of non-
undercutting).

To obtain information on the type of cut being addressed, it is necessary to find a discriminating
condition between the two cases.

Figure 2.12: Undercutting of teeth

Conditions of Non-Undercutting

Knowing that the involute section is generated by the straight section belonging to the flank of the
tool, the intersection of the flank itself with the contact line in cutting conditions is imposed; the
tool, therefore, must translate until the last point of its straight flank meets the contact segment. The
circumference for which pure rolling occurs is that of radius Rp0, but the tool reference line must be
translated by an amount equal to xmm0.

Figure 2.13: Calculation of the start of involute radius
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Based on simple geometric considerations, the following relationships are obtained:

hrac = hrm0 (2.57)

q =
hrac

(1− sinθ0)
(2.58)

tanαG =
GC−CL

rb
=

GC−CL
rb

(2.59)

and therefore:

tanαG = tanθ0 −
4(Am0 − xgm0 −hrac)

Nm0 sin2θ0
(2.60)

The non-undercutting condition is obtained when αG ≥ 0; if this occurs, the radius Ri can be easily
found with:

Ri =
ρ

cosαG
=

Nm0 cosθ0

2cosαG
(2.61)

Iterative procedure

The automatic drawing of profiles allows obtaining the radius Ri as the intersection between the
involute section and the root fillet of the gear.

Operationally, the two sections are drawn (using the previously calculated equations) in a restricted
area of the profile, to increase calculation precision and maintain a decent execution speed of the
program.

The following allowed deviation offer a compromise between calculation speed and precision:

• Angular step for equation calculation:

∆ϕ =
∆ϕ

5000

• Maximum deviation between root fillet and involute:

|Xroot −Xinv|< 10−7 m |Yroot −Yinv|< 10−7 m

Once the previous conditions are met, it is possible to obtain the upper limit of the existence field
of the root fillet and calculate the radius Ri with the Pythagorean theorem:

Ri =

√
X2

root +Y 2
root (2.62)

5. Profile Obtained by Sintering

To comply with the transmission conditions typical of involute gears, the profile part that comes
into contact with the other gear can be designed as in the case of a profile obtained by cutting. The
same consideration is valid for the chamfer of the tip and for the root circle.

The only section of the profile that differs from the previous case is the root fillet; this time, in fact,
the gear is not created by enveloping all the positions occupied by the tool’s rack during meshing
and therefore it can enjoy a bit more freedom.
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Consequently, the aim is to maximize the useful engagement section for meshing by setting the
starting radius of the involute coinciding with the base radius; moreover, the involute section is
connected to the root circle through a radial segment.

Thus, all the relationships derived before remain valid, except for the existence limits of the bottom
circle which become:

−∆ϕ

2
< ϕ < χbottom (2.63)

where this time χbottom is derived through the tooth thickness at the base radius:

sp =
spitch

Rp0
+2inv(θ0) (2.64)

χbottom =
sp

2ρ
(2.65)

The final user of the program can select this type of profile during data entry by setting the ”Other”
mode.

For this type of gears, it is possible to insert a chamfer on the tooth tip. Also, a chamfer in the
junction of the involute and the bottom circle can be introduced.

5.1 Chamfer Equations

If a chamfer is applied to the tooth tip as shown in fig. 2.14, angles α ′′
1 and α ′

1 must be calculated,
which respectively delimit the section of the circumference of radius Rt and the involute profile.
Additionally, the radius Rt must be calculated.

The angle α ′′
1 can be calculated similarly to what was done with eq.( 2.41):

Figure 2.14: Tooth tip chamfer

α
′′
1 =

sRt

2Rt
(2.66)

33



where:

sRt = Rt

[
sRp0

Rp0
+2

(
inv(θ0)− inv

(
cos−1

(
ρ

Rt

)))]
(2.67)

and therefore:

α
′′
1 =

sRp0

2Rp0
+2

(
inv(θ0)− inv

(
cos−1

(
ρ

Rt

)))
(2.68)

The length of segment DK is:

DK = OH +HK −Rt = Rt cosα
′′
1 +

Rt sinα ′′
1

tan(60◦)
−Re (2.69)

where O1 is the center of the gear.

With some approximation, we obtain α ′
1:

α
′
1 =

DB
Re

≈ DK tan(60◦)
Re

(2.70)

The height of the chamfer ht is:
ht = Re cosα

′
1 −Rt cosα

′′
1 (2.71)

Operationally, an initial value for Rt is imposed (Rt = Rt −dR with dR very small) and α ′
1 and α ′′

1
are calculated using eq.( 2.71) to find ht . If the value found is less than the imposed value of ht , then
dR is increased, and the process is repeated until the calculated ht is close to the imposed value.

The chamfer on the tip does not create particular problems for the design of the gears; however,
it is necessary to replace the radius Re with the radius Rt in equation eq.( 2.48); additionally, it is
not necessary to add the angle β

2 to the variable χinv; it will be sufficient to add the angle α ′′
1 just

calculated.

5.2 Bottom fillet Equations

Optionally, it is possible to include a fillet radius in the junction between the internal radial segment
and the fillet radius. The fillet is tangent to both segments and the user chooses the value of this
radius.

When this fillet is included the involute and tip segments remain identical, only the bottom circle’s
existence χbottom is reduced in phasing angle.

χbottom( f illet) = χbottom − sin(
r

r+R f
) = χbottom − sin(β ) (2.72)

Where r is the radius of the fillet and R f is the radius of the bottom circle.

The location of the center of the fillet radius is found by imposing the tangency condition to both
segments. It can be proven the location, in the gear reference system is:

X0 f illet = r ; Y0 f illet =
r

tan(β )
(2.73)

An auxiliary variable γ is introduced to define the points that belong to the fillet. The field of
existence of this new variable is:

0 ≤ γ ≤ π

2
−β (2.74)
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Finally, in the gear reference system the equations that define the entire fillet are:

X f illet = r− rsin(γ) ; Yf illet =
r

tan(β )− rsin(γ)
(2.75)
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Chapter 3

Automatic Drawing of Gear Profiles: Software Implementa-
tion

1. Introduction

The fist module of the software consists of the implementation of the automatic design equations
described in the first two chapters. The software is based on the MATLAB app designer.

This chapter details the structure and functionality of the MATLAB application, its user interface,
and the underlying algorithms used to design the gears. In addition, it describes how the generated
profiles can be exported as CAD files.

2. Input parameters

The ”External Gears Drawing” tab is the main user interface for this module. On the left the input
parameters are introduced by the user, this are:

• Normal Pressure Angle [deg]

• Number of Teeth

• Tooth Fillet Coefficient

• Module [mm]

• External Radius [mm]

• Addendum Coefficient

• Tooth Tip Chamfer [mm]

• Dedendum Coefficient

• Normal Clearance Between Teeth [mm]

• Manufacturing Process: ’Rack Cutting’ or ’Other’ can be selected

• Center Distance [mm]

• Number of Points Np to be drawn per half of each teeth

• Gear Thickness [mm]

• Initial Angle [deg] for displaying the gears in a rotated position
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• Internal Radius [mm] in case of sintering

• Root Fillet Radius [mm] optional, in case of sintering

• Include Root Fillet Radius (checkbox)

The checkboxes do not allow non numeric values to be entered and make sure that the values are
within realistic boundaries.

Figure 3.1: User interface of the MATLAB App

When ’Rack Cutting’ is selected in the ’Manufacturing Process’ drop down, the internal radius, root
fillet radius and its check box are disabled because these parameters are not relevant to the creation
of a gear with a rack cutter. Also, the tooth tip chamfer box is disabled and its value is set to 0 mm.

Additionally, when a solution created by the optimizer module is available, the ’Import From Step
1’ button is enabled. It allows the direct import of a complete set of parameters.

3. Calculation

3.1 Input parameters processing

When the ’Calculate’ button is pressed, the script starts running. First it imports all the input pa-
rameters as variables that will be fed to the algorithm.

All measures are converted to SI units, millimeters are converted to meters and the normal pressure
angle, which is entered in degrees, is converted to radians.

Then, the following additional parameters are calculated:

• Operating Pressure Angle θk

• Base Pitch t0

• Pitch Radius Rp0

• Normal Centre Distance I

• Working Pitch Radius Rpl
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• Base Radius Ro

• Angular Pitch ∆ϕ

• Play Between Teeth hs

• Contact Line Length TT

• Max Cutting Module m0max

• Min Cutting Module m0min

Then, the operating pressure angle is verified to be a real parameter, in case it is not, the calculation
is stopped and an error message is displayed.

The correction factor xg is evaluated with the introduction of the play hs. With the knowledge of
this parameter, the thickness of the teeth at the nominal pitch radius and at the working pitch radius
are calculated.

In case there is no tooth tip chamfer ht , the tip radius Rt is equal to the external radius. Contrarily,
when a sintering manufacturing process is chosen and ht is not zero, the process described in sub-
section 5.1 of Chapter 2 is used to calculate the tip radius Rt and the phasing angle α ′

1. Subsequently,
the thickness of the tooth tip is computed and compared to a minimum accepted value of 1mm.

The minimum number of teeth in the case of rack cutting is verified and it must comply with:

Zmin = 2
sin(θ)2

A− xg
(3.1)

In case of additive manufacturing there is no inferior boundary for the number of teeth.

The bottom radius is computed differently for each manufacturing process. If sintering is used its
value is defined by the user, otherwise it is computed as:

R f = Rp0 −Am0 + xgm0; (3.2)

Several parameter value compatibility issues and possible errors are verified. They will receive a
thorough explanation in a dedicated chapter.

3.2 Tooth Segment Coordinates Calculation

First, the radius for the start of the involute Ri must be found in case of rack cutting, this is achieved
by the process described in section 4.6 of Chapter 2.

Thereafter, the angular increment of ϕ by which the tooth will be divided in order to save its coor-
dinates in a vector is computed as:

Iϕ =
∆ϕ

N p
(3.3)

Then, with the equations presented in Chapter 2, all the fields of existence for every segment of the
teeth profile are computed.

Subsequently, two vectors, each with the coordinates in the x and y axes respectively for one half of
one tooth, are computed as well.

The points of each segment are stored in the vectors in the following order.
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1. Tip or external circle

2. Tip chamfer (in case it exists)

3. Involute profile

4. Root fillet radius (in case it exists)

5. Root circumference

In case an error is detected, the lamp will illuminate with a red color and the description of all the
error found can be seen in the ”Errors/Warnings” tab.

3.3 Plotting

Once the vector is completed, the entire gear profile is defined. The next step is to mirror the vector
to generate the other half of the tooth and then replicate it according to the total number of teeth on
the gear.

It is desirable to plot both gears in the same window in order to see them in the working position
and visualize their engagement. Since there is a constraint of engagement between them, the driven
gear has to be plotted with a rotation angle ∆ϕc respect to the driver gear and an axial distance Ik.

If the number of teeth is even:

∆ϕc =
∆ϕ

2
− hs

2Rpl
(3.4)

Otherwise:

∆ϕc =− hs
2Rpl

(3.5)

Then, each gear is saved into a table containing all its points in the two dimensional plane. In the
user plot area of the app, the profile of the gears can be visualized.

Figure 3.2: Gear profile after drawing without errors
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3.4 Exporting of the profiles for CAD software

The table containing the complete profile is saved into a .txt file complying with the format required
to import it into AutoCAD. The user only needs to input the gear axial thickness into the CAD
software in order to define the three dimensional shape of the gear.
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Chapter 4

Automatic Design of Gears

1. Introduction

The first module of the app consists of the automatic design of gears given user imputed parameters
and constraint. The fundamental value entered is the target displacement to be achieved. The script
analyses all possible combinations of parameters within the constraints and chooses the pair of
gears with the maximum pumping area, i.e., the maximum ratio between displacement and axial
thickness. When possible, more than one solution is presented, with varying number of teeth.

The program not only checks for compliance of the dimensional constraints, it also excludes flawed
solutions that can have interference, low contact ratio, etc. If there is no possible solution complying
with all constraints, the closest solution in terms of displacement is displayed.

This script works for gears made by cutting with a tool rack and also gears made by additive manu-
facturing.

2. Input Parameters

The parameters that need to be defined in order to search the most adequate pair of gears are:

• Target displacement Vtar desired by the user

• Maximum axial thickness B of the gears

• Maximum overall length L of the coupled gears

• Maximum external diameter Re of each gear

• Maximum ratio λ = 2Re
B between the external diameter and axial thickness of the gears

• Minimum bottom diameter 2R f of the gears

• Minimum contact ratio ε

• Minimum thickness at the tooth tip St

• Side clearance hsn and tip clearance htt of the teeth equal to a value set by the user

Depending on the calculation mode used, it may be possible to also impose:

• a center distance int equal to a value defined by the user

• an exact external diameter
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• the manufacturing method, rack cutting or other

Figure 4.1: Optimizer input parameters

3. Calculation Modes

There are three fundamentally different ways in which the program can search for the solutions:

• Fixed center distance and fixed external diameter: this mode is useful when modifying an
existing pump without changing the casing, where these two values cannot be changed. Only
the number of teeth and the module can be changed.

• Fixed center distance and variable external diameter: this is useful then the center distance
is defined by the casing or another external component that may require it. In this mode also
the external diameter is subject to optimization.

• Variable center distance and variable external diameter: is usually the best for designing
a new pump. Usually provides the largest number of solutions since it has the most variables
to combine.

4. Additional Input Parameters and Advanced Options

This module contains an ”Advanced Settings” tab in which parameters that are not strictly necessary
for the definition of the gear can be found. However, these are crucial for the functioning of the
optimization script. These variables are:

• Step For Module Increment [mm]: the value by which the module is incremented in each loop
iteration.

• Step For External Radius Increment [mm]: the value by which the external radius is incre-
mented in each loop iteration.
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Figure 4.2: Calculation mode: fixed center distance - fixed external diameter

• Step For Centre Distance Increment [mm]: the value by which the center distance is incre-
mented in each loop iteration.

• Rounding For Axial Gear Thickness: analogue to the aforementioned, but for the axial thick-
ness of the gear.

• Addendum Coefficient

• Minimum Number of Teeth

• Maximum Number of Teeth

• Tool Fillet Coefficient

• Tooth Tip Chamfer [mm]

• Minimum Width of the Tooth Tip [mm]

• Minimum Contact Ratio [mm]
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Figure 4.3: Optimizer advanced options

5. Logic and working principle of the script

The program starts by making the appropriate unit conversions and checks the input parameters for
conflict or inconsistencies. Only after that the iteration starts.

There are four nested loops, from outermost to innermost, the variable to optimize for is:

• Number of teeth: a solution is searched for each number of teeth from the minimum specified
to the maximum.

• Center distance: only for the third calculation mode, the center distance is change according
to a user defined step. The search interval varies depending on previous constraints.

• Module: the module’s value varies incrementally according to the user defined step.

• External Radius: similarly to the previous two loops, the radius varies according to a user
defined step

Before leaving the outermost loop, if a solution verifies all requirements, it is saved in a vector. For
a given number of teeth, if a solution with greater pumping area is found, it replaces the previous
saved solution.

Finally, the best solution for each number of teeth is displayed.

5.1 Solutions found

The desired outcome of the optimization is that several possible solutions are found. They may not
exactly match the required displacement because a non negligible step for the dimensions is used,
which produces a discrete number of solutions.

5.2 No Possible Solution With Given Target Displacement

When a viable gear profile is found but to achieve the target displacement the required axial thick-
ness B is greater than the maximum specified, the closest solution is displayed. This can also be
exported to the drawing module.
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Figure 4.4: Calculation mode: fixed center distance - variable external diameter

Figure 4.5: No Possible Solution With Given Target Displacement: Closest Solution

5.3 No Solution Found

In some cases a set of parameters does not provide a viable set of external gears, not even one that
has a smaller displacement than desired. This usually happens when the target displacement is too
small and the maximum diameter/thickness ratio is not compatible with said displacement.
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Figure 4.6: No solution found within the desired constraints

6. Results Display

When the program has finished going through all the possible solutions and no errors are found,
the text area is used to display the results. First, the number of solutions analyzed and the most
important input parameters are displayed. If solutions are found, even if they do not reach the
required displacement, they are displayed in a table, where each line corresponds to one number of
teeth.

Additionally, for each solution, the following information is displayed:

• Pumping area P.A. [cm2/rev]

• Flow ripple index dq [%]

• Maximum profile sliding velocity vsmax [m/s]

• Contact ratio eps

• Tooth tip width st [mm]

• Profile correction factor xg

• Working pressure angle θk [deg]

This information is also optionally saved into a text file with identical content to what is displayed
into the text part. Additionally, it is possible to export the parameters to the gear drawing part of the
app.
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Figure 4.7: Calculation mode: variable center distance - variable external diameter
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Chapter 5

Flow Ripple Calculation

1. Introduction

The final module of the program is dedicated to the flow ripple calculation. In hydraulic systems,
flow ripple refers to the fluctuations in flow rate caused by the mechanical operation of the gears
during the pumping cycle. These fluctuations can lead to noise, vibrations, and inefficiencies, neg-
atively affecting the system’s overall performance.

Additionally, it evaluates the pumping area, which is defined by the relationship between the pump’s
displacement and the axial thickness of its gears. By multiplying it by the gear thickness the pump
displacement is obtained. Also, the flow ripple index, a dimensionless parameter that quantifies the
severity of the flow ripple is calculated.

The modeling of the flow ripple uses a lumped parameters approach, which requires the knowledge
of the length of vector rays between the centers of the gears and the contact points. This method is
much easier to implement and requires less computational time than a CFD approach, while having
more than enough precision for the task.

2. Input Parameters

The flow ripple calculation starts after the gear profile has been automatically drawn in the previous
section. The user has to first define the gear parameters and calculate the profiles, those same
parameters will be the ones used for this calculation.

After the aforementioned step, the user must switch to the Flow Ripple Calculation tab. There,
additional parameters must be imputed.

1. Shaft speed [rpm]: the rotational speed of the gears for the calculation

2. Number of points: the amount of points at which the flow rate will be evaluated in the rotation,
6000 by default.

3. Start Angle [deg]: the driving gear angle at which the evaluation will start, 0 by default.

4. End Angle [deg]: the driving gear angle at which the evaluation will end, 360 by default, this
means evaluating a full rotation.

Finally, the user can choose to export the flow rate and the driven gear angle in two columns in a
.txt file.
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Figure 5.1: Input parameters for the flow ripple calculation

2.1 Calculation of displacement and flow ripple index

The base pitch t0 is:

t0 = π ·m0 · cos(θ0) (5.1)

The pumping area of the external gear pump is:

Pa = R2
e −

Rp0 · I2
k

2 · I
−

t2
0

12
(5.2)

Where Re is the external radius, Rp0 is the pitch radius, Ik is the working centre distance, and I is
the nominal center distance.

The displacement of the pump is:

V = Pa ·b (5.3)

Where b is the thickness of the gear.

The flow ripple index δQ is:

δQ =
1

4R2
e−I2

t2
o

− 1
3

(5.4)

The displacement and the flow ripple index are displayed at the text area.
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Figure 5.2: Tab for calculating the flow ripple

3. Calculation of the flow ripple

The mathematical model for the calculation depends only on the geometry of the gears. No com-
pressibility of the fluid is considered.

An auxiliary variable for the delivery volume νd is presented and it is a function of the rotation
angle ϕ of the driver gear. It has the following properties:

• It varies from 0 to ∆ϕ when ϕ varies from 0 to +∞,

• It equals zero when a new contact begins between a tooth of the driver gear and one of the
driven gear, i.e., when the trapped volume is created.

νd can be obtained as:

νd = ϕ +ϕs −fix(
ϕ +ϕs

∆ϕ
) ·∆ϕ (5.5)

where fix() is a function that rounds the argument to the nearest integer towards zero; ϕs is the value
that νd assumes when the gears are in the reference condition; and ϕ = 0 represents the rotation
that must be imposed on the driver gear so that from the moment when a new contact point P0

1 is
generated, the reference condition is reached with the contact point at P0 (fig. 5.3). Its value can be
obtained as:

ϕs = tan(θk)−ϕ
′
1 −ν0 (5.6)
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Figure 5.3: Graphic representation of ϕs

where ν0 is the angle corresponding to the unused section of the contact segment on the driving
gear side, and ϕ ′

1 corresponds to the rotation of the driver gear necessary to bring the instantaneous
contact point C to point P0 where the gear is in the reference condition fig. 5.4.

Figure 5.4: Graphic representation of ϕ ′

From eq.( 1.27) δ is the unused part of the contact segment on ether gear’s side.

ν0 =
δ

ρ
(5.7)

Next ϕ ′
1 is:
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ϕ
′
1 =

sRp0

2 ·Rp0
(5.8)

Where sRp0 is the thickness of the tooth at the pitch circle, obtained from eq.( 1.18). With this
information it is possible to find νd as a function of the angle ϕ .

An analogous auxiliary variable, νs, for the suction volume is determined as a function of the rota-
tion angle ϕ , with the following properties:

• It varies from 0 to ∆ϕ when ϕ varies from 0 to +∞,

• It equals zero when two teeth separate (i.e., when the trapped volume disappears).

The equation for its formulation is:

νs = ϕ +ϕ
′
s −fix

(
ϕ +ϕ ′

s
∆ϕ

)
∆ϕ (5.9)

Where, similarly, ϕ ′
s is the angle that νs assumes when the gears are in the reference condition,

and ∆ϕ −ϕ ′
s represents the rotation that must be imposed on the wheel so that from the reference

position, the contact point P0 reaches the end of the engagement segment in P0
2 fig. 5.5.

Figure 5.5: Graphic representation of ϕ ′

In this case, the relations are derived for the driver gear, and the results must consider the transmis-
sion ratio (τ =−1)

ϕ
′
s = ∆ϕ − tan(θk)+ν0 +ϕ

′
1 (5.10)

Timing Angles

The timing angle ϕbt by which the driver gear must rotate so that the trapped volume is generated,
is defined as:
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ϕbt = ∆ϕ −ϕs (5.11)

The angle ϕbt by which the driver gear must rotate so that the trapped volume is disappears, is
defined as:

ϕet = ∆ϕ −ϕ
′
s (5.12)

The script analyzes the delivery volume and derivatives at a discrete number of points, set by default
to 6000 points in a full rotation of the driver gear. The angle ϕ represents the angular position of
the driver gear.

First, the auxiliary variable νd is calculated for each value of ϕ with eq.( 5.5)

The length of the segment belonging to the contact line, which goes from the tangent point with the
base circle to the contact point between the teeth of two gears is:

δd = ρ(v0 + vd) (5.13)

Based on the definition of vd , the range of existence of δd is:

ρv0 ≤ δm < ρ(v0 +∆ϕ) (5.14)

For each value of νd , the length of vector for the driver gear referred to the first contact point is:

R2
d = ρ

2 +δ
2
d (5.15)

And substituting, we obtain:
R2

d = ρ
2 [1+(vd + v0)

2] (5.16)

And for the second contact point:

R2
d2 = ρ

2 [1+(vd + vd +∆ϕ)2] (5.17)

For the driven gear, the analogous expressions are:

R2
c = ρ

2 [T T −1+(vd + v0)
2] (5.18)

And for the second contact point:

R2
c2 = ρ

2 [T T −1+(vd + vd +∆ϕ)2] (5.19)

Finally, the derivative of the delivery volume is:

dVd =
b
2
· (R2

d +R2
c −2Re2) (5.20)

Where Re is the tooth tip radius of the gear.

Now, the variation of the trapped volume is required. First the auxiliary variables νdbt and νdet ,
which correspond to the angle at which the trapped volume begins and ceases to exist respectively,
are defined as:

νdbt = ϕbt +ϕs −fix(
ϕbt +ϕs

∆ϕ
) ·∆ϕ (5.21)

56



νdet = ϕet +ϕs −fix(
ϕet +ϕs

∆ϕ
) ·∆ϕ (5.22)

Then, only if νd is within νdbt and νdet the volume is trapped and the variation of the trapped volume
is:

dVt =
b
2
· (R2

d2 +R2
c2 −R2

d −R2
c) (5.23)

Otherwise:

dVt = 0 (5.24)

At last, the theoretical delivery flow rate is:

Q =−ω(dVd +min(0,dVt)) (5.25)

Where ω is the angular speed of the driving gear in rad/s and min() is a function that outputs the
minimum of the two arguments.

Since Q depends on the angular position ϕ , the calculation is repeated for every value of ϕ . When
the end of the angular interval is reached. Q and ϕ are plotted in the axes y and x respectively.

Figure 5.6: Plotting of the delivery flow rate versus angular position of the driver gear for a 10
teeth pump
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Chapter 6

Error Handling

1. Introduction

This final chapter addresses the handling of errors that may occur during the execution of the script
across various sections. These errors can arise from invalid or incompatible parameter inputs, or
from parameters falling outside the expected boundaries, which may only become evident after
calculations have begun. The second category of errors can include issues such as interference,
invalid geometry, excessively thin tooth tip thickness, and other geometrical inconsistencies.

The purpose of this section is to provide a comprehensive list of all errors considered and to describe
how each is managed by the software. Notably, errors do not interrupt the program’s execution, as it
can be beneficial to visually assess the nature of the issue. A status indicator, positioned at the bot-
tom of both the optimizer and profile drawing sections, turns red when an error is detected. Detailed
information about the error is then displayed in the ”Errors/Warnings” tab for further review.

2. External Gears Drawing

This section discusses the error handling in the External Gears Drawing Module.

2.1 Verification of the Module

The module must be within:

m0max =
Ik

Nd cosθ0
(6.1)

And:

m0min = 0.65m0 (6.2)

This limitation is derived from the expression used to calculate the working pressure angle, which
was already presented in previous chapters:

I cosθ0 = Ik cosθk (6.3)

With the appropriate simplifications and by imposing that the cosine of θk is equal to the maximum
value the upper boundarie is derived.

The error message displayed when the module exceeds the imposed limits is:
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”The module must be between: m0min and m0max”

2.2 Verification of the Working Pressure Angle

The error message has a theoretical justification quite similar to that presented for the module. In
fact, to calculate the angle θk, the following expression must be solved:

θk = arccos
(

Ndm0 cosθ0

Ik

)
(6.4)

Thus, it is necessary to verify the following inequality to ensure the existence of the angle:

Ndm0 cosθ0

Ik
< 1 (6.5)

The error message displayed if this inequality is not satisfied is:

”You must reduce the number of teeth or the module.”

2.3 Correct Setting of External Radius

The user has the option to set the values of the external radii. These radii must be consistent with the
meshing conditions presented by the gear. Therefore, the following relationship must be satisfied:

Rt > Rpl (6.6)

In this case, the error message that appears is:

”The tip radius must be greater than: Rpl”

2.4 Constraint on the External Radius in ”Rack Cutter” Mode

If the profiles are generated by a cutting tool, it is necessary to impose limitations on the maximum
radius of the initial tendon. Therefore, the following relationship must be satisfied:

Rt < Rp0 + xgm0 +dm0 (6.7)

The displayed message is:

”The tip radius must be less than: Rp0 + xg +dm0”

2.5 Calculation of the Minimum Number of Teeth

It is important to know the minimum number of teeth for a gear generated by cutting; the most
unfavorable condition for meshing is that given by the coupling with the rack cutter.

If this condition is not met, the tooth of the gear will be undercut at the base, which could cause
serious problems and compromise the integrity of the gear or the cutter. Once the program calculates
the minimum number of teeth, it compares the number of teeth of the two gears and imposes this
limitation:
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zmin =
2

(sinθ0)2 (a− xg) (6.8)

If the number of teeth of the gear is less than zmin, the following message will be displayed:

”The gear does not have enough teeth to be cut by a rack”

2.6 Non-Interference Conditions

The non-interference conditions coincide, in practice, with the non-undercutting conditions already
discussed in previous chapters. The difference, in this case, is that the meshing occurs with the
mating gear, not with the rack cutter.

To avoid interference between the two gears, the contact between them must occur within, and not
beyond, segment T T ′. The maximum limit for Rt can then be derived with the following inequality:

Rt ≤
√

(ρ2 sinθk)2 +(lk −ρ2 cosθk)2 (6.9)

which simplifies to:

Rt ≤
√

l2
k +ρ2

2 −2lkρ2 cosθk (6.10)

If the condition Rt < Rtmax is not met, the program will display the following message:

”Interference detected: Adjust the design parameters.”

2.7 Further Verification of Interference

Until now, limits have been set on the external radii that derive from the meshing between the
gear and the tool. It is also necessary to impose limits on the meshing between the gear and the
counter-gear:

In this situation, the following two inequalities must be respected, otherwise, the error presented in
Figure 6 occurs:

Re +R f < lk (6.11)

The displayed message is:

”The gears are interfering; reduce the tip radius or increase the tool addendum.”

2.8 Invalid Tool Geometry

It may happen that the set of input data generates an invalid tool rack geometry or one that is
inconsistent with the initial assumptions used for the profile design. Below are the two types of
errors that may arise and their causes:

a <
sRp0

2
(6.12)
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b < Am0 − xgm0 (6.13)

These two inequalities may not be satisfied due to the imposed center distance value. The error
message that is displayed in this case is:

”The imposed center distance leads to an invalid tool geometry; reduce the gap with the
nominal center distance or increase the shear module.”

a > 0 (6.14)

This other limitation derives from the assumption that the tool has a straight segment with a near-
zero limit designed to create the root circle of the gear. If this were not the case, there would be a
cusp at the tip of the tool’s tooth, and the generated gear would not even have a root circumference.
Furthermore, the center of the fillet radius would not be positioned at point O1. This problem can
be solved by reducing the fillet radius between the two straight segments of the tool. The displayed
message is:

”The tool fillet radius height leads to an invalid geometry.”

2.9 Calculation of Tooth Tip Thickness

The calculation model is capable of informing the user when the tooth tip thickness is too thin.
Specifically, a warning message is triggered if the thickness is less than 1 mm. The message that
will appear is:

”Tooth tip thickness less than 1 mm.”

3. Automatic Design of Gears Optimizer

This section is dedicates to the possible errors that appear in the second module of the program.

3.1 Centre Distance and Maximum Overall Width

The first error checks whether the input center distance Ik exceeds half of the maximum overall
width L when using the variable external diameter mode. The dimensions must comply with:

Ik ≤
L
2

(6.15)

If this condition is false, the program will display the following error message:

”Centre distance must be less than half the maximum overall length”
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3.2 Maximum External Diameter Exceeds Centre Distance

This error checks whether the center distance Ik is greater than or equal to the maximum external
diameter Dmax when using the fixed center distance modes. The following relationship must be true:

Ik ≤ Dmax (6.16)

Otherwise the corresponding error message is:

”Centre distance must be less than maximum external diameter”

3.3 External Radius and Centre Distance Condition

This error condition checks if the external radius Rt is less than or equal to half of the center distance
Ik when using the fixed external radius mode:

Rt ≥
Ik

2
(6.17)

If this condition is not met, the following error message is displayed:

”External radius must be greater than half the center distance.”

3.4 Minimum External Diameter Exceeds Maximum Internal Diameter

This error condition checks whether the minimum internal diameter Dmin is greater than or equal to
the maximum external diameter Dmax when using any of the variable center distance modes:

Dmin ≥ Dmax (6.18)

If the inequality holds, the following error message is displayed:

”Maximum external diameter dmax must be greater than minimum internal diameter
dmin.”

3.5 External Diameter and Minimum External Diameter Condition

This error checks if the minimum external diameter Dmin is greater than or equal to twice the root
diameter Rt when using the fixed external diameter mode:

Dmin ≥ 2Rt (6.19)

If this is true, the error message displayed is:

”External diameter must be greater than half the minimum external diameter”
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3.6 Diameter/Axial Thickness Ratio Exceeds Maximum Limit

This error condition is triggered if the diameter/axial thickness ratio λ exceeds 2Rt
b when using the

fixed center distance mode:

λ ≥ 2Rt

b
(6.20)

The corresponding error message is:

”Max lambda must be greater than two times the external diameter / max axial thick-
ness”

3.7 Minimum Diameter Exceeds Required Condition

The final error checks whether the minimum internal diameter Dmin exceeds 2IkRtHtt when using
the fixed external diameter mode:

Dmin ≥ 2IkRtHtt (6.21)

If this condition is met, the program will display the error message:

”Minimum diameter must be less than 2(int-re-htt)”
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Chapter 7

Conclusions

This thesis presents the development of a MATLAB-based application designed to optimize the
design of external gear pump gears. The software successfully meets the defined objectives by pro-
viding an automated process for gear profile generation, gear sizing and optimization and study of
the kinematic flow ripple. Through the integration of analytical and computational methods, it en-
sures that the generated gears adhere to the required performance specifications, while significantly
reducing design time cost.

A key improvement over previous versions is the flexibility that MATLAB uses and the ability to
easily implement changes and fixes in the software. Additionally, the software features an improved
user interface, allowing for efficient input of design requirements and effortlessly copying the pa-
rameters from one section to the next.

The ability to rapidly prototype external gear pumps is of great importance, particularly in today’s
competitive engineering landscape where reducing time-to-market is critical. This application facil-
itates early-stage design exploration, reducing reliance on physical prototypes and iterative experi-
mental processes. Overall, this work provides a valuable tool for researchers and industry profes-
sionals, enhancing the efficiency and accessibility of external gear pump design.
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