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Abstract

Global warming and the urgent need for renewable energy necessitate advancements in ef-

ficient and durable energy systems. Solid oxide fuel cells (SOFCs) offer a promising solution

due to their high efficiency and flexibility. However, managing SOFC degradation to ensure

prolonged life and optimal performance remains a critical challenge. This thesis addresses these

issues through several steps. First, it integrates a degradation model and a techno-economic

model into an existing 0-D model for catalytic partial oxidation (CPOX)-based SOFC system.

Various end-of-life (EoL) criteria were tested using three health indicators: power, voltage, and

cumulative energy, optimized under different control strategies. Three control strategies were

analyzed: fixing power, voltage, or stack temperature over time. Predictive analysis through

single-objective optimization revealed that: fixing power maintained stable performance but

required frequent voltage adjustments, leading to high energy production and significant degra-

dation. Fixing voltage provided the longest life expectancy, effectively minimizing degradation.

Fixing temperature showed high efficiency but less stability due to a lack of direct constraints on

voltage, current, or power. A multi-objective optimization (MOO) approach assessed trade-offs

between minimizing degradation and maximizing electrical efficiency with fixed system inputs

over time. The best trade-off was found by balancing each system variable, revealing interesting

trends in CPOX air flow rate and current over time. Dynamic operation analysis confirmed

the robustness of the predictive model under real-world conditions. The techno-economic

optimization demonstrated profitability, while the degradation minimization scenario extended

life expectancy threefold compared to others. This thesis introduces a comprehensive predictive

analysis. The integration of detailed modeling, optimization, and control strategies offers a solid

foundation for future research, providing valuable tools to enhance the performance, efficiency,

and durability of SOFC systems in sustainable energy applications.

Keywords: Solid oxide fuel cell, degradation,control strategies, optimization
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1 Introduction

In the current era of globalization, world emissions of greenhouse gas carbon dioxide have

increased significantly with respect to the past: today more than ever the aim for a clean

environment remains a crucial factor for the health of the population and the planet. Improving

air quality is a major focus of environmental policies, as it affects all aspects of nature, including

humans [1]. For these reasons, it is appropriate to consider the health risks posed by greenhouse

gas (GHG) emissions released into the atmosphere and its related impact on climate change.

The urgency of combating global climate change has prompted nations worldwide to set ambi-

tious targets for achieving carbon neutrality. On December 12, 2015, in Paris, 195 governments

agreed to the text of the most significant global climate agreement in history. Known as the Paris

Agreement [2], the international deal commits nearly every country in the world to lowering

greenhouse gas emissions to curb the dangerous effects of climate change. This agreement

aimed to prevent global temperatures from rising above pre-Industrial Revolution temperatures

by 2°C. Ideally, the Paris Agreement strives to limit global temperature increases to 1.5°C.

Figure 1.1: Global annual average surface air temperature compared to 1880, data from Potsdam
Institute For Climate Impact Research via Climate Watch [3]

1
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Figure 1.2: Global energy-related greenhouse gas emissions, 2000-2022 [4]

In the quest for a sustainable energy future, the transition to renewable sources like wind and

solar presents significant challenges, notably the fact that they are not stationary and dependant

on weather conditions, with low energy density and efficiency-related problems (Table 1.1).

Table 1.1: Energy density and efficiency of renewable energy sources [5]

Energy Density

Fuels
Natural Gas: About 55 MJ/kg
Gasoline: Around 46 MJ/kg

Solar PV Panels About 0.36-0.72 MJ/m²/day
Wind Turbines Typically 1.44-2.16 MJ/m²/day

Efficiency

Solar Panels
Average efficiency: 15-20%
Best commercially available: 22-23%

Wind Turbines
Capacity factor: 30-40%
2 MW turbine output: 0.6-0.8 MW on average

In this last decade, hydrogen has acquired a lot of interest as a renewable resource since it is

clean and can be produced from a variety of other resources, such as natural gas, nuclear power,

biogas, and renewable power. In the evolving landscape of renewable energy technologies,

fuel cells have emerged as a pivotal area of research, attracting increasing interest due to their

hydrogen applications and their potential to contribute significantly to a sustainable energy

future.

1.1 Motivation

Hydrogen fuel offers several significant benefits that make it a promising alternative energy

source. These benefits are crucial for achieving a sustainable and environmentally friendly

energy future. One of the primary advantages of hydrogen fuel is its potential for zero emissions

at the point of use. When hydrogen is used in fuel cells, it combines with oxygen from the air

to produce electricity, with water vapor as the only by-product. This process eliminates the

release of harmful greenhouse gases and pollutants, such as CO2, NOx , and particulate matter,

2



Introduction Chapter 1

which are typically associated with traditional fossil fuel combustion. As a result, hydrogen fuel

can play a critical role in reducing air pollution and mitigating climate change. Hydrogen is

also an abundant and versatile energy carrier and its energy density is another notable benefit.

Hydrogen contains more energy per unit of weight than conventional fuels (120-142 MJ/kg),

such as gasoline and diesel (Table 1.1). This high energy density makes hydrogen an attractive

option for applications requiring high energy output, including transportation and industrial

processes.

In addition to its environmental and performance benefits, hydrogen fuel also offers energy

security and economic opportunities. Hydrogen can be produced domestically, reducing depen-

dence on imported fossil fuels and enhancing energy security. The International Energy Agency

(IEA) Renewables report on January 31, 2024, stated that Hydrogen-dedicated renewable energy

capacity is expected to grow by 45 GW between 2022 and 2028 [6]. This heightened focus is

underscored by the findings of the Fuel Cell Industry Review 2021 [7], which provides compelling

insights into the state of the fuel cell sector, despite the publication delays and without speculat-

ing on future developments. Fuel cells are considered a promising technology for a variety of

applications, including in transportation, stationary power generation, and portable electronics.

The report’s revelations from 2021, coupled with the acknowledgment of the impact of events in

2022 on the energy markets, present a robust case for the ongoing and future significance of fuel

cell technology. The industry’s achievement of surpassing 2.3 GW of fuel cell capacity shipped

(a) (b)

(c) (d)

Figure 1.3: Total fuel cells produced megawatts 2017-2021 by application (a), by fuel cell type (b),
by region of adoption (c-d) [7]

in 2021, meeting its goal from 2019 albeit a year late, and the increase in total units to nearly

86,000, underscores the technological advancements and growing market acceptance of fuel
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cells. Leading companies like Hyundai and Toyota continue to demonstrate the power of fuel

cells in mobility, signifying a diverse and expanding market presence. Notably, the adoption of

proton-exchange membrane (PEM) fuel cells, especially in mobility applications where they

comprise 86% of the megawatt capacity, highlights the technology’s versatility and increasing

efficiency. However, solid oxide fuel cells (SOFC) are also garnering growing interest due to their

high efficiency and fuel flexibility. SOFCs operate at higher temperatures, which allows them

to use a wider range of fuels, including natural gas and biogas, without requiring expensive

catalysts. This capability makes them particularly attractive for stationary power generation

and combined heat and power (CHP) applications. Additionally, their ability to achieve higher

electrical efficiencies and lower emissions contributes to their increasing appeal in various

energy markets Nonetheless, the wide span of SOFC technology brings several new challenges,

such as possible degradation mechanisms, material costs, and lifetime durability that currently

hinder the broader application of fuel cells. Understanding and addressing these issues is key to

advancing commercialization and their role in future energy systems, necessitating in-depth

analysis of failure modes, performance impacts, and degradation mechanisms for technological

improvements. Addressing this issue requires a deep understanding of the balance between

system performance, degradation rates, and operational costs.

1.2 Scope of the thesis

To address the various new challenges associated with SOFC technology, this thesis, starting

from an existing zero-dimensional (0-D) model for a CPOX-based SOFC system, integrates a

degradation model to assess the operational lifespan of the fuel cell stack and a techno-economic

analysis to connect the results to financial assessments. The primary focus is on implementing

novel control strategies to manage the end-of-life (EoL) of the SOFC stack, thereby optimizing

system performance under various operating conditions. The main scope is to develop a

comprehensive approach for predictive control optimization of complex SOFC systems.

This project encompasses several key objectives:

1. Comprehensive Review: Conduct an extensive literature review of existing SOFC technolo-

gies, emphasizing their operational efficiencies, degradation mechanisms, and current

strategies for extending lifespan and reducing costs. Investigate the fundamental degra-

dation processes of SOFCs under various operating conditions and explore end-of-life

detection methods in complex SOFC systems during dynamic operations.

2. Refinement of SOFC Model: Refinement of an existing detailed 0-D model of a CPOX-

based SOFC system that accurately reflects its performance characteristics and degrada-

tion behaviors under different operating scenarios. Integration of an existing degradation

model that can be used for optimization analysis.

3. Optimization Strategy Formulation: Formulate and test various control strategies, using

single-objective optimization and multi-objective optimization (MOO), with both fixed

and dynamic mission profiles to find an optimal balance between maximizing system
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performance (electrical and combined heat and power efficiencies) and life expectancy,

thereby reducing overall operating costs.

1.3 Thesis structure

The remainder of this project is structured as follows:

• Chapter 2 - Fundamentals: This chapter provides an in-depth review of the current state

of SOFC technology, including its advantages, challenges, and the various approaches

taken to mitigate degradation and enhance system longevity.

• Chapter 3 - Model of CPOX-based SOFC system: Describes the analytical methods and

modeling techniques employed in this study to understand SOFC degradation mecha-

nisms and develop the optimization algorithm to perform predictive analysis.

• Chapter 4 - Long-Term Prognostic Analysis with Control Strategies: Discusses the appli-

cation of predictive control to SOFC systems, and evaluates performances and state of

health (SoH) of the SOFC system after single-objective optimization.

• Chapter 5 - Operating Map Development through Multi-Objective Optimization: Ex-

plores the development of operating maps and the analysis of Pareto fronts obtained

using multi-objective optimization for different operational scenarios with fixed input

operations.

• Chapter 6 - Dynamic Mission Profile for a Real-Case Application: Analyzes the applica-

tion of dynamic profile operations to a real-world case study.

• Chapter 7 - Conclusion: Summarizes the findings of the study, discusses its implications

for SOFC technology deployment, and outlines directions for future research.

Through this structured approach, the project aims to contribute to the advancement of SOFC

technology, making it a more viable and cost-effective solution for clean energy generation in

the fight against climate change.
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2 Fundamentals of SOFCs

Fuel cells are devices that convert chemical energy directly into electrical energy through an

electrochemical reaction, bypassing the need for combustion. This process involves the com-

bination of hydrogen (or another fuel) and oxygen (from the air) across an electrolyte. Unlike

traditional batteries, which store a finite amount of energy, fuel cells can continuously produce

electricity if supplied with fuel and oxygen. Several fuel cell types are categorized primarily

based on the kind of electrolyte they use. These include SOFCs, PEMFCs, alkaline fuel cells

(AFCs), molten carbonate fuel cells (MCFCs), and phosphoric acid fuel cells (PAFCs), among

others. Each type has its unique advantages, operating temperatures, and applications ranging

from portable power generation to large-scale energy production in power plants. PEMFCs have

lower efficiency, are sensitive to fuel purity, and require complex water management. AFCs

are highly sensitive to carbon dioxide, which can degrade the electrolyte and are limited to

pure hydrogen and oxygen, reducing their flexibility. MCFCs operate at very high temperatures,

leading to material degradation and increased maintenance, and their electrolyte is corrosive.

PAFCs have moderate efficiency, slow startup times due to their operating temperature, and

require careful handling of the corrosive phosphoric acid electrolyte.

SOFCs emerge among the others for their high electrical efficiency, often exceeding 60%, and

up to 80% with heat recovery systems. They can operate on various fuels, including natural gas,

biogas, hydrogen, and liquid hydrocarbons, offering versatility. The solid ceramic electrolyte

in SOFCs is durable and tolerates high temperatures, resulting in longer lifespans and lower

maintenance costs. SOFCs also produce fewer pollutants, contributing to better air quality, and

can be scaled for different power needs, from small distributed systems to large power plants.

This chapter delves into the core principles and technological underpinnings of SOFCs, which are

the object of the project’s analysis. SOFCs are an innovative class of fuel cells that have garnered

significant attention for their potential in highly efficient, sustainable energy conversion. SOFCs

are notable for their high operating temperatures, fuel flexibility, and potential for integration

into various energy systems, ranging from portable power sources to large-scale electricity

generation.
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2.1 SOFC operating principles

SOFCs have garnered significant attention due to their high efficiency, cost-effectiveness, fuel

flexibility [8, 9, 10, 11] and pollution-free operation [12]. Recent advancements in SOFC technol-

ogy, including the development of proton conducting electrolyte [13] and direct carbon SOFCs

[14], highlight their potential inefficient energy conversion using diverse alternative fuels[15].

A solid oxide cell (Fig 2.1) can operate in dual modes: as a fuel cell and an electrolyzer. This

device consists of two porous electrodes and a solid electrolyte. The fuel electrode, made of a

Ni-YSZ composite, provides structural support. The electrolyte, composed of Yttria Stabilized

Zirconia (YSZ), conducts oxygen ions at high temperatures (> 550 °C). On top of this electrolyte

is the air electrode, made of Lanthanum Strontium Cobalt Iron Oxide (LSCF), which prevents

chemical interactions with the electrolyte. The Gadolinium-Doped Ceria (GDC) layer is placed

between the LSCF and YSZ as an ionic conductor barrier. The Ni-based fuel electrode facilitates

the internal reforming of hydrocarbons (e.g., C H4, C2H6), improving thermal management and

potentially eliminating the need for an external reforming unit. In electrolyzer mode, solid oxide

electrolysis cells (SOECs) are used for hydrogen and oxygen production, fuel generation, carbon

dioxide recycling, and chemical synthesis [16]. The most common structures are electrolyte-

supported cells (ESC), anode-supported cells (ASC), and metal-supported cells (MSC).

Figure 2.1: Structure of a SOFC [17]

In fuel cell mode, fuel is consistently delivered to the anode and undergoes oxidation by oxygen

ions from the electrolyte, generating H2O (CO2) and electrons. The anodic reaction occurring

at the triple phase boundary (TPB) is indicated schematically by the red dot in Figure 2.2.

TPB is a critical region where three different phases coexist and interact: the ionic conductor

(electrolyte), the electronic conductor (electrode), and the gas phase (fuel or oxidant). Efficient

SOFC operation depends significantly on the effective management and optimization of the

TPB, as it directly influences the reaction kinetics and overall performance of the fuel cell.

Concurrently, the air is supplied to the cathode, where oxygen molecules are adsorbed and
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Figure 2.2: Working principle and half-reactions in SOC [18]

reduced to oxygen ions (O2−) upon accepting electrons. These ions migrate to the anode-

electrolyte interface through the cathode’s ionic conductor phase and the electrolyte.

In the electrolysis mode, the reactions are reversed: water is reduced at the cathode, producing

H2 and O2−. The oxygen ions then travel through the electrolyte to the cathode, releasing

electrons to form oxygen molecules. A resume of the main reactions in SOFC and SOEC is

proposed in Fig 2.1.

Table 2.1: Comparison of reactions in SOFC and SOEC

SOFC Reactions SOEC Reactions
Fuel electrode: Fuel electrode:
H2 +O2− → H2O+2e− H2O+2e− → H2 +O2−

Oxygen electrode: Oxygen electrode:
1
2 O2 +2e− → O2− O2− → 1

2 O2 +2e−

Total reaction: Total reaction:
H2 + 1

2 O2 → H2O H2O → 1
2 O2 +H2

Oxygen and fuel (H2) react via a dense, oxide ion-conducting electrolyte (YSZ); the spatial

separation of reduction and oxidation reaction enables the utilization of the electrons involved

in the redox process; in fact, electrochemical redox reactions induce an electrical potential due

to varying oxygen partial pressures across the electrolyte.

Knowing that for a generic chemical reaction:∑
reactants

νA,B,...A,B,... → ∑
products

νX,Y,...X,Y,... (2.1)

The reaction’s standard enthalpy change, ∆H 0, crucial for understanding the electrochemistry

of solid oxide cells, is determined as:

∆H 0(T ) =
∑

i
νst,i∆ f H 0(T ) (2.2)

Here, νst,i are the stoichiometric coefficients, with products assumed positive and reactants

negative. The term ∆ f H 0
i represents the standard formation enthalpy of species i , under

standard conditions (STP, T 0 = 25C , p0 = 1 atm). Importantly, the reaction enthalpy primarily
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depends on temperature. The temperature dependence of reaction enthalpy and the derivation

of standard reaction entropy, ∆S0, incorporating the species’ standard entropies and their

variations with temperature and pressure, follow as:

∆H(T ) =∆r H 0(T )+∑
i
νst,i

∫T

T 0
cp,i (T )dT (2.3)

∆r S0(T, p) =
∑

i
νst,i S0

i (T, p) (2.4)

Expanding on the entropy’s dependency, it is possible to find:

∆S(T, p) =∆S0(T, p)+∑
i
νst,i

(∫T

T 0

cp,i (T )

T
dT −R ln

pi

p0

)
(2.5)

The distinction between reaction enthalpy, ∆H , and Gibbs free energy, ∆G , highlights the

thermodynamic limits of reaction work, W , in terms of electrical energy:

∆r G(T, p) =∆r H(T )−T∆r S(T, p) = −W (2.6)

W = neF E 0 (2.7)

Here, W denotes the work associated with an endothermic or exothermic reaction under isother-

mal and isobaric conditions, further refined to represent the electrical energy via Faraday’s laws,

with E 0 denoting cell reversible potential at STP, F the Faraday constant (96485.332 Cmol−1)

and n the electron count in the reaction (e.g. 2 in the case of H2).

The reversible standard cell voltage [16] is then determined using the reaction’s Gibbs free energy

(∆G0):

E 0(T ) = −∆G0(T )

nF
(2.8)

It’s important to mention that the cell voltage depends on operating temperature and gas partial

pressures and can be correlated to the Nerst voltage through the Nerst equation:

E = E 0(T )+ RT

2F
ln

 pH2
p (

pO2
p )0.5

pH2O

p

 (2.9)

In the typical operation range (600-950 °C) of a SOFC operated on hydrogen (with 1 % H2O) and

air as oxidant Equation 2.9 gives values of E between 1.18 and 1.13 V.
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2.2 Loss mechanisms

SOFCs, like all technologies, are prone to various loss and degradation mechanisms that can

impair their performance over time [19]. Various factors contributing to the observed voltage

drop are detailed in Equation 2.10:

U (i ) = E0 −ηohm −ηact,a/c −ηcon,a/c (2.10)

where U (i ) represents the cell voltage under load, E0 the open circuit potential, ηohm the ohmic

resistance losses, ηact,a/c the activation overpotentials for the anode/cathode, and ηcon,a/c the

concentration overpotentials at the anode and cathode, respectively. This equation summarizes

the main factors that cause the voltage drop in electrochemical systems.

Ohmic losses

Ohmic losses are encountered during the transport of electrons or ions through electrodes

and electrolytes. The total ohmic resistance is a cumulative function of the individual ohmic

resistances denoted by Rk . According to Ohm’s law, the ohmic overpotential, ηohm, exhibits a

linear relationship with the current density, j , expressed as:

ηohm = j
tot∑
k

Rk = j ·Rohm (2.11)

Absolute measures like resistance (Ω) and current (A) lack comparability across varying system

sizes. Instead, area-normalized metrics, namely current density (A/cm2) and area-specific

ohmic resistance (Ω·cm2), offer a standardized basis for analysis. These adjustments account for

differences in active surface areas, particularly using the smallest layer in multi-layered systems

like ASCs for normalization. This approach ensures consistency in comparing electrochemical

performance across diverse configurations. The calculation of ohmic resistance (Rohm) in fuel

cells involves the specific resistivity of the membrane (ρohm), the active area of the cell (A), and

the thickness of the polymer membrane (l ), which acts as the cell’s electrolyte. The formula for

determining Rm is expressed as:

Rohm =
ρohm · l

A
(2.12)

In the context of planar cells, a significant portion of ohmic losses is attributed to the solid

electrolyte component. Notably, 8 mol% yttria-stabilized zirconia (8YSZ) remains the benchmark

material in this domain, exhibiting an ionic conductivity of σ = 5S/m at 800◦C. Contrary

to electrolyte-supported cells, which may have electrolyte thicknesses up to 200µm, anode-

supported cells typically feature a much thinner electrolyte layer, around 10µm. Consequently,

at 800◦C, the ohmic resistance in anode-supported cells can theoretically be reduced to 0.020Ω ·
cm2, and even at 600◦C, a resistance of 0.176Ω ·cm2 is achievable, facilitating cell operation

[20].
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Activation loss

Activation loss refers to the electrochemical degradation processes primarily occurring at the

TPB, where the phases of ionic conduction, electronic conduction, and gas meet. To initiate

a reaction, an activation energy is requisite to surmount the energy barrier inhibiting spon-

taneous reactions. The activation overpotential must be applied to every half-cell reaction.

Typically, in fuel cells, the hydrogen oxidation reaction is much faster than the oxygen reduction

reaction, which is why the activation overpotential of the oxygen electrode dominates. Ele-

vated temperatures increase the likelihood that reactants acquire the essential activation energy,

thereby diminishing overpotentials. The main equation in describing the impact of activation

overpotential on current density is the renowned Butler-Volmer equation [21]:

ηact,el =
RT

neF

(
αel ln

(
j

j0,el

)
− (1−αel) ln

(
1− j

j0,el

))
(2.13)

In this formula, j0,el denotes the exchange current density for the anode or cathode, which is

dependent on partial pressure and temperature. The term ne represents the number of electrons

transferred (for this study, ne = 2), αel signifies the apparent charge transfer coefficient, and

ηact,el indicates the activation overpotential for the specified electrode (either anode or cathode).

The charge transfer coefficient offers insights into the symmetry of the activation energy barrier

under the influence of either a positive or negative overpotential. Activation overpotentials for

both the anode and cathode are calculated separately using the Butler-Volmer equation (Eq.

2.13). The required parameters, j0,el and αel, are determined through impedance spectroscopy

conducted both at open circuit conditions and under applied current load.

Diffusion overpotential loss

Diffusion overpotential, denoted as ηconc,a/c, is caused by mass transfer kinetics that govern

the transport of reactants to the electrode surface for redox reactions. Concentration overpo-

tential within electrochemical cells is due to two primary sources: the electrode and the Gas

Diffusion Layer (GDL). The GDL, serving as a critical intermediary between the electrode and

the interconnect, plays a crucial role in ensuring a consistent and efficient supply of reactants,

facilitating the removal of products, and maintaining electrical connectivity. The electrochemi-

cal potential variation, attributed to reactant depletion and product accumulation, contributes

significantly to the concentration overpotential observed. Efforts to mitigate concentration

overpotential focus on optimizing the GDL’s design for enhanced convective mass transport and

creating electrodes with optimal thinness and gas permeability. Strategic modifications, such as

adding macropores within the electrode, aim to improve gas diffusion to the active layer, thereby

enhancing overall cell efficiency. While the concentration overpotential can be evaluated for

each side of the cell, it is mainly influenced by the fuel electrode due to the excess air during

operation. This effect becomes significant when current extraction causes reactants to diffuse

through both the gas layer and the porous structure of the electrode to reach the active reaction

sites. As a result, there is a difference in composition between the electrode surface and the bulk

gas stream, leading to a voltage difference. The mathematical expression for the concentration
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overpotential at the anode and cathode is given by:

ηconc,a =
RT

2F
ln

(
pbulk,H2 pTPB,H2O

pTPB,H2 pbulk,H2O

)
(2.14)

ηconc,c =
RT

2F
ln

((
pbulk,O2

pTPB,O2

)1/2)
(2.15)

Quantifying these overpotentials is challenging due to the difficulty in measuring local reactant

partial pressures at the electrode’s active sites. These partial pressures can be calculated by

applying Fick’s first law, assuming a linear concentration gradient directly related to the current

density, j . This approach yields the following equations for the anode and cathode, which

correlate the diffusion-based voltage drop, ηconc,a/c, to the current density j [22].

ASR model

In the context of this project, the previous loss mechanisms have been sinthetized in a simplified

area-specific resistance (ASR) model, that is a measure of the overall resistance of the cell and is

expressed in ohm-square centimeters (Ω ·cm2). In an SOFC, the ASR encapsulates the various

resistances mentioned before and it is influenced by several factors, including temperature, cell

design, material properties, and the operating conditions of the SOFC. Lowering the ASR is a

primary objective in SOFC development because it directly correlates with higher cell efficiency

and power output. Mathematically, the ASR can be represented as:

ASR =
η

j

where η is the overpotential (the deviation from the equilibrium potential due to resistance

losses) and j is the current density. This equation highlights that ASR is a function of the

electrochemical characteristics of the SOFC. Furthermore, ASR can be described as the sum of

ohmic resistance (Rohm) and polarization resistance (Rpol ):

ASR = Rohm +Rpol (2.16)

2.3 Degradation mechanisms

Failures within electrochemical cells can be categorized into two main types:

• Physical failures: These affect cell efficacy, electrical resistance, and energy dissipation.

• Morphological failures: These lead to structural damage and permanent changes in cell

morphology.

Morphological failures often lead to physical failures, resulting in a decline in cell performance.

These failures depend on two primary factors: the materials used in cell construction and the
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environmental conditions during operation [23].

Material-related degradation worsens with prolonged operation and is irreversible. To mitigate

this, advanced materials must be developed, or operational parameters optimized. Key oper-

ational conditions such as impurity levels, steam concentration, carbonaceous compounds,

and temperature are crucial. Impurities like sulfur, phosphine, and chlorine, even in parts per

billion, can significantly impair cell functionality. These contaminants increase energy losses

in both SOFCs and SOECs, reduce catalytically active sites, and block gas channels, decreasing

electrode porosity. Removing these impurities from the fuel supply is essential for maintaining

long-term cell operation. Additionally, carbonaceous materials in the fuel stream can lead to

carbon formation and deposition on nickel-based electrodes, reducing efficiency. Preventing

nickel reoxidation and agglomeration is also important. Thermal cycling is a significant stressor

that accelerates degradation. Reversible operation shows mixed results; some studies suggest

it harms SOC performance, while others indicate it can help reduce or eliminate degradation

in SOE configurations. Besides cell-level degradation, system components like reformers, heat

exchangers, and steam generators also degrade, affecting overall system stability.

In Table 2.2 all main degradation mechanisms discovered and analyzed are summarized.

2.4 Diagnostic tools

A variety of diagnostic instruments are available for detecting degradation in its early stages,

helping to prevent permanent damage. These techniques are broadly categorized into two

groups: in-situ and ex-situ methods, each providing unique insights into the cell’s operation

and structure.

In-situ techniques are used to assess the cell’s functionality during operation, making them

"online" tools. These methods allow real-time analysis of the cell, enabling continuous monitor-

ing of operational parameters, sensitivity assessments, and evaluation of both steady-state and

dynamic behaviors. Additionally, in-situ techniques are very useful for tracking the evolution of

cell performance over time. The primary advantage of in-situ methods is their ability to provide

immediate data without compromising the cell’s operational integrity or availability.

Ex-situ characterization allows for a detailed investigation into the material composition, struc-

tural integrity, and properties influencing a cell’s performance. By examining components

outside their operational context, researchers can identify degradation mechanisms, evaluate

material compatibility, and develop strategies to enhance cell longevity and efficiency. The

choice between in-situ and ex-situ characterization methods depends on the study’s objectives.

In-situ methods offer a dynamic view of the cell under operational conditions, while ex-situ

techniques provide a detailed examination of structural and material characteristics. Combined,

these methods offer a comprehensive understanding of fuel cell behavior. The instruments

used, along with the parameters they can detect and the data they yield, include tempera-

ture monitoring via thermocouples and thermography, light imaging, gas analysis through gas

chromatography and mass spectrometry, spectrochronopotentiometry, raman vibrational spec-

trometry voltage, and current monitoring systems, polarization curve analysis, electrochemical
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Phenomenon Degradation Effect
FE1: Ni redox cycling Deactivation/mechanical damage: Ni is deactivated when it is

oxidized at very low H2 contents; When reduced again, the Ni
undergoes a redox cycle that could compromise the mechanical
integrity of the electrode after several cycles [24, 25].

FE2: Ni coarsening Deactivation [26, 27, 28]
FE3: Carbon deposition
and Ni dusting

Deactivation [29]

FE4: Sulfur Poisoning Deactivation
FE5: Phosphorus
poisoning

Deactivation

FE6: Silicon poisoning Deactivation
FE7: Other Poisoning/-
contaminations

Deactivation [30, 31, 32]

OE1: Silicon poisoning Deactivation
OE2: Boron poisoning
from the sealant

Deactivation by LaBO3 formation

OE3: Chromium
poisoning

Deactivation by SrCrO4 or Cr2O3 Formation [33, 34, 35, 36]

OE4: Chlorine poisoning Deactivation, electrode delamination
EY1: Cracks and
Embrittlement

Loss of electrolyte tightness; gas mixing; Hot spot creation due to
gas crossover; Delamination and grain boundary embrittlement,
pore formation near the oxygen electrode.

EY2: Conductivity loss Ionic conductivity loss
IC1: Corrosion/Growth
of insulating oxide layers

Loss of electric conductivity by poorly conducting scale forma-
tion; Electrode poisoning (Cr, Si)

IC2: Scale spallation Ohmic losses
IC3: Mechanical
deformation

Decrease of contact area with the cell; change in electrical current
pathways between the MIC and the cell

IC4: Depositions on
interface with electrodes

Gas channel blocking

SL1: Mechanical failure:
Leakage

Loss of contact pressure in the case of compressible seals or ther-
modynamically induced cracking of glass-ceramic seals; A sec-
ondary effect is fuel combustion on the leak location leading to a
hot spot and further degradation of stack components; Increased
humidity from combustion may also increase corrosion of MICs,
and increased chromium evaporation from MICs leading to poi-
soning of O2-electrode; devitrification of glass ceramics

SL2: Chemical instability:
Reactivity & Poisoning

Causes or increases corrosion at its’ interfaces; released species
from sealing poisoning cell components; BaCrO4 formation; seal
porosity

Table 2.2: Degradation effects in SOFC, FE is fuel electrode-related degradation, OE is oxygen
electrode-related degradation, EY is electrolyte-related degradation, IC is interconnection-
related degradation, SL is sealing-related degradation.
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Figure 2.3: Schematic plot of current-voltage curve principle and half-reactions in SOC [41]

impedance spectroscopy (EIS) analyzer, scanning electron microscopy (SEM), equivalent circuit

model analysis.

Other methods can be found in the literature, but the majority of these methods involve eco-

nomic analysis through "Life Cycle Assessments" [37, 38, 39]. For the scope of this research only

iV curves are presented in detail.

Current/Voltage characteristics (iV curves)

The impact of various loss mechanisms on the voltage output of a SOFC during operation is

qualitatively depicted in Figure 2.3. Notably, even under open circuit conditions (OCV), the cell

voltage falls short of the thermodynamically predicted Nernst voltage. This discrepancy, termed

"Overpotential", may result from parasitic losses such as undesired electron leaks across the

electrolyte or imperfections in the electrolyte’s gas tightness. These factors cause fuel utilization

even at an open circuit, which reduces the Nernst voltage. Figure 2.3 shows the relationship be-

tween current density (j) and different types of polarization. At low current densities, activation

polarization is the main factor. At high current densities, diffusion polarization becomes domi-

nant because the transport of reactive species to the electrolyte/electrode interface becomes a

limiting factor [40]. Another significant voltage drop comes from gas conversion loss due to fuel

utilization. As current density increases, more fuel and oxidant gases are consumed, changing

the hydrogen and oxygen partial pressures. This change lowers the Nernst voltage, which is

the electromotive force driving the overall cell reaction. Furthermore, impedance spectroscopy

reveals the nonlinear nature of voltage drops across different operating regimes: activation

losses are prominent at low current densities due to processes occurring at the TPB of the

electrodes. In the medium current range, ohmic overpotential loss predominates, exhibiting a

nearly linear decline in cell voltage with increasing current density. At high current densities, the

fuel cell’s voltage output experiences a sharp decrease, attributed to mass-transport limitations

(gas diffusion polarization) at the electrodes.
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Since current and fuel utilization (FU) are linked by Faraday’s Law 2.17, the current-voltage

characteristics can be converted into FU-voltage curves:

FU =
i

imax
=

i ·Ncel l

ne ·F · ṅ f uel
(2.17)

where ṅ f uel denotes the specific molar flow rate (in mol ·s−1 ·cm−2), ne represents the electrons

involved in the redox reactions, and F is the Faraday constant. The term Ncel l , included for

stack configurations, is the total number of cells within the stack. Despite this characterization

method being straightforward and quick, it often lacks in providing insights into the system’s

dynamics. ASR can be derived from the IV curves. It is calculated as follows:

ASR =
U −OCV

j
(2.18)

The local ASR at a specific current density ( j∗) can be determined by the derivative of voltage

concerning current, evaluated at j∗ [18]:

ASRlocal ( j∗) =
dU

d j

∣∣∣∣
j = j∗

=
U ( j∗+∆ j )−U ( j∗)

∆ j
(2.19)

Typically, the ASR value is extracted from the linear portion of the IV curve, providing a quantifi-

able measure of the electrochemical system’s resistance properties.

2.5 SOFCs physical modelling

Over recent years, significant advancements are made in the field of SOFC modeling, focusing

on the simulation of internal processes grounded on the fundamentals of physics. Researchers

have effectively utilized both physical and analytical equations to encapsulate the dynamics of

electrochemical reactions, alongside the electronic and ionic characteristics of materials, and

the kinetics of gas flow, into comprehensive physical models. The scope of these models extends

from the simplistic zero-dimensional (0-D) approaches to the more complex three-dimensional

(3-D) models, each tailored to address distinct investigative goals as highlighted by K. Wang

et al. [42]: the 0-D models are the simplest, treating the SOFC as a continuously stirred tank

reactor (CSTR) without spatial variations, ideal for quick performance estimates and initial

design studies; 1-D models add complexity by considering variations along the flow direction of

the fuel or air, useful for understanding gradients in temperature, concentration, and potential.

Among these models its meaningful for this thesis to cite the work of Zaccaria et al [43, 44], who

have used a real-time 1-D model to simulate the effects of voltage degradation in the cell, where

different mechanisms are summarized in simple empirical expressions that relate degradation

rate to operating conditions (current density, fuel utilization, and temperature) on a localized

basis; 2-D models incorporate variations in two dimensions, providing detailed insights into

the distribution of variables across the cell, including edge effects and channel-to-channel

variations; 3-D models consider all three spatial dimensions, capturing complex interactions

within the cell and offering a detailed understanding essential for optimizing cell design and

performance. In the context of developing online diagnostic tools, models with lower dimensions
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(0-D and 1-D [45, 46, 47, 48, 49, 50]) are preferred owing to their reduced computational demands

compared with their higher-dimensional counterparts (2-D and 3-D). Despite this, models of

higher dimensions are invaluable for understanding the operational dynamics of fuel cells

across various geometric configurations and are instrumental in generating training datasets for

non-transparent (black-box) modeling approaches or neural networks algorithms [51, 52, 53,

54].

For the scope of this thesis, only 0-D dimensional models are discussed, since the primary focus

of the thesis is the optimization analysis considering a 0-D model case.

2.5.1 0-D modelling

Among the spectrum of models utilized for SOFC analysis, the 0-D model stands out for its

simplicity. It operates under the principle that dimensions and spatial variations are disregarded.

This model fundamentally transforms input variables into output variables without considering

spatial differentiation. The simplification of 0-D models is achieved through the adoption of

theoretical assumptions and the integration of empirical data. Within the framework of a SOFC

system, the discrete components such as compressors, heat exchangers, valves, partial oxidizers,

and systems for the removal of contaminants are represented using distinct ’black box models’.

These models function independently, each simulating the specific element it represents without

accounting for spatial dimensions. This approach allows for the modular analysis of the SOFC

system, facilitating the understanding and optimization of each component’s performance in

isolation.

From the literature there are many 0-D model proposed for monitoring stack performance:

Costamagna et al. [55] proposed macroscopic finite equations that expressed a balance between

inlet and outlet flows of mass and energy in each component of the group; under suitable

assumptions, they allowed the evaluation of the average values of the physical-chemical vari-

ables of each components and the electrochemical performance of the group itself; Peters et al.

assumed constant temperature and approximated the overall cell resistance from experimental

measurements [56]; Becker et al.’s model [57] added deviation of an equilibrium potential and

implemented an analytical expression for an activation overpotential, an empirical area specific

resistance for an ohmic overpotential, and a limiting current density for a concentration over-

potential; Torii et al. came up with a model which assumed internal reforming at equilibrium

under the supposed operating temperature [58]; Campanari [59] and Park et al. [60] adopted em-

pirical current–voltage data from experiments; Ni et al. also applied analytical expression-based

electrochemistry, and the cell geometry is especially considered during activation overpotential

calculation [61]; Fallah et al. assumed constant operating temperature and equilibrium for

internal reforming [62]; Rokni worked on a dynamic network analysis tool given with fixed inlet

and outlet gas temperature [63]; Chitsaz et al. introduced equations for equilibrium internal

reforming and externally given temperature difference [64].
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2.5.2 Degradation modelling

When dealing with SOFC modeling, also a model for the degradation mechanisms should be

carefully built to address performance decreases over time. This modeling analysis can be done

both at the system and at the stack levels.

Stack level degradation takes into account all the stressors and operating parameters that

have a direct and indirect influence on the degradation and performance reduction, often in

conjunction with the interaction between each of them. Peng et al. [65] have resumed some of

the most relevant prediction models that are built to predict degradation performance, Table 2.3

shows a list based on his work. There are mainly four different approaches that are currently

used to predict future degradation trends:

• Model-based approaches: The model-based approach characterizes the progression of

SOFC performance through the development of a physical model. This model forecasts the

system’s degradation by emulating the microscopic parameters and material properties

intrinsic to the SOFC. Employing this model-based prediction methodology enables the

identification of voltage degradation trends over extended periods. Nevertheless, the

efficacy of this prediction technique is influenced by two primary factors. Initially, the

accuracy of mechanism models is compromised by an incomplete comprehension of

the degradation processes occurring within electrodes, electrolytes, interconnects, and

seals. Additionally, there is a challenge in accurately replicating the complex connection

associated with the materials, their fabrication, operational conditions, and subsequent

degradation. Constructing these models necessitates the establishment of numerous

presuppositions, which may render the predicted degradation overly idealized.

• Data-based approaches: data-based prediction uses black-box models to understand

system behavior through analysis of sensor monitoring data, aiming to forecast future

system states. This approach does not need a physical comprehension of the system’s

operations. Thanks to its superior adaptability and precision, the data-based prediction

technique offers a practical solution for real-time analysis and forecasting and is swiftly

advancing. Nevertheless, these approaches encounter specific limitations: the precision

of data-driven models is contingent upon the volume of training data, the acquisition of

which can be both costly and time-intensive. Secondly, the integrity of the training data

significantly influences the algorithm’s accuracy; ideal training datasets should encap-

sulate the system’s degradation trends. Another issue is that the efficacy of data-driven

algorithms is around the judicious selection of suitable algorithmic structures and param-

eters, which in turn impacts the feasibility of employing data-based strategies in practical

scenarios.

• Image-based approaches: Image analysis methods offer a robust and accurate means

for predicting performance degradation in SOFC systems. This technique adeptly cap-

tures the microscopic characteristics, mechanical attributes, and thermal properties of

SOFCs, utilizing performance parameters derived from images to quantify degradation

phenomena. Initially, this approach uses advanced techniques such as SEM, Transmission

Electron Microscopy (TEM), and Focused Ion Beam (FIB) methods to capture images of
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SOFC microstructure. Subsequent processing and quantitative analysis of these images

yields detailed insights, including phase fractions, grain and particle sizes, compositional

shapes, spatial phase arrangements, and other descriptive characteristics. This informa-

tion facilitates a comprehensive analysis of SOFC degradation by examining the internal

microstructure. With respect to the model-based and data-based prediction methods,

image analysis stands out for its simplicity and efficacy and is often used as a validation of

previously mentioned approaches. The primary limitation of the image-based strategy lies

in the high cost of the requisite equipment, which can significantly inflate the expenses

associated with system performance evaluations. Moreover, this method predominantly

allows for the analysis of system interiors post-shutdown, thereby relegating its application

to offline assessments of SOFC performance degradation.

• EIS-based approaches: EIS operates through the introduction of a sinusoidal current into

the SOFC system and the measurement of the resultant voltage response. The relationship

between the observed voltage and the input current delineates the system’s electrochem-

ical impedance, a metric that can inform predictions about the system’s performance

variations. However, employing EIS for SOFC degradation forecasting comes with notable

drawbacks: firstly, the EIS process itself can influence SOFC performance during its op-

eration. Secondly, it necessitates extra equipment, thereby elevating the overall system

costs.

System level degradation takes into account also the performance decrease of other units that

are present in the BoP of the SOFC stack, such as fuel processing units, air supply systems,

heat exchangers, inverters and power conditioning units, water management systems, control

systems, and thermal insulation. Different analyses are made in the literature at the system level

[26, 66, 67].

2.6 SOFC performance optimization

Nowadays, given the significant capital costs associated with fuel cell stacks, computational

modeling has emerged as a crucial tool for the analysis of SOFCs in terms of dynamics and

control. Studies on hybrid systems, in particular, have shown high performance and flexibility

under both full-load and part-load conditions, as well as during transitional phases, when

compared to standalone fuel cell systems. Optimizing SOFC performance needs to achieve

various goals, including the harmonization of components, temperature management, and load

adaptation. It’s important to distinguish between dynamic controls and supervisory controls,

with the latter often utilizing optimization techniques for better performance. It’s also important

to mention that in this section, performance optimization does not take into account any

improvement that can be made at the design level since the focus of the thesis is to develop an

online strategy to control and optimize system performances.

In the literature, emphasis has often been placed on basic control mechanisms for SOFC systems.

Key objectives for effective performance control include robust load adaptation, high efficiency

under varying operational conditions, and extended component lifespan through minimized
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Table 2.3: Different studies on SOFC degradation prediction, adapted from [65]

Prediction
Method

Predicted Objects Models / Algorithm Ref.

Model-based Predicting future degradation trends
and remaining service life of SOFC
stack.

Nonlinear SOFC power stack
integration model

[68]

Model-based Predicting the long-term performance
degradation process of SOFC stack un-
der accelerated operating conditions.

SOFC multi-physics field
degradation model

[69]

Model-based Predicting the effect of operating pa-
rameters on SOFC output voltage in
the presence of degradation.

1D real-time SOFC model [43,
44]

Model-based Predicting the effect of Ni coarsening
on SOFC performance.

Transient multi-physics field
model for SOFC

[70]

Data-based Predicting the degradation perfor-
mance of SOFC systems.

Double-layer LSTM model [71]

Data-based Predicting the SOFC performance
degradation caused by Cr poisoning.

Machine learning combined
with relaxation time (DRT)
distribution

[72]

Data-based Predicting the output voltage trajec-
tory of SOFC.

Neural network (NN) algo-
rithm

[54]

Data-based Predicting the impact of uncertainty
in SOFC during degradation.

An approximate randomized
algorithm based on Taylor se-
ries expansion

[73]

Image-based Detecting the degradation of SOFC sys-
tem performance due to chromium
poisoning and nickel agglomeration.

Image line autocorrelation
function analysis

[74]

Image-based Predicting the degradation of Ni/YSZ
anodes in SOFCs are related to the ag-
gregation of metal particles.

Developed image analysis
technique

[75]

EIS-based Quantification of the particle size,
phase ratio, and TPB point distribu-
tion of the anodes

EIS with SEM and two-
dimensional image analysis
technique

[76]

EIS-based Prediction of the performance degra-
dation of a single cell when operating
under predetermined conditions

EIS with DRT and ECM [77]
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degradation. Critical control variables identified in the literature include fuel cell temperature

and fuel flow. For basic level controls, a combination of proportional-integral-derivative (PID)

controllers and feedforward strategies is commonly employed to mitigate temperature and fuel

utilization fluctuations, thereby ensuring quick responses to load changes [78, 79]. Performance

control has expanded to include the regulation of SOFC power output, fuel efficiency, cell tem-

perature, and gas turbine operations. Innovative approaches, such as reversible operations to

prevent degradation, offer promising methods for enhancing durability and potentially decou-

pling cell temperature from current density variations [80], [81]. Furthermore, various control

architectures are explored to prevent fuel starvation and excessive temperature changes during

load transitions. Aguiar et al. introduced a dual-loop control system comprising a supervisory

controller that sets air and fuel flows based on power demand, and a PID controller that adjusts

the airflow to maintain constant exhaust gas temperature, demonstrating a sophisticated ap-

proach to dynamic power demand management and operational stability [82]. Multi-variable

model predictive control is used to minimize thermal stresses in an SOFC and improve lifetime

[83, 84]. Zaccaria et al. [85] compared several different operating strategies to offset or mitigate

cell degradation in a standalone SOFC stack and a hybrid system (with a gas turbine), discussing

the benefits and limitations of such strategies in terms of fuel cell durability. This control

mechanism is applied to a real-time, dynamic SOFC model for hardware-based hybrid system

simulations. The fuel cell is tested under constant current, voltage, or stack power, and the gas

turbine under off-design or constant power modes. The hybrid system provided greater control

flexibility and extended lifespan compared to the standalone SOFC. Maintaining constant cell

voltage in the hybrid system at constant power could extend operational life beyond 100,000

hours, offering superior performance. Allowing power degradation in the standalone system

could extend its life by 70% but reduce electrical power output.

2.6.1 Non-Linear Model Predictive Control

The Non-Linear Model Predictive Control (NMPC) theory introduction is essential for the pre-

dictive analysis in Chapter 4. NMPC is a sophisticated technique for managing systems with

nonlinear behaviors and constraints, differing from linear methods by solving an optimization

problem that predicts future system outputs. This is particularly beneficial for SOFC systems

due to their nonlinear interactions and operational constraints [86].

NMPC operates by controlling processes at distinct intervals, measuring the system state x(n)

and applying control inputs u(n) to influence future states. The aim is to align x(n) with a

reference state xr e f (n), minimizing deviations and maintaining proximity to the desired state.

Control input u(n) is often a feedback function u(n) = µ(x(n)), mapping the state x into the

control space U . Predictive control models the system as x+ = f (x,u), constructing a predicted

trajectory of the state using control inputs from u(0) to u(N −1) over a prediction horizon N .

The goal is to adjust u(0), ...,u(N −1) to minimize the deviation from the reference x∗ using a

cost function penalizing state deviation and control effort. The solution to this optimization

provides the control inputs applied in practice. This iterative online approach updates control

inputs based on new measurements, adapting to the latest state. Known also as receding horizon

control, this method continuously adjusts the prediction horizon with new data, reflecting its
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dynamic and predictive capabilities. "Nonlinear" in NMPC indicates that the model f (x,u) can

handle complex, dynamic systems, distinguishing it from linear predictive control.

In this project, NMPC theory is utilized to develop a prognostic algorithm that focuses solely

on future predictions. Unlike a traditional "online" controller algorithm, which continuously

adjusts control actions in real-time, this approach is designed to evaluate and compare the

outcomes of various control strategies. The main goal is to predict and analyze the potential

results of different control methods rather than actively controlling the system in real-time.

2.6.2 Peak power conditions

The dynamic behavior of SOFCs under varying operating voltages is characterized by an initial

increase in current from zero as the voltage decreases from the OCV. This variation leads to a

power output that first escalates to a maximum value before diminishing. The voltage or current

at which this maximum power output occurs is identified as the peak power point. This point is

crucial, as it marks the optimal balance among various operational conditions, such as fuel flow

rate, furnace temperature, and air supply, to achieve peak performance. Efficiency in this context

Figure 2.4: Typical fuel cell polarization and power curves [87]

is defined as the quotient of the electrical power output (Pel ) and the lower heating value (LHV)

input rate of the fuel (P f uel ), a parameter significantly influenced by the fuel’s composition and

flow rate. The relationship between electrical power and fuel efficiency is direct, with efficiency

(η) being directly proportional to the ratio of Pel to P f uel . Consequently, the cell’s efficiency

mirrors the power output behavior, peaking concurrently with it at the peak power point. This

point, therefore, represents the most energy-efficient operational condition.

Notably, the ideal long-term operating condition might deviate towards lower currents than

those at the peak power point to mitigate degradation rates, which are intricately linked to the

operating environment. Thus, the peak power point also functions as a critical benchmark for

22



Fundamentals of SOFCs Chapter 2

control strategies managing operating parameters. As discussed by Li et al. [51]:

• peak power of a generic SOFC at 800 °C is higher than at 720 °C regardless of fuel flow-rate

or ohmic resistance value;

• voltage at peak power point is higher at higher temperatures and H2 flowrates, and lower

ohmic resistances;

• efficiency at peak power, is higher at higher temperatures but lower H2 flowrates and lower

ohmic resistances;

• fuel utilization at peak power displays similar trends as efficiency.

This demonstrates the highly complex interplay of each operating factor in managing SOFC

performance: to optimize SOFC performances one should consider not only each factor’s impact

but also their interaction with each other. There might be not a single best control strategy but

several different possibilities have to be taken into account.

2.6.3 Online control strategies

Control strategies in SOFC systems are crucial for optimizing performance, enhancing efficiency,

and ensuring longevity minimizing the degradation mechanism’s impact. These strategies must

carefully balance power output, fuel utilization, and thermal management. This section outlines

six different control strategies: fixed power, maximum power/efficiency, fixed voltage, reversible

cycling, fixed current, and extended lifetime each serving different operational goals. Each of

these strategies has its advantages and applications, and the choice among them depends on the

specific requirements of the SOFC system, including its integration into broader energy systems,

operational flexibility, and efficiency goals.

It’s important to mention that control strategies here do not take into account any design-onset

approach, but only "online" ones. When dealing with this kind of approach the optimization

is not that simple and has to take into consideration each lower and upper constraint of the

operating variables and possibly the fact that these constraints are not fixed and should be

carefully tuned to each operating point.

Fixed power output operations

The fixed power strategy aims to maintain a constant power output from the SOFC system. This is

a common scenario since in real applications the power demand is usually fixed. This approach

is often used in applications where the energy demand is stable or predictable [79, 85]. The

control system would simultaneously adjust H2 flowrate and operating voltage to keep the actual

power to the set value while maintaining suitable H2 fuel flowrate so that the cell operates at a

peak power point. This strategy prioritizes meeting energy demand but requires sophisticated

control algorithms to manage the complex interplay of factors affecting SOFC performance.

Other possible variations of this strategy are also possible since one can maintain a constant

23



Fundamentals of SOFCs Chapter 2

current voltage and let other operating factors vary or can maintain a constant temperature

of the cell and let other operating factors vary depending on the operating environment and

objectives.

Fixed input current operations

Under a fixed current strategy, the SOFC operates at a constant current. This method is beneficial

for applications requiring a steady current supply, such as in certain types of electrochemical

processes or in integration with other energy systems where current stability is paramount.

The fixed current operation simplifies the control system but necessitates close monitoring of

voltage and temperature to prevent conditions that could lead to accelerated degradation or

thermal stress within the SOFC.

Fixed output voltage operations

The fixed voltage strategy involves maintaining a constant voltage across the SOFC. This ap-

proach is ideal for maximizing efficiency and is particularly relevant when the SOFC is used

in conjunction with power electronics that require a stable voltage input. Operating at a fixed

voltage can optimize fuel utilization and reduce the risk of damaging overpotentials. However,

this strategy demands precise control over the fuel input and air supply to adapt to changes in

power demand and to mitigate the effects of cell degradation over time. A common scenario

when this strategy is adopted is to increase the current density and so the temperature of the

cell during SOFC operation, to contrast degradation mechanisms. At the same time, it should

be noted that this is a very simplified approach that does not take into account degradation

mechanisms. Several analyses are conducted in the literature that proved that temperature

is highly impacting the degradation ratio, more than the current density increase itself [88].

Temperature should be regulated across the cell and system to ensure uniform heat distribution

and prevent thermal gradients that can lead to mechanical stresses and damage.

Minimized degradation rate operations

Optimizing the system to minimize degradation rate at stack or at system level is equivalent

to maximize its life-expectancy: this operating approach is centered on enhancing the opera-

tional longevity of SOFC systems by adapting operational parameters in response to real-time

performance and degradation data [89, 90, 91, 68]. With this approach it is possible to integrate

continuous monitoring of critical performance metrics, such as cell voltage, temperature pro-

files, and electrochemical impedance, to identify signs of wear or degradation at their onset.

Using predictive analytics and machine learning techniques, the system anticipates potential

degradation scenarios and dynamically modifies operational parameters to counteract these

effects. Adjustments may include the optimization of fuel and air flows, modification of the

temperature set points, or alterations in the load distribution, all aimed at mitigating stressors

that accelerate degradation, such as thermal cycling, electrode deterioration, or contaminant

buildup. Combined with robust computational models, this strategy enables the SOFC system
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to proactively adapt to changing conditions and internal wear, thereby maximizing the cell’s

useful life while maintaining optimal efficiency and performance.

Maximum power operations

The maximum power operation approach is designed to ensure that the SOFC system or SOFC

stack operates at its peak power output point under given conditions. This strategy dynamically

adjusts the operating parameters, such as fuel flow rate and air supply, to align with the SOFC’s

peak power point. This operating mode is particularly advantageous in scenarios where the

power demand is variable, and the system needs to adapt efficiently to these changes without

compromising on performance or fuel efficiency. In maximum power operation, the control

system uses real-time monitoring and predictive models to forecast the optimal operating

conditions that will yield the highest power output. This involves a complex balance between

maintaining high efficiency and avoiding conditions that may accelerate degradation or re-

duce the lifespan of the SOFC. The strategy is complex, as it must account for the nonlinear

characteristics of SOFC performance and the varying external demands placed on the system.

Maximum efficiency operations

The maximum efficiency operation approach aims to maximize the efficiency of the SOFC

system or SOFC stack. This involves optimizing the operating parameters to ensure the best

possible fuel utilization and minimal energy losses. It is important to note that peak power

conditions do not necessarily coincide with peak efficiency conditions at the system level; in fact,

maximizing efficiency often requires operating at conditions that do not produce the highest

power output. This can include lower fuel flow rates and different air supply configurations that

are optimized for efficiency rather than power. This approach ensures that the SOFC system

operates more sustainably, with reduced fuel consumption and lower emissions, but may not

always meet the peak power demands.

Reversible cycling operations

The reversible cycling strategy is relevant to reversible SOFCs (rSOFCs), functioning as fuel cells

to generate electricity from hydrogen and as electrolyzers to produce hydrogen from water

using electricity. This dual role allows flexible energy management, enabling power generation

during high demand and hydrogen storage when surplus electricity is available from renewables.

This method mitigates temperature fluctuations and reduces degradation from impurities and

nickel migration. Alternating between electrolysis and brief fuel cell modes maintains a stable

thermal profile. Skafte et al. showed that rapid reverse pulses to the direct current can decouple

hydrogen production rate from cell temperature [81]. Graves et al. demonstrated this method

can eliminate degradation, likening it to battery recharging [80]. This strategy needs advanced

management systems to switch modes based on real-time energy prices and demand forecasts.

Transitions must be controlled to maintain efficiency, reduce SOFC wear, and respond to energy

changes.
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3 Model of CPOX-based SOFC system

In this chapter the main model of the CPOX-based SOFC system is given and discussed in detail.

This chapter aims to bridge the fundamentals insights gained from the previous chapter, with

the practical outcomes and analyses presented in Chapters 4,5, and 6.

This chapter is divided into several key sections, each focusing on a specific aspect of the study:

• A first general overview of the system with a degree of freedom analysis evidencing the

operating parameters that are relevant to SUNFIRE system.

• The analytical techniques employed to model the system behavior, encompassing each

subsystem.

• A detailed exposition of the degradation model employed together with the explanation of

its parameter estimation process.

• A detailed techno-economic analysis of the SUNFIRE system aims to evaluate its prof-

itability, providing the base equations for subsequent optimization analysis.

3.1 Introduction

As depicted in Figure 3.1, the SOFC system developed primarily consists of the following compo-

nents:

1. A 57-active-cell SOFC stack with an electroactive area of 127.8cm2, which generates

between 650 to 850 W of power under nominal conditions.

2. A catalytic partial oxidation reactor (CPOX).

3. An afterburner to combust the unreacted fuel.

4. A startup burner for temperature regulation inside the stack.

5. An air heat exchanger designed to heat up the sweep air for the stack.
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Figure 3.1: Simple flowsheet diagram of the Sunfire Home 750 SOFC system, developed by
Sunfire Fuel Cells GmbH [92].

6. An air mixing valve to control the ratio of not superheated air.

7. A water heat exchanger for waste heat recovery.

In the figure blue variables represent the system inputs (manipulated variables) and red variables

denote the output measurements (measured variables), WCH4 is the methane blower workload

(%), Wair,cpox is the CPOX air blower workload (%), Wair,stack is the stack air blower workload (%),

Vratio is the air mixing ratio indicating the ratio of air bypassing the air heat exchanger, and WH2O

is the water pump workload (%). The Vr ati o represents the portion of the input cathode blower

air flow rate that is directed to the startup burner, while the remaining air flows through the air

HEX.

Given the complexity of the Sunfire H750 module, where electrical and CHP (Combined Heat

and Power) efficiencies serve as the target metrics, the system incorporates six adjustable inputs

or manipulated variables. These include the flow rates of methane, air to the CPOX process, air to

the stack cathode, water, the stack current, and the valve opening ratio. The control setpoints for

these variables, managed by low-level Proportional-Integral (PI) controllers, act as the decision

variables or degrees of freedom for optimization efforts. Rather than directly measuring water

and gas flow rates, the model simplify the flow rate calculation with linear conversion from the

work load of the blowers pumps:

q̇CH4 = WCH4 ×4.5[NL/min]

q̇air,cpox = Wair,cpox ×16[NL/min]

q̇air,stack = Wair,stack ×342[NL/min]

q̇H2O = WH2O ×5[NL/min]

(3.1)

q̇CH4 is the methane flow rate in NL/min, q̇air,cpox is the airflow rate for the CPOX in NL/min,

q̇air,stack is the air flow rate for the stack in NL/min, and q̇H2O is the liquid water flow rate for waste

heat recovery in NL/min. The system’s outputs are the CPOX outlet temperature, superheated air

temperature (at the air heat exchanger outlet), stack voltage (which includes power consumption

by the blowers and pumps), stack outlet temperature, burner outlet temperature, and water

outlet temperature. Calculations of air and fuel utilization rates, electric power output, and
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Table 3.1: Set of manipulated and measured variables for the CPOX-SOFC system in Fig. 3.1

Measured variables Manipulated variables
CPOX temperature (Tcpox ) Natural gas blower workload (WC H4 )
SOFC stack voltage (Ust ack ) CPOX air blower workload (Wai r,cpox )
SOFC stack temperature (Tst ack ) Electrical current (I )
Burner outlet temperature (Tbur ner ) Cathode air blower workload (Wai r,st ack )
HEX temperatures (Thex,hot ,Thex,cold ) Air-mixing valve ratio (Vr ati o)
WHEX temperatures (Twhex,hot , Twhex,cold ) Water pump workload (WH2O)
Startup burner temperature (Tst ar tup ) Time (t)
Mixed air temperature (Tai r,mi x )
Carbon-to-oxygen ratio (CO)
Air utilization (AU )
Fuel utilization (FU )

efficiencies (both electrical and CHP) derive from these input and output measures. Detailed

system modeling is elaborated upon subsequently.

3.2 DoF analysis

This section is written based on the investigation conducted by Colombo et al. [93], tailored

to the specifics of the SUNFIRE system. Degradation and failure mechanisms are significantly

influenced by constraints imposed at the system, component, or part levels due to design choices

or operational policies. These constraints are considered to be rigid, which are inflexible and

can not be exceeded. The system’s high degree of freedom results in a limited set of manipulated

variables available for adjusting setpoints to regulate the operational output parameters. Table

3.1 presents the array of manipulated and measured variables identified for the SOFC system.

Notably, the manipulated variables correspond to the system’s independent variables, or DoF.

This means that 7 distinct values uniquely define the system’s operating conditions. However,

the high number of degrees of freedom is limited by the complex interactions among these

variables and their respective constraints.

The constraints are given by the operational and material limitations specific to each component

of the SOFC system, resumed in Table 3.2. The breach of these constraints can precipitate irre-

versible damage, including operating under conditions that exceed these bounds for extended

periods or even briefly, potentially compromising system safety and performance.

3.3 System modelling

To develop a control strategy and optimize it to find the best operating point, the CPOX-based

SOFC system is modeled with a simplified 0-D approach. A pre-made model is used, built by

Yu H. for the RUBY project [92] and it is described in the following paragraphs. This approach

involves the modelization of each one of the single units: CPOX reactor, SOFC stack, burner, air

heat exchanger, and water heat exchanger which are characterized at least by both mass and

energy balances. This phase is fully managed using a code developed with MATLAB software

[94].
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Table 3.2: Operational constraints for process units of the CPOX-SOFC system in Fig. 3.1 (* are
system manipulated variables).

Process
Unit

Constraint Min.
Value

Max.
Value

Potential Effect

CPOX Temperature 650 °C 850 °C Safety of operation
Air CPOX blower
workload*

- 80% Avoiding non-linear relation-
ship between workload and air
flow rate

SOFC Temperature 650 °C 865 °C Performance loss, failure due
to thermo-mechanical stresses
and chemical interaction

Voltage 40 V 60 V Nominal operation limit
FU - 80% Fuel starvation, efficiency loss
AU - 25% Performance loss due to air dif-

fusion in the cathode deteriora-
tion

CO - 95% Performance loss due to carbon
deposition

Current* - 24 A Higher concentration polariza-
tion, faster cell degradation

Air temperature 650 °C 850 °C Safety of operation
Air stack blower
workload*

- 80% Avoiding air cooling down stack
temperature

Burner Outlet temperature 700 °C 1050 °C Safety of operation
St-Burner Temperature 25 °C 700 °C Safety of operation
Air HEX Outlet temperature

(hot)
100 °C 700 °C Safety of operation

Outlet temperature
(cold)

650 °C 860 °C Safety of operation

Valve opening ratio* - 45 % Safety of operation
Water
HEX

Outlet air tempera-
ture

25 °C 320 °C Safety of operation

Outlet water temper-
ature

25 °C 60 °C Safety of operation
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3.3.1 CPOX reactor

Both mass balance and energy balance within the CPOX reactor are considered, in line with

established literature [95]. Distinct from the conventional methane steam reforming reactions,

the partial oxidation of methane within CPOX involves four principal reactions: methane com-

bustion, steam reforming of methane-producing carbon monoxide and hydrogen, and dry

reforming of methane-yielding hydrogen and carbon monoxide. The reactions can be resumed

as follows:

Methane combustion

C H4 +2O2 ⇒CO2 +2H2O (∆H(298K ) = −802 k J/mol ) (3.2)

Methane steam reforming

C H4 +H2O ⇀↽CO +3H2 (∆H(298K ) = 206 k J/mol ) (3.3)

Methane dry reforming

C H4 +CO2 ⇀↽ 2CO +2H2 (∆H(298K ) = 247 k J/mol ) (3.4)

CPOX is assumed to behave as an ideal continuous stirred-tank reactor (CSTR), characterized

by uniform composition and temperature, indicative of a single thermal body with consistent

internal and outlet conditions.

The mass balance accounts for all component flow rates entering CPOX, specifically methane,

oxygen, and nitrogen. Based on empirical data from Sunfire, the outlet gas composition is

predominantly hydrogen and carbon monoxide, with no residual oxygen. Assumptions made to

simplify the mass balance include steady-state conditions at the transition between operating

states and complete reaction conversions. If excess oxygen is present after the primary reactions,

it is consumed by further combustion to produce steam, represented as:

H2 +0.5O2 → H2O. (3.5)

The mass balance, therefore, considers two scenarios: surplus O2 and insufficient O2, with the

inlet flows delineated as follows:

nC H4
i n,cpox =

qC H4

22.4 ·60
(mol/s) (3.6)

nO2
i n,cpox =

qai r,cpox ·21%

22.4 ·60
(mol/s) (3.7)

nN2
i n,cpox = ·qai r,cpox ·79%

22.4 ·60
(mol/s) (3.8)

When the amount of O2 is not enough to convert C H4 into CO and H2, there will be C H4 left
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and the mass balance can be expressed as below:

nH2O
out ,cpox

nC H4
out ,cpox

nCO
out ,cpox

nH2
out ,cpox

nCO2
out ,cpox

nO2
out ,cpox

nN2
out ,cpox


=



0 0 0

1 −2 0

0 2 0

0 4 0

0 0 0

0 0 0

0 0 1




nC H4

i n,cpox

nO2
i n,cpox

nN2
i n,cpox

 (3.9)

When the amount of O2 is enough to convert C H4 into CO and H2, the mass balance can be

expressed as below:

nH2O
out ,cpox

nC H4
out ,cpox

nCO
out ,cpox

nH2
out ,cpox

nCO2
out ,cpox

nO2
out ,cpox

nN2
out ,cpox


=



−1 2 0

0 0 0

2 0 0

3 −2 0

0 0 0

0 0 0

0 0 1




nC H4

i n,cpox

nO2
i n,cpox

nN2
i n,cpox

 (3.10)

It’s important to note that, in the context of this project, CO is capped at an upper limit of 0.95,

which ensures an excess of oxygen (since the condition CO < 1 is always met). Consequently,

the initial mass balance presented is primarily intended to enhance the model’s robustness.

Regarding the energy balance equations, thanks to the hypothesis of CSTR, the CPOX’s interior

temperature is considered to be equal to the outlet temperature. The design and placement

of CPOX within the system enclosure necessitate the consideration of heat losses through

convection to both the stack and the surrounding environment. These convective losses are

evaluated based on empirical data from Sunfire and UNISA, where the ambient conditions are

inferred from the temperature readings of the system’s internal printed circuit board (PCB).

Thermodynamic data calculation function, Gas_Energy, is designed for gas-phase species with

the capability to determine the change in enthalpy, standard formation enthalpy, standard

entropy, and Gibbs energy for a specified gas at a given temperature. Polynomial coefficients for

the heat capacity as a function of temperature are utilized, in the format C po = A+B t +C t 2 +
Dt 3+E/t 2. These coefficients are sourced from the NIST Chemistry WebBook [96]. The resulting

enthalpy is expressed as ∆H298.15K = At +B t 2/2+C t 3/3+Dt 4/4−E/t +F −H , and the standard

entropy is calculated via S = A ln(t)+B t +Dt 3/3−E/(2t 2)+G , where t is the temperature in

kelvin divided by 1000. The function accounts for different temperature intervals and utilizes a

persistent storage mechanism for the coefficients to enhance computational efficiency.

The energy balance equation encapsulates the net energy flux within the CPOX, accounting for

both the enthalpic contributions of the inlet and outlet streams and the thermal losses through
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convection to the stack and ambient. This energy balance is articulated as follows:

mcpoxCp,cpox
dTcpox

d t
=

∑
i

ni
in,cpoxH i

in,cpox(Tin)

−∑
j

n j
out,cpoxH j

out,cpox(Tcpox)

+Qloss,cpox (3.11)

Qloss,cpox =F cpox
conv,stack × (Tcpox −Tstack)

+F cpox
conv,pcb × (Tcpox −Tpcb) (W)

where Qloss,cpox is the sum of heat losses due to convection, calculated as the product of the

estimated convection coefficients with the temperature differentials between the CPOX, the

stack, and the PCB, indicative of the ambient temperature. Here, mcpox denotes the mass of

the CPOX, Cp,cpox its heat capacity, Tcpox the temperature, Hi n,cpox,i (Ti n) the enthalpy of each

inlet gas species i , Hout ,cpox, j (Tcpox ) the enthalpy of each outlet gas species j , with ni n,cpox,i

and nout ,cpox, j representing the molar flow rates of the inlet and outlet gases, respectively.

3.3.2 SOFC

The modeling of SOFC encompasses three main aspects: the electrical output of the stack, the

conservation of mass, and the thermal energy management. Mirroring the approach taken with

the CPOX reactor, the SOFC stack is conceptualized as a CSTR.

The primary electrochemical reactions within the stack, which are integral to its functionality,

are represented as follows:

H2 + 1

2
O2 → H2O

CO +H2O →CO2 +H2,

C H4 +2H2O →CO2 +4H2

(3.12)

In terms of mass balance, the model accounts for the flow rates of all constituents entering and

exiting the stack. The anode inlet stream is the direct continuation of the CPOX outlet, while the

cathode inlet and the consumed hydrogen are characterized by the following expressions:

nH2
react =

Ncell

2F
I (mol/s)

nO2

in,cath,hex =
qair,stack ×21%× (1−Vair)

22.4×60
(mol/s) (mol/s)

nN2

in,cath,hex =
qair,stack ×79%× (1−Vair)

22.4×60
(mol/s)

nO2

in,cath,valve =
qair,stack ×79%×Vair

22.4×60
(mol/s)

nN2

in,cath,valve =
qair,stack ×79%×Vair

22.4×60
(mol/s)

(3.13)
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where nH2
react is the amount of hydrogen that has undergone reaction, Ncell represents the total

number of cells within the stack, and F stands for the Faraday constant. The term nO2

in,cath,hex
specifies the molar flow rate of oxygen as it enters the cathode from the air heat exchanger, while

nN2

in,cath,hex pertains to the analogous molar flow rate for nitrogen. Furthermore, nO2

in,cath,valve

and nN2

in,cath,valve correspond to the molar flow rates for oxygen and nitrogen, respectively, that

bypasses the usual path and are directed through the startup burner. Given the intricate compo-

sition of the exhaust gas from CPOX and the swift nature of the electrochemical reaction, several

simplifications are introduced as follows:

• The system achieves a steady-state mass balance during the shift between varying opera-

tional states due to the rapid kinetics of the electrochemical processes, which adjust within

a second upon any change in operational conditions. This implies an almost immediate

alteration in the chemical quantities, with the system’s behavior primarily influenced by

the thermal balance and the related temperature shifts.

• C H4 and CO are transformed into H2 and CO2 through steam reforming (SR) and water-

gas shift (WGS) reactions before reaching the stack. Based on the electric current and

the steam input rate, three scenarios are delineated, with cases 2 and 3 being a way to

increase the robustness of the model preventing simulation crashes in extreme conditions

of operation:

1. When the total steam generated by the electrochemical reactions combined with the

steam entering the anode exceeds the steam demand for both SR and WGS reactions,

i.e., nH2
react +nH2O

in,an > nCO
in,an +2nC H4

in,an. This indicates the complete conversion of CO

and C H4 into H2 and CO2, allowing for the mass balance to be articulated as follows:



1 1 −2 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−1 0 4 1 1 0 0 0 0 0

0 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

−0.5 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1





nH2
react

nH2O
in,an

nC H4
in,an

nCO
in,an

nH2
in,an

nCO2
in,an

nO2
in,an

nN2
in,an

nO2

in,cath

nN2

in,cath



=



nH2O
out,an

nC H4
out,an

nCO
out,an

nH2
out,an

nCO2
out,an

nO2
out,an

nN2
out,an

nO2

out,cath

nN2

out,cath


(3.14)

2. The second scenario outlines when the combined steam generation from electro-

chemical reactions and the anode inlet steam rate surpasses the demand for the WGS

reaction yet falls short for both the WGS and SR reactions,i.e., nH2
react +nH2O

in,an > nCO
in,an

and nH2
react +nH2O

in,an −nCO
in,an < 2nC H4

in,an. The outlet steam flow, crucial for the Nernst
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equation, is maintained at 10−6 mol/s.



10−6

0

0

0

0

0

0

0

0

0



+



0 0 0 0 0 0 0 0 0 0

−0.5 −0.5 1 −0.5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 0 −1 1 0 0 0 0 0

0.5 0.5 0 0.5 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

−0.5 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1





nH2
react

nH2O
in,an

nC H4
in,an

nCO
in,an

nH2
in,an

nCO2
in,an

nO2
in,an

nN2
in,an

nO2

in,cath

nN2

in,cath



=



nH2O
out,an

nC H4
out,an

nCO
out,an

nH2
out,an

nCO2
out,an

nO2
out,an

nN2
out,an

nO2

out,cath

nN2

out,cath


(3.15)

3. In the third scenario, the combined steam generation is inadequate for the WGS

reaction, indicating incomplete conversion of CO. The outlet steam rate is again

set at 10−6 mol/s for application in the Nernst equation and the overall system of

equation is described as follows:



10−6

0

0

0

0

0

0

0

0

0



+



0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

−1 −1 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

1 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

−0.5 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1





nH2
react

nH2O
in,an

nC H4
in,an

nCO
in,an

nH2
in,an

nCO2
in,an

nO2
in,an

nN2
in,an

nO2

in,cath

nN2

in,cath



=



nH2O
out,an

nC H4
out,an

nCO
out,an

nH2
out,an

nCO2
out,an

nO2
out,an

nN2
out,an

nO2

out,cath

nN2

out,cath


(3.16)

It is important to note that due to the constraints on CO, FU, and current, the mass balance

consistently aligns with the first case. The second and third cases are included to enhance the

model’s robustness during the optimization process. Regarding the energy balance and taking

into account the assumption of CSTR, the temperature at the stack’s outlet is assumed to be

homogenized with the internal reactor temperature. Considering the stack’s placement within

the system enclosure, three primary heat loss mechanisms are accounted for (1) convection

heat transfer from the CPOX process, (2) convection heat transfer due to the environmental con-

ditions, and (3) radiative heat loss from the afterburner. Thus, the energy balance is established

by summing the energy inputs and outputs associated with the fluid streams, in addition to the

thermal losses attributable to convection and radiation. The energy balance is formulated as
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follows:

mstackCp,stack
dTstack

d t
=

∑
i

ni
in,anH i

in,an(Tcpox)

+nO2

in,cath,hexHO2

in,cath,hex(Tair)

+nN2

in,cath,hexH N2

in,cath,hex(Tair)

+nO2

in,cath,valveHO2

in,cath,valve(Tstburn)

+nN2

in,cath,valveH N2

in,cath,valve(Tstburn)

−∑
j

n j
out,stackH j

out,stack(Tstack)

−Pstack

−Qloss,stack (3.17)

Qloss,stack =Fstack,conv,cpox(Tstack −Tcpox)

+Fstack,conv,pcb(Tstack −Tpcb)

+Fstack,rad,burn(T 4
stack −T 4

burn) (W)

where mstack represents the mass of the stack, while Cp,stack denotes its specific heat capacity.

The term Qloss,stack encompasses the thermal losses experienced by the stack, which include

convective heat losses from both the Catalytic Partial Oxidation (CPOX) process and the sur-

rounding environment, as well as radiative heat losses from the afterburner system. The specific

enthalpy of the inflowing gases from the CPOX, denoted by H i
in,an(Tcpox), contributes to the

internal energy of the system. Additionally, HO2

in,cath,hex(Tair) and H N2

in,cath,hex(Tair) represent the

enthalpies of oxygen and nitrogen, respectively, coming from the air heat exchanger. The en-

thalpies of oxygen and nitrogen from the air bypass valve are indicated by HO2

in,cath,valve(Tstburn)

and H N2

in,cath,valve(Tstburn), where Tstburn is the operational temperature of the startup burner.

The term H j
out,stack(Tstack) reflects the enthalpy of the stack’s outlet gases. Molar flow rates are

denoted by ni
in,an for the inflow and n j

out,stack for the outflow, with i and j indexing the respective

species of gases at the stack’s inlet and outlet. The coefficients F stack
conv,cpox, F stack

conv,pcb, and F stack
rad,burn

quantify the convective and radiative heat transfer interactions between the stack and the CPOX,

the ambient environment, and the afterburner, respectively.

In evaluating the stacking potential, it is necessary to consider both the Nernst equation, which

accounts for gas concentration and stack temperature, and the current flowing through the

system. The losses in the system are attributed to two primary factors: (1) overpotentials, which

encompass activation overpotentials, oxygen dissociation, electrolyte ohmic losses, gas diffusion,

and ohmic losses from metal interconnectors (MIC), and (2) power losses stemming from

internal electronic devices, air blowers for the CPOX and SOFC, natural gas blower, water pump,

and conversion inefficiencies of the inverter. Rather than individually assessing each component

of overpotential losses, a comprehensive ASR model developed by Sunfire is employed. This

model encapsulates the losses into a single expression, simplifying the computation of the
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stacking potential. The formula for determining the stack potential is as follows:

ASR = A0 exp

(
− Ea

RTstack

)
(Ω · cm2)

Ustack =

(
Unernst − I

Aactive
× ASR

)
×Ncell (V)

Usystem = Ustack −Uloss,dev (V)

Uloss,dev =
Pinv +∑

dev
(
P max

dev ×Wdev
)

I
(V)

(3.18)

where ASR is the area-specific resistance, Unernst is the Nerst voltage, from which the stack

voltage, Ustack, is computed. To speed up the computation, outlet gas compositions are utilized,

which may introduce some level of approximation into the model voltage output. Therefore,

a chosen constant correction factor, knernst, is introduced to adjust for potential deviations in

the gas concentration terms. The electroactive area of the cell, Aactive, is specified as 127.8 cm2,

and the parameters A0 = 2.6×10−4 Ω · cm2 and E A = 72900 J/mol are derived from the fitted

ASR model. The ideal gas constant is denoted by R = 8.314 J·K−1·mol−1. The power loss due

to inverters is represented by Pinv, while P max
dev indicates the maximum power consumption

of various blowers and pumps, and Wdev denotes the workload of the electronic devices. The

expression for the Nernst voltage is as follows:

Unernst = Us −dU1 ×75−dU2 × (Tstack −100)+ RTstack

2F
× ln

 xH2
out,an

xH2O
out,an

×
 xO2

out,cath

knernst

0.5 (3.19)

where standard redox potential is denoted by Us , while dU1 = 846 µV/K and dU2 = 230 µV/K

represent the voltage drops due to temperature increases from room temperature (25 °C) to 100

°C, and from the stack temperature to the evaporation temperature at 1 bar, respectively. The

molar fractions of H2, O2, and H2O in the outlet gases of the anode and cathode are represented

by xH2
out,an, xO2

out,cath, and xH2O
out,an, respectively.

In the analysis of fuel cell performance, two critical indices are the FU and the AU. The AU

indicates the fraction of the oxygen that reacts compared to the total oxygen supplied. These

ratios are essential for determining the efficiency of the fuel cell system. The expressions are as

follows:

FU =
nC H4

reac

nC H4
in,cpox

=
nH2

reac

nH2
in,an

==
Ncell · I

8F ·nC H4
in,cpox

(3.20)

AU =
Ncell ·2I

8F ·nO2

in,cath

(3.21)

36



Model of CPOX-based SOFC system Chapter 3

3.3.3 Burner

In the proposed thermal management system, unreacted fuel from the fuel cell stack is subjected

to post-combustion using the excess air supplied to the cathode. The exothermic nature of the

combustion process generates significant heat, which is subsequently harnessed to preheat the

incoming air to the stack cathode beyond 750◦C and to elevate the temperature of the water

from ambient to approximately 60◦C . These thermal integrations contribute to an enhanced

CHP efficiency for the system. The primary reactions occurring within the combustion chamber

can be described as follows:

H2 + 1

2
O2 → H2O

CO+ 1

2
O2 → CO2 (3.22)

CH4 +2O2 → CO2 +2H2O

The three reactions above are complete, in which case, the mass balance can be expressed as

below:

2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

−2 1 0 1 0

0 0 1 0 1





nC H4
in,cpox

nO2
in,cpox

nN2
in,cpox

nO2

in,cath

nN2

in,cath

 =



nH2O
out,burn

nC H4

out,burn

nCO
out,burn

nH2

out,burn

nCO2

out,burn

nO2

out,burn

nN2

out,burn


(3.23)

To model the thermal dynamics of the afterburner within the system, the CSTR assumption is

adopted under constant pressure with ideal gas behavior, so the temperature at the outlet of

the afterburner (Tburn) is representative of the internal temperature of the chamber. The energy

balance equation, which accounts for the heat contributions and losses in the afterburner, is

essential for understanding its impact on the overall system’s CHP efficiency. The equation is

given by:

mburnCp,burn
dTburn

d t
=

∑
i

ni
in,burnH i

in,burn(Tstack)

−∑
j

n j
out,burnH j

out,burn(Tburn)

−Qloss,burn

Qloss,burn =Frad,stack–burn(T 4
burn −T 4

stack)

+Fconv,stburn–burn(Tburn −Tstburn)

+Fconv,hex–burn(Tburn −Thex) (W)

(3.24)

In these equations, mburn represents the mass of the burner, and Cp,burn is the specific heat

capacity of the burner. The term Qloss,burn indicates the heat losses from the afterburner, includ-
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ing both radiative and convective contributions, denoted by Frad,stack–burn and Fconv,stburn–burn

and Fconv,hex–burn respectively. H i
in,burn(Tstack) signifies the enthalpy of the inflowing gases to the

burner at the stack temperature, while H j
out,burn(Tburn) denotes the enthalpy of the outflowing

gases at the afterburner temperature. The variables ni
in,burn and n j

out,burn are the molar flow rates

of gases entering and exiting the burner, with i and j indexing the specific gas species involved

in the combustion process.

3.3.4 Start-up burner

The start-up burner incorporates the same reaction equations and mass balance considerations

as the general burner, outlined previously. However, it introduces modifications to the energy

balance equation to account for the specific thermal dynamics and heat losses associated with

the start-up process. The primary reactions within the start-up burner’s combustion chamber

are identical to the burner ones, facilitating the same complete combustion process.

Similarly, the mass balance for the start-up burner can be represented by the same stoichiometry

matrix as in Equation 3.23, given the consistent input and output streams within both burner

systems. Therefore, the focus shifts primarily to the adaptations in the energy balance to

accommodate the unique operational parameters of the start-up phase.

The energy balance equation for the start-up burner mirrors that of the general burner, with

specific attention to the loss terms that characterize the initial operational conditions. It is

expressed as follows, analogous to Equation 3.24, but with adjusted loss terms:

mstburnCp,stburn
dTstburn

d t
=

∑
i

ni
in,stburnH i

in,stburn(Tstack)

−∑
j

n j
out,stburnH j

out,stburn(Tstburn)

−Qloss,stburn

Qloss,stburn =Fconv,burn–burn(Tstburn −Tstburn)

+Fconv,stburn–pcb(Tstburn −Tpcb) (W)

(3.25)

In this equation, mstburn and Cp,stburn denote the mass and specific heat capacity of the start-up

burner, respectively. The term Qloss,stburn represents the heat losses from the start-up burner,

which include convective losses to both the main burner (Fconv,burn–burn) and the printed circuit

board (Fconv,stburn–pcb), assuming these are the predominant loss mechanisms during the start-

up phase. The variables ni
in,stburn and n j

out,stburn, alongside their associated enthalpies H i
in,stburn

and H j
out,stburn, follow the same definitions as in the general burner scenario, underscoring the

consistent treatment of gas flows and thermal properties across both systems.
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3.3.5 Air heat exchanger

A plate counterflow heat exchanger (HEX) is responsible for recuperating heat from the af-

terburner’s exhaust gases and transferring it to the inlet air stream feeding the cathode. The

configuration facilitates the transfer of heat via metal gaskets that direct the flow within the

channels situated between the plates. It is postulated that the HEX can be approximated as a

large plate, with an effective area determined by its specific layout. The thermal interaction

between the furnace and the air is modeled by considering the radiative heat transfer indirectly

influencing the air outlet temperature. The governing energy balance equations for the HEX,

encompassing both the hot flow (exhaust from the afterburner) and the cold flow (inlet air),

are expressed as follows, based on the use of the ϵ−N TU method [97], to fully describe the

relations:

mhexhCp,hexh
dThexh

d t
=

∑
i

ni
in,hexH i

in,hex(Tburn)

−∑
j

n j
out,hexH j

out,hex(Thex)

−Qt

mhexcCp,hexc
dThexc

d t
=

∑
i

ni
in,hexcH i

in,hexc(Tin)

−∑
j

n j
out,hexcH j

out,hexc(Tair) (3.26)

+Qt

mC pNTU = min(mhexhCp,hexh,mhexcCp,hexc) (W/K)

Qmax = mC pNTU · (Tbur n −Tai r ) (W)

Qt = Qmax ·ε (W)

where mhexc and mhexh are the flowing mass of the cold side and hot side, respectively, Cp,hexh

and Cp,hexh are the relative heat capacities. H i
in,hexh(Tburn) represents the enthalpy of the in-

coming hot flow gas, while H j
out,hexh(Thexh) indicates the enthalpy of the outgoing hot flow gas.

Molar flow rates are denoted by ni
in,hexh for the hot flow inlet and n j

out,hexh for the hot flow outlet.

Similarly, H i
in,hexc(Tin) and H j

out,hexc(Thexc) refer to the enthalpies of the incoming and outgoing

cold flow gases, with ni
in,hexc and n j

out,hexc as the respective molar flow rates. The variable i

indexes the inlet species, while j indexes the outlet species.

3.3.6 Water heat exchanger

The Sunfire H750 system is capable of heating domestic water to approximately 60◦C using a

water heat exchanger. Analogous to the air heat exchanger, a plate counter-flow heat exchanger

design is adopted, positioning the exhaust on the hot side and the liquid water on the cold side.

The heat exchanger is modeled as a large plate, with an effective heat transfer area determined

by its specific configuration, and the ϵ−N TU method is applied. Given the spatial arrangement
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of the internal components within the H750 system, the water heat exchanger is thermally

insulated from the surrounding components. Consequently, it is presumed that the thermal

influence on both the hot and cold sides of the water heat exchanger is primarily due to thermal

radiation from a hypothetical furnace. The relevant equations for the hot exhaust flow and the

cold water flow are articulated as follows:

mwhexhCp,whexh
dTwhexh

d t
=

∑
i

ni
in,whexhH i

in,whexh(Thexh)

−∑
j

n j
out,whexhH j

out,whexh(Twhexh)

−Qwt

mwhexcCp,whexc
dTwhexc

d t
=nH2O

in,whexcH H2O
in,whexc(Tin,H2O)

−nH2O
out,whexcH H2O

out,whexc(Tout,H2O)

+Qwt (3.27)

mC pNTU = min(mwhexhCp,whexh,mwhexcCp,whexc) (W/K)

Qmax = mC pNTU · (Tbur n −Tai r ) (W)

Qwt = Qmax ·ε (W)

nH2O
in,whexc =

Q̇H2O ×1000

18
(mol/s)

where mwhexh and mwhexc are the flow mass of the hot and cold sides, respectively, Cp,whexh

and Cp,whexc are the heat capacity of the hot side and cold side of the heat exchanger, which

are calculated based on the literature, H j
out ,whexh(Ti n) is the inlet gas enthalpy of the hot flow,

H j
i n,whexh(Twhexh) is the outlet gas enthalpy of the hot flow, n j

i n,whexh are the molar flow rates of

the hot flow inlet gas, n j
out ,whexh are the molar flow rates of the hot flow outlet gas, i denotes the

inlet gas species, j denotes the outlet gas species, H H2O
i n,whexc (Ti n) is the enthalpy of inlet water,

H H2O
out ,whexc (Tout ,H2O) is the enthalpy of outlet water, nH2O

i n,whexc is the mole flow rates of the cold

flow inlet gas, nH2O
out ,whexc is the mole flow rates of the cold flow outlet gas,

3.3.7 Degradation model integration

Incorporating a degradation model into the analysis is imperative to accurately predict fuel cells’

long-term performance. Notably, for the scope of this project, the degradation model is applied

at the stack level, so it only concerns the SOFC stack degradation without affecting other units of

the BoP, considering them to have an ideal performance for the time. Following a comprehensive

review of existing methodologies, the data-driven approach delineated by Zaccaria et al. [98]

is selected as the foundation for the current model. This particular model is chosen due to its

simplicity and effectiveness in capturing the effects of voltage degradation over time. Moreover,

it is adept at incorporating the variation of critical operating parameters, such as FU, current

density, and temperature, and is extremely useful for control purposes. The capability of this

model to simultaneously account for these factors makes it an invaluable tool for optimization

studies, enabling a more nuanced understanding of the operational dynamics of fuel cells under
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extended use. This integration facilitates the refinement of performance estimates and enhances

the robustness of operational strategies designed to mitigate degradation effects. Zaccaria et al.

demonstrated through data extrapolation and subsequent analysis that:

• The degradation rate (rd ) exhibits an exponential relationship with the current density ( j ).

Mathematically, this is represented as:

rd = a(eb j −1) (3.28)

where a is a coefficient that scales the relationship, and b is a constant that shapes the

exponential curve.

• The coefficient a demonstrates a dual dependency: a linear relationship with the fuel

utilization (FU) and an exponential relationship with the operating temperature. This

dependency reflects the increased rate of degradation observed at higher fuel utilization

levels and elevated temperatures.

• The value of b is considered a constant within the model, signifying that the rate of increase

in degradation rate with current density does not change with varying conditions of fuel

utilization or temperature.

• At any specified level of current density and fuel utilization, the ordering of degradation

rates concerning temperature is such that:

rd ,850 < rd ,800 < rd ,750 (3.29)

indicating higher degradation rates at lower temperatures. This relationship is consistent

with the understanding that higher operating temperatures can accelerate degradation

mechanisms.

These constraints serve as the foundational principles guiding the development of the regression

model, allowing for the extrapolation of the degradation rates under various operations. The

final equation is adjusted to account for time measured in seconds rather than Zaccaria’s original

measurement in hours. This change results in a denominator of 3600000 instead of 1000:

rd =
A ·FU +C

1+exp
(T−D

E

) (
exp

(
B · j

)−1
) · t

3600000 (3.30)

where rd is the degradation rate described as a percentage increase in ASR, j is the current

density in A/cm2, T is the temperature in K inside the stack, FU is the fuel utilization and t is the

time in seconds. A, B, C, D, and E are the five missing parameters that must be found to describe

the relationship mathematically. It’s important to mention that, in the code, the degradation

rate rd is applied directly to the ASR:

ASRdeg = ASR · (1+ rd ) (3.31)

For the SUNFIRE system, a parameter estimation is applied to estimate each equation factor to
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have a more robust description of the system performance in time.

3.4 Parameter estimation

Sunfire provided around 13 months of experimental data, collected between 01 Oct 2021 to 13

Nov 2023, on which a general parameter estimation is run. The regulation of the inputs with

time is depicted in Figure 3.2a. To demonstrate the robustness of the modeling equations the

experimental data output of the controlled variables needs to be taken into account, depicted

in Figure 3.2b. Regarding the parameter estimation discussion, only the one regarding the

degradation model is presented in detail, since the estimation for model parameters has already

been done by Yu et al. [92]

3.4.1 General problem formulation

Based on the determined inputs and outputs described in Section 3.4, it is possible to evaluate

the model’s fidelity by computing the weighted least squares of the differences between the

predicted and observed data as follows:

min
pi

SQ =
∑

i
ki ,pe

∑
j

(
y i

j − ŷ i
j (ui ,pi )

)2
(3.32)

subject to the constraints provided by the system model in Section 3.3, and the parameter

bounds presented in Section 3.2:

pL
i ≤ pi ≤ pU

i (3.33)

Here, SQ denotes the sum of squared discrepancies between the plant measurements and the

model outputs. The term ki ,pe is a normalizing factor that ensures uniform significance across

all outputs. The variable y i
j represents the observed plant data, while ŷ i

j signifies the model’s

predictions. The vector ui is the input vector, and pi is the parameter vector being estimated.

The vectors pL
i and pU

i specify the lower and upper bounds, respectively. The index i corresponds

to the outputs, and the index j refers to the temporal points selected for analysis. The parameter

optimization is conducted on the MATLAB software using the nonlinear programming solver

fmincon.

3.4.2 Degradation model - Moving horizon estimation

To estimate the different parameters proposed by Zaccaria et al. [98] in Equation 3.30, at least

five different operating points should be needed. Since the number of points collected at the

beginning of this project is not enough, a first move to estimate the parameter of the degradation

model is conducted by fixing two less impacting parameters and solving the problem using

interpolation with a subsequent sensitivity on the final parameter reported in the Appendix A.1.

A second move, which resulted in more robust results, considered an additional second data

set and an optimization approach, the moving horizon estimation (MHE) to fit the degradation
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(a)

(b)

Figure 3.2: Experimental input (a) and output (b) data from Sunfire [92]
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model to SUNFIRE data better.

The second data set is collected during current decreasing operations, a common control

approach adopted to maintain an almost constant voltage in time. This means that the inputs in

this data set vary in time, which is particularly useful to have a correct parameter estimation of

the degradation model. Inputs and outputs from the data-set experimental results are shown

more in detail in Appendix A.2. The optimization approach that is used to deal with this

multitude of states varying with time to have a correct parameter estimation, is a MHE. MHE

is an optimization technique that processes noisy and potentially imprecise measurements

over time to derive estimates of unknown variables or parameters. Differing from deterministic

methods, MHE utilizes an iterative strategy that depends on linear or nonlinear programming

solvers to determine the estimates. To find the best parameters to fit the degradation model,

only a part of the whole data set is taken into account (444 hours), in which the current decrease

shows an almost linear behavior concerning time and in which it has a less noisy behavior.

In the pre-processing stage of the analysis, a critical step involved the application of a smoothing

filter to the dataset. The primary rationale behind this technique is to mitigate the influence of

noise and fluctuations inherent in the raw data, thereby enhancing the clarity and interpretability

of underlying trends. For this purpose, a simple moving average (SMA) filter is employed. The

simple moving average filter, a widely used method in time series analysis, computes the mean

of a specified number of consecutive data points at various intervals throughout the dataset. By

averaging the data points within a defined window, the SMA filter effectively dampens short-term

variations and highlights more substantial, long-term trends. This attribute makes it particularly

beneficial for datasets where the goal is to analyze or forecast underlying patterns obscured by

noise. For the dataset in question, a moving average window of ten data points is selected. This

window size is determined to be optimal based on preliminary data characteristics, including the

level of noise and the frequency of data acquisition. The application of the SMA filter transforms

each value in the dataset into the average of itself and the nine preceding values. Mathematically,

the smoothed value St at time t is calculated as follows:

St =
1

10

9∑
i =0

xt−i (3.34)

where xt represents the original data point at time t . The efficacy of this method in reducing

noise and revealing smoother trends is evaluated through visual inspection of plots before and

after the application of the SMA filter (Figure 3.3).

After applying the SMA filter, data smoothing is applied to better interpolate the data. Data

smoothing is a fundamental technique used in data preprocessing to remove noise and reveal

underlying trends. With the filtered data in place, regression analysis is conducted using poly-

nomial models of varying degrees to fit the data. Starting with a linear regression (applied in

the case of air cpox workload), which posits a direct relationship between the independent and

dependent variables through a simple equation involving a slope and an intercept, the process

aimed to minimize the discrepancies between observed values and those predicted by the

model. As complexities in data trends are identified, cubic regression is applied, too. This model,

encompassing a third-degree polynomial, provided the flexibility required to closely match
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the data’s nuances, leveraging four parameters to minimize the sum of squared residuals and

ensure an optimal fit. The fitting process is conducted using the ‘Polynomial.fit‘ method from

the NumPy library with Python, which efficiently computes the least squares fit of polynomial

models. The results of filtering and smoothing of the data are shown in Figure 3.3.

Figure 3.3: Second dataset’s filtered and smoothed data inputs

Given the operational constraints detailed in Table 3.2, an MHE multivariable algorithm is

developed using MATLAB to determine the best-fit parameters for the degradation model. The

primary objective is to adjust the model parameters to minimize the variance of the stack voltage

over time, thus ensuring its stability. The optimization process involves the five parameters,

which are treated as variables. These parameters are adjusted to fit the second dataset operating

point’s extrapolated inputs into the model, under the assumption that the temperatures remain

constant. This assumption is justified based on the observation that the duration of the linear

voltage decrease is only 444 hours, which is likely to result in nearly constant temperature

behavior. The optimization is executed using MATLAB’s fmincon function, which is designed to

find the minimum of a constrained nonlinear multivariable function. The function’s goal is to

minimize the time variance of the stack voltage, thereby maintaining its constancy. Additionally,

to the constraints mentioned above, the algorithm ensures that the model parameters also fit

the last time point of the first operating point dataset effectively. This dual fitting ensures that

the parameters not only provide a good fit for the current operating point but also remain valid

under previous operating conditions.
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The formulation of the MHE multivariable estimation algorithm is as follows:

ar g minimize
u

var (Ust ack,m,t −Ust ack,2nd ,t ) in time

subject to 650 ≤ Tcpox ≤ 850◦C

650 ≤ Tst ack ≤ 865◦C

40 ≤Ust ack ≤ 60V

700 ≤ Tbur ner ≤ 1050◦C

25 ≤ Tst ar tup ≤ 700◦C

100 ≤ Thex,hot ≤ 700◦C

650 ≤ Tai r,mi x ≤ 850◦C

650 ≤ Thex,cold ≤ 860◦C

25 ≤ Twhex,hot ≤ 320◦C

25 ≤ Twhex,cold ≤ 60◦C

FU ≤ 0.8

AU ≤ 0.25

CO ≤ 0.95

0.1 ≤WC H4 ≤ 1

0.1 ≤Wai r,cpox ≤ 0.8

0.1 ≤Wai r,st ack ≤ 0.8

0.1 ≤WH2O ≤ 1

0.001 ≤Vr ati o ≤ 0.45

0.1 ≤ I ≤ 24A

Ust ack,1st ,model −Ust ack,1st ,r eal = 0

Where Ust ack,m,t is the voltage of the stack produced by the model per unit of time given by

the collected variable inputs of the second dataset, Ust ack,2nd ,t is the measured voltage of the

second operating point per unit of time, st ack,1st ,model is the modeled stack voltage with

first operating point fixed inputs (single value taken from the last time point), and Ust ack,1st ,r eal

is the measured voltage of the first operating point (taken from the last time point). This new

algorithm produced good fitting parameters for what concerns the first operating point (Figure

3.4a), but lacks accuracy for what concerns the fitting of the second one; in fact, the total range

of variation of the voltage is still 1.63 V (Figure 3.4b). The results of this algorithm are shown in

the new degradation formula:

rd =
0.500 ·FU +0.876

1+exp
(T−1089

22.920

) (
exp

(
0.3 · j

)−1
) · t

3600000 (3.35)

These results are considered because they perfectly match the voltage decrease in the first

dataset, which is the project’s primary objective, as the general parameter estimation is based

on this dataset. It’s important to note that the natural gas content can vary significantly within

the system, and the presence of numerous PIDs introduces considerable uncertainty in the
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(a) (b)

(c)

Figure 3.4: MHE degradation model fitting of the 1st operating point (a), of the 3r d operating
point (b). Degradation ratio exponential dependency on current density with temperature effect
[98] (c)

47



Model of CPOX-based SOFC system Chapter 3

results. Therefore, the fit on the second dataset is acceptable, as it is derived from smoothed and

filtered data. Additionally, this set of parameters preserves the exponential relationship between

current density and degradation ratio, a crucial property identified by Zaccaria et al. in their

degradation model, which is also upheld in this instance (Figure 3.4c). In this figure, the current

density range is very large to demonstrate the exponential behavior. However, it is important to

note that the nominal current density range in the SUNFIRE system is from 0 to 0.1875 A/cm2.

It’s also important to give two key definitions that will be used from now on:

• Degradation rate (%/1000hrs), a term that takes into account the impact on degradation

on a specific time instant t, useful to assess the impact of degradation independently from

the time of operations or the cumulative degradation in the cell:

Dr ate =
0.500 ·FU +0.876

1+exp
(T−1089

22.920

) (
exp

(
0.3 · j

)−1
)

(3.36)

• Performance degradation (rd %) that is a cumulative factor of increase of ASR (linear) and

so a non-linear factor of decrease of voltage, taking into account time:

Dper f or mance = rd =
0.500 ·FU +0.876

1+exp
(T−1089

22.920

) (
exp

(
0.3 · j

)−1
) · t

3600000 (3.37)

Notably, the values obtained from the degradation rate and performance degradation in

this project do not align with those commonly found in the literature. This discrepancy

arises because there is currently no universal definition of degradation, as it depends

on numerous factors. Therefore in this project, these values are used only as a relative

reference and are not considered objectively. For example, in Figure 3.5, these param-

eters are related to the common degradation index used in the literature to define SoH

achievements: voltage decrease % per 1000 hours, based on fixed inputs from the first

dataset:

Dr ate,vol t =
(Dr ate +1)∗Uloss,ASR

Ust ack,i
(3.38)

where Uloss,ASR is the voltage loss due to ASR without degradation taken into account and

Ust ack,i is the stack voltage at the beginning of the operation.

3.5 Techno-economic analysis of Sunfire system

This chapter presents a rough techno-economic analysis of the SUNFIRE system, in Switzerland.

The analysis focuses on the cost implications of operating the system under varying conditions

over its expected lifespan, modeling the cost factors in conjunction with the complex interplay

of all operating costs. This has been done to integrate a profitability evaluation part into

the current model, useful for Chapter 4 prognostic assessment. At the end of this analysis,

a code for simulating model behavior over time is developed, integrating the ode15s function

from MATLAB. This configuration allows for the simulation of system dynamics at a fixed
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Figure 3.5: Degradation plots of operating condition given by the 1st dataset

initial operating point without accounting for degradation, demonstrating the capability of the

economic model to explore the economic breakpoints where operating income balances the

cost of production, essentially where revenue equals expenses.

3.5.1 Capital cost

The capital costs for the SOFC stack can be estimated using the formula from DOE [99]:

C = C0

(
P

P0

)−β
(3.39)

where C is the cost per unit power ($/kW), C0 is the reference cost per unit power at a reference

power output P0, P is the desired power output, and β is the scaling exponent. The parameter

values are C0 = 1000 $/kW for a 100 kW system, P0 = 100 kW, and β = 0.7, the formula for the

Sunfire system, whose nominal power is 850 W (0.85 kW) becomes:

C = 1000

(
0.85

100

)−0.7

≈ $6427.83 per kW (3.40)

Considering the 850 W SUNFIRE system, this results in a capital cost of 0.85 × 6427.83 =

$5,463.66 ≈ 4,960CHF.

The capital cost for the entire system, excluding the SOFC stack, cannot be accurately estimated

since there is no detailed market information about the SUNFIRE system costs.

Operational Expenditure (OPEX)

The cost factors for natural gas and electricity consumption are selected based on the prevailing

market prices in Switzerland for the year 2019 to avoid the impact of market fluctuations due

to the pandemic. According to HEV Schweiz [100], the average price of natural gas remained

consistently around CHF 0.0958 per kWh throughout the year. This value is used to estimate the

operational cost related to natural gas consumption with the following equation:

CostC H4 (t ) =
PC H4,i n

1000
·km (CHF/hour) (3.41)
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where CostC H4 (t ) is the methane consumption cost in CHF/hour, PC H4,i n is the input chemical

power of C H4 consumption in W, km is the methane cost factor of 0.0958 CHF/kWh In contrast,

the price of electricity for households varied significantly depending on the municipality. Prices

ranged from approximately 0.10 to over 0.50 CHF/kWh, with a median price of around 0.32

CHF/kWh as indicated by a comprehensive guide on electricity costs in Switzerland published

by Banken, Versicherungen & Telekom [101], and the cost of electricity is computed as:

Cauxi l i ar i es(t ) =
Pauxi l i ar i es(t )

1000
·kc (CHF/hour) (3.42)

where Cauxi l i ar i es is the cost of auxiliaries in CHF/hour, kc is the current price of 32 CHF/kWh,

and Pauxi l i ar i es is the auxiliaries’ power consumption in W. However, in this analysis, this cost is

not considered, assuming that the power required for the auxiliaries is supplied by the system

itself.

An essential component in the financial model is the cost associated with CO2 emissions. Since

2022, Switzerland has imposed a CO2 tax on thermal fuels, aimed at reducing emissions and

promoting cleaner energy sources. The tax rate is set at CHF 120 per ton of CO2 emitted [102].

The cost of CO2 emissions for the operational activities is calculated based on the emissions

generated, converted to a cost per hour using the formula:

CostCO2 (t ) = ṄCO2 (t ) ·3600 · 44.01

1000000
·kt (CHF/hour) (3.43)

where ṄCO2 (t ) are the moles emitted per second, and the tax rate kt is 120 CHF/ton.

The overall OPEX is computed summing up the three contributions of natural gas consumption,

electricity consumption, and CO2 taxation, adding interest of 2% to take into account other

indirect costs (maintenance, manpower, etc... [103]):

OPE X (t ) = (CostC H4 (t )+CostCO2 (t )) · (1+0.02) (CHF/hour) (3.44)

Operating Income (OI)

The revenue model is based on the selling price of heat and electricity generated by the system.

It is assumed that the selling price of generated heat is equivalent to the cost of natural gas

adjusted for mean boiler efficiency.

For modeling, the electricity selling price is set at 0.266 CHF/kWh. This specific rate is taken from

the 2024 projections published by Oiken [104], which reflects the anticipated cost of electricity

supplied to the grid. The revenue made by selling electricity is computed with the equation:

Iel (t ) =
Ps y stem(t )

1000
· re (CHF/hour) (3.45)

where Iel (t ) is the electricity selling revenue in CHF/hour, Ps y stem(t ) is the power produced by

the system in W, and re is the revenue selling price factor of 0.266 CHF/kWh.

Revenue generated from the production of heated water is calculated by considering the cost of
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methane and the efficiency of the boiler used to heat the water. The formula for calculating the

revenue per hour is as follows:

Iw ater (t ) =
PH2O(t )

1000
·
( rm

0.85

)
(CHF/hour) (3.46)

where Iw ater (t) is the revenue produced by the heated water selling in CHF/hour, PH2O is the

power produced by the water heat exchanger in W, and rm is the methane cost factor of 0.0958

CHF/kWh. The denominator, 0.85, represents the mean boiler efficiency. This efficiency factor

is used as an assumption due to the lack of detailed information online regarding the selling

price of heated water and is based on the common technology of boilers which are frequently

used due to their low operational costs. This mean efficiency value is consistent with industry

standards as reported in literature [105].

The overall OI is computed by summing up the two contributions of heated water and sold

electricity:

OI (t ) = Iw ater (t )+ Iel (t ) (CHF/hour) (3.47)

Cost analysis

The net operating income has then been computed by subtracting to the OI the OPEX costs:

OInet (t ) = OI (t )−OPE X (t ) (CHF/hour) (3.48)

Then, to quantify the cash flows for a generic time instant T the integral of all the cost variables is

computed concerning time, passing from CHF/year to CHF. The equation for the total operating

expenditure is:

OPE X tot =
∫T

t=0
OPE X (t ) ·d t (CHF) (3.49)

The equation for the total operating income is

OItot =
∫T

t=0
OI (t ) ·d t (CHF) (3.50)

The equation for the net total operating income is

OInet ,tot =
∫T

t=0
OInet (t ) ·d t (CHF) (3.51)

Net total operating income computation aims to find after how many years it is possible to

recover the initial investment, this defines the payback period. In MATLAB, this has been

accomplished by discretizing the integral over a fixed time interval, defined by the time vector,

and converting all the equations into cumulative sums.
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Cost analysis of 1st dataset This techno-economic analysis provides a comprehensive overview

of the financial viability of the Sunfire system under specified operational conditions. An

example simulation over 5 years aims to determine key financial outcomes, including net OI

and the payback period. This is done using the input data of the 1st dataset with fixed inputs in

time, taking into account the degradation impact over time.

Figure 3.6 presents two pie charts detailing the distribution of operating income and costs for

the system. The chart on the left (3.6) shows the operating income distribution, which comprises

total electricity income and total heat income. A significant portion of the income is derived

from electricity generation, with heat income representing a smaller share. On the right (3.6),

the operating costs distribution is depicted, illustrating the contributions of CO2 and CH4 costs

to the total operating expenses. Similar to the income distribution, the majority of the costs are

associated with CH4, while CO2 costs form a lesser fraction of the total costs. The figure also

presents a plot of the income vs operating expenditures of the system over the years, evidencing

the operating income loss after 5 years to be 175 CHF/y due only to system degradation. This

operating point is proven to be unprofitable. This outcome could be expected, given that the

primary goal of the SUNFIRE system is not to achieve profitability. The primary aim of this

analysis is not to emphasize the accuracy of economic profitability predictions. Instead, it

highlights the crucial importance of optimizing system variables in real-world applications

where profitability is a key objective.

Figure 3.6: Techno-economic analysis of operating condition given by the 1st dataset
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4 Long-Term Prognostic Analysis with
Control Strategies

This chapter explores the application of a method based on NMPC theory to the modeled CPOX-

SOFC system. This advanced control strategy aims to enhance the performance and efficiency of

the inherently complex and nonlinear SOFC systems. However, the primary focus of this chapter

is on prognostics rather than control. It emphasizes predicting the dynamic system response

over time to advance the field of predictive analysis for SOFC systems, providing deeper insights

into their long-term performance behavior.

For SOFC systems, NMPC can be tailored to handle the fuel cell system’s specific nonlinear

characteristics and operational requirements. These include parameter workloads, fuel utiliza-

tion rates, electrical demands, etc... By applying NMPC, it is possible to achieve several critical

outcomes:

• Enhanced efficiency: optimal control of fuel input and operational parameters leads to

improved efficiency of power generation

• Increased durability: by maintaining operations within safe limits, NMPC extends the life

span of the SOFC system.

• Improved performance: NMPC helps in stabilizing the output despite the fluctuations in

demand and supply conditions

In the context of SOFC systems, several studies are conducted in the literature with NMPC [106,

107, 108].

It’s important to notice that, for this work, there is no physical online system control, but

this NMPC approach is used only for predictive applications. Before diving deeper into the

optimization analysis, firstly it is useful to introduce a more detailed overview of the state of

health (SoH) of a SOFC stack and how this can be connected to detect its end of life (EoL).
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4.1 Evaluation of the state of health of the SOFC system

The successful commercialization and sustained application of SOC-based systems in the future

energy landscape hinge on enhancing their reliability and extending their lifetime. This is

achievable through timely and accurate SoH assessments that detect early signs of potentially

critical changes in system operation. U.S. Department of Energy (DOE) has set a long-term target

for stationary power system lifetime equal to 130,000 hours (15 years) for SOFC stacks, reflecting

requirements for data centers, where primary power systems must operate 24/7 for 365 days per

year. Targets are technology-neutral and do not assume the type of fuel cell technology. While

achievement of some of the individual targets has already been demonstrated for specific fuel

cell technologies, concurrent achievement of all targets remains a challenge. Effective online

SoH estimations allow for the optimal design of maintenance schedules and accurate end-of-life

(EoL) predictions. This prevents equipment failure and reduces operational losses. Significant

research in this area continues to advance understanding and capabilities. This section aims to

assess the relationship between inputs and EoL to estimate the remaining useful life (RUL) and

determine the target life expectancy of the stack.

The EoL criteria used in this analysis are introduced and discussed in detail in the following

paragraph.

4.1.1 EoL criteria

Performance metrics monitoring serves as a foundational approach to assessing EoL for fuel

cells. This involves various techniques that gauge the degradation and efficiency loss over time,

crucial for maintaining system efficiency and safety.

Voltage decline is one significant indicator where the U.S. DOE has set specific performance

targets [109]. For SOFCs, the target is maintaining less than 0.2% voltage degradation per 1,000

hours, whereas for PEM fuel cells, used predominantly in transportation, the goal is a more

stringent less than 0.03% per 1,000 hours to maintain less than 10% voltage loss over their

designed lifetime. Voltage monitoring involves the use of real-time sensors that record output

continuously during operation, with advanced data analytics applied to predict future voltage

trends based on historical data.

Another critical metric is power output, where DOE efficiency targets stipulate that stationary

fuel cells like SOFCs should achieve more than 60% efficiency in combined heat and power

(CHP) applications, with less than 10% degradation in efficiency before EoL. PEM fuel cells in

automotive applications should maintain efficiency above 40% throughout the lifecycle. Regular

performance testing under controlled load conditions helps in monitoring significant drops in

efficiency.

Additional performance metrics include stack temperature and humidity controls, which are

crucial for both SOFC and PEM fuel cells. Deviations from ideal operational temperatures and

humidity levels can accelerate degradation. Integration of thermocouples and humidity sensors

into the fuel cell system allows for continuous monitoring.
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The issue with these metrics is that they are only valid if the inputs to the SOFC stack system

remain constant. When inputs change over time, these metrics lose their validity. For example, a

decreasing current can maintain a constant voltage over time, masking ongoing degradation

in the stack and leading to undetected issues in voltage metrics. This is a common industry

practice to keep voltage stable over time. Another approach is to increase the stack’s temperature

to maintain a fixed power output. Both methods can hide underlying degradation, making these

metrics unreliable.

A very interesting paper by Jouin et al. [110] regarding PEMFC will be taken as a reference for

this discussion, as they have made significant strides in better defining the problem. In their

paper, Jouin et al. highlights that the literature lacks clear guidelines on how prognostics should

be performed, which health indicators should be used, how to define the EoL of a PEMFC, and

how to correctly evaluate prognostic performance, especially in the case of dynamic mission

profiles. They propose several solutions to these issues. In the following paragraphs, the strategy

proposed by Jouin et al. is adapted and discussed in the context of SOFC systems.

Health indicators A proper indicator is chosen according to the mission of the system. Several

health indicators can be considered:

1. the voltage

2. the power (both at the stack and the system level)

3. efficiency

4. the cumulative energy

5. economic profitability

Indicators like voltage and power can be useful only when dealing with fixed power or voltage

missions respectively; these are not monotonic indicators with variable mission profiles, they

are not monotonic and they can lead to fixing a failure threshold.

Efficiency is a classical measure of an energetic system. In the case of SUNFIRE, two different

efficiencies are taken into account: the one at the stack level, named electrical efficiency, and

the one at the system level, named CHP efficiency. Both of them are a ratio between the power

output and the chemical power input, for electrical the output considers stack power production

in conjunction with power losses made by auxiliaries, while for CHP efficiency also the output

power of the waste heat recovered is considered. Efficiency is strongly linked to the mission

profile and the nominal conditions set for each current value. If the nominal conditions are

maintained over time, guaranteeing fixed chemical power input, the efficiency should decrease

with the stack power.

Cumulative energy is the most interesting approach since it relies on the polarization curve used

to make a monotonic indicator useful to detect the EoL. Thanks to the voltage measurement U,
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Figure 4.1: Comparison of measured cumulative energy and reference

knowing current profile i and the time of operation T, the cumulative energy can be defined as:

E(t=0 : T) =
∫T

0
U (t ) · i (t )d t (4.1)

This provides a quantitative indicator of performance and since it is monotonic independently

from the system mission it makes the definition of a failure threshold easier to select. However, a

reference states it is still needed. Join et al. [110] have proposed two different solutions to build

the reference:

• The first solution requires a polarization curve of the first state of the SOFC stack that is

assumed to have no degradation. Then the cumulative energy can be obtained in time

using the voltages of that curve with the current made by the model.

• A second solution, which is the one used in this thesis, is to build the reference with a

behavioral model that describes the evolution of the voltage or the power according to the

current profile as if no degradation is occurring within the stack.

Once the reference is set, the collected data are used to build the cumulative energy and compare

it to the reference. The difference between them (∆C E) can be calculated at each time instant

and converted into a percentage of energy loss to help estimate the EoL and RUL (Figure 4.1).

The great advantage of this solution is that the indicator is monotonic and adaptable to any kind

of mission.

Another possible health indicator could be the economic profitability of the system, especially

for what concern a complex system such as the SUNFIRE one. This kind of system has a complex

interplay of several factors to take into account, so reducing the analysis to just an economic

assessment of the system’s profitability could be enough to assess whether the system should be

replaced or not (LCA).
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EoL definition Two different thresholds can be defined for prognostics applications:

• a threshold of conformity to a mission

• a definitive EoL threshold

The first allows the engineer to a more flexible decision if the fuel cell stack can perform a given

mission. The second one, more complex to define, guarantees more robustness to the analysis.

Defining the conformity is responsibility of the user. In the context of the SUNFIRE system,

a conformity criterion could be for example the economic profitability of the system. In the

context of a variable mission profile, a fixed threshold might not be suitable anymore. A possible

solution for this can be considering cumulative energy indicator:

∆C E(t ) = C Er e f (t )−C Er eal (t ) (4.2)

where the related threshold value can be set to 10% of the reference cumulative energy according

to DOE:

∆C Emax (t ) = 5% ·C Er e f (t ) (4.3)

Chen et al. [111], have proposed an economical lifetime EoL criterion where the PEM stack needs

a replacement. This threshold takes into account stack capital cost Qst ack , the consumption

of the system QC H4 (that increases with aging), and the CHP efficiency of the system Qope

(auxiliaries power consumption):

Qtot al (t ) = Qst ack +
∫T

t=0
QC H4 d t +

∫T

t=0
Qope d t (4.4)

The threshold is the point at which the Qtot al function in time reaches its minimum. For the

SUNFIRE system, this kind of model doesn’t fit well, since with a fixed mission profile the

function would be flat not exhibiting any minimum. This is due to a system assumption of no

degradation in the system except the SOFC stack, which means that with fixed inputs, even if

the stack power is decreasing in time, there is a fixed difference between stack and system power,

given the fact that the system degradation coincides with stack’s one. Due to this limitation,

an alternative economic model is proposed using a techno-economic analysis to evaluate the

system’s economic profitability and suggest a new potential threshold, as discussed in Section

3.5. However, since model accuracy is not the primary focus of this project and the economic

model may have inaccuracies leading to potential prediction errors, this model is considered

only for optimizing profitability objectives. As EoL the approach used in this thesis is to put

a definitive threshold in the case of voltage and power health indicator performances, and a

threshold of conformity to the mission in the case of cumulative energy.

A possible definitive EoL can be the one proposed by DOE as a 10% loss of the initial performance.

If the operating conditions are fixed with time, this is a very effective approach, easy and robust

to apply. However, in the case of a variable mission profile, it lacks effectiveness making this
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kind of threshold closely linked to the application. It’s useful to notice that in cases with fixed

input operation, it would be possible to define a grade for each system state. As an example, one

can define:

• From 0% to 5% of power loss: Good health;

• From 5% to 10% of power loss: Acceptable;

• Over 10% of power loss: Degraded SoH.

These thresholds are applied to the power or voltage difference in cases of fixed mission profile;

for cumulative energy, a more strict rule is applied fixing the EoL at 95% of the relative difference

to account for the possibility of prediction errors.

4.2 Optimization algorithm

NMPC uses an optimization algorithm to find what are the best inputs for each time point. In

this case, several attempts are made to see what’s the best approach also in fitting the scope of

the project:

• Sequential Quadratic Programming (SQP)

• Genetic algorithm (GA)

Both SQP and GA have proven their effectiveness in various real-world applications, which sup-

ports their selection for this thesis project. Using both SQP and GA allows a comparative analysis

of a gradient-based method and a non-gradient method, highlighting how each performs under

various system conditions and constraints. This comparative study can provide insights into the

robustness and reliability of different approaches under the specific scenarios encountered in

the project. Evaluating both methods provides a comprehensive understanding of the trade-offs

between solution quality (accuracy) and computational effort (convergence speed, resource

usage).

Another attempt is making another code with "Model Predictive Control Toolbox" directly

dealing with NMPC functions. This is done by re-writing the model to be compatible with NMPC

object optimization. The algorithm resulted in being too slow concerning just using fmincon
function, so this option has been discarded.

Sequential Quadratic Programming Algorithm

SQP is an iterative method used to solve nonlinear optimization problems, especially those

involving both equality and inequality constraints. This optimization technique is widely re-

garded as one of the most powerful methods for nonlinear constrained optimization problems,

and its effectiveness is due to its ability to rapidly converge to a solution near the optimal point
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under a variety of conditions. The fundamental approach of SQP is to model the nonlinear

optimization problem at each iteration as a quadratic programming (QP) subproblem, whose

solution provides a search direction for the next iteration. Each QP subproblem approximates

the objective function by a quadratic model and the constraints by linear models. Formally, an

optimization problem can be defined as:

min f (x) subject to g(x) = 0, h(x) ≤ 0, (4.5)

where f (x) is the objective function, g(x) and h(x) represent the equality and inequality con-

straints, respectively, then at each iteration, k, the SQP method solves the following QP subprob-

lem:

min
1

2
p⊤Bk p+∇ f (xk )⊤p (4.6)

subject to Ak p = −g(xk ), Ck p ≤−h(xk ), (4.7)

where p is the step direction, Bk is an approximation to the Hessian of the Lagrangian (which

can be updated using various strategies such as the BFGS method), Ak and Ck are the Jacobian

matrices of the equality and inequality constraints, respectively. SQP is particularly valued

for its superlinear convergence properties under mild assumptions, such as the regularity of

the constraint Jacobians and sufficient second-order conditions at the solution. This method

is also adaptable to large-scale problems, although its performance heavily depends on the

quality of the Hessian approximation and the strategies used for constraint handling. Despite

its robustness, one of the primary challenges in implementing SQP is ensuring the positive

definiteness of the Hessian approximation, which is crucial for the algorithm’s stability and

convergence. Practical implementations of SQP often include modifications such as trust region

strategies to maintain the step direction and size reliability. SQP has been successfully applied

in numerous fuel cell fields. Its ability to efficiently handle complex models with multiple

constraints makes it a preferred choice for many applications requiring high-precision solutions

to challenging optimization problems.

This algorithm is successfully implemented in MATLAB using the "Optimization Toolbox"

(Algorithm 1).

The MATLAB script configures and executes a constrained nonlinear optimization using the

‘fmincon‘ function. Initially, it sets solver options with ‘optimoptions‘, specifying the use of the

SQP algorithm, detailed iteration display, and high limits for function evaluations and iterations

to handle complex problems. The script initializes ‘input_sol‘, a cell array matching the length

of ‘tspan‘, which represents the time vector. The core of the script is a loop over ‘tspan‘. In each

iteration, ‘fmincon‘ is called with parameters including an objective function, initial variable

guesses, constraint definitions, and variable bounds. The function solves for the optimum,

storing results in ‘input_sol‘ and updating the guess for the next iteration to the current solution.

This iterative updating is designed to refine the optimization across stages, improving both the

speed and quality of convergence, especially in dynamic scenarios where optimal conditions
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Algorithm 1: SQP algorithm implementation using fmincon

Data: Initial guess input0, constraint matrices A, b, bounds lb, ub, time span tspan
Result: Optimized solutions input_sol for each time point in tspan
options ← optimoptions(’fmincon’, ’Algorithm’, ’sqp’, ’Display’,
’iter’,’MaxFunctionEvaluations’,100000,’MaxIterations’,100000)
input_sol ← cell(length(tspan), 1)
for t ← 1 to length(tspan) do

[sol, fval, exitflag, output] ← fmincon(@objectiveFunction, input0,
A, b, [], [], lb, ub, @constr, options)
input_sol{t} ← sol
input0 ← sol

end

evolve.

Genetic Algorithm

GA is a stochastic search and optimization technique inspired by the natural selection process

as described in evolutionary biology. GAs are particularly well-suited for solving complex

optimization problems that are otherwise challenging for traditional, deterministic algorithms.

They are characterized by their ability to explore a large search space searching for the global

optima. The essence of a GA lies in its simulation of the evolutionary process, where potential

solutions to an optimization problem are encoded as a set of individuals in a population. These

individuals undergo processes analogous to biological evolution, including selection, crossover

(recombination), and mutation. The algorithm proceeds as follows:

1. Initialization: Generate an initial population of random solutions.

2. Evaluation: Assess the fitness of each individual in the population.

3. Selection: Select individuals based on their fitness levels to participate in breeding the

next generation.

4. Crossover: Combine pairs of individuals to produce new offspring, promoting the ex-

change of genetic material.

5. Mutation: Apply random changes to new offspring, aiming to introduce variability into

the population.

6. Replacement: Replace some of the older generation with the new generation of offspring.

7. Termination: Repeat the process until a termination criterion is met, such as a maximum

number of generations or a satisfactory fitness level.

One of the key advantages of GA is their robustness and ability to escape local optima, making

them highly effective for problems where other optimization techniques fail. They are also

60



Long-Term Prognostic Analysis with Control Strategies Chapter 4

inherently parallel, which allows for efficient implementations on modern multi-core processors

or distributed systems. However, GAs also have limitations. Their stochastic nature means that

convergence to the optimal solution cannot be guaranteed. The performance of a GA can be

highly sensitive to its parameter settings, including population size, mutation rate, and crossover

rate. Additionally, GAs may require a large number of function evaluations to find a sufficiently

good solution, which can be computationally expensive.

This algorithm is successfully implemented in MATLAB using the "Global Optimization Toolbox".

A genetic algorithm is implemented moving all the constraints to be a nonlinear inequivalent

Algorithm 2: GA algorithm implementation using ga

Data: Objective function objectiveFunction, number of variables nvars, bounds lb, ub,
tspan

Result: Optimized solution sol, function value fval, exit condition exitflag, and
algorithm output output

options ← optimoptions(’ga’, ’PopulationSize’, 100000, ’MaxGenerations’,
10000, ’Display’, ’iter’, ’PlotFcn’, [], ’UseParallel’, true)
[sol, fval, exitflag, output] ← ga(@objectiveFunction, nvars, [], [],
[], [], lb, ub, @constr, options)

one in @constr, all the equivalent and linear constraints are not accepted (A,b,ceq) in the case of

the system model optimization. The optimoptions function is utilized to set options for the GA,

such as a large PopulationSize of 100,000 to enhance genetic diversity and a MaxGenerations
limit of 10,000 to define the search depth. The display is set to ’iter’ for detailed generation

updates, no plotting function is employed to simplify output, and parallel execution is enabled

to speed up computations by leveraging multi-core or distributed systems. The GA solves

the optimization by defining the objective function inline to include parameters like tspan
(time vector), and specifying the number of variables (nvars=14). It also sets lower (lb) and

upper bounds (ub) from Table 3.2, and applies a custom constraint function (constr). The

optimization process yields the best solution (sol), its value (fval), an exit flag (exitflag),

and detailed output about the algorithm’s execution. This approach is particularly effective for

complex, potentially multi-modal optimization challenges where traditional methods might be

inadequate. Despite the higher robustness, this algorithm is very much slower than the SQP one,

so to increase its speed "Parallel Computing Toolbox" is implemented to make the processors run

the algorithm more efficiently. This is done by adding the code snippet «’UseParallel’,true»

in optimoptions. Notably, parallel computing could not be applied using the SQP algorithm

because each solution is updated iteratively with the initial guess (input0) from the previous

solution’s time point. A potential workaround would be to implement SQP without iteratively

updating the solutions. However, this modification led to a decrease in robustness. Specifically,

the algorithm required more function evaluations, which compromised its efficiency. Despite

enhancements to the GA within the Toolbox to improve its speed, it remained significantly

slower compared to SQP. Additionally, the number of evaluations required for the objective

function in GA is still higher than those required by SQP.

For the scope of this thesis, both of the algorithms have been used: SQP which is used in this
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chapter and Chapter 6 for iterative first guess-dependant optimization in time, and GA is used

in Chapter 5 for multi-objective optimization analysis with fixed inputs in time. The chosen

simulation period is 5 years of operations, corresponding to the real expected lifetime of the

system. The primary objective is not to achieve pinpoint accuracy in predictions but rather to

understand how the system behaves over time. By simulating over this 5-year horizon, long-term

trends, performance, and potential issues can be observed, providing valuable insights into the

system’s dynamics and robustness.

4.3 Predictive analysis

This section presents an analysis of three different control strategies: fixed power, fixed voltage,

and fixed temperature with values taken from the first operating condition steady state operation

(Table 4.1) taken into account as non-linear quadratic objective functions to the algorithm shown

below. The initial guess for the fmincon algorithm follows also the conditions of 1st operating

Table 4.1: Fixed operations target values for optimization algorithm, taken from the 1st operating
conditions

Target Voltage 45.71V
Target Power 758.27W
Target Temperature 1078.47K

point, ensuring that the optimization starts from the first operating point conditions. Different

analyses are done in the following paragraphs:

1. Standard operations: control strategies applied without optimization;

2. Degradation rate minimization analysis;

3. Electrical efficiency maximization analysis;

4. CHP efficiency maximization analysis;

5. Net operating income maximization analysis.

Notably, the aforementioned objective optimizations could be considered as control strategies

on their own. However, due to the limitations of the SQP algorithm, which is highly depen-

dent on the initial system guess, the system simulation cannot be analyzed using only these

optimizations. To ensure reliable results, the analysis is conducted under fixed operational

conditions, avoiding the complications of finding a global optimum with SQP algorithm. It is

also important to mention that the system simulation and optimization are always conducted

under the condition of safety of operation, ensuring that each variable remains within the

constraint limits presented in Table 3.2.

62



Long-Term Prognostic Analysis with Control Strategies Chapter 4

4.3.1 Standard operations analysis

The results are visualized through a series of plots (Figure 4.2), providing insights into the

behavior of various system parameters over a simulated period of 5 years with 50000 points in

total taken into account by fmincon algorithm:

ar g minimize
u

(V ar i able −Tar g et )2
Ust ack /Tst ack /Ps y s

per each t in time

subject to 650 ≤ Tcpox ≤ 850◦C

650 ≤ Tst ack ≤ 865◦C

40 ≤Ust ack ≤ 60V

700 ≤ Tbur ner ≤ 1050◦C

25 ≤ Tst ar tup ≤ 700◦C

100 ≤ Thex,hot ≤ 700◦C

650 ≤ Tai r,mi x ≤ 850◦C

650 ≤ Thex,cold ≤ 860◦C

25 ≤ Twhex,hot ≤ 320◦C

25 ≤ Twhex,cold ≤ 60◦C

FU ≤ 0.8

AU ≤ 0.25

CO ≤ 0.95

0.1 ≤WC H4 ≤ 1

0.1 ≤Wai r,cpox ≤ 0.8

0.1 ≤Wai r,st ack ≤ 0.8

0.1 ≤WH2O ≤ 1

0.001 ≤Vr ati o ≤ 0.45

0.1 ≤ I ≤ 24A

Fixed power control strategy

In this section, the metrics obtained by fixed power control strategy are analyzed, based on

Figures 4.2a-d.

This kind of strategy involves three different main phases, that can be distinguished by two

different points in which the slope of each variable plot in time drastically changes. These drastic

changes in behavior are due to system constraints bound touching and algorithm re-adaptation

escaping local minimum; in fact, the SQP algorithm is occasionally trapped in local minima, as

illustrated in Figure 4.3. This occurs due to the non-convex nature of the objective function. The

SQP algorithm in fmincon is a local optimizer that refines the solution based on local gradients.

Consequently, depending on the starting point, it may converge to nearby local minima. In

the context of this strategy, this algorithm re-adaptation happens after 1.5 and 2.7 years of

63



Long-Term Prognostic Analysis with Control Strategies Chapter 4

(a)

(b)

Figure 4.2: Optimization analysis results of the variation of the inputs (a), key indicators variation
(b) with three different control strategies (fixed power,fixed voltage, fixed temperature)
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(c)

(d)

Figure 4.2: Optimization analysis key indicators variation (c), temperature variation (d) with
three different control strategies (fixed power,fixed voltage, fixed temperature)
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Figure 4.3: Local minima SQP algorithm problem

operations.

In the first phase of operation (from 0 to 1.5 years), the methane blower workload is fixed

to the maximum from initial guess conditions, implying a constant fuel flow rate inside the

CPOX reactor to maintain fixed system power, crucial for steady-state operation. The same

consideration is valid for the CPOX air blower workload and so the temperature of the CPOX

(825°C) and the CO (90%) remain unchanged in this phase. The current profile is increasing over

time, from a target value above 20 A to compensate for the decrease in the voltage of the cell

(from target to 40 V). This leads to an increase in degradation rate passing from 0.035 to 0.0375

%/kh which is the highest obtained in these years of operations among the three strategies and a

decrease in the stack power output due to the higher losses. Degradation also leads to a slight

increase in stack temperature. The stack air blower workload instead, is slightly decreasing,

together with the air mixing valve ratio, ensuring less air mass flow rate and slightly increasing

cathode inlet temperature inside the stack. Therefore, AU is increasing over time reaching 17%,

also thanks to the increased current that leads to higher H2 reacted and lower oxygen moles

at the cathode outlet. FU is also increasing due to the increasing current reaching 65%. Water

workload is slightly decreasing over time, causing a slight increase in water outlet temperature to

reduce its power consumption. The unmentioned temperatures remained constant over time.

In the second phase of operation (from 1.5 to 2.7 years), the lower bound of voltage is touched,

which causes an algorithm re-adaptation. This consists of a sudden decrease in methane

blower workload, and CPOX blower workload, and the current to stop increasing and start a

very slight decrease over time. This is caused by the degradation impact on voltage, which

has reached the lower bound and cannot decrease more: at equal conditions, degradation

decreases stack voltage, so to compensate for this decrease the system starts to increase the

temperature inside the stack to decrease both the ASR and degradation rate while slightly

increasing the OCV voltage. This double action prevents the voltage from decreasing more fixing

it to 40 V. The stack temperature is increased mainly thanks to the cathode inlet air temperature

increase given the lower workload of the air blower decrease useful also from the point of view of
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power consumption reduction. The valve opening ratio is still decreasing, to better control the

temperature avoiding a too-hard increase. Notably, the electrical efficiency is increasing, and

CHP efficiency is slightly decreased, due to the lower heat exchanged in WHEX. FU is slightly

increasing, due to the lower methane flow rate and constant current, AU is also increasing due

to the lower air flow rate in the cathode.

In the last phase of operation (2.7 to 5 years) the upper bound of CPOX temperature is touched,

causing another algorithm re-adaptation. The major difference from now on is the increasing

behavior of methane blower workload, and cpox air blower workload, stack air blower workload

with a still constant current to accomplish the system target power. This is done to both maintain

a constant cathode inlet temperature thanks to an almost fixed valve opening ratio, indirectly

decreasing AU and maintaining a constant FU, and to increase CPOX temperature to still increase

the stack temperature in such a way to increase OCV voltage and decrease ASR and degradation

rate impact on performances. Water workload is reduced even more, increasing the water outlet

temperature in order to further reduce the power consumption.

The performance degradation thanks to this strategy reaches is minimum among the others.

Notably, the cumulated emissions in this strategy are the highest among the three scenarios.

Fixed voltage control strategy

The fixed voltage control strategy demonstrates stability, with no changes in slope or boundary

violations. In this scenario, the applied current tends to decrease over time to maintain a fixed

voltage. This decrease is exponential rather than linear, primarily due to the dual effect of current

on both the ASR and the degradation rate, which together reduce voltage losses. The water pump

workload remains nearly constant and is set to an initial value, as it is relatively independent of

this analysis. Similarly, the air mixing valve ratio is fixed. The workloads for the methane blower,

CPOX air blower, and cathode air blower all decrease over time. These three variables directly

impact the SOFC mass balance, thereby influencing the OCV. For example, if constant flow rates

are maintained while the current decreases exponentially, the amount of hydrogen reacting also

decreases exponentially. This reduces the oxygen concentration at the cathode outlet and the

hydrogen concentration at the anode inlet, leading to a decrease in OCV voltage. All these inputs

decrease cause an exponential decrease also in stack and system power output and a slight

decrease in both stack and CHP efficiency, the latter mainly due to the stack efficiency decrease.

The degradation rate with current is exponentially decreasing but the overall performance at the

end of the 5-year operations appears to be more degraded concerning the fixed power control

strategy, despite having less CO2 emissions. Regarding temperatures they are all constant except

for the cathode inlet one which is increasing due to the air flow rate decrease in time, reaching a

maximum of 800 °C.

Fixed temperature control strategy

The fixed temperature control strategy has an overall behavior similar to the fixed voltage one.

There are two main phases in the shape of each variable’s plot in time due to voltage lower bound
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touching after 3.5 years of operations.

The primary distinction of this strategy from others lies in maintaining nearly constant valve

opening ratios and stack air workload, which stabilizes the cathode inlet temperature over

time. Unlike other strategies, there is no need to adjust for degradation impacts because the

temperature is mainly influenced by energy balance management. All system temperatures are

kept constant, except for the cathode inlet temperature, which starts to rise after 3.5 years due

to a reduced workload of the stack air blower. As time progresses, the workload for the current,

methane blower and cpox air blower decreases. This is due to the SOFC’s energy balance, which

causes an increase in the total enthalpy difference between the inlet and outlet. This enthalpy

difference compensates for the reduced power output, as all temperatures remain constant.

This is the only way to make the system maintain a constant temperature inside the stack to

compensate for degradation behavior.

In the second phase, there is a slight decrease of stack air blower to increase cathode inlet

temperature that numerically has an impact on the stack inlet temperature, without affecting the

outlet one that is maintained constant in this optimization. Increasing the inside temperature is

useful to reduce the ASR and degradation rate to compensate for the voltage decrease.

The degradation rate, as expected, linearly decreases according to the current profile. However,

the degradation of performance experienced in this case results in the highest among the three

strategies. The total emissions are in between the ones of the other two cases. CHP efficiency is

the highest among the three cases, while electrical efficiency is the lowest one due to the worst

stack current-voltage management among the three strategies. AU slightly decreases, and FU is

almost constant except for the last phase after 3.5 years by which starts decreasing and CO is set

to 90&.

EoL Metrics

In this section, the EoL metrics of the system are analyzed based on Figures 4.4a-c. These figures

illustrate the stack power output, voltage, cumulative energy, and system power over time under

fixed power, fixed voltage, and fixed temperature conditions.

Across all conditions—fixed power, fixed voltage, and fixed temperature—the cumulative en-

ergy EoL threshold is never reached, indicating that the system continues to produce energy

efficiently over the 5 years. In the fixed power condition (Figure 4.4a), the cumulative energy

continues to increase steadily over time, demonstrating the system’s ability to generate energy

efficiently despite degradation. In the fixed voltage condition (Figure 4.4b), the cumulative

energy increases consistently, indicating continuous energy production capability. In the fixed

temperature condition (Figure 4.4c), the cumulative energy increases steadily, reflecting sus-

tained energy production over time. Comparing the final cumulative energy values under these

conditions, the fixed voltage condition shows the highest final cumulative energy value at around

34,000 kWh, followed closely by the fixed temperature condition with slightly over 32,000 kWh,

and the fixed power condition at approximately 32,000 kWh.
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(a)

(b)

Figure 4.4: Optimization analysis EoL evaluation, with fixed power (a) and fixed voltage (b)
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(c)

Figure 4.4: Optimization analysis EoL evaluation, with fixed temperature (c)

The actual hours of EoL thresholds for different conditions are summarized in Table 4.2. The

Table 4.2: EoL thresholds for fixed power, voltage, and temperature conditions.

Condition EoL Type Hours

Fixed Power

Voltage loss 10,533
Power loss -

System power loss -
Cumulative energy 15,712

Fixed Voltage

Voltage loss -
Power loss 6,846

System power loss 6,408
Cumulative energy 37,919

Fixed Temperature

Voltage loss 23,875
Power loss 14,044

System power loss 12,903
Cumulative energy 19,925

EoL thresholds indicate distinct performance and longevity characteristics for each condition.

The fixed temperature condition shows the highest EoL thresholds overall, indicating a longer

life expectancy under stable thermal conditions. The fixed voltage condition, despite having

the highest cumulative energy threshold (37,919 hours), has a shorter life expectancy for other

metrics due to the accelerated degradation of system components. The fixed power condition

falls between the other two, offering a balanced approach with moderate EoL thresholds but the

lowest cumulative energy threshold of 15,712 hours. Overall, while fixed temperature conditions

provide the longest lifespan in terms of voltage and power, the fixed voltage condition excels in

cumulative energy output.
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4.3.2 Minimization of degradation rate analysis

This section presents a similar analysis to the first one, maintaining a largely unchanged algo-

rithm structure. However, it now incorporates three different approaches: fixed power, fixed

voltage, and fixed temperature. These parameters are shifted from the objective function to non-

linear equivalent constraints. The specific values for these fixed parameters are the same as those

in Table 4.1. The goal of the new algorithm is to impose degradation minimization. This is done

using the degradation rate that is the same as Formula 3.35 but without the time-dependency:

ob j : Dr ate =
0.500 ·FU +0.876

1+exp
(T−1089

22.920

) (
exp

(
0.3 · j

)−1
)

(4.8)

where FU is the fuel utilization, j is the current density in A/cm2, and T is the mean logarithmic

temperature inside the stack.

The results are visualized through a series of plots. For brevity, all the plots are shown in Appendix

A.3. These plots provide insights into the behavior of various system parameters over a simulated

period of 5 years, with 50,000 points in total considered by the fmincon algorithm. The following

paragraphs are written with the same structure as already done in the previous analysis.

Fixed power control strategy

In this section, the metrics obtained by fixed power control strategy are analyzed. This strategy

involves two different main phases, that can be distinguished by a single point in which the

slope of each plotted variable in time drastically changes. In the context of this strategy, this

algorithm re-adaptation happens after 2.9 years of operations.

In the first phase of operation (from 0 to 2.9 years), the methane blower workload is linearly

increasing from 80% in conjunction with the CPOX air blower workload from 70%. This is

done to minimize the degradation rate inside the stack, which from the start of the operations

increases due also to the increase of the current profile. In this optimization, the cathode in-

let temperature is fixed to the upper bound, thanks to the lower value of the stack air blower

workload. Despite that, CPOX temperature which also has an impact on SOFC temperature

increase and degradation minimization, is kept constant until 2.9 years. After that, the volt-

age lower bound is touched and so the voltage and current are kept constant by increasing

CPOX temperature, directly affecting the degradation rate and reversing its profile that is now

decreasing. The increase in CPOX temperature leads also to a drastic increase in SOFC stack

temperature, burner temperature, and outlet HEX air cold side temperature. Also water pump

workload starts to decrease to compensate the its power consumption, causing the increase of

water outlet temperature. Notably, concerning standard operation here the degradation rate

order of magnitude is 30% lower in each of the strategies. Another interesting fact is that a fixed

power control strategy also has both the best electrical efficiency and CHP efficiency of the

system, with good power production despite the highest degradation of performances in time.

This strategy has the highest CO2 emissions among the others.
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Fixed voltage control strategy

The fixed voltage control strategy demonstrates stability, with no changes in slope or boundary

violations and it is found to be very similar to the standard case with some little differences.

In this scenario, the applied current tends to decrease over time to maintain a fixed voltage.

This decrease is exponential rather than linear, primarily due to the dual effect of current on

both the ASR and the degradation rate, which together reduce voltage losses. The water pump

workload remains nearly constant and is set to an initial value, as it is relatively independent of

this analysis. Similarly, the air mixing valve ratio is fixed. The workloads for the methane blower,

and CPOX air blower all decrease over time. These two variables directly impact the SOFC

mass balance, thereby influencing the OCV. For example, if constant flow rates are maintained

while the current decreases exponentially, the amount of hydrogen reacting also decreases

exponentially. This reduces the oxygen concentration at the cathode outlet and the hydrogen

concentration at the anode inlet, leading to a decrease in OCV voltage. The main difference from

the standard operation results is that the cathode air blower workload is very slightly increasing

from a far lower value. This led to the optimization to fix the air cathode inlet temperature to be

fixed to the upper bound while minimizing the degradation rate and achieving the same target

voltage.

All the inputs decrease cause an exponential decrease also in stack and system power output and

a slight decrease in both stack and CHP efficiency, the latter mainly due to the stack efficiency

decrease. The degradation rate with current is exponentially decreasing and the overall perfor-

mance at the end of the 5-year operations appears to be less degraded concerning the fixed

power control strategy, with less CO2 emissions. Regarding the unmentioned temperatures, they

are all constant in time.

Fixed temperature control strategy

Fixed temperature control strategy has a very simple behavior fixing each variable in time. Due

to the absence of any constraint on current and voltage besides the operational limits, the

algorithm set the current to 7.5 A and the voltage fixed to 60 V with a very low power generated

around 400 W. This ensures the algorithm minimizes the degradation rate, which reaches very

its lowest values (0.007 %/kh) with almost no degradation of performances (0.35% ASR increase

after 5 years). This is normally expected to happen on a system since it is always operating in part

load, which for SOFC is more efficient. However, the low current makes the system losses very

much impactant on the efficiency, due to the still high values of methane blower, air blowers,

and water pump workloads, resulting in producing the lowest electrical and CHP efficiencies

among the three cases.

EoL Metrics

In this section, the EoL metrics of the system are analyzed based on Figures in Appendix A.3.

These figures illustrate the stack power output, voltage, cumulative energy, and system power

over time under fixed power, fixed voltage, and fixed temperature conditions.
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Table 4.3: EoL thresholds for fixed power, temperature, and voltage conditions minimizing
degradation.

Condition EoL Type Hours

Fixed Power

Voltage loss 20,013
Power loss -

System power loss -
Cumulative energy 28,790

Fixed Voltage

Voltage loss -
Power loss 11,235

System power loss 10,445
Cumulative energy -

Fixed Temperature

Voltage loss -
Power loss -

System power loss -
Cumulative energy -

Across conditions of fixed voltage and fixed temperature the cumulative energy EoL threshold

is never reached, indicating that the system continues to produce energy efficiently over the 5

years. Comparing the final cumulative energy values under these conditions, the fixed power

condition shows the highest final cumulative energy value at approximately 35,500 kWh, followed

by the fixed voltage condition at around 31,000 kWh, and the fixed temperature condition at

approximately 20,000 kWh.

The actual hours of EoL thresholds for different conditions are summarized in the table below:

The fixed temperature condition shows the highest EoL thresholds, indicating a longer life

expectancy under these conditions, mainly due to the part load operations. In contrast, the fixed

voltage condition has the shortest life expectancy based on the EoL thresholds, likely due to the

higher performance in terms of energy supplied. The fixed power condition falls in between, with

an EoL threshold that is higher than that of the fixed voltage condition but lower than that of the

fixed temperature condition. The differences between the Table 4.2 values and Table 4.3 values

obtained from the algorithm that minimizes degradation, thus maximizing expected lifetime,

are significant. The new values reflect an optimization in the system’s operational parameters

to reduce degradation and extend the lifespan. This optimization algorithm has increased the

EoL thresholds substantially compared to the initial values, demonstrating its effectiveness in

prolonging the system’s life expectancy and maintaining efficient energy production over an

extended period.

4.3.3 Maximization of electrical efficiency analysis

This section presents a similar analysis to the last one, using the same specific values for the

fixed parameters Table 4.1. The goal of the new algorithm is to impose electrical efficiency

maximization. This is done using the efficiency computed per each iteration as:

ob j : ηel =
Ps y s

Pi n
(4.9)
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where ηel is the electrical efficiency, Ps y s is the system power, and Pi n is the introduced chemical

power.

The results are visualized through a series of plots. For brevity, all the plots are shown in Appendix

A.4. These plots provide insights into the behavior of various system parameters over a simulated

period of 5 years. The fmincon algorithm considered 60,000 points in total, which is 10,000

more than the other algorithms, to increase resolution due to the more constrained optimization

problem. The following paragraphs are written with the same structure as already done in the

previous analysis.

Fixed power control strategy

In this section, the metrics obtained by the fixed power control strategy are analyzed. This

strategy involves two different main phases, that can be distinguished by a single point in which

the slope of each plotted variable in time drastically changes. In the context of this strategy, this

algorithm re-adaptation happens after 2 years of operations. The main concern about electrical

efficiency maximization is to minimize the power losses, given by cathode air blower, CPOX air

blower, methane blower loss, and water pump.

In the first phase of operation (from 0 to 2 years), the methane blower workload is linearly

increasing from 92% in conjunction with the CPOX air blower workload from 68%. This is

done to maximize electrical efficiency increasing FU. Electrical efficiency from the start of

the operations is kept almost constant during operation to 32 %. In this optimization, the

cathode inlet temperature is fixed to the upper bound, thanks to the lower value of stack air

blower workload maximizing its impact on degradation decrease. However, this is mainly due to

reduce the power loss produced by the cathode air blower consumption. After the 2 years, the

voltage lower bound is touched and so the voltage and current are kept constant by increasing

CPOX temperature, directly affecting the degradation rate and reversing its profile that is now

decreasing. The increase in CPOX temperature leads also to a drastic increase in SOFC stack

temperature, burner temperature, and outlet HEX air cold side temperature. The water pump

workload is always kept to a minimum to reduce power losses. Notably, the fixed power control

strategy ensures the worst electrical efficiency and CHP efficiency of the system, despite its

good power production and the half-way degradation of performances in time to the other two

strategies. This strategy has the lowest CO2 emissions among the others.

Fixed voltage control strategy

The fixed voltage control strategy in this optimization analysis presents two main changes in

slope, due to local minima escaping from the SQP algorithm: the first one is experienced after

1-year operations, where the algorithm is struggling to maintain the voltage fixed in time and so

it slightly changes the operating conditions to increase it a little recovering the 1-year voltage

lost; the second change in slope is experienced after CPOX temperature upper bound touching.

In the first part from 0 to 1 year operations, the methane blower workload and the cpox air blower

workload are decreasing slightly from 93% and 71% respectively. These two variables directly
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impact the SOFC mass balance, thereby slightly increasing the OCV. Also current is decreasing

to compensate for the voltage ASR losses and degradation impact on performances. FU is below

60% which is the lowest one among the three strategies, AU is exponentially decreasing from 19

% and CO is fixed to 90%. Water workload and cathode air workload are very low, to minimize

power losses, fixing cathode inlet air temperature and water outlet temperature to the upper

bound. Other temperatures are only slightly increasing. After 1 year of operation, there is a step

in almost all the variables plots in time: methane blower workload bounces to 99.95%, CPOX air

blower workload bounces to 75% and it is maintained fixed in time, stack air blower workload

bounces to 30%, current bounces to 18.5 A, air mixing valve drops down to 25%. This led to an

overall increase in power production and a very drastic decrease in degradation rate, due to the

high SOFC temperature bounce to 840°C, led by the CPOX temperature bounce increase to the

upper bound. This increase in temperatures is also reflected by the burner, and HEX air outlet

temperature from the cold side. After 1 year of operation the SQP algorithm, after struggling

to maintain the voltage constraint fixed to the target, rearrange the variables changing the

operating conditions, leading to another one with higher CO2 emission and lower performance

degradation. The last change in shape it is also considered as an operating conditions change

due to local minimum escaping with the main result of fixing the methane blower workload to

the upper bound.

Thanks to the first bounce in manipulated variables, the fixed voltage control strategy reaches

values of degradation rate of 0.08% resulting to be the least degraded scenario among the others.

Fixed temperature control strategy

The fixed temperature control strategy shows significant variability in its variables, primarily due

to the methane blower workload frequently reaching its upper bound. This challenge occurs

within the first 0 to 0.7 years as the algorithm struggles to stay within limits. At the 1-year mark,

the primary change in the slope of the variables is attributed to the voltage reaching its lower

bound.

Overall, this strategy starts with very high current values that decrease over time, almost repro-

ducing the same behavior of standard operations, while maintaining higher values and with

some differences. After 1 year, there is a bounce to higher current values, but the overall decreas-

ing trend continues. The cpox air blower workload exhibits a similar pattern. Voltage begins at

very low values (around 42 V) and continues to decrease until the 1-year mark, after which it

remains fixed. Initially, the methane blower workload is set to its maximum and starts decreasing

after 1 year. The high initial values are intended to maintain a fixed stack temperature while

minimizing the system’s power consumption, especially for the water pump and cathode air

blower, which are the most power-intensive components. The workloads of these components

are minimized, except after 1 year when the water pump workload increases. This increase is

offset by a significant jump in the valve opening ratio, which then reaches its upper bound.

In this case, the highest electrical efficiency is reached 37% and also the highest CHP efficiency

is 68%, with still the lowest CO2 emissions at the end of the 5 years of operation. However, the

degradation of performance of this control strategy is the highest among the three cases.
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Table 4.4: EoL thresholds for fixed power, temperature, and voltage conditions maximizing
electrical efficiency.

Condition EoL Type Hours

Fixed Power

Voltage loss 14,332
Power loss -

System power loss -
Cumulative energy 22,814

Fixed Voltage

Voltage loss -
Power loss -

System power loss -
Cumulative energy -

Fixed Temperature

Voltage loss -
Power loss 16,087

System power loss 15,282
Cumulative energy 22,668

EoL Metrics

In this section, the EoL metrics of the system are analyzed based on Figures in Appendix A.4.

In fixed voltage conditions the cumulative energy EoL threshold is never reached, indicating

that the system continues to produce energy efficiently over the 5 years. Comparing the final cu-

mulative energy values under these conditions, the fixed power condition shows the lowest final

cumulative energy value at approximately 35,000 kWh, followed by the fixed voltage condition

at around 36,000 kWh, and the fixed temperature condition at approximately 36,000 kWh.

The actual hours of EoL thresholds for different conditions are summarized in Table 4.4. The

fixed voltage condition shows the highest EoL thresholds, indicating a longer life expectancy

under these conditions, that is a very interesting result since the cumulated energy is also quite

high. In contrast, the fixed temperature condition has the shortest life expectancy based on the

EoL thresholds, likely due to the higher performance in terms of energy supplied. The fixed

power condition falls in between, with EoL thresholds higher than that of the fixed voltage

condition but lower than that of the fixed temperature condition.

4.3.4 Maximization of CHP efficiency analysis

This section presents a similar analysis to the last one, using the same specific values for the fixed

parameters Table 4.1. The goal of the new algorithm is to impose CHP efficiency maximization.

This is done using the efficiency computed per each iteration as:

ob j : ηC HP =
Ps y s +PH2O

Pi n
(4.10)

where Ps y s is the power produced at system level, PH2O is the power produced by the WHEX, Pi n

is the chemical power of the methane consumed.

The results are visualized through a series of plots. For brevity, all the plots are shown in Appendix

A.5. These plots provide insights into the behavior of various system parameters over a simulated
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period of 5 years. The fmincon algorithm considered 100,000 points in total, which is 50,000

more than the other algorithms, to increase resolution due to the more constrained optimization

problem. The following paragraphs are written with the same structure as already done in the

previous analysis.

Fixed power control strategy

In this section, the metrics obtained from the fixed power control strategy are analyzed. This

strategy involves three main algorithm bounces and re-adaptations to escape local minima.

The first bounce occurs due to the voltage touching its lower bound, while the subsequent

bounces are due to the fixed system power constraint. These bounces are reflected in most of

the variables plotted over time.

The primary difference between this strategy and other optimizations is that the methane blower

workload is consistently fixed at its upper bound. In contrast, the CPOX air blower workload is

not at its maximum and increases over time. This approach ensures the achievement of target

power over time by providing more flexibility in energy balances, thereby maximizing the heat

exchanged in the water HEX. This is achieved by increasing the moles of hydrogen injected

into the SOFC, with an almost constant FU over time, ensuring enough uncombusted fuel is

burned in the afterburner. This increases the water HEX air temperatures and maximizes heat

exchange. In this strategy, the water workload is slightly higher than in the other optimizations

among the three strategies. This is due to its ability to both increase pump power losses and

water heat exchange. Therefore, the algorithm finds a trade-off value. Meanwhile, the water

outlet temperature is fixed to its upper bound, facilitated by a low cathode air blower workload.

While the current is always increasing, the different bounces cause it to step down periodically.

As a result, by the end of the 5-year operation, the current is almost at the same value as at the

start-up. This current behavior is due to voltage and power corrections inside the SOFC. Notably,

the bounces primarily affect temperatures: CPOX, cathode inlet, SOFC, burner, and HEX outlet

(both cold and hot side) temperatures all increase with each bounce, with the cathode inlet and

SOFC temperatures reaching their upper bounds. It is also notable that after the first bounce,

the CO ratio reaches its upper bound. This occurs because the step-down bounce of the CPOX

air blower workload results in less oxygen being injected.

In this case, electrical efficiency is the highest among the three cases, while the CHP efficiency is

the lowest. Although the degradation rate starts at the highest value among the three strategies,

it decreases significantly over time due to the different bounces. Consequently, the fixed power

control strategy results in the least performance degradation.

Fixed voltage control strategy

The fixed voltage control strategy in this optimization analysis shows a minor change in slope at

0.6 years of operation, caused by the cathode inlet air temperature touching its lower bound. This

strategy maximizes CHP efficiency by optimizing the water heat exchange while maintaining a

fixed voltage over time. As expected, the current decreases exponentially over time to reduce
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ASR losses and maintain the voltage target. The water pump workload is higher than in other

cases, while the cathode inlet air blower workload increases slightly to keep the water outlet

temperature at its upper bound. The methane blower workload is also fixed at its upper bound.

In this strategy, the algorithm increases the number of total moles passing through the water heat

exchanger to maximize heat exchange. However, this causes the cathode inlet air temperature

to decrease until it reaches and stays at the lower bound. This decrease in cathode inlet air

temperature could potentially lower the SOFC temperature, increasing degradation and making

it harder to maintain a fixed voltage over time. Nonetheless, the SOFC temperature remains

above 750°C due to the still high CPOX temperature, which slightly decreases over time.

In this analysis, the power output is not very high, decreasing from about 650 W to 450 W. This

indicates that to maximize overall efficiency with a fixed voltage, it is best to utilize waste heat

recovery. The degradation rate decreases exponentially according to the current profile, but it

remains quite high. By the end of the 5-year operation, this strategy results in the most degraded

performance. Electrical efficiency reaches its lowest value at 20%, while CHP efficiency is higher

than in the fixed power case, reaching 73%.

Fixed temperature control strategy

Similarly to the degradation minimization objective, the fixed temperature control strategy also

exhibits a simple behavior by maintaining each variable constant over time. With no constraints

on current and voltage beyond operational limits, the algorithm sets the current to 11 A and fixes

the voltage at 60 V, resulting in a low power generation of around 550 W, which is higher than

400 W in the minimized degradation case. The water pump workload is higher than in other

cases, while the cathode inlet air blower workload increases slightly to keep the water outlet

temperature at its upper bound. The methane blower workload is also fixed at its upper bound.

This strategy maximizes CHP efficiency, which reaches its highest value at 74%, with a relatively

low and constant degradation rate of 0.24%/kh. This is expected for a system operating in part

load, as it is more efficient for SOFC. However, the low current makes system losses significantly

impact stack efficiency (20%), due to the high workloads of the methane blower, air blowers,

and water pump. CO2 emissions are almost the same across the three strategies, indicating that

maximizing CHP efficiency results in relatively high emissions.

EoL Metrics

In this section, the EoL metrics of the system are analyzed based on the Figures in Appendix A.5.

Across conditions of fixed voltage and fixed temperature, the cumulative energy EoL threshold

is never reached, indicating that the system continues to produce energy efficiently over the 5

years, except for the fixed voltage case in which the EoL is reached after 16,853 hours. Comparing

the final cumulative energy values under these conditions, the fixed power condition shows

the highest final cumulative energy value at approximately 36,000 kWh, followed by the fixed

temperature condition at approximately 27,500 kWh and the fixed voltage condition at around

24,000 kWh. The same considerations are valid also for other thresholds, except for voltage loss

cases. The actual hours of EoL thresholds for different conditions are summarized in Table 4.5.
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Table 4.5: EoL thresholds for fixed power, temperature, and voltage conditions maximizing CHP
efficiency.

Condition EoL Type Hours

Fixed Power

Voltage loss -
Power loss -

System power loss -
Cumulative energy -

Fixed Voltage

Voltage loss -
Power loss 4,389

System power loss 3,687
Cumulative energy 16,853

Fixed Temperature

Voltage loss -
Power loss -

System power loss -
Cumulative energy -

Both fixed power and fixed temperature conditions show no EoL thresholds, indicating a longer

life expectancy under these conditions, mainly due to the shallow current used for the fixed

temperature scenario, showing that the best option, in this case, is to fix the power. In contrast,

the fixed voltage condition has the shortest life expectancy based on the EoL thresholds, likely

due to the higher average degradation rate looking at the energy supplied.

4.3.5 Maximization of Net Operating Income analysis

This section presents a similar analysis to the last one, using the same specific values for the

fixed parameters Table 4.1. This paragraph uses an algorithm based on the previous ones that

maximizes the system’s net operating income, a parameter that is fully described in Section 3.5:

obj: OInet ,tot per each time iteration (4.11)

This choice is made to maximize the operating income of the system while minimizing its

operating costs at the same time. The goal of developing this objective function is to assess

whether this system operating point condition can be optimized to be profitable, which in

Section 3.5 is found to be unprofitable for the operating conditions given by the first data set.

The simulation is run over 10 years of operations, using 150,000-time points for high resolution

due to the highly constrained level of the optimization problem. The simulation time here is

doubled since the main aim of this chapter is to delve deeper into the profitability of the system

regardless of the accuracy of prediction. The algorithm’s results are presented in the plots in

Appendix A.6.

General results discussion

When analyzing the input metrics, it is important to note that in each of the three cases, the

algorithm initially shows a significant bounce as it escapes the local minima set by the initial

operating condition parameters. Following this, the values of all input variables and their

behaviors over time change significantly. For the fixed voltage and fixed temperature scenarios,
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Table 4.6: EoL thresholds for fixed power, temperature, and voltage conditions maximizing net
operating income.

Condition EoL Type Hours

Fixed Power

Voltage loss 3,771
Power loss -

System power loss -
Cumulative energy 16,485

Fixed Voltage

Voltage loss -
Power loss 35,075

System power loss 34,812
Cumulative energy -

Fixed Temperature

Voltage loss -
Power loss 5,963

System power loss 5,700
Cumulative energy 13,241

almost all input workloads decrease over time, including methane blower workload, air CPOX

blower workload, current, and water pump workload. However, the stack air blower workload

remains nearly constant at 35%, and the air mixing valve ratio stays at 45%. Notably, in the

fixed temperature case, the current decreases from its upper bound, a point not reached in

other optimizations, highlighting the significance of high current for this analysis. In the fixed

power scenario, most parameters increase over time, except for the air mixing valve ratio, which

remains fixed at 45%. Interestingly, the algorithm attempts to stabilize the current at around 20

A, which corresponds to achieving the minimum voltage of 40 V.

Regarding performance and temperature metrics, it is noteworthy that the algorithm aims

to minimize voltage while maintaining the highest possible current. In each scenario, both

electrical and CHP efficiencies decline over time, along with the stack and system power outputs.

The fixed temperature case consistently exhibits the highest degradation rate. This is attributed

to the relatively low temperature inside the stack compared to the fixed power case, even though

the fixed power scenario maintains a higher current after five years of operation.

Regarding EoL metrics, the cumulative energy threshold is used to determine the stack’s life

expectancy for this analysis. These metrics align with the degradation rate results, indicating

that the fixed voltage case has the highest life expectancy, followed by the fixed power case, and

finally, the fixed temperature case (Table 4.6).

Profitability analysis

This analysis primarily examines the techno-economic aspects, as shown in Figure 4.5. The

main finding is that it is possible to adjust the operating parameters from the initial dataset to

achieve system profitability. Looking at Figure 4.5a after an initial adjustment to escape the local

minimum, where costs exceed revenues, the net operating income becomes positive in each of

the three scenarios, except for the fixed temperature scenario. The fixed temperature scenario

remains consistently profitable from the beginning due to the high initial current input (24 A).
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(a)

(b)

Figure 4.5: Optimization analysis maximizing Net Operating Income with fixed power, tempera-
ture, and voltage techno-economic results
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In Figure 4.5b, the cumulative profitability indexes of the systems are presented, calculated

by dividing the total cumulative values by the cumulative energy of the system in kWh. This

results in income, operating expenditure, and net income indices expressed in CHF/kWh. These

findings are valuable for assessing system performance and profitability. Notably, for the fixed

power and voltage scenarios, there are two minima in the operating expenditure functions. In

the fixed power scenario, these minima coincide with the cumulative energy detection at the EoL.

Interestingly, the net income index for these scenarios starts negative, exhibiting a logarithmic

behavior and stabilizing after two years at approximately 0.025 CHF/kWh. In contrast, the

fixed temperature scenario shows a constant decrease in net income and a steady increase in

operating expenditures, with no observed minima.

Thanks to this analysis, a final evaluation can be made regarding the Levelized Cost of Electricity

(LCOE). The LCOE is a key metric for evaluating the economic viability of power generation

technologies, representing the per-unit cost of building and operating a plant over its lifetime.

LCOE helps compare the cost-effectiveness of different energy sources, considering all costs and

energy output over the project’s duration. It is essential for informed decision-making in energy

investments and policy but can be complex due to various uncertainties and assumptions. In

this analysis, the Levelized Cost of Energy (LCOE) primarily reflects the operating expenditure

index. It is calculated as follows:

LCOEopt ,st ack =
Stack Capital Cost + Operating Costs

Total Energy Produced
≈ 0.375 CHF/kWh (4.12)

Here, all cost and energy values are sourced from the EoL of the fixed power case, which demon-

strates the highest energy production rate relative to the minimum operating expenditures

within the system. The LCOE is calculated at the stack level because the total energy considered

includes only the electrical energy produced by the stack. This can be considered a feasible

result since another LCOE of another SOFC system in Switzerland is 0.285 CHF/kWh [112].

To put this in perspective, current LCOE values for various renewable energy technologies in

Switzerland can be compared. According to recent data, the LCOE for utility-scale solar PV

projects in Switzerland is approximately 0.10 CHF/kWh, and for onshore wind projects, it is

about 0.08 CHF/kWh [113]. Notably, it’s interesting to see that LCOE without optimization is:

LCOEst ,st ack ≈ 0.5734 CHF/kWh (4.13)

meaning that thanks to system optimization, the LCOE values are reduced in this case by 34%.

These values highlight the significant difference in LCOE between the SOFC system and other

renewable energy technologies. This further reinforces the economic challenge that SOFC

systems face in the current energy market, despite their potential technological benefits and

advancements.

4.4 Discussion

This chapter explores the long-term prognostic analysis of a CPOX-SOFC system using the NMPC

theory, focusing on enhancing the performance, efficiency, and longevity of SOFC systems.
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The application of NMPC theory to this analysis demonstrates its effectiveness in managing

nonlinear behaviors and operational constraints, which is crucial for optimizing temperature

control, fuel utilization rates, and electrical load demands. The evaluation of the SoH of SOFC

systems is emphasized as a critical aspect for ensuring reliability and extending the system’s

lifetime. Accurate SoH assessments enable early detection of degradation, facilitating optimal

maintenance schedules and preventing critical failures. The chapter also discusses EoL criteria,

with cumulative energy being a reliable indicator due to its monotonic behavior, particularly for

dynamic mission profiles. Optimization algorithms, specifically SQP and GA, are evaluated for

their ability to optimize the NMPC approach. Within the scope of this chapter, SQP is found to

be more efficient and effective and thus is preferred. This last algorithm is applied to various

scenarios, including fixed power, fixed voltage, and fixed temperature operations, to analyze

their impact on system performance and longevity.

The results suggest that maintaining a fixed power generally results in higher degradation rates.

However, it also leads to greater energy production and increased income. On the other hand, a

fixed voltage approach is the most balanced, offering the highest life expectancy and optimal

thermal balance. The fixed temperature method is the least balanced, with results varying

significantly across different optimizations. This often results in very low degradation due to the

application of very low current. More specifically, the analysis revealed:

• When no specific objectives are selected and the focus is solely on maintaining fixed

values (power, temperature, and voltage), the results indicate that a fixed voltage approach

yields the best life expectancy, followed by fixed temperature and fixed power approaches.

Interestingly, the fixed power case exhibited the highest degradation rates in the short

term but the lowest in the long term. Despite this, the overall energy produced by the fixed

power approach is less than that of the fixed voltage approach, which also demonstrated a

stable logarithmic degradation trend. Although this trend is slightly higher than that of the

fixed power case, the average degradation value is lower. Additionally, the fixed voltage

approach resulted in the lowest CO2 emissions. Regarding efficiencies fixed power case

showed the highest electrical one of about 2-3% difference, while the CHP efficiencies are

almost the same across the scenarios.

• In the case of minimizing degradation, the fixed voltage approach demonstrated the

highest life expectancy, followed by the fixed temperature and fixed power approaches.

While the fixed temperature case exhibited the lowest degradation rate, its performance is

also the lowest, primarily due to the very low current applied. The fixed power approach

achieved the highest cumulative energy output. This analysis reveals that when minimiz-

ing degradation, a tradeoff must be made between maximizing cumulative energy and

maximizing life expectancy. The fixed power approach achieves the former, while the

fixed voltage approach achieves the latter which also achieves the lowest CO2 emissions.

• In maximizing electrical efficiency, the fixed voltage approach demonstrated the best

cumulative energy value over five years and the highest life expectancy, followed by fixed

power and fixed temperature approaches. Interestingly, the fixed temperature approach

achieved a cumulative energy value almost equal to the fixed voltage case. The fixed
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voltage method also exhibited the best thermal balance and lowest CO2 emissions. Re-

garding degradation, the fixed voltage case had the lowest value, followed by fixed power

and fixed temperature. Notably, the fixed temperature approach achieved the highest

CHP and electrical efficiencies. Ultimately, a tradeoff exists between degradation, energy

production, and efficiencies. The fixed temperature approach emerged as the best overall,

with high cumulative energy, good life expectancy, and the highest efficiencies.

• In maximizing CHP efficiency, the fixed power approach demonstrated the longest life ex-

pectancy, followed closely by the fixed temperature and then the fixed voltage approaches.

In terms of cumulative energy, the fixed power approach led with the highest value, fol-

lowed by fixed temperature and fixed voltage. The highest CHP efficiency is observed in

the fixed temperature case at 76%, which also had the lowest electrical efficiency. The fixed

power approach achieved the highest electrical efficiency at 32%, with a CHP efficiency

of 70%. Regarding degradation, the fixed power approach had the lowest rate, followed

by fixed temperature and fixed voltage. CO2 emissions are similar across all conditions,

while the fixed temperature approach provided the best thermal balance. Overall, the

best trade-off is the fixed power approach, offering the lowest degradation, highest energy

production, good CHP efficiency, and the highest electrical efficiency.

• In maximizing net operating income over 10 years, the fixed power approach achieved

the highest cumulative energy, followed by fixed voltage and fixed temperature. The fixed

voltage case had the highest life expectancy. Economic profitability analysis suggested that

with proper optimization, SOFC systems can achieve competitive LCOE values, though

initial capital costs remain critical. The best case in this optimization is the fixed power

approach, which had the highest cumulative energy, highest net operating income, and

good life expectancy.

In summary, this chapter demonstrates the efficacy of the proposed prognostic approach in

optimizing CPOX-SOFC systems for performance, efficiency, and longevity. Key findings em-

phasize the importance of accurate SoH assessments and strategic optimization approaches for

balancing energy production and system degradation.
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5 Operating Map Development through
Multi-Objective Optimization

This chapter aims to develop a comprehensive operating map that remains valid when the

system operates with fixed inputs over time. This is achieved through a multi-objective opti-

mization process with two distinct objectives: minimizing degradation to maximize the stack’s

life expectancy and increasing electrical efficiency to ensure optimal operation.

5.1 Introduction

The operating map of a SOFC system based on CPOX is crucial for understanding the perfor-

mance boundaries and optimal operating conditions. A multi-objective optimization approach

is employed to develop this map, balancing the trade-offs between minimizing degradation

and maximizing electrical efficiency. The optimization process involves setting up a series of

simulations over a defined period, during which the system’s performance is evaluated against

these objectives.

The simulation is conducted over a specific time interval, starting from an initial time and

extending over a fraction of a year. This interval is discretized into a series of time points at

which the system’s state is evaluated.

The optimization problem is formulated by defining the decision variables, which include

operational parameters such as fuel flow rates, air flow rates, and temperatures. The bounds for

these variables are the ones described in the Table 3.2. Two primary objectives are considered in

the optimization:

1. Minimization of Degradation: This objective aims to reduce the degradation impact on

the SOFC system, thereby extending its operational life.

2. Maximization of Electrical Efficiency: This objective seeks to enhance the electrical

efficiency of the system, ensuring that it operates at its best performance level.

The optimization process is carried out using a genetic algorithm for multi-objective optimiza-

tion (gamultiobj) with the "Global Optimization Toolbox" of MATLAB software. The algorithm

searches for the best trade-offs between the objectives by evolving a population of solutions
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over several generations. To ensure a robust and efficient optimization process, several options

are configured for the gamultiobj function. First, the PopulationSize is set to 1000. This large

population size helps to maintain a diverse set of solutions, which is crucial for effectively

exploring the solution space and avoiding premature convergence on suboptimal solutions.

Second, the MaxGenerations parameter is set to 1000, allowing the algorithm ample iterations

to converge to the optimal solutions. Additionally, to ensure precision in the optimization, the

Algorithm 3: Multi-objective optimization using gamultiobj
Data: Objective function multiObjective, number of variables nvars, bounds lb, ub, time

span tspan
Result: Optimized solution sol, function value fval, exit condition exitflag, and

algorithm output output
options ← optimoptions(’gamultiobj’, ’PopulationSize’, 1000,
’MaxGenerations’, 1000, ’FunctionTolerance’, 1e-6,
’ConstraintTolerance’, 1e-6, ’UseParallel’, true, ’Display’,
’diagnose’); [sol, fval, exitflag, output] ← gamultiobj(@multiObjective,
nvars, [], [], [], [], lb, ub, @constrGA, options);

FunctionTolerance is set to 1×10−6. This tight tolerance ensures that the optimization process

continues until the changes in the objective function values are negligible, indicating conver-

gence. Similarly, the ConstraintTolerance is also set to 1×10−6 to enforce strict adherence to

the constraints defined for the problem, ensuring that all solutions remain within feasible and

realistic bounds. To expedite the optimization process, especially given the large population

size and number of generations, the UseParallel option is enabled. This allows the algorithm

to utilize multiple processors simultaneously thanks to the "Parallel Computing" Toolbox of

MATLAB, significantly reducing computation time. Lastly, the Display option is set to ’diagnose’,

providing detailed information and diagnostics about the optimization progress, which can be

invaluable for troubleshooting and refining the optimization setup.

It’s important to note that all constraints for each parameter are moved to the @constGA function.

This is done to treat them as non-linear inequality bounds, which is a requirement for the genetic

algorithm. For equivalent constraints, an error margin of ±10−6 is accounted for. Additionally,

temperatures are no longer included as inputs but are instead calculated within the model

function using the fsolve algorithm. This change reduces the system’s DoF from 14 to 6,

significantly improving the efficiency and speed of the genetic algorithm.

5.2 Pareto Front Analysis

The results of the optimization are analyzed to identify the Pareto front, which represents the set

of optimal trade-off solutions between the objectives. The Pareto front is visualized to help in

selecting the best compromise between minimizing degradation and maximizing efficiency. The

MOO results at the start-up time can be visualized in Figure 5.1a. The three evidenced points are

the best-trade-off solution, obtained minimized the sum between the two objective values, then

there are the two best solutions concerning one single objective, so efficiency maximization and

degradation rate minimization. The same results are obtained considering 1-year operations in
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(a) (b)

(c)

Figure 5.1: Pareto fronts obtained using 2-objective optimization at start-up operations (a),
1-year operations (b), multiple-year operations (c)

Figure 5.1b. The approach is subsequently generalized to multiple time point considerations

obtaining different Pareto fronts, plotted each in Figure 5.1c for comparison purposes. The

results for the first 5 years of operations of the three possible different points: best trade-off, and

best single objectives, where the best trade-off solution is typically found by minimizing the

sum of the normalized objective functions. The process involves the following steps:

• Given a set of objective functions f1(x) and f2(x) for each solution x, the best trade-off

solution is found by minimizing the sum of these functions:

Best Trade-Off Solution = argmin
x

(
f1(x)+ f2(x)

)
Where:

– f1(x) = Dr ate represents the first objective of degradation rate.

– f2(x) = −ηel represents the second objective of electrical efficiency.
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• Each objective function value is scaled to a common range, typically between 0 and 1, to

ensure they are comparable. This is done using:

Normalized fi (x) =
fi (x)−min( fi )

max( fi )−min( fi )

• The normalized objectives for each solution are summed. This aggregate measure repre-

sents the combined performance across all objectives. The solution that minimizes the

combined normalized objectives is identified as the best trade-off solution.

All the results are resumed in Table 5.1:

• Minimum Degradation: The methane blower workload stabilizes around 0.9999 by the

5th year indicating no major impact from this variable. The CPOX air blower workload is

fixed to 0.8000. The cathode air blower workload starts at nominal conditions (0.3883) and

varies slightly. The current fluctuates more around 10-11 A, with the highest at 11.0366 A in

the 2nd year and the lowest at 10.0114 A in the 4th year. The water pump workload varies,

with notable spikes and drops just to accomplish the energy balances since it has no

impact directly on degradation. The valve ratio also varies more significantly, ranging from

0.3213 to 0.3685, indicating adjustments in cathode inlet air temperature. This solution

minimizes degradation rate in time mainly using current. There is a high FU utilization,

and high CPOX temperature maintained thanks to the high CPOX air blower workload.

However, the best factor to decrease the degradation rate in time is current; in fact in this

case the system is operating in part load.

• Maximum Efficiency: The workload of the methane blower remains constant at 1.0000.

The CPOX air blower workload shows an upward trend, increasing from 0.7054 at start-up

to 0.7589, indicating improved efficiency optimization. The cathode air blower workload

is stable at 0.3000, aligning with a valve ratio of around 0.1. The current decreases sig-

nificantly from 23.6160 A at start-up to 19.7097 A after 5 years, indicating a substantial

reduction in energy demand. The water pump workload remains steady at around 0.1000,

primarily due to its high impact on power losses, which decreases efficiency. The system

no longer operates at part load, reflecting the efficiency dependence on power production.

With the aging of the SOFC, two trends become evident: an increasing CPOX air blower

workload and a decreasing current. The former enhances FU from the start of operations,

leading to higher SOFC temperature over time. Although it slightly increases degradation,

higher FU ensures better fuel consumption, thereby improving the SOFC’s performance.

The latter trend helps mitigate the impact of degradation and reduces voltage ASR losses

over time, which become more significant with prolonged operation.

• Best Trade-off: The best trade-off solution is derived from a normalized sum minimiza-

tion, as previously explained. This approach ensures that each selected value represents

the optimal compromise to optimize both objectives. If a value is closer to one objective’s

result, it has a greater impact on that objective rather than the other. Interestingly, the

trends of efficiency maximization through increased CPOX air blower workload and de-

creased current over time are also evident in these results, though with slightly different
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Table 5.1: Summary of operational parameters for different years of 2-objective optimization.

Year CH4 % CPOX % Air cathode % Current (A) Water % Valve %
Minimum degradation solution inputs

Start-up 0.9991 0.8000 0.3883 10.4948 0.1035 0.3476
1 year 0.9977 0.8000 0.3887 10.2339 0.2217 0.3543
2 years 0.9976 0.8000 0.3863 11.0366 0.1424 0.3213
3 years 0.9998 0.8000 0.3832 10.6058 0.1238 0.3685
4 years 0.9999 0.8000 0.3900 10.0114 0.3767 0.3668
5 years 0.9999 0.8000 0.3812 10.9306 0.1454 0.3603

Maximum efficiency solution inputs
Start-up 1.0000 0.7054 0.3000 23.6160 0.1008 0.1017

1 year 1.0000 0.7090 0.3001 20.9878 0.1015 0.1044
2 years 1.0000 0.7272 0.3000 20.0775 0.1001 0.1017
3 years 1.0000 0.7624 0.3002 19.2891 0.1001 0.1002
4 years 1.0000 0.7736 0.3001 19.9478 0.1006 0.1006
5 years 1.0000 0.7589 0.3000 19.7097 0.1005 0.1000

Best trade-off solution inputs
Start-up 1.0000 0.7385 0.3001 19.3678 0.1012 0.1027

1 year 1.0000 0.7505 0.3001 19.2734 0.1020 0.1038
2 years 1.0000 0.7674 0.3000 19.0929 0.1009 0.1010
3 years 1.0000 0.7784 0.3002 19.0087 0.1008 0.1005
4 years 1.0000 0.7800 0.3001 19.0063 0.1010 0.1017
5 years 1.0000 0.7899 0.3000 18.8741 0.1025 0.1004

values. The CPOX air blower workload values are higher due to the fixed 0.8 value aimed

at minimizing degradation. Similarly, the current values are lower to reduce voltage loss

degradation and the impact of ASR on efficiency. The water pump workload remains

stable at around 0.1, independent of degradation, to minimize water pump losses affecting

efficiency. The air cathode blower workload is reduced along with the valve opening ratio

to lower power losses, increase efficiency, and maintain good temperature management.

5.3 Operating maps

The same results are plotted in such a way as to build an operating map for each input of the

system in Figures 5.2a-k (methane blower workload, cathode air blower workload, cpox air

blower workload, valve ratio, water pump workload, and current) and for some outputs (voltage,

stack temperature, chp efficiency, real electrical efficiency, system power). It’s important here

to notice the difference between real and normal electrical efficiency, the latter considers the

overall methane consumption while the first one erases the part of methane that is not burned

into the CPOX, to do so and taking into account the model equations in Section 3.3.1, the new

molar flowrate of methane is taken into account as:

nC H4

i n,r eal = nC H4
i n,cpox −

nO2
i n,cpox

2
(5.1)
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5.4 Discussion

According to Figure 5.1, the evolution of Pareto fronts for electrical efficiency against degradation

rate over different periods is captured from the start-up phase to five years. This analysis

highlights the trade-offs between electrical efficiency and degradation rate over time. Initially,

the Pareto front for the start-up phase shows the highest electrical efficiency values with relatively

low degradation rates, indicating that newly implemented systems perform optimally with

minimal degradation rates. Over the first two years, the Pareto fronts demonstrate a slight shift

towards higher degradation rates, with a minor decrease in electrical efficiency. This suggests

that as the system ages, efficiency slightly drops while degradation becomes more pronounced.

From the third year onwards, the Pareto fronts shift further, showing a more significant decrease

in electrical efficiency and increased degradation rates. This indicates a trend where the system’s

efficiency is compromised more noticeably over time, and the degradation rate becomes a more

critical factor. Another intriguing finding is that the optimal trade-off solution shifts over time

toward the point of maximum electrical efficiency. This indicates that the degradation rate

becomes a dominant factor as the system ages, significantly impacting efficiency maximization.

It is also important to note that, over time, the maximum achievable efficiency decreases, while

the minimum degradation rate increases slightly.

Looking at Table 5.1, in the SUNFIRE system, the optimal trade-off between two objectives

is not always found exactly halfway between them. The analysis reveals that the CPOX air

blower workload significantly impacts degradation minimization and decreases efficiency due

to its power consumption, while the air cathode blower workload plays a more crucial role

in enhancing electrical efficiency. Current affects both degradation and efficiency, with very

good degradation rates still achievable at high currents (19A). The water pump workload is

independent of the degradation objective, whereas it has a strong impact on electrical efficiency

due to its high power losses. To further confirm this analysis, the operating maps of the Pareto

Fronts are analyzed in the following lines.

Looking at Figures 5.2a-f, the operating maps offer a comprehensive view of how different

variables impact degradation rate and electrical efficiency over time. Each map displays two

perspectives: the relationship between degradation rate and the chosen variable, and the

relationship between electrical efficiency and the chosen variable:

• Operating maps of the methane blower workload, appear to be almost independent of

system efficiency and degradation. The workload remains consistently around the upper

bound, ranging between 99% and 100% with no variation in each of the points. This result

is expected since in both single objectives optimization the values found resulted to be

around these values (Table 5.1).

• The operating maps for the CPOX air blower workload illustrate a clear relationship

between the workload and both degradation rate and electrical efficiency over various

periods. The main result is that with start-up operations, the range of variation of this

variable is larger within a range from 70% to 80%. 70% values achieve high efficiency and

high degradation, while for values near 80%, the efficiency decreases with degradation due
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to power consumption and cpox (then SOFC) temperature-related impact as previously

discussed. As time progresses, the degradation starts to impact on electrical efficiency,

which to be maximized narrows progressively the range of variation of CPOX air blower

workload to the upper bound.

• Air cathode blower workload is coherent maintaining a fixed range in time between 30 and

37%, with low values implying very high degradation and efficiency and the high values

low degradation and efficiency. Good trade-off values are found in between. The shape

of the plots means that the air blower workload in this MOO is independent of the aging

process.

• The operating maps for current demonstrate a significant influence on degradation rate

and efficiency. The current ranges from 10 to 24 A, with the minimum current yielding

the lowest degradation rate and efficiency, and the maximum current resulting in the

highest degradation rate and efficiency. Over time, the range of current narrows, with the

maximum values steadily decreasing from 24 A to 20 A after 5 years of operation. This

indicates that the current is a highly impactful parameter in managing system efficiency

and degradation.

• The operating maps for the water pump workload show a significant impact on electrical

efficiency. The majority of the Pareto front points fall within the 0% to 15% workload

range. In this range regarding degradation rate, the points are dispersed without following

a specific trend indicating no direct relationship. Concerning the electrical efficiency,

an aging trend can be observed, in which the points are shifted to lower workload with

time, to further reduce the water pump power consumption and enhance the total power

produced.

• The operating maps for the air mixing valve ratio show how air mixing influences system

performance. The ratio increases over time, ranging from 10% to 38%. At lower air mixing

valve ratios, the system experiences a higher degradation rate but initially achieves the

highest efficiency, which decreases over time. Conversely, higher valve ratios minimize the

degradation rate but at the cost of reduced electrical efficiency. The aging process impacts

the valve ratio Pareto fronts due to the valve’s ability to increase the temperature inside

the SOFC, which leads to lower degradation over time. The relationship with efficiency

is indirect, as it depends on the cathode air blower workload that varies with the valve

ratio. The algorithm commonly decreases both the air mixing valve ratio and the cathode

air blower workload to maintain good efficiency and a manageable degradation rate over

time.

Looking at Figures 5.2g-k, the operating maps outputs are discussed:

• The voltage behavior concerning the Pareto points is intriguing. The range of variation

narrows over time, decreasing from 40-60 V to 43-60 V over 5 years of operation. This is

primarily due to the degradation rate’s impact on the ASR, which causes a voltage decrease.

To manage this, the algorithm increases the current, which in turn raises the voltage over
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time. As a result, achieving lower voltage values becomes more difficult after several years

of operation.

• Looking at the system power operating map is found that the maximum system power

achievable decreases over time due to the degradation rate impact on performances.

Minimizing the degradation rate to below 1% requires a significant reduction in system

power that needs to operate in part load. The points that achieve this low degradation rate

correspond to a higher CPOX air blower workload, lower current, higher valve ratios, and

a higher air cathode blower workload.

• Looking at the SOFC temperature operating map, the stack minimum temperature rises

from 800°C to 840°C, and eventually to 930°C over time. This increase is due to the impact

of degradation on performance, which is counteracted by a rise in CPOX temperature,

subsequently leading to a higher stack temperature. Interestingly, a significant number of

data points cluster around 840°C. This temperature appears to be the optimal trade-off

between the two objectives, achievable at any point during operations.

• The CHP efficiency operating map shows no direct connection with the two objectives or

aging processes. Analysis of the Pareto fronts reveals that minimizing degradation results

in the highest CHP efficiency values. However, maximizing CHP efficiency is inversely

related to electrical efficiency. This is because achieving high CHP efficiency requires

increased workloads on blowers and the water pump to maximize heat exchange in the

water HEX. This increased workload significantly raises power consumption losses, which

in turn reduces electrical efficiency.

• Real electrical efficiency showcases the true capabilities of the stack, resulting in overall

efficiency values that are 10 to 15% higher than typical efficiencies. This efficiency ranges

from 30% to 45%. The higher values, compared to electrical efficiency, are due to the ex-

clusion of CPOX reaction efficiency. Electrical efficiency accounts for the CPOX efficiency

in oxidation reactions, leading to a significant difference in fuel input.

It is important to note that the 2-objective optimization can be further complicated by adding

more objectives. This leads to a much more complex analysis, requiring more computational

time to run the algorithm and to get each result, which is beyond the scope of this thesis. Adding

a third objective of net operating income maximization to the previous analysis, as shown in

Figure 5.3 only for start-up operations, results in a 3-dimensional Pareto front with a stripe

shape. The Curve Fitting Toolbox of MATLAB is used to interpolate the data for plotting this

stripe. Notably, the color gradient in this figure is not meaningful. Looking at Table 5.2, it is

interesting to note that the values generally reflect the previous analysis, with slight changes

due to the inclusion of a new objective. The net operating income objective yields optimization

results similar to those of maximizing electrical efficiency, with the main difference being the

valve opening ratio, which is near the upper bound in this case. This difference is caused by an

increase in the SOFC stack temperature, leading to higher temperatures in both the burner and

the hot air side (inlet and outlet) of the heat exchangers. These latter temperature increases are

significant for net operating income as they enhance the amount of heat exchanged in the water

heat exchanger, thereby maximizing the waste heat recovered and sold by the system. A small
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conclusion can be made out of this analysis: the net operating income is an objective that takes

into account both electrical efficiency objective and waste heat recovery maximization.

Table 5.2: 3-objectives optimization best points.

Objective CH4 % CPOX % Air Cathode % Current (A) Water % Valve %
Minimum Degradation 0.9999 0.8000 0.3749 10.0807 0.1781 0.4481
Maximum Efficiency 0.9999 0.7051 0.3005 23.5835 0.1019 0.1066
Maximum Net O.I. 1.0000 0.7050 0.3003 22.0466 0.1002 0.4499
Best Trade-off 0.9999 0.8000 0.3749 10.0807 0.1781 0.4481

In summary, this chapter highlights the intricate balance between electrical efficiency and

degradation rate in CPOX-SOFC systems over time. Key findings include the shifting Pareto fronts

indicating aging effects, the significant impact of input parameters on system performance, and

the complex relationships between operational variables. These insights emphasize the need for

strategic optimization to enhance system longevity and efficiency.
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(a)

(b)

(c)

Figure 5.2: Operating maps of methane blower workload (a), CPOX air blower workload (b), and
cathode air blower workload (c)
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(d)

(e)

(f)

Figure 5.2: Operating maps of current (d), water pump workload (e), and valve ratio (f)
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(g)

(h)

(i)

Figure 5.2: Operating maps of voltage (g), power (h), and stack temperature (i)
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(j)

(k)

Figure 5.2: Operating maps of CHP efficiency (j), real electrical efficiency (k)

Figure 5.3: 3-objectives optimization results for start-up operations
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6 Dynamic mission profile for a real-
case application

7This chapter introduces a real-world case study involving the consumption data of buildings at

the University of Applied Sciences and Arts Western Switzerland (HES-SO) in Sion, Switzerland.

The objective is to apply the developed model optimization techniques to this real case scenario,

demonstrating how dynamic mission profiles can impact the performance of a SOFC system

over one year. The consumption data will be used to create a dynamic mission profile that will

be integrated into the SOFC model to evaluate its performance and efficiency over time.

The used data contains detailed information on the electricity consumption at the HES-SO build-

ings. This dataset includes hourly data points over an entire year, providing a comprehensive

view of the energy dynamics at the site. In this analysis, a new case in which the SOFC system

completely replaces PV panels to satisfy the full building consumption is analyzed. By leveraging

this data, the simulation aims to assess the SOFC system’s response to real-world operational

conditions and evaluate its long-term performance, degradation, and overall efficiency.

6.1 Methodology

Firstly, the data is extrapolated by considering 8,760 different time points, which represent

each hour of the year. Each of these time points corresponds to a specific power consumption

value. The ".csv" file contained information about building consumption (kW) and PV power

production (kW), but only the first is taken into account. The extrapolated data is plotted in

Figure 6.1a. Then, to adapt this high power consumption in kW to the SUNFIRE 850W SOFC

system, the overall data is divided by the number of possible systems to fully satisfy the power

need:

Tar g etPowert =
Bui ldi ngConsumpti on(kW )

max(Bui ldi ngConsumpti on(kW ))
850W ·1000

per each t in time (6.1)

The result of the new variable TargetPower is shown in Figure 6.1b in a 3D plot to better visualize

the daily operations. The presence of Figure 6.1b helps to further understand the behavior of a

typical day operation; in fact, it is possible to see how during each day the power experiences

two major peaks, around noon and around 18:00. It’s also interesting to see how the power

consumption drops to 200 W during the night from 20:00 to 7:00. A single-objective optimization
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Figure 6.1: HESSO building consumption along a year of operations in 2D view (a), in 3D view
(b)

is run with fmincon algorithm and SQP, considering all the system constraints presented in

Table 3.2 in conjunction with a system power in time fixed to Tar g etPowert considered as an

additional non-linear equivalent constraint.

Three different objectives are considered: degradation rate minimization, electrical efficiency

maximization, and net operating income maximization, coming from a techno-economic as-

sessment (Section 6.2).

6.2 Results

In this section, all the results given by the optimization with the three different objectives are

shown in various figures and discussed in detail. It’s important to notice that not all the figures

are presented here and to have a complete and autonomous understanding of the analysis all

the missing figures are available in Appendix A.7. One common result from the three scenarios

is that almost all the variables follow the daily power profile of operation, diving the average

power production in two different parts:

• Daily operations, from 8 to 20:00, where two power peaks are experienced around 14:00

and 17:00;

• Night operations, from 20 to 8:00, where the power production is constant and low (200

W) operating the system in part load.

Minimization of Degradation Rate

To minimize the degradation rate, the methane blower workload maintains a moderate level,

ranging from 70% during the night to 100% during the day. The CPOX air blower workload

is moderate, ranging from 50 to 75% between day and night. The stack air workload remains

relatively stable, ranging from 20 to 60%, mirroring the target power profile. The current output

is kept at a moderate level, ranging from 12 to 15A between day and night. The water pump
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workload operates at 100% during the night and reduces to 10-15% during the day. The air

mixing valve ratio is the only value adjusted daily for temperature control, often set at 45%

during night operations to maintain a good stack temperature.

What is interesting is how the optimization algorithm manages the daily power change: during

the daytime, there are peak values for current around 16-17 A slightly increasing over time,

methane blower workload, and other variables similar to the system nominal conditions; while

during nighttime the extreme part-load conditions make the optimization struggle to achieve

better performance: water workload normally independent from degradation rate is fixed to the

upper bound to recover all the waste heat from the stack-cooling process due to the high power

decrease and the burner temperature raise. Notably, during daytime a slight trend of current

increase in time can be detected, given the voltage decrease in time. In terms of performance,

the stack power output is equal to the building power consumption indicating a stable optimiza-

tion, reflecting a balanced approach to sustaining performance while mitigating degradation.

Electrical efficiency is moderate, ranging from 15 to 30% between day and night, while CHP

efficiency shows higher peaks ranging from 60 to 80 % between day and night. Performance

degradation and degradation rate are lowest, with performance degradation moving below 0.3%

and a degradation rate averaging lower than 0.03%. Notably degradation rate is increasing over

time quite slightly due to the higher current, while in performance degradation an upward trend

in values is more visible, following the peak power profiles of power target. Voltage trends are

similar across conditions, rising to 60V at night and dropping to 40-45V during the day. FU is

at 70%, AU at 20%, and CO at 94%, showing the lowest fuel utilization rate. Also, temperatures

inside the system follow the daily profile of operation with some differences: profiles of SOFC,

cathode inlet, and HEX outlet (cold side) temperatures are shifted of around 1-hour operations

due to the system’s thermal inertia; in fact, after the power target start to decrease and with it

also the mass flow rates, CPOX temperature raises reaching the upper bound of 850°C, and the

system FU dropping down makes also burner temperature to experience an initial raise that

causes the "shifting" phenomenon. This phenomenon is consequently experienced by cathode

inlet air, WHEX inlet and outlet air temperatures. The system to mitigate the phenomenon acts

on the inputs regulating the mass flow rates, increasing the water flow rate to the upper bound

to maximize the waste heat recovery due to energy balance satisfaction. Doing so the water

outlet temperature decreases in a narrow range from 60°C to 52°C.

Efficiency Maximization

In this scenario, there is an interesting phenomenon about the SQP algorithm’s local minimum

escaping, due to the cathode inlet upper bound touching, that around half-year operations

slightly change the operating conditions. In this scenario, the methane blower workload in-

creases significantly, ranging from 60 to 100% between day and night. The CPOX air blower

workload is lowest in low-power operations, ranging from 45 to 80%. The stack air workload

shows an overall increase after half-year operations, ranging from 20 to 80%, peaking during

the night and lower during the day. The current output increases to boost power output, rang-

ing from 14 to 20A, taking advantage of the improved efficiency. The water pump operates at

full capacity (100%) during the night and significantly reduces its workload to less than 10%
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during the day. This adjustment greatly lowers its average operating value with respect to the

minimizing degradation scenario. The air mixing valve ratio is adjusted daily for temperature

control, often set at 45% during night operations to maintain a good stack temperature. After

local minimum escaping, there is a current drop and the system starts operating in part load

during daily operations, indicating how the algorithm manages a strategy change due to cathode

inlet temperature upper bound violation. From this point on, the degradation rate changes,

decreasing due to the current decrease and AU is dropping to 10% due to the high cathode air

blower workload. This drop in current is compensated by a voltage increase. The stack power

output is satisfying the target, struggling in the operating point change, but maintaining values

between 600 and 900 W. Electrical efficiency changes in the two operating conditions between

the half-year operations, starting from an average of 38% during daily operations in the first half

and reaching up to 41% in the second half, while CHP efficiency is slightly decreasing due to the

less waste heat recovered in the second half. This electrical efficiency improvement in the second

half of the year is mainly due to the part load operations and the lower water workload. During

nighttime operations, the electrical efficiency drops down to 20% Performance degradation and

degradation rate show the highest values during higher power operations, with performance

degradation moving from 0 to 0.5% (between day and night) and a degradation rate averaging

lower than 0.05%. Voltage trends mirror the current, rising to 60V at night and dropping to

40-45V during the day. FU, AU, and CO values are highest during most of the operating time,

with FU at 80%, AU at 25%, and CO at 95%. Temperature considerations are equal to the ones

of minimizing degradation case, with the only difference of cathode inlet temperature upper

bound touching that makes the algorithm escape the local minimum. Only in those 50 days of

operation, did the system cool down fixing CPOX, cathode inlet, SOFC, burner, start-up burner,

hex outlet (cold side), and whex inlet air temperature to their lower bound. This is also reflected

by the water outlet temperature which is always fixed to the upper bound these days.

Techno-economic optimization

For maximizing net operating income the considerations are almost the same as the minimizing

degradation scenario but with different values. The methane blower workload fluctuates, ranging

from 65 to 100% between day and night. The CPOX air blower workload is highest, ranging

from 60 to 80% between day and night. The stack air workload shows an overall increase after

half-year operations, ranging from 20 to 80% between day and night. The current output is

dynamically adjusted, ranging from 10 to 17A, optimizing revenue from electricity generation

while managing operating costs. The water pump workload operates at 100% during the night

and reduces to 20% during the day. The air mixing valve ratio is adjusted daily for temperature

control, often set at 45% during night operations to maintain a good stack temperature. The

stack power output is lower and more stable, reflecting a balanced approach to sustaining

performance while optimizing costs, with values between 600 and 900 W. Electrical efficiency

fluctuates to balance cost and performance, rising after half-year operations. CHP efficiency is

relatively stable but shows higher peaks. Performance degradation and degradation rate show

high values during higher power operations, with performance degradation moving from 0 to

0.55% and a degradation rate averaging lower than 0.05%. Voltage trends are similar across

conditions, rising to 60V at night and dropping to 40-45V during the day. FU is at 75%, AU at
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(a) (b) (c)

Figure 6.2: Cumulative energy results minimizing degradation rate (a), maximizing electrical
efficiency (b), and maximizing net operating income (c).

18%, and CO at 94% during daytime operations. Temperature-wise, the CPOX and cathode inlet

temperatures are fixed at 850°C on most days. The stack temperature follows the power profile,

increasing from 650°C to 865°C. The burner temperature ranges from 700°C to 900°C, with the

start-up burner temperature rising from 150°C to 170°C. The water outlet temperature increases

from 48°C to 60°C. WHEX inlet and outlet air temperatures rise from 400°C to 520°C and from

150°C to 200°C, respectively. HEX outlet cold air temperature rises from 650°C to 800°C.

Interestingly in the last 30 days of operation, to avoid CPOX temperature upper bound violation

the algorithm escaped the local minimum readapting to a new control approach to cool down

the system: current drops to lower values 10-15 A, increasing voltage to maintain the target

power fixing it to 60 V among day and night operations. This impacts the CHP efficiency which

drops down to very low values of 30% also due to the lower methane and air blower workloads.

Cumulative energies comparison

In this paragraph, only the cumulative energy method for the EoL is analyzed. This approach

is chosen because it is the only method to address system degradation under dynamic profile

operation. As previously discussed, fixed thresholds relative to initial values are no longer valid

under varying mission conditions. The cumulative energy results are shown in Figure 6.2. The

values of cumulative energy are not yet enough degraded to detect the EoL of the cell, which

is a reasonable result due to the relatively small time of operation, also considering most of

the time the system is operated at 200W conditions. The performance degradation according

to cumulative energy criterion (relative error difference between the final cumulative energy

values to the reference) is presented in Table 6.1. It is interesting to note the change in the

Table 6.1: Performance degradation according to cumulative energy at the end of the year.

Objective Value (%)
Degradation rate 0.57

Electrical efficiency 1.88
Net operating income 1.55

slope of cumulative energy over time, indicating that its dependency on dynamic power profile
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operations prevents it from being linear. Another notable point is that the cumulative energy

values at the end of the 1-year operation are almost the same for both the minimization of

degradation rate and the maximization of efficiency cases, each totaling 3700 kWh which is the

amount of energy needed to satisfy the building consumption in the year. However, for the net

operating income maximization case, the cumulative energy value is higher, reaching 4000 kWh,

adding 3000 kWh of energy production. This is significant because the algorithm plays between

the switch from daily to night operations to produce more energy and gain extra profit (detailed

discussion in the following Section 6.2).

Thecno-economics metrics

This section provides a detailed analysis of the techno-economic results for the three different

optimizations. The operating income, net operating income, and OPEX values mirror the

pattern of the target power values. In this analysis, there are several points of evidence about

techno-economic assessment:

• Operating income comes from the electricity savings, made by the buildings to not pay for

the electricity grid price;

• Operating expenditures come from both methane consumption and CO2 emissions, not

taking into account the actual emissions produced today by the buildings to accomplish

their heating needs, underestimating the potential revenues.

• Extra profits are generated only in the case of techno-economic optimization, in which

the algorithm managed to produce 3000 kWh of extra energy that corresponds to 800 CHF

of surplus electricity sold.

According to the performances discussed before, during night operations the SOFC system is

less profitable, especially in the case of degradation rate minimization, where the net operating

income is negative. All the average peak values are reported in Table 6.2.

Table 6.2: Average peaks values of economics metrics in 1-year of dynamic mission profile
simulation

Objective: Degradation Rate Electrical Efficiency Techno-Economics
Daily operations:
O.I. (CHF/year) 3100 3100 3400
OPEX (CHF/year) 2700 2800 2800
Net Income (CHF/year) 400 300 600
Night operations:
O.I. (CHF/year) 1400 1400 1900
OPEX (CHF/year) 1800 1700 2100
Net Income (CHF/year) -400 -300 -200
Total Extra-Profit (CHF) 0 0 800
Total CO2 Cost (CHF) 410 340 425
Total Net O.I. (CHF) 0 0 400
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In conclusion, while each optimization objective leads to different profiles in terms of income,

techno-economic optimization leads to the only profitable case in terms of operating costs

saved. Further profit could be made by considering CO2 emissions saved from the current

building heating system.

6.3 Discussion

This chapter presents a comprehensive case study involving the dynamic mission profiles de-

rived from real-world electricity consumption data of the HES-SO buildings in Sion, Switzerland.

With the results of this chapter it is possible to validate the prognostic approach for real-case

application: even with such a constrained system, due to the high complexity of the system,

rearranging the operating parameters in a good way can lead to different outcomes, both maxi-

mizing the profitability of the operations or the life expectancy of the stack. The analysis aims

to provide a detailed understanding of how varying operational conditions affect the 1-year

performance, degradation, and efficiency of the SOFC system. By dividing the building’s total

power consumption by the number of SOFC systems required to meet this demand, the results

are appropriately scaled.

The single-objective optimization strategies reveal distinct operational behaviors and trade-offs.

Minimizing the degradation rate results in a moderate workload for components, effectively

reducing thermal and electrochemical stresses, and prolonging the system’s lifespan. Conversely,

maximizing stack efficiency leads to higher workloads and power outputs, emphasizing fuel

utilization and energy conversion efficiency. The net operating income optimization balances

these aspects by adjusting component workloads dynamically to optimize revenue generation

while managing costs. Performance metrics further elucidate these differences. The stack power

output, electrical efficiency, and degradation rates vary significantly across the optimization

strategies. Temperature metrics indicate that the system maintains consistent temperature

according to the daily power profile, with CPOX and cathode inlet that mirror it decreasing

during daily operations from their upper bound. The minimized degradation case shows more

stable and higher temperature settings, while the efficiency and net operating income cases

demonstrate more dynamic temperature adjustments, reflecting their respective optimization

focuses.

The results outline highlighted the following key findings about the various optimization:

• Minimization of Degradation Rate: This scenario maintained system stability and bal-

anced performance, ensuring low degradation rates and moderate efficiency, reflecting

the system’s resilience over prolonged use.

• Efficiency Maximization: This approach achieved the highest electrical efficiency, al-

though it required significant system adjustments, particularly during half-year operations,

to manage CPOX temperature constraints.

• Techno-economic optimization: This scenario demonstrated the most balanced approach,

optimizing both performance and cost-efficiency. Notably, it generated additional profits
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by producing surplus energy, reflecting the economic viability of integrating SOFC systems

in similar real-world applications.

The cumulative energy analysis underscores the importance of considering system degradation

under dynamic mission profiles employing this criterion. The relatively small operation time

and predominant part-load conditions (200W) result in cumulative energy values that are not

significantly degraded, indicating that the system’s EoL threshold is not reached within the year.

The non-linear relationship between cumulative energy and dynamic power profile operations

highlights the complexity of accurately predicting system longevity under varying conditions.

Nonetheless, the different optimization scenarios yield significantly varied results in terms of

cumulative energy: these results indicated that the total energy required to meet the building’s

consumption needs was about 3700 kWh for both the degradation rate minimization and

efficiency maximization scenarios. However, for the techno-economic optimization scenario,

the cumulative energy reached 4000 kWh, with an additional 300 kWh of energy produced.

This extra energy production highlights the system’s capability to generate surplus electricity,

contributing to the overall net operating income.

Techno-economic optimization is a critical metric for assessing the economic viability of the

SOFC system. This optimization scenario emerged as the most profitable, with a total net

operating income of 400 CHF per single system. This scenario benefited from the additional

energy production, which was sold to generate extra revenue. The income was further enhanced

by electricity savings from reduced reliance on grid power.

Overall, the integration of dynamic mission profiles into SOFC system modeling has proven

effective in enhancing the understanding of its operational behavior under real-world conditions.

The insights gained from this study can inform future strategies for optimizing SOFC systems

in various applications, promoting sustainable and efficient energy solutions. The results

underscore the potential for SOFC technology to contribute significantly to the energy needs of

buildings, particularly when combined with comprehensive optimization strategies that balance

performance, efficiency, and economic considerations.
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7 Conclusion and Future Outlook

This thesis has undertaken a comprehensive exploration of the development and refinement of a

0-D model for a CPOX-based SOFC system, integrating a degradation model to enhance the fuel

cell stack’s predictive accuracy and operational lifespan. The primary focus is on implementing

novel control strategies to manage the EoL of the SOFC stack, optimizing system performance

under various operating conditions. By addressing the challenges of system degradation and

efficiency, this work contributes significantly to the advancement of SOFC technology and its

potential for sustainable energy applications.

Chapter 1 is the introduction of the thesis, while Chapter 2 is describing the fundamentals

behind SOFC technology.

In Chapter 3, a 0-D model of the SUNFIRE CPOX-based SOFC system is constructed to simulate

the system’s behavior accurately. To do that, a DoF analysis is done to classify the operational

parameters that influence the SUNFIRE system. The model incorporates the CPOX reactor,

SOFC stack, burner, start-up burner, and air and water heat exchangers. The added value is the

integration of a degradation model, taken from an existing one, which enables the prediction of

the SOFC stack’s lifespan under different operational conditions:

rd =
0.500 ·FU +0.876

1+exp
(T−1089

22.920

) (
exp

(
0.3 · j

)−1
) · t

3600000 (7.1)

It’s important to notice that the parameters present in the formula are estimated through an

MHE approach, thanks to the existing operational dataset from the SUNFIRE real system. This

model forms the foundation for subsequent analyses and optimization strategies.

Chapter 4 focused on evaluating the SoH of the SOFC system and employing various control

strategies to balance system performance and longevity. A comprehensive literature review

is conducted to identify suitable EoL criteria for dynamic system analysis and the cumulative

energy criterion from PEM cells effectively integrated life-expectancy and RuL evaluations given

the degradation model, allowing simulation of the degradation rate effect over time on stack

performance. Subsequently, optimization algorithms with SQP are applied under nominal

system conditions, using different output parameters over time to determine the best approach

for real-case applications. The objectives included minimizing degradation rate, maximizing
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net operating income, and maximizing CHP/electrical efficiency, with fixed stack temperature,

power, or voltage. In general, it has been evidenced how each strategy reacts in a specific way:

• Fixed power strategy: it is the most stable strategy. It tends to increase the current profile

over time to compensate for the voltage decrease due to degradation impact on perfor-

mances. It’s interesting how this strategy leads the voltage decrease to touch the lower

bound of the safety of operation, after which an algorithm re-adaptation is needed. One

common solution found in this thesis is to maintain the voltage fixed to its minimum

playing with methane blower and cpox air blower workloads increasing them in time to

increase CPOX temperature and minimizing again the impact of degradation. It’s mean-

ingful to notice that since the water pump workload decreases the system power due to its

power consumption, it is often minimized by the algorithm. This approach often leads to

high-energy production, high CO2 emissions, and quite high-performance degradation.

• Fixed voltage strategy: it tends to decrease exponentially the current to both act to ASR

and degradation rate impact on performances over time. Depending on the objective of

optimization, this strategy can vary. The common use for maintaining a fixed voltage over

time is to play with current, but when it is not possible more than a certain range it starts

to manipulate also temperatures increasing the SOFC one to decrease voltage losses. The

degradation rate with this strategy is often minimal over time, leading this strategy to be

best in terms of life expectancy maximization.

• Fixed temperature strategy: it is the most unstable control strategy among the other cases;

in fact, it has no direct constraints on voltage, current, or power, meaning that when

optimized, the system is often operated in part load. The common strategy for fixing the

stack temperature is to maintain fixed the ones at the inlet, fixing the fuel and airflow

rates.

Depending on the objective optimization these strategies slightly change: the main findings

indicate no universal best approach, but rather specific strategies depending on the objectives:

• Regarding standard operation, with no optimization, the fixed voltage control strategy

provided the longest life expectancy, followed by fixed temperature and power approaches.

Fixed voltage case also results in the lowest CO2 emissions

• To minimize the degradation rate, the best strategy identified is maintaining a fixed voltage.

This approach resulted in the highest life expectancy for the SOFC system and the lowest

CO2 emissions, as determined by the cumulative energy criterion. It’s important to note

that the fixed power approach achieved maximum energy production over time, providing

a good trade-off for scenarios where the primary goal is to maximize energy production.

• For maximizing electrical efficiency, the fixed temperature approach yielded the highest

energy production and efficiencies, with good life expectancy. The highest life expectancy

according to the cumulative energy criterion is obtained by fixed voltage case.
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• Maximizing CHP efficiency showed that the fixed power approach led to the lowest perfor-

mance degradation, highest energy production, and highest electrical efficiency, though

not the highest CHP efficiency compared to the fixed temperature scenario.

• Maximizing net operating income showed that the fixed power strategy led to the highest

cumulative energy and net operating income over time. In contrast, the highest life

expectancy was achieved with the fixed voltage approach, which, although less profitable,

significantly reduced degradation. This demonstrates a trade-off between profitability

and system longevity, depending on the chosen optimization strategy.

This analysis demonstrated the effectiveness of the predictive approach in optimizing SOFC

systems for performance, efficiency, and longevity. Key findings highlighted the importance of

accurate SoH assessments and strategic optimization approaches for balancing energy produc-

tion and system degradation.

In Chapter 5, a comprehensive operating map is developed for the system functioning with

fixed inputs over time. This map is created using a multi-objective optimization process with GA,

balancing the trade-offs between minimizing degradation and maximizing electrical efficiency.

More in particular the findings reveal that the methane blower workload remains consistently

high (99%-100%) without significantly affecting efficiency or degradation. The CPOX air blower

workload, however, influences both efficiency and degradation, with a trend towards higher

workloads over time to manage these factors. The air cathode blower workload stays within

a fixed range (30%-37%), balancing degradation and efficiency effectively and independently

of aging. Current levels, ranging from 10 to 24 A, significantly affect both degradation and

efficiency, with the range narrowing over time, indicating the need for careful management.

The water pump workload impacts efficiency more than degradation, showing a trend towards

lower workloads over time to enhance efficiency. The air mixing valve ratio balances initial

efficiency with long-term degradation management, with a trend towards higher ratios over

time. Voltage levels narrow over time due to increased degradation, necessitating careful current

management. System power decreases over time to manage degradation, requiring adjustments

in operational parameters. The SOFC temperature increases over time, with a key balance point

at around 840°C. CHP efficiency achieves high values by managing degradation, though there is

a trade-off with electrical efficiency. A 3 objectives optimization is also carried evidencing how

the net operating income of the system is an objective that if optimized, takes into account both

electrical efficiency and waste heat recovered maximization.

Chapter 6 highlighted the practical implications of the developed model and control strategies.

By applying dynamic profile operations to real-world data, the study validated the model, and

more in particular, validated the cumulative energy criterion as the most adaptable for studying

degradation impact in dynamic system optimization. The analysis demonstrates how the

model reacts to daily power profile targets, managing temperatures and workloads to efficiently

maintain requested performances. More in detail the results highlight three key optimization

scenarios for the SOFC system:

• Minimization of Degradation Rate: Maintains system stability with low degradation rates
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and moderate efficiency, reflecting long-term resilience.

• Efficiency Maximization: Achieves the highest electrical efficiency with peaks of 41%, but

requires significant adjustments to manage temperature constraints.

• Techno-economic Optimization: Balances performance and cost-efficiency, generating

surplus energy and demonstrating economic viability with a net operating income of 400

CHF per system which is the amount of money saved if a single SUNFIRE system would

generate per year of operation instead of buying electricity from the grid.

Cumulative energy analysis shows that under dynamic mission profiles, the system’s end-of-life

threshold is not reached within a year due to short operation time and predominant part-load

conditions. The non-linear relationship between cumulative energy and dynamic operations

complicates longevity predictions. Techno-economic optimization is the only one that is found

to be financially profitable, producing an extra 3000 kWh of energy, and enhancing income

through surplus electricity sales and grid power savings.

Overall, the analysis demonstrates that the integration of detailed modeling, optimization, and

control strategies can markedly enhance the performance and durability of SOFC systems. This

research highlights that tailored control strategies can significantly improve the performance

and lifespan of SOFC systems, offering a solid foundation for future experimental and computa-

tional studies aimed at advancing SOFC technology. The developed models and optimization

frameworks are invaluable tools for ongoing research and development in the field of fuel cell

technology, paving the way for more efficient and resilient energy systems.

To apply the proposed approach to a real system, it will involve the following steps:

1. Collecting experimental data under various operating conditions.

2. Analyzing the experimental data to obtain polarization curves at different temperatures

and operating conditions at the beginning of operations, assuming no degradation. An-

other possibility is to build the reference with a behavioral model that describes the voltage

or power evolution according to the current profile as if no degradation is occurring within

the stack.

3. Developing a dynamic model of the entire system over time.

4. Creating a multi-objective optimization algorithm that can optimize performance across

varying operating conditions, with one or more objectives.

5. Validating the prognostic algorithm results with real data to enhance predictive accuracy

extends the estimation horizon from 5 years to more years.

In future work, several avenues can enhance the model’s overall accuracy. One approach is

transitioning from the current 0D model to higher-dimensional models, which, despite higher

computational costs, capture full spatial variations for maximum accuracy. Another possi-

bility is integrating additional instruments, such as EIS and DRT analysis, into the predictive
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strategy. Replacing the SQP algorithm with a GA for time-operating optimization can signif-

icantly enhance predictive accuracy, as its higher explorative capability improves prediction

precision despite increased computational time. Another critical improvement is integrating a

comprehensive degradation model that accounts for all potential negative influences on stack

performance, including sulfur poisoning, carbon deposition, and thermal cycling. This will

enable the model to more accurately reflect real-world conditions and their impact on system

performance. The collection of extensive datasets under various operating conditions is also

paramount. Such datasets will facilitate extremely accurate parameter estimation, grounded in

real system performance, useful to enhance the reliability and applicability of the model. Explor-

ing additional optimization strategies and constructing operating maps with high-dimensional

objective optimizations is another promising direction. These strategies will provide deeper

insights into system behavior under a wide array of conditions and objectives. This research

can also be expanded to encompass other types of fuel cells, offering broader insights into the

potential applications of these technologies within the energy sector. Such expansion could

lead to innovations that enhance the versatility and effectiveness of fuel cell technologies, where

the only limit is the data collection capability. Lastly, long-term field testing in diverse oper-

ational environments is essential for validating the findings of this study. These validations

will refine the proposed solutions, ensuring they are robust and reliable. Moreover, this step is

crucial for fostering the broader adoption and commercialization of SOFC technology, ultimately

contributing to sustainable energy production.
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A Appendix

A.1 Degradation model parameter estimation first move

A preliminary step involves treating the final segment of the collected data as a distinct operating

point due to its differing inputs compared to the remainder of the dataset, considering it as an

additional second dataset for the parameter estimation analysis. To extrapolate their value, the

mean of the dataset concerning the chosen time range has been computed, and the results are

shown in Tab. A.1.

Table A.1: Input variables from Sunfire dataset

Parameter Input 1 Input 2

Workload_NG (%) 99.999 99.999

Workload_air_CPOX (%) 74.367 78.167

Workload_air_cathode (%) 38.098 51.361

Current (A) 17.993 13.231

Workload_H2O (%) 15.010 17.924

Air mixing valve (%) 29.995 37.989

Since the effect of temperature is negligible concerning the FU and current density variation in

the scope of this thesis, the denominator unknown parameters are assumed to be the same as

the one proposed by Zaccaria et al., so the new equation turns out to be:

rd =
A ·FU +C

1+exp
(T−1087

22.92

) (
exp

(
B · j

)−1
) · t

3600000 (A.1)

Now to estimate these three missing parameters with only two operating condition sets of data

given by Sunfire, an iterative approach is set based on MATLAB function fsolve used to solve

the nonlinear system of equations to find the best A and B parameters in conjunction with

conducting a sensitivity analysis on the third one (C) that is fixed per each iteration. The steps

made by the algorithm can be described as:

1. Selection of C value that is fixed to have a determinate system of nonlinear equations to

be solved (2 equations with 2 unknowns): this selection is made by setting up a range of
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different values that span from -5 to +5, given the 0.74 value chosen by Zaccaria et al. [98].

2. Solving the non-linear system of equations using fsolve, that is using the ’trust-region-

dogleg’ algorithm, a type of trust-region method that is well-suited for solving medium-

scale problems. Trust-region methods are iterative optimization algorithms that focus on

finding a local minimum of a function within a specified region (the "trust region"). The

’dogleg’ part refers to the path followed within the trust region to approach the minimum,

which can resemble a dog’s leg in its shape.

3. The new set of A, B, and C parameters is used in the degradation model described in

Section 3.3.7 trying to see if it is correctly describing the actual system voltage decrease

presented in Figure 3.2b. It’s important to mention that, since during the first 4000h the

data seems to be more noisy, the degradation is fitted only to the second part from 4000h

to the end. If it does not correctly fit the data, a new C parameter value is chosen and the

procedure is started again from point 1.

4. If the set of A, B, and C parameters is correctly describing the degradation of the Sun-

fire system, another validation step is made to be sure to correctly describe the system:

degradation ratios are plotted concerning the current density at different temperature

levels, and if the relationship is exponential as described in Section 3.3.7 the set of A, B,

C parameter is considered good, otherwise the procedure is started again from point 1

selecting a new C parameter.

It’s essential to evidence that this procedure will require future validation. However, within the

context of this thesis, it suffices to construct an effective control strategy, which is our primary

goal.

Now, the procedure is started with point 1 trying a different range of C parameters and a

sensitivity analysis is carried out firstly with a range of values from -5 to 5 to find what is the

best value to fit the degradation model equation. Since the fsolve function did not find any

solution in the range of positive C values and from -3 to -4 and the resulting A and B values will

be very high, the analysis is restricted to the range of C values between -1 and 0 which results are

depicted in Figure A.1 - (a). To have a set of parameters the most similar to the ones of Zaccaria

et al. [98], the parameter found at the end is -0.74. Using such parameters the A and B ones are

found through fsolve algorithm to be respectively 1.515 and 2.667. The new equation to model

degradation is:

rd =
1.515 ·FU −0.740

1+exp
(T−1087

22.920

) (
exp

(
2.667 · j

)−1
) · t

3600000 (A.2)

The results of the last two steps of the procedure that imply the validation of the chosen parame-

ters are shown in Figure A.1.
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(a) (b)

(c)

Figure A.1: Sensitivity analysis of C parameter (a). Voltage degradation model fitting real data
4000h+ (b), degradation ratio exponential dependency on current density temperature effect
[98] (c)
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A.2 Second Sunfire data-set for CPOX-SOFC system

The second dataset given by Sunfire is shown in the following figures, collected from 01 Oct 2022

to 19 Jan 2023.

Figure A.2: Inputs (a) and outputs (b) experimental data results of second data-set
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A.3 Minimization of degradation with fixed power, voltage, and tem-

perature

The optimization results are shown in the following figures.

Figure A.3: Minimizing degradation with fixed outputs, inputs.

Figure A.4: Minimizing degradation with fixed outputs, key indicators part 1.
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Figure A.5: Minimizing degradation with fixed outputs, key indicators part 2.

Figure A.6: Minimizing degradation with fixed outputs, temperatures.
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Figure A.7: Minimizing degradation with fixed power, EoL evaluation.

Figure A.8: Minimizing degradation with fixed voltage, EoL evaluation.
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Figure A.9: Minimizing degradation with fixed temperature, EoL evaluation.

A.4 Maximization of electrical efficiency with fixed power, voltage,

and temperature

The optimization results are shown in the following figures.

Figure A.10: Maximization of electrical efficiency with fixed outputs, key indicators part 1.
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Figure A.11: Maximization of electrical efficiency with fixed outputs, inputs.

Figure A.12: Maximization of electrical efficiency with fixed outputs, key indicators part 2.
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Figure A.13: Maximization of electrical efficiency with fixed outputs, temperatures.

Figure A.14: Maximization of electrical efficiency with fixed power, EoL evaluation.
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Figure A.15: Maximization of electrical efficiency with fixed voltage, EoL evaluation.

Figure A.16: Maximization of electrical efficiency with fixed temperature, EoL evaluation.
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A.5 Maximization of CHP efficiency with fixed power, voltage, and

temperature

The optimization results are shown in the following figures.

Figure A.17: Maximization of CHP efficiency with fixed outputs, inputs.

Figure A.18: Maximization of CHP efficiency with fixed outputs, key indicators part 1.
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Figure A.19: Maximization of CHP efficiency with fixed outputs, key indicators part 2.

Figure A.20: Maximization of CHP efficiency with fixed outputs, temperatures.
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Figure A.21: Maximization of CHP efficiency with fixed power, EoL evaluation.

Figure A.22: Maximization of CHP efficiency with fixed voltage, EoL evaluation.
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Figure A.23: Maximization of CHP efficiency with fixed temperatures, EoL evaluation.

A.6 Maximization Net Operating Income with fixed power, voltage,

and temperature

The optimization results are shown in the following figures.

Figure A.24: Maximization of net operating income with fixed outputs, inputs.
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Figure A.25: Maximization of net operating income with fixed outputs, key indicators part 1.

Figure A.26: Maximization of net operating income with fixed outputs, key indicators part 2.
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Figure A.27: Maximization of net operating income with fixed outputs, temperatures.

Figure A.28: Maximization of net operating income with fixed power, EoL evaluation.
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Figure A.29: Maximization of net operating income with fixed voltage, EoL evaluation.

Figure A.30: Maximization of net operating income with fixed temperature, EoL evaluation.
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A.7 Dynamic profile optimization results

All the missing results in the main analysis are plotted in the following figures.

Figure A.31: Dynamic profile analysis minimizing degradation rate, inputs.

Figure A.32: Dynamic profile analysis minimizing degradation rate, key indicators 1.
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Figure A.33: Dynamic profile analysis minimizing degradation rate, key indicators 2.

Figure A.34: Dynamic profile analysis minimizing degradation rate, temperatures.
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Figure A.35: Dynamic profile analysis minimizing degradation rate, techno-economics.

Figure A.36: Dynamic profile analysis maximizing electrical efficiency, inputs.
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Figure A.37: Dynamic profile analysis maximizing electrical efficiency, key indicators 1.

Figure A.38: Dynamic profile analysis maximizing electrical efficiency, key indicators 2.
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Figure A.39: Dynamic profile analysis maximizing electrical efficiency, key indicators 2.

Figure A.40: Dynamic profile analysis maximizing electrical efficiency, techno-economics.
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Figure A.41: Dynamic profile analysis maximizing net operating income, inputs.

Figure A.42: Dynamic profile analysis maximizing net operating income, key indicators part 1.
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Figure A.43: Dynamic profile analysis maximizing net operating income, key indicators part 2.

Figure A.44: Dynamic profile analysis maximizing net operating income, temperatures.
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Figure A.45: Dynamic profile analysis maximizing net operating income, techno-economics.
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