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Abstract 

The increase of carbon dioxide (CO2) concentration in the atmosphere and its consequences on the 
climate and the environment are widely discussed topics. Projections based on plausible emission 
scenarios have highlighted the need to take serious action against further increase in atmospheric 
greenhouse gas (GHG) concentration. The signing parties of the Paris Agreement of 2015 
committed to keeping the temperature increase well below 2°C in 2100 with respect to pre-
industrial conditions. It is unlikely that this goal will be met strictly with emissions reductions, 
which will require carbon offsetting, e.g. through soil carbon sequestration.  
This thesis focuses on soil carbon sequestration in cultivated soils, which is one of the pathways 
to reducing the impacts of pastures and agricultural activities. The main goal of the thesis was to 
develop a model to quantify the dynamics of accumulation or depletion of Soil Organic Carbon 
(SOC) in pastures. 
The model developed here had a hybrid configuration, combining a process-based relationship 
(theory-driven model) with machine learning (ML) techniques, more specifically using Artificial 
Neural Networks (ANN), for parameter calibration (data-driven model). The choice of a hybrid 
model was made to preserve the physical consistency and the interpretability of the process-based 
model, while integrating a large quantity of remote sensing (RS) data in complex patterns through 
the ML algorithm. This approach can overcome limitations of parameter rigidity in purely process-
based models, as well as interpretability in purely data-based models. The data used to train the 
model were collected in 9 different farms (8 in Portugal and 1 in Spain). All plots surveyed in the 
farms had Sown Biodiverse Permanent Pastures Rich in Legumes (SBPPRL), a system known for 
its high potential for sequestering carbon in soils. The process-based model that was used as base 
for the study was a simple 0-dimension and 2-parameter equation describing the relationship 
between SOC content at a given instant and the value after a defined time interval. The two 
parameters of the model represent carbon inputs (from plants and livestock) and mineralization 
rate. Also, ANN were used to estimate the best values of such parameters. The research was 
focused on finding the model hyperparameters which allowed to obtain the best possible fit 
between measurements and modelled values. 
This resulted in a model that described the dynamics of accumulation/depletion of SOC with good 
fitting accuracy (R2 = 0.64 in the best configuration) compared to an alternative ordinary least 
squares (OLS) estimation of parameters (R2 = 0.33). Moreover, it provided region-specific 
quantitative estimates of the parameters of the process-based model (carbon input K = 0.88 
𝑘𝑔𝑆𝑂𝑀/(100 𝑘𝑔𝑠𝑜𝑖𝑙 ∙ 𝑦), mineralization rate  = 0.29 y-1), and to assess the yearly potential for 
SOC accumulation in SBPPRL. The model can be used in the future to forecast SOC dynamics 
and carbon sequestration under several climatic scenarios, thus contributing to better inform 
strategies for CO2 removal from the atmosphere for climate change mitigation. Future research 
should focus on improving the performance of the hybrid model through more extensive 
hyperparameter tuning, as well as trying the same approach with a more complex process-based 
model which explicitly models the different carbon pools present in soils. 
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1. Introduction 

Anthropic activity on Earth has caused multiple variations to the natural equilibriums of the planet, 
the most discussed of which is climate change. In the 6th Assessment Report of the 
Intergovernmental Panel on Climate Change (IPCC), it is stated with high confidence that “human 
activities, principally through emissions of greenhouse gases, have unequivocally caused global 
warming”, and that the emission of such GHG derived from “different contributions, unequal in 
space and time, of activities such as unsustainable energy use, land use and other lifestyle and 
consumption patterns” (IPCC, 2023). Due to the strong impact of GHG concentration increase on 
the environment and its side effects on many human activities, in the last decades many 
international organizations and governments have started working on strategies to either reduce 
the direct impacts related to GHG emissions, adapt society to climate change and its consequences, 
and to mitigate the present concentration levels. Currently, the most comprehensive of these 
agreements is the Paris Agreement of 2015, where 195 parties (194 countries and the European 
Union) committed to limit global warming in 2100 well below 2°C (and, possibly, below 1.5°C) 
with respect to pre-industrial levels. 
In order to reach this goal, IPCC stated with high confidence that it is not sufficient to reduce 
current emissions, but it is absolutely necessary to achieve net zero emissions by 2050, by 
implementing Negative Emission Technologies (NET), including implementation of Carbon 
Capture and Storage (CCS) in energy production, transition to renewable energy resources, and 
some land related strategies, such as reforestation and reduced deforestation, agricultural land 
management and soil-related improvements (IPCC, 2023). 
This thesis is focused on the last class of strategies, which is particularly relevant because land and 
land use are the basis of many anthropic activities, including food supply, energy production and 
a long list of ecosystem services, as well as potentially being both a source and a sink of GHGs: 
this is why IPCC dedicated a special report to the relationship between land use and climate 
change. In the report, there is a section specifically addressing sustainable land management, 
which is seen with very high confidence as an opportunity to “prevent and reduce land 
degradation, maintain land productivity, and sometimes reverse the adverse impacts of climate 
change on land degradation” (IPCC, 2020).  
Land management is a fundamental issue because it is not equally addressed in all parts of the 
world. In developing countries, the strong population increase, and the lack of specific land-related 
regulations make the prospect of having high short-term productivity with unsustainable practices 
that increase soil degradation very profitable for companies. One the other hand, in Europe and 
other regions, soil is one of the mandatory carbon pools to be assessed to comply with the 
objectives of Kyoto protocol but, anyway, generally land-related strategies are privately managed, 
while a collective and global approach should be adopted (Lal et al., 2015).  
Between the land-related strategies listed in the IPCC report, this thesis was mainly focused on 
SOC increase, whose impact on different aspects is described in this document: it is predicted to 
have a largely positive impact on all studied categories (mitigation, adaptation, desertification, 
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land degradation and food security), though with different levels of confidence (IPCC, 2020). The 
numerous co-benefits of soil carbon sequestration require a more global approach, and a strong 
policy effort providing farmers with incentives to adopt more sustainable cultivation methods (Lal 
et al., 2015). 
The main goal of this research is to create a reliable model to predict the evolution of SOC content 
in time, using the combination of some data from soil samples (such as sand, silt and clay content, 
pH, soil moisture and temperature) and radiometric data of reflectance in different bands from RS. 
The integration of data occurs by means of a hybrid model, where ML techniques (i.e., ANN) are 
applied to perform regression and obtain the parameters of a process-based model used to calculate 
SOC content after a determined time interval. The results of the process-based model with the 
calculated parameters are then compared to actual measurements in the considered samples, to 
assess the accuracy of the model. 
This thesis is structured in seven main sections: section 1 is the introduction, with an overview of 
the rationale and goals of this thesis; section 2 has the description of the state of the art for SOM 
measurement, modelling and the role of hybrid models, and provides a theoretical framework for 
the work that has been carried out; in section 3, the objective of the research and its innovations 
with respect to the current state of the art are illustrated; section 4 shows the materials and methods 
that were used; in section 5, the results obtained through this procedure are illustrated and 
discussed; section 6 is dedicated to the analysis of the limitations observed in the approach and to 
suggestions of some potential future perspectives for improvement; section 7 briefly summarizes 
the conclusions that can be taken out of this research. The complete code used for the 
implementation of the model is presented in the Annex (section 9). 
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2. State of the art 

2.1 The importance of carbon sequestration 

SOC is defined as the carbon content of Soil Organic Matter (SOM), which is conventionally 
accounted with the van Bemmelen factor (SOM:SOC = 1.724, corresponding to a carbon content 
of 58% in organic matter), even though several studies challenge this assumption (Pribyl, 2010; 
Minasny et al., 2020), arguing that it would be a simplification that, in reality, can only be applied 
to a few types of soil, or to particular components of soil organic matter. More generally, the 
conversion factor of SOC in SOM should range between 1.4 and 2.5, corresponding to a percentage 
between 40% and 72% (Wiley, 1906), and a possibly more realistic value is suggested considering 
50% of SOC in SOM (Pribyl, 2010).  
Soil carbon represents a huge opportunity for carbon storage, since it constitutes one of the major 
C pools, together with oceanic, geologic and biotic, with a total of 2300 Pg of C storage potential 
at 1 m depth, of which 1550 Pg of SOC and 750 Pg of soil inorganic carbon (SIC) (Lal, 2003), 
which is around twice the amount found in the form of CO2 in the atmosphere (Smith, 2012). 
Moreover, soil carbon brings further co-benefits other than reducing atmospheric concentrations, 
including the protection or increase of soil fertility, the maintenance of resilience to climate 
change, the reduction of soil erosion and habitat conversion (Bossio et al., 2020). This makes it 
not only an effective way to reduce atmospheric GHG concentrations, but also a strategy to reduce 
further emissions from agriculture due to increased productivity from higher soil quality. This is 
why both the conservation of existing soil carbon pools, and the restoration of depleted ones are 
fundamental to achieve the goals stated by international climate agreements (Bossio et al., 2020). 

2.1.1 The carbon cycle 

The main processes related to carbon cycle in soils are accumulation and mineralization. 
Accumulation is related to organic matter decomposition from macro- to micro-aggregates through 
rhizodeposition, earthworms’ activity and root litter transformation, which incorporate carbon into 
the soil matrix allowing a good stabilization degree (Soussana et al., 2010). On the other hand, 
mineralization (also known as soil respiration) is the conversion of carbonaceous material to CO2, 
which is related to erosion processes and soil microbial activities and could transform the stabilised 
carbon into a further GHG source. These processes are schematized in Figure 1. 
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Figure 1 - Illustration of the soil carbon cycle, specifically observing the mechanisms of accumulation and mineralization. 

Adapted from Biotoken website (2023). 

2.1.2 Carbon sequestration in soil 

Carbon sequestration in soil can be defined as the “process of transferring CO2 from the 

atmosphere into the soil of a land unit through unit plants, plant residues and other organic solids, 

which are stored and retained in the unit as part of the soil organic matter” (Lal et al., 2015).  
The study conducted by Bossio et al. (2020), reports that soil carbon sequestration could 

potentially represent the 25% of Natural Climate Solutions (NCS), which is evaluated to be around 

23.8 GtCO2eq/y in total. The computation was performed taking into account the land use constraints 

related to food security and biodiversity conservation. The relevance of carbon sequestration to 

NCS compared to the full environmental potential is variable depending on the type of ecosystem 

considered: it includes only the 9% of mitigation potential of forests (in which the highest fraction 

of carbon is sequestrated in the form of lignin of harvestable timber and other woody products), 

but has much higher significance in wetlands (72% of total mitigation potential) and in agriculture 

and grasslands, where it accounts for 47% of the total mitigation potential (Bossio et al., 2020). 

This potential can be achieved through conservation and restoration of soil carbon (avoided 

conversion of forested ecosystems to commercial agricultural uses, reforestation, protection and 

restoration of peatlands) and improved land management through the adoption of Recommended 

Management Practices (RMP), which include conservation agriculture, agroforestry, optimal 

grazing intensity and sowing of leguminous crops (Lal, 2007; Bossio et al., 2020).  
On the other hand, other studies (Garnett et al., 2017) argue that the actual potential of soil carbon 

sequestration is not as relevant (ranging between 0.3 and 0.8 GtCO2eq/y) and that the computation 

of the sequestration potential is more commonly performed in local scales, while it is not possible 

to get a global estimate. However, as previously mentioned, it is also important to remember that 
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land related solutions have multiple connections to land degradation, land productivity and 

mitigation purposes, which could make carbon sequestration in soil a valuable strategy in any case. 

There are several co-benefits associated to improved soil carbon content: the higher concentration 

of soil organic matter increase the productivity of soil and higher nutrient retention, which in 

agricultural fields represents better opportunities to achieve food security while reducing the need 

to use external nutrient inputs by fertilizers, improves soil erosion control and water retention 

capacity (leading to lower surface runoff and additional protection against its consequences), as 

well as off-setting anthropogenic emissions and reducing the net increase in concentration of 

atmospheric CO2 (Lal et al., 2015). 
The residence time of the absorbed carbon could be variable between a few instants (immediate 

remission) and a long-term storage up to millennia, which is why the development of methods for 

carbon sequestration in soil should not only focus on the quantity of carbon that is captured but on 

the storage stability as well, to ensure the removal of the GHG from the atmosphere for a 

significant time period. The stabilization of SOC in aggregates can occur through chemical 

(formation of soil carbonates) or biological (occlusion through formation of stable micro-

aggregates and non-hydrolysable compounds) protection mechanisms, but these are very unstable 

conditions, which make the creation of SOC pools highly reversible (Lal et al., 2015). The main 

issue is the reactivity of SOC, which makes it extremely dynamic and vulnerable to land use and 

climate changes, and only with effective control of losses it is possible to reach a new equilibrium 

condition after a change in the environmental setting.  
In general, land use change from grassland to cropland causes very fast losses of SOC (18% in 

temperate regions with dry climate and up to 29% in moist climate), due to lower return of biomass 

carbon, higher losses by erosion and mineralization, and stronger variations in soil temperature 

and moisture, and can take up to 20 years to be restored (Soussana et al., 2010). Moreover, 

agricultural practices such as ploughing tend to release a part of the already stocked SOC. The 

restoration of SOC pools occurs through specific management practices, including conservation 

agriculture, precision farming, integrated nutrient management and micro-irrigation (Soussana et 

al., 2010). The implementation of improved management systems (including fertilization and 

grazing intensity) has a positive impact in the ability of soil to sequestrate carbon. However, the 

evaluation of the impacts of change of agricultural practices still holds very high uncertainty 

(Morais et al. 2019). 
Grasslands have higher sequestration potential than croplands, but the transformation of croplands 

into grasslands should primarily be done in depleted and abandoned fields, due to its impact in 

food security, because spontaneous grasslands have average lower food production (Lal et al., 

2015). Applying specific management practices, including fertilization, improved grazing, sowing 

of legumes and grasses and irrigation, it is possible to obtain good SOC accumulation. (Lal et al., 

2015). 
As previously mentioned, climate change and its consequences are other factors which are 

expected to strongly affect C stocks in soil: even though the rise in atmospheric CO2 decreases 

grassland sensitivity to drought and increases plant productivity, the negative impacts of increased 
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temperature and reduced rainfall causing more frequent droughts are expected to turn temperate 

grasslands in carbon sources rather than sinks (Smith et al., 2008). Moreover, climate change is 

projected to have effects on plant distribution, with negative impacts on biodiversity at regional 

and global scale (Smith et al., 2008).  

2.2 Soil carbon assessment 

2.2.1 Direct or indirect measurement of soil carbon 

One of the main issues in the implementation of carbon sequestration in soil strategies is the 

assessment of the storage potential of the soil under study and its possible evolutions. This is 

fundamental to understand and, later on, verify how much carbon could be stored in a site, how 

stable would the storage be, and which are the advised management practices to achieve the best 

results, which can be region-specific and depend on socio-economic context such as level of 

technological penetration of innovations in farming. Regardless of the model type that is used, all 

require field-level data, and therefore it is important to understand how data is collected in farms. 
The first thing to do when trying to quantify the SOC stock potential in a site is to directly measure 

the baseline SOC values, which is not an easy task and is usually very expensive. The 

internationally accepted operational definition of SOC is “the organic carbon present in the 

fraction of the soil that passes through the 2 mm sieve” (FAO, 2019). The physical evaluation of 

its baseline value requires the quantification of fine earth (< 2mm) and coarse mineral fraction (> 

2mm) in soil, the SOC content of the fine earth, and the soil bulk density.  
An accurate procedure to achieve these results is the dry combustion method, which consists in 

air-drying the samples and pass them through a 2 mm sieve, to separate the fine earth from the 

coarse fraction; then, the dried soil is combusted in an elemental analyzer at high temperature in 

an atmosphere of pure of oxygen. This way, the carbon present in soil is converted into CO2, which 

is then measured through a autoanalyzer. This method, however, only allows to compute the total 

carbon content of soil, so to evaluate SOC it is necessary to separately evaluate the fraction of SIC 

and then subtract it from the obtained result (FAO, 2019a). To obtain the actual dry matter weight 

of the fine earth, the weight of the residual water content needs to be subtracted from the < 2 mm 

fraction (FAO, 2019).  
Direct measurement of SOC brings high sources of uncertainty (high spatial and temporal 

heterogeneity, changes related to sampling depth and the number of cores to extract to have a 

statistically meaningful sample), which may compromise the detection of stock changes and the 

identification of the most important factors responsible of such change (FAO, 2019). One of the 

major sources of uncertainty that comes up in the evaluation of SOC is the large spatial variability 

and the need to create site-specific models (Goidts et al., 2009). Further sources of uncertainty 

may arise from errors in the sampling and analytical procedures, including sampling depth, proper 

mixing of the composite samples and different climate conditions between natural and laboratory 

setting (FAO, 2019). 
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Because of cost and representativeness of samples, there have been proposals for ensuring good 

sampling of SOC. For example, the study conducted by Goidts et al. (2009) developed a sampling 

method which considers the SOC evaluation at different scales: the largest scale (regional scale) 

was subdivided into landscape units, which are based on the agricultural land use, the agricultural 

region and the soil type (LSU scale). Each LSU is divided into soil profiles (field scale), in each 

of which a composite sample should be collected, which includes five subsamples taken within a 

circle of 4 m radius from the centre of the soil profile (microsite scale and sample scale). Moreover, 

in each layer sampled an intact core should be extracted to measure the soil bulk density (Goidts 

et al., 2009). The description of this method can give an idea of the number of samples to extract 

to reduce sources of error in SOC estimation. Moreover, it is necessary to consider that SOC stock 

varies with depth, which means that deep soil sampling would be recommended. The collection of 

a sufficient number at a sufficient depth for a large-scale model would increase the cost of the 

investigation to the point of not being economically feasible. Therefore, finding alternative 

methods to direct measurement, such as the combination of direct sampling and modelling, would 

be a good strategy to achieve higher cost-effectiveness. 
Another strategy for the evaluation of SOC stocks could be the indirect assessment by measuring 

the balance of its fluxes (net C storage) at system boundaries (Soussana et al., 2010). This 

technique provides a higher temporal resolution, as changes can be detected with a time span of 

one year, instead of direct measurements which take several years or even decades to be assessed, 

but it needs the measurement of many C fluxes (including exchange with atmosphere, organic C 

import/export, dissolution in water and erosion) to compute the mass balance. The fluxes are 

variable according to soil and climate conditions, and even though some of them can occasionally 

be neglected, it is not always simple to assess their value. Some of the factors influencing NCS 

would be grassland type, N fertilizer supply, drainage, burning and climatic variables including 

rainfall, temperature and radiation (Soussana et al., 2010). Another important influence on the 

carbon sequestration potential is represented by the process of evapotranspiration, which affects 

plant growth, biomass production and microbial activity in soil and, therefore, when it increases, 

the Net Ecosystem CO2 Exchange (NEE) is increased as well (Zhang et al., 2022).  
Furthermore, to quantify the possibility for carbon stock through flux balance, it is fundamental to 

consider all fluxes from all the main GHGs (i.e., N2O and CH4 other than CO2), and to apply an 

integrated method to transform the effects of each gas in CO2 equivalents through their Global 

Warming Potential (GWP). This is crucial because modifying grassland management systems to 

improve carbon sequestration could locally cause an increase in methane and nitrous oxide 

concentrations. For instance, N2O is an intermediate product of both nitrification and 

denitrification processes in soil and is therefore emitted by both dynamics. The main regulators of 

these processes regard temperature, pH, soil moisture, C availability, and nitrogen availability, 

which means that the application of N-based fertilizers increases the rate of reaction and will 

stimulate the emission of the gas. N2O emissions undergo significant temporal and spatial 

variations and, for this reason, are not easy to quantify (Soussana et al., 2010). CH4 emissions from 

soil are more relevant in wet environment than in dry ones, because it is mainly formed in 
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anaerobic conditions (Soussana et al., 2010), so it needs to be carefully monitored in the 

management of wetlands, where methane could potentially be released. 

2.2.2 Spectral methods of assessing soil carbon 

Both direct and indirect SOC measurement present, among others, the issue of it being too site-

specific to extensively assess the possibility for carbon sequestration, as soil and environmental 

conditions are strongly variable both in space and time, and through these methods alone it is not 

possible to reach a reliable estimate or to make predictions on how the situation could evolve in 

the future. This is why upcoming technology is studying the combination of direct measurements 

with spectral methods that can survey large areas with minimum cost and acceptable spatial 

resolution. RS techniques, using either satellite, airborne platforms and Unmanned Aerial Vehicles 

(UAVs), are defined as rapid, cost-effective and non-destructive methods to assess soil properties, 

including SOC (Angelopoulou et al., 2019).  
Spectral analysis is based on the observation of reflectance of light on soil in the near- or mid-

infrared region (NIR/MIR) which, combined with previous knowledge collected in spectral 

libraries, can be interpreted and reconducted to soil-content specific characteristics. This method 

can be used in different RS application for the estimation of soil properties, and it is particularly 

promising because it shows no need to extract soil samples with complicated and expensive 

sampling campaigns, it allows to get data for large geographical extensions and for areas that may 

be inaccessible from land, and it is useful to assess several soil properties in a concise way.  
However, data collection through RS has a few main downsides, including low spectral resolution, 

geometric and atmospheric distortions and low penetration depth. Moreover, when data are 

collected from satellites, meteorological conditions could affect soil visibility and, therefore, the 

possibility to acquire data (Angelopoulou et al., 2019). This is why the repetition of soil surveys 

at a national or subnational scale is a good strategy to provide trends on the evolution of SOC 

stocks overtime. However, this strategy is not effectively implemented in most countries and, since 

the first measurements were not performed with the intention of subsequent monitoring, it is not 

always possible to reconstruct the impacts of land use or climate change on SOC pools in the site 

(Smith et al., 2019). 
There are many different studies on the RS of soil chemical and physical properties. For instance, 

in the review performed by Ge et al. (2011), several papers were analysed, and each is focused on 

different aspects of soil composition, such as the content of different chemical elements (e.g., 

phosphorus, potassium, calcium), the percentage of clay, silt and sand, and other physical 

properties such as the electrical conductivity (Ge et al., 2011). Moreover, the research performed 

by Padarian et al. (2022), highlights the possibility of using RS data to monitor land cover and 

land use changes, which are crucial for the estimation of SOC stocks (Padarian et al., 2022). These 

studies are particularly important in the development of precision agriculture, which aims at 

optimizing the efficiency of cultivation by carefully planning the amount of water and other inputs 

provided to the crops. Also, satellite observations can be used specifically for the estimation of 
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SOC (Morais et al., 2023). In this study, data were collected using Google Earth Engine (GEE), 

which is a cloud-based platform containing a large amount of geospatial NIR data (including the 

whole Sentinel2 database), and allows to track changes over time, map trends and quantify 

differences. These data provide explanatory variables to estimate SOC content exploiting the 

combination with ML techniques. The cited study is particularly relevant for this thesis, as it will 

be based on the same principle and data sources. 

2.2.3 Soil process-based modelling 

Process-based soil models (PBM) were developed to satisfy the need to describe physical, 

chemical and biological interactions in the system at different scales. This is necessary because of 

the complex relationship between the many components of soils, which affect the multiple 

ecosystem services it provides, including agricultural productivity, and to address the challenges 

to direct measurement that are created by global change. PBM are considered an appropriate way 

to approach management and decision-making related to environmental issues, and they should be 

developed following a balance between too little and too much detail (Cuddington et al., 2013).  
Initially, soil models focused on physical (water and solute movement, heat flows and energy 

balance) and chemical (sorption models, interaction between phases in contaminated 

environments) processes, disregarding the biological component (microbial activity), but 

nowadays the improved knowledge on interactions between microorganisms and the higher 

possibilities to acquire data make it possible to create soil models at the level of pore scale and 

even smaller (Vereecken et al., 2016). These models can give an overall view on soil-related 

processes (formation, water and nutrient cycling, biological activity, salinization, erosion and 

compaction), the related ecosystem services (climate regulation, buffering and filtering, food, fibre 

and energy provision) and how are they impacted by external drivers. 
As previously introduced, PBM give a good description of real conditions taking into consideration 

many factors and natural processes, so they can explain in a clear way complex mechanisms (such 

as the physical, chemical and biological interactions occurring in soils), making the results easily 

interpretable. Moreover, a very important feature of PBM is the possibility to insert projections of 

the required data to make predictions, which makes them fundamental for decision making tasks. 

However, these models are not able to fully capture the complexity of interactions in nature but 

need to be based on simplifying assumptions. In addition, usually PBM are not able to recreate the 

highly non-linear relationships that are observed in nature and require huge computational capacity 

to obtain results. (Reichstein et al., 2019) 
Smith et al. (1997) compared nine different models and their ability to predict the evolution of 

SOM in a long-term interval, using different datasets. Between the models, it was observed the 

distinction between two groups, one performing simulation significantly better than the other. The 

main reasons for this difference in performance was identified to be the site-specific calibration 

used in the higher-performance group (including RothC, CANDY, DNDC, CENTURY, DAISY 

and NCSOIL). Moreover, the models in this group had sufficiently high performance in different 
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types of land use, not only for the one they were developed for, while the other group (SOMM, 

ITE and Verberne) gave satisfactory results only in their own specific application (Smith et al., 

1997). Another factor influencing the performance of soil models is the need to combine them with 

other sub-models, including the coupling with soil water and nitrogen and plant growth. Even 

models that perform well in the prediction of SOM values, if coupled with more complex 

interactions show problems. 
Between these observed models, a particularly relevant case is the Rothamsted Carbon Model, or 

RothC (Coleman & Jenkinson, 1996b), which is a model that has been widely used since the review 

by Smith et al. (1997). The algorithm was developed to describe and simulate the turnover of 

organic carbon in non-waterlogged topsoil, which is influenced by the effects of soil type, 

temperature, moisture and plant cover. It was also applied with positive results to grassland and 

woodland and under different types of climates. RothC needs a few input values, including initial 

carbon input (from plant and animal source), average monthly characteristics of the atmospheric 

conditions in the area under study (rainfall, open pan evaporation, mean air temperature) and some 

site-specific parameters (clay content, soil cover, depth, monthly external inputs). The only 

parameter related to the land use type is the ratio between decomposable and resistant plant 

material (DPM/RPM), and it is the key factor to determine soil respiration (Coleman & Jenkinson, 

1996b).  
The model computes the quantity of SOC as the sum of five main components (carbon pools): 

decomposable plant material (DPM), resistant plant material (RPM), microbial biomass (BIO), 

humified organic matter (HUM) and inert organic matter (IOM). In these pools, carbon gets 

mineralized at different mineralization rates, which describe the dynamics of decay of each carbon 

pool. The only exception to this is the fraction of IOM, which is highly stable organic matter, and 

is resistant to decomposition, so it does not get a mineralization rate (Fasma et al., 2021). The 

scheme of the decomposition in these five components is showed in Figure 2.  
 

 

Figure 2 - Schematized representation of Soil Organic Carbon fragmentation in the model RothC. It is possible to observe that 

there is one non-decomposable pool (IOM), while the other fractions of SOC (decomposable plant material – DPM, resistant 

plant material – RPM, microbial biomass – BIO, humified organic matter – HUM) are decomposed at different rates. 

Decomposition is indicated by arrows in the figure (Skjemstad et al., 2004) 
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RothC has been used in many different applications both in its direct and inverse configuration. 

The direct configuration is used when the initial carbon input is known and gives as output the 

projection of SOM after a given time interval. For instance, the direct configuration was used to 

assess the proportion of pasture production as carbon input for SOC accumulation in different 

pasture types and management, to assess the best conditions to improve carbon fixation in soil (Liu 

et al., 2011). 
The inverse configuration is used to evaluate the characteristics of the site under study without any 

direct sampling. For example, the inverse method was used to compute the optimal value of some 

parameters related to sown rainfed grasslands (root to shoot ratio, livestock unit, animal intake and 

DPM/RPM), to find the ideal conditions to optimize management practices with the aim to increase 

SOC content (Morais et al., 2018). 

2.2.4 Hybrid models in Earth system science 

Until recently, the only strategies used for geospatial assessments were the use of direct 
measurements and PBM, but advances in technology, specifically in artificial intelligence (AI) and 
ML techniques, open possibilities to integrate PBM and have a more powerful management of the 
large databases which characterise environmental studies through hybrid models (Willard et al., 
2022). In the field of SOC improvement for CO2 sequestration, the use of hybrid models could 
increase simulation accuracy at different spatial and temporal scales. 
This type of modelling has been expanding in the last few years and applied to an increasing 
number of Earth system science (ESS) problems, especially when geospatial data is involved, in 
which both spatial and temporal context play a fundamental role. The structure of hybrid model 
combines a description of the physical processes (theory-driven model) and a deep learning 
algorithm (e.g., ANN, data-driven model) to describe spatial conditions in different circumstances 
and in different temporal instances, and even make predictions on possible future conditions. This 
is useful to merge the huge amount of geospatial data that is available and the possibility to process 
and interpret it in useful ways, while respecting the physical laws that describe the studied 
dynamics. In this study, a hybrid approach combining a theory-driven model and ANN will be 
applied.  
ANN are the core of deep learning (DL), which is a branch of ML that aims to solve complex 
tasks. They were first introduced in the 1940s and experienced a swinging interest of the scientific 
community and, therefore, an alternate scheme of funding/non-funding. Recently, a new wave of 
interest in ANN has been developing, which is expected to be more permanent than the previous 
ones (Géron, 2019), and to lead to huge impact on technological progress and human lives because 
of the following reasons: 
- The high performance of ANN with big amounts of data, which we have today. 
- The increase of computing power (hardware advancement) in the last couple decades and the 

possibility for everyone to access databases and to store data in clouds. 
- The improvement of training algorithms. 
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- The discovery that some of the limitations of ANN are not actually as strong as it was thought: 

for instance, they were believed to get stuck in local minima but the occurrence of this 

condition is not that frequent and, even when it happens, it still gives a good approximation of 

the absolute minimum. 
ANN are a tool to design intelligent machines, modelled on the biological structure of human 
nervous system. Much like biological neurons, artificial neurons have a quite simple structure by 
themselves, and their strength is mainly represented by the big net of connections that they create 
between one another, through which they transmit the signals that make them able to function. 
From biological studies, it seems that neurons are organized in consecutive layers, and that is the 
same structure that is used to develop ANN (input layer – hidden layers – output layer). The basic 
structure of an ANN is schematized in Figure 3.  
 

 

Figure 3 - Basic scheme of an ANN and its functioning process. More specifically, the scheme represents a network with two 

neurons in the input layer, two hidden layers (one containing three neurons and one with four neurons) and an output layer 

containing the results. (Pramoditha, 2022) 

The simplest ANN feature is the perceptron, which is based on the threshold logic unit (TLU): 
inputs and outputs are numbers which are connected to each other through weighted connections. 
The output is computed through the weighted sum of inputs and a bias, which represents the 
minimum value for which the result is meaningful, and the application of an activation function to 
normalize the results (Figure 3). If the result of the step function exceeds a given threshold, the 
corresponding output is considered as the response to the task of the TLU. A single layer of TLUs 
creates a perceptron. If each TLU is connected to each input, the layer is called fully connected or 
dense (Géron, 2019). 
Perceptrons are trained based on the theory of “Cells that fire together, wire together” (Hebb’s 

rule): if two neurons tend to be triggered together, the relationship between them is stronger. Using 
this rule, perceptrons are trained by observing the links between input and output that reduce the 
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error in the final output: these will have to grow stronger, while the weight of the connections that 
increase the error will be reduced. This algorithm resembles the stochastic gradient descent, 
according to which the weights are recalculated for each step according to their ability to minimize 
the error between correct answer and prediction (Géron, 2019). 
The main limitations of a single perceptron can be solved by using a multi-layered structure 
(multilayer perceptron, MLP), composed of one input layer, one or more hidden layers and an 
output layer, each containing a defined number of neurons and a bias, all fully connected to each 
other. The best way to achieve MLP training is the backpropagation algorithm, based on stochastic 
gradient descent: this method computes the gradients of the error with respect to each parameter 
of the model, and states how the connection weights should be adjusted to minimize the error of 
computation, and repeats the process until converging to a final solution. The steps of this 
procedure are: 
- Division of training dataset in mini batches (epochs). 
- Forward pass: computation of model in each instance (element) of each mini-batch and storage 

of all connection weights between the perceptrons of different layers, which have to be adjusted 

later. 
- Computation of prediction error with respect to expected result and measure of how much each 

connection contributes to this error. 
- Backward pass: adjustment of each connection going back in the model according to the 

prediction error. 
- Gradient descent until convergence to a minimum error. 
The initialization of connection weights in the first step should be performed in a random way to 
avoid training failure (Géron, 2019).  
ML methods (ANN in this specific case) are successful and useful in both classification (i.e., 
association of an input to its corresponding output in a range of possible choices) and regression 
problems (e.g., parameter optimization and property predictions from remotely sensed 
reflectance). In this project, ANN are used to solve a regression task and result particularly 
effective for the consideration of geospatial parameters in their dynamics instead of a static way. 
However, the use of models entirely based on ML in ESS presents some fundamental challenges 
(Reichstein et al., 2019): 
- Interpretability: ML algorithms are based on a black-box configuration, so the interpretation 

of results from methods only based on ML can be challenging because it is not possible to have 

a complete view of the intermediate steps of the process. 
- Physical consistency: the model results need to be traced back to actual physical conditions in 

order to be meaningful. The use of algorithms purely based on ML does not take into account 

the laws of physics, possibly resulting in scientifically inaccurate results. 
- Uncertainty of data: the performance of a ML strongly depends on the quality of the data 

provided, which in ESS may not always be as high as required due to missing observations or 

measurement inaccuracy. Moreover, the best performances are achieved with a high quantity 

of labelled data, which is not always available. 
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Considering the advantages and limitations of both PBM and ML algorithms, it is possible to 
observe that the development of hybrid models, combining theory-driven and data-driven 
approach, is a potential solution to obtain the best possible results. More specifically, hybrid 
models have the direct interpretability of PBM, are able to give constraints to results to make them 
physically meaningful and can be used to make future projections for predictive tasks and decision-
making. On the other hand, the combination with data-driven algorithms gives the model the 
possibility to manage a very high quantity of data, to be very adaptable to different settings and to 
be able to identify unexpected patterns easily, while reducing the computational demand and the 
time needed for training and obtaining results (Reichstein et al., 2019). Figure 4 highlights the 
strengths and the potential challenges and opportunities derived by the adoption of a hybrid 
approach to ESS. 
 

 

Figure 4 - Summary of strengths, challenges and opportunities of hybrid modelling in ESS and climate predictions (Slater et al., 

2023). 

There are different studies which aim at confirming the advantages brought by a hybrid approach 
in various fields of Earth System Science. For instance, in the field of rainfall prediction, where 
pure ML models were already proved to be sometimes more effective than physical models, the 
introduction of a hybrid system allowed to reach more accurate forecasts and to reduce uncertainty 
both at short and long time scales (Dotse et al., 2023).  
For what concerns the specific field of soil carbon, a study on the quantification of SOC in sown 
pastures (Liu et al., 2023) was able to observe that the Knowledge-Guided Machine Learning 
model (KGML, i.e., the integration of ML and RS observations) outperformed the pure ML 
algorithm for any sample size, had lower sensitivity to the number of training samples and was 
also able to make reliable predictions in extreme conditions. The performance of such models can 
be improved by choosing a complete and well-suited process-based model to couple with the 
algorithm, and it can result in an accurate, cost-effective and high-resolution (both spatially and 
temporally) estimate of carbon budgets, crop yields and variation of SOC. 
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3. Objectives 

The main goal of this study was to develop a hybrid dynamic model for SOC, which could combine 
the strengths of a simple process-based equation with a ML approach to integrate remotely sensed 
data. More specifically, a SOM dataset collected on the field in multiple pasture farms was used 
to calibrate the model, where the parameters were estimated using an ANN that had as main input 
parameters computed using remotely sensed data. Once the parameter estimation was performed 
and the performance of the model was assessed, the results were transformed into SOC using the 
van Bemmelen factor. 
The study started from the manipulation of the initial dataset into a table containing couples of 
measurements of SOM in the same point, along with the time difference between observations, 
and a series of other radiometric, physical and locational features referred to the point itself. 
The development of the model, which was completely performed in the Python environment 
(version 3.12.2, in the environments Jupyter and PyCharm), included the creation of two separate 
ANN to estimate the parameters of the process-based equation (carbon input and mineralization), 
and it consisted in finding the ideal hyperparameters that performed the best in terms of fitting the 
data while minimizing the overfitting effect, and selecting the variables to insert in the training of 
the two ANN from the list provided in the database according to the best performance obtainable. 
The main difference between a standard application of ANN and this project lied in the error 
assessment. Typically, the training phase consists in computing the parameters of the model, and 
then backpropagating the obtained values to the input features, to adjust the weights of the 
connections between neurons, with the goal to find the parameter values that allow loss 
minimization. Only after this procedure, the estimated parameters are inserted in the model. In this 
case, the parameters were calculated and immediately inserted in the model during the training of 
the models. In this way, the loss function was evaluated as the difference between the calculated 
result using the ANN to compute parameters that are then entered in the process-based equation, 
and the measured values of SOM provided. This strategy allowed the models to combine complex 
data features in an effective way  through the ML technique and, therefore, obtain the best possible 
values considering many different features, but at the same time the parameters should have 
physical meaning because they were calculated according to a process-based relationship which 
took into consideration the actual processes that were occurring (which the ML algorithm is not 
able to do by itself).  
The result was a model whose parameters are specific for each combination of input variables, and 
therefore for each region. This fact improves the likeliness that the model can generalise different 
environmental conditions and calculate the possible evolution of SOC in different areas than the 
ones used in the training, at least the ones with similar climatic features. New site-specific 
parameters are calculated (using the ANN) every time the model is run for a new location without 
the need for inverting the model to match new observations. Moreover, the model should be able 
to simulate future projections, or at least give an idea on how the quantity of SOC could evolve by 
setting possible values for future conditions of soil (e.g., temperature and moisture). 
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4. Materials and methods 

4.1 Case study description 

The sites used for data collection were selected in a previous study (Morais et al., 2023), which 
was focused on modelling carbon concentration in soils of SBPPRL using only ML and remotely 
sensed data. 
The choice of SBPPRL as reference land management practice was due to its potential to increase 
grassland productivity, and the many co-benefits that could arise from an effective implementation 
of this land use strategy, including high carbon sequestration.  
The system was developed in Portugal in the 1970s as a win-win strategy from the economic and 
environmental point of view because it combined the private interests of farmers (improved 
production at low cost), and the ecosystem services provided by the engineered management of 
soil. Before the development of this technique, Portuguese agricultural areas had been 
experiencing both abandonment of agricultural areas and extensification of the remaining ones 
(due to labour price increase and selling price decrease, which is not sustainable for small farmers), 
which lead to the formation of shrub woody cover, that had strong consequences on soil structure 
and its ability to retain water, as well as resulting in an increase in risk of wildfires. Both these 
phenomena, combined with tillage, degraded the quality of soil by increasing the mineralization 
rate and, therefore, decreasing the natural soil carbon stock. Since spontaneous re-vegetation was 
proved to not be efficient in improving soil quality in abandoned agricultural fields, some kind of 
human management and intensification is required, and SBPPRL are an example of possible 
intensification, featuring a mix of different species tailored to the soil, climate and agricultural 
conditions of the studied field (Teixeira et al., 2015). 
SBPPRL are installed by sowing a mix of up to 20 different species of grass and legumes. It is a 
strategy of agricultural and livestock production intensification in an engineered, sustainable way 
(Teixeira et al., 2015). If correctly maintained, the system could significantly improve ecosystem 
degradation in semi-arid and sub-humid climates. In this context, the role of legumes is specifically 
to improve nitrogen fixation from the atmosphere, making the area independent from external N 
fertilization. However, in the first settling years, legumes need generous applications of phosphate 
to grow, since Mediterranean soil is poor in this nutrient. Legumes cover over 50% of the 
agricultural field in the first years of development, but then grassland takes over in more mature 
conditions (legumes stabilize around 25/30% of extension after around 5 years of development) 
(Teixeira et al., 2015). The ratio between grass and legumes is fundamental to reach the best 
performance in terms of productivity and nitrogen fixation, and this can be achieved with different 
practices, including correct fertilization and grazing management. Grazing should be planned in 
such a way that, after summer, no excess of dry vegetation is found, to avoid problems in seed 
break down and germination. Therefore, in this period heavy grazing is suggested, while during 
flowering and maturation stages overgrazing is not advised. (Teixeira et al., 2015) 
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The system is expected to deliver several benefits for farmers, including higher yields and better-
quality pastures; the replenishment of soil organic pools, which can act as a carbon sink; an 
improvement of soil structure; the decrease of surface runoff and the reduction of pyrophyte 
vegetation. 
The studied effects of the installation of SBPPRL compared to semi-natural pastures (SNP) show, 
as previously mentioned, both economic and environmental advantages (Teixeira et al., 2015). 
Starting from the economic point of view, which is crucial to obtain the consent of farmers to apply 
the procedure, the main upside is the increased productivity, related to the selection of hard seeds, 
the ecological complementarity between the different species and a density increase of products 
(not size increase). Another economic benefit is the natural N fixation ability of legumes, which 
allows to cultivate without the use of synthetic N fertilizers. Improving agricultural productivity 
could result in some additional life-cycle effects, with both positive and negative features: 
increased animal grazing would lead to higher CH4 emissions and limitations to wildlife 
biodiversity but would reduce the need for tillage since the increased livestock would 
autonomously manage the woody shrub growth, and less need for concentrated feeds, which have 
huge environmental impact and would compensate for the additional inputs required by SBPPRL 
(phosphorous fertilization, limestone application) (Teixeira et al., 2015). 
From the environmental point of view, one key benefit, and main point of interest for this research, 
is the increase in the SOM pool of the soil, which brings additional co-benefits such as an increase 
of soil quality which reduces erosion risk, improved carbon sequestration and decreased surface 
runoff (which can also affect the receiving water bodies through eutrophication, silting and 
contamination). This is expected because SOM confers structure, stability and nutrients to soils, 
increases plant productivity without need for tillage and, therefore, decreases erosion, 
desertification and superficial water runoff.  
Due to the establishment of those effects, between 2009 and 2014, the country financed carbon 
sequestered in these pastures through the Portuguese Carbon Fund (Teixeira et al., 2015). SOM 
was shown to increase by +0.21% per year in the first 10 years of establishment of SBPPRL, which 
is much higher than the results obtained for Natural Grasslands (NG) and Fertilized Natural 
Grasslands (FNG), for which the SOM increase was estimated to be around +0.08% per year (the 
results are more or less the same for NG and FNG because the fertilization does not have a strong 
impact on SOM content), starting from the same initial conditions (Teixeira et al., 2011). This 
result can be explained with the higher biomass production occurring in SBPPRL, which supports 
a much higher stocking rate. The balance in GHG emission/offset included the improved carbon 
sequestration ability of SBPPRL, as well as the emissions related to limestone application (for soil 
pH management), bacterial nitrification and livestock enteric fermentation and manure. All in all, 
SBPPRL can hold carbon sinks of 1.55-2.13 tCO2 ha-1 y-1, depending on the mineral bulk density 
of the site, which compared to the values computed for NG and FNG (0.53-0.75 tCO2 ha-1 y-1) 
represents a significant improvement (Teixeira, 2010). 
In addition to this, SBPPRL have been observed to have higher resistance to extreme conditions 
and environmental pressure, thanks to the variety of species, which is fundamental because of the 
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expected alterations and additional pressures related to climate change. Finally, the enhancement 
of N-pools in this type of pasture has been shown to be effective and the risk of N-losses is very 
low, but longer time series need to be observed before establishing effects in the long-term. 
On the other hand, the main limitations expected are the dependency of legumes on phosphorous 
fertilization, which is required in the installation phase and sometimes for maintenance, and comes 
from non-renewable resources, and the unclear effects on wild biodiversity. There are still many 
uncertainties about this agricultural system which should be addressed: the implementation of 
increased monitoring and data time-series to assess more precisely the effects in long-term 
conditions, the management of main negative effects (including possible increase in non-CO2 
GHG emissions and, mostly, the use of phosphate fertilizer), and the possibility of upscaling to 
other semi-arid/sub-humid areas other than Portugal (Teixeira et al., 2015). 

4.2 Data used 

4.2.1 SOC measurements 

The data used in this research were collected in eight different farms throughout Portugal (farms 
1, 2, 3, 5, 6, 7, 8, 9), and one located in Spain (farm 4). The plots surveyed in those farms had 
variable areas (ranging between 26 and 42 ha), and spanned across latitudes and longitudes 
respectively between 37°50’ – 40°30’ N and 6°80’ – 8°30’ W. The soil types and the dominant 
parent materials were determined using the European Soil Database (Morais et al., 2023). The 
climate of all farms, according to the Köppen climate classification system, is in the hot-summer 
Mediterranean region (Csa), which is characterised by coldest month averaging above 0 °C (or 
−3 °C), at least one monthly average temperature above 22 °C, and at least four months averaging 
above 10 °C. At least three times as much precipitation in the wettest month of winter as in the 
driest month of summer is expected, and the driest month of summer receives less than 40 mm 
(Arnfield, 2024). The location of each farm is illustrated in Figure 5. 
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Figure 5 - Map showing the location of the farms where data were collected (Morais et al., 2023) 

In each farm, different soil sample collection campaigns were held, in different periods ranging 
between four years of production (from 2017-2018 to 2020-2021), with the aim to measure the 
SOM content in the study area. Each sampling season started in September and ended in May and, 
in some cases, more than one sampling per season was performed. The locations were chosen with 
the goal to minimize the influence of rocks and trees on the measured values of SOM, but due to 
the high density of trees it was not always possible to collect the samples in equal number for each 
farm. Table 1 shows the difference in each sampling campaign, which was variable not only 
between farms but also depending on the collection date. From Table 1 it is also possible to observe 
that the time interval between two consecutive collections was strongly variable, and this had to 
be considered in the development of the model, in which couples of consecutive measurements 
were needed. A total of 1121 sampling points was collected from the farms throughout the years, 
but further considerations had to be made to build the final database used for the development of 
the model. The values of SOM were expressed in kgSOM/100 kgsoil. 
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Table 1 - Summary of all the sampling campaigns in the different farms: for each farm the date and number of samples collected 

is reported. 

Farm 
Code 

Production 
year 

Collection 
date 

Number of 
points 

Total per 
year 

Total per 
farm 

1 

2017-18 
24/02/18 8 

40 

237 

16/04/18 24 
17/05/18 8 

2018-19 

22/11/18 26 

75 
09/01/19 21 
20/02/19 8 
23/04/19 12 
22/05/19 8 

2019-20 
09/12/19 34 

58 19/02/20 12 
14/04/20 12 

2020-21 
16/01/21 42 

64 15/02/21 11 
13/04/21 11 

2 2019-20 06/11/19 35 35 35 

3 

2017-18 
09/04/18 24 

32 

203 

15/05/18 8 

2018-19 

21/01/19 47 

71 
13/02/19 6 
16/04/19 12 
17/05/19 6 

2019-20 
18/10/19 33 

57 18/02/20 12 
13/04/20 12 

2020-21 
04/03/21 31 

43 
12/04/21 12 

4 2018-19 
04/02/19 12 

24 24 
18/04/19 12 

5 

2018-19 

14/01/19 50 

74 

184 

11/02/19 6 
08/04/19 12 
13/05/19 6 

2019-20 
25/10/19 34 

58 10/02/20 12 
06/04/20 12 

2020-21 
08/02/21 12 

52 
03/03/21 28 
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Farm 
Code 

Production 
year 

Collection 
date 

Number of 
points 

Total per 
year 

Total per 
farm 

07/04/21 12 

6 

2017-18 
16/02/18 7 

39 

219 

02/04/18 24 
14/05/18 8 

2018-19 
15/01/19 57 

72 12/02/19 8 
15/05/19 7 

2019-20 
24/10/19 33 

57 12/02/20 12 
08/04/20 12 

2020-21 
10/02/21 12 

51 01/03/21 27 
08/04/21 12 

7 
2018-19 11/04/19 12 12 

75 2019-20 30/10/19 33 33 
2020-21 02/03/21 30 30 

8 

2018-19 
19/02/19 8 

28 

132 

22/04/19 12 
20/05/19 8 

2019-20 
29/10/19 29 

51 06/02/20 12 
02/05/20 10 

2020-21 
02/02/21 12 

53 19/02/21 29 
05/04/21 12 

9 2018-19 12/04/19 12 12 12     
Total points 1121 

 
Since the model development implied verifying the change in time of the value of SOM, only the 
points with two or more measurements could be considered. For this reason, all the points from 
farm 2 and farm 9 had to be excluded from the database. Furthermore, a consideration of the single 
points was performed to observe which ones could be used in the remaining farms. In this phase, 
a study of the measurement process had to be taken into account: each soil sample was composed 
by four sub-samples that were pooled and mixed to achieve uniformity (Morais et al., 2023). In 
the considered farms, points with only one measurement were excluded from the database, and the 
remaining ones were sorted in chronological order. Moreover, the latest observation for each point 
was excluded, again because these would not have a following SOM measurement.  
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This way, each line of the database contained a value of SOM(t) and a value of SOM(t+∆t), where 
∆t is, as previously mentioned, a variable time interval. After this selection, the database contained 
718 couples of points.  
Finally, an outlier analysis was carried using SOM(t+∆t) – SOM(t) as variable of analysis, to 
exclude possible experimental errors which could give unrealistic values in SOM variation with 
respect to the time interval considered. As showed by Figure 6, the values seemed to be distributed 
mainly between the lower and upper whisker, and it was possible to identify only 11 outliers 
between the 718 in the dataset. 
 

 

Figure 6 - Boxplot of the distribution of SOM(t+∆t) - SOM(t). The points outside the boundaries are the outliers, that were 

excluded from the final table. 

Removing the outliers, the database showed a total of 707 lines, each containing couples of SOM 
measurements, which could be used for the model training, validation and testing. 

4.2.2 Input variables used 

After grouping the couples of measurements of SOM, the input variables for the model were 
compiled. A database was obtained collecting different parameters related to geospatial features 
of the points. As previously explained, the goal was to integrate data from samples and radiometric 
data (acquired through RS techniques), which could be used as explanatory variables to estimate 
SOM using ML. The complete set of data, containing a total of 49 parameters, referred to the same 
study from which the measurements of Soil Organic Matter were taken (Morais et al., 2023), and 
included radiometric data such as reflection bands and vegetation indices, as well as climatic, soil 
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and terrain variables, and some auxiliary data. All values were collected using GEE, which is a 
cloud-based platform containing a large amount of geospatial data, and allows to track changes 
over time, map trends and quantify differences.  
Since the final goal of the project was to construct a model able to make predictions in the future 
regarding the possible SOM content of a specific site given some changes in the climatic scenarios 
predicted for the area, some variables were considered both at the time of acquisition of the first 
sample (SOM(t)), and after the time interval of the consecutive measurement (SOM(t+t)). The 
variables chosen to be considered at both instants were the ones for which it was possible to make 
realistic future predictions, which were basically the soil moisture and soil temperature. All the 
other variables, including remotely sensed data, topographic indices, soil composition and pH were 
considered to remain constant through time, so there was no need to consider their values at t and 
t+t. 
Table 2 provides a summary of the variables present in the original database that were selected for 
this study, together with their source database in GEE. 

Table 2 - Summary of all the variables present in the original database (Morais et al., 2023) and used in the current project, with 

their sources. 

 Type of variable Source database 
Number 

of 
variables 

Satellite bands (August) Radiometric Sentinel-1, Sentinel-2 12 
Satellite bands (closest to 

harvesting) Radiometric Sentinel-1, Sentinel-2 12 

Soil composition Climate/soil/terrain SoilGrids 3 
Soil water pH Climate/soil/terrain SoilGrids 1 
Soil moisture Climate/soil/terrain GLDAS 2 

Soil temperature Climate/soil/terrain GLDAS 2 

Vegetation indices (August) Radiometric Computed from satellite 
bands 5 

Vegetation indices (closest to 
harvesting) Radiometric 

Computed from satellite 
bands 5 

Day (days since beginning of 
production) Auxiliary - 1 

Lab Auxiliary - 1 

Topographic indices Climate/soil/terrain NASA EOSDIS Land 
Processes DAAC 5 

Location Auxiliary - 2 
 
From Table 2, it is possible to observe the total number of variables which were considered as 
possible inputs to train the ANN to find the model parameters carbon input and mineralization 
rate. Collectively, the number of variables identified is 51, related to a total of 707 observations: 
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the ratio observations/variables deriving from this is 707/51 = 13.86. Studies on the relationship 
between number of events per variable in logistic regression (Peduzzi et al., 1996) state, as rule-
of-thumb, that to ensure model accuracy and prevent overfitting the recommendation is to have at 
least 10 observations per variable. Even though the ratio previously computed satisfied this 
requirement, it was very close to the lower limit stated by Peduzzi et al. (1996), therefore a sort of 
variable selection, described in Section 4.3.3.2, was implemented, to reduce the number of 
variables and ensure higher accuracy. 

4.2.2.1 Radiometric data 

Radiometric data was acquired by joining information from the Sentinel-1 and Sentinel-2 missions, 
in which image resolution was variable depending on the satellite band considered, and there were 
three possible resolutions: 10 m for Blue, Green, Red and Near Infrared (NIR) bands; 20 m for the 
three Vegetation Red Edge bands, the Narrow NIR band, and the two Shortwave Infrared (SWIR) 
bands; and 60 m for Coastal Aerosol, Water Vapour and SWIR-Cirrus bands. All data was taken 
from Level-2A products, therefore acquired at the Bottom of Atmosphere (BOA). The considered 
images were acquired in two different periods of the year: the first (B1, B2, B3, B4, B5, B6, B7, 
B8, B8A, B9, B11, B12) was a composite frame of the available data in the period between the 1st 
and 31st of August, which was supposed to represent the bare soil condition and to capture the 
spectral reflectance of the soil, while the second (B1_close, …, B12_close) was a composite frame 
of images at the closest date to collection, representing the maximum vegetation cover to assess 
the influence of vegetation on SOM. The values of Bn and Bn_close collectively contributed to 
give 24 input variables for the evaluation of the parameters carbon input K and mineralization rate 
, which were object of this study. 
The presence and the contribution of vegetation was accounted using five different vegetation 
indices, always based on radiometric data and, specifically, some values of spectral reflectance in 
specific bands, variable depending on the index (Morais et al., 2023). Since they were also related 
to spectral reflectance, vegetation indices were accounted both in bare soil conditions and at closest 
date before collection (moment with highest vegetation density): 
- NDVI (Normalized Difference Vegetation Index), used to understand vegetation density and 

plant health by quantifying vegetation greenness. It was computed as the ratio between the red 

(R) and the near infrared (NIR), namely 
 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
.          (Eq. 1) 

NDVI is the most commonly used vegetation index, and the most suitable to track crop 
development dynamics, but it is quite sensitive to soil brightness and atmospheric effects, so it 
needs to be used in cooperation with other indicators (such as SAVI). 

- NDWI (Normalized Difference Water Index), used to monitor the water content of leaves to 

mitigate soil brightness effect. It was evaluated through the ratio between the green (G) and 

the near infrared (NIR) radiometric values 
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𝑁𝐷𝑊𝐼 =

𝐺−𝑁𝐼𝑅

𝐺+𝑁𝐼𝑅
.          (Eq. 2) 

 
- SR (Simple Ratio), which provided a general indication of vegetation health (high values = 

healthy vegetation, low values = bare soil/water/ice). Computed simply as the ratio between 

NIR and R radiometric values 
 
𝑆𝑅 =

𝑁𝐼𝑅

𝑅
.            (Eq. 3) 

 
- SAVI (Soil-Adjusted Vegetation Index), which is a vegetation index aimed at minimizing soil 

brightness influence, so it is particularly useful in arid areas where vegetation cover is low. 

Soil brightness influence was addressed using a correction factor L. In this application, L was 

set to 0.5, but it can vary between -1 and +1 depending on the site’s vegetation cover (= 0 in 

highly vegetated areas, so that SAVI = NDVI, and = 1 in low vegetation zones) 
 
𝑆𝐴𝑉𝐼 = 1.5

𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅+0.5
.         (Eq. 4) 

 
- OSAVI (Optimized Soil-Adjusted Vegetation Index), which used a different background 

adjustment factor to modify and optimize SAVI index. This allowed to get higher sensitivity 

to canopy cover greater than 50% 
 
𝑂𝑆𝐴𝑉𝐼 = 1.16

𝑁𝐼𝑅_𝑅

𝑁𝐼𝑅+𝑅+0.16
.        (Eq. 5) 

Collectively, the vegetation indices at sampling date and at closest date to collection contributed 
with 10 additional variables to the evaluation of the parameters carbon input and mineralization 
rate. 

4.2.2.2 Climate/soil/terrain data 

Since the processes related to the carbon cycle (i.e., mineralization and accumulation of SOC) 
strongly depend on climatic and environmental features of the site, some data related to climate, 
soil and terrain was also collected. All the parameters were collected from GEE, but each from 
different databases specific for the variable. The considered parameters are the following: 
- Soil temperature at 10 cm depth (in K). The measurement at current time was indicated as 

SoilTMP (t), while the consecutive measurement at the same point was indicated as SoilTMP 

(t+1), contributing with 2 additional variables to the evaluation of the parameters carbon input 

and mineralization rate. 
- Soil moisture at 10 cm depth, expressed in percentage value. The measurement at current time 

was indicated as SoilMoi (t), while the consecutive measurement at the same point was 

indicated as SoilMoi (t+1), contributing with 2 additional variables to the evaluation of the 

parameters carbon input and mineralization rate. 
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- Soil composition (clay/sand/silt content in %). In the database, the percentage values were 

multiplied by 10 with respect to their original format, but in the code each parameter was 

normalized, therefore no modification was necessary. The values contributed to 3 input 

variables for the evaluation of the parameters carbon input and mineralization rate.  
- Soil water pH: pHH2O was used instead of measuring directly the soil’s pH, because the first is 

easier to measure than the latter, and it is still well representative of soil conditions. In the 

database, the pH values were multiplied by 10 with respect to their original format, but in the 

code each parameter was normalized, therefore no modification was necessary. The values 

contributed to 1 input variable for the evaluation of the parameters carbon input and 

mineralization rate.  
- Topographic indices, also called terrain variables, used to assess the effect of the position and 

the conformation of the territory on SOC: 
o Continuous heat-insolation load index (CHILI): used to assess the effects of insolation and 

topographic shading on evapotranspiration, by computing the insolation at early afternoon, 

at sun altitude equivalent to equinox. It was be used to identify warm, neutral, and cool 

areas of a landscape. 
o Digital elevation model (DEM): representation of the base ground topographic surface of 

the studied area, without accounting for trees, buildings or other surface objects. 
o LANDFORMS 
o Multi-scale topographic position index (mTPI): used to distinguish ridge from valley 

forms, it was calculated by the elevation at each location subtracted by the mean elevation 

within a neighbourhood.  
o Topographic Diversity (TopoDivers): represented the variety of temperature and moisture 

conditions available to species as local habitats (calculated combining mTPI and soil 

moisture). 
The topographic indices contributed to 5 input variables for the evaluation of the parameters 

carbon input and mineralization rate.  

4.2.2.3 Auxiliary data 

The third group of variables included auxiliary data, mostly related to the moment and the 
methodology of collection of the samples for the measurement of SOM, and included day, month 
and year of collection, days between the closest satellite image (for both Sentinel-1 and Sentinel-
2) and sampling date, days since beginning of production year (31st August), laboratory of sample 
analysis and location of the sample through its coordinates (latitude and longitude). More 
specifically, the four auxiliary variables used in the database were: 
- Number of days since the beginning of the production year (column indicated as Days) 
- Laboratory of sample analysis (1 or 2), because the two laboratories used different analysis 

techniques (column indicated as Lab) 
- Location of the sample in latitude and longitude (columns indicated as lat and lon). 
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4.3 Hybrid model development 

The structure of the model combined the data previously described, including all the satellite 
information from RS and the auxiliary variables related to the structure of the site, and a simple 
process-based relationship for the computation of SOM given a time interval ∆t, which was 
variable as the sampling campaigns were not held in a regular way. The process-based model used 
here was a simple, 0D, 2-parameter model introduced for quantifying the dynamics of SOM in 
Portuguese grasslands (Teixeira et al., 2011). It was a very simple model, based on only two 
parameters: the Carbon input (K), accounting for an increase of SOM related to vegetation and 
livestock presence, and the mineralization rate (𝛼), describing the dynamics of SOM loss, 
according to 
 
𝑆𝑂𝑀(𝑡 + ∆𝑡) =

𝐾

𝛼
∙ (1 − 𝑒−𝛼∙∆𝑡) + 𝑒−𝛼∙∆𝑡 ∙ 𝑆𝑂𝑀(𝑡).     (Eq. 6) 

 
The model was based on a mass-balance principle: the dynamics of organic matter in soil depended 
on carbon external inputs (such as animal manure and plant residues), which were balanced by the 
mineralization rate. Given constant input and mineralisation rates, the model will asymptotically 
reach a steady state (with a time-dependent saturating exponential form), while a variation of land 
management practices could temporarily modify the SOM content trend, increasing the 
sequestration capacity of soil (Teixeira et al., 2011). 
In the previous study (Teixeira et al., 2011), the values of the parameters were estimated using the 
OLS method and stepwise regression, based on SOM observations collected in the previous years. 
The present study aimed at increasing the prediction accuracy of the same model, by substituting 
the regression equations of OLS with ANN, which from the dataset previously described should 
be trained to determine the most realistic values of K and 𝛼. If the performance of the hybrid model 
is an improvement over the regression version, this work could be interpreted as a proof of concept 
showing the potential for this approach to improve existing soil models. 
Before the development of the model with ANN, the parameters were estimated with a simple 
linear regression, to obtain a baseline performance value to compare with the results of the more 
complex procedure, which should produce a more accurate data fitting.  

4.3.1 Linear regression 

Since the used model to compute the value of SOM(t+t) presented a linear relationship with 
respect to the initial value of SOM(t), the first strategy that was applied was to use the basic linear 
regression to fit the data, to observe if the natural relationship between a measurement and the 
consecutive one was already compliant with the model. To achieve this, the expression of the linear 
relationship was used to find the values of the two parameters (K and ). The expressions used for 
this evaluation are 
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𝑦 = 𝑚 ∙ 𝑥 + 𝑞,          (Eq. 7) 
 
𝑚 = 𝑒−𝛼∙∆𝑡 → 𝛼 = −

ln(𝑚)

∆𝑡
,         (Eq. 8) 

 
𝑞 =

𝐾

𝛼
∙ (1 − 𝑒−𝛼∙∆𝑡) → 𝐾 =

𝑞∙𝛼

1−𝑒−𝛼∙∆𝑡.        (Eq. 9) 
 
In order to have a procedure and a number of observations comparable to the ones applied on the 
ANN model, before performing the linear regression the dataset was randomly split into a training 
(80% of observations) and a test (20% of observations) subset. The training dataset was 
interpolated to determine the values of m and q, and the formulas listed above were applied to 
obtain the final values of K and . In this step, the mean value of ∆𝑡 in the training set was used 
as fixed value. Once the parameters of the model were obtained, the values of SOM(t) in the test 
set were used to estimate SOM(t+∆t) through Eq. 6, and finally the performance was evaluated by 
calculating the coefficient of determination R2 between measurements and modelled values, with 
the following relationship: 
 

𝑅2 = 1 −
∑( 𝑆𝑂𝑀(𝑡+1)𝑡𝑒𝑠𝑡−(𝑆𝑂𝑀(𝑡+1)𝑡𝑒𝑠𝑡) )2  

∑( 𝑆𝑂𝑀(𝑡+1)𝑡𝑒𝑠𝑡−𝑆𝑂𝑀(𝑡+1)𝑝𝑟𝑒𝑑)2 .                 (Eq. 10) 

 
The code used for this purpose can be consulted in Section 9.1. 

4.3.2 Definition of the ANN 

The goal of the study was to substitute the estimations of the two model parameters (K and 𝛼) with 
two separate ANN (in this case operating as regression tools, not as classification ones), able to fit 
all the input data into a generalized value for each parameter, which could be used to fit data from 
every site, and make predictions about future conditions of SOM. 
Both ANN had the same structure, which was very simple: one input layer (with variable number 
of input features based on the variable assignment, as discussed in Section 4.3.3.2) fully connected 
to a single hidden layer (with variable number of neurons, which was the main hyperparameter to 
be tuned) though linear relationships, which was again linearly connected to the output layer, that 
had one single perceptron containing the result of the regression process.  
After the first linear layer, a ReLU (Rectified Linear Unit) activation function was applied, to 
introduce some non-linearity in the model, which was fundamental to learn more complex patterns. 
Moreover, a layer with a dropout rate was introduced in the ANN: this function set randomly a 
percentage of the neurons to zero, avoiding the model to be too reliant on a single element and 
preventing overfitting. During the definition of the ANN, the variables that were defined included 
the number of input features, the number of neurons in the hidden layer, the dropout rate and the 
output activation function. The latter was introduced to satisfy the only requirement that was 
defined for the values of the two parameters: since the mineralization rate represented the fraction 
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of mineralized SOM, it could not be greater than 1, since it would mean that the amount of carbon 
that is mineralized would be higher than the one actually available on site. This is why, on the 
model for the computation of 𝛼, the activation was set to a sigmoid function, commonly used to 
map any real number to a value between 0 and 1 (as showed in Figure 7) 
 
𝜎(𝑥) =

1

1+𝑒−𝑥.                     (Eq. 11) 
 

 

Figure 7 - Graphic representation of the sigmoid function (Activation Functions & Derivatives, n.d.) 

Initially, a simple sigmoid activation function was applied for the computation of the 
mineralization, but observing previous studies (Teixeira et al., 2011), a further reduction was 
considered reasonable, and a customised activation was introduced to limit the maximum value of 
𝛼 to 0.3 (roughly doubling the values obtained for similar land uses). 
Before the introduction of these activation functions, the values of mineralization were 
significantly higher than expected: without any output activation the model often resulted in values 
greater than 1, and even with the simple sigmoid the fitting gave values very close to 1 (around 
0.9). After the introduction of the output activation, the values of 𝛼 were reduced, but this resulted 
in a consequent reduction of the K parameter, which in some cases was found to be lower than 
zero. This was not physically possible, because negative C input would be an effect of no external 
inputs, which could not be the case since all the considered soils included both vegetation and 
livestock, which surely were sources of carbon, combined with strong mineralization, which 
should not be accounted in the K parameter because it was already considered in the mineralization 
rate. Therefore, the final version of the code was modified adding an output activation for the 
model computing the C input as well, to always give it values strictly greater than zero. The 
activation function that was chosen for this purpose is the softplus activation, a smooth 
approximation of the ReLU function, which avoids the discontinuity in the derivative that the latter 
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has in 0. The function has a behaviour similar to linearity for positive values, and it asymptotically 
approaches 0 for negative results (as showed in Figure 8) 
 
𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = ln (1 + 𝑒𝑥).                   (Eq. 12) 
 

 

Figure 8 - Graphic representation of the Softplus function (Activation Functions & Derivatives, n.d.) 

The ANN structure here defined, as previously mentioned, was applied in two separate instances 
for the computation of the two parameters K and 𝛼. The following steps were the training and 
validation of the network, which was connected to the hyperparameter tuning for the definition of 
the optimal number of neurons in the hidden layer, then finally the test phase, with the computation 
of the values of the parameters and the evaluation of the model performance through both a loss 
function and the R2. 
The final version of the model used to obtain the results can be consulted in Section 9.3. 

4.3.3 Model development workflow 

To give a clearer idea of the procedure that was followed and before going more into detail in the 
methods followed for the study, this section describes the workflow used to develop the final 
hybrid model. 
First, the dataset was divided into three different subsets: the training set, containing 60% of the 
observations in the database, the validation and the test set, each containing 20% of the 
observations. This step was performed using the stratified splitting technique, to ensure that each 
subset had a regular distribution of the variable SOM(t+∆t), i.e., in each set the distributions of 
SOM(t+∆t) had a similar average and standard deviation. 
After the dataset splitting, two separate ANN models, one for each parameter (called model f for 
carbon input and model g for mineralization rate), were defined. The two models corresponded to 
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two ANN with the structure defined in Section 4.3.2: each of them received a set of input variables 
from the database as input layer, had one single hidden layer, and an output layer which produced 
the estimates of the parameters. The number and type of input features was assigned randomly at 
each iteration, to reduce the number of variables with respect to the observations contained in the 
dataset. This was done to avoid any prior assignment of input variables to the models, which would 
require assumptions about the potential for each variable type to influence carbon input or 
mineralization. The ANN in their initial configuration were trained for 1000 epochs.  
Hyperparamer tuning was performed first for the number of neurons in the hidden layer of each of 
the two models, which was carried out through a nested double loop at each iteration, to compute 
the loss function for each possible combination and choose the two sizes that minimized it. Then, 
the model was improved by optimizing additional hyperparameters i.e., the dropout rate and the 
learning rate scheduler. The dropout rate is a commonly used hyperparameter to prevent 
overfitting: it refers to dropping out (i.e., temporarily removing) hidden or visible units, along with 
their connections, from the network during training. The choice of the units to drop is random, and 
it leads to the creation of a “thinned” ANN, preventing it from co-adapting too much (Srivastava 
et al., 2014). The learning rate scheduler was used to track the performance of the model, and if it 
did not improve for a defined number of epochs (called patience), it multiplied the initial learning 
rate by a reduction factor. The tuning of these hyperparameters (dropout rate, patience and factor 
of the scheduler), as well as the number of training epochs, was achieved by setting a fixed variable 
configuration (the one with highest R2 from the previous step) and modifying the values of the 
hyperparameters until reaching the best fit. 
The model was run 100 times in this configuration, to find the random assignment of input 
variables that maximised the performance in terms of R2, with random variable assignment and 
the previously tuned hyperparameters. 
Each of these steps is explained in further detail in the next sub-sections. 

4.3.3.1 Dataset splitting 

The first step for the development of the model was to extract the needed columns from the dataset: 
the first column contained the measurement of the SOM in the first instant (t), the second referred 
to the values of SOM in the second measurement (t+t), and the third was the time interval between 
the two measurements (t). The other columns contained the 51 variables to insert in the ANN. 
Once these preliminary operations were performed, the dataset was divided in three subsets: the 
training, the validation and the test sets. In this phase, the observations were separated through the 
stratified splitting technique, to ensure that the dataset was divided randomly, but each subset 
maintained the same distribution of a predefined target variable. In this case, SOM(t+t) was 
chosen as target. More specifically, in each of the three subsets, the distribution of the target 
variable maintained the same (or as close as possible) average and standard deviation.  
To make this division possible, the target variable was discretized into quantiles, called bins, in 
which the target variable had more or less the same average and standard deviation, and the final 
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division was performed maintaining the proportion of observations having similar features. The 
ideal number of bins could not be too high to avoid noise presence, which would lead to overfitting, 
and could not be too low to avoid information loss. This is why a search algorithm for the choice 
of the optimal number of bins was applied before the data splitting, in which different numbers of 
bins were evaluated based on a balance score. This balance score was computed as the variance of 
bin size across all bins, which as a quantification of the dispersion was able to compute whether 
the data was distributed in an even way. The identified best number of bins was then applied for 
dataset splitting. After this step, three datasets (training, validation and test) were obtained: the 
first containing 60% of the observations (424 lines), and the latter two splitting the remaining 40% 
in equal parts (141 observations for validation and 142 in the test set). 
Each of these subsets was subjected to some preprocessing steps, namely: 
- Normalization: if data have different scales of magnitude, the ones with higher ranges of values 

will tend to dominate the smaller ones, while normalizing all values in a common range each 

variable is able to be expressed in the model. 
- Convergence: ML algorithms tend to converge faster or have better performance when their 

features are scaled. 
More specifically, in the code the preprocessing is performed with the feature “StandardScaler”, 

which computes the mean and standard deviation of each column in the dataset, and it transforms 
the values such that the mean is equal to zero and the standard deviation is equal to one using the 
formula 
 
𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑥−𝑥𝑚𝑒𝑎𝑛

𝑠𝑡𝑑(𝑥)
.                    (Eq. 13) 

 
At the end of these procedures, the three datasets contained balanced and normalised values, and 
were ready to be used in the next steps of the model. 
The script used to perform dataset splitting can be consulted in Section 9.2. 

4.3.3.2 Variable selection 

As previously mentioned, the total features identified to be considered in the two ANN was 51, 
which was relatively high with respect to the number of valid measurement couples in the dataset. 
This is the reason why the relevance and contribution of these variables to the computation of the 
model parameters K and  had to be verified, implementing a well-thought variable selection that 
avoided overfitting while increasing the reliability of the model and giving good estimates of the 
two parameters. 
On a first iteration, all 51 variables were assigned as inputs for the training of both parameters, and 
the observed results were, generally, overestimated and did not comply with the expectations of 
parameters values, and the overall performance of the model was not ideal. This was probably due 
to collinearity in the model regarding carbon inputs to soil and mineralization. 
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Then, a second attempt implied the development of a random assignment of the variables to the 
training of each parameter: the code was modified to read through the columns of the database and 
randomly assign each of them to one of the categories “goes in K”, “goes in ”, “goes in both”, 

“goes in neither”. During the final stages of experimentation, the model was run as many times as 
possible to test the best possible distribution of variables between the models.  

4.3.3.3 Hyperparameter tuning 

As introduced in Section 4.3.2, the introduction of some hyperparameters was performed in order 
to optimize the model performance and avoid overfitting.  
Between these hyperparameters, a fundamental one to define was the number of training epochs, 
which represents the number of full training cycles through all the samples in the training dataset 
(Géron, 2019). This is important because it could affect the accuracy and computational efficiency 
of the process: a low number of training epochs may result in underfitting, while an excessive 
number of training epochs may result in overfitting. Moreover, the increase of training epochs 
increases the computational time needed. 
Another important parameter was the learning rate (LR), which represents the width of the steps 
that the function took during the backpropagation phase: if the LR was too low, the risk would be 
getting a very slow convergence and, potentially, overfitting because the model was tuned in a 
very fine way and took into account noise in the data as well; while if it was too high the model 
would have poor generalization ability and it would be harder to learn the complex features that a 
deep learning model is expected to get. To avoid these effects, a LR scheduler, which is a tool 
designed to adjust the LR as the model is trained, was applied: starting from a higher value, if a 
certain metric was not verified the LR got reduced by a predefined factor. In this case, the function 
Reduce on Plateau was used and applied to the validation loss: therefore, if the validation loss did 
not decrease for a predefined number of epochs (called patience), the LR was multiplied by a 
factor to reduce its value. The initial LR was set to a moderate value, to ensure a good balance 
between stability and speed. Since usually typical values of LR are in the range between 0.01 and 
0.0001, the intermediate 0.001 was chosen. 
Finally, the other hyperparameter that was tuned in this procedure was the dropout rate, defined in 
Section 4.3.3. 
During the tuning phase, each parameter was tested individually: first the dropout rate was tested 
fixing the others, and different values were tried until the R2 started decreasing; then the patience 
was tested keeping the determined value of dropout rate and so on, until reaching the highest value 
of R2, which indicated that the model reached its best performance.  
Along with the parameters discussed above, hyperparameter tuning involved the number of 
neurons in the hidden layer (in the code called hidden_size) for both models: since the input 
features and the parameters to be calculated were different, the ideal value of hidden_size was 
supposed to be different for the two ANN. For this parameter, the research was performed based 
on 9 values, which are typical of ANN of different complexity levels: stating from the very basic 
and simple 8 neurons, the value was doubled until reaching 2048, which is typical of very complex 
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Convolutional ANN. The possible values considered were, therefore, 8, 16, 32, 64, 128, 256, 512, 
1024, 2048.  
The tuning algorithm used was a nested double loop, in which training and validation was 
performed fixing a value of hidden_size for the network computing K and iterating through all the 
possible values for the second network, and then updating the number of neurons of the first model 
and repeating the same process. The choice of the best values of hidden_size for each network was 
based on the combination which allowed to get the lowest validation loss. 

4.3.3.4 Training and validation 

The observation of training and validation loss trends gave insights not only on how the model 
performed at each iteration (and, therefore, how well it was fitting the given data), but also on the 
occurrence of underfitting or overfitting. This was a crucial point, since the goal was to find a 
model able to fit not just the data that were given, but that can also be generalized and applied in 
different contexts with different sets of data. If the model performed too well on the training data, 
it might become too context specific and may not be able to give more general results. This is why 
the dataset was not split only between training and test, but a validation set was also considered, 
to observe how the model is really performing. Generally, the performance on the training set was 
expected to be higher (lower training loss) than the validation, but they should follow a similar 
trend: a loss peak was expected to be observed at the beginning of the training, when the model 
had not learned the patterns yet, and then it should have decreased throughout the training epochs, 
until reaching a minimum. If the minimum was not reached, it probably meant that the model had 
not converged yet and that it should have been trained for longer (Géron, 2019). 
The training and validation of the model consisted in running the ANN for the two datasets 
previously defined (corresponding respectively to the 60% and 20% of the complete dataset) and 
finding values for the two parameters (K and 𝛼). As stated in the objectives of the study, there was 
a fundamental difference between the usual approach with this kind of model and the one taken 
for this study: the training loss is usually computed by backpropagating the results to the initial 
inputs and adjusting the weights of the connections between neurons until a minimum (local or 
absolute) of the loss function is reached, while in this case the loss function was calculated 
relatively to the value of SOM predicted, inserting the computed parameters in the formula 
previously defined, which represented the process-based model. The most effective loss function 
was determined to be the Mean Squared Error function, applied between the measurement of SOM 
at the instant (t+∆t) and the predicted value with the ANN: 
 

𝑀𝑆𝐸 =
1

𝑛
∗ ∑ (𝑆𝑂𝑀(𝑡 + 1)𝑖 − 𝑆𝑂𝑀𝑝𝑟𝑒𝑑,𝑖)

2𝑛
𝑖=1 .                (Eq. 14) 

 
Once the training loss was computed, the backpropagation was performed: an optimiser adjusted 
the weights of the connections between neurons with the aim to minimize the loss function, which 
was a measure of the distance between the measurements and the predicted values. In this case, 
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the optimiser that was used is the Adaptive Moment Estimation (Adam), which is a very popular 
choice in deep learning algorithms. 
After training, the same procedure was repeated with the validation dataset. This step was 
important to verify the actual performance of the model: using a different dataset compared to the 
training one, it was possible to observe if the fitting ability was similar or if it decreased. In the 
latter case, it would mean that the model was overfitting the training data, therefore obtaining good 
results for that dataset, but that it would not be able to produce generalized results. From the 
comparison between training and validation loss trends, information on the goodness of the model 
and the hyperparameter tuning could be extracted. 

4.3.3.5 Computation of parameters 

Once all the parameters were set and the model had its final configuration, after training and 
validation, the model could be applied to the test dataset (20% of initial database). The values of 
K and  were computed applying the model to each of the 142 observations contained in the test 
set, and their final value was defined as the average of these 142 results. Then, the final values of 
SOM were predicted using the formula previously defined (Eq. 6). As a simplification of notation, 
in the code the parameter referring to the carbon input (K in the equations in this thesis) was called 
“a”, while the mineralization rate ( in the equations) was defined as “b”, but in this text they were 
always referred to as K and .  
The carbon input parameter (K) is a variable expressed as a mass percentage of SOM in soil 
𝑘𝑔𝑆𝑂𝑀/(100 𝑘𝑔𝑠𝑜𝑖𝑙 ∙ 𝑦): it represented the external carbon inputs (from livestock and vegetation) 
introduced in the period t, as a mass percentage of the soil portion considered. It is important to 
remember that this value should always be strictly greater than zero, which is why the softplus 
output activation function was applied on the model. The unit of measure of K obtained could be 
transformed from kgSOM/100 kgsoil into tSOM/ha, to compare the result to other studies computing 
the SOM content of soils, with the relationships below 
 
𝑚𝑆𝑂𝑀  [𝑡] = 𝑚𝑠𝑜𝑚[𝑘𝑔] ∙ 10−3,                  (Eq. 15) 
 
𝑚𝑠𝑜𝑖𝑙 = 𝜌𝑠𝑜𝑖𝑙 ∙ 𝑉𝑠𝑜𝑖𝑙 = 𝜌𝑠𝑜𝑖𝑙 ∙ ℎ𝑠𝑎𝑚𝑝𝑙𝑒 ∙ 𝐴 → 𝐴 [𝑚2] =

𝑚𝑠𝑜𝑖𝑙

𝜌𝑠𝑜𝑖𝑙∙ℎ𝑠𝑎𝑚𝑝𝑙𝑒
,                         (Eq. 16) 

 
𝐴[ℎ𝑎] = 𝐴[𝑚2] ∙ 10−4.                   (Eq. 17) 
 
Eq. 15 was used to transform the value of K from kg into tonnes, Eq. 16 was the change of unit of 
the denominator (from 100 kg into an area), and Eq. 17 was used to multiply the result of Eq. 16 
to obtain the area in hectares. 
This result could be further transformed to express the tonnes of SOC effectively introduced 
yearly, by multiplying the result by the van Bemmelen factor 
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𝑡𝑆𝑂𝐶

ℎ𝑎∙𝑦
=

𝑡𝑆𝑂𝑀∙0.58

ℎ𝑎∙𝑦
.                    (Eq. 18) 

 
The mineralization rate () is a parameter which expressed the percentage of SOM that was 
mineralized (i.e., converted into CO2) with respect to the initial SOM content in the time interval 
t, therefore it had unit of measure [y-1], and its value was always between 0 and 1. As previously 
mentioned, usual values of mineralization are generally much lower than 1, so a customized output 
activation function was applied to the model to limit the results to a maximum of 0.3. 
This parameter could be used to assess the tonnes of SOC mineralized per year, by multiplying the 
average SOM content computed from the observations in the database and applying the same 
transformation factors defined for K. 
 
𝑆𝑂𝑀𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑆𝑂𝑀̅̅ ̅̅ ̅̅ ∗ 𝛼.                   (Eq. 19) 
 
The value obtained applying Eq. 19 was transformed in SOC with the van Bemmelen factor, and 
then subtracted to the carbon input previously defined, thus obtaining the yearly SOC accumulated 
in the studied pasture type. 
 
𝑆𝑂𝐶𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 = 𝑆𝑂𝐶𝑖𝑛𝑝𝑢𝑡 − 𝑆𝑂𝐶𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑.                (Eq. 20) 

4.3.3.6 Model performance 

The assessment of the performance of the model was fundamental to give an idea of the reliability 
of the results and the possibility of improvement. During training and validation, the Mean Squared 
Error loss function was the metric considered to assess the goodness of the model and to decide 
the best configuration to apply to the test set.  
In the test phase, the model’s performance was measured in two main ways. The first metric of 

evaluation was the test loss, so the application of the same loss function applied during training 
and validation (Mean Squared Error function). At each iteration, the test loss was expected to be 
very similar or slightly lower than the validation loss. 
The second metric to assess model performance, used in the test phase, was the computation of the 
coefficient of determination R2, which is very a common way to observe the goodness of regression 
tasks thanks to its simple interpretation: it represents the fraction of variance of the dependent 
variable that is explained by the independent variables, and it can only get values between 0 (the 
variance of the dependent variable is not related to the independent variables, so there is no 
possibility of predicting it) and 1 (the dependent variable is perfectly explained by the independent 
variables). Getting values as close to 1 as possible is a sign of good fitting. 
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5. Results and discussion 

The following paragraphs present the results obtained by following the workflow described in 
Section 4.3.3. Along with these results, a discussion on the meaning of the displayed tables and 
figures was performed. 

5.1 Linear regression 

Using the script in Section 9.1, the linear regression of the dataset was performed. From the training 
phase, the parameters of the linear model (slope m and intercept q) were computed, and the 
equations presented in 4.3.1 (Eq. 7, 8, 9) were applied to transform them into values of K and . 
The slope of the linear regression was computed to be 0.755, while the angular coefficient resulted 
in the value 0.633. 
Figure 9 shows the scatter plot of SOM(t+∆t) estimated versus SOM(t+∆t) measured, and the ideal 
linear trend using the computed parameters. 
 

 

Figure 9 - Plot of the results of the linear regression: the scattered blue points represent the measurement of SOM(t+∆t) 

performed on field, while the red line represents the ideal values they would get if they followed the linear model. 

From the application of this model and of the equations described in Section 4.3.1 (Eq 8, 9, 10), 
the values that were obtained were: 
 
𝛼 = −

ln(𝑚)

∆𝑡
= 0.423, 
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𝐾 =
𝑞∙𝛼

1−𝑒−𝛼∙∆𝑡 = 1.091, 
 

𝑅2 = 1 −
∑( 𝑆𝑂𝑀(𝑡+1)𝑡𝑒𝑠𝑡−(𝑆𝑂𝑀(𝑡+1)𝑡𝑒𝑠𝑡) )2  

∑( 𝑆𝑂𝑀(𝑡+1)𝑡𝑒𝑠𝑡−𝑆𝑂𝑀(𝑡+1)𝑝𝑟𝑒𝑑)2 = 0.33. 

 
It can be observed that the results of the linear regression are not consistent with real conditions: 
more specifically, the mineralization rate in this kind of soil is expected to be around 19% (Teixeira 
et al., 2011), while in this case it is evaluated at 42%, which is a unrealistic value. Moreover, the 
value of R2 obtained through this procedure is relatively low compared to other studies related to 
SBPPRL (Teixeira et al., 2011), showing a limited linear correlation between SOM(t) and 
SOM(t+∆t). This is clearly linked to the more complex interactions that regulate the change in 
organic matter content of soil, including climate related factors, external inputs and natural 
processes, which a simple linear equation is not able to describe correctly. However, the 
application of linear regression gave a baseline value to assess whether the hybrid model was 
working correctly or not: expected valued would be significantly higher than the ones obtained 
with linear interpolation. 

5.2 Variable selection 

5.2.1 Before hyperparameter tuning 

As described in Section 4.3.3.2, the selection of variables was performed using a random 
assignment function in two different phases of model development: the first without specific 
optimization hyperparameters and the second with the introduction of tuned hyperparameters. 
The first stage of this research was aimed at finding a fixed input configuration to allow 
hyperparameter tuning, which was selected based on 100 iterations of the model. The results of 
the best iteration out of these 100 are showed in Table 3: 

Table 3 - Results of the iteration with the highest value of R2, which is the one that was used for the following tests on the other 

model parameters. 

hidden 
size f 

hidden 
size g 

validation 
loss test loss R2 K  

64 128 0.282 0.491 0.381 0.506 0.249 
 
From Table 3, it is possible to observe that, even without parameter tuning, the performance of the 
hybrid model is already higher than the one obtained with simple linear regression (R2 = 0.38 
compared to the one of linear regression which had R2 = 0.33). 
Out of the 100 iterations, the best configuration of parameters was the one summarized in Table 
4: 
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Table 4 - Summary of the random variable assignment for the two models (model f for K, model g for ) in the best configuration 

found after the first 100 runs of the code, before the introduction of hyperparameters. 

 Model f Model g 
B1 (t)   

B2 (t) x  

B3 (t) x x 
B4 (t) x x 
B5 (t) x  

B6 (t)  x 
B7 (t)   

B8 (t) x x 
B8A (t)   

B9 (t)  x 
B11 (t)  x 
B12 (t) x x 

B1_close (t) x  

B2_close (t) x  

B3_close (t)   

B4_close (t)  x 
B5_close (t)  x 
B6_close (t)   

B7_close (t)  x 
B8_close (t) x x 

B8A_close (t) x x 
B9_close (t)  x 
B11_close (t)   

B12_close (t)  x 
clay  x 
sand x  

silt x x 
phh2o x x 

SoilMoi0_10cm_inst (t) x x 
SoilMoi (t+1)  x 

SoilTMP0_10cm_inst  x 
SoilTMP (t+1) x x 

NDVI (t)  x 
NDWI (t)  x 

SR (t)  x 
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 Model f Model g 
SAVI (t) x x 

OSAVI (t)   

NDVI_close (t)   

NDWI_close (t) x x 
SR_close (t) x x 

SAVI_close (t) x x 
OSAVI_close (t) x  

day x  

lab   

chili x  

dem x x 
landforms  x 

mTPI x x 
topoDivers x  

lon x  

lat x x 
TOTAL 27 32 

 

5.2.2 After hyperparameter tuning 

After the introduction and tuning of hyperparameters (described in Section 5.3), performed with 
the fixed variable configuration previously discussed (Table 4), the model was once again run for 
100 times, reintegrating the random variable selection already implemented to find the 
configuration which could give the best results with a fixed set of hyperparameters, at least on the 
limited number of iterations that was performed. The result is a set of 100 different configurations, 
in which both the number and the type of selected variables for each model are changing. Figure 
10 shows how the number of input variables in each of the two models is distributed over the 
iterations. 
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Figure 10 shows that the distribution of the number of variables in the two models was quite 
similar: the minimum number of variables assigned to model f was 17, while for model g it was 
14; the maximum number of variables assigned was 36 for model f and 34 for model g. In both 
distributions the majority of iterations assigned a number between 20 and 30 variables, with a peak 
in the middle (around 25). This shows that the random variable assignment was successful in the 
goal of reducing the amount of data to process in each model, which was an issue in the 
performance. 
In Figure 11, it is possible to see the number of iterations in which each of the 51 variables in the 
database were assigned to each of the two ANNs. 
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Figure 11 - Comparison between the assignment of each variable in model f (blue) and model g (orange). In the graph above, the 

histogram is related to the measurement of radiometric reflectance, while in the graph below all the other variables are 

considered. 

The random selection of variables did not follow any theoretical and physical principle, as there 
were no specific indications that a variable could be more representative for the computation of 
any of the two parameters. As Figure 11 shows, the variables were distributed in a regular way, in 
both ANNs: each of them was assigned at least in 40% of the iterations (which is the case of B8A 
(t) in model g), and at most in 61% of the cases (B11(t) in model g), and all values are around 50%. 
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In model f, the variables with lowest occurrence are clay and lon, with 42% of presence, while the 
most commonly used is SR_close (t), which appears in 58% of the iterations. 
After hyperparameter tuning and the following 100 final runs of the code, the distribution of 
variables which gives the best results is displayed in Table 5: 

Table 5 - Summary of the random variable assignment for the two models (model f for K, model g for ) in the best configuration 

found after the final 100 runs of the code, after the introduction and tuning of hyperparameters. 

 Model f Model g 
B1 (t)   

B2 (t)  x 
B3 (t) x  

B4 (t)  x 
B5 (t)  x 
B6 (t) x x 
B7 (t) x x 
B8 (t)   

B8A (t)  x 
B9 (t)   

B11 (t) x x 
B12 (t) x x 

B1_close (t)   

B2_close (t) x x 
B3_close (t) x  

B4_close (t)  x 
B5_close (t)  x 
B6_close (t) x  

B7_close (t)  x 
B8_close (t) x  

B8A_close (t) x x 
B9_close (t)  x 
B11_close (t)   

B12_close (t) x x 
clay x  

sand   

silt x x 
phh2o   

SoilMoi0_10cm_inst (t) x  

SoilMoi (t+1)  x 
SoilTMP0_10cm_inst   
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The configuration in Table 5 represents the distribution of variables that can be fixed to apply the 
final model to a different dataset, or to make future projections of SOM content in the current 
dataset. The results obtained through this variable selection were more reliable compared to the 
assignment of the full list of variables contained in the database (as discussed in Section 4.3.3.2), 
but the method still has a few key downsides: 
- The number of variables assigned to each parameter is still very high with respect to the 

measurements, increasing the risk of overfitting. 
- The research of an ideal configuration of variable assignment is extremely long and complex, 

as the possible combinations of distribution of 51 variables over 4 categories (i.e., “goes in f”, 

“goes in g”, “goes in both”, “goes in neither”) are impossible to consider in their totality. 
For future work, a more theoretical approach can be tried, or a more extensive application of the 
random selection which could give more comprehensive results is suggested. Another possible 
solution that could be considered would be to assign the variables according to theoretical 
principles and the correlation between variables, but the random assignment was still preferred for 
its easier implementation. 

 Model f Model g 
SoilTMP (t+1) x  

NDVI (t)  x 
NDWI (t) x  

SR (t)  x 
SAVI (t) x x 

OSAVI (t)  x 
NDVI_close (t)  x 
NDWI_close (t) x  

SR_close (t) x  

SAVI_close (t) x  

OSAVI_close (t)   

day  x 
lab x x 
chili x x 
dem   

landforms x  

mTPI x  

topoDivers  x 
lon   

lat x  

TOTAL 25 26 
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5.3 Hyperparameter tuning 

The best parameters to apply to avoid overfitting (dropout rate, patience and factor of the scheduler 
and number of training epochs) are defined by trial-and-error procedure as described in Section 
4.3.3.3, using the best variable configuration defined in the previous paragraph (Table 5). The 
results of this research are showed in Table 6: 

Table 6 - Results of different code runs with the same variable distribution (defined in Table 5), to determine the optimal 

parameters to avoid overfitting. The final choice of hyperparameters, determined through the highest value of R2, is highlighted. 

dropout 
rate patience factor epochs hidden 

size f 
hidden 
size g 

validation 
loss 

test 
loss R2 K  

0.5 50 0.1 1000 64 8 0.391 0.441 0.396 0.649 0.227 
0.6 50 0.1 1000 128 8 0.388 0.443 0.393 0.645 0.235 
0.7 50 0.1 1000 128 8 0.388 0.428 0.413 0.633 0.239 
0.8 50 0.1 1000 128 8 0.387 0.424 0.419 0.649 0.245 
0.9 50 0.1 1000 128 1024 0.391 0.403 0.448 0.670 0.254 
0.9 50 0.2 1000 2048 8 0.398 0.456 0.375 0.667 0.196 
0.9 50 0.3 1000 2048 8 0.394 0.477 0.346 0.667 0.191 
0.9 50 0.4 1000 512 8 0.395 0.448 0.386 0.623 0.207 
0.9 50 0.5 1000 512 8 0.394 0.456 0.374 0.640 0.199 
0.9 50 0.1 1000 1024 2048 0.393 0.408 0.441 0.668 0.262 
0.9 20 0.1 1000 2048 2048 0.388 0.394 0.459 0.743 0.279 
0.9 40 0.1 1000 2048 2048 0.390 0.397 0.456 0.692 0.272 
0.9 60 0.1 1000 512 8 0.394 0.461 0.367 0.650 0.187 
0.9 80 0.1 1000 1024 16 0.388 0.468 0.359 0.630 0.216 
0.9 30 0.1 1000 256 1024 0.392 0.404 0.446 0.677 0.250 
0.9 20 0.1 1000 2048 2048 0.381 0.388 0.468 0.774 0.285 
0.9 20 0.1 2000 2048 2048 0.386 0.391 0.464 0.745 0.285 
0.9 20 0.1 3000 2048 2048 0.386 0.390 0.466 0.772 0.284 
0.9 20 0.1 4000 2048 2048 0.384 0.387 0.470 0.759 0.283 
0.9 20 0.1 5000 512 2048 0.383 0.392 0.462 0.720 0.270 
0.9 20 0.1 6000 1024 2048 0.386 0.394 0.459 0.727 0.271 

 
It is possible to observe the improvement derived by this parameter tuning: the values of R2 in the 
first tuning iterations were lower than 0.4, while after the tuning they arrived up to 0.47. 
During the testing of the parameters, the values of training and validation loss for each epoch were 
plotted to observe the evolution of the model and the effect of changing hidden layer size on the 
fitting. As it can be observed in Table 6, the best combination of hyperparameters included a 
dropout rate of 0.9, a LR reduction factor of 0.1, which is applied with a patience of 20 training 
epochs. The number of training epochs that gives the best result was 4000. 
As introduced in Section 4.3.3.3, the selection of the number of neurons contained in the hidden 
layers of the two ANNs was the main action of hyperparameter tuning performed in the final 
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iterations of the model: the other hyperparameters (dropout rate, number of epochs, factor and 
patience of the LR scheduler) were tuned separately and then fixed. 
The number of neurons in the hidden layer, instead, was studied at each iteration, since it is one of 
the most influential parameters on the performance of a ANN. Another possibility to increase the 
performance would have been increasing the number of intermediate layers, but for simplicity it 
was decided to keep both models with a single hidden layer. As previously introduced, the choice 
of the number of neurons was made based on the combination of hidden_size_f and hidden_size_g 
which allowed to get the lowest validation loss, and then were applied on the test set fixing the 
selected dimensions. The results of the 100 final iterations are showed in Figure 12: 
 

 

Figure 12 - Comparison between the hidden layer sizes chosen for model f (orange) and model g (green) over the 100 iterations 

Results depicted in Figure 12 and the values of hidden size obtained during the hyperparameter 
tuning (Table 6) show that, at the beginning of the tuning, the best results were obtained for very 
simple models with few neurons: the most common values were 64 and 128 for model f, while for 
model g the best number of neurons resulted almost always to be 8, which was a sign that the 
model was underfitting and, therefore, was obtaining worse results. Then, the lowest validation 
loss started being reached setting both models to very high number of neurons (sometimes both 
were set at 2048 neurons in the hidden layer), which was likely a sign of overfitting.  
After the tuning and the final 100 iterations, it was possible to observe that the simplest 
configurations were always discarded for both models (there are no cases where the ANN have 8 
or 16 neurons in the hidden layer, and very few cases in which 32 or 64 neurons are considered). 
Moreover, the values for model f stabilised in the intermediate values (even though it is quite 
evenly distributed between all the considered sized between 128 and 2048 neurons), while model 
g was set at 2048 neurons for over 50% of the iterations, and anyway in 90% of the cases the 
hidden layer of model g was set to a high value (from 512 neurons). 
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5.4 Training and validation 

The trends of training and validation during the choice of the best number of neurons for the hidden 
layer were plotted and saved at each iteration, to observe how the distance between the two varies 
at different model configurations and how hyperparameter tuning affects fitting. The parameters 
observed, as introduced in the Section 4.3.2, were the dropout rate, the patience and factor of the 
LR scheduler and the number of training epochs. The research of the best hyperparameters was 
performed with a fixed configuration of variable selection (Table 4) and started from standard 
values (dropout rate = 0.5, patience = 50, factor = 0.1, epochs = 1000) which were varied until the 
highest value of R2 in the test set was found. The figures below can be used to make observations 
about how changing these parameters the trends of training and validation loss are modified. 
Figure 13 and Figure 14 show respectively the plots referred to the initial condition that was 
considered during tuning (dropout rate = 0.5, LR factor = 0.1, LR patience = 50, training epochs 
= 1000) and the final condition at the end of the tuning process (dropout rate = 0.9, LR factor = 
0.1, LR patience = 20, training epochs = 4000). 
 

 

Figure 13 - Plot of training and validation loss at the initial conditions of hyperparameter tuning. 
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Figure 14 - Plot of training and validation loss at the final condition of hyperparameter tuning. 

Comparing the pictures, the improvement of model fitting was clear. In Figure 13, the training 
loss followed a descending trajectory, and it reached very low values of loss (lower than 0.2), 
indicating good performance, but the validation loss was not only much higher, but it also seemed 
to be increasing as the training epochs increased. This highlighted two aspects: the number of 
training epochs was not high enough, because the validation loss did not reach a stability, and 
model was clearly overfitting the data, because it was able to reach very good fitting on the training 
set but with different data the model had a much lower performance. 
After the hyperparameter tuning (Figure 14), there still was a gap between training and validation 
loss, but the two followed a more similar, descending trend. The performance during training was 
slightly lower than the one observed with initial conditions (the minimum is higher than 0.2), but 
the lower distance between training and validation and the regular trend indicated the ability of the 
model to keep adequate performance with different datasets without overfitting. 

5.5 Computation of parameters 

5.5.1 Carbon input 

As previously described, the carbon input K was evaluated at each observation in the test set (142 
observations). Then, for each iteration, the average value between the 142 was computed, to obtain 
the parameter used in the equation.  
The results related to all the values obtained and their averages after the final 100 iterations are 
displayed in the following table and figures. 
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Table 7 - Summary of the main features of the values assigned to the parameter K after 100 iterations. 

K max 4.277 
K min 3.9E-17 

K average 0.769 
standard 
deviation 0.687 

K < 0.1 
(count) 2792 

K < 0.1 (%) 19.662 
K > 1 (count) 4239 

K > 1 (%) 29.852 
 

 

Figure 15 - Histogram containing information on all the values to which the parameter K was fit during the test phase (142∙100 

values in total) 

In Table 7 and Figure 15 it was possible to observe a few properties of the values assigned to the 
parameter K during the testing phase, at each observation of each iteration (for a total of 14200 
estimations of K). The possible values, are ranging in a fairly wide interval, with minimum very 
close to zero (3.9∙10-17 𝑘𝑔𝑆𝑂𝑀/(100 𝑘𝑔𝑠𝑜𝑖𝑙 ∙ 𝑦)) and maximum equal to 4.277 𝑘𝑔𝑆𝑂𝑀/(100 𝑘𝑔𝑠𝑜𝑖𝑙 ∙

𝑦). However, it can be clearly deduced from the histogram that in the majority of cases, the values 
of K are well below 1 (around 20% of all the obtained values is even lower than 0.1). This is also 
confirmed by the fact that, even though the maximum is much higher than 1, the average value 
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still stays below (0.7694 𝑘𝑔𝑆𝑂𝑀/(100 𝑘𝑔𝑠𝑜𝑖𝑙 ∙ 𝑦)). The standard deviation indicates a moderate 
level of spreading around the mean value. Figure 16 shows more clearly these described features 
through a box-and-whiskers plot. 
 

 

Figure 16 - Box-and-whiskers plot containing information on all the values to which the parameter K was fit during the test 

phase  

The plot in Figure 16 confirmed the previous observations: the Interquartile Range (IQR), 
containing the 50% of the observations, was between the values 0.3 and 1.1, with the median at 
0.7. The lower whisker is extended until 0, while the upper one ended at around 2.45. All the values 
above were considered outliers. 
Finally, Figure 17 represents the plot of the values of K obtained by averaging the 142 test values 
for each of the 100 iterations. 
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Figure 17 - Plot of the average value of K computed in the test phase during the 100 iterations. 

Figure 17 is a final confirmation of the previous observations: averaging the 142 values obtained 
in each iteration, the final value of K is always included between 0.55 𝑘𝑔𝑆𝑂𝑀/(100 𝑘𝑔𝑠𝑜𝑖𝑙 ∙ 𝑦)and 
0.9 𝑘𝑔𝑆𝑂𝑀/(100 𝑘𝑔𝑠𝑜𝑖𝑙 ∙ 𝑦), never going over the unit. The value of K in the iteration with the 
highest R2 (best performance) is 0.8797 𝑘𝑔𝑆𝑂𝑀/(100 𝑘𝑔𝑠𝑜𝑖𝑙 ∙ 𝑦). 
Considering the value of K obtained in the best iteration and the equations defined in Section 
4.3.3.5, a few observations of physical interpretation can be made.  
Every year, the soil receives an external C input from vegetation and livestock of 0.8797 kgSOM 
every 100 kgsoil. Assuming the following statements: 
- The bulk density (soil) of cropland soil in Europe is estimated to be 1200 kg/m3 (rounding the 

average value obtained in Panagos et al. (2024)), 
- The sampling depth (hsample) in the campaigns from which data was taken is 0-20 cm (Morais 

et al., 2023), according to the reference depth used for other soil datasets (i.e., LUCAS 

database), as described in Orgiazzi et al. (2017). An average of this depth interval (10 cm) can 

be used for the transformation of unit of measure (Eq. 16), the C input value con be transformed 

into tonnes per hectare (per year) as follows, according to Eq. 15, 16, 17 and 18: 
 
0.8797 𝑘𝑔𝑆𝑂𝑀 = 0.8797 ∙ 10−3 𝑡𝑆𝑂𝑀, 
 
𝐴 =

𝑚𝑠𝑜𝑖𝑙

𝜌𝑠𝑜𝑖𝑙∙ℎ𝑠𝑎𝑚𝑝𝑙𝑒
=

100 𝑘𝑔

1200 
𝑘𝑔

𝑚3∙0.1 𝑚
= 0.83 𝑚2 = 8.3 ∙ 10−5 ℎ𝑎, 

 

0.8797
𝑘𝑔𝑆𝑂𝑀

100 𝑘𝑔𝑠𝑜𝑖𝑙
=

0.8797∙10−3

8.3∙10−5

𝑡𝑆𝑂𝑀

ℎ𝑎
= 10.6

𝑡𝑆𝑂𝑀

ℎ𝑎
, 

 
𝑡𝑆𝑂𝐶 = 10.6

𝑡𝑆𝑂𝑀

ℎ𝑎
 ∙ 0.58 = 6.1

𝑡𝑆𝑂𝐶

ℎ𝑎
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The obtained value of annual C input per hectare can be compared to the value computed in 
Teixeira et al. (2011), which stated that the annual C input for SBPPRL would be 0.64 pp (i.e. 0.64 
kgSOM/100 kgsoil). Applying the same transformations (Eq. 15, 16, 17, 18): 
 
0.64 𝑘𝑔𝑆𝑂𝑀 = 0.64 ∙ 10−3 𝑡𝑆𝑂𝑀, 
 
𝐴 =

𝑚𝑠𝑜𝑖𝑙

𝜌𝑠𝑜𝑖𝑙∙ℎ𝑠𝑎𝑚𝑝𝑙𝑒
=

100 𝑘𝑔

1200 
𝑘𝑔

𝑚3∙0.1 𝑚
= 0.83 𝑚2 = 8.3 ∙ 10−5 ℎ𝑎, 

 

0.64
𝑘𝑔𝑆𝑂𝑀

100 𝑘𝑔𝑠𝑜𝑖𝑙
=

0.64∙10−3

8.3∙10−5

𝑡𝑆𝑂𝑀

ℎ𝑎
= 7.71

𝑡𝑆𝑂𝑀

ℎ𝑎
, 

 
𝑡𝑆𝑂𝐶 = 7.71

𝑡𝑆𝑂𝑀

ℎ𝑎
 ∙ 0.58 = 4.47

𝑡𝑆𝑂𝐶

ℎ𝑎
. 

 
The value of C input obtained in this study was higher than the one obtained by Teixeira et al. 
(2011) and, in general, than the expected input values in grasslands, which were estimated to a 
maximum of 5 tSOC/ha∙y (Soussana et al., 2004). This could be due to a combination of high C 
input related to the type of pasture considered and a parameter overestimation from the hybrid 
model. 

5.5.2 Mineralization rate 

As well as what was done for carbon input, the mineralization rate  was evaluated at each 
observation in the test set (142 observations). Then, for each iteration, the average value between 
the 142 obtained was computed, to obtain the parameter used in the equation.  
The results related all the values obtained and their averages after the final 100 iterations are 
displayed in the following table and figures. 

Table 8 - Summary of the main features of the values assigned to the parameter  after 100 iterations 

 max 0.3 
 min 0.0045 

 average 0.2685 
Standard 
deviation 0.0574 

 < 0.1 (count) 564 
 < 0.1 (%) 3.9718 

 > 0.29 (count) 8169 
 > 0.29 (%) 57.5282 
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Figure 18 - Histogram containing information on all the values to which the parameter  was fit during the test phase (142∙100 

values in total) 

As showed by Table 8 and Figure 18, the fitting of  usually gave values closer to the upper limit 
(0.3), with almost 60% of the 14200 values being greater than 0.29 y-1. The maximum value 
assigned was exactly the upper limit 0.3, while the minimum was close to zero (0.0045 y-1). The 
average, as expected, was close to the upper limit as well (0.2685 y-1), and the standard deviation 
is quite low, which meant that most results were clustered around the average. The box-and-
whiskers plot in Figure 19 confirmed these observations. 
 

 

Figure 19 - Box-and-whiskers plot containing information on all the values to which the parameter  was fit during the test 

phase 
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Figure 19 shows that the Interquartile Range, containing the 50% of observations, was included 
between the values of 0.27 y-1 and very close to 0.3 y-1, with the median falling above 0.29 y-1. 
The average was outside the IQR, meaning that there were several values lower than the first 
interquartile, but still the majority of values fell above the average. This is showed by the fact that 
the lower whisker is extended up to 0.22 y-1, but there were still many outliers below this point. 
 

 

Figure 20 - Plot of the average value of  computed in the test phase during the 100 iterations. 

Figure 20 further confirmed the observations written above: in most cases, the average  was very 
close to 0.3 y-1, there were very few cases in which it fell below 0.25 y-1 and only in a couple 
iterations it was evaluated slightly below 0.2 y-1. The value of  in the iteration with the highest 
R2 is 0.2918 y-1. 
For the physical interpretation of mineralization rate, it can be observed that the standard values 
of this parameter are much lower than the ones obtained through the model: natural rates are 
estimated to be between 1 and 5%, and up to 10-15% in highly controlled environments (Teixeira 
et al., 2011), while the obtained average is 26% and most values go up to 30%. This is probably 
related to both the simplicity of the model, which tends to overestimate, and the relatively low 
number of observations in the dataset. However, it can also be justified by the fact that the SBPPRL 
considered in the study contain very labile plants, therefore allowing a very fast carbon turnover, 
and by the fact that the C input parameter seems to be slightly overestimated as well. 
Making the same considerations performed for the parameter K, the quantity of SOC mineralized 
yearly can be computed, as defined in Section 4.3.3.5.  
The average SOM content measured through the sampling campaigns is 2.13 kgSOM/100 kgsoil, and 
considering the best mineralization rate of 0.2918 the total mineralized content would be (Eq. 19):  
 
𝑆𝑂𝑀𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑆𝑂𝑀̅̅ ̅̅ ̅̅ ∙ 𝛼 = 2.13

𝑘𝑔𝑆𝑂𝑀

100 𝑘𝑔𝑠𝑜𝑖𝑙
∙ 0.292 = 0.622

𝑘𝑔𝑆𝑂𝑀

100 𝑘𝑔𝑠𝑜𝑖𝑙
, 

 
The transformation of unit is the same performed for K (Eq. 15, 16, 17, 18): 
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0.621 𝑘𝑔𝑆𝑂𝑀 = 0.621 ∙ 10−3 𝑡𝑆𝑂𝑀, 
 
𝐴 =

𝑚𝑠𝑜𝑖𝑙

𝜌𝑠𝑜𝑖𝑙∙ℎ𝑠𝑎𝑚𝑝𝑙𝑒
=

100 𝑘𝑔

1200 
𝑘𝑔

𝑚3∙0.1 𝑚
= 0.83 𝑚2 = 8.3 ∙ 10−5 ℎ𝑎, 

 

0.621
𝑘𝑔𝑆𝑂𝑀

100 𝑘𝑔𝑠𝑜𝑖𝑙
=

0.621∙10−3

8.3∙10−5

𝑡𝑆𝑂𝑀

ℎ𝑎
= 7.49

𝑡𝑆𝑂𝑀

ℎ𝑎
, 

 
𝑡𝑆𝑂𝐶 = 7.49

𝑡𝑆𝑂𝑀

ℎ𝑎
 ∙ 0.58 = 4.3

𝑡𝑆𝑂𝐶

ℎ𝑎
. 

 
Considering that the annual SOC input, computed in the previous paragraph, is 6.1 tSOC/ha, the 
yearly accumulation of SOC in this type of pasture resulted (Eq. 20): 
 
𝑆𝑂𝐶𝑎𝑐𝑐 = 𝑆𝑂𝐶𝑖𝑛𝑝𝑢𝑡 − 𝑆𝑂𝐶𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 6.1

𝑡𝑆𝑂𝐶

ℎ𝑎
− 4.3

𝑡𝑆𝑂𝐶

ℎ𝑎
= 1.8

 𝑡𝑆𝑂𝐶

ℎ𝑎
. 

 
The obtained value of yearly carbon accumulation is very similar to the average increase in Sown 
Biodiverse Pastures, which was estimated to be 1.78 tC/ha∙y (Teixeira et al., 2011). It is important 
to note that this result is consistent with the ones obtained in the previous study, even though both 
parameters (K and ) were estimated to be higher. This indicates a tendency of the model to 
overestimate the parameters, but in a balanced way, which allows to get acceptable fitting results. 

5.6 Model performance 

Figure 21 shows the trends of validation and test loss observed during the 100 iterations performed. 
 

 

Figure 21 - Plot of the values of best validation loss and test loss observed during the 100 iterations. 
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As predicted, the test loss (plotted in orange in Figure 21), followed a very similar trend to the one 
observed for the best value of validation loss (the value according to which the size of the hidden 
layers of the ANN were defined), the first being always almost equal or slightly than the latter. 
This is a sign of proper training, without any significant underfitting or overfitting. 
After 100 iterations, Table 9 and Figure 22 summarized the main properties of the obtained values 
of R2: 

Table 9 - Summary of the main features of R2 after 100 iterations. 

R2 max 0.64 
R2 min 0.423 

Average 0.554 
Standard deviation 0.072 

R2 < 0.5 30 
R2 > 0.6 45 

 

 

Figure 22 - Box-and-whiskers plot containing information on all the values assumed by R2 (in each iteration) during the test 

phase. 

From Table 9 it is possible to observe that the minimum R2 obtained corresponded to 0.4247, while 
the maximum is equal to 0.6398, with an average of 0.5541. The standard deviation is fairly low, 
indicating that the results were mostly clustered around the average, suggesting that the model 
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performs in a consistent way. Out of 100 iterations, R2 was found to be lower than 0.5, which could 
be considered the low performance threshold, on the 30% of cases, which is not a low frequency 
but it’s important to notice that, anyway, the coefficient never goes much below 0.5. Moreover, in 

45% of the cases the R2 appeared to be over 0.6.  
Figure 23 confirms these observations: the IQR includes values between 0.49 and 0.62, indicating 
that over 50% of the iterations have an R2 of 0.5. All the values are contained between the upper 
and the lower whisker, which affirm the statement that the model performance was quite consistent 
throughout the iterations. More detail on the values assumed by R2 during each iteration were 
plotted in Figure 23: 
 

 

Figure 23 - Plot of the values of R2 computed in the test phase for each of the 100 iterations. 

Figure 23 clearly showed that, in most cases, R2 resulted to be over 0.6, with several exceptions 
that went even below 0.5, but in general evenly distributed around the mean of 0.55. In any case, 
comparing the values obtained with the hybrid model to the linear regression, it was possible to 
state that the application of this approach was a significant improvement, which allowed to reach 
performances close to the double of the ones obtained with linear regression (0.33 versus 0.64 in 
the best run). 
The influence of the R2 could be observed by creating the scatter plot of SOM(t) versus the 
predicted values of SOM(t+∆t) through the model, and comparing it to the theoretical line in which 
the modelled SOM(t+∆t) perfectly corresponded to the measurement: a low value of coefficient of 
determination corresponded to a cloud-like distribution of data around the linear approximation, 
while as R2 increases the points of the scatter plot tend to align along the model. The representation 
of the scatter plots in the worst (R2 = 0.425) and best (R2 = 0.64) iterations were showed in Figure 
24 and Figure 25. 
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Figure 24 - Scatter plot representing the values of measured SOM(t+∆t) versus modelled SOM(t+∆t). The red line represents the 

ideal distribution obtained with the model. Worst case scenario (R2 = 0.423) 

 

Figure 25 - Scatter plot representing the values of measured SOM(t+∆t) versus modelled SOM(t+∆t). The red line represents the 

ideal distribution obtained with the model. Best case scenario (R2 = 0.64) 

Comparing the two pictures, it can clearly be observed that, in both cases, the points do not follow 
perfectly the ideal line. However, in Figure 24, the points are much more scattered further from 
the line, while in Figure 25 most of the observations are very close to the ideal line, and there are 
fewer outliers as well, so clearly the second plot shows a higher fitting performance than the first 
one. 
The performance of the model can be compared to previous research aiming to estimate SOC. 
There are several studies on the application of ANN for SOC estimation and digital soil mapping, 
as reviewed in Lamichhane et al. (2019). For instance, Were et al. (2015) affirmed that ANN are 
one of the most suited types of model to estimate SOC, and obtained a value of R2 = 0.6. Song et 
al. (2017) obtained a maximum R2 = 0.49 for ANN, while Dai et al. (2014) obtained R2 = 0.69. 
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These studies, however, were usually referred to an instantaneous estimate of SOC, while other 
studies, considered a dynamic approach, but they are usually developed on process-based models.  
In conclusion to this section, it can be stated that the model performance that was obtained can be 
considered moderately good. There still is room for improvement, which is briefly treated in the 
following section, but obtaining a R2 = 0.64 with a simple, 0-D, two-parameter model for the 
description of natural complex interactions such as the carbon trapping mechanisms in soil can be 
considered a satisfactory result for this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 66 

6. Limitations and future work 

The model in its best configuration, according to the coefficient of determination, can explain 
approximately 64% of the variance of the dependent variable through the independent variables, 
and the estimated carbon sequestration potential is consistent with previous research that used 
other data sources for the same pasture system. However, the study had some limitations that 
present several opportunities for further research and improvement: 

- First, the number of explanatory variables introduced in the ANN was very high compared to 

the observations present in the dataset. In this thesis the technique of random variable 

assignment was implemented, but there are other possibilities, such as a study of the theoretical 

value of each of the two parameters to define which of the variables is more significant to their 

definition. Another opportunity is the study of the correlation matrix between each couple of 

variables, and to couple the ones with very high correlation, with the aim to reduce the number 

of available explanatory variables. Principle component analysis could also be used towards 

the same end. A third strategy that could be adopted is maintaining the random selection, which 

anyway performed quite effectively for the task, but more extensively, trying to cover as many 

combinations as possible (i.e., performing not only 100 iterations but running the code 

thousands of times). It is possible that one of those configurations that were not explored here 

could provide improved results.  
- Another limitation of this study is the hyperparameter tuning, which could be implemented 

more effectively using a grid search algorithm instead of manually changing the parameters 

(dropout rate, LR reduction factor and patience, number of training epochs) to explore all 

possible combinations and consider more values. Moreover, the dimensions of the hidden 

layers of the ANN were limited to nine possible values for each model (which were selected 

between the most standard values applied to ANN), while more possibilities with different 

values can be explored. It would be possible to extend this number at the expense of added 

computational time. Furthermore, the possibility of increasing the complexity of the ANN 

could be explored, by changing the architecture of the deep learning model and introducing 

more hidden layers with a lower number of perceptrons instead of using a single, large 

intermediate layer.  
- The main factor influencing the results of this study is, however, the simplicity of the process-

based model that was applied. Here, we used a straightforward two-parameter, 0-D model as 

proof of concept that hybridization in soil models could be a promising new development for 

estimating soil carbon. In the future, it will be preferable to use a process-based model that 

depicts more complex interactions involved in soil and the carbon cycle. For instance, the 

application of the same procedure on the RothC model could be more effective. RothC has 

more parameters, as C input is not considered as a single aggregate but is divided into five 

fractions, corresponding to the fine soil carbon pools (DPM, RPM, IOM, BIO, HUM). Out of 

these five C inputs, the IOM pool remains unaltered (which is why it is called inert), while the 
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other four pools mineralize carbon at four different mineralization rates. This setup provides a 

more complete description of the interactions of carbon in soil, increasing the number of 

parameters of the model. Substituting each of these parameters with its own ANN could result 

challenging and computationally demanding, but even the estimation of a few of them through 

the hybridization process could improve the performance and allow the creation of a model 

able to generalize the trends of evolution of SOC in different geographic areas and under 

different land use configurations and soil management systems. This could allow the 

optimization of soil management techniques to improve carbon sequestration, increasing the 

mitigation potential of this system as well as bringing the many co-benefits previously 

discussed. 

Finally, one last opportunity for future research is represented by the possibility to apply the 
obtained model to perform projections of the SOM content trend. At first, the model is applied 
knowing both SOM(t) and SOM(t+∆t), to estimate its parameters, but once they are defined it is 
possible to fix the parameters and apply the model in its direct configuration to estimate 
SOM(t+∆t), defining a specific t. This is possible due to the presence of some variables in the 
database that are considered in a dynamic over time: as Table 2 shows, the variables related to 
radiometric features, soil composition and topography are treated as constant throughout time, but 
climatic conditions (i.e., soil temperature and moisture) are considered both in at the instant (t) and 
at (t+∆t), suggesting the possibility of a variation in such conditions. 
By creating projections of possible values of soil temperature and moisture in the defined time 
interval, the new observations could be inserted in the model, to observe how the values of 
SOM(t+∆t) are expected to change over time and, therefore, to define trends of soil carbon 
sequestration potential in the future. 
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7. Conclusions 

The development of strategies for Carbon Capture and Storage is fundamental for the achievement 
of the Net Zero Emission goal, necessary to comply with the objectives of the Paris Agreement to 
avoid extreme climate change and all its consequences. This thesis focused on carbon sequestration 
in pasture soil as a tool for climate change mitigation that can bring some significant co-benefits 
to agriculture, food security and environmental factors. The study aimed at defining a hybrid 
model, combining a theory-driven, process-based model and a data-driven, deep learning 
algorithm (specifically ANN) to model carbon sequestration in pasture soils.  
The result of this study is represented by the model found through the iteration with highest 
coefficient of determination (R2 = 0.64), which is defined by a set of fixed weights for two ANN 
that replace the two parameters (carbon input and mineralization rate) of the process-based model, 
and a list of input variables for the two ANN. From these parameters, it was possible to estimate 
the annual potential carbon accumulation in this type of farms (1.8 tSOC/ha∙y), which is aligned 
with the values in the literature for SBPPRL. 
The use of the hybridization approach provided a better fit to the data compared to linear regression 
(R2 = 0.33), serving as proof of concept that this approach can, in the future, be extended to more 
complex soil models. The model can also be used to make projections for the future, which would 
make it an effective tool to define strategies to improve soil quality and increase carbon 
sequestration. 
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9. Annex: codes used for the development of the model 

9.1 Linear regression 

import pandas as pd 

from sklearn.model_selection import train_test_split 

import torch 

import numpy as np 

from sklearn.linear_model import LinearRegression 

import matplotlib.pyplot as plt 

import os 

 

def create_folder(folder_path): 

    if not os.path.exists(folder_path): 

        os.makedirs(folder_path) 

 

LinReg_folder = 'LinReg_plots' 

create_folder(LinReg_folder) 

 

# Load the data 

file_path = 'Database_no_t1.xlsx' 

data = pd.read_excel(file_path) 

 

SOM_t = data.iloc[:,0].values.reshape(-1,1) 

SOM_t_plus_1 = data.iloc[:,1].values.reshape(-1, 1) 

delta_t = data.iloc[:,2].values.reshape(-1, 1) 

 

SOM_t_tensor = torch.tensor(SOM_t, dtype=torch.float32) 

SOM_t_plus_1_tensor = torch.tensor(SOM_t_plus_1, dtype=torch.float32) 

delta_t_tensor = torch.tensor(delta_t, dtype=torch.float32) 

 

# Split the dataset into training and test sets (e.g., 80% for training, 

20% for test) 

SOM_t_train, SOM_t_test, SOM_t_plus_1_train, SOM_t_plus_1_test, 

delta_t_train, delta_t_test = train_test_split(SOM_t, SOM_t_plus_1, 

delta_t, test_size=0.2, random_state=42) 

 

# Compute average delta t, to use in the linear regression formula for 

training and test set 

delta_t_train = np.array(delta_t_train) 

t_avg_train = np.mean(delta_t_train) 

 

delta_t_test = np.array(delta_t_test) 

t_avg_test = np.mean(delta_t_test) 
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# Create a linear regression model and fit data 

model = LinearRegression() 

model.fit(SOM_t_train, SOM_t_plus_1_train) 

 

# Get the slope (m) and intercept (q) 

m = model.coef_[0] 

q = model.intercept_ 

 

# Print the coefficients 

print("Slope (m):", m) 

print("Intercept (q):", q) 

 

# Make predictions 

SOM_t_plus_1_pred = model.predict(SOM_t_train) 

 

# Plotting (training set) 

plt.scatter(SOM_t_train, SOM_t_plus_1_train, color='blue')  # Original 

data points 

plt.plot(SOM_t_train, SOM_t_plus_1_pred, color='red')  # Regression line 

plt.xlabel('SOM (t)') 

plt.ylabel('SOM (t+1)') 

plt.title('Linear Regression') 

plt.show() 

 

# Evaluate parameters of the model 

b = (-np.log(m))/t_avg_train 

a = (q∙b)/(1-np.exp(-b∙t_avg_train)) 

 

# Compute SOM in the test dataset 

SOM_t_plus_1_pred_test = m ∙ SOM_t_test + q 

 

# Plotting (test set) 

plt.figure(figsize=(10, 6)) 

plt.scatter(SOM_t_test, SOM_t_plus_1_test, color='blue')  # Original data 

points 

plt.plot(SOM_t_test, SOM_t_plus_1_pred_test, color='red')  # Regression 

line 

plt.xlabel('SOM (t)') 

plt.ylabel('SOM (t+1)') 

plt.title('Linear Regression') 

plt.show() 

 

# Save the plot with a unique filename for each iteration 

plot_filename = os.path.join(LinReg_folder, 

f'SOM_plot_LinearRegression.png') 

plt.savefig(plot_filename) 
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# Compute R^2 manually 

ss_total = np.sum((SOM_t_plus_1_test - np.mean(SOM_t_plus_1_test))∙∙2) 

ss_residual = np.sum((SOM_t_plus_1_test - SOM_t_plus_1_pred_test)∙∙2) 

r2_manual = 1 - (ss_residual / ss_total) 

 

print("R^2 computed manually:", r2_manual) 

9.2 Dataset splitting 

import pandas as pd 

from sklearn.model_selection import train_test_split 

import numpy as np 

import torch 

 

# Load the dataset 

file_path = 'Database_no_t1.xlsx' 

data = pd.read_excel(file_path) 

 

# Display the first few rows to understand the structure of the dataset 

data.head() 

 

# Calculate the overall mean and standard deviation of 'SOM (t+1)' 

mean_som = data['SOM (t+1)'].mean() 

std_som = data['SOM (t+1)'].std() 

 

# Display the overall statistics for 'SOM (t+1)' 

mean_som, std_som 

 

# Function for the research of the best number of bins 

def grid_search_bins(data, bins_range, target_column): 

    best_bins = None 

    best_balance_score = float('inf')  # Initialize to a high value 

 

    for bins in bins_range: 

        # Bin the target column 

        data['bin'] = pd.qcut(data[target_column], q=bins, labels=False, 

duplicates='drop') 

     

        # Split the data into training (60%) and temp (40%) subsets, 

stratified by the 'bin' column 

        train_data, temp_data = train_test_split( 

            data, test_size=0.4, stratify=data['bin'], random_state=42) 

     

        # Then, split the temp data into validation (20%) and test (20%) 

sets 
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        val_data, test_data = train_test_split( 

            temp_data, test_size=0.5, stratify=temp_data['bin'], 

random_state=42) 

 

        # Calculate the balance score (variance of bin sizes) for training 

data 

        bin_sizes_train = train_data['bin'].value_counts() 

        balance_score = bin_sizes_train.var()  # Lower variance is better 

 

        # Update the best bins if the current configuration is better 

        if balance_score < best_balance_score: 

            best_bins = bins 

            best_balance_score = balance_score 

 

    return best_bins 

 

# Define best number of bins 

bins_range = range(5, 31) 

best_bins = grid_search_bins(data, bins_range, 'SOM (t+1)') 

print(f"Best number of bins: {best_bins}") 

 

# Create bins for 'SOM (t+1)' to group similar values 

data['SOM_bin'] = pd.qcut(data['SOM (t+1)'], q=best_bins, labels=False) 

 

# First, split the data into training (60%) and temp (40%) subsets, 

stratified by the 'SOM_bin' column 

train_data, temp_data = train_test_split( 

    data, test_size=0.4, stratify=data['SOM_bin'], random_state=42) 

# Then, split the temp data into validation (20%) and test (20%) sets 

val_data, test_data = train_test_split( 

    temp_data, test_size=0.5, stratify=temp_data['SOM_bin'], 

random_state=42) 

 

# Drop the 'SOM_bin' column from the final subsets 

train_data = train_data.drop(columns=['SOM_bin']) 

val_data = val_data.drop(columns=['SOM_bin']) 

test_data = test_data.drop(columns=['SOM_bin']) 

 

# Verify the means and standard deviations for each subset 

train_mean_std = (train_data['SOM (t+1)'].mean(), train_data['SOM 

(t+1)'].std()) 

val_mean_std = (val_data['SOM (t+1)'].mean(), val_data['SOM (t+1)'].std()) 

test_mean_std = (test_data['SOM (t+1)'].mean(), test_data['SOM 

(t+1)'].std()) 

 

train_mean_std, val_mean_std, test_mean_std 
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# Export obtained datasets to excel 

train_data.to_excel('training_set.xlsx', index=False) 

val_data.to_excel('validation_set.xlsx', index=False) 

test_data.to_excel('test_set.xlsx', index=False) 

9.3 Model 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import StandardScaler 

from sklearn.metrics import r2_score 

import matplotlib.pyplot as plt 

import os 

 

 

# Define the ANN model 

class ANN(nn.Module): 

    def __init__(self, input_size, hidden_size, output_activation=None, 

dropout_rate=0.9): 

        super(ANN, self).__init__() 

        self.layers = nn.Sequential( 

            nn.Linear(input_size, hidden_size), 

            nn.ReLU(), 

            nn.Dropout(dropout_rate), 

            nn.Linear(hidden_size, 1) 

        ) 

        self.output_activation = output_activation 

 

    def forward(self, x): 

        x = self.layers(x) 

        if self.output_activation: 

            x = self.output_activation(x) 

        return x 

 

 

# Function to log results to a file 

def log_variable_selection(file_path, inputs_f_columns, inputs_g_columns): 

    with open(file_path, 'a') as file: 

        file.write(f'Iteration: {iteration + 1}\n') 

        file.write(f'inputs_f: {inputs_f_columns}\n') 

        file.write(f'inputs_g: {inputs_g_columns}\n\n') 
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# Define a function to log results to a file 

def log_results(file_path, size_f, size_g, val_loss, loss, r2, a, b): 

    with open(file_path, 'a') as file: 

        file.write(f'Iteration: {iteration + 1}\n') 

        file.write(f'Hidden size f: {size_f}, Hidden size g: {size_g}, 

Best validation loss: {val_loss}' 

                   f'Test loss: {loss}, R^2: {r2}, a_pred: {a}, b_pred: 

{b}\n\n') 

 

 

# Define a function to log the complete vectors a and b to a file 

def log_parameters(file_path, a_vec, b_vec): 

    with open(file_path, 'a') as file: 

        file.write(f'Iteration: {iteration + 1}\n') 

        file.write(f'Values of a: {a_vec}\n') 

        file.write(f'Values of b: {b_vec}\n') 

 

 

# Define a function to create a folder 

def create_folder(folder_path): 

    if not os.path.exists(folder_path): 

        os.makedirs(folder_path) 

 

 

# Define a custom actiation function for the output 

def custom_activation(x): 

    return 0.3 ∙ torch.sigmoid(x) 

 

 

# Path to the log files 

log_variables_file_path = 'column_assignments_log.txt' 

log_results_file_path = 'best_values_log.txt' 

log_parameters_file_path = 'parameters_log.txt' 

 

# Path to the folder where you want to save the plots (train-val loss) 

loss_plots_folder = 'loss_plots' 

create_folder(loss_plots_folder) 

# Path to the folder where you want to save the plots (scatter plots) 

scatter_plots_folder = 'SOM_plots' 

create_folder(scatter_plots_folder) 

 

# Load the data 

file_path_tr = 'training_set.xlsx' 

data_train = pd.read_excel(file_path_tr) 

 

file_path_v = 'validation_set.xlsx' 

data_val = pd.read_excel(file_path_v) 
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file_path_te = 'test_set.xlsx' 

data_test = pd.read_excel(file_path_te) 

 

# Slice the DataFrame to start from the fourth column 

data_sliced_train = data_train.iloc[:, 3:] 

data_sliced_val = data_val.iloc[:, 3:] 

data_sliced_test = data_test.iloc[:, 3:] 

 

# Create SOM(t), SOM(t+1) and dt vectors 

SOM_t_train = data_train.iloc[:, 0].values.reshape(-1, 1) 

SOM_t_plus_1_train = data_train.iloc[:, 1].values.reshape(-1, 1) 

delta_t_train = data_train.iloc[:, 2].values.reshape(-1, 1) 

 

SOM_t_val = data_val.iloc[:, 0].values.reshape(-1, 1) 

SOM_t_plus_1_val = data_val.iloc[:, 1].values.reshape(-1, 1) 

delta_t_val = data_val.iloc[:, 2].values.reshape(-1, 1) 

 

SOM_t_test = data_test.iloc[:, 0].values.reshape(-1, 1) 

SOM_t_plus_1_test = data_test.iloc[:, 1].values.reshape(-1, 1) 

delta_t_test = data_test.iloc[:, 2].values.reshape(-1, 1) 

 

# Get the number of columns in the data 

num_columns = len(data_sliced_train.columns) 

 

# Define the number of iterations to train the code 

num_iterations = 100 

 

for iteration in range(num_iterations): 

     

    # Randomly assign each row to inputs_f, inputs_g, both, or none 

    random_assignment = np.random.choice(['inputs_f', 'inputs_g', 'both', 

'none'], size=num_columns) 

 

    # Initialize inputs_f and inputs_g 

    inputs_f_columns = [] 

    inputs_g_columns = [] 

    both_columns = [] 

    none_columns = [] 

 

    for column_name, assignment in zip(data_sliced_train.columns, 

random_assignment): 

        if assignment == 'inputs_f' or assignment == 'both': 

            inputs_f_columns.append(column_name) 

        if assignment == 'inputs_g' or assignment == 'both': 

            inputs_g_columns.append(column_name) 

        if assignment == 'both': 
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            both_columns.append(column_name) 

        if assignment == 'none': 

            none_columns.append(column_name) 

 

    # Print the number of columns assigned to each category 

    print(f'Number of columns assigned to inputs_f: 

{len(inputs_f_columns)}') 

    print(f'Number of columns assigned to inputs_g: 

{len(inputs_g_columns)}') 

 

    n_inputs_f = len(inputs_f_columns) 

    n_inputs_g = len(inputs_g_columns) 

 

    # Print the variables going into each category 

    print("\nVariables going into inputs_f:") 

    print(inputs_f_columns) 

 

    print("\nVariables going into inputs_g:") 

    print(inputs_g_columns) 

 

    # Log results to file 

    log_variable_selection(log_variables_file_path, inputs_f_columns, 

inputs_g_columns) 

 

    # Extract the data for inputs_f and inputs_g 

    inputs_f_train = data_sliced_train[inputs_f_columns].values 

    inputs_g_train = data_sliced_train[inputs_g_columns].values 

 

    # Extract the data for inputs_f and inputs_g 

    inputs_f_val = data_sliced_val[inputs_f_columns].values 

    inputs_g_val = data_sliced_val[inputs_g_columns].values 

 

    # Extract the data for inputs_f and inputs_g 

    inputs_f_test = data_sliced_test[inputs_f_columns].values 

    inputs_g_test = data_sliced_test[inputs_g_columns].values 

 

    # Preprocess the data 

    scaler_f = StandardScaler() 

    scaler_g = StandardScaler() 

 

    inputs_f_train_scaled = scaler_f.fit_transform(inputs_f_train) 

    inputs_g_train_scaled = scaler_g.fit_transform(inputs_g_train) 

    inputs_f_val_scaled = scaler_f.transform(inputs_f_val) 

    inputs_g_val_scaled = scaler_g.transform(inputs_g_val) 

    inputs_f_test_scaled = scaler_f.transform(inputs_f_test) 

    inputs_g_test_scaled = scaler_g.transform(inputs_g_test) 
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    inputs_f_train = torch.tensor(inputs_f_train_scaled, 

dtype=torch.float32) 

    inputs_g_train = torch.tensor(inputs_g_train_scaled, 

dtype=torch.float32) 

    SOM_t_train = torch.tensor(SOM_t_train, dtype=torch.float32) 

    SOM_t_plus_1_train = torch.tensor(SOM_t_plus_1_train, 

dtype=torch.float32) 

    delta_t_train = torch.tensor(delta_t_train, dtype=torch.float32) 

 

    inputs_f_val = torch.tensor(inputs_f_val_scaled, dtype=torch.float32) 

    inputs_g_val = torch.tensor(inputs_g_val_scaled, dtype=torch.float32) 

    SOM_t_val = torch.tensor(SOM_t_val, dtype=torch.float32) 

    SOM_t_plus_1_val = torch.tensor(SOM_t_plus_1_val, dtype=torch.float32) 

    delta_t_val = torch.tensor(delta_t_val, dtype=torch.float32) 

 

    inputs_f_test = torch.tensor(inputs_f_test_scaled, 

dtype=torch.float32) 

    inputs_g_test = torch.tensor(inputs_g_test_scaled, 

dtype=torch.float32) 

    SOM_t_test = torch.tensor(SOM_t_test, dtype=torch.float32) 

    SOM_t_plus_1_test = torch.tensor(SOM_t_plus_1_test, 

dtype=torch.float32) 

    delta_t_test = torch.tensor(delta_t_test, dtype=torch.float32) 

 

    # Define the directory to save the model 

    model_dir = 'D:/models/'  # Adjust this path 

 

    # Check if the directory exists, and create it if it doesn't 

    if not os.path.exists(model_dir): 

        os.makedirs(model_dir) 

 

    model_f_filename = 'model_f.pth' 

    model_g_filename = 'model_g.pth' 

 

    model_f_path = os.path.join(model_dir, model_f_filename) 

    model_g_path = os.path.join(model_dir, model_g_filename) 

 

    # Initialize models 

    best_val_loss = np.inf 

    inner_best_val_loss = np.inf 

    best_hidden_size = None 

    best_hidden_size_g = None 

    hidden_sizes = [8, 16, 32, 64, 128, 256, 512, 1024, 2048] 

 

    # Lists to store loss values 

    train_losses = [] 

    val_losses = [] 
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    train_r2_scores = [] 

    val_r2_scores = [] 

 

    for hidden_size in hidden_sizes: 

        model_f = ANN(input_size=n_inputs_f, hidden_size=hidden_size, 

output_activation=nn.Softplus()) 

        print(f'#################### Hidden size of f: {hidden_size}') 

 

        for hidden_size_g in hidden_sizes: 

            model_g = ANN(input_size=n_inputs_g, 

hidden_size=hidden_size_g, output_activation=custom_activation) 

            print(f'#################### Hidden size of g: 

{hidden_size_g}') 

            optimizer = torch.optim.Adam(list(model_f.parameters()) + 

list(model_g.parameters()), lr=0.001) 

            loss_function = nn.MSELoss() 

 

            scheduler = 

torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=20, 

factor=0.1) 

 

            for epoch in range(4000): 

                model_f.train() 

                model_g.train() 

                optimizer.zero_grad() 

                a_pred = model_f(inputs_f_train) 

                b_pred = model_g(inputs_g_train) 

                SOM_pred = (a_pred / b_pred) ∙ (1 - torch.exp(-b_pred ∙ 

delta_t_train)) + ( 

                    torch.exp(-b_pred ∙ delta_t_train)) ∙ SOM_t_train 

 

                # Ensure tensors have the same shape 

                if SOM_t_plus_1_train.dim() == 1: 

                    SOM_t_plus_1_train = SOM_t_plus_1_train.view(-1, 1) 

                if SOM_pred.dim() == 1: 

                    SOM_pred = SOM_pred.view(-1, 1) 

 

                loss_train = loss_function(SOM_pred, SOM_t_plus_1_train) 

                loss_train.backward() 

                optimizer.step() 

 

                model_f.eval() 

                model_g.eval() 

 

                with torch.no_grad(): 

                    a_pred_val = model_f(inputs_f_val) 

                    b_pred_val = model_g(inputs_g_val) 
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                    SOM_pred_val = (a_pred_val / b_pred_val) ∙ (1 - 

torch.exp(-b_pred_val ∙ delta_t_val)) + ( 

                        torch.exp(-b_pred_val ∙ delta_t_val)) ∙ SOM_t_val 

 

                    # Ensure tensors have the same shape 

                    if SOM_t_plus_1_val.dim() == 1: 

                        SOM_t_plus_1_val = SOM_t_plus_1_val.view(-1, 1) 

                    if SOM_pred_val.dim() == 1: 

                        SOM_pred_val = SOM_pred_val.view(-1, 1) 

 

                    loss_val = loss_function(SOM_pred_val, 

SOM_t_plus_1_val) 

 

                    # Calculate R^2 scores 

                    r2_train = r2_score(SOM_t_plus_1_train.numpy(), 

SOM_pred.numpy()) 

                    r2_val = r2_score(SOM_t_plus_1_val.numpy(), 

SOM_pred_val.numpy()) 

                    train_r2_scores.append(r2_train) 

                    val_r2_scores.append(r2_val) 

 

                    if loss_val < best_val_loss: 

                        best_val_loss = loss_val 

                        best_hidden_size = hidden_size 

                        best_hidden_size_g = hidden_size_g 

                        best_state_dict_f = model_f.state_dict() 

                        best_state_dict_g = model_g.state_dict() 

 

                    scheduler.step(loss_val) 

 

                train_losses.append(loss_train.item()) 

                val_losses.append(loss_val.item()) 

 

    # Save the best models 

    torch.save({ 

        'hidden_size': best_hidden_size, 

        'state_dict': best_state_dict_f 

    }, model_f_path) 

 

    torch.save({ 

        'hidden_size': best_hidden_size_g, 

        'state_dict': best_state_dict_g 

    }, model_g_path) 

 

    print(f'Best hidden size: {best_hidden_size}') 

    print(f'Best hidden size g: {best_hidden_size_g}') 

    print(f'Best Validation loss: {best_val_loss}') 
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    # Plotting the loss trends 

    plt.figure(figsize=(10, 5)) 

    plt.plot(train_losses, label='Training Loss') 

    plt.plot(val_losses, label='Validation Loss') 

    plt.xlabel('Epoch') 

    plt.ylabel('Loss') 

    plt.title('Loss Trend During Training') 

    plt.legend() 

    # plt.show() 

 

    # Save the plot with a unique filename for each iteration 

    plot_filename = os.path.join(loss_plots_folder, 

f'loss_plot_iteration_{iteration + 1}.png') 

    plt.savefig(plot_filename) 

    plt.close()  # Close the plot to avoid display in subsequent 

iterations 

 

    print(f"Plot saved: {plot_filename}") 

 

    # Load the best models 

    checkpoint_f = torch.load(model_f_path) 

    checkpoint_g = torch.load(model_g_path) 

 

    best_hidden_size = checkpoint_f['hidden_size'] 

    best_hidden_size_g = checkpoint_g['hidden_size'] 

 

    model_f = ANN(input_size=n_inputs_f, hidden_size=best_hidden_size, 

output_activation=nn.Softplus()) 

    model_g = ANN(input_size=n_inputs_g, hidden_size=best_hidden_size_g, 

output_activation=custom_activation) 

 

    model_f.load_state_dict(checkpoint_f['state_dict']) 

    model_g.load_state_dict(checkpoint_g['state_dict']) 

 

    model_f.eval() 

    model_g.eval() 

 

    # applied to test set to measure error 

    with torch.no_grad(): 

        a_pred_test = model_f(inputs_f_test) 

        b_pred_test = model_g(inputs_g_test) 

        SOM_pred_test = (a_pred_test / b_pred_test) ∙ (1 - torch.exp(-

b_pred_test ∙ delta_t_test)) + ( 

            torch.exp(-b_pred_test ∙ delta_t_test)) ∙ SOM_t_test 

 

        # Ensure tensors have the same shape 
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        if SOM_t_plus_1_test.dim() == 1: 

            SOM_t_plus_1_test = SOM_t_plus_1_test.view(-1, 1) 

        if SOM_pred_test.dim() == 1: 

            SOM_pred_test = SOM_pred_test.view(-1, 1) 

 

        loss_test = loss_function(SOM_pred_test, SOM_t_plus_1_test) 

        r2_test = r2_score(SOM_t_plus_1_test.numpy(), 

SOM_pred_test.numpy()) 

        print(f'Test Loss: {loss_test.item()}') 

        print(f'Test R^2: {r2_test}') 

 

    # Displaying the estimated values of a_pred and b_pred for the best 

run 

    print("Estimated values for the best run:") 

    print(f"a_pred_test (mean): {a_pred_test.mean()}") 

    print(f"b_pred_test (mean): {b_pred_test.mean()}") 

 

    # Log all values of parameters 

    log_parameters(log_parameters_file_path, a_pred_test, b_pred_test) 

 

    # Log results for the current iteration 

    log_results(log_results_file_path, best_hidden_size, 

best_hidden_size_g, best_val_loss, loss_test, r2_test, 

                a_pred_test.mean(), b_pred_test.mean()) 

 

    # Plotting SOM_pred_test vs SOM_t_plus_1_test 

    plt.figure(figsize=(10, 6)) 

    plt.scatter(SOM_t_plus_1_test, SOM_pred_test, alpha=0.5, 

label='Predicted') 

    plt.plot(SOM_t_plus_1_test, SOM_t_plus_1_test, color='red', 

label='Ideal')  # Ideal line for reference 

    plt.xlabel('SOM_t_plus_1_test (Actual)') 

    plt.ylabel('SOM_pred_test (Predicted)') 

    plt.title('Predicted vs Actual SOM') 

    plt.legend() 

    # plt.show() 

 

    # Save the plot with a unique filename for each iteration 

    plot_filename = os.path.join(scatter_plots_folder, 

f'SOM_plot_iteration_{iteration + 1}.png') 

    plt.savefig(plot_filename) 

    plt.close()  # Close the plot to avoid display in subsequent 

iterations 

 

    print(f"Plot saved: {plot_filename}") 
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