
POLITECNICO DI TORINO
Master’s Degree in ENVIRONMENTAL AND LAND

ENGINEERING, CLIMATE CHANGE

Master’s Degree Thesis

Climate Change and Nipah virus:
exploring the links between climate
variability, extremes, and zoonotic

spillover in Bangladesh

Supervisor

Prof. Jost-Diedrich GRAF VON HARDENBERG

Co-Supervisors

Prof. Marino GATTO

Prof. Isabella CATTADORI

Candidate

Agnese CIMAROLI

OCTOBER 2024





Abstract
Zoonotic infectious diseases, transmitted from wild or domestic animals into humans,
represent a major threat for public health as they can cause serious disease outbreaks and
potentially escalate into pandemics, as recently observed for SARS-2-Covid-19. Climate
change and anthropogenic ecosystem alterations are amplifying this risk by reshap-
ing interactions between wildlife, pathogens, and human populations. Consequently,
“jump-zones”-regions where zoonotic spillovers are increasingly likely-are fast expanding,
particularly at tropics.

Among bat-borne zoonoses, Nipah virus (NiV) is recognized by the World Health
Organization as one of the top 10 priority diseases, causing near-annual outbreaks in
Bangladesh, a region highly vulnerable to climate change impacts. Despite the critical
role bats play in pathogen transmission, their responses to climatic factors remains largely
underexplored, highlighting the urgent need for focused research, also in view of the
current climate change.

This thesis investigates the relationship between relevant climatic factors, including
extreme weather events, and Nipah virus spillover occurrences in Bangladesh, where
fruit bats (Pteropus species) serve as natural reservoirs of the virus. Through detailed
spatio-temporal analysis, coupled with a regression analysis using Generalized Linear
Models (GLMs), this study aims to identify key climate variables influencing the frequency
and spatial distribution of spillover events occurred over a 18-year period (2001-2018).
Furthermore, addressing gaps identified in the literature, this study extends the temporal
focus beyond the typical winter months to examine year-round climate dynamics, using
ERA5 reanalysis data, which provide higher spatial resolution and more reliable climate
information for tropical regions than traditional sources.

Key findings reveal that specific climate conditions—colder winters, warmer and drier
monsoons, and reduced post-monsoon rainfall—are strongly associated with a surge in
NiV spillover events. These climatic stressors likely disrupt bat foraging and increase
thermoregulatory stress, which are known to drive recrudescence and shedding of virus.
Notably, the observed correlation between monsoon conditions and the frequency of
spillover events is a novel finding for the Nipah virus in Bangladesh, although similar
pattern have been observed with Hendra virus, another paramyxovirus, in Australia.
Additionally, the spatial analysis identified two distinct geographic clusters within the
Nipah Belt, each defined by specific climatic and environmental stressors. This underscores
the spatial heterogeneity of spillover risk drivers and emphasizes the importance of targeted,
region-specific interventions to mitigate spillover risks.

Given the accelerated pace of climate change impacts, and its complex interaction
with bat behaviour and viral dynamics, a deeper understanding of the climatic triggers
associated with spillover events is crucial. Such knowledge could enhance predictive models,
supporting the design of targeted interventions to prevent or mitigate NiV outbreaks,
particularly in high-risk regions.
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Glossary

Death burden is the total number of human deaths [1].. 24

Emerging infectious diseases are those that (1) have not occurred in humans before; (2)
have occurred previously but affected only small numbers of people in isolated places,
such as AIDS and Ebola hemorrhagic fever; or (3) have been present throughout
human history but have only recently been recognized as distinct diseases due to a
infectious agent, as in the case of Lyme disease and gastric ulcers [2].. 22

Fomite is any inanimate object that, when contaminated with or exposed to infectious
agents, can transfer disease to a new host.. 23

Prevalence is the proportion of infected and infectious individuals in a population,
reflecting the current infection history [3].. 12

Re-emerging infectious diseases are diseases that once were major health problems
globally or in a particular country, and then declined dramatically, but are again
becoming health problems for a significant proportion of the population (i.e. malaria
and tuberculosis) [2].. 22

Seroprevalence measures the proportion of animals that have been exposed to the
virus and seroconverted (produced antibodies to the pathogen), thus reflecting the
cumulative infection history [3].. 9

Transmissibility is the diseases capacity to spread within human populations [1].. 24

Viral shedding is the expulsion and release (shed) of infectious virions (i.e., infectious
virus particles) from the host (body) into the environment, where the virus may infect
another recipient host [4], [5], [6]. Bats can shed the virus they carry trough body
secretions (saliva, blood) and excretions (urine and feces/guano) and can contaminate
foods and surfaces with subsequent spread to another host [4], [5], [6].. 14

Virulence is defined as the degree to which a pathogenic organism can cause disease [1]..
24

Zoonosis a disease that is caused by an infectious pathogen or parasite that originates in
(or is maintained in the wild by) one or more non-human hosts but can be transmitted
to and cause disease in humans [7].. 3
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Introduction

Climate and anthropogenic land-use change are the primary drivers of the emergence
and re-emergence of infectious diseases (EID) [8], 60.3% of which are zoonosis, with
71.8% originating from wildlife, posing an escalating threat to global health security [9].
Zoonosis, transmitted to humans from an infected vertebrate host [10], have the potential
to spread rapidly across borders, overwhelm unprepared healthcare systems, and cause
severe economic losses—as dramatically demonstrated by the COVID-19 pandemic.
Climate change, coupled with human-induced ecosystem changes (i.e. deforestation,
biodiversity loss, urbanization, road construction, agricultural expansion), heightens
disease transmission risks by directly and indirectly shaping the dynamics and interactions
between hosts, vectors and pathogens [10], [8]. This is driving the fast expansion of
geographic areas flagged as "jump-zones", regions where EIDs are increasingly likely to
spill over into human populations [11].
Bats, which harbor some of the most virulent zoonotic pathogens capable of infecting
humans [1], are particularly sensitive to climate fluctuations and serves as key indicators
of ecosystem health, being their biology, physiology and behaviour closely tied to external
environmental conditions [12]. These connections, combined with their unique dispersal
ability, evolutionary traits and opportunistic behaviour, makes bats a unique reservoir
host among wild mammals, likely to drive cross-species viral transmission events in the
near future [13]. Indeed, climate change is expected to shift the habitat ranges of wildlife
hosts and led to novel aggregation in areas of high population density and biodiversity,
positioning South and Southeast Asia as bat-borne spillover hotspots [13]. However,
despite their significance, bat responses to climatic factors remain largely underexplored
[14], underscoring the urgent need for focused research—one of the key motivations behind
this thesis.
The Nipah virus (NiV) is recognized by the World Health Organization as one of
the top 10 priority diseases with the potential to cause a pandemic [15], [16]. Unlike
other bat-borne pathogens, which tend to be sporadic and localized, NiV has emerged
in multiple, distant locations over a 26-year period (1998-2024), leading to significant
loss of life[17]. With a mortality rate of 40-70% and no available cure or vaccine [18],
understanding the precise drivers of NiV spillover events is crucial for developing targeted
mitigation strategies.
An in-depth literature review has revealed gaps and opportunities for improvement in
understanding the relationship between climate and NiV spillover events. These findings
have guided the methodological choices in this thesis, influencing the selection of climate
data source (specifically, ERA5 reanalysis data for its higher spatial resolution and
reliability in tropical regions), the exploration of relevant climate variables, and the
extension of analysis periods (i.e., beyond the typical winter months). These decisions

1



INTRODUCTION

have contributed meaningfully to the progress made in this study.
This thesis investigates the relationship between Nipah virus spillover events and climatic
conditions in Bangladesh from 2000 to 2018, with the aim to identifying climatic variables
and weather extremes that may have influenced the frequency and spatial distribution of
these events. The structure of the thesis is as follows: after an overview of the state of the
art in Chapter 1, which explores the role of bats as reservoirs of zoonotic viruses and the
impact of climate and anthropogenic changes on the emergence and spread of EID, Chapter
2 provides a spatio-temporal reconstruction and analysis of the spillover events occurred in
Bangladesh in the reference period. In Chapter 3 a detailed temporal analysis, exploring
anomalies, trends, and extremes in temperature and precipitation, was conducted to
identify distinctive and statistically significant climate patterns associated with years of
high versus low spillover occurrence. In Chapter 4, these climatic insights, along with other
environmental and anthropogenic stressors, are analyzed for their spatial distribution
across Bangladesh. A clustering procedure groups districts by common stressors to explore
regional variations in transmission drivers. Finally, Chapter 5 presents a regression analysis
using Generalized Linear Models (GLMs) to test the hypothesized correlations found
throughout the study. Notable findings include climate patterns previously observed only
in relation to the Hendra virus in Australia, providing new insights into how climatic
conditions may drive NiV spillovers in Bangladesh.
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Chapter 1

Anthropogenic changes drive
the emergence and spread of
zoonosis: Nipah virus

1.1 Wild mammals and zoonotic infections

Most of the infectious diseases of humans have originated in wild and domestic animals
[19]. Among the 10,000 species of viruses capable of infecting humans, the vast majority
circulate silently, or cause subclinical illness, in wild mammals [13]. Therefore, compared
to any other class of vertebrates, mammals are responsible, directly or indirectly, for the
majority of the emerging infectious diseases that affect humans, making this group and
their pathogens highly relevant to public health [13].
The rapid changes in climate and land use have impacted the abundance and distribution
of many mammal species and, with this, their ability to shift to different environmental
settings and adapt to novel habitat conditions. During these shifts, animals can move
long distances and establish in new areas, often bringing their parasites and pathogens
into these new environments [13]. Species interactions and sharing of resources, including
the accidental exposure of human individuals to wildlife, can potentially facilitate the
circulation of novel pathogens into new areas and, with this, the risk of zoonotic spillovers
(see Zoonosis), where pathogens are transmitted from wildlife to humans. Predicting the
conditions that contribute to spillover events and potential hotspots of zoonotic disease
emergence requires the understanding of the environmental circumstances that facilitate
the interactions between wildlife and humans and the drivers that can lead to a spillover
event [4].
Given their unique dispersal abilities, unconstrained within continents, and distinctive
immune system that protects from disease, bats have been suggested to play an important
role in the cross-species transmission of many viral infections, including Ebola (EBOV),
SARS-2-COVID-19 and Henipaviruses (HNV) [20], and they are likely to share viruses
along evolutionary pathways that will facilitate future emergence in humans [13]. Hotspots
of novel viral emergence are projected to coincide with areas rich in biodiversity and with
high human population density, where the potential risk of zoonotic infections to spillover
into humans is expected to be high [13]. Recent studies suggest that these areas are
disproportionately likely to occur in tropical Asia such as rural settings with cropland
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and human settlements aggregate around biodiversity hotspot [13].

1.2 Bats: Unique mammalian virus host
Bats belong to Chiroptera, the second most species-rich order of mammals after rodents,
comprising approximately 22% of all named mammal species [21]. Bats can be infected
with a high diversity of virus species, relative to other mammalian orders, and they are
the natural reservoir host for several emerging viruses of major health concern to humans,
including RNA viruses such as Marburg virus, Hendra virus, and Nipah virus [21]. The
high richness and zoonotic nature of viral infections they carry [21], combined with the
strong adaptation of their immune system to these infections, make bats unique when
compared with other mammals [22], [21]. Some of this uniqueness is associated with the
biological and behavioural features of the group [23]. For example, the size of colonies can
reach the order of millions, individuals have a gregarious social behaviour and habits of
mutual grooming; all together, these characteristics can likely facilitate the rapid spread
of infectious agents throughout the colony [23]. Moreover, the long individual lifespan,
which can facilitate viral persistence, and a history of long co-evolution with many viruses,
including their ability to fly over large home ranges and spread or contract viral infections
over vast areas, make bats the ideal reservoir host for viral transmission and persistence
in the environment [24].
Among the various features listed above, it is particularly important to emphasize the bats’
ability for powered flight, which allows them a more rapid and unconstrained range shifts
than any other mammals [13]. Even non-migratory bats can regularly travel hundreds of
kilometers within a lifetime, moving between roosting sites [13]. Multiple studies have also
reported ongoing rapid range expansions in bat species across the world, making these
movements extremely relevant for the epidemiology of viral infection under climate change
[13]. These movements are frequently associated with changes in resource availability like
food constraints, as well as changes in foraging frequency and duration and patterns of
social aggregation and colony composition [4]. By understanding the drivers and patterns
of these movements it is possible to identify processes of viral transmission and potential
viral hotspots of human infection.

Unique immune system The bats’ remarkable ability to transmit viruses is closely tied
to their unique immune system, which enables them to carry a wide variety of pathogens
while remaining asymptomatic [21], [22]. This phenomenon is thought to be linked to
their distinct innate and adaptive immune responses to viral infection [21], [22].
A distinctive aspect of the bat’s innate immune system is its constant production of
interferon-alpha (IFNα) and subsequent induction of IFN-stimulated genes (ISGs), in
contrast to other mammals, which produce this protein only in response to infection [22].
This continuous immune activation helps control viral replication and prevent disease, but
it may impose high metabolic costs, which are managed through regulatory mechanisms
like anti-inflammatory pathways [22].
In addition to innate immunity, bats also possess a distinct adaptive immune system [22],
[21]. Although they produce antibodies in response to viral infections, these responses tend
to be weaker and shorter-lived compared to those in other mammals [21]. For example,
studies have shown that bats generate antibodies to viruses such as Marburg and Nipah,
but these antibodies often wane quickly and are insufficient to fully neutralize the virus
[21]. This could indicate that bats rely more heavily on antibody-dependent cell-mediated

4



Anthropogenic changes drive the emergence and spread of zoonosis: Nipah virus

immune responses, which may limit viral replication without fully clearing the infection
[21]. The ability to tolerate low levels of viral presence without suffering from disease may
play a role in the maintenance and transmission of viruses within bat populations [21].
Furthermore, nutrition appears to have a significant impact on bat immune function [22].
The resource-intensive nature of immune responses, particularly those involving interferon
production and antibody generation, means that dietary limitations can influence how
effectively bats control infections [22]. For example, vitamin deficiencies and periods
of starvation can suppress both innate and adaptive immune responses, potentially
increasing susceptibility to infection and the likelihood of viral shedding [22]. This
relationship between nutrition and immune function is particularly relevant during periods
of physiological stress, such as pregnancy and lactation, when bats are more prone to
immune compromise [22].

1.3 South and Southeast Asia hot-spots of infections
Several factors make South and Southeast Asia particularly critical areas for the emergence
and re-emergence of zoonoses. Firstly, these areas are species-rich ecosystems, hosting
approximately 25% of the world’s bat diversity [25]. By serving as a significant reservoir
host of pathogens, bat populations from these areas increase the likelihood of novel bat-
borne viral zoonosis emergence. Second, the rapid degradation and extensive conversion
of bat habitat into anthropogenic usage, cause severe biodiversity and habitat loss while
increasing the risk of bat-human interactions and viral transmission. Southeast Asia, homes
to nearly 15% of the world’s tropical forests, is also among the world major deforestation
hotspots, with rates comparable only to that of Latin America [26]. Third, much of this
deforestation is converted into extensive monocultures, along with the establishment of
human settlements and grazing land for livestock. Fourth, the destruction of forests and
resources (roosting and food) for bats has forced animals to move in close proximity to
humans and increase the likelihood of closer and more frequent interactions.
The encroachment of humans on bat habitat, combined with the dramatic growth of the
human population and often inadequate public health systems, create opportunities for
zoonotic infections to spill over from bats into humans while increasing the risk of disease
spread in South and Southeast Asia.
Reuters, a global news agency, identified high-risk regions where conditions are ideal
for bat-borne virus spillover, potentially triggering future pandemics [11]. These areas,
covering 6% of the Earth’s landmass, are primarily tropical regions undergoing rapid
urbanization and were home to nearly 1.8 billion people in 2020 [11]. India, Indonesia
and Laos are flagged as developing countries where the riskiest-areas are experiencing the
fastest expansion, while Bangladesh as one witnessing a rapid growth in spillover risk [27].
Notably, pandemic risk is higher in countries with fewer resources to manage it [27].

1.4 Nipah Virus
Among the emerging infectious zoonoses carried by bats endemic to South and Southeast
Asia, Nipah virus represents a major concern for public health, and has been listed by the
World Health Organization as one of the top ten priority diseases that necessitate urgent
investigation and control [28].
Until now, Nipah outbreaks have been confined to these regions, however, its natural
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reservoir host (i.e., fruit bats) occupies a vast geographic range across the world, encom-
passing regions home to over 2 billion people [29]. As human interactions with these
bats become more frequent, driven by the accelerating pace of anthropogenic ecosystem
alteration—including land-use changes and the effects of climate change—the risk of Nipah
virus transmission intensifies, significantly increasing the potential for future outbreaks
[29], [12].

1.4.1 Etiology
Nipah virus (NiV) is a deadly zoonotic paramyxovirus that belongs to the genus Henipavirus
in the family Paramyxoviridae, a group of negative-sense single-stranded RNA viruses [15].
This genus also includes Hendra virus (HeV) and the recently discovered Cedar (CedV),
Kumasi (KV) and Mojiang (MojV) viruses [15]. To date, two major strains of NiV have
been identified:

• NiVM strain, isolated from pigs in Malaysia, which shows no evidence of human-to-
human transmission [15][30];

• NiVB strain, more infectious and responsible for human cases in Bangladesh, making
it the most severe and deadly form of the infection [15], [30].

1.4.2 Uniqueness of Nipah virus infectious events
The natural reservoir hosts of NiV are bats of the Pteropodidae family (Pteropus genus),
which carry, beside Paramyxoviridae, viruses of the families of Reoviridae and Rhabdoviri-
dae. Unlike most of these bat-borne pathogens that emerged in a single geographic area,
NiV uniquely appeared in multiple distant locations over a 26-year period (1998-2024) [17].
Moreover, although zoonotic disease outbreaks are often unpredictable and rare, NiV has
repeatedly spilled over from bats to humans and livestock, causing outbreaks with high
fatality rates across a wide geographic range [31]. The virus first emerged in Malaysia
in 1998, followed by outbreaks in Singapore in 1999, Bangladesh and India in 2001,
and the Philippines in 2014 [17]. Among these countries, only Bangladesh experiences
regular outbreaks, almost every winter (typically between November and April). The
corresponding near-annual spillover events are closely linked to the consumption of raw
date-palm sap and exhibit significant variability in locations and frequency (i.e. numbers
fluctuate annually) within the central and northwestern regions of Bangladesh, commonly
referred to as the "Nipah belt" [31]. Spillover has also been documented outside the typical
winter season and region associated with date-palm sap consumption [31]. Interestingly,
while no human outbreaks have been reported in eastern Bangladesh, despite similar
consumption habits, outbreaks have occurred in Kerala (India) where date-palm sap is not
harvested [31]. These observations suggest alternative spillover routes and highlight the
importance of understanding the factors driving viral dynamics within bat populations
[31].

1.4.3 Why a major concern
Nipah virus is considered to have the potential to cause one of the next pandemics [16],
[15]. Many NiV strains have characteristics that make them a significant threat to both
human and animal heath:
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• They cause an high human fatality rate, ranging from 40-75% in various outbreaks
(82% in case of acute encephalitis [15]), with a 32% of survival patients reporting
residual neurological deficits [30].

• No vaccines or specific antivirals are available for either people or animals [30]. The
primary treatment for humans is supportive care [30].

• NiV has a long incubation period before symptom onset in human, from 4 up
to 45 days [18], thus unaware infected hosts have ample opportunities to spread
the virus [32]. NiV infection can manifest in a wide array of clinical presentations
from asymptomatic to acute respiratory disease, including fatal encephalitis [16].
Cases with mild or sub-clinical infections are likely to go undetected. For this reason,
it is believed that at least half of all Nipah virus outbreaks in Bangladesh during
the period 2007-2014 were likely gone missed, as encephalitis patients often seek
treatment locally, especially if their symptoms are less severe and the surveillance
hospital is distant from their home [33].

• Many domesticated animals, including pigs, goats, dogs, cats, horses, sheep,
and cattle are susceptible to NiV [30], and can serve as intermediate recipient hosts,
transmitting the virus to humans [3]. Notably, both intra-species (intermediate
host-to-intermediate host, human-to-human) and inter-species (bat-to-human, inter-
mediate host-to-human) transmission of NiV is possible [34]. Indeed, humans can
become infected either directly from bats—through bat consumption or contact with
bat secretions or excreta (refer to Section 1.5.3 for further details) [30]-or indirectly
through unprotected contact with an infected intermediate host (e.g., via skin abra-
sions) or by consuming under-cooked meat from a sick animal [30]. Additionally,
human-to-human transmission is also possible via respiratory secretions (refer to
Section 1.5.3 for further details) [30]. These multiple transmission routes significantly
increase the risk of human contagion.

• NiV may persist in the environment, outside its reservoir host, for several
days, influencing the likelihood of spillover [3]. NiV survival is sensitive to increasing
temperature, changes in pH, ultraviolet light and desiccation, thereby surviving
longer in winter months rather than in summer [35], [33], [30], [34], [3].

• Numerous spillovers and outbreaks have frequently occurred in densely
populated and economically disadvantaged regions of Asia, exacerbating the public
health impact.

• Fruit bats (Pteropus genus), the natural reservoirs of NiV, are widely dis-
tributed throughout Asia. This extensive distribution increases the so-called “viral
chatter,” where repeated human exposures to the virus may lead to transformations
that enhance its ability to spread among humans [36].

1.4.4 Natural reservoir of NiV
Bats of the genus Pteropus (Chiroptera: Pteropodidae), commonly known as flying foxes
or fruit bats, are the natural reservoirs for Nipah virus. Flying foxes (Pteropus medius,
formerly P. giganteus), named for their physical similarity to a fox, are the largest bats in
the world, having a wingspan of 1.5 metres with a head and body length of about 40 cm
[37].
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Key stressors affecting bat immune system function Pteropus exhibit enhanced
innate and adaptive immune tolerance to NiV infections and healthy animals carry the
virus without showing clinical disease symptoms, making them effective asymptomatic
carriers (refer to Section 1.2 for further details) [21], [22]. However, bats are not immune to
the effects of stress, particularly during periods of nutritional deficiency and reproductive
phases such as pregnancy and lactation [22]. Immune responses are highly resource-
intensive to develop and maintain, relying heavily on adequate nutrition for proper
functioning [22]. When dietary shifts limit the intake of essential nutrients and energy, the
immune system’s ability to control viral replication weakens, leading to higher infection
intensity (i.e. viral load) [22]. During times of nutritional stress, bats are more likely to
rely on less costly immune defenses, such as their innate immune system, which may be
less effective at controlling viral replication [22]. Pregnancy and lactation also impose
significant resource demands on bats, further compromising their immune defenses [22].
Research indicates that pregnant bats experience reduced immune function, as their bodies
prioritize resource allocation for reproduction over immune defense [22]. This compromised
immune state not only increases their susceptibility to infections but may also reactivate
latent viruses [22]. Consequently, pregnant and nutritionally stressed bats are more likely
to have elevated viral loads and exhibit increased shedding (i.e., excretion of virus), making
them more effective transmitters of viruses like NiV [22]. This is particularly concerning
because viral load plays a crucial role in spillover, likely correlating with the quantity of
pathogen excreted and its potential to infect susceptible hosts [22]. Further details on the
conditions that enable the virus to spill over from bats to recipient hosts will be discussed
in Section 1.5.3.

Figure 1.1: A bat from the Family Pteropodidae, Order Chiroptera, and genus Pteropus,
commonly known as the flying fox. Source: [38].

Geographic distribution

The geographic distribution of bat populations reservoir hosts of Henipavirus, ranges from
continental and insular Australia and Asia to Africa and is assumed to be a proxy of the
distribution of this family of viruses [18]. The geographic distribution of Henipavirus
bat reservoir hosts, which extends from continental and insular Australia and Asia to
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Africa, is assumed to be a proxy of the viral distribution. This assumption is supported by
several factors, including serological studies that have demonstrated Henipavirus infection
in all tested (i.e. nine) Pteropus species across eleven countries within the Pteropodid
bat distribution [39]. Additionally, Henipavirus seroprevalence is high, and these bat
species often share overlapping ranges, roost together, and exhibit high mobility [39].
These behaviors promote both intra- and inter-species viral mixing, further supporting
the link between the distribution of these bats and the virus [39]. While this assumption
offers valuable insight, it provides only a broad indication of areas at risk of spillover.
For the virus to spill over from the reservoir bats to a secondary or accidental reservoir
species, specific biotic and abiotic conditions must also be met (refer to Section 1.5.3 for
further details regarding the enabling condition for spillover events).

Figure 1.2: Geographic distribution of Henipavirus outbreaks and fruit bats of the
Pteropodidae family [34]. Countries at risk (orange) and countries with reported outbreaks
(red) are shown [34]. Violet spots mark bat collection sites positive for Henipavirus
(HNVs), and blue stars mark HNVs outbreak locations (1997-2008). Green (solid) and
violet (dotted) contours indicate the home ranges of Pteropus genus and Pteropodidae
family of fruit bats, respectively. Data source: Global Alert and Response Department,
World Health Organization, WHO; map production: Public Health Information and
Geographic Information Systems (GIS). Reproduced and adapted according to WHO
permission ID: 390902 [34].

Roosting behaviour

Studies on P. medius showed that animals forage at night and rests during the day in
tree roosts that can host colonies of many thousands of individuals. Bats tend to select
exposed tree branches, in emergent trees that rise above the forest canopy. While this
facilitates fly landing and takeoff, given their large size and wingspan, it also makes them
particularly susceptible to the effects of extreme temperatures [40].
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Roost sites selection and spillover implication Additionally, it is important to note
that Pteropus roost selection is strongly influenced by food availability and proximity
[41]. A significant factor behind Pteropus giganteus preferring to roost in forests near
densely populated human areas [41] is the combined impact of habitat loss, fragmentation,
depletion of native food sources, and the provision of alternative food resources through
agriculture. The widespread land-use change, fuelled by urbanization and agricultural
expansion, have pushed these bats closer to human settlements, where they can take
advantage of abundant food in species-rich urban environments [41], [33]. Growing
evidence suggests that these human-induced environmental changes have significantly
altered P.giganteus roosting behaviour, as well as movements and foraging patterns, with
the species now primarily feeding in residential backyards and orchards, rather than
in plantations that have replaced their natural habitats [42], [33]. This shift is likely
driven by the greater variety and year-round availability of fruit in urban areas, supported
by irrigation and diverse planting [43]. Moreover, urban environments provide warmer
micro-climates, which are more suitable for these bats, along with potential refuges
from predators and post-cyclone effects [44]. These factors collectively demonstrate the
remarkable behavioral flexibility of Pteropus, allowing them to adapt and thrive in such
altered habitats. However, this closer proximity to humans increases the frequency of
contact, creating more opportunities for zoonotic diseases to spillover [42], [33]. Further
discussion on this topic will be provided in Section 1.5.

Foraging behaviour

Despite their size, these nocturnal mammals are nectivorous and frugivorous. Their diet
includes pollen, flowers and leaves, which meet their protein requirements, while nectar,
along with the sugar in fruits, are essential sources of energy to power their flight [45]. Bats
are generalists with opportunistic foraging behavior, a characteristic that has facilitated
the use of more urban settings and the exploitation of alternative food sources within
anthropogenic landscapes.

Research into the feeding habits of fruit bats confirms their role as messy eaters. During
feeding, fruit bats ingest the juice of fruits and expel the fibrous pulp, while also urinating
and defecating [11], [38], [46]. Indeed, their rapid digestive system results in droppings
within half an hour of feeding [47]. Foraging areas often bear distinctive marks on the
landscape, such as scattered foliage and partially consumed fruits [3].

Messy eaters and food-borne spillover The messy eating habits of fruit bats contribute
to nutrient cycling and seed dispersal in tropical ecosystems, playing a crucial role in
plant regeneration dynamics and supporting biodiversity [48], [22].
However, these habits also pose health risks, particularly when droppings and partially
eaten fruit, contaminated with saliva, carry lethal viruses such as Nipah. Yet, the
facilitation of food-born spillover from bats requires a series of interconnected conditions,
including the exposure of a secondary host to the contaminated food. This scenario
occurred during the first Nipah outbreak in Malaysia in late 1997/early 1998, where
mango trees were planted near pig farms to boost agricultural output [36]. The initial
transmission of NiV from bats to pigs likely occurred through contamination of pig swill
by bat excretions [49]. This was driven by the migration of forest-dwelling fruit bats to
cultivated orchards near pig farms, a consequence of the widespread fruiting failure of
forest trees caused by the El Niño-induced drought and anthropogenic fires in Indonesia
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in 1997-1998 [50].
The decision to boost mango and swine production, together with the establishment of
monoculture plantations, in close proximity to pig farms and slaughterhouses promoted
spillover [51]. Likewise, the high density of animals on these farms amplified animal-to-
animal transmission of the virus. To contain the infection, a massive culling campaign of
over a million pigs was necessary, resulting in a devastating economic impact [36], [30].
The emergence of NiV is a clear example of how the loss of natural habitat, together with
agricultural encroachment and the increase of livestock abundance, could amplify the
likelihood of human-animal interactions and the potential for zoonotic spillover events
[36].

Ecosystem services

Flying foxes are highly mobile species, regularly traveling long distances between roosts
and foraging sites, exhibiting both frequent and seasonal movements [52]. This behavior
provides key ecosystem services such as pollination and long-distance seed dispersal of
native and agricultural plants, including economically valuable crops like durian fruit
across the paleo- and subtropical regions of Asia [22]. Additionally, they play a key role
in forest regeneration by maintaining genetic diversity in fragmented forest habitats [22].

Conservation status

Roosting and foraging behaviour of plant-visiting bats has been severely altered by human
pressure on ecosystems, a pattern that is increasing globally [22]. According to IUCN
Red List of Threatened species, 60% of Old World fruit bat species now occupy disturbed
and altered resource landscape, such as gardens, urban areas, plantations [22]. A recent
estimate suggests that 75% of species of Pteropodidae have declining populations due
to these anthropogenic disturbances [22]. The alteration of flying fox habitat is causing
changes in their ecology, which in turns is expected to reshape infection and transmission
dynamics at both the roost and meta-population level [53].

1.5 Anthropogenic pressure changes bat ecology and
increases spillover risk

Deforestation, agricultural intensification, urban development and climate change are
removing or irreversibly altering critical wildlife habitat [22]. The loss of native forest
poses a significant threat to Flying foxes by destroying both their food resources and
roosting habitat [48]. Given the rapid pace of habitat alteration due to human activities,
it is crucial to understand how land-use changes impact wildlife species and, in turn, how
these changes influence human health [54]. Tropical deforestation, primarily driven by
population growth, escalating global food demand, and government policies focused on rural
development and agricultural expansion, has led to the extensive conversion of bat habitats
into agricultural, pastoral, and urbanized areas [12]. This has resulted in fragmented
landscapes characterized by small (often < 50 ha), isolated, and irregularly shaped
forest patches [12]. Such habitat degradation, loss, and fragmentation, combined with
alternative resource provision, have led to two primary consequences: the redistribution
of food resources, and the disruption of bat metapopulation connectivity at the landscape
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level. Both of them have drastically altered bat roosting, foraging, migratory behaviors
and aggregation pattern, with significant implications for zoonotic spillover events.

1.5.1 Redistribution of resources in space and time
Ecosystem alterations have resulted in altered quality, abundance, and timing of available
food sources for bats [22]. These shifts have significantly impacted bat ecology in several
key ways.

Roosting and foraging behaviour: Bats are increasingly selecting roosting and foraging
sites near urban environment (as previously discussed in subsection 1.4.4). Notably, the
exploitation of alternative food resources impacts their body condition. In fact, although
novel food sources may be abundant, their lower nutritional or energetic value, poor
digestibility, and harmful secondary metabolites can weaken or alter bat immunity, with
downstream effect on viral dynamics [22]. Moreover, by relying on crop and other cultivated
plants, the distribution of reservoir and recipient hosts has overlapped, leading to more
frequent human-wildlife conflicts and creating greater opportunities for spillover events.

Bat movement pattern: The rate and distance of bat movements across the landscape
have changed. Pteropus bats, known for their high mobility, regularly travel long distances
to feed. However, the loss of native habitats, and the unintentional provision of novel
resources through agriculture, had dislodged these bats from their natural habitat, forcing
them to rely on alternative, yet suboptimal, food sources in close proximity to humans
[22], [33]. As a result, despite their preference for highly nutritional native food, which
provides a higher volume and more concentrated nectar than introduced plant species,
bats are forced to make trade-offs [22]. Indeed, they must choose between energetically
costly long-distance movements to access ephemeral and uncertain native resources, and
the more stable year-round availability of abundant but suboptimal novel food in close
proximity [22]. Wildlife responses to changes in the availability and quality of resources
across landscape is species-specific [22]. For Pteropus bats in Bangladesh, studies suggest
that their successful ability to adapt to changes, has led to a reduced migratory propensity
and urban habituation. Therefore, despite their ability to cover large distances, these bats
now predominantly occupy small, resident roosts where they share food resources with
locals [22], [33].
However, both provision of suboptimal food and spatio-temporal redistribution of dietary
resources can have several downstream effects on bat health and immunity to infections,
as a consequence of nutritional stress, which in turn can affect the prevalence and
circulation of HNV (as anticipated in subsection 1.4.4). Notably, in Australia and
Bangladesh, spillover events are clustered in the cooler and dry winter months, when bats
experience nutritional stress and resides in small roosts close to humans [33]. Additionally,
bat movement patterns can have significant implications for the prevalence of HNV within
bat populations. This is particularly relevant when considering how frequently bats move
in relation to the duration of the pathogen’s infectious period [22]. Specifically, short
infectious periods combined with low movement rates among roosts can result in patchy
viral distribution, whereas long infectious periods and frequent bat movement can lead to
more homogeneous viral dynamics [3]. Since the length of NiV infectious period in bats is
currently unknown, predicting its impact on transmission dynamics remains challenging
[22], [33]. Two different hypotheses exist but they will be discussed in details in Section
1.5.2.
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Altered bat density: Spatio-temporal patterns of resource availability influence key
demographic factors in bat populations, such as births, deaths and dispersal, which in
turn affect colony size and population density. Food-shortage and poor quality habitat
tend to reduce population density by lowering birth rate, decreasing juvenile survival and
by limiting the immigration of new individuals into the population [22]. Conversely, in
areas where habitats are of higher quality and resources are abundant, population density
tends to increase [22].

During periods of food-shortage-caused by seasonal changes, habitat loss or climate
disruption-bats often aggregate in urban and peri-urban areas in search of alternative food
sources [3]. For instance, in subtropical regions of Australia, large aggregations of flying
foxes occur seasonally in response to transient pulses in fruit and nectar availability [33].
In contrast, bats in Bangladesh are in a permanent state of fission, residing in an increased
number of smaller, disconnected, mostly resident roosts in a matrix of anthropogenic food
resources [33].

Changes in local bat population density due to resource alterations could significantly
affect the spatial dynamics of HNV transmission [22]. Bats in roosts are continuously
exposed to low-level viral excretions in urine (see Section 1.5.3 for further details) [22]. If
HNV transmission were solely density-dependent, higher population densities would likely
lead to increased viral shedding and a greater risk of spillover events [22], [33]. However,
it remains unclear how bat density scales with roost size or if HNV dynamics are purely
driven by density-dependent processes.[22], [33].

Pathogen transmission can also follow a frequency-dependent pattern, where the rate of
infectious contact remains constant regardless of host density [33]. The mode of pathogen
transmission is crucial in determining how changes in host density influence pathogen
dynamics, persistence within populations, and the likelihood of spillover to new host [33].
Furthermore, seasonal shift in transmission modes may further complicate the relationship
between host density and pathogen spread [33].

Understanding how these transmission modes interact with bat population density is
crucial for assessing spillover risks. If HNVs transmission is primarily density-dependent,
resource-driven increases in population density would likely enhance viral shedding and
spillover potential [22], [33]. However, factors such as roost connectivity and bat movement
may also play a role, meaning that density alone may not fully explain spillover risks
[22]. Indeed, roosts are not isolated systems but are interconnected via bat movement at
the landscape level [33], [33]. Further investigation is needed to explore how the relative
importance of density- and frequency-dependent factors changes seasonally.

Notably, findings from Bangladesh suggest that spillover events are more closely linked
to higher roost density rather than bat population density [55]. Specifically, an increased
number of smaller roosts, without a corresponding rise in the total bat population, appears
to be associated with a greater risk of spillover events [55], [33]. This highlights the
importance of considering roost structure and distribution in addition to population
density when assessing HNV transmission dynamics and spillover potential.

1.5.2 Altered connectivity
Habitat fragmentation has disrupted the connectivity between and within bat metapopu-
lations [36]. The landscape is now predominantly characterized by small, isolated, and
irregularly shaped forest patches, interspersed with croplands and human settlements—a
pattern common across the tropics [12]. This reduced connectivity alters contact rates
among bats, affecting infection dynamics and pathogen spread. Consequently, these
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anthropogenic changes have undoubtedly influenced the frequency of spillover events into
human populations [33].

Prevalence, viral load and shedding from infected bats As anticipated, the
length of the NiV infectious period in relation to bat movement rates between roosts is
unknown but could impact HNV prevalence in bat populations. Two hypotheses have been
formulated to explain the temporal and spatial pulses of virus shedding in bat populations
[3]:

1. Acute infection, with or without waning immunity, leading to transient
epidemic waves of bat-to-bat transmission between bat populations [3].

2. Persistent chronic or latent infection, causing episodic viral shedding due to
the recrudescence of chronicity or reactivation of a latent infection [3].

Acute infection and transient epidemics waves: This is characterized by a short
infectious period and a low movement rate that promote patchy viral dynamics among
roosting sites [3]. A decrease in meta population connectivity, due to urban settling, and
a reduced bat migratory behaviour, is comparable to sedentary urban populations with
waning population immunity (though not necessary waning of individual immunity) [22].
Therefore, if HNV infection in bats is acute, the disease quickly spreads and then fades
out throughout the population in the absence of virus reintroduction [22]. Over time,
births and immigration replenish the number of susceptible hosts, leading to extinction-
colonisation dynamics of the virus [22]. Consequently, pulses of infection due to local
virus extinction and recolonisation across roosts could generate epidemics that travel as
waves of infections among hosts [3].

Persistent infection and episodic shedding: The alternative hypothesis is that
bats carry persistent infections that do not cause apparent pathology or disease [3]. There-
fore, if persistent infections are suppressed by the host’s immune response, reactivation
and episodic shedding (i.e., excretion of virus) could occur when intrinsic or extrinsic
stressor weaken the bat immune response [3].
The bat’s innate and adaptive responses to viral infection play a critical role in affecting
HNV prevalence within the population, viral load within a host and virus shedding [22].
As previously discussed in Section 1.4.4 and 1.2, immune responses are energetically costly
and resource-intensive to develop and activate [22]. Consequently, the maintenance and
function of the immune system require allocation of host resources, making immunity
dependent on nutrition [22]. Any dietary-shift (refer to Section 1.5.1) or metabolically
demanding external stressors (i.e. thermoregulation, pregnancy, lactation, refer to Section
1.4.4) that limit the intake of energy and nutrients necessary to maintain an effective
immune response has the potential to increase the individual’s viral load [22]. Therefore,
bat viral seroconversion results from an impaired immune reaction due to resource-related
pressure or stress, which increases susceptibility to HNV infections, recrudescence of latent
infections, or opportunities for transmission among bats, particularly if they aggregate in
response to resource concentration [22] [3]. Consequently, poor nutritional conditions are
more likely to trigger the reactivation of latent infections and recrudescence, either due to
reduced immunocompetence or immunity trade-offs during periods of physiological stress,
such as pregnancy [22]. In contrast, transmission between hosts is more likely influenced
by resource distribution, which affects bat population density and connectivity [22].
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1.5.3 Enabling conditions for virus spillover from bats to recipi-
ent hosts

The persistence and transmission of viruses operate on multiple levels, from within host
cells, individual host, population of hosts to the broader host metapopulations and
landscape [3]. At the individual level, hosts provide a habitat for viruses, but for viral
propagation across populations, the virus must successfully replicate, exit the host, and
be transmitted to new hosts [3]. While the host’s immune system—both innate and
adaptive—acts to suppress or eliminate the virus, certain viruses, like henipaviruses,
filoviruses, and coronaviruses, seem to have co-evolved with bats, their natural reservoir
hosts [3]. This long-term association may result in minimal pathology or clinical disease
in bats, allowing the virus to persist without causing significant harm to its host [3]. In
the case of henipaviruses, viral replication may also be limited, yet this interaction still
enables the virus to survive and spread across bat populations and metapopulations [3].
Furthermore, the bat-borne viruses distribution among roosts is influenced by factors such
as the duration of the infectious period and the movement patterns of bats between roosts
(refer to Subsections 1.5.2 and 1.5.1) [3]. Antibodies, which reflect the cumulative exposure
to viruses, are often widely distributed across bat populations and species communities,
indicating consistent viral presence over time [3]. However, viral shedding tends to occur
in episodic pulses, suggesting short infectious periods with possible cycles of local virus
extinction and recolonization within roosts, or intermittent shedding from persistently
infected individuals [3] (refer to Subsection 1.5.2). These episodic shedding events highlight
the complexity of viral dynamics in bats, where even widespread antibody presence may
not directly correspond to continuous viral transmission [3].
Building on this foundation, the following sections will examine the specific conditions
and dynamics that facilitate the transmission of viruses from bats to recipient hosts,
commonly referred to as spillover events. These events require a series of hierarchical
enabling conditions, including the distribution of the reservoir host, the spatio-temporal
dynamics of the pathogen within the host population (such as infection and shedding
patterns), the survival or dispersal of the pathogen outside the reservoir host, the overlap
between reservoir hosts and susceptible recipient hosts, and behaviors that increase the
exposure risk for recipient hosts [22][3].

Within-host virus transmission dynamics

The amount of virus shed by reservoir hosts depends on several factors, including the
number of bats in a given site, their infection levels (i.e., viral load), the amount of virus
excreted into the environment, and the duration of their infection, which is influenced
by their immune response [22]. Pteropus bats, which live in dense arboreal colonies, are
near-continuously exposed to a low-level of viral shedding trough droplents or virus-laden
aerosolized urine or faeces [3]. Indeed, seroprevalence studies suggest that HNVs are
predominantly horizontally transmitted among bats (transmitted among individuals),
which could plausibly occur through urination in the three-dimensional dense roost
structures [22], [3]. This is supported by the fact that, in Pteropus bats, Nipah virus
has been repeatedly found in urine, while rarely in oropharyngeal and rectal swabs [22].
Although vertical transmission of NiV (from mothers to offspring) has been observed, its
significance as a transmission route in natural settings remains unclear [22].
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Recipient host exposure

It is important to emphasize that spillover events occur when the reservoir hosts excrete
a sufficient infectious dose and susceptible recipient hosts come into contact with the
excreted pathogen [22].
Bat execrate the virus through urine, faces, and saliva in a drip zone around trees
where they feed or roost [3]. While direct transmission of HNVs (i.e., through bites or
consumption of bat birth products [30]) is probably rare, indirect transmission is likely to
occur via contaminated food (such as, partially eaten fruit or contaminated Date Palm
Sap) or fomites. Intermediate hosts can be exposed to HNVs by consuming contaminated
food (i.e. grass, feed, fruit or water) or by touching, browsing or sniffing contaminated
surfaces within the drip zone [3]. As already discussed in Section 1.4.3, numerous domestic
and peri-domestic animals are susceptible recipient hosts for Nipah virus, including pigs
and horses. In Malaysia, discarded fruit pulp was the route of Nipah transmission to
pigs, while in Bangladesh, contaminated pots collecting date palm sap are the source of
bat-to-human transmission route [3].
The rate and duration of food consumption within the drip zone can influence the
accumulation of an infectious dose of bat virus [3]. Consequently, the survival of the virus
in the external environment is a crucial factor in determining the zoonotic potential of
NiV pathogen [22].

Survival of virus outside reservoir hosts: NiV has a limited survival time outside
its natural reservoir host [22]. Typically, it can persists in urine and on contaminated
fruit and fomites, with an average half-life of only few hours [22]. Consequently, spillover
requires that contact between HNVs and recipient hosts occur shortly after excretion [22].
NiV, like Hendra virus, filoviruses, and coronaviruses, is highly sensitive to environmental
factors such as temperature, pH, ultraviolet light, and desiccation [3]. As temperatures rise,
particularly in summer or due to landscape changes like deforestation and urbanization,
increased desiccation rapidly reduces the virus’s survival [22]. In these conditions, viral
particles dry out quickly, shortening the window for potential transmission. Conversely,
in cooler months or during periods of higher precipitation and humidity, NiV can survive
longer due to slower desiccation [22]. These conditions create a more favorable environment
for viral persistence, extending the time during which recipient hosts might encounter
and contract the virus from contaminated surfaces or food. Moreover, the impact of local
microclimate fluctuations on virus survival also depends on the contaminated medium;
if it is liquid, the effects of temperature and desiccation are reduced [22]. This is well
represented by the case of virus contaminated collection pots of Date Palm Sap (DPS)
in Bangladesh, which acts as the primary route for bat-to-human and human-to-human
transmission of NiV [33]. Harvesting methods that do not use bamboo skirts to block fruit
bat contamination of pots, along with the seasonal human consumption of raw DPS, has
clearly linked spillover events to human behavior rather than environmental conditions
[33], [22]. Indeed, even if the human consumption of fermented DPS, known as Tari,
occurs all year-round, the higher spillover risk is associated with cooler and drier winter
months, when DPS is consumed fresh within few hours of collection [56]. To support these
findings, more detailed information and numerical data from the literature are provided.
Field and laboratory tests have confirmed that:

• NiV can survive for up to 3 days in some fruit juices or on mangoes [30] [34].
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• It remains infectious in neutral pH bat urine held at 22°C for up to 4 days, with a
half-life of 18 hours [30] [34], [33], [35].

• In artificial date palm sap held at 22°C, consisting of 13% sucrose and 0.21% BSA in
water at pH 7.0, the virus can persist for at least 7 days [30] [34].

• The pathogen is relatively stable and remains viable in palm sap held at 70°C for
1 hour. However, it is completely inactivated by heat at 100°C for more than 15
minutes and by common disinfectants such as sodium hypochlorite [30] [34].

• NiV is susceptible to alcohol, and a 60%–70% alcohol solution is recommended for
sterilizing contaminated objects[46].

Transmission cycle from bats to humans

Humans can be infected by Nipah virus through intermediate hosts, such as domestic,
peri-domestic animals, as well as trough direct bat-to-human (though less common)
and human-to-human transmission [16].

Figure 1.3: Routes of transmission for Nipah Virus (NiV). This figure has been revised
and adapted from [16].

Indirect transmission: intermediate host-to-human and human-to-human As
anticipated in Section 1.4.3, intermediate secondary hosts for Nipah virus include a
wide range of domesticated animals, spanning six mammal orders, including pigs, dogs,
cats, horses, hamsters, guinea pigs, sheep, cattle, goats, bats, and ferrets [57]. Notably,
among these, pigs and horses have served as key viral amplifiers during outbreaks in
Malaysia-Singapore and the Philippines, respectively [57].

Intermediate recipient hosts can be infected trough ingestion of contaminated
fruit, water, feed or aborted bat fetuses and birth products (e.g. by pigs) [30], [3]. Humans,
in turn, can be infected by sick animals:
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• via consumption of undercooked meat [30];

• via direct (unprotected) contact with tissue and body fluids, trough skin abrasions
or mucous membranes (e.g. aerosolization of respiratory or urinary secretions) [30].

Person-to-person transmission of the NiVB strain has been documented in
Bangladesh and India [30], [57]. Humans can shed the virus in respiratory secretions,
saliva, and urine, and are particularly at risk of contracting it after more than 12 hours of
exposure to the body fluids of infected patients [30]. Additionally, it has been documented
that some individuals have become infected after unprotected contact with deceased
patients during the preparation of the corpse for burial [30].

Direct transmission: bat-to-person Humans can be also infected via direct exposure
to bat saliva, urine and guano. This can occur through ingestion of contaminated food,
such as partially eaten fruit or contaminated beverages (like Date Palm sap or water), or
through activities involving exposure to bat secretions or excreta, like guano harvesting
[32] or climbing trees [58]. These activities can lead to the inhalation of aerosols or droplets
containing bat secretions. Bat feces are a popular fertilizer in Cambodia and Thailand.
In rural areas with limited work opportunities, selling bat droppings can be a vital source
of income for unaware guano harvesters [32].

Figure 1.4: A bat feeding on date palm sap.
The sap from date palm trees can serve as
a vehicle for the Nipah virus, facilitating its
transmission from bats to humans. Source:
[38].

Date Palm Sap case In Bangladesh and
India, consumption of raw (unpasturized)
date palm juice (i.e. Date Palm Sap) is
the major route of NiV transmission from
bat to humans [36], [33]. The cultivation
of date palms has deep historical roots in
these regions [36]. It is a seasonal business
and a critical component for the local econ-
omy, especially for families in rural areas
during the winter months when other work
opportunities are scarce [36].
Fresh DPS is collected by shaving the date
palm tree, placing a tap below the incision,
and collecting the sugary fluid as it pours
out of the trees into a clay pot overnight
[57]. Fruit bats are known to visit these
sap streams, and they may even urinate or
defecate into the clay pots, thereby contam-
inating the raw sap with infectious Nipah
virus [46].
Date palm sap, is an example of provisioned
resource for flying foxes, as it becames avail-
able as a food for Pteropids during human
harvesting [22]. This source attracts large
numbers of P.medius, especially during win-
ter, a season of natural resource limitation
for bats in Bangladesh. These months coin-
cide with increased sap production driven
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by the repair mechanism of xylem plants in response to embolism caused by specific
climatic conditions (i.e., a phenomenon known as xylem refilling, see Section A.2.1 in
Appendix A for further details) [56].
The increased frequency of P.medius visits to date palm trees during winter months have
been documented [56], and critically, this period coincides with the primary harvest season
for fresh DPS (October to April). Fresh sap is collected during the night and sold in the
early morning, often consumed within hours, before natural fermentation occurs and the
sweet taste is lost [57], thus increasing the risk of virus spillover [56]. Although Nipah
virus is sensitive to pH and alcohol, evidence from India shows that it can remain viable
even in fermented sap (tari), which typically contains 5%–8% alcohol and a pH of 4.5–6.0
[46]. This level of alcohol may not fully inactivate the virus, allowing its persistence and
potential transmission to consumers, particularly during winter months when temperatures
range from 15 to 28 ◦C [46].

Multiple products are made from date palm sap, including date palm wine (called
“Tari”), jaggery (called “gur”) and sugar candy, which are consumed year-round [36].
However, spillover events predominantly occur during the colder and drier winter months
[59], and result to be spatially clustered within the so called "Nipah belt", a group of
districts in the central and northwest regions of Bangladesh [33]. Despite the association
between raw date palm sap consumption and spillover risk, some Bangladeshi villages
with high proportion of residents reporting this habits have not experienced outbreaks,
suggesting that additional factors, such as local practices or environmental conditions, may
influence spillover dynamics [59]. Notably, NiV causes high mortality rates in low-income,
rural communities with limited access to healthcare [36].

1.6 Climate change and zoonosis: Nipah virus
Climate change is causing significant alterations in global weather and climate patterns.
These extensive changes, driven by human activities such as the burning of fossil fuels and
changes in land cover, are affecting the entire climate system, including the atmosphere,
hydrosphere, cryosphere, and biosphere, as well as the complex interactions among them.
Human-driven increases in greenhouse gases (GHGs) and aerosols have played a key role
in the climatic changes observed during the twentieth century [60]. These alterations
are expected to persist, leading to further changes in climate throughout the twenty-
first century and beyond [60]. The resulting shifts in the composition and properties
of atmospheric constituents, altering the energy budget of Earth, are likely to impact
temperatures, precipitation patterns, sea levels, and the frequency of extreme events, all
of which are critical to the stability of natural environments and human systems [60].
Moreover, the accelerated pace of these changes suggests that societies worldwide may
face significant challenges in adaptation, with potentially severe consequences for specific
regions.

According to the Sixth Assessment Report (AR6) of Intergovernmental Panel on Climate
Change (IPCC), South Asia, with over one-fifth of the world’s population, is among
the most vulnerable regions to climate change impacts, as indicated by the increasing
frequency and severity of extremes such as cyclones, droughts, floods and heatwaves [61].
This vulnerability arises from a combination of factors, including widespread poverty,
heavy reliance on natural resources and ecosystem services, and the region’s relatively
narrow temperature ranges [62]. These challenges are further exacerbated by high annual
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population growth rates (2%, compared to the global average of 1.4% [63]) in what is
already the most densely populated region in the world, along with increasing poverty and
food insecurity [60]. Notably, Bangladesh is highly vulnerable to both natural disasters
and climate change, ranking as the seventh most disaster-prone country in the world,
according to the Global Climate Risk Index 20211.

In addition to its socio-economic vulnerabilities, South Asia is recognised as a deforesta-
tion hotspot, with some of the most impaired ecosystems in the world [26]. The extensive
land-use change, fuelled by agricultural expansion and rapid urbanisation, further drive
climate change with downstream effect on human health, and societal resilience [60]. These
complex interactions between land-use alterations, biodiversity loss, and climate change,
set within South Asia’s unique geographic, demographic, and socio-economic landscape,
create a vicious cycle that increases the risk of zoonotic disease spillover. This makes
South Asia a hotspot for the emergence, re-emergence, and spread of zoonotic infectious
diseases [64], [65], [66]. Addressing this requires an integrated approach, recognizing that
protecting forests, reducing land-use change, and mitigating climate change are essential
for reducing the risk of future zoonotic outbreaks [67].

The following sections will examine the current and projected impacts of climate change
on South Asia, focusing on its relationship with zoonotic diseases. Key attention will be
given to how rising temperatures and altered precipitation patterns reshape host, vector,
and pathogen dynamics, along with their interactions [10]. By exploring the intersections
between climate change, human health, and ecological conditions that influence zoonotic
disease emergence, the following analysis will shed light on the importance of understand-
ing these complex relationships underlying spillover events to better prepare for future
health challenges driven by a changing climate.

1.6.1 Climate Change in South Asia
In South Asia, a significant portion of the population, particularly those living below the
poverty line, depends heavily on climate-sensitive sectors such as agriculture, forestry, and
fisheries [60], [63], which are particularly affected by rising temperatures, rising sea levels
and changing rainfall patterns. While the region has experienced rapid economic growth
in recent decades, lifting millions out of extreme poverty, this progress has come with new
challenges. Land use changes, land degradation, urbanization, and pollution have disrupted
ecosystems and altered climate dynamics [60]. As a result, many communities in this
disaster-prone region remain highly exposed and vulnerable to weather and climate-related
hazards [63].

South Asia is already experiencing the impacts of climate change, and these effects
are expected to intensify in the coming decades, exacerbating the region’s vulnerabilities.
The key observed and projected climate changes for this region are outlined in the Sixth
Assessment Report (AR6) by the IPCC, as detailed below.

Temperature trends: South Asia has already seen rising air temperatures, and this
warming is expected to accelerate significantly throughout the 21st century [68], [60].
Projections suggest that, under a high-emissions scenario, average annual temperatures,
could increase by more than 2 ◦C across most of the region by mid-century, compared

1Climate Vulnerability Index (CVI)
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to the 20th-century average [68]. Increases could exceed 3 ◦C, with high-latitude areas
potentially seeing rises over 6 ◦C by the century’s end [68]. Under a low-emissions scenario,
temperature increases would be more moderate, remaining below 2 ◦C in most areas,
except higher latitudes, where warming could reach 3 ◦C [68]. This rise in temperatures
will have severe consequences for agriculture, particularly in tropical parts of South Asia,
where crops are already grown near their temperature tolerance limits [60]. Climate-
induced declines in crop yields will reduce food productivity, impacting livelihoods, exports,
and exacerbating poverty [68]. For instance, in Bangladesh, these factors are projected to
increase poverty levels by 15% by 2030 [68]. As will be further discussed throughout this
thesis, the decrease in fruit yields will also influence the emergence of zoonotic diseases like
Nipah virus. Nutritional stress in the reservoir host, driven by reduced fruit availability,
can weaken its immune system, thereby increasing the likelihood of pathogen shedding
and the risk of disease spillover.

Monsoon alterations: South Asia’s climate is primarily governed by the monsoons,
which consists of a seasonal reversal of the prevaling winds (in the direction and speed) in
the lower troposphere, accompanied by dramatic shifts in precipitation regime between very
dry to very wet [69]. The transition from dry to wet conditions typically happens suddenly
around mid-June, but the timing, duration, and intensity of the monsoon rains fluctuate
each year, leading to either floods or droughts [69]. The South and Southeast Asian
monsoons (SAsiaM) cover a broad region, including countries such as India, Bangladesh,
Nepal, Myanmar, Sri Lanka, Pakistan and parts of Southest Asia (i.e. Thailand, Laos,
Cambodia, Vietnam, and the Philippines). The unique geographical features of this
areas-including the Tibetan Plateau, Himalayas, Western Ghats, Arakan Yoma mountains,
and the nearby Indian Ocean—play a crucial role in shaping monsoon dynamics [70].
The South Asian summer monsoon (SASM), a key component of the SAsiaM, brings
abundant precipitation, from June to September, after a period of hot and dry weather
contributing more than 75% of the annual rainfall in many parts of the region, including
Bangladesh [71].

a) Observed: over the past century, the SASM has undergone significant changes, with
far-reaching impacts on natural ecosystems, food security, and socio-economic conditions
across the region [71]. One major driver of these changes has been the increased air
pollution (i.e., anthropogenic aerosol forcing) over the Indian subcontinent and the rest of
South Asia [72], [71]. These aerosols have acted as a barrier, lowering the temperature
contrast between land and sea, a key factor in driving monsoon circulation [72], [71]. The
cooling effect from aerosols diminishes both the intensity and frequency of monsoon rains
by dampening atmospheric circulation and reducing rainfall [72], [71]. While some recovery
in monsoon activity has been observed in recent decades, the long-term weakening during
the 20th century continues to affect regional climate patterns [72], [71].

b) Projected: looking ahead, while near-term changes in monsoon precipitation
are expected to be influenced by internal variability, long-term projections indicate that
both South and Southeast Asian monsoon precipitation will increase during the 21st
century, with enhanced inter-annual variability [72]. However, despite the anticipated
rise in precipitation, the weakening of monsoon circulation due to various complex
factors—such as reduced meridional land-sea thermal contrast and changes in atmospheric
stratification—remains a critical concern for the region’s climate stability and future
sustainability [71].
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Increased weather extremes: a) observed: according to the IPCC (2021) report,
over the past few decades, South Asia has witnessed a marked increase in the frequency
and intensity of extreme weather events. These include humid heat stress and heatwaves,
characterized by a rise in the number of hot days and warm nights, alongside a decrease in
cold days and nights [63], [72]. The region has also experienced more heavy precipitation
events, leading to river floods and landslides, with significant damage to property, assets,
and human life [63]. Additionally, the warming of the world’s oceans has resulted in
seawater thermal expansion, contributing to a faster-than-average rise in sea levels around
Asia [72]. This has caused severe coastal erosion, shoreline retreat, and increased the
frequency of coastal flooding, particularly during typhoons, which have led to substantial
economic losses and fatalities [63], [60]. Saltwater intrusion has been reported up to 100
km inland along tributary channels of the Bay of Bengal during the dry season. Moreover,
significant portion of mangroves, which play a crucial role in preventing saltwater intrusion,
have been reportedly lost along the South Asian coastlines over the past 50 years, largely
due to human activities [60].

b) Projected: looking ahead, the AR6 of IPCC projects a continued rise in mean
surface air temperatures across all regions of Asia, with a shift towards more frequent and
intense heat extremes [72]. Climate change is expected to amplify the urban heat-island
effect, particularly in South and East Asian cities. Under a high-emissions scenario,
extreme temperatures and precipitation are projected for nearly all cities, impacting
freshwater availability, regional food security, human health, and industrial outputs [72].
The frequency of heavy precipitation events and related river floods is also expected to
increase, along with annual mean precipitation and precipitation extremes.

In addition, glacier runoff is projected to increase until mid-century before declining due
to reduced glacier storage [72]. Rising sea levels will continue to threaten coastal regions,
exacerbating issues such as coastal erosion and saltwater intrusion. The ongoing climatic
changes are likely to further constrain agricultural production, intensify water shortages,
and heighten the risk of forest fires and degradation [72], [63]. These developments will also
pose increased threats to coastal and marine resources and elevate the risk of outbreaks
of infectious diseases [63].

1.6.2 Focus: climate’s role in driving zoonotic disease emergence
and transmission

Climatic changes play a critical role in the emergence and re-emergence of many serious
infectious diseases (see Emerging infectious diseases and Re-emerging infectious
diseases), alongside various human, biological, and ecological drivers [73].

Zoonotic pathogens are particularly climate-sensitive compared to those affecting only
humans or animals, posing a significant challanges to public health and disease prevention
efforts, especially in the context of a rapidly changing climate [74]. Each of the following
points highlight a specific pathway through which climate change can increase the risk of
disease transmission, setting the stage for the subsequent focused discussion on the role of
bats in this context [75].

Host and vector distribution: As anticipated in Chapter 1, climate change exacerbates
the risk of zoonotic virus emergence by altering ecosystems and shifting the geographical
and altitudinal range of hosts and vectors [76], [13]. Indeed, warmer temperatures
and changes in precipitation patterns can transform previously unsuitable regions into
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hospitable environments for these EID’s carriers, leading to their expansion into new
areas [76], [13], [75]. The resulting increased proximity with new species, facilitates
pathogen cross-species transmission [32], [13], and amplifies the likelihood of viral spillover
to humans [13].

Examples of these climate-driven shifts are already evident. In the U.S., the hispid
cotton rat (Sigmodon hispidus), a reservoir for Black Creek Canal hantavirus, has expanded
its range northward and to higher altitudes due to rising minimum temperatures, increasing
hantavirus pulmonary syndrome (HPS) transmission risks [76]. Warmer conditions in
southern Europe have similarly increased the abundance of Culex mosquitoes, vectors for
West Nile virus, extended their active seasons and expanded their range into northern
regions [76]. Additionally, due to climate change rodents that host bubonic plague and
tularemia have shifted their ranges northward in North America, expanding areas at risk
for these zoonotic diseases [76].

Vector reproduction, activity and pathogen transmission efficiency: Climate
change can significantly accelerate the reproduction rates and activity levels of vectors, such
as mosquitoes and ticks. Warmer temperatures can lead to more frequent breeding cycles,
faster life-cycles (resulting in shorter lifespans), substantial increases in overall abundance,
extended active seasons, and heightened biting rates, all of which raise the likelihood of
pathogen transmission between vectors and hosts [77], [76], [78]. Additionally, climate
conditions, particularly warmer temperatures, can accelerate the pathogen development
within vectors (reducing the time needed for them to become infectious), and when
interacting with humidity, can influence vector survival, vectorial capacity, and enhance
the efficiency of pathogen transmission among hosts and vectors [77], [78].

Therefore, with more vectors active and reproducing rapidly, the transmission of diseases
to humans, such as West Nile virus, Dengue, and Zika can intensify [76]. Moreover, faster
pathogen development within vectors can lead to more rapid and extensive outbreaks.
For instance, during warmer periods, the rate at which mosquitoes transmit Malaria can
increase, resulting in larger and more frequent epidemics [76].

Pathogen persistence in the environment: Climate change can also impact how
long pathogens survive in the environment outside of their hosts [77], [76]. Factors such
as temperature, humidity, and precipitation influence the survival rates of pathogens in
water, soil, and other Fomites. Prolonged pathogen persistence in the environment can
lead to higher exposure risks for humans and animals (refer to Section 1.5.3 for the NiV
case).

Zoonotic disease epidemiology: Climate change, including global warming and
geoclimatic shifts, significantly alters the spread of zoonotic diseases by influencing the
dynamics of hosts, vectors, and pathogens, as well as their interactions [10]. Many zoonoses
are highly sensitive to climate variability and anomalies [17]. For instance, a strong link
has been observed between the extreme weather events related to El Niño Southern
Oscillation (ENSO) and outbreaks of Rift Valley fever (RVF), Malaria, Cholera, Plague,
Hantavirus, and other emerging diseases [10]. ENSO (refer to Section A.1 for further
details) has also been tied to the emergence of bat-borne viruses such as Hendra (HeV)
in Australia and Nipah (NiV) in Malaysia [17]. Similarly, the North Atlantic Oscillation
(NAO) has been associated with zoonotic diseases like Lyme borreliosis and Tularemia.
Another example from the Western United States shows that Plague outbreaks have been

23



Anthropogenic changes drive the emergence and spread of zoonosis: Nipah virus

linked to higher-than-average temperatures and the Pacific Decadal Oscillation (PDO),
which leads to increased precipitation [10]. This, in turn, boosts food supplies for small
mammals and promotes favorable conditions for flea populations, contributing to the
spread of the disease [10]. As climate models predict more intense oscillation cycles in
the future, the spread and impact of various zoonoses—including vector-, water-, food- as
well as rodents and bat-borne diseases—are expected to increase [10].

Ecosystem degradation: Climate change coupled with land-use change (i.e. forest
clearing for agriculture, urban development and road construction) irreversibly alter
and deteriorate disease-carrying wildlife habitat. Notably, deforestation not only affect
ecosystems but also drive climate change by releasing stored carbon and reducing the
natural carbon sequestration capacity of forests [67]. As natural habitats are destroyed,
wildlife species—particularly those that can adapt to living near humans, such as bats—are
forced into closer contact with densely populated areas, heightening the risk of zoonotic
disease transmission (refer to Chapter 1 for further details) [67]. Furthermore, the stress
caused by habitat loss and poor living conditions in these disturbed environments can
increase the likelihood of infected animals shedding pathogens [67].

1.6.3 Drivers of bat-borne zoonosis in Bangladesh: Focus on the
Nipah virus

The SARS-CoV-2 pandemic2 has highlighted that zoonotic diseases vary in their level
of threat, with some posing particularly high risks due to their elevated virulence and
transmissibility, resulting in a substantial death burden [1].

Bats, in particular, have been identified as reservoirs for several of these high-risk
zoonoses, such as Nipah and Hendra viruses, Ebola, and various coronaviruses, including
SARS, MERS, and SARS-CoV-2 [1]. The significant danger posed by bat-borne viruses
underscores the importance of focusing on zoonoses originating from bats, making the
Nipah virus a critical subject of this thesis.

As previously discussed, various stressors can negatively affect bats, leading to poor body
condition, and ultimately, increased viral shedding and a higher risk of spillover. These
stressors include land-use changes such as habitat loss, degradation, and fragmentation,
as well as climatic factors (which will be addressed in the following paragraph). Another
significant driver, particularly in Asia, is human behavior. In Bangladesh, activities like
wildlife consumption, the widespread wildlife trade, bat harassment, hunting, and the
consumption of date palm sap during the winter months, without measures to prevent
bat access, have been identified as key factors facilitating cross-species transmission and
the emergence of bat-borne viruses [33]. Moreover, consuming fruit partially eaten by
bats and engaging in activities that bring humans into close contact with bat excreta and
secretions—such as tree climbing and guano harvesting—further elevate the risk of Nipah
virus (NiV) spillover [67], [32], [58].

2The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus
disease 2019 (COVID-19) pandemic.
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Climate-related drivers for Nipah virus

Anthropogenic climate change, which has already resulted in increased temperatures,
altered precipitation patterns, and more frequent and intense extreme events like heatwaves,
droughts, floods, and wildfires, not only affects bat distribution, with the implications
outlined above, but its effects can also induce chronic stress and impaired body condition
in bats, altering their immune system functioning and the dynamics of virus transmission
among bat metapopulations (refer to Paragraph 1.4.4).

Bats’ physiological sensitivity to climate stress: Bats are particularly sensitive to
climate change effects due to their high surface-to-volume ratios, which make them prone
to dehydration, a consequence of their small body mass and large wing and tail membranes
[14]. Moreover, the absence of sweat glands in fruit bats hampers their ability to dissipate
heat efficiently, making them particularly vulnerable to heat-induced stress and mortality
[79]. To combat hyperthermia, which occurs when ambient temperatures (Ta) exceed their
body temperature (Tb ∈ [35− 39]◦C) and reach lethal levels above 40 ◦C, large bats rely
on thermoregulatory behaviors such as wing fanning, fluttering, licking their wings and
chest, panting, and belly-soaking [80],[40], [79]. Although these behaviors are essential,
they impose significant physiological stress due to their high metabolic demands. However,
both extreme heat and cold temperatures present substantial energetic challenges, and
the stress induced by these thermoregulatory responses can compromise their immune
system function [80].

Rising temperatures and shift in precipitation pattern: Climate change also
affect the redistribution of bat-dietary food sources across space and time altering plant
phenology (refer to Section 1.5.1). This lead to nutritional stress in nectarivorous bats,
especially when shifts in precipitation patterns alter flowering cycles [14]. This disruption
compromises the availability of essential nutrients needed to sustain bats’ immune systems,
increasing the likelihood of viral recrudescence and transmission. Pregnant bats are
particularly vulnerable to this nutritional stress due to the high metabolic demands of
gestation and lactation. Notably, in Australia, the combined effects of nutritional and
physiological stress have been linked to mass abortions and premature births in flying-
foxes, highlighting the critical and indirect role that precipitation plays in the fertility
and reproductive success of these mammals [81].

Additionally, climate-induced food shortages may also force bats to seek alternative
food sources (often sub-optimal in their nutritional value, refer to Section 1.5.1 for
further details), increasing their interactions with humans. Habitat fragmentation further
exacerbates these challenges, as bats must travel greater distances between forest patches
to forage, which not only increases their exposure to predators but also requires them to
expend more energy and time to meet their dietary needs [54]. Additionally, the declining
quality of these fragmented habitats can further limit available food resources, intensifying
the strain on bat populations [54].

Chronic stress caused by these external factors has the potential to lead to an impaired
body condition and to permanently disrupt the homeostasis of animals [54]. An weakened
immune system may then led to increased pathogens susceptibility, higher rates of pathogen
shedding, and reduced survival. These compounded stressors increase the likelihood of
viral transmission and the potential spillover to other species, including humans [54].
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Weather extremes: Furthermore, extreme weather events like thypoons can greatly
diminish the concealment of roosting bats due to storm-related defoliation, thereby
increasing their exposure to post-storm hunting and harsh abiotic factors, such as wind
and rain [48]. After intense tropical cyclones, bats have been observed foraging on the
ground or among fallen trees. However, their inability to take flight from the ground
makes them highly vulnerable to predation during these periods, significantly increasing
storm-related mortality rates [48].

The role of climate change mitigation: While the need for climate change
mitigation is critical, emerging evidence suggests that even successful mitigation efforts
may not necessarily reduce the risk of climate-driven zoonotic spillover events [13]. Recent
studies indicate that milder global warming scenarios, where species can successfully track
shifting climate optima, may actually lead to more first encounters between species, thus
creating more opportunities for viral sharing across species [13]. These findings underscore
the urgent need to pair wildlife disease surveillance systems and tracking bat range shift
especially in tropical regions, as well as enhancing the public health infrastructure as
essential components of climate change adaptation strategies, even if global warming is
limited to below +2 ◦C above pre-industrial levels [13].

Ecological drivers of Nipah virus in Bangladesh

In Bangladesh, the winter months witness a convergence in the consumption of raw sap
from date palms by both fruit bats and local communities [56] (refer to Section 1.5.3).
So far, this phenomenon has been identified as the primary ecological driver of Nipah
virus transmission in the region. However, drawing parallels from the Hendra virus case in
Australia [82], it is plausible that nutritional stress, due to a scarcity of optimal food, and
physiological stress associated with thermoregulation, lactation and gestation, play crucial
roles in the increased viral shedding in fruit bats during the winter season in Bangladesh
as well. Indeed, the convergence in palm sap consumption arises from several factors that
collectively heighten the likelihood of transmission (refer to Figure 1.5 for timing details):

1. Food availability and xylem refilling: During the winter months, fruit availability
for bats reaches its annual low (i.e. only 12 fruits available out of 49) [33], whereas
the availability of date palm nectar peaks, owing to the climate-induced xylem
refilling phenomenon (refer to Section A.2.1 for further details), which also enhances
its sugar content [56]. Date palm sap closely resembles the caloric density and
macronutrient profile of other fruits in the diet of P. medius, offering high levels of
certain vitamins and minerals [56]. As such, date palm sap may serve as a crucial
dietary supplement during a season marked by reduced availability of other fruits,
leading to more frequent visits by bats to date palm trees, as documented in [56].
However, despite its nutritional content, DPS is not an optimal food source for bats,
potentially compromising their nutritional status and immunity, thereby increasing
their susceptibility to pathogens and the recrudescence of viruses like Nipah [22].

2. Feeding behavior and contamination: Fruit bats exhibit messy foraging behav-
iors, often dropping and dispersing partially eaten fruits and chewed leaves in the
surrounding environment. Additionally, these bats commonly urinate and defecate
while foraging (refers to Section 1.4.4 for further details). As discussed in paragraph
1.5.3, bats feed on the sap of date palms by lapping the nectar with their long, flexible
tongues [38]. During this feeding process, their saliva mixes with the syrup, and urine
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Figure 1.5: Temporal overlap of ecological drivers of spillover events in Bangladesh
(monthly total across 18 years), highlighting the interplay of bat’s nutritional stress (fruit
availability [56]), physiological stress (gestation/lactation [48]), thermoregulatory stress
(seasonal changes), and the alignment of bat visits with human consumption of raw date
palm sap [56].

and feces can drip into the collection containers, contaminating the raw sap with
Nipah virus [38], thereby heightening the risk of food-borne transmission to humans.

3. Virus survival in low temperatures: During the winter months, the virus has
enhanced survival in the external environment (DPS) due to lower temperatures
(refers to Sections 1.4.3, 1.6.2 and 1.5.3).

4. Human consumption practices: In winter, date palm sap is consumed raw and
within hours of collection, without undergoing any fermentation. As the Nipah virus
is sensitive to pH variation, alcoholic content and rise in temperature, this seasonal
practice increases the likelihood of the virus remaining infectious in the juice (refer
to Section 1.5.3).

5. Breeding season and immunosuppression: According to data on the repro-
ductive cycle of P.giganteus in Bangladesh, the months from January to March
coincide with the birthing period [48]. Literature suggests that climatic factors
such as temperature, precipitation, and humidity during the six to nine months
preceding birth—encompassing the gestation period, which lasts between 4.6 to 6.3
months—affect food availability and consequently contribute to nutritional stress
during this energetically demanding phase [83], [82].

Moreover, the dry winter season in Bangladesh, from December to February, overlaps
with the end of the gestation period and the beginning of lactation for Pteropus
bats. As previously discussed, a significant association between pregnancy and in-
creased susceptibility to pathogens in bats has been observed [84]. Notably, the high
metabolic demands of gestation can be further exacerbated by the nutritional and
thermoregulatory challenges typical of winter. This combination of stressors during
the pre-winter and winter periods can increase bats’ vulnerability to infections such
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as Nipah virus, rising the likelihood of viral spillover during pregnancy or lactation
phases.

1.7 Limits identified in NiV research and their influ-
ence on thesis choices

An in-depth review of the existing literature has revealed several critical limitations in
the current understanding of the relationship between climatic factors and the Nipah
virus (NiV) spillover phenomenon in Bangladesh. These limitations, along with potential
improvements, have guided the methodological choices and the focus of the subsequent
analysis in this thesis. Specifically, the study tackles gaps in data resolution, the choice of
climate variables, and the temporal scope of analysis, which are essential for accurately
assessing NiV spillover risks. The following key points outline the identified limitations
and the corresponding improvements introduced in this thesis:

1. Knowledge gaps and research biases: Despite the crucial role that bats play in
ecosystems and their significance as vectors of zoonotic diseases, our understanding of
how climate and climate change specifically impacts bat ecology, and the dynamics of
viral transmission remains limited. Research on bats is significantly underdeveloped
compared to studies on other mammals and birds [85]. The challenges of studying
bats, such as their tendency to select inaccessible roosting sites, their nocturnal
activity, and their high mobility—allowing them to rapidly cross geopolitical bound-
aries—complicate data collection and monitoring [86]. These challenges have led to
limited information on their actual distribution ranges and population dynamics.
Moreover, research effort are geographically biased towards Europe, North America
and Australia, and temperate and Mediterranean biomes, living significant knowledge
gaps, in regions like Asia, where the risk of zoonotic spillover is most pronounced
[14]. For instance, in the extensive literature review cited in [14], only 6% of studies
where focused on Asia. Notably, over 80% of the papers analysed (published between
1930 and 2020) were released in the last decade, partly driven by the heightened
demand for bat-related data following the COVID-19 pandemic. Furthermore, these
studies exhibit significant taxonomic disparities, with only 7% of articles focusing
on Pteropodidae and a mere 0.014% on Pteropus, the primary NiV reservoir [14].
Therefore, one of the key reasons this thesis focuses on studying Pteropus species
in Bangladesh in relation to climate and NiV spillover events is to address these
significant gaps in the existing research, recognizing the substantial potential for
advancing our understanding in this critical area.

2. Climate variables and modeling limitations: To date, modelling studies primar-
ily address how changes in average temperature and precipitation affect bat species
distribution and behavior. However, they often overlook the impact of extreme
weather events such as droughts, heatwaves, and cyclones, which are increasingly
frequent due to climate change, as previously discussed. To address this gap, another
key improvement in this work involves exploring the correlation between extreme
weather events and NiV spillover incidents. This approach implicitly account for
the potential impact of extremes on nutritional and physiological stresses, and the
subsequent increased viral shedding by fruit bats.

3. Seasonal focus in Nipah virus research: Research on the Nipah virus in
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Bangladesh has predominantly concentrated on the winter season, coinciding with
the majority of spillover event occurrences. However, this narrow seasonal focus
overlook the continuous year-round consumption of date palm sap, the primary
ecological driver in the transmission of NiV int his region. Additionally, as seen
with the Hendra virus in Australia, this approach fails to account for the potential
delayed effects of external stressors on bats’ immune systems, which, when impaired,
can lead to viral recrudescence and increased shedding. To address these gaps, this
thesis introduces an expanded temporal analysis to better understand the year-round
dynamics of spillover.

4. Data sources for climate impact studies: Many studies on bat (e.g., current
and predictive modeling of habitat suitability, range shifts, and mapping of spillover
risk areas) rely on data from sources like WorldClim or ground-based meteorological
stations, which may not capture the full complexity of climate-bat-spillover inter-
actions, especially at tropics (refer to Section 3.1.1 for further details). This thesis,
therefore, utilizes ERA5 reanalysis data, which offers improved spatial and temporal
resolution and greater accuracy, allowing for a more detailed analysis of how climate
may shape zoonotic spillover.
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Chapter 2

The Bangladesh case

2.1 Description of the study region
Geography and topography Bangladesh, extending between latitudes 22 and 27◦N,
is a sub-tropical country bordered by India to the west, north and east, Myanmar to
the south-east and the Bay of Bengal to the south [87]. Except for the hilly terrain in
the southeast, the majority of the country (approximately 80%) consists of low-lying
floodplains and deltas formed by deposition of sediments carried by the major river systems
(the Ganges, Brahmaputra, and Meghna), which originate in the Himalayas[87], [88]. The
topography is marked by minimal elevation variation between adjacent ridge tops and
center depression (ranging from 1 to 6 m a.s.l), which renders this country highly prone
to flooding events (Refer to Figure 2.1a) [87].

2.1.1 Climate of Bangladesh
Bangladesh experiences a typical monsoon climate, characterised by high humidity, mod-
erately warm temperature and marked seasonal variations in rainfall [89]. From a me-
teorological perspective, four distinct seasons can be identified in the country with the
following general characteristics [87], [89]:

• Winter (December to February), is characterized by cold and dry conditions, with
average temperature ranging from a minimum of 7.2 to 12.8 ◦C to a maximum of 23.9
to 31.1 ◦C [87]. As illustrated in Figure 2.3a, a clear south-to-north thermal gradient
exists, with southern districts being generally 5 ◦C warmer than northern ones [87].
Sylhet, located in the northeast, is the coldest district, where minimum temperatures
occasionally drop below 5 ◦C, though frost is extremely rare [87]. January stands as
the coldest month, with an average temperature of 17.9 ◦C over the reference period
2000-2018 (refer to Figures 2.2a and A.3a).
Winter is also the driest period, with the lowest precipitation levels observed in the
southern regions, particularly in the Cox’s Bazar district (refer to Figures 2.3b and
A.3b).

• Pre-monsoon (March to May) is characterized by hot summer conditions, with
average maximum temperatures reaching 36.7 ◦C and very high evaporation rates [87].
The temperature gradient during this season generally moves from the southwest
toward the northeast (Figure 2.3a), and in some areas, temperatures can occasionally
rise above 40.6 ◦C [87]. May is typically the hottest month, with an average maximum
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(a) Digital Elevation Model

(b) Population density (2001)

Figure 2.1: (a) Digital Elevation Model (DEM) of Bangladesh elaborated in QGIS
software. Data source: SRTM DEM, from NASA web site, 1 arc sec (approximately
30 m) resolution. (b) Red areas represent the population density concentration across
Bangladesh in 2001. Source data: WorldPop, 1 km resolution.

temperature of 32.1 ◦C during the reference period (Figure 2.2a). This season also
experiences erratic rainstorms, often accompanied by heavy rainfall [87].

• Monsoon (June to early-October) is both hot and humid, bringing heavy torrential
rainfall throughout the season. More than 75% of the mean annual rainfall occurs
during this period, driven by the moisture-laden south-west trade winds which are
drawn to the Indian sub-continent by the intense heat and consequent low pressure
over Punjab (in Pakistan and India) and the Upper Ganges Valley [87]. During
the 18-year period, the average monsoon temperature across Bangladesh was 28.6
◦C (refer to Figure 2.2a),with the central districts consistently experiencing higher
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(a) Monthly average temperature

(b) Monthly precipitation

Figure 2.2: (a) Monthly temperature (average, maximum, minimum, and range) and (b)
precipitation averaged across Bangladesh during the reference period from 2000 to 2018.

temperatures compared to other regions, as shown in Figure 2.3a.

• Post-monsoon (late October to November) is a brief season characterized by
withdrawal of rainfall and a gradual decrease in nighttime minimum temperatures
[87].

The mean annual rainfall exhibits significant spatial and temporal variation, ranging from
1400 mm in the west to more than 4400 mm in the est, with a west-east gradient of almost
7 mm/km [89]. The higher precipitation levels in the Sylhet division are attributed to the
orographic effect of the Meghalaya Plateau [89].

2.1.2 Climate change exposure
Bangladesh faces a range of climate-induced hazards, including climatological events such
as droughts, hydro-meteorological events like tropical cyclones, tornadoes, storm surges,
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and floods, as well as geophysical threats (e.g., landslides, and coastal and riverbank
erosion). The country’s coastal regions, with an average elevation of less than 1.5 m
a.s.l., are particularly vulnerable to storm surges, coastal flooding, and salinity intrusion
[87]. Therefore, understanding the impact of climate change is crucial in assessing how it
exacerbates these already significant hazards, which have historically caused considerable
destruction. Notable examples include the severe floods of 1988, 1998, 2004, and 2007,
and the cyclones and tidal surges of 1991, 1998, 2000, 2004, and 2007 [89].

(a) Average temperatures

(b) Average precipitation

Figure 2.3: Spatial distribution of district-level seasonal averages for (a) mean tempera-
ture and (b) precipitation across Bangladesh during the reference period (2000-2018).

2.1.3 Demographics and economy
Bangladesh, the most densely populated country in the world and the eighth-most populous,
has experienced significant population growth during the last decades (Our World in
Data). From 129.19 million people in 2000, the population rose to 163.68 million by 2018
(refer to Figure 2.4), and reached 166.3 million in 2020 (World Bank, 2020). Projections
indicate that this number will increase to 192.6 million by 2050 (FAOSTAT, 2020). A
corresponding rise in population density was also been observed, climbing from 992 to
1,257 of people per km2 between 2000 and 2018. Rapid and massive urbanization has
shifted the proportion of the population living in urban areas from 5% to 28% over the
past 40 years, with approximately 45 million people now residing in urban settings [90].
Dhaka, the capital, stands out as a megacity with a disproportionately higher population
density compared to other cities, as clearly illustrated by the dense red area at the center
of Figure 2.1b. Despite its exceptionally high population density, Bangladesh remains
moderately urbanized (refer to Build-up thematic class in Figure 2.5).

33



The Bangladesh case

In this overpopulated country, marked by a continual influx of people toward cities
driven by poverty, climate change, and the promise of better economic opportunities,
unprepared urban areas with deteriorating infrastructures worsen the already challenging
living conditions of urban poor people [90]. GDP per capita is low, with 24.3% of
population living below the poverty line in 2016/2017 (Wold Bank, 2023). Although GDP
has risen rapidly in recent years, it remains significantly lower than in other countries,
living a considerable portion of the population underemployed, with limited access to
healthcare [90].

Figure 2.4: Population trends and growth rate in Bangladesh (2000-2018). Data source:
World Bank.

Bangladesh covers an area of 130,170 km2 (World Bank, 2020), with over 50% of this
land dedicated to cropland (for detailed percentages, refer to Figure 2.5 and for spatial
distribution to Figure 4.1). The agriculture sector contributes 14.74% to the country’s
GDP, providing employment about 41% of the labor force (Ministry of Finance, 2017),
playing a crucial role in sustaining the livelihoods of the poor.

Figure 2.5: Land cover and land-use in Bangladesh for 2020. Data source: ESA
WorldCover.
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2.1.4 Land-use and Nipah belt

In Bangladesh, forest loss and its conversion to mostly cultivated areas, have drastically
reduced the native habitat for Pteripus medius. These bat now persist year-round in
an increasing number of smaller roosts on or near human dwellings, opportunistically
feeding on cultivated food resources [36], [33]. The villages in central and northwestern
Bangladesh, where most Nipah spillover events occured (the so called Nipah Belt)
are characterised by high population density, high forest fragmentation and land cover
dominated by irrigated and rainfed croplands, intersparsed with grassland and forest [36],
[33]. All these factors are notably associated with the increased transmission of zoonoses,
as discussed earlier.

Moreover, Nipah belt villages exhibit less forest cover, higher forest patch density and
less canopy cover, all of which positively correlate with NiV events [55]. Although no
significant differences in the total number of bats, bat population density, or proximity
of roosts to human settlements have been detected within and outside the Nipah Belt,
villages affected by spillover events report a greater abundance of Pteropus giganteus
roosts [55], [33]. This altered roosting behavior, likely a response to habitat fragmentation,
could have implications for Nipah spillover, increasing the likelihood that fruit bats feed
on human resources, such as fruits from home gardens and date palm sap (DPS) collection
containers, particularly in regions with higher population density [55], [33].

Additionally, roosts within Nipah belt are characterised by greater biordiversity com-
pared to those outside this area, likely due to species-rich household gardens, orchards, and
agroforestry [55]. This may support larger bat populations, suggesting that flying foxes
within the Nipah Belt could expand alongside the human population [55]. Notably, two
tree species, the silk cotton and Indian mast trees, have been associated with Nipah virus
spillovers [55]. These trees are critical food resources for bats during their brief flowering
phase in winter, a period of food scarcity for bats. As a result, bats congregate around
these limited resources, increasing the likelihood of Nipah virus transmission within bat
populations [55]. Subsequently, the virus can spill over to humans when infected bats
drink from DPS containers [55].

As Bangladesh’s population continues to grow, urban expansion will increasingly
encroach upon renmant forested areas, significantly contributing to the emergence and
re-emergence of infectious diseases in humans, including zoonoses such as Malaria, Yellow
fever, Hantavirus, and Hemorrhagic fevers [55]. Notably, like other zoonotic diseases
globally, Nipah virus causes high mortality rates in impoverished, rural communities
where health systems are inadequate, fragmented, and ill-equipped to handle sanitary
emergencies [36], [38].

Spillover events are often sporadic in both space and time, with repeated outbreaks
being rare, further complicating the understanding and managment of spillover risk [33].
However, over the past 22 years, the Henipavirus strain, NiV, has emerged almost annually
in Bangladesh and sporadically in other neighboring regions, causing multiple outbreaks
and resulting in significant loss of life [15]. Although these outbreaks have been confined
to South and Southeast Asia, the rapid expansion of spillover-prone areas—driven by
human activities discussed earlier—has led scientists to speculate that NiV could be
the next pandemic agent after COVID-19 [15], [16]. This underscores the
critical need for a deeper understanding of the mechanisms underlying NiV
spillover events, which is the primary focus of this thesis, with the ultimate goal
of supporting the development of targeted and informed mitigation strategies.
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2.2 Spatio-temporal reconstruction of Nipah virus
spillover events in Bangladesh (2001-2018)

This study used Nipah virus case data from Bangladesh publicly available from two
authoritative institutions: the World Health Organization (WHO) and the Institute of
Epidemiology, Disease Control and Research (IECDR) of the Government of Bangladesh.
The initial goal was to map the spatial and temporal distribution of NiV cases in the
country during the period 2001-2018 and provide a detailed assessment of case counts at
the district level.
In Bangladesh, detection of Nipah-cases relies on a hospital-based surveillance system
(established in 2007 and made up of a network of three public tertiary-care hospitals [91])
and outbreak investigations conducted by the icddr,b in partnership with the Institute
of Epidemiology, Disease Control and Research (IECDR) [92]. The annual totals of NiV
cases (Nc) from 2001 to 2018 are summarized in Table 2.1. These NiV cases are classified

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Nc 13 0 12 67 12 0 18 10 4 18 43 17 31 37 15 0 3 4

Table 2.1: Annual count of NiV cases for year range 2001-2018. Sources: WHO, IECDR.

into two main types of cases, defined as follows [92]:

• Primary cases, refer to individuals who contracted the virus directly from bats,
also known as spillover events, or where no human-to-human transmission pathway
has been identified [93]. In this category are also included Index cases, defined as
distinct and independent initial infections within a given outbreak year [33], that do
not include cases resulting from secondary human-to-human transmission.

• Secondary cases, identify cases that occur when Nipah virus symptoms develop
5-15 days after close contact with a confirmed or probable case, corrected by the
assumed incubation period [92],[93].

Additionally, the definition of NiV cases includes both [92]:

• Laboratory-confirmed NiV cases are defined as cases of meningo-encephalitis with
detectable serum Nipah IgM antibody or detectable DNA in serum, throat swabs or
cerebrospinal fluid [92].

• Probable NiV cases refers to meningo-encephalitis cases that meet the criteria for
suspected Nipah virus infection and had epidemiological links to a confirmed NiV
case within three weeks of illness onset but whose blood was not collected due to
death, or where an the initial negative result was not followed by a second test due
to death [92].

As a second step, the temporal distribution of the total yearly spillover events was
reconstructed for the reference period 2001-2018, using data from three key sources:
Nikolay et al. (2019) [92] for the 2001-2014 period, Cortes et al. (2018) [59] for 2007-2013
and McKee et al. (2021) [33] for 2001-2018. While McKee et al. (2021) [33] served as
the primary reference, adjustments were made for 2012 and 2019 to align the counts with
those reported in other sources. The final annual counts used in this study are shown
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Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Sources

Ns 1 0 1 15 2 0 5 2 2 12 9 10 17 11 9 0 2 3 [33],[59],[94]

Table 2.2: Annual count of spillover events considered in this study. Sources: [33], [59],
[94].

in Table 2.2. After establishing the annual count of NiV spillover events, the analysis
proceeded by collecting additional information through a thorough year-by-year review
of each case from the available literature to reconstruct their spatial distribution across
Bangladesh and gain higher temporal resolution. Spillover events were classified as ‘real’
when corroborated by multiple sources or explicitly reported in the literature. In contrast,
events were classified as ‘dubious’ when precise information was lacking or based on
general assumptions. In this case, an average incubation period of one week was assumed
to estimate the spillover date from the onset of symptoms. The methodology used to
reconstruct and assign these events is detailed in Appendix A (refer to Section A.2.2),
with the final results presented in Tables A.2 and A.3.

2.3 Preliminary data analysis
Exploring spatio-temporal trends The aim of this analysis was to pinpoint the
specific months, districts, and divisions in Bangladesh that were most impacted by NiV
spillover events. The subsequent Figure 2.6 provides a temporal (2.6a) and spatial (2.6b)
illustration of the results. The highest count of events is observed in January, followed
by a drop to half both in February and March. The remaining months show a sharp
decline, with no occurrences reported from May to September and only minimal activity
during the autumn months (October-November). This pattern suggests a concentration

(a) Total spillover events by month. (b) Total number of spillover events by district.

Figure 2.6: Comparison of total spillover events by month and by district.

of spillover events in the early part of the year and a seasonal trend where the outbreaks
typically occur between December and April, with winter (December- February) as the
primary season for spillovers; a pattern as also reported in other studies from Bangladesh
[33], [59].
These events also appear to be spatially clustered in the central and northwest districts

37



The Bangladesh case

of the country, as similarly reported in previous studies [33], [59]. The Dhaka division
(n = 44) reported the highest number of spillover events across the eighteen-years period
analysed, followed by the Rajshahi (n = 27) and Rangpur (n = 21) divisions, respectively
(Figure 2.7a). Notably, within the Dhaka division, the Faridpur district stands out,

(a) Total spillover events by division. (b) Total spillover events by division and month.

Figure 2.7: Comparison of total spillover events by month and by division.

experiencing a disproportionately high number of spillover events—16 in total—compared
to all other affected districts. Other divisions show relatively lower counts, highlighting
regional variations in spillover occurrences.

The bar plots (Figure 2.7b) confirm the consistent seasonal trend across all divisions, with
peak events occurring in January, February, and March. This similarity across regions
underscores the seasonal nature of spillover events, including local patterns highlighted by
a division-specific analysis within each region.

Definition of two year groups: High and Low spillover years Based on these
spatio-temporal patterns and to facilitate data analysis, the reconstructed annual number
of spillover events from 2001 to 2018 were adjusted to fall within the same time frame.
Specifically, the annual count of events for each year is now defined as spanning from
May to the following April. This adjustment, detailed in Table 2.3, ensures that the
annual count of spillovers aligns within the end of the considered year. This approach also
facilitates the investigation of the pre-winter climatic conditions that may have influenced
the number of events in the subsequent months, accounting for potential lag effect.

A second adjustment was to cluster the data in two distinct groups: 7-years with a high
number of annual spillover events and 11-years with a low number. This classification
aims to determine whether years with a high frequency of spillover events exhibit specific
patterns in temperature (T) and precipitation (Pr) that could account for differences in
spillover counts compared to years with lower occurrences. To ensure the inclusion of all
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Year 2000/
2001

2001/
2002

2002/
2003

2003/
2004

2004/
2005

2005/
2006

2006/
2007

2007/
2008

2008/
2009

2009/
2010

2010/
2011

2011/
2012

2012/
2013

2013/
2014

2014/
2015

2015/
2016

2016/
2017

2017/
2018 Total

Ns 1 0 1 14 3 0 5 2 2 9 12 8 17 13 9 0 2 3 101

Table 2.3: Annual number of reconstructed spillover events for each year from 2000/2001
to 2017/2018. The year is defined from May to April, rather than January to December.
The numbers highlighted in green represent the annual count variations resulting from
the shift from the January-December year to the May-April year.

Figure 2.8: Yearly distribution of spillover events
(N.tot = 101), with years above the mean (dashed
line) marked in red and below the mean in blue.

Statistic Value

Minimum 0
First quartile (Q1) 1.25

33rd percentile 2.00
Median 3.00
Mean 5.611

66th percentile 8.22
Third quartile (Q3) 9.00

Maximum 17
Inter Quartile Range (IQR) 7.75

Standard deviation 5.35

Table 2.4: Descrip-
tive statistics of annual
spillover events (year from
May to April).

available data, the mean value was chosen as the reference cut-off between the two groups
of years (Figure 2.8) and defined as follows:

• High spillover years: Seven years, primarily clustered between 2009/2010 and
2014/2015, along with 2003/2004, each reporting more than 8 annual spillover events.

• Low spillover years: The remaining eleven years, each recording fewer than 5
annual spillover events.

To ensure better data management and consistency in the analysis, the years will be then
labeled sequentially: 2000/2001 will be referred to as Year 0, 2001/2002 as Year 1, and so
forth up to 2017/2018, which will be designed as Year 17.

Statistical inference Finally, to identify the distribution that best describes the annual
spillovers, data were fitted to both Poisson and Negative Binomial distributions. The
detailed tools and methods employed are reported in Section A.2.3 in Appendix A. The
goodness of fit was evaluated using various statistical methods, including Chi-square tests
and the Kolmogorov-Smirnov (KS) test. Additionally, a QQ plot was generated to visually
assess the fit.

Results indicated that the Negative binomial distribution well explains the annual data
(Figure 2.9a). The dispersion parameter α is found to be statistically significant (p-value
< 0.01), indicating that the mean and variance of the underlying distribution are not
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equal.
This was further supported by a Kolmogorov-Smirnov test which yielded a KS = 0.1602
and a p-value = 0.6866, therefore the null hypothesis that the data follow a Negative
Binomial distribution cannot be rejected) and QQ-plot (Figure 2.9b) indicates that the
observed data closely follow the theoretical Negative Binomial distribution.

(a) Counts vs Fitted Nbinom distribution (b) QQ plot

Figure 2.9: (a) Histogram of annual (May to April) spillover events with the fitted
Negative Binomial distribution (red line). Total spillover counts across affected districts
(2001-2018) are compared to the fitted Negative Binomial model. Key statistics, including
mean, variance, and dispersion parameter α, are reported. (b) Quantile-Quantile plot
(QQ-plot) as a graphical method for determining if the dataset follows a negative binomial
probability distribution.
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Chapter 3

Climate analysis

3.1 Analysis of climate anomalies
Empirical evidence suggests that most zoonotic and vector-borne diseases are sensitive
to climate, particularly to variations of temperature and precipitations (refer to Section
1.6.2) [17]. Many of these diseases may also be influenced by climate anomalies and
extreme events (see Section 1.6.2) [17]. As already discussed, climatic patterns exert
numerous cascading effects on ecosystems ecology, agricultural productivity and reservoir
hosts behaviour, by operating at different temporal and spatial scales [95]. These effects,
in turn, can trigger various mechanisms that alter host, vector and pathogen dynamics,
facilitating the onset of spillover events. Consequently, gaining a deeper understanding of
the influence of climate on disease transmission dynamics is essential.

This chapter explores the relationship between temperature, precipitation, and the fre-
quency of spillover events in Bangladesh during years with varying spillover counts (i.e.,
High and Low spillover years as defined in Section 2.3). The primary objective is to
determine whether specific climatic patterns can explain the increase in spillover events
during high-spillover years compared to low-spillover years. Two main research questions
guide this analysis:

• Seasonal spillover patterns: The majority of annual spillover events occur during
the winter months, with tails extending into March and April, and occasional
occurrences in October and November. This observation prompts the question: Do
years with a high number of spillover events exhibit specific winter anomalies in
temperature and/or precipitation that could explain differences compared to years
with low spillover events?

• Preceding climatic conditions: A related key question is: Can anomalies outside
the spillover period influence the number of events with a certain time lag? This
investigation is based on the hypothesis that pre-winter climatic conditions may affect
food availability and bat behavior, leading to delayed impacts on their health status
and ability to control infections (for example, changes in the quality and intensity of
the immune response to infections, refer to Section 1.4.4). Previous studies on the
relationship between climate and spillover events in Bangladesh have predominantly
focused on the winter months, when these events are typically detected [33], [59].
However, virus shedding by bats and the collection and consumption of date palm
sap – the primary transmission route of NiV in Bangladesh - occur all year-round.
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This thesis aims to expand the analysis by examining a broader temporal frame, and
exploring how climatic conditions affect spillover frequency beyond the winter period.

To address these questions, preliminary analysis identified the optimal spatial and temporal
resolution for interpreting the results and explaining the phenomenon as follow:

• Spatial Resolution: the ERA5 climate data were aggregated by district to match
the resolution of the spillover data. This adjustment was necessary to ensures a
coherent framework, as the location of most spillover events is only known at the
district-level.

• Temporal Resolution: non-overlapping seasonal windows were selected to align
with Bangladesh’s climatic seasons, namely, monsoon (June-September, JJAS),
post-monsoon (October-November, ON), winter (December-February, DJF), and
pre-monsoon (March-May, MAM). These seasonal windows provided clear initial
trends, which were further refined using monthly data. The monthly resolution offered
a more detailed understanding of climatic patterns within each season, allowing the
identification of critical months that were particularly significant for distinguishing
between high- and low-spillover years across the 18-year study period.

3.1.1 Climate data
The ERA5 reanalysis dataset, the fifth generation of global climate reanalyses from the
European Centre for Medium-Range Weather Forecasts (ECMWF), serves as the source
of observational data for this study. The key technical details of these reanalysis datasets
are summarised in Table 3.1.

Reanalysis dataset characteristics ERA5

Data type Gridded
Horizontal coverage Global

Horizontal resolution (atmosphere) 0.25◦ × 0.25◦

Temporal coverage 1979 to present
Temporal resolution Hourly

Table 3.1: Main technical details of the ERA5 reanalysis datasets used in this study,
produced by the Copernicus Climate Change Service (C3S) [96].

Reanalysis combines model data with observations from around the world into a globally
complete and consistent dataset [97]. This process, known as data assimilation, integrates
observations from various sources-including ground-based measurements, satellite observa-
tions and other remote sensing data-with a numerical weather prediction (NWP) model
to produce a best estimate of the atmospheric state, known as reanalysis when applied to
past data. This results in a comprehensive, high-quality, and high-resolution dataset that
spans several decades.

One key advantage of reanalysis is that its outputs are not directly dependent on
the density of ground-based observational networks [98]. This allows a reconstruction of
climate variables in areas with sparse or no surface observations, making it particularly
valuable for regions with limited observational coverage [99], [98].
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In contrast, the WorldClim dataset, which has been extensively used in studies related
to the Nipah virus, provides high-resolution GIS climatic layers derived from spatially
interpolated climate surfaces using weather station data [99]. WorldClim data includes 19
bioclimatic variables derived from precipitation and temperature records for the period
1950 to 2000 [100].

However, WorldClim and weather stations, while valuable data sources, have several
limitations in tropical regions, primarily associated with the reliance on spatial inter-
polation from sparse ground weather station data [101], exacerbated by topographic
heterogeneity, inter-annual variability, and the distance to the closest weather station,
which can compromise the accuracy of climate-related analyses [101]. To address these
limitations, this study opts for ERA5 reanalysis data, which provides better coverage and
higher spatial and temporal resolution across several decades.

3.1.2 Data pre-processing steps

The ERA5 reanalysis datasets were freely downloaded from the Copernicus Climate
Change Service platform through the Climate Data Store web interface v.1.0, in Network
common data form (NetCDF) format for the entire Bangladesh domain. The hourly
variables of interest were:

• Air temperature at 2 meter above the surface of land (’2m_temperature’, t2m, [K]);

• 3-hours precipitation (’precipitation’, tp, [m]).

To focus on the specific region of interest (latitudes 20◦ N to 30◦N and longitudes 85◦E to
100◦E) and the relevant time period (January 1, 2000, to December 31, 2019), a precise
spatial and temporal subset was extracted using the Climate Data Operators (CDO)1.
Both precipitation and temperature data were then aggregated at a daily time step.
Specifically, from the original temperature data, daily averages (Tavg,day), daily mini-
mums (Tmin,day), daily maximums (Tmax,day), and daily temperature ranges (DTRday) (i.e.
maximum-minimum) were derived. For precipitation, the daily cumulative precipitation
was calculated (Prcum,day).

After temporal aggregation, the daily climatic data were further processed at the district
level to align with the intended spatial resolution of the analysis. This spatial aggregation
process was efficiently carried out using the advanced capabilities of the xagg package 2,
which facilitates the computation of a weighted spatial average of gridded data values
within each administrative unit.

1CDO is a collection of command-line Operators developed by the Max Planck Institute for
Meteorology to manipulate and analyse climate and NWP model data. For more information, see
https://code.mpimet.mpg.de/projects/cdo/

2xagg is a package to aggregate gridded data in xarray to polygons in geopandas using area-
weighting from the relative area overlaps between pixels and polygons. For more information, see
https://pypi.org/project/xagg/
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3.1.3 Methods
In this study, climate anomalies are employed to distinguish years with high and low
occurrences of spillover events at the district level. Climate anomalies provide a stan-
dardized frame of reference that enables more meaningful comparisons between regions,
facilitating the identification of patterns and trends that might not be apparent with
absolute values alone.

Anomalies are calculated by subtracting climatological values (i.e. long-term averages
typically calculated over a reference period of 20-30 years [102]) from observed data,
indicating whether a variable is above (positive anomaly) or below (negative anomaly)
this baseline. Standardized anomalies, also referred to as normalized anomalies, were
used, and calculated by dividing anomalies by the climatological standard deviation.
This standardization removes the influence of location-specific factors and the effects of
signal dispersion (such as the difference in seasonal ranges), allowing for more meaningful
comparisons across different regions and time periods [102]. As a result, standardized
anomalies provide clearer insights into the magnitude of climate variations, making it
easier to distinguish normal conditions from unusual ones and to assess their potential
impact on spillover events. The units are standard deviations (σ) from the mean of a
normal distribution [103].

Differences between normalised climate anomalies: High vs. Low spillover
years

This section addresses the calculation of climate anomalies. For each climate variable,
the dataset consists of daily climate data aggregated at the district level from January 1,
2000, to December 31, 2018. To focus on conditions preceding spillover events, the year
was redefined to span from May 1 to April 30, and relabeled from 0 to 17 for easier data
management. Monthly resampling produced 216 mean values per district, with seasonal
averages (18 values per district) calculated to capture overall conditions. After identifying
seasons with significant anomalies, a month-by-month analysis was conducted to pinpoint
specific months within these seasons that may have had notable impacts on the surge of
spillover events.

Before calculating climate anomalies, a trend analysis was performed using two different
approaches for temperature and precipitation data to uncover underlying patterns.

Trend analysis For temperature data, which satisfy the normality assumption, a linear
least-squares regression method was used to detect trends (i.e., slopes) in seasonal and
monthly temperature data at the district level. The trend slope was then removed from
the original time series, regardless of its statistical significance, which was however assessed
using a two-tailed Student’s t-test at a 5% significance level, to ensure that the anomalies
reflect variations around a stationary mean.

For precipitation data, which inherently exhibits greater variability and cannot be expected
to follow a normal distribution, a more robust approach was needed to assess monotonic
changes at the district level. The Theil-Sen estimator (also known as Sen’s slope estimator)
was used to provide an estimate of the trend, combined with the non-parametric Mann-
Kendall test to evaluate the significance of the trend at the 5% level. For further details
on these non-parametric methods, which are less sensitive to outliers and thus well-suited
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for analyzing hydro-climatic data, refer to Section A.3.1 in Appendix A.

The de-trending process was applied to each climate variable X from the set {Tavg, Tmin,
Tmax, Trange, P r} and for each district d within the set D, representing the 64 districts of
Bangladesh (D = {d | d ∈ {0, 1, 2, . . . , 63}}). The process is defined by the formula:

X̂d(y) = Xd(y)− β̂d · y (3.1)

Here, y denotes a year within the research period Y = {y | y ∈ {0, 1, 2, . . . , 17}}, covering
the 18 years of study. The variable X̂d represents the de-trended series, obtained by
subtracting the estimated trend slope β̂d from the original series for variable X. The
original series is represented by {X}N−1

y=0 = {x0, x1, . . . xN−1} where N = 18, indicating
the number of years.

Normalized anomalies In this analysis, climatology is defined over the available
18-year period Y (from May 2000 to April 2018), rather than a WMO recommended 20-
or 30-year reference period. This shorter time frame aligns with the spillover event data,
enabling a more targeted examination of climatic conditions linked to spillover frequencies.
The climatology for each month m and season s is calculated as the average over this
period, providing a tailored baseline for analyzing the impact of climate on spillover events.
Specifically, the normal of a season s or a month m, for each district d, is given by the
following formulas:

X̄d(s) = 1
N

17Ø
y=0

X̂d(s) s = 1, ..4 ; X̄(m) = 1
N

17Ø
y=0

X̂d(m) m = 1, ..12 (3.2)

where N is the number of years in the reference period (i.e. 18), and {X̂d} represents the
de-trended series of the climatic variable X under analysis.
Subsequently, for each district d in D, the seasonal or monthly anomaly of the year y
are computed by subtracting the climatological baseline from the actual observed values,
following the detrending process:

X ′
d(s, y) = X̂d(s, y)− X̄d(s, y) ; X ′

d(m, y) = X̂d(m, y)− X̄d(m, y) (3.3)

Then, the annual normalised anomalies X̃ ′
d(s, y) (or X̃ ′

d(m, y)) are calculated dividing the
annual anomalies by the climatological standard deviation:

X̃ ′
d(s, y) = X ′

d(s, y)
σd(s) ; X̃ ′

d(m, y) = X ′
d(m, y)
σd(m) (3.4)

where:

σd(s) =

öõõô 1
N − 1

17Ø
y=0

(Xd(s)− X̄d(s))2 ; σd(m) =

öõõô 1
N − 1

17Ø
y=0

(Xd(m)− X̄d(m))2

Finally, the annual standardised anomalies are averaged separately within the two cate-
gorically defined groups of years: those with high spillover event frequencies (i.e. a 7-year
period) and those with low frequencies (i.e. an 11-year period). The following formulas
are used for this analysis:

∀d ∈ D : X̃ ′
d(s, YH) = 1

nH

Ø
y∈YH

X̃ ′
d(s, y) ; X̃ ′

d(m, YH) = 1
nH

Ø
y∈YH

X̃ ′
d(m, y) (3.5)
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∀d ∈ D : X̃ ′
d(s, YL) = 1

nL

Ø
y∈YL

X̃ ′
d(s, y) ; X̃ ′

d(m, YL) = 1
nL

Ø
y∈YL

X̃ ′
d(m, y) (3.6)

where:
• YH = {y | y ∈ {3, 9, 10, 11, 12, 13, 14}} represents the 7-years subgroup of to the

reference period Y that includes years characterised by a high number of annual
spillover events;

• nH is the number of years y in YH ;

• YL = {y | y ∈ {0, 1, 2, 4, 5, 6, 7, 8, 15, 16, 17}} represents the 11-years subgroup within
the reference period Y that encompass the years characterised by a low number of
annual spillover events;

• nL is the number of years y in YL;
As a final step, the difference between the standardised anomalies of these two groups is
calculated as follows:

∀d ∈ D : ∆X̃ ′
d,obs(s) = X̃ ′

d(s, YH)− X̃ ′
d(s, YL) (3.7)

The goal of this comparative analysis is to identify and highlight the distinct climatic
conditions that characterize years with high spillover events compared to those with low
spillover events, evaluated on a district-by-district basis. The final step is to quantify these
climatic differences to gain a deeper understanding of the factors that may contribute to
variations in spillover occurrences between the two groups of years and across districts.

Temporal shuffling to assess statistical significance of results

After calculating the observed differences in standardized anomalies between high and
low spillover years (i.e. ∀d ∈ D : ∆X̃ ′

d,obs(s) or ∆X̃ ′
d,obs(m)), a temporal shuffling method

(i.e., a random permutation without replacement) was employed to assess whether these
differences were statistically significant or due to random variations.

Permutation test: random resampling without replacement The analysis covered
18 years (11 high and 7 low spillover years) and involved the following steps for each
variable X and district d:

1. Step 1: Random permutation (or shuffling) without replacement Randomly
assign 11 years to a synthetic "low" group (Y (i)

L,synt) and 7 to a "high" group (Y (i)
H,synt),

repeating this process 1000 times to create different synthetic groupings, ensuring
that each year y was assigned to only one group per iteration i.

2. Step 2: Normalised anomaly differences For each iteration, calculate the
standardized anomaly differences between synthetic high and low groups across all
districts. This produces a distribution of anomaly differences for comparison:

∀i, d : X̃ ′
d(s, Y

(i)
H,synt)(i) = 1

nH

Ø
y∈Y

(i)
H,synt

X̃ ′
d(s, y) (3.8)

X̃ ′
d(s, Y

(i)
L,synt)(i) = 1

nL

Ø
y∈Y

(i)
L,synt

X̃ ′
d(s, y) (3.9)

∆X̃ ′
d,synt(s)(i) = X̃ ′

d(s, Y
(i)

H,synt)(i) − X̃ ′
d(s, Y

(i)
L,synt)(i) (3.10)
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The same method applies to monthly anomalies, replacing the seasonal indicator s
with the monthly indicator m.

3. Step 3: Statistical comparison: For each district d, the observed difference
in standardized anomalies between actual high and low spillover years were then
compared against the permutation-based distribution. If these differences fell within
the 5% or 10% tails of the distribution, they were considered statistically significant:

∆X̃ ′
d,obs(s) significant at 5% ⇐⇒ ∆X̃ ′

d,obs(s) < P2.5 or ∆X̃ ′
d,obs(s) > P97.5 (3.11)

∆X̃ ′
d,obs(s) significant at 10% ⇐⇒ ∆X̃ ′

d,obs(s) < P5 or ∆X̃ ′
d,obs(s) > P95 (3.12)

where P2.5, P5, P95, P97.5 represent the distribution percentiles. A result within these
extreme tails, as exemplified in Figure 3.1, indicates that the observed difference is
unlikely due to random chance, suggesting significant climatic distinctions between
high and low spillover years.

Figure 3.1: Probability distribution of synthetic differences in standardized anomalies for average
winter temperature in Faridpur District. The extreme tails are defined by the percentiles P2.5, P5, P95, P97.5.
The observed value, marked with a green dashed line, exceeds the lower P2.5 threshold, indicating it
falls within the extreme tails of the distribution. This placement confirms the anomaly is statistically
significant at the 5% level, demonstrating a significant deviation from the expected climate conditions.

This permutation test, applied to each district d and variable X, randomizes observations
to break any inherent dataset structure, thereby quantifying patterns that might emerge
purely by chance [104], [105]. Unlike bootstrap methods, which resample with replacement
to estimate the distribution of a statistic, the permutation test disrupts correlations among
data and rigorously tests the null hypothesis that observed differences are due to random
variation alone [104], [105].
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3.1.4 Results
Climate trends

The evaluation of seasonal climatic trends identified statistically significant changes during
the monsoon (June-September, JJAS) and winter (December-February, DJF) seasons.
These results are consistent with long-term observations reported in the literature from
1966-2015, which also highlight a prevalent warming trend during the monsoon and a
cooling trend during winter [89].

Specifically, the significant increase in average temperatures during the monsoon season
across all districts in this analysis (p-value < 0.001) mirrors the 0.75 ◦C long-term
warming trend observed over the 50 years reported in the literature [89]. Notably, the
most substantial increases in July and August align with sustained warming observed
from May to October in this study, affecting over 20% of districts.

For winter, the observed cooling trend matches the reported 0.1 ◦C decrease between
1966-2015 [89]. The narrowing temperature range (TR) across over half of the districts
(p-value < 0.01) further supports this cooling pattern, likely driven by changes in daytime
temperatures.

Additionally, the literature reports a warming trend during the pre-monsoon (MAM)
period, particularly in maximum and minimum temperatures in coastal areas, linked to
rising sea surface temperatures (SST) [89]. In contrast, no significant trends were detected
for the overall MAM period in this study, though a significant increase was observed in
May for average and minimum temperatures, possibly reflecting regional or short-term
fluctuations.
Regarding precipitation, historical data shows increasing trends in pre-monsoon, monsoon,
and post-monsoon seasons, with the largest rise (3.3 mm/year) during the monsoon,
particularly in July and September [89]. This is attributed to warmer land temperatures
and a deepened low-pressure system [89]. However, monsoon precipitation trends fluctuate
over decades [89], and no significant long-term trends were detected in this study (2001-
2018), reflecting these variations.

For winter, no significant long-term precipitation trends were found, consistent with
the literature, which also reports no overall trend, though decreasing trends were noted in
individual DJF months [89]. These discrepancies may result from the shorter time frame
of this study, which may not capture broader variability.

Such changes in seasonal temperature and rainfall pattern might have a number of
implications for water resources, agriculture (i.e., irrigation demand, crop phenology) and
public health (more extreme weather events and related disasters; EIDs spread).

Normalised anomaly differences and statistical significance

The analysis of differences in standardized anomalies between years with high and low
spillover events provides critical insights into the climatic conditions associated with
varying spillover frequencies. Both seasonal and monthly evaluations revealed important
patterns in temperature and precipitation anomalies. Maps illustrating these anomalies
across districts were generated, with statistically significant differences at the 5% and 10%
level highlighted using red and blue color-coded dots, respectively.

Temperature Anomalies During the monsoon season (June-September, JJAS), high
spillover years showed positive average temperature anomalies in 25% of districts, half of
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which reported spillover events (see Figure 3.2b). Notably, July stands out as the only
month with statistically significant positive anomalies across all temperature variables
(average, minimum, maximum and temperature range) in more than 25% of districts,
reflecting a substantial increase in heat during both daytime and nighttime.

In the winter season (December-February, DJF), significant negative anomalies were
observed in 94% of districts for average temperature and in 75% of districts for minimum
temperature, indicating colder nights during high spillover years. December, in particular,
showed marked decreases in average, minimum, and maximum temperatures, while
February exhibited an increased diurnal temperature range, indicating greater variability
between daytime and nighttime temperatures.

No significant anomalies were detected at the seasonal level during the pre-monsoon
period (March-May, MAM). However, the monthly analysis identified March as a key
month, with significant increases in temperature range in over 28% of districts, suggesting
notable climatic deviations during high spillover years.

Precipitation anomalies In terms of precipitation, high spillover years during the
monsoon season were associated with drier conditions, with 31% of districts showing
negative anomalies, particularly in the southern region (refer to Figure 3.3a). The most
significant precipitation deficits were recorded in July, with 84% of districts experiencing
reduced rainfall.

In the post-monsoon season (October-November, ON), negative precipitation anomalies
were observed in 27% of districts, with November emerging as a critical month, confirming
a drier post-monsoon period (see Figure 3.3b).

No significant anomalies were detected during the winter and pre-monsoon seasons
overall. However, March showed a notable reduction in precipitation in over 50% of
districts, during high spillover years.

3.1.5 Discussion
The results of this analysis, detailed in Table 3.2, clearly indicate that, over the 18-year
study period, years with high spillover events are consistently characterized by warmer and
drier monsoon periods—most notably in July, where the most pronounced temperature and
precipitation anomalies were observed—followed by drier post-monsoon season (especially
in November), and colder winters (with significant temperature deviations in December and
February). In the pre-monsoon period, March exhibits notable climatic shifts, including
an increased temperature range and reduced rainfall. These distinct climatic patterns
appear to be linked to the frequency of spillover events in Bangladesh, suggesting potential
environmental triggers that could heighten the risk of spillovers. These findings are further
supported by several key factors, detailed in the following considerations, which provide
additional context and potential explanations for the observed links between climate and
spillover dynamics.

Colder winter and increased spillover activity: The analysis suggests a correla-
tion between colder winters (lower average and minimum temperature) and heightened
spillover activity, as shown in Figure 3.4. A plausible explanation for this link is the
extended survival of the NiV virus in the environment at lower temperatures. Colder
conditions can significantly prolong the virus’s viability on contaminated fomites, such
as date palm sap (DPS), increasing the risk of human exposure (see Section 1.6.3 for
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details). Additionally, DPS is consumed raw and within hours of collection during the
winter months. As discussed in Section 1.5.3, the combination of these climatic factors
and human behavior plays a crucial role in facilitating spillover events.

Flying foxes, which roost on exposed tree branches, are highly sensitive to extreme tem-
peratures [40]. In response to cold, Pteropus bats activate thermoregulatory mechanisms,
such as shivering, increased muscular activity, and wing flapping, to maintain their body
temperature between 33 and 37.5 ◦C even when ambient temperatures drop to 17.5
◦C [80]. This thermoregulation, especially during colder months in Bangladesh, adds
physiological stress that could weaken their immune system, increasing the likelihood of
viral recrudescence and shedding (refer to Section 1.6.3 for further details). The stress is
further compounded by nutritional challenges, as winter is also when fruit availability is
at its lowest in Bangladesh (see Section 1.6.3), leading to heightened vulnerability among
bats [33], [56].

Moreover, colder nighttime temperatures (i.e. minimum temperatures) could increase sap
production and leakage from cuts made by harvesters on date palms. As discussed in
Sections 1.6.3 and A.2.1, the xylem refilling process in plants, like date palms, is influenced
by lower nighttime temperatures, when the plant’s evapotranspiration (ET) is minimal.
This creates ideal conditions for sap flow and leakage, attracting wildlife, including bats,
and increasing the chances of viral transmission. As anticipated in paragraph 1.5.3 and
documented in [56], there is a significantly higher frequency of bat visits to date palm
trees during winter compared to other seasons, especially on colder nights. Thus, the
convergence of food scarcity, increased sap production and sugar content of DPS, the peak
season of fresh sap consumption by humans, and cold-induced physiological stress in bats
forms a set of ecological conditions that likely drive spillover events during colder winter
months over the reference period.

Warmer and drier monsoon, drier post-monsoon and higher spillover ac-
tivity in the subsequent winter: The analysis suggests a correlation between warmer
and drier monsoon periods, drier post-monsoon conditions, and heightened spillover activ-
ity during the subsequent winter season (see Figure 3.4). Notably, the combination of
higher temperatures and reduced rainfall pinpoints July as a critical month within the
monsoon season, where the observed anomalies were most severe and statistically signifi-
cant. While overall monsoon anomalies show some mismatches with expected spillover
frequency patterns (refer to Figure 3.4), the anomalies observed in July more closely align
with spillover frequency (refer to Figure 3.5), suggesting a stronger correlation during
this key period. However, these preliminary observations remain speculative and will be
further examined through a statistical regression analysis in Chapter 5.

Drier conditions and rising temperatures during these seasons may significantly contribute
to environmental stressors that disrupt flowering and fruit production cycles, leading to
pollen desiccation and reduced pollinator activity [106]. Shortened pollination windows
and inadequate moisture availability can also result in premature fruit drop and reduced
fruit set [106]. These climatic shifts can also advance flowering and fruiting times, creating
mismatches with optimal growing conditions and reducing fruit yield and quality (i.e.,
size, color, and taste - all known attracting factors for bats) [62], [106]. Tropical fruits like
mango, papaya, guava, litchis, and jackfruit, which are critical food sources for Pteropus
bats, are particularly sensitive to such changes [62], [107].
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The cumulative effect of these environmental stressors may disrupt the availability of
food resources for frugivorous bats, potentially leading to nutritional stress that promotes
spillover. Furthermore, monsoon and post-monsoon months coincides with the energeti-
cally demanding pregnancy phase for Pteropus bats in Bangladesh [48], increasing their
vulnerability to nutritional stress (refer to ’Breeding season and immunosuppression’ in
paragraph 1.6.3). Additionally, this climate-driven food scarcity may drive bats to seek
alternative food, altering their foraging behavior and increasing contact with human
environments, thereby elevating the risk of zoonotic spillover events. These ecological
stressors underscore the need for adaptation strategies to mitigate climate change impacts
on both agricultural productivity and public health.

Interestingly, these conditions, seems to mirror observations of the Hendra virus in Aus-
tralia, where acute food shortages, typically occurring in spring, are followed by increased
viral shedding in the subsequent winter, with a delayed viral recrudescence in bats 6
to 9 months later [83], [82]. The exact mechanism driving this time-lag is unclear, but
prolonged nutritional stress, thermoregulation challenges, pregnancy, and lactation likely
contribute to delayed viral shedding [83]. This finding is particularly noteworthy because,
to the best of the author’s knowledge, a correlation between monsoon climate conditions
(especially July month) and winter spillover events in Bangladesh has not been previously
identified, offering new insights into how seasonal factors influence viral dynamics in bats.
This hypothesis will be further examined in Chapter 5 through regression analysis using
Generalised Linear Models (GLMs) to explore the potential relationship between monsoon
climate conditions and spillover frequency.

(a) Average winter temperature (b) Average monsoon temperature

Figure 3.2: Maps of observed differences in standardised average temperature anomalies between
years with high and low spillover events during: (a) winter, and (b) monsoon seasons. Legend: In both
figures districts reporting statistically significant values are highlighted with colored dots. Blue dots refers
to significance at 10% level, red at 5% level. District outlines indicate when a district was affected by
spillover events: red for high spillover years, blue for low spillover years, and green for both.
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Variable Monsoon Post-Monsoon Winter Pre-Monsoon
J J A S O N D J F M A M

Tavg
-

Positive
[+0.9,+1.7]
89% (46%)

- - - -
Negative
[-0.9,-1.4]

92% (44%)
-

Negative
[-0.8,-0.9]

52% (33%)
- - -

Positive [+0.8,+0.9] 25% (50%) - Negative [-1,-1.2] 94% (100%) -

Tmin - Positive
75% (46%) - - - -

Negative
[-0.8,-1.2]

50% (50%)
-

Negative
[-0.8,-1]

66% (29%)
- - -

- - Negative [-0.9,-1.1] 75% (48%) -

Tmax - Positive
67% (44%) - - - -

Negative
[-0.9,-1.5]

66% (57%)
- - - - -

- - - -

TR -
Positive

[+0.8,+1.2]
25% (6%)

- - - - - -
Positive

[+0.8-+1.2]
40% (15%)

Positive
[+0.9,+1.1]
28% (44%)

- -

- - - -

Pr -
Negative
[-0.8,-1.6]

84% (32%)
- - -

Negative
[-0.7,-1]

19% (0%)
- - -

Negative
[-0.8,-1.1]

56% (47%)
- -

Negative [-0.9,-1.3] 31% (15%) Negative [-0.9,-1.2] 27% (6%) - -

Table 3.2: Results of the analysis of differences in standardized anomalies between years with high
and low spillover events. "Positive" or "Negative" indicates that high spillover years are characterized
by statistically significant positive or negative anomalies compared to low spillover years. The range of
statistically significant values is shown in square brackets. The first percentage indicates the proportion of
districts across Bangladesh reporting statistically significant values. The second percentage, in parentheses,
indicates the proportion of districts affected by spillover events over the 18 years analyzed. An hyphen
(-) indicates that none or fewer than 19% of districts reported statistically significant values. This 19%
threshold was specifically chosen because all other percentages fall below 5%, thereby establishing a clear
and significant boundary between relatively rare and more frequent occurrences of statistically significant
reports.

3.2 Analysis of weather extremes
This section explores the selection and analysis of climate extreme indices in relation to the
ecological drivers of the Nipah virus (NiV) in Bangladesh, focusing on two main aspects:
the climate-driven xylem refilling phenomenon in date palms (detailed in paragraph A.2.1)
and climate-induced food shortages, both of which are linked to increased human cases of
NiV.

• Xylem refilling and date palm sap production: The xylem refilling phenomenon
in date palms, which occurs during the dry and cold winter months, leads to increased
sap production, closely tied to NiV transmission. This process is driven by specific
climatic conditions, such as high evaporative demand on sunny, low-humidity days
followed by cold, clear nights [56]. To capture this, the number of dry days followed
by cold nights, referred to as "Dry and Cold" days (DCD), is calculated both annually
(denoted as DCDy) and for the winter season (denoted as DCDwinter). This approach
aims to determine if this climate-driven phenomenon occurs at other times of the
year beyond the documented winter period. The analysis also assesses the maximum
consecutive number of these days (CDCD). The mean DCD for the year and winter
is then compared between years with high and low spillover events to determine
whether this phenomenon significantly contributes to the increased virus transmission
observed in certain years and districts. Additionally, the study investigates whether
the frequency on annual scale, or accumulation of these days over time influences
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(a) Monsoon precipitation (b) Post-monsoon precipitation

Figure 3.3: Maps of observed differences in standardised precipitation anomalies between years with
high and low spillover events during: (a) monsoon and (b) post-monsoon seasons. Legend: In both
figures districts reporting statistically significant values are highlighted with colored dots. Blue dots refers
to significance at 10% level, red at 5% level. District outlines indicate when a district was affected by
spillover events: red for high spillover years, blue for low spillover years, and green for both.

NiV transmission dynamics.

• Climate-driven food-shortage: Reduced precipitation in the six to nine months
leading up to the birthing period of Pteropus bats can lead to food shortages,
which, through nutritional stress, can weaken their immune systems and increases
NiV recrudescence and shedding. The analysis quantifies the frequency of minimal
precipitation levels (i.e. dry days) and the maximum duration of drought periods
(i.e. consecutive dry days) annually and during the winter season to evaluate their
direct and indirect impacts on virus transmission. This assessment addresses key
questions such as the correlation between dry conditions and increased spillover
events, identifying the districts most affected by prolonged droughts, and the role of
these climatic patterns in NiV dynamics.

• Literature findings: Given the significant positive correlation identified between
the percentage of winter days with average temperature below the 17 ◦C and the
frequency of spillover events [33], this analysis also includes the calculation of the
total number of cold days annually (i.e. CDy) and during the winter season (i.e.
CDwinter). Additionally, it quantifies the maximum number of consecutive cold days
within a year (i.e. CCDy) and specifically during winter (i.e. CCDwinter). This
approach seeks to clarify whether this climatic condition, when accumulated over
time or on an annual basis, influences the transmission dynamics of the virus.

The selected climate indices of extreme events are detailed in Table 3.3.

53



Climate analysis

Index name Index symbol Definition

Dry Days DD A day d is called ’Dry’ ⇐⇒ Prcum,d(d)< 1 mm
day

Consecutive Dry Days CDD
CDD index is largest number of consecutive “dry days”

during the period of interest (year or season)
Cold Days CD A day d is called ’Cold’ ⇐⇒ Tmin,d(d)< 17 ◦C

Consecutive Cold Days CCD
CCD index is largest number of consecutive “cold days”

during the period of interest (year or season)

Dry days followed by Cold nights
(i.e. Dry and Cold Days) DCD A day d is called ’Dry and Cold’ ⇐⇒


Prcum,d(d) < 1 mm

day
Tmin,d(d + 1) < 17 ◦C

Consecutive Dry and Cold Days CDCD CDCD index is largest number of consecutive “dry and cold days”
during the period of interest (year or season)

Table 3.3: The selected indices of extreme events: name, symbol and definition.

3.2.1 Methods
Calculation of extreme indexes

The calculation of both dry and cold days followed similar methodologies.

Dry Days were calculated using daily cumulative precipitation data from May 1, 2000,
to April 30, 2018. A dry day (Prcum, d) was defined as a 24-hour period with precipitation
below 1 mm/day, using the dry day indicator di (where di = 1 for dry days, di = 0
otherwise). This threshold of 1 mm/day was chosen as it is a standard value below which
precipitation is considered negligible.
Monthly dry day counts (DDd(m)) were summed to obtain annual dry days (DDy,d)
for each district. Winter dry days (DDwinter,d) were calculated by summing values for
December, January, and February (DJF).

Cold Days were similarly calculated using daily minimum temperature data. A cold
day was defined as a 24-hour period where the minimum temperature fell below 17 ◦C,
based on the cold day indicator ci (where ci = 1 for cold days, ci = 0 otherwise). The
choice of the 17°C threshold was based on McKee et al.’s sensitivity analysis [33], which
found the strongest correlation between spillover events and the number of winter days
with temperatures between 16-18 ◦C. Though statistical significance persisted across the
15-20 ◦C range, 17 ◦C was chosen as an upper bound to effectively capture cold days
without producing zeros in the dataset.
Monthly cold day counts (CDd(m)) were summed to compute annual cold days (CDy,d)
and winter dry days (CDwinter,d) for each district.

In both cases, to explore the relationship between these climatic conditions and Nipah
virus spillover events, the annual averages of dry and cold days were calculated for two
groups: years with high spillover frequency (y ∈ YH) and years with low spillover frequency
(y ∈ YL). The difference between these averages (∆DDobs,d for dry days, ∆CDobs,d for
cold days) was then computed for each district, identifying distinctive climatic patterns
linked to spillover events. Additionally, tracking the specific dates of dry and cold days
allows for analysis of whether these conditions extend beyond the winter months. See
Section A.3.2 for further details on the formulas used.

54



Climate analysis

Dry days followed by cold nights To derive the "dry days followed by cold nights"
index, a systematic approach was employed, analyzing the sequences of dry days (DD)
and cold nights (CD) for each district d and year y. Since cold nights correspond to
cold days (as minimum daily temperatures are typically recorded at night), the method
identifies consecutive occurrences of dry and cold conditions by shifting dry day dates
and matching them with cold night dates.

The analysis was performed annually and for the winter season (December to February),
and the results were organized into matrices for all districts and years. Average counts
of "dry days followed by cold nights" were calculated for years with high (YH) and low
(YL) spillover events, allowing for a comparison between these periods. The differences
between the two groups were computed for each district, highlighting specific climatic
patterns potentially influencing spillover events.

By recording the dates when dry days and cold nights occur in sequence, this method
precisely identifies overlapping periods and offers insights into whether these patterns
extend beyond the winter season, deepening the understanding of their spatial and
temporal distribution and their potential impact on spillover events.

Further details on the steps and formulas are provided in Section A.3.2 in Appendix A.

Consecutive Indexes: CDD, CCD, CDCD The analysis of consecutive dry days
(CDD), consecutive cold days (CCD), and consecutive "Dry and Cold" days (CDCD)
aims to identify, count, and record the longest annual sequences of these conditions across
districts. This process utilizes daily precipitation and temperature data from May 1, 2000,
to April 30, 2018, aggregated at the district level.

A systematic approach was employed, as detailed in Algorithm 1, where consecutive
days that meet a specified condition (i.e. "Dry" or "Cold") are tracked by increment-
ing a counter. When the condition is no longer satisfied, the counter resets, and the
longest sequence is updated if the current sequence exceeds the previous maximum. The
corresponding dates for both the current and longest sequences are also recorded. For
further details, refer to the helper function FindConsecutiveDays (Algorithm 2) within
the ConsecutiveDaysDetection procedure (Algorithm 1) in Appendix A.

Next, dry day sequences are shifted by one day and matched against cold night sequences
to identify consecutive "Dry and Cold" days, using the ShiftDates and FindMatches
procedures (refer to algorithm 3 in the Appendix A). The number of such matched
sequences is counted for each district and year, resulting in a comprehensive dataset of
consecutive dry, cold, and "Dry and Cold" days. These results are organized into matrices
representing districts and years (i.e.64 × 18), allowing for detailed analysis of climatic
patterns. To assess the potential influence of these patterns on spillover events, the counts
of consecutive dry, cold, and "Dry and Cold" days are averaged separately for years with
high (YH) and low (YL) spillover frequency. The differences between these averages are
then calculated for each district, providing insight into whether climatic extremes correlate
with spillover events.

Additionally, by extracting the unique months associated with these dates, this method-
ology allows for a precise identification of the periods when these conditions occur, enabling
a comprehensive assessment of environmental factors that may influence the transmission
dynamics of the Nipah virus across various districts.
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Temporal shuffling to assess statistical significance of results

After computing the observed differences in the number of dry days (∆DDobs), consecutive
dry days (∆CDDobs), cold days (∆CDobs), consecutive cold days (∆CCDobs), dry days
followed by cold nights (∆DCDobs) and "Consecutive Dry and Cold days" (∆CDCDobs)
between high and low spillover years across the research period, it is crucial to determine
whether these differences are statistically significant or simply due to random variation.
To assess this, the temporal shuffling method, as detailed in Section 3.1.3, is applied.
The same permutation process described for anomalies is adapted for day count variables
(DD, CD, DCD, CDD, CCD, CDCD). Rather than anomalies, the mean number of
days is computed for each synthetic high and low group of years, and the difference
between these means is calculated. The shuffling, iterations, and statistical comparison
using percentile thresholds follow the same procedure, maintaining consistency with the
approach used for anomalies.

This method provides a robust statistical framework for evaluating the significance of
the observed differences, ensuring that the results are not merely artifacts of chance.

3.2.2 Results
The results in Table 3.4 show that three out of six indices — Annual Dry Days (DDy),
Annual Cold Days (CDy), and Annual Dry days followed by Cold Days (DCDy) — show
significant differences between high and low spillover years. Specifically, years with more
spillover events had notably higher counts of dry days, cold days, and dry days followed
by cold nights.

Annual
Dry Days

(DDy)

Consecutive annual
Dry Days
(CDDy)

Annual
Cold Days

(CDy)

Consecutive annual
Cold Days

(CCDy)

Annual
Dry and Cold Days

(DCDy)

Consecutive annual
Dry and Cold Days

(CDCDy)

Higher
[+8.9,+12]
47% (57%)

-
Higher

[+9.7,+12.2]
25% (11%)

-
Higher

[+7.06,+11.81]
41% (54%)

-

Table 3.4: Results of the analysis of differences in extreme events indexes (i.e. count day variables)
between years with high and low spillover events. "Higher" or "Lower" indicates that high spillover years
are characterized by statistically significant higher or lower number of days of the corresponding count
variable compared to low spillover years. The range of statistically significant values (∆Ndays) is shown
in square brackets. The first percentage indicates the proportion of districts across Bangladesh reporting
statistically significant values. The second percentage, in parentheses, indicates the proportion of districts
affected by spillover events over the 18 years analyzed. An hyphen (-) indicates that none or fewer
than 19% of districts reported statistically significant values. This 19% threshold was specifically chosen
because all other percentages fall below 6%, thereby establishing a clear and significant boundary between
relatively rare and more frequent occurrences of statistically significant reports.

Statistical analysis reveals that 47% of districts show significant differences in the DDy

index, followed by 41% for DCDy and 25% for CDy. Notably, 65% of districts with
significant differences in DDy experienced at least one spillover event over the 18-year
period, compared to 54% for DCDy, and 44% for CDy, highlighting a strong link between
climatic extremes and spillover dynamics.

Notable result: The spatial distribution of these districts, shown in Figure 3.6, reveals
that most of the significant differences cluster within the ’Nipah belt’—the area that
experienced at least one spillover event at the district level during the 18-year period.
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This clustering suggests that climate extremes, such as increased dry days, cold days, and
sequences of dry days followed by cold nights, may have played a key role in triggering
spillover events. Given the strong alignment between these climatic patterns and high-risk
districts, the indices (DDy, CDy, DCDy) will be explored further in Chapter 5.

Deeper temporal analysis of DDy, CDy and DCDyindexes To gain deeper insights
into the temporal patterns of extreme conditions, the analysis explored the monthly
distribution of annual dry days, cold days, and dry days followed by cold days. While
the indices are based on annual counts, examining monthly trends helped reveal whether
these conditions extended beyond the winter months and how they differed between high
and low spillover years.

The analysis involved the following steps:

1. Extraction of unique months: The unique months associated with these extreme
events were identified to understand when they occurred and whether they spanned
other seasons beyond winter.

2. Quantification of monthly frequencies: For each district and month, the total
number of extreme days over the 18-year period was calculated using:

∀d ∈ D, ∀m ∈M : DayCount_totd(m) =
Ø

y

DayCountd(m, y) (3.13)

The monthly totals were then averaged across all districts to capture regional trends:

∀m ∈M :
SumDayCount(m) =

63Ø
d=0

DayCount_totd(m) ;

AvgDayCount(m) = SumDayCount(m)
64

(3.14)

3. Quantification of monthly differences: For each district, monthly averages were
computed separately for years with high (YH) and low (YL) spillover events.

∀d ∈ D, ∀m ∈M :
AvgDayCountd(m, YH) = 1

nH

Ø
y∈YH

DayCountd(m, y) ;

AvgDayCountd(m, YL) = 1
nL

Ø
y∈YL

DayCountd(m, y)
(3.15)

Differences between high and low spillover years were then calculated, for each district
(d ∈ D) and month (m ∈M):

∆DayCountd(m) = AvgDayCountd(m, YH)− AvgDayCountd(m, YL) (3.16)

A spatial average of these differences across all districts was computed to highlight
broader trends:

∀m ∈M : < ∆DayCountd(m) >= 1
64

64Ø
d=1

∆DayCountd(m) (3.17)

The results of this analysis revealed distinct monthly patterns for each index:

57



Climate analysis

• Annual dry days: As illustrated in Figure 3.7a, dry days are predominantly
concentrated between October and April, with frequencies exceeding those from May
to September (including monsoon period, JJAS) by more than an order of magnitude.
This concentration of dry days outside the monsoon period overlap significantly with
the spillover periods. The results in Figure 3.7b show that years with high spillover
events had more dry days in every month, particularly between October and April,
with increases ranging from 12 additional dry days in October to 28 in December
compared to low spillover years.

• Annual cold days: Cold days are mainly concentrated between November and
March, as shown in Figure 3.7a. This pattern closely aligns with the monthly
distribution of total spillover events over the 18-year period. The analysis of monthly
differences (Figure 3.7b) further supports this finding, indicating that high spillover
years experienced more cold days during these months than low spillover years,
suggesting that cold days may play a key role in the increased incidence of spillover
events during these critical months.

• Annual dry days followed by cold nights: The occurrence of dry days imme-
diately followed by cold nights extends beyond the winter months, spanning from
October to April as shown in Figure 3.7a, perfectly overlapping with the spillover
period. This highlights a significant correlation between these climatic conditions
and the increased risk of spillover events. The detailed examination in Figure 3.7b
reveals a pattern similar to the Cold Days index but adds the critical insight that
a cold night follows a dry day. This sequence may be linked to the xylem refilling
phenomenon, which increases Date Palm Sap (DPS) production. As discussed earlier,
this increase in DPS can attract bats during periods of food scarcity, such as winter,
thereby raising the likelihood of spillover events.

3.2.3 Discussion
Overall and summarizing the insights from these findings and Figure 3.7b, it is evident
that from October to April, high spillover years consistently exhibit a greater occurrence of
all three extreme climate conditions, with notable peaks in January and December. This
suggests a strong seasonal pattern where these extreme conditions not only coincide with
but may also be involved to exacerbate spillover risk. Dry days show the most significant
overall differences between high and low spillover years, particularly in January and
December, while the combined impact of "dry and cold" days was more variable, especially
during the early winter months. This variation suggests that the consecutive occurrence
of these extreme weather conditions could significantly amplify spillover outbreaks. This
may be tied to embolism repair processes in date palms, where xylem refilling, triggered
by such climatic conditions (refer to Section A.2.1 for further details), increases sap flow
attracting bats, particularly during times of food scarcity.

Another key observation from this analysis is the progressively higher number of dry
days from July to December in high spillover years compared to low spillover years, which
aligns with the fruit bats’ gestation period in Bangladesh [48]. This temporal pattern
could disrupt the phenological stages of key dietary plants by affecting their flowering and
altering food availability during critical periods for bats. These disruptions can lead to
nutritional stress that could weaken the bats’ immune systems and increase the likelihood
of viral recrudescence (refer to Section 1.4.4 for further details). Although this hypothesis
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requires further validation, it offers a plausible explanation for the observed findings and
the evidence that it coincides with the critical pregnancy phase for bats. Furthermore,
short, intense climatic events—such as sudden temperature drops or brief dry spells—may
cluster temporally, altering bat behavior, such as increased foraging or movement patterns,
ultimately leading to heightened contact with humans or domestic animals.

These findings underscore the importance of considering temporal clustering of climate
extremes and threshold events in the study of spillover dynamics. Understanding which
months are most critical for extreme conditions that correlate with spillover events allows
for more strategic planning of interventions and a better allocation of resources to monitor
and mitigate potential outbreaks.

The lack of significance in indices calculating the maximum consecutive number of
dry or cold days associated with high vs. low spillover years suggests that it is not the
prolonged duration of specific conditions but rather the occurrence of particular climatic
events at critical times of the year that influences the number of spillover events. In other
words, certain short-term climatic events may be more critical for facilitating Nipah virus
transmission than sustained climatic conditions. This highlights the role of threshold
events, where crossing a certain climatic threshold, even briefly, can trigger behavioral
changes in bats or increase their interactions with humans, thereby facilitating virus
spillover.

These findings seem to suggest that it is the timing and intensity of these threshold
events, rather than their persistence, that play a pivotal role in the transmission dynamics
of the Nipah virus.
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Figure 3.4: Anomalies in average temperatures during the winter and monsoon seasons across various
districts of Bangladesh from year 0 to year 17 under analysis. The top panel plots the annual number of
spillover events, distinguishing periods before and after the establishment of Nipah virus surveillance.
Red dots signify years with high spillover events, while blue dots represent years with low spillover events.
The heat maps below show the temperature deviations from the norm for each district during the winter
and monsoon seasons, respectively. This visualization aims to explore potential correlations between
temperature anomalies and the frequency of spillover events.
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Figure 3.5: July anomalies in average temperatures and precipitation across various districts of
Bangladesh from year 0 to year 17 under analysis. The top panel plots the annual number of spillover
events, distinguishing periods before and after the establishment of Nipah virus surveillance. Red dots
signify years with high spillover events, while blue dots represent years with low spillover events. The
heat maps below show the temperature deviations from the norm for each district during the winter
and monsoon seasons, respectively. This visualization aims to explore potential correlations between
temperature anomalies and the frequency of spillover events.
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(a) Dry days (b) Cold days (c) Dry days followed by
cold nights

Figure 3.6: Maps of observed differences in day counts between years with high and low spillover
events for indexes: (a) dry days (b) cold days (c) dry days followed by cold nights). Legend: In both
figures districts reporting statistically significant values are highlighted with colored dots. Blue dots refers
to significance at 10% level, red at 5% level. District outlines indicate when a district was affected by
spillover events: red for high spillover years, blue for low spillover years, and green for both.

(a) Monthly totals

(b) Observed monthly differences

Figure 3.7: Spatial averages of: (a) Monthly totals for all statistically significant count variables,
aggregated across districts and years: DDy, CDy, DCDy; (b) Observed monthly differences in the number
of dry days, cold days, and dry days followed by cold nights between years characterized by high and low
spillover events.
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Chapter 4

Spatial analysis of
environmental stressors

4.1 Spatial distribution of environmental stressors
As extensively discussed in previous chapters, Bangladesh presents a convergence of
numerous risk factors conducive to NiV disease outbreaks. Up to this point, the focus has
been on analyzing temporal climate-driven stressors. However, the spatial distribution
of human-induced ecosystem alterations also plays a crucial role, a factor that is not
overlooked in this thesis. This chapter aims to reconstruct and analyze the spatial
distribution of additional external stressors that are relatively stable over time or exhibit
minimal variation, and are linked to land use and land cover.

While it is well established that the primary transmission route of NiV in Bangladesh
is through the consumption of date palm sap (DPS), other exposure routes exists and
have been considered to account for the complexity of NiV transmission dynamics (refer
to Chapter 1.5.3 for further details). These include:

• Intermediate-host transmission: Livestock A wide range of domesticated
animals (including pigs, goats, sheep, and cattle) are susceptible to NiV, and a direct
contact with these infected intermediate hosts can potentially transmit the virus to
humans (refer to Chapter 1.5.3 for further details). The role of these viral amplifier
hosts has been examined by reconstructing their abundance and distribution at the
district-level across Bangladesh.

• Direct bat-to-human transmission: Food-borne sources Humans can be
infected through the consumption of food contaminated by bat secretions and excreta.
Therefore, in addition to the date palm sap, bat dietary fruits—whether cultivated
in garden orchards or plantations—are also considered [45], [42]. The abundance
and distribution of these food sources have been meticulously reconstructed at the
district level to assess their potential role in NiV transmission.

• Human-to-human transmission: Population density NiV can be transmitted
from person to person through respiratory secretions and saliva, and high human
population density has been associated to an increased risk of NiV spillover [55].
Consequently, the spatial distribution of population density has been analyzed to
identify areas with elevated spillover risk.
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• Human-induced ecosystem alteration: Extensive habitat loss and fragmentation,
driven by deforestation for agricultural extension and urbanization, have significantly
altered bat roosting and foraging behaviours (refer to Section 1.5). These changes
have, in turn, increased bat-human interactions, thus the associated spillover risk.
Therefore, the abundance of forest cover, built-up areas, cropland and rangeland
have been analysed at the district level.

• Biological and external climate-driven stressors: Weather patterns can directly
impact bat body conditions through heat or cold stress, and indirectly by altering
the flowering and fruiting cycles of their dietary plants, leading to nutritional stress
(see Section 1.6.3). These factors can weaken the bats’ immune systems, increasing
viral shedding (refer to Section 1.4.4 for further details). Therefore, the spatial
distribution of temperature and precipitation has been analyzed to assess their effects
on nutritional, thermoregulatory, and physiological stress in bats, which in turn
exacerbate other ecological drivers.

The ultimate goal is to quantify and map the abundance of these established drivers, to
identify areas of heightened risk, and to understand how different factors influence various
regions, potentially clustering districts that share similar characteristics.

4.1.1 Data and data pre-processing
The methodologies in this chapter are designed to meticulously map and quantify the
ecological and anthropogenic factors discussed earlier, assessing the abundance and spatial
distribution of key environmental variables crucial to understanding NiV transmission
dynamics in Bangladesh. Detailed descriptions of the data sources, along with their spatial
and temporal resolutions, are provided in Table A.4 located in the Appendix A.

Land use and land cover by district

Land use data play a pivotal role in understanding how human activities have transformed
natural ecosystems at the district level. To analyze these changes, four .GeoTiff raster
tiles from the year 2018, which cover the entire region of Bangladesh, were sourced from
the Esri Land Cover - ArcGIS Living Atlas website. Each raster has a spatial resolution
of 10m and pixels with assigned values from 1 to 11, each representing a distinct land use
category: water (pixel value 1), trees (pixel value 2), flooded vegetation (pixel value 4),
crops (pixel value 5), built areas (pixel value 7), bare ground (pixel value 8), snow/ice
(pixel value 9), clouds (pixel value 10), and rangelands (pixel value 11).

These tiles were imported into QGIS and merged into a single raster layer using with
the Merge Raster tool and then reprojected from the WGS 84 - EPSG:4326 geographic
coordinate system to the Gulshan 303 / TM 90 NE - EPSG:3106, which is specific to
Bangladesh, using the Warp tool. Layer properties were adjusted by symbolizing the
single band file using paletted/unique values, assigning specific colors to each pixel value.
Additionally, the raster was clipped by the Bangladesh mask layer, to ensure the analysis
was confined to the relevant geographical area (refer to Figure 4.1). To analyze the
frequency distribution of land use and land cover classes within each districts, the QGIS
Zonal Histogram tool was employed. This tool counts the pixels for each thematic class
within polygons that represent district boundaries in a shapefile, facilitating the calculation
of the area allocated to each land use type. This is achieved by multiplying the number
of pixels by the area each pixel covers. Areas are then normalized to percentages of the
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Figure 4.1: Land Cover and Land Use thematic map of Bangladesh pre-processed in QGIS (Resolution:
10 m). Raster source: ESRI Land Cover - ArcGIS Living Atlas of the World (Sentinel-2 L2A).

total district area (calculated using the dedicated Field calculator tool) to yield the
proportional representation of each land use type within the districts.

Percentage of flood prone areas by district

Triggered by heavy monsoon precipitation, flooding is a recurrent hazard in Bangladesh,
causing significant damages to lives, crops and infrastructures [87]. As discussed in Section
1.6.2, extreme weather events like floods and typhoons threaten Pteropus bats by affecting
their roosting sites (i.e. defoliation) and increasing their exposure to post-storm hunting
and predation. These external physiological stressors can contribute to impaired body
conditions and enhance the recrudescence and transmission of NiV.

In line with this discussion, flood hazard maps in shape file format were retrieved from
ArcGIS hub. These maps were used to quantify the percentage of each district that is prone
to flooding, thereby deepening the undestanding of environmental challenges potentially
impacting bat populations. Within the QGIS software, the ’Selection by Attribute’ feature
was employed to select areas categorised at "Severe" and "Moderate risk" levels, without
distinguish among the different causes of flooding, such as tidal surges, riverine floods,
or flash floods (refer to Figure 4.2). The Dissolve tool, was then used to merge these
risk-specific areas into single polygons per district. Subsequently, the Field Calculator
tool was employed to retrieve total and percentage area of flood-prone regions within each
district.

Population density by district

Population density is another well-recognized trigger for NiV spillover. The WorldPop
project provides gridded population data for Bangladesh in .GeoTIFF format, with a
resolution of 30 arc seconds (about 1 km at the equator). This dataset, detailing the
number of people per square kilometer, covers the years of interests from 2000 to 2018. The
Zonal Statistics tool in QGIS was used to calculate the weighted average population
density for each district over all years in the dataset (refer to Figure 2.1b).
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Figure 4.2: Hazard map of flood prone areas categorised by severity (Moderate and Severe) and type
(tidal surge, river and flash flooding).

Density of intermediate hosts by district

To assess livestock abundance at the district level, gridded data with a resolution of 0.0833
decimal degrees were retrieved from the Harvard Dataverse website. These data belongs
to the 2015 Gridded Livestock of the World database (GLW v4), collaboratively developed
and maintained by FAO’s Livestock Information, Sector Analysis and Policy Branch
(NSAL), the Spatial Epidemiology Lab (SpELL), and Université Libre de Bruxelles.

The data for Bangladesh, derived from the Bangladesh Bureau of Statistics (BBS) for
2014, includes .GeoTIFF files, with pixels values indicating the absolute number of various
livestock species. Among the available rasters, only those pertaining species susceptible to
Nipah virus (i.e. pigs, cattle, sheep, and goats) were selected. Additionally, each dataset
is provided together with a corresponding raster file, detailing the square kilometer area
represented by each pixel.

To transform these raw counts into a measure of livestock density, the QGIS Raster
Calculator tool was employed. This tool processed each paired set of raster files - one
indicating the number of heads per pixel and the other the area per pixel - to create a
new raster displaying the density of livestock per pixel.
Given the coarser resolution of these files (approximately 10 km at the equator) compared
to the population density (1 km) and land use (10 m) data, enhanced data processing
techniques were employed to achieve accurate areal density estimates matching the
precision of the other datasets. Using Python in Visual Studio Code, a weighted average
of livestock density by district was computed with the advanced capabilities of the xagg
package (see Section 3.1.2 for details). The pre-processed data and the final output for
cattle density across Bangladesh districts are presented in Figure 4.3. The corresponding
figures for pigs, sheep, and goats are reported in Appendix A (refer to Figure A.4).
To derive a unique value representing the total livestock abundance in each district,
the headcounts of each relevant species were summed, and an overall percentage was
calculated.
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Figure 4.3: Pre-processed gridded data show cattle density per square kilometer (left). Average cattle
density per district, color-coded to indicate different density levels (right). Bold black lines on district
boundaries denote areas affected by NiV spillover events, identifying regions within the Nipah belt.

Percentage of fruit and sugar crops by district

To analyze the agricultural land use within districts of Bangladesh, specifically for fruit
and sugar crops, data were extracted from the Bangladesh Bureau of Statistics via the
‘District Statistics Reports’ and the ‘Yearbook of Agricultural Statistics’, published in
2013 and 2022, respectively.

Data for major permanent fruit crops—Ripe Papaya, Guava, Jackfruit, Banana, Pineap-
ple, Mango, Litchi, and Blackberry—were sourced from district-specific reports based on
the 2010/2011 agricultural census, detailing the area of each crop per district.

Additional data were retrieved from the latest ‘Yearbook of Agriculture’ to include
other crops vital to local bat diets. Thus, relevant crops and flowering plants such as
Jujube (Boroi/Kul), Star Apple (Jamrul), Ata (Custard Apple), Dewya, Lotkon, Carambola
Apple (Kamranga), Wood Apple, Green Coconut (flowers), Dragon Fruit, Dalim Fruit,
Safeda (Sapodilla), Sharifa, and Strawberry were cataloged. The 2019/2020 records listed
these crops in acres as ’area under garden’, reflecting cultivation practices in household
gardens, orchards, and farms—a major portion of district land dedicated to these crops.
Strawberry and Water Fruit were recorded as ’area under trees’, a category that includes
areas within and outside garden boundaries, providing a broader view of their spatial
distribution.

Furthermore, the cultivation of Date-palm and Palmyra palm—crops grown for both their
juice (or Tal) and fruits—was analyzed. These sugar crops were quantified in terms of
’area under gardens’ in acres, indicating their cultivation within designated garden spaces.
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Figure 4.4: Spatial distribution of fruit crops in Bangladesh, with darker green shades indicating
districts with higher percentages of land area dedicated to fruit cultivation relevant for bat diets, showcasing
regions where these resources are most abundant.

Figure 4.5: Spatial distribution of sugar crops in Bangladesh including Date Palms, with darker
orange shades indicating districts with higher percentages of land area dedicated to sugar cultivation
relevant for bat diets, showcasing regions where these resources are most abundant.

All data, including district-level crop areal values and the re-projected administrative areas
in square kilometers calculated in QGIS, were systematically organized and processed in
Excel. Calculations included converting areas from acres to square kilometers to compute
the percentages of district lands devoted to various crops, and aggregating the percentages
of all fruit and sugar crops by district.

Before proceeding, the reliability and the accuracy of these calculations were validated
by comparing the aggregated district percentages nationally with the statistics reported
in the 2022 Yearbook. The results were reasonably consistent with national benchmarks;
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specifically, 2.72% for fruit crops aligns with the reference value of over 2.48%, and 0.53%
for sugar crops is considered acceptable given the reference of over 0.97%. Notably, the
result for sugar crops, despite being less precise, is deemed acceptable considering the
exclusion of sugarcane from the analysis and the fact that only areas within household
gardens were considered.

As a result, a dataset detailing areal percentages by crop type and district was compiled.
This non-geometric dataset was then exported as a .CSV file and imported into QGIS, where
it was joined with a shapefile of the district boundaries. This integration allowed the
creation of spatially referenced data, enabling further geo-spatial analyses. In particular,
this comprehensive analysis offers a detailed overview of the agricultural landscape across
Bangladesh’s districts, highlighting the varying abundance of specific crops relevant to
the diet of bats (refer to Figures 4.4 and 4.5).

4.2 Spatial clustering of districts
To cluster districts into contiguous areas sharing similar land use, land cover, and other
NiV ecological drivers, the following district-level features were analyzed:

• Average monthly climatic features, including temperature and precipitation, were
calculated over the 18-year reference period. Specifically, for each district, monthly
averages were first computed annually, and then averaged across the entire period.

• Percentage of relevant land-use categories, including trees, water bodies, crops, built-
up areas, rangeland, and bare ground, calculated at the district level. Special focus
was placed on the percentage of land dedicated to fruit and sugar crops, which are
key to bat diets.

• Livestock and human population density, averaged annually over the 18-year reference
period.

• Percentage of flood-prone areas, calculated at the district level.

The K-means clustering algorithm was employed for grouping, with the data standardized
using the Standard Scaler from scikit-learn. This pre-processing step normalized
the spatial data by setting each variable’s mean to zero and standard deviation to one,
ensuring that all features contributed equally to the analysis, eliminating bias caused by
differences in units and scales.

4.2.1 Methods
K-means clustering

The K-means algorithm is an iterative technique employed to partition a dataset into a
predefined number of non-overlapping clusters, ensuring each data point belongs exclusively
to one cluster. Specifically, it organizes N observations X = {x1, x2 . . . , xN} into K clusters
C = {C1, C2, . . . , Ci, . . . , CK}, where each observation is a D-dimensional variable x, and
K is set to be less than N . In this study, the dataset comprises 64 districts of Bangladesh,
each characterized by a 35-dimensional feature vector that reflects key factors for NiV
spillover risk analysis such as climate data, land-use patterns, livestock and population
densities, and flood-prone area percentages.
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Each cluster Ci is defined by a centroid µi, which is the mean of all data points in Ci

and acts as the cluster’s prototype [108], [109]. The centroids are 35-dimensional vectors
representing the average characteristics of the districts within each cluster.

The algorithm’s goal is to minimize the within-cluster sum-of-squares (WCSS) (also
referred to as inertia), which is the total squared Euclidean distance between each district’s
feature vector and its associated centroid [108], [109]. This minimization ensures that
districts within the same cluster are as similar as possible in terms of NiV risk factors, while
maximizing the differences between clusters. The iterative process of assigning districts
to the nearest centroid and updating centroids continues until the cluster assignments
stabilize, indicating an optimal clustering solution has been reached [108], [109]. This
results in a detailed grouping of districts based on ecological similarities that may influence
NiV transmission dynamics. For a detailed explanation of the K-means clustering process,
including specific formulas and step-by-step methodology, please refer to Section A.4.1 in
Appendix A.

Determination of the optimal number of clusters

To determine the optimal number of clusters, Silhouette analysis, Elbow method and
Principal Component Analysis (PCA) were employed.

Silhouette analysis Silhouette analysis evaluates the cohesion within and separation
between clusters by calculating the Silhouette score or coefficient s for each data point i,
which is a standardized measure of the separation distance between an observation and
the decision boundary or the nearest cluster [110]:

s(i) = b(i)− a(i)
max{a(i), b(i)} (4.1)

Where:

• a(i) is the intra-cluster distance, thus the average distance between the data point i
and all other data points within the same cluster.

• b(i) is the nearest-cluster distance, thus the distance between the data point i and
the nearest cluster that the data point doesn’t belong to.

This score ranges from −1 to +1, where a score close to +1 suggests a well-fitted data
point in its cluster, and scores near −1 indicate potential misplacements [111].

Silhouette plots for cluster counts ranging from 2 to 7 were examined to determine the
optimal number of clusters (K). The selection criteria included maximizing the average
silhouette score (s̄), minimizing negative silhouette values (s), and reducing variations
in the thickness of the silhouette plot, which reflects cluster uniformity. In addition
to silhouette analysis, the Elbow method was employed to comprehensively assess the
clustering results. In Figure4.7-a is reported the Silhouette plot for K = 5.

Elbow Method The Elbow method plots the within-cluster sum of squares (WCSS),
or inertia, against different K values. A visible ’elbow’ (i.e. point at which the decrease
in inertia begins to slow down) typically indicates an optimal number of clusters.
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Figure 4.6: Elbow method’s plot for determining the optimal number of clusters (K). The plot shows
the sum of squared distances (inertia) against the number of clusters, with the "elbow" indicating the
optimal K.

Principal Component Analysis (PCA) PCA was conducted to reduce the dimension-
ality of the dataset, enabling clearer visualization of cluster separation in a two-dimensional
space. The analysis involved transforming the 35 standardized spatial variables into two
principal components that captured the most significant variances within the dataset.
Specifically, the first principal component accounted for the largest variance, while the
second one represented the most variance remaining after accounting for the first com-
ponent’s effects [112]. The PCA was implemented using the covariance_eigh solver
from scikit-learn. In Figure 4.7, the biplot displays each district of Bangladesh. Colors

Figure 4.7: (Left) Silhouette plot for K = 5 showing the s coefficient values for each cluster, with the
average silhouette score s̄ indicated by the vertical red dashed line; (Right) Visualization of the clustered
data after PCA, with each point representing a district colored according to its cluster assignment.

denote clusters assigned by the K-means algorithm, and the spatial arrangement of points
reflects the principal components. This visualization aids in determining the optimal
number of clusters by illustrating the separation and cohesion among them, facilitating
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the visual assessment of clustering efficacy.
Therefore, in choosing the optimal cluster configuration, several metrics were considered:

1. Average silhouette score s̄: High scores indicate distinct and well-defined clusters,
suggesting effective grouping;

2. Distribution of silhouette scores s: Minimal negative scores suggest correct
cluster assignments and good fit within clusters;

3. Silhouette scores visualization: Evaluating the spatial distribution of scores on
the map (Figure 4.8-b) helps confirm the spatial coherence of clusters;

4. Elbow plot analysis: This plot guides the selection of the number of clusters by
showing the point where increases in cluster count yield diminishing returns in model
improvement;

5. PCA visualization: This analysis aids in visually confirming the distinctness and
appropriate separation between clusters.

These metrics collectively inform the selection of the most appropriate clustering config-
uration, grounded in the ecological and climatic variables relevant to NiV transmission
dynamics.

4.2.2 Results and Discussion
K-means clustering results

Considering the comprehensive evaluation metrics, the optimal number of clusters is
determined to be five. This choice is substantiated by the high average Silhouette
score of 0.342, representing one of the highest observed, suggesting significant internal
cohesion and distinct separation among clusters (refer to the left-hand side panel in Figure
4.8). Additionally, the PCA visualization supports this selection by demonstrating clear
demarcation and minimal overlap between clusters, validating the distinctiveness of each
cluster. Notably, using the .explained_variance_ratio_ attribute of scikit-learn, it
has been established that the first two principal components account for 62% of the data’s
variance, thereby confirming the PCA’s effectiveness in capturing the primary trends in
the dataset.

The Elbow method reinforces this decision, showing a balance between reducing the
within-cluster sum-of-squares and avoiding overfitting by not excessively increasing the
number of clusters (refer to Figure4.6).

While some Silhouette coefficients are negative, indicating potential misclassification,
these primarily concern a few districts in clusters 1 and 3. This is clearly depictable in
both the map of Silhouette coefficients (Figure 4.8) and the Silhouette plot (Figure 4.7).
However, the geographical positioning of these districts—located at the extreme northeast
and southeast—is of minimal interest for subsequent analyses focused on the Nipah belt
region. This observation reinforces that the clustering is robust for districts impacted by
spillover events, which are central to this thesis.

Notable result: Furthermore, transitioning from a clustering model based solely on cli-
matic variables to this more comprehensive approach, which includes additional ecological
drivers, has significantly improved the clustering. This refined model more accurately
reflects the geographical layout of the Nipah Belt, dividing it into distinct northern
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and southern regions, highlighting the importance of integrating these factors to better
understand spillover dynamics.

These findings suggest that a five-cluster configuration offers a robust and meaningful
segmentation of districts based on ecological and climatic data relevant to NiV spillover
risks.

Figure 4.8: (Left) K-means clustering of Bangladesh districts based on land use, land cover and
monthly climatic features, showing the optimal configuration with K = 5 clusters. Different colors
represent the clusters across Bangladesh. Within the Nipah belt, clusters 1 and 2 are specifically
highlighted with black and red dots, respectively. (Right) Map of Silhouette coefficients illustrating
cohesion and separation strength of each district’s cluster, represented with a red-to-blue color gradient.
The red boundaries indicate the NiV-affected districts.

In this configuration, the affected districts within the Nipah Belt are divided into two
main groups:

• Cluster 1 includes ten districts, primarily from the Rangpur and Rajshahi divisions
in the northwest of Bangladesh (see districts marked with black centroids in Figure
4.8).

• Cluster 2 encompasses fifteen districts in the central Nipah Belt, spanning the
Rajshahi, Khulna, and Dhaka divisions (see districts marked with red dots in Figure
4.8). The Comilla district, although affected by spillover events, is the only non-
contiguous district in this group. It is excluded from subsequent analyses due to
incomplete data on spillover events in this area.

Geospatial analysis findings

Unique cluster: Nipah belt The spatial analysis corroborates existing literature,
identifying the Nipah Belt as a region characterized by high human population density,
extensive built-up areas, widespread agricultural land use, and reduced tree cover (refer
to Figure 4.9) [33], [55]. Fruit crops essential to bat diets are primarily located along the
periphery of the Nipah Belt, while sugar crops, including date palms, are concentrated
in the central and southern regions. These agricultural patterns show no significant
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proportional differences between areas inside and outside the spillover zones. Moreover,

Figure 4.9: Nipah belt as a unique cluster Comparison of established ecological drivers for NiV
spillover events between the Nipah belt (shown in red) and region outside the belt (shown in orange).
District-level values and percentages are averaged within the two clusters: the Nipah belt and the
remaining districts of Bangladesh.

while flood-prone areas are predominantly outside the Nipah Belt (see bar plot in Figure
4.9), significant at-risk regions stretch across it from north to south (Figure 4.10b). Rajbari
and Faridpur districts stand out as the most flood-susceptible, coincidentally reporting
higher densities of date palms (Figure 4.10c) and being among the districts most affected
by NiV spillover events over the 18-year reference period (Figure 2.6b). This overlap
suggests a potential link between flooding, storm events, and defoliation—conditions
that increase bats’ exposure to predation, hunting, and adverse weather as they roost
in exposed branches (refer to Section 1.6.3 for further details). These environmental
disturbances could intensify human-bat interactions, particularly in areas with dense date
palm cultivation, amplifying the risk of NiV transmission.

Two clusters within the Nipah belt The analysis of the two clusters within the
Nipah belt reveals distinct ecological and climatic characteristics. Cluster 1 is marked by
extensive agricultural land use, higher urbanization, fewer tree cover, and greater cattle
density compared to Cluster 2 (refer to Figure 4.11). Furthermore, climate analysis over
the 18-year reference period (2000-2018) shows that Cluster 1 experiences colder and
wetter conditions almost year-round (see Figure 4.13), with particularly lower temperatures
during the December-February (DJF) months compared to Cluster 2 (refer to Figure 2.3).
In contrast, Cluster 2 is generally warmer and drier (see Figure 4.13), especially during
the monsoon period, characterized by higher temperatures and significantly lower rainfall
than Cluster 1 (see Figure 2.3).
These observations suggest that diverse environmental and climatic patterns differentiate

the two clusters:

• Cluster 1 is distinguished by harsh winters, a landscape dominated by urban and
agricultural areas in place of forests, and a significant presence of cattle.
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(a) Fruit crops (b) Flood-prone areas (c) Sugar crops

Figure 4.10: Spatial distribution of district-level percentages for land devoted to (a) fruit and (c)
sugar crops, as well as (b) flood-prone areas. Black-bordered districts indicate those belonging to the
Nipah belt, which were affected by spillover events during the 2000-2018 period.

Figure 4.11: Two clusters within the Niaph belt Comparison of established ecological drivers
for NiV spillover events between the two clusters within the Nipah belt: cluster 1 (shown in purple) and
cluster 2 (shown in green). District-level values and percentages are averaged within the two clusters.

• Cluster 2, on the other hand, is noted for its hot and dry monsoon periods, higher
population density, and more prevalent flood-prone areas.

This differentiation suggests that diverse factors may distinctly influence the NiV trans-
mission dynamics within each cluster. Variations in climatic conditions and land use
characteristics across clusters may specifically alter bat roosting and foraging behaviors,
influencing their interactions with humans. As a consequence, this spatial agglomeration
of unique environmental stressors may trigger a spatial heterogeneity in NiV transmission
dynamics and spillover patterns, altering the risk profile across the clusters. The subse-
quent Chapter will employ regression analysis to better understand which variables most
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(a) Crops (b) Built-up areas (c) Cattle density

Figure 4.12: Spatial distribution of district-level (c) cattle density and percentages for land devoted
to (a) agricultural crops and (b) human settlements. Black-bordered districts indicate those of Cluster 2,
while blue-bordered districts indicate those of Cluster 1.

effectively explain the temporal variability of spillover counts within each cluster.

This integrative approach sets the stage for applying robust statistical methods to identify
and quantify the specific environmental and climatic drivers that critically influence NiV
spillover within these spatially and ecologically distinct clusters.

(a) Average temperature (b) Average precipitation

Figure 4.13: Contour plot of average annual temperature and precipitation. Red-bordered districts
represent those in Cluster 2, while blue-bordered districts indicate those in Cluster 1.
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Chapter 5

Regression analysis of climate
variables, extremes and
spillover events within spatial
clusters

5.1 Regression analysis: Generalized Linear Models
Building on the findings from Chapter 3, which identified climatic drivers potentially
linked to increased spillover events during high-risk years (YH), and the spatial analysis
in Chapter 4, which revealed significant heterogeneity in environmental stressors both
between the Nipah belt and surrounding regions, and within the Nipah belt itself-divided
into two distinct clusters-this Chapter integrates these insights through a comprehensive
regression analysis using Generalised Linear Models (GLMs).

The goal is to test and quantify the hypothesized relationships between the selected
climate variables and the annual variability in spillover events, while also accounting for
spatial variability at different resolutions.

Following the approach of McKee et al. [33], the association between yearly independent
NiV spillover events and climate statistics of selected variables was examined using separate
univariate generalized linear models. Model selection was subsequently conducted to
identify the best-fitting combination of climate variables using Akaike’s information
criterion corrected for small sample sizes (AICc). However, this analysis improve upon the
original study by utilizing ERA5 reanalysis data (see Section 3.1.1), extending the temporal
scope to include variables beyond the spillover period, exploring potential interactions
between selected variables to enhance model accuracy, and adopting a negative binomial
distribution to better address the observed data dispersion.

5.1.1 Data and data pre-processing
Building on the statistically significant results from the climate analyses in Chapter 3,
this section investigates additional variables and extreme event indices, summarized in
Table 5.1. To replicate the methodology from the reference article by McKee et al. [33],
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the variables Prcum,winter (total winter precipitation) and CDwinter (number of winter cold
days) were added. For greater accuracy, the study also includes DDwinter (number of winter
dry days) and DCDwinter (number of winter dry days followed by cold nights). These
additional variables are highlighted in blue in the table, while the temporal resolutions
explored in Chapter 3 but excluded from the final regression analysis are marked in red.
These were omitted to prevent data fragmentation and to maintain focus on the most
impactful periods, as detailed below.

Temporal aggregation considerations In the regression analysis, both seasonal and
monthly data were considered, depending on the period:

• For the spillover period (winter and pre-monsoon), seasonal aggregation of climate
variables was prioritized to avoid data fragmentation. In the winter period (DJF),
where 74 of the 101 spillover events occurred, both December and February were
statistically significant in the monthly analysis. Aggregating these months into a
single winter season was more effective, as it captured the overall winter dynamics
influencing spillover events, providing a cohesive and coherent approach while pre-
venting unnecessary fragmentation.
Similarly, for the pre-monsoon period (MAM), March showed significant anomalies,
but the entire season was analyzed to capture spillover events extending into March
and April. However, due to the lack of significant anomalies in the other months,
pre-monsoon variables were excluded from the final analysis to maintain focus on
the most impactful periods and prevent unnecessary fragmentation.

• For the pre-winter periods, including the monsoon (JJAS) and post-monsoon
seasons (ON), both seasonal and monthly data were explored. Specifically, July
and November were analyzed alongside their respective seasons to determine which
temporal aggregation better explains the annual variability in spillover events.

This approach, by considering both seasonal and monthly temporal aggregations and
focusing on the most relevant periods, ensures a thorough and structured examination of
the climatic factors influencing spillover events. It also provides a solid foundation for
comparison with previous research findings.

Seasonal results Monthly results Indexes

Monsoon Tavgmonsoon

Prmonsoon
July Tavgjuly, Tminjuly, Tmaxjuly,

Trangejuly, Prjuly Yearly DDy,
CDy,

DCDyPost-monsoon PrON November Prnov

Winter Tavgwinter, Tminwinter,
Prcum,winter

December
February

Tavgdec, Tmindec, Tmaxdec

Tavgfeb, Tminfeb, T rangefeb Winter DDwinter,
CDwinter,

DCDwinterPre-monsoon - March Trangemarch, Prmarch

Table 5.1: Summary of climate variables and indices analyzed. Variables shown in black and red
were statistically significant in the climate analysis (see Chapter 3). Variables in red were ultimately not
included in the regression analysis (see considerations in paragraph 5.1.1). Variables in blue were added
to replicate the methodology from the reference article [33], allowing for a direct comparison of results.

5.1.1.1 Pre-processing: temporal resolution

Following these temporal aggregation considerations, a data pre-processing phase was
conducted to ensure that the temporal resolution was appropriate for the analysis:

78



Regression analysis of climate variables, extremes and spillover events within spatial clusters

• For temperature variables (Tavg, Tmin, Tmax, Trange), daily data aggregated by
district was resampled to compute monthly and seasonal averages, with July month
extracted for focused analysis.

• Precipitation data was similarly aggregated to both monthly (July and November)
and seasonal levels, with additional calculations for total winter precipitation to align
with previous studies [33].

• Extreme event indices (DDy, CDy, DCDy, DDwinter, CDwinter, DCDwinter) were con-
verted into percentages to allow for a consistent comparison across years and seasons.

5.1.1.2 Pre-processing: spatial resolution

Building on the results of Chapter 4, the analysis is conducted at two different spatial
scales:

Case A: Single spatial cluster All districts (d̂ ∈ D̂ ⊂ D), within the Nipah belt, that
experienced at least one spillover event over the 18-year period (May 1, 2000, to April 30,
2018) are analyzed as a single cluster, with the exception of Comilla district (see Section
4.2.2 for details). This approach aligns with the methodology used in McKee et al. [33],
facilitating comparisons. The cluster, referred to as clusterunique, includes the following
districts:

clusterunique = {d̂ | d̂ ∈[’Panchagarh’, ’Thakurgaon’, ’Dinajpur’, ’Rangpur’, ’Kurigram’,
’Bogra’, ’Joypurhat’, ’Gaibandha’, ’Lalmonirhat’, ’Nilphamari’,
’Meherpur’, ’Dhaka’, ’Tangail’, ’Gopalganj’, ’Jhenaidah’, ’Mada-’,
-ripur’, ’Magura’, ’Naogaon’, ’Pabna’, ’Natore’, ’Kushtia’, ’Raj-
-bari’, ’Manikganj’, ’Faridpur’, ’Rajshahi’]}

For each year, weather summary statistics are calculated for this cluster, with area-based
weighting applied to each district to ensure that larger districts have a proportionally
greater influence on the overall results. The weights were determined using the areas of the
administrative units (Ad̂), which were calculated by reprojecting in the Gulshan 303 / TM
90 NE - EPSG:3106 coordinate system the shapefile of the Bangladesh districts in QGIS.
The weight wd̂ for each district was calculated as follows using the Field calculator
tool:

∀d̂ ∈ D̂ : wd̂ = Ad̂

Aclusterunique

; Aclusterunique =
Ø

d̂∈clusterunique

Ad̂ (5.1)

For each variable X, the spatial average (< · >) was computed for each year y as:

∀y : < X(y) >=
Ø

d̂∈clusterunique

Xd̂(y) · wd̂ (5.2)

Accordingly to this spatial resolution, the annual spillover counts were calculated as the
sum of events across all affected districts within the unified spatial cluster:

∀y : Spilltot(y) =
Ø

d̂∈clusterunique

Spilld̂(y) (5.3)

79



Regression analysis of climate variables, extremes and spillover events within spatial clusters

Case B: Two spatial clusters Based on the spatial analysis from Chapter 4, districts
within the Nipah belt are divided into two clusters (Cluster 1 and Cluster 2, represent-
ing the northern and southern regions, respectively) according to climatic and spatial
characteristics. Specifically, the clusters were defined as:

• cluster1 = {d̂ | d̂ ∈ [’Panchagarh’, ’Thakurgaon’, ’Dinajpur’, ’Rangpur’,’Kurigram’,
’Bogra’, ’Joypurhat’, ’Gaibandha’, ’Lalmonirhat’, ’Nilphamari’]};

• cluster2 = {d̂ | d̂ ∈ [’Meherpur’, ’Dhaka’, ’Tangail’, ’Gopalganj’, ’Jhenaidah’, ’Ma-
-daripur’, ’Magura’, ’Naogaon’, ’Pabna’,’Natore’, ’Kushtia’, ’Rajbari’, ’Manikganj’,
’Faridpur’, ’Rajshahi’]}.

For each year, weather summary statistics are calculated separately for these two clusters,
with area-based weighting applied to each district similarly to Case A, ensuring that larger
districts contribute proportionally more to the overall results.
In this case, the annual spillover counts for each spatial cluster are calculated separately
as follows:

∀y : SpillC1(y) =
Ø

d̂∈cluster1

Spilld̂(y) ; SpillC2(y) =
Ø

d̂∈cluster2

Spilld̂(y) (5.4)

For each cluster, data distribution was analyzed, revealing overdispersion, where the
variance exceeded the mean. Consequently, a negative binomial model was fitted to
the data, with parameters estimated using the Maximum Likelihood Estimation (MLE)
method.

5.1.2 Methods
To explore the relationship between the response variable (i.e., annual spillover events
at each cluster resolution) and a set of independent explanatory variables (i.e., climate
variables and extreme indices), a regression analysis using Generalized Linear Models
(GLMs) was conducted.

Generalized Linear Models (GLMs), introduced by Nelder and Wedderburn in 1972 [113],
extend traditional linear regression by offering a flexible framework suitable for various
types of response variables, including count data. This flexibility makes GLMs particularly
appropriate for analyzing the annual number of Nipah virus spillover events, which range
from 0 to 8, 0 to 10, or 0 to 17, depending on the spatial cluster analyzed (Cluster 1,
Cluster 2, or the Unique cluster, respectively).

While the Poisson regression model is commonly used for count data, the presence of
overdispersion in the dataset—where the variance exceeds the mean—requires the use of
the negative binomial regression model. This model introduces a dispersion parameter (α)
to handle the excess variability that the Poisson model cannot account for.

Following the confirmation of overdispersion in the spillover data across clusters, negative
binomial GLMs were employed to model the expected annual count of spillover events
as a function of the selected climate variables. A log link function was used to relate
the linear predictors to the expected response, with the models implemented using the
statsmodels.api module from the statsmodels library in Python.

80



Regression analysis of climate variables, extremes and spillover events within spatial clusters

The negative binomial regression model, with a log link function, is expressed as [114]:

log(µ) = η = Xβ = β0 + β1x1 + .. + βpxp (5.5)

where µ represents the expected (mean) count of yearly spillover events, X is the matrix
of climate variables, and β is the vector of regression coefficients to be estimated. The log
link function ensures that µ is related to the linear predictor η by:

µ = eη = e(Xβ) = e(β0+β1x1+..+βpxp) (5.6)

Model parameters, including the dispersion parameter (α) and regression coefficients (β),
were estimated using the Maximum Likelihood Estimation (MLE) method. The negative
log-likelihood function was optimized using the L-BFGS-B algorithm to ensure the best fit
to the data, while addressing overdispersion in the spillover events and their relationship
to climate variables.

For further theoretical details on the negative binomial model and parameter estimation,
please refer to Section A.5 in Appendix A.

Univariate GLM

Separate univariate Generalized Linear Models (GLMs) were developed for each climate
variable and extreme index, following the general methodology from McKee et al. [33],
with adjustments specific to this study. The primary goal was to identify the best-fitting
covariates—independent variables or predictors—that most effectively explain spillover
events. Negative binomial GLMs were employed to account for overdispersion, and model
fit was evaluated using criteria like pseudo-R2 and the statistical significance of coefficients.

The process involved estimating the dispersion parameter α using the NegativeBinomial
function from the statsmodels library and fitting the final model based on the Maximum
Likelihood Estimation (MLE) method. Model parameters, including regression coefficients,
were evaluated using p-values and Wald tests, with statistical significance denoted by: ”∗∗∗”
for p-value< 0.001, ” ∗ ∗” for p-value< 0.01, and ” ∗ ” for p-value< 0.05. Coefficients were
interpreted through the log link function by calculating change factors (i.e., exponentiating
the coefficient). Predictions, along with 95% confidence intervals for the predicted mean
counts, were generated to visualize the model’s behavior.

Full details of the steps, code (see Listing A.1), and model evaluation criteria are
provided in Appendix, Section A.5.1. From this point onward, it is assumed that all
analyses are conducted for each spatial cluster, and this will not be explicitly stated in
each step.

Pairwise Pearson’s correlation

After the univariate GLMs analysis, variables with non-significant coefficients (p-value >
0.05 and pseudo-R2< 0.16) were excluded. For the remaining variables, pairwise Pearson’s
correlation coefficients ρ were calculated using pearsonr from the scipy library to assess
multicollinearity. Variables with |ρ| > 0.90 were further screened, and the one with a
lower pseudo-R2 or less significant coefficient in the univariate analysis was excluded. If
these selection criteria produced similar results, the variable most relevant to the study
was retained.
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Scaling of the explanatory variables

After selecting the non-correlated explanatory variables, they were scaled using MinMaxSca-
ler from sklearn.preprocessing. This function scales each feature to a range of 0 to 1
using the formula:

Xscaled = X −Xmin

Xmax −Xmin
(5.7)

where Xmin and Xmax are the minimum and maximum values of the feature X. Scal-
ing ensures that all features contribute equally, preventing larger-scaled features from
dominating, thus improving model selection and performance.

GLM: Exhaustive feature selection

The next step involved a rigorous model selection process using Akaike’s Information
Criterion, corrected for small sample sizes (AICc) [115]. AIC is a widely used metric
in model selection, balancing model fit and complexity by penalizing the number of
parameters in the model. It is calculated as:

AIC = 2p− 2 ln(ℓ) (5.8)

where p is the number of parameters and ℓ is the maximized log-likelihood of the model.
However, for small sample sizes, AIC can lead to overfitting, so AICc introduces an
additional penalty based on the number of observations n [116]:

AICc = AIC + 2p(p + 1)
n− p− 1 (5.9)

This adjustment ensures a more accurate model selection process when the sample size
is limited, preventing models from becoming overly complex without a corresponding
improvement in fit.

The variable selection process began with a baseline model containing only the intercept.
From there, the exhaustive feature selection algorithm systematically evaluated all possible
combinations of scaled climate variables. It started with single-variable models, adding
one variable at a time and assessing the collective impact of additional variables at each
step. This incremental approach allows for testing interactions and capturing the complex
relationships between climate variables and spillover events.

For each combination of variables, the model’s log-likelihood was optimized using the
L-BFGS-B algorithm, and with the optimized αopt, a negative binomial GLM was fitted
using statsmodel.api in Python. The AICc was computed at each iteration, and the
model with the lowest AICc value was selected as the best-fitting model. Additionally,
models with a ∆AICc of less than 2 from the top model were considered statistically
indistinguishable, thus equally plausible, and part of the set of best models, as they offer
a similar balance between simplicity and explanatory power.

Full details on the selection process and code implementation are provided in Appendix
A (Section A.5.1, see Listing A.2).

Inclusion of interaction factors

To explore potential improvements, interaction terms (i.e., products of standardized
variables) were introduced to examine how the effect of one variable on the response might
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depend on another, aiming to enhance the model’s explanatory power.

For the top models (those with ∆AICc < 2 from the top one), interaction terms were
systematically added. Specifically, for models with with one variable (k = 1), no interaction
terms were added and the original model was retained. For models with two variables
(k = 2), the interaction term X1,st ·X2,st was computed and added after standardizing
X1 and X2 original variables using MinMaxScaler, generating three candidate models.
For models with three variables (k = 3), all pairwise interactions (X1 ·X2, X1 ·X3 and
X2 ·X3) were tested, yielding nine candidate models. For further details regarding the
procedure for incorporating these terms and the corresponding candidate models tested,
please refer to Sections A.5.3 and A.5.4, as well as Tables A.6 and A.8.

Each interaction-enhanced model was then evaluated using AICc, pseudo-R2, and the
statistical significance of coefficients. This process refined the final selection of models,
identifying those with ∆AICc < 2 that most accurately explained the yearly variation in
spillover events.

Model evaluation

To evaluate the model’s validity and robustness, several diagnostic metrics were employed,
focusing on residual analysis and influence diagnostics. These are essential for assessing
model assumptions, detecting outliers, and identifying influential data points.

The types of residuals used in model diagnostics are as follows [114], [117]:
• Raw residuals These are the simple differences between observed values of annual

spillover counts (yi) and predicted values (µ̂i) and are useful for identifying outliers
or inconsistencies in the model. They are computed as:

ri = yi − µ̂i, i = 1, . . . , n (5.10)

• Pearson residuals Standardized residuals calculated by dividing raw residuals by
the estimated standard deviation of the predicted values. They help assess whether
residual variance is constant (homoscedasticity). They are computed as:

rP
i = riñ

σ2(µ̂i)
= yi − µ̂iñ

µ̂i + αµ̂2
i

(5.11)

• Deviance residuals Specific to GLMs, deviance residuals quantify the contribution
of each observation to the model’s deviance, providing insight into model fit. They
are computed as:

rD
i = sgn(yi − µ̂i)

ñ
Di, i = 1, . . . , n (5.12)

where Di represents the contribution of a single observation to the deviance (for a
detailed discussion on deviance, refer to Section A.5.2).

• Standardised Pearson residuals These are Pearson residuals adjusted by their
leverage values, making them more suitable for identifying outliers and influential
points. They are calculated as:

rP
i,st = rP

i√
1− hi

(5.13)

where hi is the leverage of the ith observation.
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In addition to residuals, other key diagnostic tools employed for linear models extend
straightforwardly to GLMs and are employed in this study, including:

• Hat-values (or Leverages, hi): These quantify how much an observation influences
its predicted value. Higher leverage indicates that a point is far from the mean of
predictor values and may significantly influence the model’s fit. In GLMs, hat-values
are obtained from the final iteration of the Iteratively Weighted Least Squares (IWLS)
algorithm.

• Cook’s Distance (Di): This metric assesses the influence of each data point on
the model’s estimates by evaluating how much the predicted values change when a
specific observation is removed. Points with large Cook’s distances are flagged as
influential, meaning they have a considerable impact on the model.

For further details on the calculation and theoretical background of these diagnostics, see
Section A.5.2 in Appendix A.

Model diagnostics and assumptions verification To ensure that the optimal
models meet key assumptions and to detect potential issues, the following diagnostics
were performed:

1. Linearity check: A plot of predicted vs. observed values was used to confirm
linearity, ensuring that points lie close to the diagonal. Deviations from this line may
suggest non-linearity, requiring further model adjustments or transformations of the
variables.

2. Independence of observations: To assess independence, plotting the deviance
residuals in sequential order is an effective method. If the observations are truly
independent, this plot should not reveal any patterns or systematic structures, such
as trends, cycles or clusters. This visual inspection was complemented by the Durbin-
Watson test, applied to the deviance residuals to detect serial correlation. Although
typically associated with linear regression models, this test can also be applied to
GLMs, including those with a negative binomial distribution. Values between 1.5
and 2.5 suggest no autocorrelation.

3. Heteroskedasticity check: Pearson residuals were plotted against fitted values and
observed values to assess homoscedasticity. Although GLMs do not strictly require
normally distributed errors, the expectation that 95% of the standardized residuals
fall within ±2 standard deviations serves as a rough guide for detecting significant
deviations from homoskedasticity [118].

4. Deviance residual analysis: Although deviance residuals in GLMs like negative
binomial models do not require normality, they often behave similarly to ordinary
residuals in standard linear regression models [119], providing useful insights. Q-Q
plots are used to visually assess how closely residuals align with a normal distribution.
This is particularly helpful for identifying outliers, skewness, or model misspecification.
To further enhance diagnostics, future efforts could incorporate half-normal plots,
which compare absolute residual values to the truncated normal distribution, along
with simulation envelopes to capture prediction intervals more accurately and identify
areas where the model may require adjustments [120].
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The Shapiro-Wilk test is also applied to assess the normality of deviance residuals,
with W statistic values closer to 1 suggesting normality. Although normality is less
critical in GLMs, this test can still highlight potential fit issues or the need for data
transformation [119].

5. Leverage and influence analysis: As recommended by Hilbe [114], standardized
Pearson residuals were plotted against leverage values, in the so called influential
plot, where poor model fit is indicated by residuals falling outside the interval ±2
when leverage is high (i.e., hi > hcut−off ) [114]. Notably, to enhance the traditional
plot, the size of each point was scaled according to its corresponding Cook’s distance,
providing a quick visual cue of the influence each observation has on the model’s
coefficients. Additionally, an index plot of Cook’s distance was generated for further
analysis.

5.1.3 Results - Case A: single spatial cluster
The distribution of aggregated spillover data across the unified cluster, encompassing all
districts within the Nipah belt (excluding the Comilla district), aligns well with a negative
binomial model. This distribution effectively captures the observed overdispersion, with a
mean of 5.62, variance of 30.25, and a dispersion coefficient (αopt) of 1.035, confirming the
appropriateness of this model for the 18-year period under study (refer to Figure 2.9).

Univariate GLM results

Using the identified negative binomial GLM and the optimal dispersion parameter αopt

obtained via Maximum Likelihood Estimation (MLE), separate univariate models were
developed for each climate variable and extreme index. The results are summarized in
Table 5.2.

As outlined in Section 5.1.1, both seasonal and monthly variables in the pre-winter
periods were evaluated to determine the best temporal aggregation for explaining annual
spillover variability. July’s variables showed stronger explanatory power and statistical
significance compared to the entire monsoon season. Indeed, moving from seasonal to
monthly data improved both the pseudo-R2 values and the significance of the β coefficient.
Moreover, while monsoon precipitation was not statistically significant (p-value > 0.10),
July precipitation was, justifying the focus on July’s variables for further analyses as
they offer a more precise and robust explanation of spillover variability. Focusing on July
allows for the capture of key climatic influences that might otherwise be diluted when
analyzing the entire monsoon season.

In contrast, neither November nor the post-monsoon season produced significant results,
leading to their exclusion from further analysis.

Interestingly, while the variable "Percentage of winter cold days" was identified as the
best-fitting variable in the reference article [33], it does not hold the same significance in
the present study. Instead, the best covariates identified here are Tavg,winter, followed by
Tavg,july, as shown in Figures 5.1a and 5.1b respectively.

Variables such as Tmax,july, Trange,july, Prcum,winter, DDwinter, and DDy, highlighted in red in
Table 5.2, can be excluded from further analysis, as they show no statistically significant
associations with yearly spillover events and do not meaningfully contribute to explaining
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Period 2000-2018

Season or month
❛❛❛❛❛❛❛❛

Variable
Statistics Pseudo-R2 β,p-value

Monsoon Tavg,monsoon 0.15 1.339
Prmonsoon 0.10 −0.002

July

Tavg,july 0.40 1.930∗∗

Tmin,july 0.26 2.242∗

Tmax,july 0.10 1.061
Trange,july 0.00 −0.240

Prjuly 0.24 −0.171∗

Post-monsoon PrON 0.03 -0.176
November Prnov 0.00 -0.098

Winter
Tavg,winter 0.47 −1.116∗∗

Tmin,winter 0.25 −0.851∗

Prcum,winter 0.03 0.013

Indexes

DDwinter 0.00 0.025
CDwinter 0.21 0.096∗

DCDwinter 0.20 0.091∗

DDy 0.16 0.154
CDy 0.23 0.174∗

DCDy 0.27 0.206∗

Table 5.2: Summary of univariate GLM analyses. Coefficients highlighted in red indicate p-values
greater than 0.05, suggesting non-significance. Asterisks denote significance levels: ∗ for p-values less
than 0.05, ∗∗ for p-values less than 0.01, and ∗∗∗ for p-values less than 0.001. Coefficients highlighted
in blue represent variables excluded due to multicollinearity issues. Periods and variables included in
further analysis are shown in black.

the observed variability, making them irrelevant for further modeling.
In addition, two more variables (highlighted in blue in Table 5.2) were excluded after
evaluating multicollinearity issues. Pairwise Pearson’s correlation ρ revealed high cor-
relations (|ρ| > 0.9) between Tavg,winter and Tmin,winter (ρ = 0.96∗∗∗), and between CDy

and DCDy with ρ = 0.91∗∗∗ (see Figure A.5). Based on the selection criteria discussed in
Section 5.1.2, Tmin,winter and CDy were excluded, as their univariate GLMs yielded lower
pseudo-R2 values compared to their counterparts.

To ensure comparability among the remaining eight explanatory variables, they were stan-
dardized to a common scale, ranging between 0 and 1. This standardization eliminates the
influence of differing magnitudes, allowing for meaningful comparisons and enhancing the
interpretability of their relative impacts on the response variable in subsequent analyses.

Model selection results

The exhaustive feature selection process produced a ranked list of GLMs, with the top five
exhibiting ∆AICc < 2 (see Table A.5). In addition to these models, others were tested

86



Regression analysis of climate variables, extremes and spillover events within spatial clusters

(a) Mean winter temperatures (b) Mean July temperature

Figure 5.1: Variation in the yearly number of Nipah spillover events explained by: (a) mean winter
temperatures, and (b) mean July temperature. Observed values are represented as dots, predicted values
by the negative binomial regression model are shown as dashed lines, and the 95% confidence intervals of
the predicted values are indicated by the shaded blue areas.

by introducing interaction terms, following the procedure outlined in Section A.5.3 and
detailed in Table A.6. These interaction terms were added to assess whether combining
variables could reveal synergies that enhance the models’ explanatory power. The final
full set of models, including those with and without interaction terms, is summarized
in Table 5.3, which reports key statistics such as ∆AICc values (up to 4), Pseudo-R2,
optimal dispersion parameters αopt, and regression coefficients β, with clear indications of
significant and non-significant results.

5.1.4 Discussion - Case A

Comparison between reference article and models without interaction terms
When comparing the results of the current analysis to those presented in the reference
article [33], several key improvements are evident (see Table 5.4, and for further details
refer to Table A.5). The Akaike Information Criterion corrected for small sample sizes
(AICc) shows a substantial reduction of 34%, decreasing from 100.3 in the reference model
(the only one with ∆AICc < 2) to a range of 95.6 to 97.4 in the five models identified
in this study with ∆AICc < 2. This indicates a better balance between model fit and
complexity, suggesting that the current models offer a more efficient explanation of the
spillover data.

Additionally, the pseudo-R2 value, representing the proportion of variance explained by
the model, significantly improved from 0.53 in the reference model to a range of 0.65 to
0.84 in four out of the top five models. This demonstrates stronger explanatory power and
shows that the selected variables in this study more effectively capture patterns associated
with spillover events.

Furthermore, a key distinction lies in the contributing predictors: while the reference
article focused solely on winter covariates, the present models incorporate both winter
and July (monsoonal) variables, highlighting their combined importance in explaining
annual spillover variability. The variable DCDy, though calculated on an annual basis,
mainly reflects extended winter conditions (November-March, refer to Figure 3.7a), further
emphasizing the broader temporal scope of the current models in capturing climatic
drivers of spillover events.
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Model
name Model expression AICc Pseudo-R2 αopt β ∆AICc

M∗
1 log(µ) ∼ β0 + β1Tavg,july + β3(Tavg,winter · Tavg,july) 92.85 0.79 0.211

β0 = 0.446
β1 = 3.568∗∗∗

β3 = −4.535∗∗∗
0.0

M∗
2 log(µ) ∼ β0 + β1DCDy + β2Tavg,july + β3(Prjuly ·DCDy) 93.46 0.90 0.1

β0 = −2.457∗∗

β1 = 1.451∗

β2 = 3.848∗∗∗

β3 = 4.960∗∗

0.61

Mref log(µ) ∼ β0 + β1Tavg,july + β2Tavg,winter 95.60 0.75 0.225
β0 = 1.423∗

β1 = 1.690∗∗

β2 = −2.056∗∗
2.75

M
(2)∗
5 log(µ) ∼ β0 + β2Tavg,july + β3(Tavg,july · CDwinter) 95.64 0.68 0.31

β0 = 0.107
β2 = 0.685

β3 = 2.890∗∗
2.79

M
(1)∗
5 log(µ) ∼ β0 + β1CDwinter + β3(Tavg,july · CDwinter) 95.69 0.66 0.34

β0 = 0.466
β1 = −0.635
β3 = 4.065∗∗∗

2.84

M
(3)
1 log(µ) ∼ β0 + β1Tavg,winter + β2Tavg,july + β3(Tavg,winter · Tavg,july) 96.15 0.79 0.22

β0 = 0.218
β1 = 0.437

β2 = 3.932∗∗

β3 = −5.304

3.30

M2 log(µ) ∼ β0 + β1DCDy + β2Tavg,july + β3Prjuly 96.27 0.84 0.15

β0 = −3.698∗

β1 = 3.072∗∗∗

β2 = 4.061∗∗∗

β3 = 2.944∗∗∗

3.42

M3 log(µ) ∼ β0 + β1DCDy + β2Tavg,july 96.56 0.67 0.31
β0 = −0.657
β1 = 1.981∗∗

β2 = 2.113∗∗
3.71

Table 5.3: Summary of the final full set of models, including those with interaction terms, obtained
by testing selected candidate negative binomial GLMs with specific interaction terms. For each model,
the table provides: model expressions, ∆AICc values (in ascending order and relative to the reference
model), Pseudo-R2, the optimal dispersion parameter obtained by minimizing the negative log-likelihood
function, and regression coefficients (β). Coefficients in red indicate non-significant results (p-value >
0.05), while black coefficients with asterisks denote significant levels: * (p-value < 0.05), ** (p-value <
0.01), and *** (p-value < 0.001).

The inclusion of July variables confirms the previously hypothesized link between monsoon
climate conditions and the frequency of spillover events in the following winter season,
indicating a delayed effect on bat behavior and/or their immune system. These findings
underscore the effectiveness of the exhaustive feature selection process and the necessity of
considering variables beyond the winter season. Notably, to the best of the author’s
knowledge, the observed association between monsoon climate conditions and
Nipah virus spillover events in Bangladesh had not been documented before
this study. This discovery parallels a similar pattern identified for the Hendra virus in
Australia, another Paramyxovirus, marking a novel contribution to the understanding of
Nipah virus dynamics.

Comparison among models obtained in the current study The top two models
reported in Table 5.3 have a ∆AICc < 2, making them statistically indistinguishable and
equally plausible as the best-fitting models in this analysis. Both include interaction terms,
highlighting the importance of interactions between monsoonal and winter variables in
explaining spillover variability.

The third model, with a slightly higher ∆AICc of 2.75, remains noteworthy due to
its second-highest pseudo-R2 value, indicating strong explanatory power despite lacking
interaction terms. As the best model without interactions, it provides a useful benchmark
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Statistics Best models
current analysis

Best model
reference article [33]

Models with
∆AICc < 2

Five models M
(0)
j with

AICc ∈ [95.6− 97.4]
Only one model with

AICc = 100.3

Pseudo-R2 0.47− 0.84 0.53
p-values 0.001 (∗∗∗), 0.01 (∗∗), 0.05 (∗) 0.001

Explanatory variables
1) Winter variables:
Tavg,winter, DCDy, CDwinter

Percentage of winter cold days

2) July (monsoon) variables:
Tavg,july, P rjuly

Table 5.4: Comparison between the best-fitting models derived from the current analysis and the
reference article [33].

for evaluating the added value of interaction terms.
In this section, these three models will be examined in greater detail to evaluate their

performance and the influence of interaction terms on model fit and accuracy.

Top model without interaction terms The top model without interaction terms,
Mref , (Figure 5.2), shows that lower winter temperatures, combined with higher July
temperatures, are associated with an increase in spillover events from 2001 to 2018 [33].
Specifically, colder winters from 2009/2010 to 2014/2015 (years labelled as 9 to 14)
correlate with more frequent spillovers, while fewer events occurred in the warmer winters
of 2008/2009 (i.e., year 8) and 2015/2016 to 2017/2018 (i.e., year 15-17) (refer to Figure
5.2b) [33]. After 2007, higher July temperatures seem to have a stronger influence on
winter spillover, suggesting a delayed effect of monsoonal conditions on NiV transmission.
Furthermore, an analysis of the model coefficients (reported in Figure 5.2) shows that
July temperatures have a greater predictive weight than winter temperatures.
As discussed throughout this thesis, the relationship between monsoonal, winter climate
conditions, and the incidence of spillover events, can be explained by a combination of
ecological and behavioral dynamics in both humans and bats. Climate, in particular,
plays a key role in shaping these interactions as previously discussed in Section 3.1.5.

Figure 5.2a illustrates the observed versus predicted spillover events from the Mref model,
which includes mean winter and July temperatures. The predicted values align closely
with most observations, indicating a strong overall fit. However, certain years, such
as 2003/2004 and 2012/2013 (labeled as 3 and 12, respectively), show higher observed
spillovers than predicted, suggesting the presence of unmodeled factors. To assess whether
these deviations arise from influential data points or model limitations, diagnostic tools
such as Cook’s distance and leverage plots were employed. Overall, the model meets
the key assumptions of linearity, independence of observations, and homoscedasticity of
residuals (see Appendix for detailed diagnostic plots in Figure A.6 and related comments).
Nevertheless, specific years—namely 3, 4, and 12—display diagnostic deviations that
warrant further attention.

Referring to Figure A.7, years 3 and 4 exhibit high standardized residuals, indicating
underpredictions of spillover events, but their low leverage suggests they do not distort
the model. Despite this, their Cook’s distance values indicate a significant impact on the
regression coefficients. Year 12, while not showing problematic residuals, has high leverage,
meaning it heavily influences the model due to extreme predictor values, likely driven by
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(a) Top model without interaction terms

(b) Association between explanatory variables and yearly spillover
events

Figure 5.2: Top GLM without interaction terms and temporal trends: (a) The model fitting the
observed data, displaying its equation and key model statistics, including AICc, Pseudo-R2 and coefficient
estimates along with their statistical significance. Each data point corresponds to a specific year, labeled
from 0 to 17, corresponding to the annual periods from 2000/2001 to 2017/2018 (where the year spans
from May to April). The model’s predicted values are depicted by the smooth surface. (b) Annual time
series of the considered explanatory variables (i.e. mean July and winter temperatures), alongside spillover
events. The shaded area highlights the period before NiV surveillance was established in Bangladesh.

a significant winter temperature anomaly (refers to Figure 3.4). For further details, refer
to Section A.5.3 in Appendix A; however, these findings suggest that while the model
is robust, it could benefit from refinements, such as incorporating interaction terms or
adjustments to better capture the impact of rare or severe weather events. Therefore, the
following analysis focuses on the two top models that integrate these interactions.
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Two top models with interaction terms The most striking comparison in the
current analysis is between the top model without interaction terms Mref and the improved
model with interaction terms M∗

1 (refer to Table 5.3). M∗
1 demonstrates a substantial

improvement, with a reduction in AICc by 2.75 and an increase in pseudo-R2 by 0.04,
signaling a stronger fit and explanatory power. This improvement is particularly evident
when considering the reduction in outliers: progressing from Mref to M∗

1 , via M∗
2 , the

number of outliers in terms of the response variables drops from two to one, and the
number of influential points decreases from three to one. These changes are highlighted
in the Influence and Cook’s distance plots (see Figure A.7 for Mref and Figure 5.3 for
M∗

1 ). Moreover, the improvement in the model statistics highlights the significant boost

Figure 5.3: Diagnostic analysis of the improved M∗
1 negative binomial GLM: (Left) enhanced influence

plot with scatter point sizes proportional to Cook’s distance, and (Right) index plot of Cook’s distance,
both with indicated thresholds for identifying outliers and influential points, respectively.

in predictive power provided by the interaction terms, particularly in M∗
1 . As shown in

Figure 5.5, which compares the observed spillover events with predictions from the top
three models, M∗

1 (blue line) better captures the variability in spillover events, especially in
high-incident years like 2012/2013. While Mref (red line) underestimates these events, M∗

1
corrects these discrepancies, offering a more accurate representation. The difference in how
the M∗

1 predictors track spillover events over time is further demonstrated by comparing
Figures 5.2b and 5.4b. The combined effects of July and winter temperatures in M∗

1 offer
deeper insights into spillover patterns, especially during years with significant fluctuations,
such as 12 and 15. The interaction between rising July temperatures and decreasing winter
temperatures is linked to a higher incidence of spillover events, underscoring the complex
interplay between these climatic variables. Climate anomaly analyses (Figure 3.5) suggest
that significant negative winter anomalies in year 12 likely contributed to the surge in
events, while the combination of positive winter and negative July temperature anomalies
in year 15 led to a decline. Overall, M∗

1 captures these dynamics more effectively than
the simpler Mref , demonstrating a more nuanced understanding of the drivers behind
spillover events.

Despite the improvements in M∗
1 , some challenges remain. Given that multicollinearity

is not an issue and the variables have been standardised to address differences in scale,
the high sensitivity of the model to changes in Tavg,july, as seen in the large value of
exponentiated β1 and the small value of the interaction term β3, suggests that more
complex nonlinear relationships may exist. This is further supported by residual and
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(a) Best improved model
(b) Association between interaction
term and yearly spillover events

Figure 5.4: Top GLM with interaction terms and temporal trends: (a) The model fitting the observed
data, displaying its equation and key model statistics, including AICc, Pseudo-R2 and coefficient estimates
along with their statistical significance. Each data point corresponds to a specific year, labeled from 0 to
17, corresponding to the annual periods from 2000/2001 to 2017/2018 (where the year spans from May to
April). The model’s predicted values are depicted by the smooth surface. (b) Annual time series of the
interaction term (i.e. Tavg,july · Tavg,winter), alongside spillover events. The shaded area highlights the
period before NiV surveillance was established in Bangladesh.

Figure 5.5: Comparison between observed annual spillover counts (green dots) and predictions from
the top three models.

influence plot analyses, which indicate that the model does not fully explain all data
points, particularly for the third year.

To address these limitations, future analyses could explore more flexible models, such
as Generalized Additive Models (GAMs), to better capture the nonlinear relationships
between predictors and spillover events.
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5.1.5 Results - Case B: two spatial clusters
For each cluster, spatially aggregated spillover data were analyzed, and the statistically
significant dispersion parameter α, estimated through Maximum Likelihood Estimation
(MLE), confirmed that the variance exceeded the mean, justifying the use of a negative
binomial (NB2) distribution. Figures 5.6a and 5.6b display the histograms and fitted NB2
distributions for the two clusters, along with key statistics such as the mean, variance,
and dispersion parameter α.

(a) Cluster 1 (b) Cluster 2

Figure 5.6: Histogram of annual (May to April) spillover events with fitted Negative Binomial
distribution (red line). Key statistics, including mean, variance, and dispersion parameter α are reported
for: (a) Cluster 1, and (b) Cluster 2.

Univariate GLM results

The results of the univariate GLM analysis for both clusters are summarized in Table 5.5.
As in Case A, focusing on July’s climatic variables instead of the entire monsoon season
led to stronger results in Cluster 2, with higher pseudo-R2 values and improved statistical
significance of the β coefficients. In particular, July’s temperatures (Tmin,july, Tavg,july)
and precipitation (Prjuly) showed significant correlations with spillover events, reinforcing
the decision to prioritize July over the broader monsoon period.

In contrast, in Cluster 1, neither monsoonal nor July variables were statistically significant,
whereas several winter-related variables were closely associated with spillover events. This
distinction highlights the differing climatic drivers in each region. Cluster 1 appears more
influenced by winter conditions, while Cluster 2 is shaped by both July’s monsoonal and
winter variables. These results align with those of Chapter 4, which emphasized harsh
winters as critical in Cluster 1, while hot, dry monsoon conditions played a larger role in
Cluster 2. This confirms the varying climatic patterns driving NiV transmission dynamics
across the two clusters.

Additionally, variables marked in red in Table 5.5 were excluded due to their lack of
statistical significance. In Cluster 2, the CDy variable (marked in blue) was removed
to address multicollinearity issues with DCDy (refer to Figures A.8 and A.9, to see the
correlation matrices). Although both variables yielded similar statistics, DCDy was
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Period 2000-2018 Cluster 1 Cluster 2

Season or month
❛❛❛❛❛❛❛❛

Variable
Statistics Pseudo-R2 β,p-value Pseudo-R2 β,p-value

Monsoon Tavg,monsoon 0.05 1.140 0.17 1.307
Prmonsoon 0.02 −0.001 0.06 −0.002

July

Tavg,july 0.13 1.555 0.58 2.390∗∗∗

Tmin,july 0.12 2.127 0.31 2.546∗∗

Tmax,july 0.08 1.178 0.09 1.163
Trange,july 0.01 0.729 0.03 −0.999

Prjuly 0.03 −0.085 0.57 −0.233∗∗∗

Post-monsoon PrON 0.03 -0.182 0.06 −0.246
November Prnov 0.00 -0.098 0.00 −0.015

Winter
Tavg,winter 0.58 −1.792∗∗∗ 0.32 −0.886∗∗

Tmin,winter 0.44 −1.547∗∗ 0.11 −0.565
Prcum,winter 0.01 0.010 0.04 0.011

Indexes

DDwinter 0.01 0.052 0.01 −0.038
CDwinter 0.19 0.167 0.12 0.054

DCDwinter 0.22 0.176∗ 0.09 0.048
DDy 0.03 0.084 0.24 0.192∗

CDy 0.12 0.185 0.26 0.163∗

DCDy 0.16 0.218∗ 0.26 0.176∗

Table 5.5: Summary of univariate GLM analyses for different clusters over the reference period
2000-2018. Coefficients highlighted in red indicate p-values greater than 0.05, suggesting non-significance.
Asterisks denote significance levels: ∗ for p-values less than 0.05, ∗∗ for p-values less than 0.01, and
∗∗∗ for p-values less than 0.001. Coefficients highlighted in blue represent variables excluded due to
multicollinearity issues. Periods and variables included in further analysis are shown in black.

retained because it better represents the xylem refilling phenomenon, which is closely
associated with increased DPS production (refer to Section 1.6.3).

To ensure comparability and eliminate the effects of differing units and magnitudes,
the remaining variables in each cluster were standardized to a 0-1 scale, enhancing the
interpretability of their effects on the response variable.

Model selection results The exhaustive feature selection process for Case B produced
a ranked list of GLMs for each cluster based on their AICc values (see Table A.7 for
Cluster 1 and 2).
For Cluster 1, only one model with a ∆AICc < 2 was identified (Mref,C1), comprising
a single explanatory variable. As a result, no interaction terms were tested, confirming
Mref,C1 as the reference model. In contrast, for Cluster 2, additional models incorporating
interaction terms were tested (see Table A.8 in Section A.5.4) to explore potential synergies
that might enhance the models’ explanatory power.

The final full set of models for both clusters, including those with and without interaction
terms, is summarized in Table 5.6. This table report key statistics such as ∆AICc values
(up to 2), Pseudo-R2, optimal dispersion parameters αopt, and regression coefficients β,
with clear indications of significant and non-significant results.
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Cluster C1

Model
name Model expression AICc Pseudo-R2 αopt β ∆AICc

Mref,C1 log(µ) ∼ β0 + β1Tavg,winter 59.07 0.58 0.325 β0 = 1.765∗∗∗

β1 = −4.290∗∗∗ 0.0

Cluster C2

Model
name Model expression AICc Pseudo-R2 αopt β ∆AICc

Mref,C2 log(µ) ∼ β0 + β1Tavg,july + β2DDy 80.57 0.77 0.132
β0 = −0.862
β1 = 2.174∗∗∗

β2 = 1.654∗
0.0

M∗
3,C2 log(µ) ∼ β0 + β2DDy + β3(DDy · Prjuly) 80.77 0.80 0.01

β0 = 0.329
β2 = 2.934∗∗∗

β3 = −4.250∗∗∗
0.2

M2,C2 log(µ) ∼ β0 + β1Tavg,july + β2DDy + β4(DDy ·DCDy) 81.33 0.83 0.1

β0 = −1.259∗

β1 = 1.880∗∗∗

β2 = 1.495∗

β4 = 1.178

0.76

M∗
4,C2 log(µ) ∼ β0 + β1Tavg,winter + β3DDy + β4(Tavg,july · Tavg,winter) 81.94 0.82 0.1

β0 = 0.520
β1 = −2.216∗∗

β3 = 1.693∗

β4 = 3.549∗∗∗

1.37

M∗∗
4,C2 log(µ) ∼ β0 + β1Tavg,july + β3DDy + β4(DDy · Tavg,winter) 82.07 0.82 0.1

β0 = −0.511
β1 = 1.865∗∗∗

β3 = 1.875∗∗

β4 = −1.178

1.5

M5,C2 log(µ) ∼ β0 + β1Tavg,july 82.49 0.58 0.297 β0 = −68.07∗∗∗

β1 = 2.390∗∗∗ 1.92

Table 5.6: Summary of the final full set of models, including those with interaction terms, obtained
by testing selected candidate negative binomial GLMs with specific interaction terms for both clusters.
For each model, the table provides: model expressions, ∆AICc values (in ascending order and relative to
the reference model), Pseudo-R2, the optimal dispersion parameter obtained by minimizing the negative
log-likelihood function, and regression coefficients (β). Coefficients in red indicate non-significant results
(p-value > 0.10), while black coefficients with asterisks denote significant levels: * (p-value < 0.05), **
(p-value < 0.01), and *** (p-value < 0.001).

5.1.6 Discussion - Case B

Comparison among models obtained for different clusters As anticipated by
the results in Chapter 4 and the univariate GLM analysis, the model selection process
confirmed that different climatic factors drive the annual variability of spillover events
across Cluster 1 and Cluster 2. Thus, the comparison of these models (see Table 5.7)
underscores the significant role that varying climate conditions may play in shaping
spillover dynamics across Bangladesh.

In Cluster 1, located in the northwestern region, lower mean winter temperatures are
strongly linked to higher spillover occurrences, suggesting that harsh winter conditions in
this already colder area (compared to Cluster 2) may lead to ecological or physiological
changes in reservoir or recipient hosts, increasing the likelihood of spillover events. Notably,
the GLM for Cluster 1 (Mref,C1), which focuses solely on mean winter temperature, explains
83% of the annual variability in spillover events, underscoring the central role of winter
temperatures as a key predictor in this region. The ∆AICc gap of 2.75 between the top
two models confirms the superiority of Mref,C1, while the second model, which includes
only minimum winter temperatures, reinforces the critical role of winter-related variables
in driving spillover events in this area.
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In Cluster 2, which includes districts from the Rajshahi, Dhaka, and Khulna divisions in
central Bangladesh, the top models identify a combination of higher July temperatures,
lower July precipitation, an extended dry period from October to April, as well as lower
winter temperatures as key drivers of annual spillover variation. This July-April period
notably overlaps with the pregnancy and lactation phases of the NiV reservoir hosts
in Bangladesh. The findings suggest that in this region, the warm monsoon season,
followed by a dry pre-winter period, may increase nutritional stress or intensify human-bat
interactions, leading to a higher incidence of spillover events. Indeed, these climatic factors
likely influence food availability and trigger changes in host behavior and immune function
during crucial reproductive phases, further elevating the risk of spillover, particularly in
colder winters (refer to Discussion in Section 3.1.5).

Statistics Cluster 1
Top model Mref,C1

Cluster 2
Top models

Models with
∆AICc < 2

One model M
(0)
j with

AICc = 59.07
Five models M

(0)
j with

AICc ∈ [80.57− 82.49]

Pseudo-R2 0.58 [0.58-0.83]
p-values 0.001 (∗∗∗) 0.001 (∗∗∗), 0.05 (∗)

Explanatory variables Winter average temperature 1) July (monsoonal) variables:
Tavg,july, P rjuly

2) Winter variables:
DCDy, Tavg,winter, DDy

Table 5.7: Comparison between the best-fitting models derived for Cluster 1 and Cluster 2.

Focus: Best model for Cluster 1 The top-performing model for Cluster 1 shows
that colder winter conditions during years 10 to 13, with temperatures approximately
2◦C lower than in years 14 to 17 and 7 to 8, correlate with a higher incidence of spillover
events. This trend is clearly illustrated in Figure 5.7, where the model’s predictions align
closely with observed data, though discrepancies arise for the years 2003/2004, 2008/2009,
and 2010/2011 (years 3, 8, and 10). The spillover counts are underestimated in these
years, prompting further investigation using diagnostic plots. Figures A.10 confirm that
the model generally meets assumptions of linearity, independence, and homoscedasticity.
However, years 3, 8, and 10 stand out as outliers, with standardized Pearson residuals
exceeding +2, indicating inaccurate predictions for these years (see Figure 5.8). Despite
being outliers, they show low leverage, meaning their predictor values are typical for the
dataset and don’t distort the overall model fit. However, removing these points would
significantly impact the regression coefficients, as indicated by their high Cook’s distance.

In summary, while these residual outliers don’t undermine the model’s validity, there
is room for refinement. Incorporating interaction terms could potentially address these
discrepancies and improve the model’s accuracy.

Focus: Best models for Cluster 2 The top six models for Cluster 2 (see Table
5.6) have a ∆AICc < 2, with four out of six including interaction terms between winter
and July variables. This confirm that both periods significantly contribute to explaining
annual spillover variability in this area.
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(a) Best model for Cluster 1 (b) Cluster 1: Explanatory vari-
able vs. yearly spillover events

Figure 5.7: Best negative binomial GLM and temporal trends for Cluster 1: (a) The best model
fitting the observed data, displaying its equation and key model statistics, including AICc, Pseudo-R2 and
coefficient estimates along with their statistical significance. (b) Annual time series of the explanatory
variable (i.e. Tavg,winter), alongside spillover events. The shaded area highlights the period before NiV
surveillance was established in Bangladesh.

Figure 5.8: Cluster 1: Diagnostic analysis of the best-fit negative binomial GLM: enhanced influence
plot (left) with scatter point sizes proportional to Cook’s distance, and index plot of Cook’s distance
(right), both with indicated thresholds for identifying outliers and influential points, respectively.

Notably, the top model, which does not include interaction terms, highlights July tem-
peratures and dry days on an annual scale as key predictors of spillover events. Peaks
in spillover events (years 9, 12, 13, and 14) coincide with increased July temperatures
and higher numbers of dry days (see Figure 5.9b), while lower July temperatures and
fewer dry days correspond with reduced NiV occurrences in years 8, 10, 11, and 15. July
temperatures, in particular, demonstrate greater predictive power, as reflected in the
model coefficients (see Figure 5.9a). Despite the overall fit being strong, discrepancies
arise in years 3 and 10, where the model underestimates and overestimates spillover
events, respectively. Diagnostic plots (Figure A.11) confirm the model’s assumptions of
linearity and independence, but Pearson residuals for years 3 and 10 indicate potential
outliers (see Figure 5.10). Year 3 shows significant underestimation with low leverage but
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(a) Top model for cluster 2

(b) Cluster 2: Explanatory variables vs. yearly spillover events

Figure 5.9: Best reference negative binomial GLM and temporal time series for Cluster 2: (a) The
best model fitting the observed data, displaying its equation and key model statistics, including AICc,
Pseudo-R2 and coefficient estimates along with their statistical significance. (b) Annual time series of
the explanatory variables included in the M

(0)
ref,C2 model (i.e. Tavg,july ·DDy), alongside spillover events.

The shaded area highlights the period before NiV surveillance was established in Bangladesh.

high Cook’s distance, indicating its influence on the model’s regression coefficients. Year
10, though less extreme, also warrants attention. In summary, while the model Mref,C2
effectively capture key climatic drivers, particularly July temperatures, residual outliers
and influential data points, such as those labeled 3 and 10, indicate areas for refinement.
Notably, significant positive anomalies in July temperatures were recorded in these years,
which the models struggle to fully account for.

This highlights both the strength and limitation of the simpler, non-interactive model.
While generally robust, its inability to incorporate complex interactions may stem from
either the data or the model’s assumptions. Nonetheless, this model remain reliable
overall, despite not addressing every anomaly.

98



Regression analysis of climate variables, extremes and spillover events within spatial clusters

Figure 5.10: Cluster 2: Diagnostic analysis of the best-fit negative binomial GLM: enhanced
influence plot (left) with scatter point sizes proportional to Cook’s distance, and index plot of Cook’s
distance (right), both with indicated thresholds for identifying outliers and influential points, respectively.

To overcome these limitations, future research could explore alternative approaches,
such as generalized additive models (GAMs), which offer greater flexibility in modeling
relationships. Additionally, further analysis of influential data points from years 3, 8, and
10 in Cluster 1, and years 3 and 10 in Cluster 2, may reveal whether data transformation
or other adjustments are required. Addressing these factors could improve the models’
capacity to capture variability in spillover events, leading to more accurate predictions.

Figure 5.11: Cluster 2: Comparison between observed annual spillover counts (green dots) and
predictions from the top six models.

5.2 Climate drivers of spillover events: current find-
ings and future projections

The findings of this thesis have established a clear link between colder winters and warmer,
drier monsoons in July with increased spillover events. These results also underscore the
spatial heterogeneity of climate drivers, with harsh winter conditions being particularly
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critical in the northwestern region (Cluster 1), while in the central-western districts
(Cluster 2), both hot, dry conditions in July and colder winters play a key role in driving
spillovers. Given these findings, it is crucial to evaluate whether these conditions are more
or less likely to persist in the future due to climate change, and whether they will be
exacerbated or shift toward new patterns that could potentially alter spillover dynamics.

To explore this, the latest climate projections from a large ensemble of 27 Coupled
Model Intercomparison Project phase 6 (CMIP6) Global Climate Models (GCMs) provide
detailed seasonal and spatial insights into the future of rainfall and temperature in
Bangladesh, based on a reference period of 1850–2014 [121], [122]. These models, which
cover multiple Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5), predict significant changes in rainfall and temperature across different regions and
timeframes: near-future (2015–2044), mid-future (2045–2074), and far-future (2075–2100)
[121], [122].

Winter projections Projections show that both maximum (Tmax) and minimum
(Tmin) temperatures are expected to rise across all future periods and SSPs, with the most
significant warming occurring during the winter months (December–February), especially
in the far future, and predominantly in the northern and coastal regions [121]. Tmin
is projected to increase more rapidly than Tmax, with November showing the highest
rise in Tmin (1.34–4.57 ◦C) and February seeing the largest rise in Tmax (1.31–3.88 ◦C)
[121]. This reduction in the diurnal temperature range (DTR) could negatively impact
crop yields, particularly in winter. Higher night temperatures (i.e., Tmin), combined with
a projected 11.12% decrease in winter precipitation by the mid-future under SSP3-7.0,
are expected to increase respiratory losses in crops and disrupt xylem refilling in plants
like Date Palms [121]. This would likely reduce DPS production, a critical winter food
source for bats (as discussed in Section 1.6.3), intensifying their nutritional stress and
potentially increasing viral recrudescence and human-bat interactions during this critical
period. Although warmer winters could reduce Nipah virus viability outside the host (see
Section 1.6.3), food scarcity, exacerbated by decreased precipitation, could heighten the
overall risk of spillover events. Additionally, the sharper temperature rise projected for
the northwestern region (Cluster 1) could significantly alter the conditions that currently
drive spillovers in this area [121].

Monsoon projections Projections suggest a significant increase in rainfall during the
pre-monsoon (March-April), monsoon (June-September), and post-monsoon (October-
November) seasons in Bangladesh [121]. Under SSP5-8.5, monsoon precipitation could rise
by up to 20.8%, with post-monsoon rainfall increasing by as much as 41.98%, particularly
in the northeastern and southeastern regions [121], [122]. Increased inter-annual variability
is also projected, leading to more frequent stormy seasons and extreme events, such as
typhoons, which could severely impact bat behavior and habitats [122]. Storm-related
defoliation may reduce the concealment of roosting bats, making them more vulnerable to
harsh weather, hunting, and predation (see Section 1.6.3), while flooding could further
degrade habitats (restricting their available options), as bats tend to avoid flooded areas
for roosting [41]. Notably, the districts of Rajbari and Faridpur in the central Nipah belt,
which are particularly prone to flooding, have also reported some of the highest numbers
of NiV spillover events during the 18-year analysed period, suggesting a link between
flooding and heightened spillover risk in these areas.

In this thesis, drier July monsoons were suggested to contribute to food scarcity,
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potentially leading to nutritional stress in bats and delayed viral recrudescence with a
six to nine-month lag, similar to observations of HeV in Australia [82], [83]. However,
the changing climate patterns, characterized by wetter conditions, may led to similar
outcomes through different mechanisms in the future. Indeed, also excess rainfall could
lead to crop failures, particularly for crops sensitive to waterlogging, and exacerbate flash
floods in already vulnerable low-lying areas. These disruptions to food resources could
similarly intensify stress in bats, driving them closer to human environments in search of
alternative food sources. This increased human-bat interaction could heighten the risk
of spillover events, similar to those observed during drier conditions, though driven by
different climate stressors.

Monsoon temperatures are also expected to rise significantly, especially in the north-
western and west-central regions, where increases could exceed 3.8 ◦C by the far future
under SSP5-8.5 [122]. This is particularly concerning for Cluster 2, where higher July
temperatures have already been linked to increased spillover events. Rising temperatures
may introduce thermoregulatory stress for bats, as they struggle to cope with extreme
heat (see Section 1.6.3), and combined with habitat disruptions and food scarcity, could
further drive viral shedding and spillover events.

In summary, the projected warmer and wetter monsoons under future climate scenarios
mark a shift from the drier July conditions, while simultaneously intensifying the warmer
trends, currently associated with spillover risks. Although the specific triggers may change,
new stressors—such as heat stress, flooding, and food scarcity—are likely to exacerbate
human-bat interactions, increasing the overall risk of spillover events in the future.

In conclusion, the CMIP6-based multi-model downscaling ensemble indicates that Bangla-
desh will likely follow the “dry gets drier, and wet gets wetter” (DDWW) pattern, with
drier winters and wetter monsoons projected for the future. Rising temperatures are
expected across all seasons, with the most pronounced increase during winter. Rainfall
variability will intensify in all periods, and all seasons except winter will become wetter,
further exacerbating the country’s vulnerability to climate-related hazards such as floods,
landslides, and other extreme events.

While conditions like colder winters and warmer, drier monsoons—currently associated
with heightened spillover risks—may shift, new stressors such as flooding and extreme heat
are likely to continue driving spillover events. Therefore, ongoing research and adaptive
strategies are essential to monitor and mitigate these evolving climate-related NiV spillover
drivers, particularly in the context of climate change.
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Conclusions

Climate change, along with other human-induced environmental stressors, is driving the
emergence and spread of infectious diseases, especially bat-borne zoonotic spillover, which
pose a growing global health threat, as demonstrated by the COVID-19 pandemic [8]. In
this context, the thesis focuses on understanding the climatic factors influencing Nipah
Virus transmission from Pteropus bats to humans in Bangladesh, addressing critical
research gaps. Through a comprehensive investigation of climatic and anthropogenic
drivers, the study integrates a broad literature review with advanced temporal, spatial,
and statistical analyses, revealing the complex interplay between climate, bat biology,
and human-induced environmental changes that shape the dynamics of zoonotic disease
transmission, especially under the pressures of climate change.

Literature findings unveil potentials for improvement in NiV research

The in-depth literature review revealed several gaps and opportunities for advancing our
understanding of the relationship between climate and Nipah (NiV) spillovers. These
insights guided the methodological choices of this thesis, resulting in significant improve-
ments. A major strength of this research lies in the utilization of ERA5 reanalysis data,
which offers higher spatial and temporal resolution and broader coverage, enhancing the
accuracy and robustness of climate analyses. Although WorldClim and weather station
data are valuable and widely used, particularly in the tropics, they are limited by reliance
on sparse and unevenly distributed stations [101]. ERA5 addresses these limitations
by not depending solely on ground-based networks, but rather integrating them with a
physics-based model of the climate system, thereby offering a more reliable option for
studies in such regions [98]. This thesis also expands beyond the typical winter focus (the
usual NiV spillover season in Bangladesh) by incorporating year-round climatic influences
and extreme weather events, providing a more complete picture of the conditions leading
to spillovers. Furthermore, unlike prior studies that often focused on a single major
transmission route (i.e., consumption of date palm sap), this work considers all potential
exposure pathways—food-borne, intermediate-host, and human-to-human—offering a com-
prehensive understanding of NiV dynamics by quantifying and mapping the abundance of
these established drivers.

Key results of this thesis

The literature review highlights the critical role of climate in influencing the biology,
physiology, and behavior of bats, particularly in the context of zoonotic diseases emergence.
Building on this knowledge, this thesis conducted a series of detailed temporal (Chapter
3) and spatial (Chapter 4) analyses that provide novel insights into the climatic and
ecological drivers of NiV spillover in Bangladesh:
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Temporal climatic analysis: A comprehensive analysis of standardized climate anoma-
lies identified distinct climate patterns during years with high spillover events compared to
years with lower spillover counts. Specifically, colder winters, warmer and drier monsoons,
and drier post-monsoon periods were significantly associated with an increased frequency
of spillovers over the 18-year reference period (2001-2018). Key months such as July
(monsoon), December, and February (winter) exhibited critical anomalies correlating with
higher spillover occurrences.
These climatic stressors likely influenced viral shedding and transmission in multiple ways.
Colder average and minimum winter temperatures may extend the virus’s survival in the
environment, and increase date palm sap (DPS) production through climate-driven xylem
refilling, potentially leading to greater consumption of contaminated sap by bats and
humans. Additionally, these colder conditions might exacerbate thermoregulatory stress
in bats, adding to the nutritional stress typically experienced during winter when fruit
availability is at its lowest. This scarcity could alter bat foraging behaviour, pushing them
toward alternative, sub-optimal food sources in anthropogenic environment. Conversely,
higher monsoon temperatures and reduced rainfall may trigger food shortages during
the bats’ pregnancy phase, contributing to viral recrudescence later in the winter, with
a delayed impact of 6 to 9 months [82], [83]. Although the precise mechanism behind
this time lag remains unclear, the cumulative impacts of these external stressors mirrors
observations of Hendra virus dynamics in Australia [82], [83]. This finding is particularly
noteworthy, as it highlights a previously unreported correlation between monsoon climate
conditions and the frequency of winter spillover events in Bangladesh. Supported by
analogous patterns seen in Australia, this connection offers a fresh perspective on how
seasonal climatic factors may drive NiV dynamics in bats, contributing to zoonotic spillover
risks in Bangladesh.
Moreover, the study reveals a clear correlation between specific weather extremes—dry
days, cold days, and sequences of dry days followed by cold nights—and increased NiV
spillover events. The lack of statistical significance for prolonged sequences of these
conditions suggests that it is not their duration, but the occurrence of intense, isolated
events that correlates with increased spillover risks. This emphasizes the critical role of the
timing and intensity of short-term weather events in facilitating Nipah virus transmission,
rather than sustained climatic conditions. Brief threshold events can cluster temporally
in ways that significantly alter bat behaviors—such as foraging and movement—and
potentially compromise their immune systems, thereby increasing the likelihood of virus
spillover (via viral recrudescence or enhanced interactions with humans). Identifying the
months most susceptible to extreme conditions linked with spillover events enables more
effective strategic intervention planning and optimizes resource distribution to monitor
and control potential outbreaks.
Spatial analysis of climate and environmental stressors: identification of
two geographic clusters The geospatial analysis conducted using QGIS and phyton
effectively mapped and quantified the heterogeneity of NiV transmission drivers, reinforc-
ing previous findings from the literature that identify the "Nipah Belt" as a particularly
vulnerable region [36], [33]. This vulnerability stems from its dense population, extensive
deforestation leading to bat habitat loss and fragmentation, and the prevalence of agricul-
tural land use and built-up areas.
Within this region, advanced techniques such as the k-means algorithm, Principal Compo-
nent Analysis (PCA), and Silhouette plots were employed to identify and validate distinct
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ecological clusters, each characterized by unique climatic and land-use stressors. Cluster
1, located in the north, is defined by colder and wetter conditions almost year-round,
with particularly lower temperatures during winter (DJF). In contrast, Cluster 2 exhibits
generally warmer and drier conditions, especially during the monsoon season, along with
higher population density and a greater prevalence of flood-prone areas. Notably, the
districts of Rajbari and Faridpur emerged as particularly susceptible to flooding. These
areas also have high densities of date palms and have reported some of the highest numbers
of NiV spillover events during the 18-year reference period. The identification of these
distinct clusters highlights the spatial heterogeneity of spillover risk, underscoring the
importance of targeted interventions that address the specific conditions of each region.
Regression analysis of NiV spillovers and climatic variables within spatial
clusters: The regression analysis builds on previous climate and spatial findings to
determine the extent to which annual Nipah virus spillover events can be explained
by selected climate variables across the Nipah Belt and within its two distinct clusters.
Separate univariate generalized linear models (GLMs) were developed using area-weighted
climate statistics and annual spillover counts, assuming a Negative Binomial distribution
to account for data dispersion. Model selection involved the exhaustive feature selection
method and systematic addition of selected interaction terms, identifying the most influ-
ential variables based on Akaike’s Information Criterion corrected for small sample sizes
(AICc).

In Case A, where the Nipah Belt is treated as a single cluster, the analysis significantly
advances over previous efforts [33] by achieving greater explanatory power and a more
refined model fit. By integrating climate variables beyond the traditional winter months,
the research uncovers complex patterns tied to NiV spillover events, revealing that not
only colder winter, but also warmer, drier conditions during July’s monsoon also play
a crucial role in shaping the annual spillover variability. Notably, it establishes for the
first time a direct link between July’s climate conditions and a subsequent increase in
spillover events during the winter season, suggesting a potentially delayed impact on
bat behavior or immune responses. This newly identified pattern for the Nipah virus in
Bangladesh mirrors dynamics observed with Australia’s Hendra virus [82] [83], enhancing
our understanding of how earlier climate conditions can influence viral transmission. The
specific role of July, rather than the entire monsoon season, was uncovered through an
in-depth temporal resolution analysis of variables in the pre-winter period, clarifying the
timing of climatic impacts on disease transmission.

Further cluster-level analyses reinforce these findings and provide additional insights:
harsh winters conditions are critical in the northern cluster (Cluster 1), while in the
central cluster (Cluster 2), both hot, dry conditions in July coupled with colder winters
are key drivers. These results underscore the spatial heterogeneity of climate factors that
influence spillover events in different regions of Bangladesh.

Overall, these findings highlights the need for region-specific approaches in assessing
and mitigating NiV spillover risks, and emphasize the importance of incorporating broader
range of climate variables beyond winter conditions in future predictive models. This
approach will lead to more accurate predictions and better-targeted interventions.

Limitations, future developments and implications

One limitation of this study is the constrained resolution of climate data, dictated by
the granularity of accessible spillover data. The analysis was limited to district-level
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spatial resolution and monthly time intervals, which restricted the depth of investigation.
Future research could benefit from more detailed spillover data, both spatially and
temporally, allowing for better use of high-resolution ERA5 datasets. This would enable
the examination of specific short-term climatic patterns leading up to spillover events,
potentially revealing unknown mechanisms.
Enhancing the Generalized Linear Models (GLMs) used in the final regression analysis
is another potential area for improvement. While effective, the current models may not
fully capture the complexity of interactions between climate and environmental variables.
Future studies could explore more advanced modeling techniques or include additional
variables to better represent these interactions, providing a deeper understanding of the
drivers of NiV spillovers.
A more precise understanding of the climatic triggers associated with spillover events
could also facilitate predictive studies, supporting the development of interventions to
prevent or mitigate NiV outbreaks. Such predictive capabilities are crucial for public
health planning, especially in the context of climate change, enabling timely responses to
emerging threats and reducing the risk of future pandemics.
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Appendix A

A.1 Climate variability: ENSO
The El Niño Southern Oscillation (ENSO) is the most dominant mode of coupled
atmosphere-ocean variability in the present climate (Neelin et al., 1998), and it has been
identified as a critical driver of the emergence and outbreaks of several infectious diseases
(such as cholera, Rift Valley fever, visceral leishmaniasis, dengue, Zika virus, and malaria)
[17]. It is characterised by sea-surface temperature anomalies (SST) in the central-eastern
equatorial Pacific, and it has the ability to modify the global atmospheric circulation,
which in turn, influences temperature and convective precipitation across the globe [123]
(refer to Figure A.1). Its warm phase with the positive SST anomaly is called El Niño
and occurs in December-February period, and the opposite phase is called La Niña (i.e.
cold phase) [123]. ENSO occur in irregular cycles of 3–7 years, and between the two
extreme phases, there is a third one called ENSO-neutral. Notably, the persistence of
the two phases can be attributed to the positive Bjerknes feedback, which represents the
atmospheric response to the oceanic forcing and vice versa.

Figure A.1: Global impact of El Niño: temperature and precipitation patterns that are
typical of April to September (left) and October to March (right)of El Niño conditions.
Map by NOAA Climate.gov and FAO.
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A.2 Bangladesh Case

A.2.1 Detailed insights into embolism and Xylem refilling phe-
nomenon

High temperatures and low humidity increase evapotranspiration 1, reducing soil water
potential with a subsequent drop in pressure within the xylem [125], the plant’s vascular
system responsible for transporting water and nutrients from roots to leaves. Water
transport follows increasingly negative pressure gradients, so as soil water potential
decreases, the potential in the root, stem, and leaf also drops. However, this decline has a
limit, as the leaf must still transpire. Prolonged drought led to stomata closure, thereby
reducing transpiration [126].

Sap flow is highly sensitive to sudden changes in intravascular pressure caused by
increased atmospheric water demand [125]. Prolonged water stress in xylematic plants can
lead to rapid pressure fluctuations resulting in the formation of air bubbles in the xylem
vessels, a phenomenon known as cavitation. These air bubbles can disrupt sap flow, causing
a complete blockage known as embolism [125]. Vascular plants can repair embolism through
rapid physiological mechanisms that restore the functionality of embolized conduits. This
process, known as xylem refilling, involves water entering the xylem vessel through positive
pressure generated by the phloem, which transports nutrients from the leaves to other
parts of the plant (known as phloem transport) [125], [127].

The xylem refilling phenomenon is particularly relevant for date palms, as it support
sap production during drought periods. Like many other vascular plants, date palms
experience diurnal cycles of xylem pressure, with negative pressure during the day and
positive pressure at night [56]. These plants undergo cavitation and embolism due to
the negative pressure generated by leaf transpiration and reduced soil water availability
during droughts. At night, when temperatures drops and transpiration decreases, refilling
occurs. Water from the soil and surrounding tissues is pushed through embolized xylem
vessels, restoring their functionality and allowing the circulation of water and nutrients.

In Bangladesh, xylem refilling in date palms intensifies during the dry winter months
[56]. The combination of high evaporative demand on sunny, low-humidity winter days,
and clear, cold nights, increases xylem pressure, facilitating refilling and boosting sap
production [56]. This process supplies essential nourishment to nectar-feeding fruit bats
during a period of scarcity, providing a vital food provision when other resources are
limited.

Previous studies have documented that in Bangladesh, sap production from date palms
is highest from December to March, peaking in January, the coldest month of the year[56].
Additionally, reports from sap harvester indicate that sap flow increases on colder winter
nights, further supporting this evidence [56].

Interestingly, human Nipah virus spillover events are more frequent during colder winters
[56]. This correlation suggests that weather patterns influencing date palm physiology
and sap production may contribute to annual variations in sap consumption by humans
and bats, thereby affecting the risk of Nipah virus spillover [56].

1Evapo-transpiration (ET) is the process by which water is transferred from the land to the
atmosphere by evaporation (E) from the soil and other surfaces (i.e. plant and open water bodies) and by
transpiration (T) from plants’ canopy through the stomata [124].
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A.2.2 Reconstruction of Nipah virus spillover events
Methods

Year 2001 In 2001, of the 13 reported cases of Nipah encephalitis, only one was identified
as a spillover event, as shown in Table A.2. Sources [128] and [93] consistently report on
the number, date, and location of this event.

Year 2002, 2006 and 20016 According to all consulted sources, no Nipah virus cases
were detected in the years 2002, 2006, and 2016.

Year 2003 The total number of cases and spillover events for 2003 is detailed in Table
A.2.

Year 2004 Comprehensive details of the Nipah virus spillover events in 2004 are
documented in Table A.2. That year saw 67 reported cases, the highest in the 18-year
period, with two significant outbreaks: one in Rajbari (January to April) and the other in
Faridpur (February to April).

The Rajbari outbreak began with a child displaying symptoms on January 11, suggesting
a likely spillover date of January 4, given the assumed seven-day incubation period.
Seven children and one adult from nearby Kazipara and Juran Molla Para villages were
also affected, likely through exposure to bat-contaminated fruit or contact with bat
secretions and excretions. The predominance of NiV cases among young boys during this
first outbreak can be attributed to a specific childhood activity—tree climbing—which
significantly increase their exposure to the virus. The cases, concentrated within three
households, were identified as three separate index cases [129], [58], [130], [131].

In Manikganj, cases recorded between January 4 and February 8 align with early January
spillovers [130]. Conversely, Faridpur witnessed an isolated event in April, with an index
case showing symptoms on February 19, suggesting a February 12 spillover[130], [131],
[132].

The second outbreak took place in Faridpur district, affecting seven villages from February
19 to April 17, and involved a substantial person-to-person transmission chain [130].
Nearly all infected individuals were either residents of Guha Laksmipur village or had
direct contact with a local spiritual leader affected by the virus [130]. The virus underwent
four distinct transmission cycles within the human population in this area. This significant
outbreak resulted in 36 reported cases. The index case developed symptoms on February
19 [130], and the presumed spillover event is dated to February 12, based on the incubation
period and initial symptom onset.

For the first outbreak, sources [129] and [131] indicate that spillovers were concentrated
between January and February across six districts, with the additional cases occurring in
March and April. The second outbreak’s spillovers were noted from March to April.

The monthly distribution of spillover events in 2004, highlighted in blue in Table A.1, was
meticulously reconstructed using sources [128], [93], [33], and [59]. This distribution was
derived by comparing the annual spillover event count from [33], the monthly index cases
reported in [93] (in Figures 2 and 3 ), and the patterns observed in previous years. This
approach provided a coherent temporal framework, revealing nine unallocated spillover
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events in addition to the six confirmed occurrences documented in literature, and shown
in black in Table A.2: two in January, one in February, four in March, one in April, and
one in December. To determine the geographic distribution of these events, spillovers were

Yearly number of
spillover events Year

Number of
Index cases
by month

Spillover month Notes

1 2001 1 April -
0 2002 0 - -
1 2003 1 January -
15 2004 1 December

6 January
3 February -
4 March
1 April

2 2005 1 January Information reported doesn’t
match with sources [93] and [33].

0 2006 0 - -
5 2007 2 January

1 February -
2 March -

Sources

Fig. 1D from [33] -
For years 2001 and 2003 are: [128], [93], [33]

For year 2005 is [93]
For year 2007 is the Figure S2 in S.I. of [59]

Table A.1: Annual count of NiV cases and corresponding spillover events from 2001 to
2007.

assigned to districts with single reported NiV cases, considering geographical separation
to avoid misattribution. This method facilitated the identification of one spillover event
for each of the following districts: Rangpur, Natore, Dhaka, Gopalgonj.

The spatial allocation was further refined through a detailed analysis of Figure 1 from [93],
which maps the distribution of spillover events from 2001 to 2007. Using QGIS, the raster
was imported, georeferenced, and reprojected into the EPSG:3106 - Gulshan 303 / TM 90
NE coordinate system (refer to Figure A.2). This process enabled the precise identification
of the spillover events’ locations for 2004 by cross-referencing the spatial distribution of
events in other years. Based on this analysis, the final geographic distribution of the
remaining unallocated spillovers was established as follows:

• One event in Faridpur district;

• One event in Rajshahi district;

• One event in Naogaon district.

After completing the spatial allocation of spillover events, each affected location was
subsequently associated with a specific month, based on the previously established monthly
distribution of spillover events (as outlined in Table A.2). The final geographic and
temporal distribution was determined as follows:

• the December event was allocated to the Dhaka district, considering its proximity to
Tangail, where the 2005 outbreak occurred;

• the two January events were attributed to Nagaon;
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Figure A.2: (a) Figure 1 taken from [93] reporting the location of spillover events in
years 2001-2007; (b) Figure 1 taken from [93] imported, georefrenced and re-projected in
QGIS; (c) Resulting information.

• the February spillover was assigned to Joypurat, adjacent to Nagaon.

• the April event, part of Faridpur’s secondary outbreak, was specifically allocated to
that district.

• the March events were distributed among Rangpur, Natore, Rajshahi, and Gopalgonj.

Therefore, these allocations were guided by a thorough integration of literature data with
the detailed spatial and temporal analyses previously discussed.

Year 2005 In 2005, 12 Nipah virus cases were reported, of which two were identified as
spillover events. Detailed information is provided in Table A.2.

Year 2007 In 2007, two distinct Nipah virus outbreaks occurred, resulting in a total of
12 cases, including five spillover events (refer to Table A.2).

The first outbreak, in Thakurgaon District, spanned January and February. The index
case, showing symptoms on January 21, died five days later, with the spillover event
retrospectively dated to January 14, in Haripur Upazila.

The second outbreak occurred between March and April in Sadar Upazila, Kushtia District,
involving two confirmed and five probable cases. The initial case manifested on March 17,
with the spillover date inferred as March 10. Subsequent cases emerged 12-16 days later,
indicating a single phase of secondary transmission. Temporal details of these events were
derived from Figure S2 in the Supplementary Information of [59].

Year 2008 In 2008, 10 Nipah virus cases were reported, with two identified as spillover
events (Table A.2). These events, occurring within a two-week period in February,
impacted the Rajbari and Manikgonj districts, which are located 44 kilometers apart at
the confluence of the Padma and Jamuna Rivers [133]. The spillovers were linked to the
consumption of raw Date Palm Sap (DPS) [133].
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Year 2009 In 2009, two Nipah virus cases were documented, both identified as indepen-
dent spillover events [59]. Detailed information is available in Table A.2.

Year 2010 In 2010, 18 Nipah virus cases were reported, with 12 classified as spillover
events. These events were categorized as isolated or clustered based on the distribution
and frequency of NiV cases within each affected district. Specific details are provided in
Table A.2.

Year 2011 During year 2011, 43 Nipah virus cases were documented, including nine
identified as distinct spillover events. The locations of two spillover events, one in Comilla
and one in Kurigram, were determined [134], though the specific months and dates remain
unclear due to the lack of available information. Events with missing information are
highlighted in red in Table A.2.

Year 2012 In 2012, 10 out of 17 NiV cases were identified as spillover events, as
documented in Table A.3:

• Joypurhat District: Three spillover events occurred in January, including two clustered
and one isolated event. The clustered cases involved two children in Joypurhat Sadar
who first exhibited symptoms on January 17, with the spillover estimated on January
10.

• Rashashi District: One spillover event occurred in February involved a tari producer
who harvested date palm sap (DPS).

• Multiple Districts in March: One spillover event occurred in each of the following
districts: Natore, Gopalgonj, Faridpur, and Rajbari.

• Rangpur District: One spillover event was documented in November.

• Dinajpur District: One spillover event took place in December.

Year 2013 In 2013, 31 cases of Nipah virus were reported, with 17 classified as spillover
events (refer to Table A.3 for further details) according to data from [59] and [135].

Many events occurred in January across several districts. In Nilphamari, symptoms began
on January 23, with the spillover estimated a week earlier. Kurigram followed a similar
pattern, with symptoms appearing on January 26 after a January 19 spillover. Gaibandha
and Naogaon reported early January spillovers, with symptoms appearing within a week.
Additional January events occurred in Rajshahi, Natore, Pabna (which witnessed two
events, including one occurred on January 16), Rajbari, and Jhinaidha.

Spillover events continued into February in Kushtia and Magura. March saw an event in
Manikgonj, while October and December each witnessed a spillover event in Gopalgonj
and Manikgonj, respectively. This distribution underscores significant temporal and
geographical spread of the virus within the year.
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Year 2014 In 2014, 11 out of 37 documented Nipah virus cases were designated as
spillover events according to [94], compared to only 9 identified by [33]. Although [33]
generally served as the primary reference (with the exception of 2011 when [59] was used),
the more detailed dataset provided by [94] was selected for the 2014 analysis. This decision
was driven by the need for a more detailed and comprehensive account, as [33] lacked
sufficient data to fully capture all recorded incidents.

Certainty in event reporting Six spillover events confirmed by multiple sources
included five occurrences in January and one in February. These events, specifically two
in Rangpur and two in Faridpur, were detailed as follows:

• Rangpur: two Index cases were identified as part of a family cluster where the patients,
who had consumed tari from a common source, showed symptoms on January 14th
and 19th. While sources [135], [46], and [94] refer to these patients using different
identifiers, the case details are consistent across these references. Specifically, Figure
2 from [46] labels them as patients ’K’ and ’L’, whereas Table 4 and Figure 3 from
the Technical Appendix of [94] discuss these cases as part of ’Cluster A’.

• Faridpur (Saltha): one case on January 31st was aligned with similar symptoms
appearing in a family member the following day, indicating localized transmission
from a shared source of raw date palm sap. Data concerning these Faridpur cases,
sourced from [135], align with the descriptions of patients ’3’ and ’6’ of Cluster B in
[94].

This consistency across sources not only confirms the detailed timing and connections of
the events, but also aids in reconstructing additional spillover events.

Reconstruction of Uncertain Events To account for the 11 spillover events, seven
additional incidents were identified, comprising two clusters and five isolated cases. The
distribution of these events was guided by a detailed analysis of temporal data from [94]
and spatial information from [135].

• Cluster B: One spillover was inferred to correspond to case-patient ’14’ of Cluster B
[94], who developed symptoms on January 30 (spillover date assumed to be January
23).

• Magura (Sadar): An isolated case (patient ’2’) reported in [94] developed symptoms
on January 14, coinciding with a primary case involving a 14-year-old in Magura at
Sadar [135]. Assuming a one-week incubation period, the spillover date was set to
January 7, matching timing and location across sources.

To be consistent with [94], the remaining spillover events were the following:

• Three isolated events of patients ’7’,’8’ and ’9’, who developed symptoms on January
20th, March 27th, and April 1st, respectively (spillover dates: January 13th, March
20th, and March 25th);

• One cluster of two events (Cluster C) with spillover dates on January 24th and 25th.

Further approximations for the spatial distribution of remaining spillover events were
derived from Figure 4 of [136], which highlights affected districts in 2014-2015 period
(notably 2016 reported no cases). This spatial analysis facilitated the identification of
districts where spillover events likely occurred:
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• Panchagarh: WHO reports only one NiV case in 2014 and none in 2015, suggesting
an isolated spillover event here, given its distance from Rangpur, the nearest affected
district.

• Kushtia: With one reported case in 2014 and its distance from other affected districts,
it was inferred that a spillover event occurred here.

• Rajshahi: Multiple cases indicated at least one spillover event, likely a cluster. It
was assumed that Cluster C from [94] occurred here, with onset dates for cases ’15’
and ’4’ on January 31 and February 4, making the spillover dates January 24 and 27,
2014.

• Manikganj: Highlighted as an affected district in [136], where only one NiV case was
reported by WHO in 2014, indicating a spillover event.

In summary, fragmented data dispersed across multiple publications often lacked complete
details regarding dates and locations of spillover events. Where direct inferences were not
feasible, assumptions were made guided by the spatial and temporal distribution of NiV
cases from WHO and IECDR sources. Nevertheless, by integrating all available sources, a
reasonable and comprehensive allocation of spillover events for 2014 was achieved, ensuring
that all incidents were accounted for within the constraints of available data.

Year 2015 In 2015, 15 Nipah virus (NiV) cases were reported, with 9 identified as
spillover events [135]. The distribution and timing of these events were reconstructed
using detailed information from various sources, as outlined in Table A.3.
To account for the 9 spillover events reported in [33], three additional events were inferred
based on geographical and temporal data.

Inferred spillover events Information from [136] and WHO reports was used to
identify affected districts and their corresponding cases. This analysis indicated that the
remaining districts with spillover events were Natore and Faridpur.

In Natore, where only one case was reported, it was inferred that a single spillover event
occurred, likely in January, given its proximity to Naogaon, which experienced a cluster
of cases in the same month.

In Faridpur, three cases were reported, leading to the attribution of two additional spillover
events. Temporal data from [137] suggested these events likely occurred in January, coin-
ciding with a period of increased spillover risk.

The integration of sources [135], [137], [136], and WHO enabled a comprehensive recon-
struction of NiV spillover events in 2015, as summarized in Table A.3. Primary cases
were confirmed in Naogaon, Gopalganj, Madaripur, and Rajshahi, with additional inferred
events in Natore and Faridpur. This approach ensured that all occurrences were accurately
represented within the limits of the available data, providing a detailed understanding of
the outbreak dynamics for that year.

Year 2017 In 2017, three Nipah virus cases were reported, resulting from two spillover
events. According to data from [135], these primary cases occurred in February: one
in Faridpur, with symptoms appearing on February 15 in Joykalidangi (spillover date:
February 8, 2017), and the other in Pabna on February 10 in Uttar Raghobpur (spillover
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date: February 3, 2017). The distribution of these spillover events is summarized in Table
A.3.

Year 2018 In 2018, four Nipah virus cases were reported, linked to three spillover events
[135], [46]. The events were distributed as follows:

• In Faridpur, one patient developed the first symptoms on February 8, 2018, with the
spillover date estimated to be February 1, 2018 [135].

• In Rajshahi, one patient developed symptoms on April 3, 2018, with the spillover
date estimated as March 27, 2018 [135].

• In Bogra, one encephalitis case was reported in February, as reported in [46].

The detailed spatio-temporal distribution of these spillover events is summarized in Table
A.3.

Final results

Spillover events were classified as ’real’ when corroborated by multiple sources or explicitly
reported in literature, ’reconstructed’ when inferred trough available information and
’dubious’ when when precise information was lacking or based on general assumptions.
The final results are reported in Tables A.2 and A.3.
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Year Number of spillover
events Ns

District Division Date Source

2001 1 Meherpur
(Chandpur village) Khulna April 13th [128], [93]

2003 1 Naogaon Rajshahi January 4th [128], [93]

2004

1 Rangpur Rangpur March Assumptions and sources [129]-[59]
1 Joypurhat Rajshahi February Assumptions and sources [129]-[59]
2 Naogaon Rajshahi January Assumptions and sources [129]-[59]
1 Natore Rajshahi March Assumptions and sources [129]-[59]
1 Rajshahi Rajshahi March Assumptions and sources [129]-[59]
1 Faridpur Dhaka April Assumptions and sources [129]-[59]
1 Gopalgonj Dhaka March Assumptions and sources [129]-[59]
1 Dhaka Dhaka December Assumptions and sources [129]-[59]
1 Manikganj Dhaka January [130]

3 Rajbari (Goalando township, Kazipara
and Juran Molla Para villages) Dhaka January 4th [129], [58], [130], [131]

1 Faridpur, Guha Laksmipur village Dhaka February 12th [130], [131], [132]
1 Faridpur Dhaka April [130], [131], [132]

2005 2 Tangail Dhaka January [93]

2007

1 Thakurgaon, Haripur
Upazila subdistrict Rangpur January 14th [59], [138]

1 Naogaon Rajshahi March [59]
1 Natore Rajshahi February [59]
1 Pabna Rajshahi January [59]

1 Kushtia,
Sadar Upazila Khulna March 10th [59], [139]

2008 1 Manikganj Dhaka February [59], [133]
1 Rajbari Dhaka February [59], [133]

2009 1 Rangpur Rangpur January [59]
1 Rajbari Dhaka January [59]

2010

1 Kurigram Rangpur December [59]

2 Rajbari Dhaka one in March,
one in December [59]

5 Faridpur Dhaka

one in january,
one in february
two in March,

one in December

[59]

1 Madaripur Dhaka February [59]

2 Gopalgonj Dhaka one in February,
one in March [59]

1 Khustia Khulna February [59]

2011

1 Kurigram Rangpur December [59]

2 Rajbari Dhaka one in March,
one in December [59]

5 Faridpur Dhaka

one in january,
one in february
two in March,

one in December

[59]

1 Madaripur Dhaka February [59]

2 Gopalgonj Dhaka one in February,
one in March [59]

1 Khustia Khulna February [59]

Table A.2: Nipah virus spillover events in Bangladesh from 2001 to 2011, detailing
district, date, and sources. Events classified as ’real’ are shown in black, ’reconstructed’
based on inferred information in blue, and ’dubious’ in red.
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Year Number of spillover
events Ns

District Division Date Source

2012

1 Dinajpur Rangpur December [59], [135], [46]
1 Rangpur Rangpur November [59], [135], [46]
3 Joypurhat Sadar Rajshahi January [59], [135], [46]
1 Natore Rajshahi March [59], [135], [46]
1 Rajshahi Rajshahi February [59], [135], [46]
1 Rajbari Dhaka March [59], [135], [46]
1 Faridpur Dhaka March [59], [135], [46]
1 Gopalgonj Dhaka March [59], [135], [46]

2013

1 Gaibandha (Polashbari) Rangpur January 7th [59], [135]
1 Kurigram (Fulbari) Rangpur January 19th [59], [135]
3 Nilphamari (Sayedpur) Rajshahi January 16th [59], [135]
1 Naogaon (Bodolgachi) Rajshahi January 12th [59], [135]
1 Natore Rajshahi January [59], [135]
2 Pabna (Chatmohor) Rajshahi January 9th [59], [135]
1 Rajshahi Rajshahi January [59], [135]

2 Manikganj Dhaka one in March,
one in December [59], [135]

1 Rajbari Dhaka January [59], [135]
1 Gopalgonj Dhaka October [59], [135]
1 Magura Khulna February [59], [135]
1 Jhenaidah Khulna January [59], [135]
1 Kushtia Khulna February [59], [135]

2014

2 Rangpur (Sedar) Rangpur January 7 [135], [46], [94]

2 Faridpur (Saltha) Dhaka one on January 24th,
one on January 25th [135], [94]

1 Faridpur (Saltha) Dhaka one on January 23th [94]
1 Magura (Sadar) Khulna January 7th [94], [135]

1 Panchagarh Rangpur March [94], [136], WHO
+ Assumptions

1 Khustia Khulna March [94], [136], WHO
+ Assumptions

2 Rajshahi Rajshahi 1 on January 24th,
1 on January 27th

[94], [136], WHO
+ Assumptions

1 Manikganj Dhaka January 20 [94], [136], WHO
+ Assumptions

2015

1 Naogaon, at Manda Rajshahi January 8th [135]
1 Rajshahi, at Bagha Rajshahi March 16th [135]

2 Madaripur, at Shibchar Dhaka February 28th,
March 3rd [135]

2 Gopalganj, sub-district Mokshedpur Dhaka one on February 11;
one in the same month and place [135]

1 Natore Rajshahi January [136], WHO
+ Assumptions

2 Faridpur Dhaka January [137],[136], WHO
+ Assumptions

2017 1 Faridpur, at Joykalidangi Dhaka February 8 [135]
1 Pabna, at Uttar Raghobpur Rajshahi February 3 [135]

2018
1 Faridpur Dhaka February 1st [135]
1 Rajshahi Rajshahi March 27th [135]
1 Bogra Rajshahi February [46],[140]

Table A.3: Nipah virus spillover events in Bangladesh from 2012 to 2018, detailing
district, date, and sources. Events classified as ’real’ are shown in black, ’reconstructed’
based on inferred information in blue, and ’dubious’ in red.
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A.2.3 Data analysis Tools and Methods for annual spillover
distribution

To identify the distribution that best fits the annual spillover data, which spans from
May to April each year, the data were fitted to both Poisson and Negative Binomial
distributions to determine which discrete probability distribution better describes the
annual patterns. Given that the variance (s = 30.25) is significantly greater than the
mean (x̄ = 5.61), it is unlikely that a Poisson distribution, which assumes equal mean and
variance, would accurately describe the data. Nonetheless, a Poisson model was fitted to
the data using statsmodels.api.Poisson to empirically confirm this expectation.

Poisson (discrete probability) distribution The Poisson distribution describes the
likelihood of a given number of events (i.e. discrete count data) occurring in a fixed
interval of time or space, assuming events occur independently and at a constant average
rate. It is parameterized by λ, which represents the average rate of events, with the
probability mass function (PMF) given by:

P (X = k) = λke−λ

k! (A.1)

A key property of the Poisson distribution is that its mean (λ) equals its variance. Therefore,
for data truly following a Poisson distribution, the dispersion statistic (variance/mean)
should be close to 1.

In the context of this analysis, the dispersion statistic was 5.39, indicating significant
overdispersion, and thus suggesting that the Poisson model may not be appropriate.
Despite this, a Poisson model was fitted to the data using statsmodels.api.Poisson
with the Maximum Likelihood Estimation (MLE) for λ.

A chi-square test, comparing the observed vs. expected counts predicted, yielded a
statistic of 26.16 and a p-value of 0.0002, leading to the rejection of the null hypothesis
that the data follow a Poisson distribution.

A QQ plot further revealed deviations from the theoretical Poisson line, confirming the
presence of overdispersion.

Together, the statistical test, descriptive statistics, and visual inspection of QQ plot
suggest that alternative models, such as the Negative Binomial distribution, may be more
appropriate for this dataset.

Negative Binomial (discrete probability) distribution The Negative Binomial
distribution models the number of trials required to achieve a specified number of occur-
rences of an event (referred to as "success", such as thus occurrence of a spillover event
with probability p) in a sequence of independent and identically distributed Bernoulli
trials. The probability of observing k failures before achieving r successes is given by the
PMF:

P (X = k) = f(k, r, p) =
A

k + r − 1
k

B
(1− p)kpr (A.2)
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with mean µ = E(X) = r
1

1−p
p

2
and variance σ2 = Var(X) = r

1
1−p
p2

2
. The parameters p

and r can be expressed in terms of the first two moments as:

p = µ

σ2 ; r = µ2

σ2 − µ
(A.3)

From equation A.3, the variance can also be re-parameterized as:

σ2 = µ + αµ2, α = 1
r

(A.4)

where α is the so called overdispersion parameter. Thus from equations A.3 and A.4:

p = µ

µ + αµ2 = 1
1 + αµ

(A.5)

and substituting α = 1
r

into equation A.5:

r = p · µ
1− p

(A.6)

The Negative Binomial is appropriate when the variance exceeds the mean, indicating
overdispersion, making it a suitable alternative to the Poisson distribution. Given the
rejection of the Poisson model, Negative Binomial regression was applied to the annual
spillover data using statsmodels, with Maximum Likelihood Estimation (MLE) to
estimate the model parameters log(µ) (constant term) and α. The overdispersion parameter
α was statistically significant (p-value < 0.01), confirming that the variance exceeds the
mean.

Model parameters and fit The estimates for µ, p (i.e. probability of a spillover event)
and r (i.e. total number of spillover events) were determined as follows:

µ = exp(model.params[0]) = 5.61

p = 1
1 + µ ·model.params[1] = 0.147 (model.params[1] = α = 1.035)

r = µ · p
1− p

= 0.966

Using these results, the histogram of the observed data was compared with the fitted
Negative Binomial distribution, as illustrated in Figure 2.9a.
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A.3 Climate analysis

(a) Average temperature

(b) Average precipitation

Figure A.3: Spaghetti plot of (a) monthly mean areal temperature [◦C/day] and (b) precipitation
across 2000-2018 period and districts with seasonal highlights. Each colored line represents a district, with
the black dashed line indicating the ensemble mean across all districts.

A.3.1 Trend analysis
The Theil-Sen estimator and the non-parametric Mann-Kendall test are "non-parametric"
methods, meaning they do not assume a specific distribution for the data, and are less
sensitive to outliers, making them robust and well-suited for analyzing hydro-climatic
data, as required for this study.

Sen’s slope method The magnitude of the linear trend is estimated using the unbiased
median-based slope estimator, known as the Theil–Sen estimator. A set of linear slopes
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are estimated as follow:

si = xj − xk

tj − tk

for 1 ≤ k < j < n (A.7)

where s is the slope, x denotes the variable, N is the number of data and i and j are
indexes. The n values of si are ranked and their median Smed is computed, resulting in
the Sen’s estimator of the slope.

smed = median(si) (A.8)

The intercepts are computed for each time step t as:

at = xt − smed · t (A.9)

The sign reflects direction of trend in the data, while the value indicates steepness of the
trend [141].

The Mann-Kendall test is a non-parametric test for randomness against trend. The
null hypothesis is that the data are Independent and Identically Distributed (IID). The
alternative hypothesis is that the data follow a monotonic trend. It is a ranked based
approach that compares each value of the time series with the remaining values in a
sequential order [142]. The test statistic S is given by:

S =
n−1Ø
k=1

nØ
j=k+1

sgn(xj − xk) (A.10)

where the sgn function is given by:

sgn(xj − xk) =


1 if (xj − xk) > 0
0 if (xj − xk) = 0
−1 if (xj − xk) < 0

(A.11)

S bearing positive or negative value indicates an upward or downward trend respectively
[142].
The variance of S is given by:

V ar(S) = 1
18

n(n− 1)(2n + 5)−
qØ

p=1
tp(tp − 1)(2tp + 5)

 (A.12)

The probability associated with S and the sample size, n, is then computed to statistically
quantify the significance of the trend. Normalized test statistic ZMK (z-test) is performed
as follows:

ZMK =


S−1√
V ar(S)

if S > 0

0 if S = 0
S+1√
V ar(S)

if S < 0
(A.13)

This value is compared with Zα
2

where Fn

1
Zα

2

2
= α

2 and Fn() denotes the cumulative
distribution function (CDF) of a standard normal variate. The trend results in this study
have been evaluated at 5% significant level, therefore the null hypothesis is rejected when
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|ZMK | > Zα
2
. The alternative hypothesis is that a statistically significant trend exists in

the data. The significance levels (p-values) for each trend test can be obtained from the
relationship given as [141]:

p = 0.5− Fn (|ZMK |) (A.14)
The (1− α) confidence interval of estimator smed is (Xm1, Xm2+1), with:

n∗ = Zα
2
· V ar(S) ; m1 = n− n∗

2 ; m2 = n + n∗

2 (A.15)

A.3.2 Extreme indexes
Dry Days and Cold Days calculation The dry day indicator di and the cold day
indicator ci are defined as:

∀i ∈ {1,2, ...N} : di =

1, if Prcum, d(i) < 1
è

mm
day

é
0, otherwise

(A.16)

∀i ∈ {1,2, ...N} : ci =

1, if Tmin, d(i) < 17 [◦C]
0, otherwise

(A.17)

where N = 6574 [days] is the total number of days in the analysis period.

The monthly dry days {DD(m)} and the monthly cold days {CD(m)} are calculated by
summing the number of days within each month m:

∀m ∈M,∀d ∈ D : DDd(m) =
Ø
i∈m

di ;

CDd(m) =
Ø
i∈m

ci

(A.18)

where, m ∈ M = {May, June, July, ...April} and d ∈ D represents the district in
Bangladesh.

The total annual (dry or cold) days for each district, are computed as:

DDy,d =
Ø

m∈M

DDd(m, y) ; CDy,d =
Ø

m∈M

CDd(m, y) (A.19)

where y denotes the year in the 18-year reference period Y = {0,1,2, ..17}.

The winter dry days (DDwinter) and cold days (CDwinter), are calculated by summing the
counts of days in December, January, and February:

DDwinter,d(y) =
Ø

m∈{D,J,F }
DDd(m, y) ; CDwinter,d =

Ø
m∈{D,J,F }

CDd(m, y) (A.20)

The average value of days for years with high spillover events (YH) and low spillover events
(YL) are given by:

∀y ∈ YH ,∀d ∈ D : DDd(YH) = 1
nH

Ø
y∈YH

DDy,d ;

CDd(YH) = 1
nH

Ø
y∈YH

CDy,d

(A.21)
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∀y ∈ YL,∀d ∈ D : DDd(YL) = 1
nL

Ø
y∈YL

DDy,d ;

CDd(YL) = 1
nL

Ø
y∈YL

CDy,d

(A.22)

where nH = 7 and nL = 11 represent the number of years with high and low spillover
events, respectively, as defined in Section 3.1.3.

Finally, the difference between these values (∆DDobs,d for dry days and ∆CDobs,d for cold
days) is computed for each district as:

∀d ∈ D : ∆DDobs,d = DDd(YH)−DDd(YL) ;
∆CDobs,d = CDd(YH)− CDd(YL)

(A.23)

Dry days followed by cold nights The main steps for the calculation of "Dry days
followed by cold nights" include:

1. Date extraction: the sequences of dates corresponding to dry days and cold nights
are extracted separately:

∀d ∈ D, ∀y ∈ Y : dates_DDd = dates_DDd(y) ;
dates_CDd = dates_CDd(y)

(A.24)

2. Date shifting and matching: Dry day dates were incremented by one day and
matched against cold night dates to identify periods when consecutive dry and cold
conditions hold. This was achieved by shifting the dates_DDd array:

∀d ∈ D : dates_DDd,shift = {date + 1 day|date ∈ dates_DDd} (A.25)

and generating a boolean match array using np.isin method of Numpy library in
Pyhton:

matchd = np.isin(dates_DDd,shift, dates_CDd) (A.26)
The matching dates were then extracted and stored in match_datesd, capturing the
intersection of the two sequences:

match_datesd = {dates_DDd,shift[j] | matchd[j] = True} (A.27)

3. Count matching dates: The number of annual consecutive dry days and cold
nights was calculated at the district level, as follows:

D_CDy,d =
Ø

(matchd) (A.28)

4. Winter season analysis: The process was repeated for the winter season (DJF) by
filtering the matches to include only December, January, and February:
∀d ∈ D :

match_datesd,filt = {date|date ∈ match_datesd & date.month ∈ {12,1,2}} (A.29)
D_CDwinter,d(y) = len(match_datesd,filt) (A.30)

where D_CDwinter,d(y) is total number of these filtered dates within a given year y.
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5. Average calculation: The results were then organized into a matrix (64 districts ×
18 years) and the average number of "dry days followed by cold nights" was computed
for years with high spillover events (y ∈ YH) and then compared to years with low
spillover events (y ∈ YL).

∀y ∈ YH ,∀d ∈ D : D_CDd(YH) = 1
nH

Ø
y∈YH

D_CDy,d ;

D_CDd(YL) = 1
nL

Ø
y∈YL

D_CDy,d

(A.31)

6. Difference calculation: The difference in averages between the two groups was
calculated for each district, highlighting distinctive climatic patterns.

∀d ∈ D : ∆D_CDobs,d = D_CDd(YH)−D_CDd(YL) (A.32)

7. Spatial distribution visualization: The spatial distribution of these differences
was visualized creating a GeoDataFrame of Bangladesh’s districts.

Consecutive indexes calculation The main steps include:

1. Data extraction Daily cumulative precipitation and minimum temperature data
are extracted for each district and year, along with the corresponding dates. Dry
and cold days are identified by checking the specific criteria previously mentioned.

2. Consecutive days detection A function identifies and records the longest sequences
of consecutive dry days CDD and consecutive cold days CCD for each district and
year, employing a helper function, FindConsecutiveDays (algorithm 2) within
the ConsecutiveDaysDetection procedure (algortihm 1). The sequence of dates
for these consecutive days are also recorded, providing insights into the temporal
distribution of these climatic events.

3. Shifting and Matching Dry day sequences are shifted by one day, and overlapping
dates with cold day sequences are identified using the ShiftDates and FindMatches
functions (refer to algorithm 3). The total number of consecutive "Dry and Cold"
days (C_D_CD) is counted for each district and year.

4. Average calculation The average number of consecutive dry days, cold days, and
"Dry and Cold" days is calculated for years with high (YH) and low (YL) spillover
frequency:

∀d ∈ D : CDDd(YH) = 1
nH

Ø
y∈YH

CDDy,d ; CDDd(YL) = 1
nL

Ø
y∈YL

CDDy,d

CCDd(YH) = 1
nH

Ø
y∈YH

CCDy,d ; CCDd(YL) = 1
nL

Ø
y∈YL

CCDy,d

(A.33)

C_D_CDd(YH) = 1
nH

Ø
y∈YH

C_D_CDy,d ; C_D_CDd(YL) = 1
nL

Ø
y∈YL

C_D_CDy,d
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5. Difference calculation The difference between high and low spillover years is
calculated for each district to determine whether high spillover years are characterized
by longer periods of climatic extremes:

∀d ∈ D : ∆CDDobs,d = CDDd(YH)− CDDd(YL) ;
∆CCDobs,d = CCDd(YH)− CCDd(YL) ;
∆C_D_CDobs,d = C_D_CDd(YH)− C_D_CDd(YL)

(A.34)

Algorithm 1 Consecutive Days Detection Algorithm
1: procedure ConsecutiveDaysDetection(data, dates)
2: ▷ data is the daily climatic dataset from May 1, 2000, to April 30, 2018
3: ▷ dates is the daily datetime series from May 1, 2000, to April 30, 2018
4: ▷ Initialization
5: N ← length of data ▷ Total number of days in the dataset
6: D ← number of districts ▷ Number of districts analyzed
7: years← unique years in data ▷ Years in the dataset
8: CDD ← zero matrix of size D × length of years ▷ Matrix for consecutive dry days
9: CCD ← zero matrix of size D × length of years ▷ Matrix for consecutive cold days

10: C_D_CD ← zero matrix of size D × length of years ▷ Matrix for consecutive dry and
cold days

11: dates_CDD← empty matrix of object data type of size D × length of years ▷ Matrix
for maximum sequence of dates for dry spell

12: dates_CCD← empty matrix of object data type of size D × length of years ▷ Matrix
for maximum sequence of dates for cold spell

13: ▷ Execution
14: for each year y do
15: drysp← zero array of size D ▷ Array for dry-spell count at district level
16: coldsp← zero array of size D ▷ Array for cold-spell count at district level
17: for each district d do
18: time← daily date time series for district d in year y
19: pr ← daily cumulated precipitation data for district d in year y
20: Tmin← daily minimum temperature data for district d in year y
21: (drysp[d], dates_CDD[d, y])← FindConsecutiveDays(pr < 1 mm, data, time) ▷

Detect consecutive dry days and store corresponding dates
22: (coldsp[d], dates_CCD[d, y]) ← FindConsecutiveDays(Tmin < 17◦C, data, time)

▷ Detect consecutive cold days and store corresponding dates
23: dates_CDD_shift[d,y]← ShiftDates(dates_CDD[d,y]) ▷ Shift forward the dates

by 1 day
24: (C_D_CD[d, y], matches[d,y])← FindMatches(dates_CDD_shift[d,y],

dates_CCD[d,y]) ▷ Detect dry days followed by cold nights, returning the count
and dates

25: end for
26: CDD[:, y]← drysp
27: CCD[:, y]← coldsp
28: end for
29: return CDD, CCD, C_D_CD, dates_CDD, dates_CCD, matches ▷ Return matrices

of consecutive days and dates
30: end procedure
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Algorithm 2 Find Consecutive Days Algorithm
procedure FindConsecutiveDays(condition, data, dates)

2: ▷ Identifies longest sequence of consecutive days meeting the condition
▷ data is the daily climatic dataset from May 1, 2000, to April 30, 2018

4: ▷ dates is the daily datetime series from May 1, 2000, to April 30, 2018
▷ Initialization

6: smax← 0 ▷ Maximum sequence length
sc← 0 ▷ Current sequence length

8: max_sequence_dates← [] ▷ Dates of maximum sequence
current_sequence_dates← [] ▷ Dates of current sequence

10: for each day i in condition do
if condition data[i] is true then

12: sc← sc + 1
current_sequence_dates.append(dates[i])

14: else
if sc > smax then

16: smax← sc
max_sequence_dates← current_sequence_dates

18: end if
sc← 0

20: current_sequence_dates← []
end if

22: end for
if sc > smax then

24: smax← sc
max_sequence_dates← current_sequence_dates

26: end if
return smax, max_sequence_dates ▷ Return maximum sequence length and dates

28: end procedure

Algorithm 3 Shift Dates and Find Matches Algorithms
procedure ShiftDates(dates)

2: ▷ Shift each date by one day forward to prepare for matching
shifted_dates← []

4: for each date d in dates do
shifted_dates.append(d + 1 day) ▷ Shift date forward by one day

6: end for
return shifted_dates ▷ Return the list of shifted dates

8: end procedure
procedure FindMatches(dates1, dates2)

10: ▷ Find matching dates between two lists of dates, for each district and year
▷ dates1 is the shifted series (i.e. shifted_dates)

12: matches← []
for each date d in dates1 do

14: if d is in dates2 then
matches.append(d)

16: end if
end for

18: count← len(matches) ▷ Count the number of matches
return count, matches ▷ Return the count and list of matching dates

20: end procedure
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A.4 Spatial analysis

Data source Data description Data format
and Horizontal
resolution

Date Source link

Sentinel-2 L2A
Esri Land Cover
- ArcGIS Living
Atlas of the World

Land Use and Land Cover (LULC). Thematic
map (9 classes of Land cover): Water, Built
area, Rangelands, Crops, Flooded vegetation,
Trees, Bare ground, Snow/Ice, Cloud. Source
Data Coordinate System: Universal Transverse
Mercator (UTM) WGS84.

Raster file (.Geo-
TIFF); Cell size
10 m.

2018 Esri Sentinel-2 Land Cover Explorer

WorldPop Estimated Population Density per grid-cell
(2000-2018). The projection is Geographic
Coordinate System, WGS84. The units are
number of people per square kilometer.

Raster files (.Geo-
TIFF); ~30 arc sec
(1 km2 at equator)

2020 WorldPop

Bangladesh Bu-
reau of Statistics
(BBS)

• Area in acre of fruit crops and sugar crops
(2010-2011 and 2022). Selected fruit crops
(from [A] - 2010-2011): Ripe papaya,
Guava, Jack fruit, Banana, Pineapple,
Mango, Litchi, Blackberry

• Selected fruit crops (from [B] - Area Under
garden - 2019-2020): Jujube (Boroi/Kul),
Star apple (Jamrul), Ata (Custard apple),
Dewya, Lotkon, Carambola apple
(Kamranga), Wood apple, Green Coconut
(flowers), Dragon, Dalim fruit, Safeda
(Sapodilla), Sharifa, Strawberry

• Selected sugar crops (from [B] - Area
Under garden - 2019-2020):Date-palm
(juice), Date-palm (fruit), Ripe Palmyra
(Tal), Palmyra palm (juice)

Tabular data 2013,
2022 A Bangladesh Bureau of Statis-

tics (BBS), Districts statis-
tics reports published in 2013,
based on data of 2010-2011
which refers to the agriculture
census 2008;

B Bangladesh Bureau of Statis-
tics (BBS) Yearbook of Agri-
cultural Statistics 2022.

Gridded Livestock
of the World
(GLW4)

GIS file of the areal-weighted (AW) product.
Raster files reporting the absolute number of
animals per pixel (4320 by 2160 pixels): Cattle,
Pigs, Goat, Sheep. GIS file of the area per pixel
reporting the area in square km (4320 by 2160
pixels).

Raster files 5 arc-
minutes; 0.08° x
0.08°; (~10 km2 at
equator)

2015 Gilbert, Marius; Cinardi, Giusep-
pina; Da Re, Daniele; Wint, William
G. R.; Wisser, Dominik; Robinson,
Timothy P., 2022, Harvard Data-
verse, V1. Harvard GLW4

RBB SDI
Bangladesh
WFL1 - ArcGIS
Hub

Flood prone areas: Severe Tidal Surge, Severe
Flash Flooding, Severe River Flooding,
Moderate Tidal Surge, Moderate Flash
Flooding, Moderate River Flooding

Vector data (.shp) 2019 ArcGis - link1; ArcGis - link2

Table A.4: Description of data, data sources and associated details.

A.4.1 Detailed methodology of K-means clustering process
The K-means algorithm is a widely-used method for partitioning N observations into K
non-overlapping clusters, each defined by a centroid that minimizes the within-cluster sum
of squares (WCSS). It is particularly effective for grouping data with similar attributes
into distinct categories.

The objective function for K-means clustering, known as inertia or WCSS, is mathemati-
cally expressed as:

J =
NØ

j=1

KØ
i=1

wji ∥xj − µi∥2 (A.35)

where:

• Kis the total number of clusters;
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(a) Goat density (b) Sheep density (c) Pig density

Figure A.4: Spatial distribution of district-level densities of Livestock, specifically: (a)
Goat, (b) sheep and (c) pigs. Black-bordered districts indicate those belonging to the
Nipah belt, which were affected by spillover events during the 2000-2018 period.

• N is the total number of data points;

• Xj is the j-th data point with j = 1,2, . . . , N ;

• µi is the centroid of the i-th cluster (Ci) with i = 1,2, . . . , K;

• wji ∈ {0, 1} is a binary indicator that describing which of the K clusters the data
point xj is assigned to, so that if data point xj is assigned to cluster i then wji = 1,
and wjh = 0 for h /= i;

• ∥·∥ is the L2 norm, or Euclidean distance.

Inertia J measures how internally coherent the clusters are, with lower values indicating
more homogeneous clusters.

For areal clusters, such as districts represented by polygons, the K-means algorithm
treats each district as a point in a multidimensional feature space. Therefore the Euclidean
distance is calculated in the high-dimensional space where the 35 features, serving as
coordinates.

Therefore, the goal of the K-means algorithm is to find {wji} and {µi} values
to minimize the inertia J . This is achieved through an iterative procedure, called
Expectation-Maximization (EM) approach, which involves an initialization and two
successive optimization steps [108]:

1. Initialization: the number of clusters K are specified by the user and the corre-
sponding cluster centroids µi are initialised using the k-means++ method2

2. Expectation-step (E-step): Assign each observation xi to the cluster Ci whose
centroid µi minimizes the Eucliden distance ∥xj − µi∥2 [109]. This step involves

2The “k-means++" method selects initial cluster centroids using sampling based on an empirical
probability distribution of the points contribution to the overall inertia. This technique, implemented in
scikit-learn as "greedy k-means++", speeds up convergence by making several trials at each sampling
step and choosing the best centroid among them. Source information: Scikit-learn.org
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calculating the assignment matrix wji, where wji = 1 if observation j is closest to
centroid i and wji = 0 otherwise. Therefore, J is minimized with respect to wji while
treating µi as fixed. Since J is a linear function of wji, mathematically, the cluster
assignment is expressed by:

wji =

1 if i = arg mink ∥xj − µk∥2

0 otherwise
(A.36)

3. Maximization Step (M-step): Update each centroid µi to be the mean of all points
assigned to cluster Ci. This step recalculates µi based on the current assignments,
aligning the centroids with the cluster means to better reflect the data’s distribution.
Thus, in this second step J is minimized with respect to mui while treating wji as
fixed. The objective function J , being a quadratic function of µi, is minimised by
setting its derivative with respect to µi to zero giving [108]:

δJ

δµi

= 2
NØ

j=1
wji (xi − µi) = 0 ⇒ µi =

qN
j=1 wjixiqN

j=1 wji

= 1
|Ci|

Ø
xj∈Ci

xj (A.37)

The process alternates between the E-step and M-step until the changes in centroid
positions are minimal, indicating convergence [108]. This iterative refinement ensures that
the clusters are internally homogeneous and well-separated from each other, providing a
robust grouping of the data points.

In this study, districts are treated as points in a 35-dimensional feature space, with
features reflecting NiV risk factors such as climate, land use, and population densities.
The clustering aims to identify regions with similar ecological characteristics, aiding in
the understanding of NiV transmission dynamics.
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A.5 Regression analysis: Generalized Linear Models
(GLMs)

GLM: Negative binomial model definition Let y = (y1, y2, ..yn) represent the
observations of the response variable, which is the annual count of spillover events. Each
yi corresponds to the number of spillovers observed in a given year within a given spatial
cluster, with n = 18. For each year i (where i = 1,2, ...n), the known values of p
explanatory variables, are represented by the row vector xi = {xi1, xi2, ...xip} [117].

A generalized linear model (GLM) is characterized by the following three components:

1. Random component: The response variables Yi are assumed to be independent
and follow a negative binomial distribution [117]. Hilbe provides a convenient
parameterization of the negative binomial distribution [143] as a Poisson-gamma
mixture [114]:

p(y) = P (Y = y) = f(y; µ, α) = Γ(y + α)
Γ(y + 1)Γ(α)

A
µ/α

1 + µ/α

By A 1
1 + µ/α

Bα

(A.38)

where µ > 0 is the mean of Y , and α> 0 is the dispersion parameter. Therefore:

Yi ∼ nbinom(α, πi) i = 1,2, ..n (A.39)

where πi is the probability parameter expressed as:

πi = 1
1 + αµi

An equivalent re-parametrization gives:

Yi ∼ nbinom(α, µi) i = 1,2, ..n (A.40)

where µi is the mean. The first two moments of this distribution, mean and variance,
are respectively retrieved as E(Yi) = µi and V ar(Yi) = µi + αµ2

i [117].

2. Systematic component: The linear predictor η is a linear combination of the
explanatory variables:

η = Xβ

where X = (xT
1 , xT

2 , ...xT
n )T is the n × p design matrix of the known explanatory

variables, and β is the p× 1 vector of regression coefficients that has to be estimated
[117]. Specifically:

Xn×p =


1 x12 x13 · · · x1p

1 x22 x23 · · · x2p
... ... ... . . . ...
1 xn2 xn3 · · · xnp

 ; β = (β0, β1, β2, ..., βp)T

Therefore, the linear predictor η is an n× 1 vector:

η = (η1, η2, ...., ηn)T = (x1β, ...xnβ)T

where x1 = (1,1, ...1), making β0 the intercept of the model.
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3. Link function: A link function g(·) relates the expected value of the response
variable µi to the linear predictor ηi [117]. In this analysis, the log link function is
used:

g(µi) = log(µi) = ηi = xiβ = β0xi1 + .. + βpxip

Thus, the traditional negative binomial regression model is expressed as [114]:

log(µ) = η = Xβ = β0 + β1x1 + .. + βpxp (A.41)

Consequently, the mean µ is related to η through the inverse of the link function, which
is the exponential function:

µ = eη = e(Xβ) = e(β0+β1x1+..+βpxp) (A.42)

Estimation of model parameters Following the specification of the negative binomial
model’s distribution and the structure, the next step involves estimating the model
parameters.

Referring to equation A.42, and letting xi represents the i− th row of the design matrix
X, the distribution equation A.38 can be re-expressed as [114]:

p(yi) = Γ(yi + α)
Γ(yi + 1)Γ(α)

A
exi·β/α

1 + exi·β/α

Byi
A

1
1 + exi·β/α

Bα

(A.43)

The estimation of the parameters α (dispersion parameter) and β (the regression coeffi-
cients) relies on the method of maximum likelihood estimation (MLE). The likelihood
function is expressed as [114]:

L(α, β) =
nÙ

i=1
p(yi) =

nÙ
i=1

Γ(yi + α)
Γ(yi + 1)Γ(α)

A
exi·β/α

1 + exi·β/α

Byi
A

1
1 + exi·β/α

Bα

(A.44)

The corresponding log-likelihood function is:

log L(α, β) =
nØ

i=1
[log Γ(yi + α)− log Γ(yi + 1)− log Γ(α)

+yi(xi · β − log α− log(1 + exi·β/α))
−α log(1 + exi·β/α)

é
(A.45)

The values of α and β that maximize the log L(α, β) are the sought maximum likelihood
estimates [114]. These estimates are essential for building a model that accurately reflects
the observed data and can be used effectively for predictive and inferential purposes.
However, due to the complexity of the likelihood equations in generalized linear models,
explicit solutions are rare, requiring advanced numerical algorithms for parameter estima-
tion [117]. A particularly robust method in this context is the Iteratively Reweighted Least
Squares (IRLS), an adaptation of the Newton-Raphson method [117]. This method is
well-suited for estimating β when a preliminary estimate of α is held constant [117]. The
iterative nature of the IRLS algorithm effectively refines the estimates of the regression
coefficients β until convergence is achieved, ensuring precise parameter estimation.

In the negative binomial model, the dispersion parameter α is not predefined and must
be estimated from the data. The estimation approach varies depending on the context:
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• Univariate GLM: In this approach, α is estimated by fitting a Negative Binomial
model to the data using the sm.NegativeBinomial function from the statsmodels
library. This function employs the ’nb2’ parameterization (i.e. Variance = µ + α ·µ2),
specifically designed for the Negative Binomial model. The log-likelihood method
is used to estimate the dispersion parameter along with other model parameters,
ensuring an accurate representation of data variability. Additional details are provided
in Section 5.1.2.

• Model selection: In this context, to effectively determine the optimal value of
α, an iterative optimization process is employed, which minimizes the negative
log-likelihood function using the limited memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS-B) algorithm. For further details, refer to Section 5.1.2.

A.5.1 Steps in the univariate GLM process
A systematic approach was employed to estimate the dispersion parameter α and fit the
negative binomial models, as outlined in the following steps. The complete code for this
process is available (see Listing A.1). From this point onward, it is assumed that all
analyses are conducted for each spatial cluster, and this will not be explicitly stated in
each step.

1. Step 1: Estimation of α The first step involves estimating the dispersion parameter
α, a key component in the negative binomial regression model. This is done using the
NegativeBinomial function from the ’statsmodels’ library, which fits an auxiliary
regression model to the data employing the ’nb2’ parameterization and the Maximum
Likelihood Estimation (MLE) method. Notably, the ‘statsmodels.formula.api‘
is designed to automatically calculate the dispersion parameter α as part of the MLE
fitting process.

2. Step 2: Check statistical significance of α After fitting the auxiliary model, the
summary is reviewed to determine the statistical significance of α. A low p-value (e.g.,
less than 0.05) suggests that α is statistically significant, confirming that the negative
binomial model is more appropriate than a Poisson model due to overdispersion.

3. Step 3: fitting the GLM Once the optimal α (denoted as αopt) is obtained and its
statistical signficance is confirmed, it is used as an input for fitting the Generalized
Linear Model (GLM) with a negative binomial distribution. Indeed, in this phase,
the GLM considers α as a fixed parameter that needs to be specified by the user
before fitting the model. This step ensures that the model accurately reflects the
data’s overdispersion, as indicated by αopt.

4. Step 4: Model evaluation The model’s fit is evaluated using pseudo-R2 measures,
which provide an indication of the model’s explanatory power in a way adapted for
GLMs. In this analysis, the Cox-Snell pseudo-R2 was employed for its ability to
approximate the traditional R2 in GLMs. It is calculated based on the likelihood
of the fitted model (denote with llf) compared to the likelihood of the null model
(a model with no predictors except for the intercept, denoted as llnull), using the
following formula:

pseudo-R2
CS = 1− exp

3 2
nobs

· (llnull − llf )
4

(A.46)
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where nobs is the number of observations in the dataset (i.e. 18).
Additionally, the p-values of the coefficients were considered to assess the model’s
validity.

5. Step 5: Coefficients estimates and significance Coefficients for the predictor
variable and the intercept are estimated using MLE. Given the log link function, these
coefficients represent the expected change in the logarithm of the response variable for
a one-unit increase in the predictor variable (for the β1 coefficient) and the expected
log-value of the response variable when the predictor is zero (for the intercept, β0). In
statsmodel, these estimated coefficients can be accessed via the .params attribute
on the model’s result object. The standard error for each coefficient is then calculated
as the square root of the diagonal element of the variance-covariance matrix, obtained
by calling .cov_params() on the result object. This step is crucial because the
standard error quantify the uncertainty in the coefficient estimates, reflecting the
precision of the sample in representing the population.
Subsequently, the Wald test is employed to assess the significance of the coefficients
in the model. A test statistic Z, known as the Z-score or Wald statistics, is computed
for each coefficient by dividing the estimated coefficient by its standard error. Finally,
the p-values are calculated using the Z-scores to determine the statistical significance
of each coefficient, indicating the strength of the association between the predictor
and the response variable. The calculation uses the cumulative distribution function
(CDF) of the standard normal distribution ((norm.cdf)), expressed as:

p− value = 2 · (1− norm.cdf(np.abs(Z))) (A.47)

This formula computes the two-tailed p-value for each coefficient, representing the
probability of observing the given result by chance if the null hypothesis of no effect is
true. The statistical significance is denoted by asterisks placed next to the coefficient
value, as follows:

• "***" if the p-value < 0.001, indicating very strong evidence against the null
hypothesis.

• "**" if the p-value < 0.01, indicating strong evidence against the null hypothesis.
• "*" if the p-value < 0.05, indicating significant evidence against the null hypothe-

sis.

6. Step 6: Coefficients interpretation The coefficients are interpreted by calculating
the change factor for the predictor variable, which represents the factor by which the
response variable changes for a one-unit increase in the explanatory variable:

change_factor = exp(β) (A.48)

This factor is then converted into a percentage change to facilitate practical interpre-
tation:

change_factorperc =
I

(change_factor− 1) · 100 if change_factor > 1
(1− change_factor) · 100 otherwise (A.49)

7. Step 7: prediction values and confidence intervals The analysis includes
generating a range of predictor values using np.linspace to create an array of 100
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evenly spaced values between the minimum and maximum observed values of the
predictor variable. This expanded range facilitates a smoother visualization of the
model’s predictions, addressing the limitation of the small number of predictor values
(i.e. 18 values, one for each year) in the original dataset. Additionally, this approach
enables a detailed analysis and prediction at unobserved values, enhancing the model
evaluation process. Indeed, by examining the model’s behavior across a broad range
of predictor values, a more robust analysis can be conducted, ensuring the predictions
are both accurate and applicable to a wider set of conditions beyond the observed
data points.
The summary_frame method from the statsmodels library provides a comprehensive
summary of the model’s predictions, including:

• Predicted mean (mean), which indicates the central tendency of the expected
spillover events for each predictor value;

• Standard error of predicted mean (mean_se), which quantifies the uncertainty
associated with the predicted mean;

• Confidence intervals for the predicted mean (mean_ci_lower, mean_ci_upper),
which provide a range within which the true mean is expected to lie with a
specified level of confidence (typically 95%).

8. Step 8: Plot univariate GLMs The final step involves plotting the univariate
GLMs for both the full and filtered periods to visualize the relationship between
climate variables and spillover events.

The complete code for this process is reported below.

Listing A.1: Univariate GLM Code
1 import s ta t smode l s . ap i as sm
2 import pandas as pd
3 import numpy as np
4 from sc ipy . s t a t s import norm
5

6 data = pd . DataFrame ({ # DataFrame pandas c r e a t i o n
7 ’ p r e d i c t o r ’ : Var ,
8 ’ r e sponse ’ : y e a r l y _ s p i l l
9 })

10

11 y = data [ ’ r e sponse ’ ] # y i s the re sponse v a r i a b l e
12

13 data [ ’ I n t e r c e p t ’ ] = 1
14 X = data [ ’ I n t e r c e p t ’ , ’ p r e d i c t o r ’ ] # X i s the explanatory v a r i a b l e

p lus i n t e r c e p t
15

16 # Step 1 : Est imation o f d i s p e r s i o n parameter by f i t t i n g an a u x i l i a r y
model

17 model = sm . NegativeBinomial (y , X, logl ike_method=’ nb2 ’ )
18 r e s u l t s = model . f i t ( ) # f i t the a u x i l i a r y model
19 alpha_opt = r e s u l t s . params [ ’ alpha ’ ] # get optimal alpha
20

21 # Step 2 : Check the s t a t i s t i c a l s i g n i f i c a n c e o f alpha
22 pr in t ( r e s u l t s . summary ( ) )
23

24 # Step 3 : Proceed with f i t t i n g a GLM
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25 glm_nbinom = sm .GLM(y , X, fami ly = sm . f a m i l i e s . NegativeBinomial ( alpha=
alpha_opt ) )

26 glm_result = glm_nbinom . f i t ( ) # f i t the GLM of negat ive binomial
fami ly us ing alpha_opt as f i x e d input parameter

27

28 # Step 4 : Model eva lua t i on
29 pr in t ( glm_result . summary ( ) )
30 pr in t ( glm_result . summary2 ( ) )
31 R_CS = glm_result . pseudo_rsquared ( kind=’ cs ’ ) # Cox−S n e l l l i k e l i h o o d

r a t i o pseudo R−squared
32

33 # Step 5 : C o e f f i c i e n t s e s t imate s and r e l a t i v e p−va lue s
34 coe f_est imated = glm_result . params # Get c o e f f i c i e n t s

e s t imate s
35 ci_coef_estmated = glm_result . conf_int ( alpha =0.05) # Conf idence

i n t e r v a l at 95% of the c o e f f i c i e n t e s t imate s
36

37 cov_matrix = glm_result . cov_params ( ) # var iance −covar iance
matrix o f the e s t imato r s

38 s tandard_errors = np . sq r t (np . diag ( cov_matrix ) ) # standard e r r o r s
are the square roo t s o f the d iagona l e lements o f the var iance −covar iance

matrix
39

40 Z_scores = coef_est imated / standard_errors # Wald (Z−s c o r e s )
s t a t i s t i c s

41 p_values = 2 ∗ (1 − norm . cd f (np . abs ( Z_scores ) ) ) # p−va lue s o f the
c o e f f i c i e n t e s t imate s

42 # or e q u i v a l e n t l y from the model r e s u l t ob j e c t
43 # p_values_glm = glm_result . pva lues
44

45 # Step 6 : C o e f f i c i e n t s i n t e r p r e t a t i o n
46 coe f_pred i c to r = coef_est imated [ ’ predictor_name ’ ]
47 coe f_ in t e r c ep t = coef_est imated [ ’ I n t e r c e p t ’ ]
48

49 p_value_predictor = p_values [ ’ predictor_name ’ ]
50

51 change_factor_predictor = np . exp ( coe f_pred i c to r )
52 change_factor_predictor_perc = ( change_factor_predictor −1)∗100
53

54 s i g n i f i c a n c e = " "
55 i f p_value_predictor < 0 . 0 0 1 : # s t a t i s t i c a l s i g n i f i c a n c e o f

c o e f f i c i e n t s , denoted with a s t e r i s k s
56 s i g n i f i c a n c e = " ∗∗∗ "
57 e l i f p_value_predictor < 0 . 0 1 :
58 s i g n i f i c a n c e = " ∗∗ "
59 e l i f p_value_predictor < 0 . 0 5 :
60 s i g n i f i c a n c e = " ∗ "
61

62 # Step 7 : Get p r e d i c t i o n va lues and con f idence i n t e r v a l s
63 pred ictor_range = np . l i n s p a c e ( data [ ’ predictor_name ’ ] . min ( ) , data [ ’

predictor_name ’ ] . max( ) , 100) # genera t ing a spectrum of va lue s f o r
the pred i c to r , ranging from i t s min to max va lue s

64

65 p r e d i c t i o n s = glm_result . ge t_pred i c t i on (pd . DataFrame ({ ’ I n t e r c e p t ’ : 1 , ’
predictor_name ’ : pred ictor_range }) ) . summary_frame ( alpha =0.05)

66

67 pred_mu = p r e d i c t i o n s [ ’mean ’ ] # Expected mean
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68 pred_mu_se = p r e d i c t i o n s [ ’ mean_se ’ ] # Standard e r r o r o f p r ed i c t ed
mean

69 conf_int_low = p r e d i c t i o n s [ ’ mean_ci_lower ’ ] # Lower con f idence
i n t e r v a l f o r the pred i c t ed mean

70 conf_int_high = p r e d i c t i o n s [ ’ mean_ci_upper ’ ] # Higher con f idence
i n t e r v a l f o r the pred i c t ed mean

GLMs: Exhaustive feature selection

The next step involves a rigorous model selection process aimed at identifying the most
parsimonious model that best fits the data. This process uses Akaike’s Information
Criterion corrected for small sample sizes (AICc) to compare models, prioritizing those
that achieve a good fit with fewer parameters.
To identify the best-fitting combination of scaled climate covariates for explaining the
response variable (i.e. yearly variation in spillover events), the exhaustive feature selection
algorithm was employed. This algorithm is a wrapper approach that performs a brute-force
evaluation of feature subsets by considering all possible combinations of features. It starts
with a baseline model that includes only the intercept and progressively considers all
possible feature combinations, beginning with single-variable models and incrementally
adding more variables to assess their collective impact. This step is crucial for capturing
the complex relationships between the predictors and the response variable.
At each iteration, a specific feature set is considered. Before fitting a GLM with a negative
binomial distribution, an optimal dispersion parameter αopt must be determined to accu-
rately model overdispersed count data. This is achieved through an iterative optimization
process that minimizes the negative log-likelihood function using the limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm. Minimizing the negative log-
likelihood, rather than maximizing the log-likelihood, simplifies the optimization problem
(i.e. due to optimization conventions3) and enhances numerical stability. The L-BFGS-B
algorithm efficiently navigates the parameter space within specified bounds, ensuring that
α remains within a plausible range (i.e. α must be non-negative). This iterative process
seeks the value of α that minimizes the negative log-likelihood, starting from an initial
value of 0.1 to avoid computational issues.
For each combination of features, and with the optimized αopt updated at each iteration,
a Generalized Linear Model using the negative binomial family is fitted to the data using
statsmodel.api in Python. The model’s goodness of fit is then assessed using the Akaike
Information Criterion corrected (AICc):

AIC = 2p− 2ln(ℓ) (A.50)

AICc = AIC + 2p(p + 1)
n− p− 1 (A.51)

where ℓ is the maximized value of the model’s log-likelihood function, obtained as
model.llf. The coefficient p corresponds to the number of estimated parameters in
the model, including the intercept (model.df_model + 1), and n denotes the total num-
ber of observations (retrieved as model.nobs).
All tested models are then ranked in ascending order of AICc values to identify the model

3Optimization convention refers to the standard practice in mathematical optimization where
algorithms are typically designed to minimize objective function rather than maximize it
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that offers the best balance between complexity and fit, with the lowest AICc value
indicating the most suitable model for explaining the response variable. The complete
code employed in this analysis is here reported, see Listing A.2.

Although the exhaustive feature selection algorithm is computationally demanding, it
methodically evaluates all possible feature combinations while optimizing key parameters
like α. This approach ensures the development of a highly accurate and interpretable
model that is both parsimonious and robust, providing valuable insights into the factors
influencing the yearly variation in spillover events. The use of AICc as a selection cri-
terion helps prevent overfitting, ensuring that the model’s complexity is justified by its
explanatory power.

Listing A.2: Exhaustive feature selection code
1 import numpy as np
2 import s ta t smode l s . ap i as sm
3 import i t e r t o o l s
4 import warnings
5 from sc ipy . opt imize import minimize
6

7 de f c a l c u l a t e _ a i c c ( a ic , n , k ) :
8 " " " Ca l cu l a t e s AICc given AIC , number o f ob s e rva t i on s n , and number o f

parameters k . " " "
9 re turn a i c + (2 ∗ k ∗ ( k + 1) ) / (n − k − 1)

10

11 de f neg_ l l f ( alpha , y , X) :
12 " " " Ca l cu l a t e s the negat ive log−l i k e l i h o o d f o r a g iven alpha ( o b j e c t i v e

func t i on to minimize ) . " " "
13 t ry :
14 model = sm .GLM(y , X, fami ly=sm . f a m i l i e s . NegativeBinomial ( alpha=

alpha ) ) . f i t ( )
15 re turn −model . l l f
16 except Exception as e :
17 pr in t ( f " Error in neg_ l l f f o r alpha { alpha } : {e} " )
18 re turn np . i n f
19

20 de f f ind_optimal_alpha (y , X) :
21 " " " Finds the optimal va lue o f alpha f o r the Negative Binomial model .
22

23 U t i l i z e s the L−BFGS−B opt imiza t i on a lgor i thm via the ’ minimize ’
funct ion , which i s app l i ed when bounds are s p e c i f i e d f o r the parameter .

24

25 Parameters :
26 − y : The dependent v a r i a b l e ( t a r g e t outcomes ) .
27 − X: The independent v a r i a b l e s ( p r e d i c t o r s ) .
28

29 Returns :
30 − The optimal alpha value i f the opt imiza t i on converges s u c c e s s f u l l y ;

otherwise , None .
31 " " "
32 r e s u l t = minimize ( neg_l l f , x0 = [ 0 . 1 ] , a rgs=(y , X) , bounds =[ (0 . 1 , None ) ] )
33 i f not r e s u l t . s u c c e s s :
34 pr in t ( " Warning : Optimizat ion f a i l e d to converge . " )
35 re turn None
36 re turn r e s u l t . x [ 0 ]
37

38 de f evaluate_combinat ions ( data , dependent_var , independent_vars ) :
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39 " " "
40 Evaluates a l l combinat ions o f independent v a r i a b l e s us ing AICc c r i t e r i a

to s e l e c t the bes t s e t .
41

42 This func t i on performs exhaust ive f e a t u r e s e l e c t i o n with Negative
Binomial models , determining the optimal alpha f o r each c o n f i g u r a t i o n .

43

44 Parameters :
45 − data : DataFrame with the datase t .
46 − dependent_var : Column name o f the dependent v a r i a b l e .
47 − independent_vars : L i s t o f p o t e n t i a l independent v a r i a b l e s .
48

49 Returns :
50 − L i s t o f t up l e s with AICc value , v a r i a b l e combination , opt imal alpha ,

and f i t t e d model .
51 " " "
52 r e s u l t s = [ ]
53 y = data [ dependent_var ]
54 f o r L in range (0 , l en ( independent_vars ) + 1) :
55 f o r subset in i t e r t o o l s . combinat ions ( independent_vars , L) :
56 i f not subset :
57 cont inue
58 X = data [ l i s t ( subset ) ]
59 X = sm . add_constant (X) # Add a constant term f o r the i n t e r c e p t
60 t ry :
61 with warnings . catch_warnings ( record=True ) as w:
62 warnings . s i m p l e f i l t e r ( " always " )
63 alpha = find_optimal_alpha (y , X)
64 model = sm .GLM(y , X, fami ly=sm . f a m i l i e s .

NegativeBinomial ( alpha=alpha ) ) . f i t ( )
65 a i c c = c a l c u l a t e _ a i c c ( model . a ic , model . nobs , l en ( model .

params ) )
66 r e s u l t s . append ( ( a i cc , subset , alpha , model ) )
67 i f w:
68 pr in t ( f " Warnings encountered with v a r i a b l e s { subset

} : {w} " )
69 except Exception as e :
70 pr in t ( f " Error with v a r i a b l e s { subset } : {e} " )
71 cont inue
72 re turn r e s u l t s
73

74 # Cal l the evaluate_combinat ions func t i on
75 r e s u l t s = evaluate_combinat ions (
76 var_df_scaled , # DataFrame conta in ing the s c a l ed data ( explanatory

v a r i a b l e s )
77 dependent_var , # Dependent v a r i a b l e
78 independent_vars # L i s t o f independent v a r i a b l e s
79 )
80

81 # Sort the r e s u l t s by AICc
82 s o r t e d _ r e s u l t s = sor t ed ( r e s u l t s , key=lambda x : x [ 0 ] )

A.5.2 GLMs evaluation
Deviance and model residuals Referring to the notation from Section A.5, let η̂ = Xβ̂
denote the estimated linear predictor. Given the relationship A.42 between µ and η, where
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µ = E(Y ) = (µ1, ...µn)T represents the expected values, the vector of predicted values
is defined as µ̂ = (exp(η̂1), ...exp(η̂n)) [117]. This follows from the exponential function
serving as the inverse of the log link function used in the model. Thus, ŷ is set equal to µ̂,
where µ̂i represents the predicted value for the i-th year, and yi indicates the observed
value in the same year, with i = 1, ...n. In the ensuing discussion, the maximum likelihood
estimate of the generic dispersion parameter ϕ will be denoted by ϕ̂.

In the context of a generalized linear model the deviance D is defined as [117], [114]:

D(y; µ̂) = 2ϕ (ℓµ(y, ϕ)− ℓµ(µ̂, ϕ)) (A.52)

where ℓµ is the log-likelihood function of the GLM’s parameterization (µ, ϕ). The term
ℓµ(y, ϕ) represents the log-likelihood of the saturated model, where each predicted value
µ̂i equals the corresponding observed value yi. This configuration results in the maximum
possible log-likelihood for the data under the assumed distribution, as the saturated
model has as many parameters as observations n (i.e. n = p, where p is the number of
the explanatory variables), ensuring a perfect fit [117] [114]. Conversely, ℓµ(µ̂, ϕ) is the
log-likelihood of the current model under evaluation, where µ̂ represents the predicted
means calculated from the model parameters. Typically, this model has fewer parameters
than the saturated model (i.e. p < n).
Deviance quantifies the loss of fit when moving from the saturated model to a more
parsimonious model with fewer explanatory variables. Consequently, high deviance values
indicate a substantial disparity between the predicted values (µ̂i) and the observed values
(yi), indicating that the simpler model may not adequately capture the data’s underlying
structure [117].

For the negative binomial distribution with the dispersion α fixed at the maximum
likelihood estimate α̂, the deviance simplifies as follows [117], [114]:

D(y; µ̂) = 2
nØ

i=1

A
yi ln

A
yi

µ̂i

B
− (yi + α̂) ln

A
α̂ + yi

α̂ + µ̂i

BB
(A.53)

This deviance metric is instrumental in defining a specific type of residuals known as
deviance residuals, which, along with raw residuals and Pearson residuals, are crucial
for conducting a comprehensive diagnostic analysis of the fitted model. These residuals
collectively facilitate the evaluation of the model’s performance by assessing the fit’s
adequacy and the validity of the underlying statistical assumptions. The types of residuals
used in model diagnostics are as follows [117], [114]:

• Raw or response residuals represent the simple difference between the observed
and predicted values:

ri = yi − µ̂i, i = 1, . . . , n (A.54)
They can be obtained using the .resid_response attribute in statsmodel results.
These residuals are direct and useful for straightforward evaluations, such as identify-
ing outliers and assessing general fit.

• Pearson residuals are standardised residuals, calculated by dividing the raw resid-
uals by the standard deviation of the predicted responses:

rP
i = riñ

σ2(µ̂i)
= yi − µ̂iñ

µ̂i + αµ̂2
i

(A.55)
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In this analysis, they are retrieved using the .resid_pearson attribute. Pearson
residuals are used to assess whether the residual variance is constant (i.e. homoscedas-
ticity).

• Deviance residuals are specific to GLMs, and measure the discrepancy between
observed and predicted values in terms of deviance:

rD
i = sgn(yi − µ̂i)

ñ
Di, i = 1, . . . , n (A.56)

where Di represents the contribution of a single observation to the deviance. These
residuals, accessible via the .resid_deviance attribute, are useful to assessing
the contribution of each observation to the overall deviance, providing insight into
individual influence and leverage within the model.

Outlier, leverage and influence diagnostics Most standard diagnostics for linear
models extend straightforwardly to GLMs [144], leveraging maximum likelihood and
quasi-likelihood estimates obtained through iteratively weighted least squares (IWLS).
These diagnostics include hat-values and Cook’s distances [144].

Hat-values or leverages In a linear model, the so called Hat matrix allows to
transform the observations y to their estimated values ŷ as follows [145]:

ŷ = Xb̂ = X(X ′X)−1X ′y = Hy

The diagonal elements of H, hii are called leverages and satisfy:

0 ≤ hii ≤ 1;
nØ

i=1
hii = k

where k is the number of coefficients in the regression model, and n is the number of
observations. Since the predicted response can be written as:

ŷi = hi1y1 + hi2y2 + ... + hiiyi + ... + hinyn for i = 1,2, ..n

the leverage, hii, quantifies the influence of the observation yi on its predicted value ŷi

[145]. Generally, a larger hii indicates that the ith data point is further from the mean
of the predictor values (i.e., the center of the predictor space), giving it more leverage
[145]. An observation i can be considered an outlier if its leverage substantially exceeds
the mean leverage value h̄:

h̄ =
qn

i=1 hii

n
= k/n

where k is the sum of the leverage values. A typical cut-off value is hcut−off = 2 · k/n,
so that an observation x in the predictor space is flagged as unusual if its leverage
hii > hcut−off .

In GLMs, hat-values hi can be obtained directly from the final iteration of the IWLS
procedure, and have the same interpretation as in linear models, although in GLMs,
they depend on both the response variable Y and the predictor variables X [144]. The
generalised Hat matrix is defined as:

H = W 1/2X(X ′WX)−1X ′W 1/2 (A.57)
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where W is the weight matrix from the final IWLS iteration, a n × n diagonal matrix
with µi

1+αµi
is the ith diagonal element [114].

Influence measure: Cook’s distance Cook’s distance Di measures the normalised
change in fitted response values ŷj resulting from the exclusion of observation i, thus
showing the influence of each observation on the fitted response values [146].

Di =
qn

j=1(ŷj − ŷj(i))2

k MSE

where ŷj(i) is the jth fitted response value, where the fit does not include observation i,
and MSE is the mean square error [146]. This equation can be also be expressed as:

Di = r2
i

k MSE

A
hii

(1− hii)2

B

where ri is the ith residual, and hii is the ith leverage value [146]. A data point is flagged
as Influential point if it has a large Di, indicating that it strongly influences the fitted
values.

A generalization of the Cook’s distances is also possible [144]:

Di =
(rP

i,st)2

α̂ · p
· hi

1− hi

(A.58)

where rP
i,st is the Standardised Pearson residuals retrieved from equation A.55 of the

Pearson residual as follows [114]:

rP
i,st = rP

i√
1− hi

(A.59)

Cook’s distance is typically compared against a predetermined cut-off value, Dcut−off ,
often chosen as Dcut−off = 2 · D, where D is the mean of Cook’s distances across all
observations. Therefore, if the Cook’s distance Di of an observation i exceeds Dcut-off,
then it is flagged as having a significant influence on the regression model’s parameters.

A.5.3 GLMs results - Case A: single spatial cluster

Figure A.5 displays the Pairwise Pearson’s correlation matrix between explanatory variables
for the unique cluster.
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Figure A.5: Case A - Unique cluster: Pairwise Pearson’s correlation between yearly Nipah spillover
events, and winter climate variables (i.e. mean temperature, minimum temperature, percentage of cold
days, percentage of dry days followed by cold nights), annual indexes (i.e. annual dry days, annual cold
days, annual dry days followed by cold nights) and July variables (i.e. mean temperature, minimum
temperature and precipitation). Correlations with asterisks are statistically significant at the 0.05 level
(∗), 0.01 level (∗∗) and 0.001 level (∗∗∗).

Inclusion of interaction factors

The five top-performing models M
(0)
j (j = 1,2, ..5), each with a ∆AICc < 2 compared to

the best reference model Mref (i.e. the top one M
(0)
1 ), were selected from the outcome of

the exhaustive feature selection process, as shown in Table A.5. Interaction terms were
then systematically added to these models, as described in Section 5.1.2 and detailed in
Table A.6, to explore potential synergies between variables, with the goal of enhancing
the models’ explanatory power.
For each selected model M

(0)
j , a set of n interaction-enhanced models M

(l)
j was tested,
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Models M
(0)
j with ∆AICc < 2

Model name AICc pseudo-R2 Explanatory variables αopt ∆AICc

M
(0)
1 95.60 0.75 Tavg,winter, Tavg,july 0.225 0.0

M
(0)
2 96.27 0.84 DCDy, Tavg,july, P rjuly 0.149 0.67

M
(0)
3 96.56 0.67 DCDy, Tavg,july 0.305 0.96

M
(0)
4 97.15 0.47 Tavg,winter 0.502 1.56

M
(0)
5 97.37 0.65 CDwinter, Tavg,july 0.309 1.78

Table A.5: Outcome of the exhaustive feature selection process: the top five models with ∆AICc < 2,
ranked by ascending AICc values, along with their associated statistics.

where l ∈ {0,3,9} corresponds to the number of candidate models depending on the
number of explanatory variables (k) in the model:

• If k = 1, no interaction terms were added, and no new models were tested, so l = 0;
the original M

(0)
j was retained.

• If k = 2, one interaction term was added (X1 ·X2), and three new models were tested,
so l = 3 (see "Candidate model" column in Table A.6 for further details).

• If k = 3, three interaction terms were added, and nine new models were tested, so
l = 9 (refer to the "Candidate model" column in Table A.6).

Diagnostic plots

Top model without interaction terms To assess the robustness and validity of the
top model without interaction terms, various diagnostic plots were generated (see Figure
A.6). These diagnostics confirmed that the model largely satisfies the key assumptions
of linearity, independence, and homoscedasticity of residuals. However, three specific
years—3, 4, and 12—showed deviations that warrant further investigation. Specifically:

• Linearity: The observed versus predicted plot aligns well with the diagonal, indicat-
ing that the model accurately predicts the majority of the observations. However,
years 3 and 12 show noticeable deviations from this line, suggesting potential misfit
for those specific years.

• Independence: The deviance residuals exhibit no clear patterns, supporting the
assumption of independence among observations. This is further corroborated by
the Durbin-Watson test, which shows no significant autocorrelation.

• Homoscedasticity: Most Pearson residuals, except for those corresponding to years
3 and 4, fall within the ±2 standard deviation range, suggesting consistent variance
across residuals.

• Normality of deviance residuals: The Q-Q plot and the high p-value from the
Shapiro-Wilk test suggest that the deviance residuals are normally distributed with
no substantial outliers.
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Candidate models M
(l)
j with j = 1,2, ...5 and l ∈ {0, 3, 9}

Starting model Explanatory variables Candidate models Results: Ranked models

M
(0)
1

X1 = Tavg,winter

X2 = Tavg,july

1) M
(1)
1 = X1 + X1 ·X2

2) M
(2)
1 = X2 + X1 ·X2

3) M
(3)
1 = X1 + X2 + X1 ·X2

M
(2)∗
1 , AICc = 92.85

M
(0)
1 , AICc = 95.60

M
(3)
1 , AICc = 96.15

M
(1)
1 , AICc = 99.04

M
(0)
2

X1 = DCDy

X2 = Tavg,july

X3 = Prjuly

M
(1)
2 = X1 + X2 + X1 ·X3

M
(2)
2 = X1 + X2 + X2 ·X3

M
(3)
2 = X1 + X2 ·X1 + X3

M
(4)
2 = X1 + X2 ·X3 + X3

M
(5)
2 = X1 ·X2 + X2 + X3

M
(6)
2 = X1 ·X3 + X2 + X3

M
(7)
2 = X1 + X2 + X3 + X1 ·X2

M
(8)
2 = X1 + X2 + X3 + X1 ·X3

M
(9)
2 = X1 + X2 + X3 + X2 ·X3

M
(1)∗
2 , AICc = 93.46

M
(0)
2 , AICc = 96.26

M
(6)
2 , AICc = 96.87

M
(8)
2 , AICc = 96.93

M
(5)
2 , AICc = 97.51

M
(2)
2 , AICc = 98.74

M
(3)
2 , AICc = 99.57

M
(7)
2 , AICc = 100.04

M
(9)
2 , AICc = 100.19

M
(4)
2 , AICc = 102.98

M
(0)
3

X1 = DCDy

X2 = Tavg,july

1) M
(1)
3 = X1 + X1 ·X2

2) M
(2)
3 = X2 + X1 ·X2

3) M
(3)
3 = X1 + X2 + X1 ·X2

M
(0)
3 , AICc = 96.56

M
(2)
3 , AICc = 97.04

M
(1)
3 , AICc = 97.69

M
(3)
3 , AICc = 99.91

M
(0)
4 X = Tavg,winter - M

(0)
4 , AICc = 97.15

M
(0)
5

X1 = CDwinter

X2 = Tavg,july

1) M
(1)
5 = X1 + X1 ·X2

2) M
(2)
5 = X2 + X1 ·X2

3) M
(3)
5 = X1 + X2 + X1 ·X2

M
(2)∗
5 , AICc = 95.64

M
(1)∗
5 , AICc = 95.68

M
(0)
5 , AICc = 97.38

M
(3)
5 , AICc = 98.96

Table A.6: Results of model improvement efforts incorporating interaction factors for each candidate
model selected based on the exhaustive model selection process, with a selection criterion of ∆AICc < 2.
Models identified as improvements over the original baseline model (highlighted in bold) are indicated in
blue.

In summary, while the overall diagnostic checks support the validity of the model, the
identified anomalies associated with the years 3, 4, and 12 need further investigation to
ensure the model’s robustness and accuracy.

Referring to Figure A.7, years 3 and 4 show high standardized residuals (i.e., exceed
the threshold +2), indicating that the model underpredicts spillover events for these
years. Despite this, these years exhibit low leverage, meaning they do not have unusual
predictor values that would unduly influence the model. However, their Cook’s distance
values are above the threshold, indicating that even though their leverage is low, they
still significantly impact the regression coefficients. This suggests that the observed data
for these years do not fit the model well but do not distort the model’s overall structure.

On the other hand, year 12 presents a different situation. While it does not exhibit
problematic standardized residuals, it has high leverage, meaning its predictor values are
more extreme compared to the rest of the dataset. This high leverage, combined with
its Cook’s distance, suggests that year 12 exerts a substantial influence on the model’s
parameters. Year 12 coincides with an extreme negative winter temperature anomaly
(refers to Figure 3.4), which could explain its significant impact on spillover dynamics.
This suggests that the model may not fully capture the complexities associated with such
climatic anomalies.
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Figure A.6: Diagnostic plots assessing the validity and verifying the assumptions of the top GLM
model without interaction terms.

Therefore, while the model remains valid and robust overall, further refinements—such
as incorporating interaction terms or addressing non-linearities—could improve its ability
to account for these specific anomalies, particularly in extreme climatic conditions.

Figure A.7: Diagnostic analysis of the best-fit negative binomial GLM: (Left) enhanced influence
plot with scatter point sizes proportional to Cook’s distance, and (Right) index plot of Cook’s distance,
both with indicated thresholds for identifying outliers and influential points, respectively.
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A.5.4 GLMs results - Case B: two spatial clusters

Figures A.8 and A.9 display the Pairwise Pearson’s correlation matrices between explana-
tory variables for Cluster 1 and Cluster 2, respectively.

Figure A.8: Case B - Cluster 1: Pairwise Pearson’s correlation between yearly Nipah spillover events,
and winter climate variables (i.e. mean temperature, minimum temperature, percentage of cold days,
percentage of dry days followed by cold nights), annual index (i.e. annual dry days followed by cold
nights) and July variable (i.e. mean temperature). Correlations with asterisks are statistically significant
at the 0.05 level (∗), 0.01 level (∗∗) and 0.001 level (∗∗∗).

Inclusion of interaction factors

The outcome of the exhaustive feature selection process for Cluster 1 and Cluster 2 is
reported in Table A.7. Table A.8 presents the initial models (from the exhaustive feature
selection process), the interaction terms introduced, the procedure for incorporating these
terms, and the corresponding candidate models tested to evaluate whether combining
variables could improve the models’ explanatory power by revealing synergies (see the
procedure detailed in Section A.5.3).

145



Figure A.9: Case B - Cluster 2: Pairwise Pearson’s correlation between yearly Nipah spillover events,
and winter climate variable (i.e. mean temperature), annual indexes (i.e. annual dry days, annual cold
days, annual dry days followed by cold nights) and July variables (i.e. mean temperature, minimum
temperature and precipitation). Correlations with asterisks are statistically significant at the 0.05 level
(∗), 0.01 level (∗∗) and 0.001 level (∗∗∗).

Diagnostic plots

Top model of Cluster 1 Figure A.10 presents the diagnostic plots used to assess the
validity and check the assumptions of the top GLM model Mref,C1.

Top models of Cluster 2 Figure A.11 shows the diagnostic plots used to assess the
validity and check the assumptions of the top GLM model Mref,C2.
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Cluster 1: Models M
(0)
j,C1 with ∆AICc < 2

Model name AICc Explanatory variables αopt ∆AICc

M
(0)
1,C1 59.07 Tavg,winter 0.325 0.0

M
(0)
2,C1 61.62 Tmin,winter 0.53 2.56

Cluster 2: Models M
(0)
j,C2 with ∆AICc < 2

Model name AICc Explanatory variables αopt ∆AICc

M
(0)
1,C2 80.57 Tavg,july, DDy 0.132 0.0

M
(0)
2,C2 81.33 Tavg,july, DDy, DCDy 0.1 0.76

M
(0)
3,C2 81.91 Prjuly, DDy 0.11 1.34

M
(0)
4,C2 82.45 Tavg,winter, Tavg,july, DDy 0.1 1.88

M
(0)
5,C2 82.49 Tavg,july 0.30 1.92

Table A.7: Outcome of the model selection process for Cluster 1 and 2: top models ranked by
ascending AICc values, with associated statistics reported. In Cluster 1 only one model presents a
∆AICc < 2 (highlighted in blue).

Figure A.10: Cluster 1: Diagnostic plots to evaluate the best reference model’s validity and check
GLM assumptions.
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Cluster C1: Candidate models M
(l)
j,C1 with j = 1,2, ...5 and l ∈ {0, 3, 9}

Starting model Explanatory variables Candidate models Results: Ranked models

M
(0)
1,C1 X = Tavg,winter - M

(0)
1,C1, AICc = 59.07

Cluster C2: Candidate models M
(l)
j,C1 with j = 1,2, ...5 and l ∈ {0, 3, 9}

Starting model Explanatory variables Candidate models Results: Ranked models

M
(0)
1,C2

X1 = Tavg,july

X2 = DDy

1) M
(1)
2,C2 = X1 + X1 ·X2

2) M
(2)
2,C2 = X2 + X1 ·X2

3) M
(3)
2,C2 = X1 + X2 + X1 ·X2

M
(0)
1,C2, AICc = 80.57

M
(2)
2,C1, AICc = 80.96

M
(1)
2,C1, AICc = 81.07

M
(3)
2,C1, AICc = 83.90

M
(0)
2,C2

X1 = Tavg,july

X2 = DDy

X3 = DCDy

M
(1)
2,C2 = X1 + X2 + X1 ·X3

M
(2)
2,C2 = X1 + X2 + X2 ·X3

M
(3)
2,C2 = X1 + X2 ·X1 + X3

M
(4)
2,C2 = X1 + X2 ·X3 + X3

M
(5)
2,C2 = X1 ·X2 + X2 + X3

M
(6)
2,C2 = X1 ·X3 + X2 + X3

M
(7)
2,C2 = X1 + X2 + X3 + X1 ·X2

M
(8)
2,C2 = X1 + X2 + X3 + X1 ·X3

M
(9)
2,C2 = X1 + X2 + X3 + X2 ·X3

M
(0)
2,C2, AICc = 81.33

M
(2)
2,C2, AICc = 81.65

M
(4)
2,C2, AICc = 81.97

M
(1)
2,C2, AICc = 82.06

M
(5)
2,C2, AICc = 82.29

M
(3)
2,C2, AICc = 82.44

M
(6)
2,C2, AICc = 83.74

M
(9)
2,C2, AICc = 84.89

M
(8)
2,C2, AICc = 85.15

M
(7)
2,C2, AICc = 85.16

M
(0)
3,C2

X1 = Prjuly

X2 = DDy

1) M
(1)
3,C2 = X1 + X1 ·X2

2) M
(2)
3,C2 = X2 + X1 ·X2

3) M
(3)
3,C2 = X1 + X2 + X1 ·X2

M
(2)
3,C2, AICc = 80.77

M
(0)
3,C2, AICc = 81.91

M
(1)
3,C2, AICc = 84.00

M
(3)
3,C2, AICc = 84.11

M
(0)
4,C2

X1 = Tavg,winter

X2 = Tavg,july

X3 = DDy

M
(1)
4,C2 = X1 + X2 + X1 ·X3

M
(2)
4,C2 = X1 + X2 + X2 ·X3

M
(3)
4,C2 = X1 + X2 ·X1 + X3

M
(4)
4,C2 = X1 + X2 ·X3 + X3

M
(5)
4,C2 = X1 ·X2 + X2 + X3

M
(6)
4,C2 = X1 ·X3 + X2 + X3

M
(7)
4,C2 = X1 + X2 + X3 + X1 ·X2

M
(8)
4,C2 = X1 + X2 + X3 + X1 ·X3

M
(9)
4,C2 = X1 + X2 + X3 + X2 ·X3

M
(3)
4,C2, AICc = 81.94

M
(6)
4,C2, AICc = 82.07

M
(0)
4,C2, AICc = 82.45

M
(4)
4,C2, AICc = 83.17

M
(2)
4,C2, AICc = 83.25

M
(5)
4,C2, AICc = 83.57

M
(1)
4,C2, AICc = 84.37

M
(7)
4,C2, AICc = 85.75

M
(8)
4,C2, AICc = 85.82

M
(9)
4,C2, AICc = 86.36

M
(0)
5,C2 X = Tavg,july - M

(0)
5,C2, AICc = 82.49

Table A.8: Results of model improvement efforts for Cluster 1 and 2, incorporating interaction factors
for each candidate model selected based on the exhaustive model selection process, with a selection
criterion of ∆AICc < 2. Models identified as improvements over the original baseline model (highlighted
in bold) are indicated in blue.
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Figure A.11: Cluster 2: Diagnostic plots to evaluate the best reference model’s validity and check
GLM assumptions.
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