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Abstract 

Climate change is driving significant alterations in weather patterns, particularly in 

southern Europe and Italy, where the frequency and intensity of droughts are projected to 

increase [1], [2]. Under the RCP 8.5 scenario, Italy is expected to experience temperature 

rises of 3°C to 4.5°C by 2100, along with shifts in precipitation patterns that will lead to 

drier summers and increased drought severity [2], [3]. This thesis focuses on maize 

cultivation in Italy's highest-producing provinces, aiming to develop a methodology for 

estimating agricultural damage due to drought. Maize is a crucial crop for food, livestock 

feed, and industrial uses [4], but it is vulnerable to climate stressors such as drought and 

heatwaves [3], [5]. 

The analysis uses simple climatic features, temperature and precipitation, aggregated 

from high-resolution datasets (VHR-REA_IT for historical data and VHR-PRO_IT for future 

projections) at a monthly temporal and provincial spatial level. The climatic features span 

from March to October, covering the growing season of maize. Preprocessing strategies 

like normalization and standardization were applied, and the model was evaluated using 

raw, standardized, and normalized features. 

The target variable, maize crop yield, sourced from ISTAT, was detrended provincially to 

remove long-term growth trends and transformed into a yield anomaly to assess 

deviations due to short-term drought. 

Different regression models were evaluated: first of all, hyperparameter tuning was 

performed using grid search, guided by a custom evaluation metric to minimize overfitting 

and maximize accuracy. Models with optimal hyperparameters were trained using cross-

validation, and the final model was selected based on the best R2 score, provided it 

achieved a Mean Absolute Scaled Error (MASE) of less than 1. 

The model that produced the best results was the k-NN model, applied uniformly across 

all provinces. Non-preprocessed features led to better performance, suggesting that the 

preprocessing strategies were not optimal for this dataset. However, despite yielding the 

best results, the overall level of accuracy was not particularly satisfactory. 
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The comparison between model-predicted and observed yield anomalies revealed that 

the predicted distribution was more concentrated around the mean, failing to capture 

extremes critical for evaluating anomalies. The model performed well in distinguishing 

between gain and loss, correctly predicting nearly 76% of cases, though it struggled with 

extremes. 

Under the RCP 8.5 scenario, the model's predictions aligned with the literature, showing 

that several provinces could experience average annual yield losses, with some provinces 

seeing peaks of up to 4%. However, as with historical data, the predicted distributions 

were narrower compared to observed values, indicating that the model underestimated 

yield variability. 

The methodology of this study has several important limitations. The main ones include 

the relatively short time series for maize yield data, which covers only 17 years, limiting 

the robustness of the results. Additionally, the features used for the analysis may not be 

the most optimal for accurately predicting maize yield anomalies, limiting the model’s 

performance. External factors, such as market conditions, other climatic events, and 

irrigation, were not considered in the model, though these factors can have significant 

impacts on yield. 

In conclusion, while the model performed reasonably in distinguishing gain and loss, its 

overall accuracy was limited, especially in capturing extreme yield variations. A potential 

improvement would be to transition from a regression model to multiple binary 

classification models, each based on a threshold of yield anomaly. 
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1 Introduction 

The increasing frequency and severity of droughts, exacerbated by climate change, pose 

significant challenges to agricultural systems worldwide. As global temperatures rise and 

precipitation patterns shift, the agricultural sector must grapple with the implications of 

these changes, particularly in regions where crops are vulnerable to water scarcity. In this 

context, the ability to predict and quantify agricultural damage resulting from drought 

becomes crucial. Understanding the potential impacts of climate change on crop yields is 

essential for developing effective adaptation strategies that can mitigate the economic 

and food security risks associated with such climatic events [3]. 

1.1 Climate and Drought Projections: Impacts and Modelling 

Challenges 

This section explores the critical implications of climate change for agriculture, with a 

particular focus on how shifting climate patterns, especially in southern Europe and Italy, 

are expected to intensify droughts. It reviews the projected changes in climate scenarios 

and the complexities involved in modelling agricultural drought, providing a foundation for 

understanding the climatic challenges that agricultural systems will face in the coming 

decades. 

1.1.1 Climate Projections and Scenarios 

Climate change is having widespread impacts on global weather patterns, including 

temperature increases, shifts in precipitation, and an increase in the frequency of extreme 

weather events such as droughts and heatwaves. These changes are driven by human 

activities, particularly the emission of greenhouse gases, which have contributed to a 

measurable rise in global temperatures [6]. According to the IPCC's Sixth Assessment 

Report [7], global surface temperatures have risen by approximately 1.1°C above pre-

industrial levels, and continued warming is expected unless significant mitigation efforts 

are undertaken [7].  
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To project future climate outcomes, the Representative Concentration Pathways (RCPs) 

are commonly used. These scenarios represent different trajectories of greenhouse gas 

concentrations and their resulting radiative forcing on the climate system. The RCP 2.6 

scenario represents an ambitious mitigation pathway, where global temperatures are 

projected to rise by less than 2°C by 2100, assuming aggressive cuts in emissions. At the 

other end of the spectrum, RCP 8.5 represents a "business-as-usual" scenario, where 

emissions continue to rise, potentially leading to global temperature increases exceeding 

4°C by the end of the century [1], [3]. Other intermediate scenarios, such as RCP 4.5 and 

RCP 6.0, represent more moderate increases, where emissions peak mid-century and 

gradually decline [7]. 

Italy, positioned in the Mediterranean Basin, is especially vulnerable to climate change. 

The Mediterranean is a recognized climate change "hotspot" because it is projected to 

experience higher-than-average warming compared to other global regions [2]. Under the 

RCP 8.5 scenario, temperatures in Italy are expected to rise by 3°C to 4.5°C by 2100, with 

northern regions such as the Po Valley being particularly affected. Even under more 

moderate scenarios like RCP 4.5, Italy could experience temperature increases of 

between 2°C and 3°C [2]. These rising temperatures are expected to intensify the 

frequency of extreme heat events, leading to challenges for both ecosystems and human 

infrastructure [1], [2]. 

The Po Valley is highly vulnerable to changing precipitation patterns. This region may 

experience increased winter rainfall, especially in the areas near the Alps, leading to a 

heightened risk of flooding. In contrast, summers are expected to become much drier. 

Studies indicate that in the Po Valley, precipitation patterns could shift toward wetter 

winters and much drier summers, intensifying seasonal water shortages and placing 

additional stress on agricultural systems dependent on summer rainfall [8], [9], [10]. This 

pattern of drying summers and wetter winters in northern Italy aligns with projections for 

the broader Mediterranean region, where RCP 8.5 scenarios predict a decrease in annual 

rainfall of up to 20% in southern regions. For the Po Valley, while winter precipitation may 
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slightly increase, the drier summers could still result in overall water scarcity during the 

growing season [11]. 

The combination of higher temperatures and altered precipitation patterns in the Po Valley 

will have profound implications for Italian agriculture. This region produces a significant 

portion of the country's crops, including water-intensive varieties such as maize and rice. 

The projected changes in seasonal water availability will require adaptation strategies, 

particularly in water management and irrigation, to mitigate the impacts of water 

shortages during critical growth periods [8], [11], [12]. 

1.1.2 Drought Projections 

Projections of drought frequency and intensity show that climate change will lead to an 

increase in both the duration and severity of drought events across Europe, with the 

Mediterranean region, including Italy, bearing the brunt of these impacts. Studies project 

that, under the RCP 8.5 scenario, southern Europe is likely to experience an increase in 

agricultural drought frequency by as much as 30% by the mid-21st century [13]. Drought 

risks are not solely driven by changes in precipitation; rising temperatures contribute to 

increased evaporation, further straining water resources, particularly during the summer 

growing season [1], [10]. 

For Italy, the impacts of climate change on drought are already visible. The droughts of 

2022 and 2023 affected large parts of Italy, with the agricultural sector suffering significant 

yield reductions in key crops like maize [14], [15]. According to the European Drought Risk 

Atlas [3], agricultural droughts are expected to increase in severity, particularly for non-

irrigated crops. In the Po Valley the reduction in soil moisture due to reduced rainfall and 

increased evaporation will likely lead to yield losses of up to 10%, with southern regions 

facing even steeper declines in agricultural productivity [1], [3], [13]. Projections from the 

European Drought Risk Atlas (2023) show that Italy’s agricultural drought risk under the 

RCP 8.5 scenario will significantly increase if no adaptive measures are taken [10]. 

The complexities of these projections are further highlighted by the fact that agricultural 

drought risk is not uniform across Italy. For instance, Po basin agriculture depends heavily 
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on water from the Po River, which is fed by both rainfall and snowmelt from the Alps [16]. 

As temperatures rise, the reduction in snow accumulation, along with increased 

evaporation, threatens to diminish this critical water source, exacerbating drought 

conditions during the critical growing months [3], [13], [14]. This highlights the importance 

of integrated water management strategies that account for both local and regional 

climatic conditions [3]. 

The European Drought Risk Atlas emphasizes that addressing drought risk requires a 

holistic approach that takes into account not only the direct effects of water scarcity on 

crops but also the broader socio-economic impacts, including the competition for water 

resources between agriculture, industry, and urban areas. In Italy, where competition for 

water is already high, particularly in the Po Valley, the increasing frequency of droughts 

could exacerbate tensions between sectors, further complicating the management of 

water resources [3], [9]. Moreover, this competition may limit the effectiveness of 

irrigation as an adaptation strategy, underscoring the need for more sustainable water use 

practices and innovations in drought-resistant crop varieties [3], [9]. 

Finally, drought projections indicate that, under climate change, the time between drought 

events is shrinking, reducing the recovery period for both agricultural systems and water 

resources [1]. This “shrinking recovery window” poses a significant threat to Italy’s 

agricultural sector, particularly for crops that are highly sensitive to water stress during 

critical growth stages [3], [14], [15]. 

1.1.3 Challenges in Modelling Drought 

Modelling drought presents numerous challenges due to the complexity and variability of 

drought events. One of the primary difficulties arises from the infrequency of extreme 

droughts, making it harder to gather comprehensive data and establish reliable patterns. 

Droughts are inherently multifaceted phenomena, classified into various types based on 

their primary effects: meteorological drought (precipitation deficit), agricultural drought 

(soil moisture deficit impacting crops), and hydrological drought (deficiency in water 

resources such as rivers, lakes, and groundwater). Each type emphasizes different 

aspects of water scarcity, adding layers of complexity to the modelling process [3], [17]. 
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The inherent variability of drought duration and severity further complicates the task of 

drought prediction and management. For instance, droughts can last anywhere from a few 

weeks to several years, and their onset is typically slow and difficult to predict [18]. This 

makes the precise identification of when a drought begins or ends a challenge, often 

dependent on which drought indicator or index is used. The lack of a universally accepted 

metric for drought adds to the difficulty of producing consistent predictions across 

different regions [10], [19]. 

In terms of agricultural drought, which this research focuses on, the challenge lies in 

accurately predicting crop yield losses resulting from moisture deficits [17], [18]. 

Agricultural drought is often the result of a complex interplay between weather conditions, 

soil properties, and crop-specific vulnerabilities [11]. Factors such as soil moisture 

retention capacity, farming practices, and the stage of crop growth all influence how 

drought affects agricultural output [3], [11]. This complexity requires a highly tailored 

modelling approach, as general drought models may not adequately capture the specific 

risks to different crops or regions [18], [19]. 

Furthermore, agricultural production losses are influenced by other climatic factors 

beyond soil moisture deficits, such as waterlogging and heat waves. For example, 

excessive rainfall leading to waterlogging can reduce crop yields, especially when soil is 

saturated, impeding root function and leading to oxygen deprivation [20]. Similarly, heat 

waves, which are increasing in frequency due to climate change, can exacerbate water 

stress and cause heat damage to crops. These factors illustrate the complexity of drought 

modelling, where multiple climatic stressors intersect and influence agricultural 

outcomes [21]. 

Moreover, the difficulty in defining agricultural drought is compounded by the use of 

different drought indices, such as the Standardized Precipitation Evapotranspiration Index 

(SPEI) and Soil Moisture Deficit Index (SMDI), each of which measures drought impacts 

from different perspectives [21]. The choice of index significantly influences the outcomes 

of the model, and even small changes in index thresholds can result in vastly different 

predictions for the severity of drought impacts [11].  
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Finally, the integration of climate projections into drought models introduces further 

complexity. As climate change alters precipitation patterns and temperature dynamics, 

predicting future drought risks becomes more uncertain. The European Drought Risk Atlas 

(2023) stresses that while general trends can be predicted, such as an increase in drought 

severity in southern Europe, regional variations in climate change impacts make it difficult 

to produce precise, localized forecasts. This uncertainty emphasizes the need for models 

that can flexibly adapt to new data as climate conditions evolve, allowing for ongoing 

recalibration of predictions [3]. 

1.1.3.1 Influence of Irrigation in Agricultural Drought Modelling 

In the context of agricultural drought, irrigation plays a pivotal role in mitigating the 

impacts of water scarcity on crop production. However, incorporating irrigation into 

agricultural drought models presents unique challenges, largely due to the complexity of 

irrigation practices, the variability in data availability, and the need to account for the 

interaction between human and natural systems. 

One of the major challenges in modelling agricultural drought with irrigation is the limited 

availability of reliable data. Unlike meteorological variables such as precipitation and 

temperature, which are widely monitored and recorded, data on irrigation practices are 

often sparse or inconsistent. In many regions, including Europe, irrigation data is not 

systematically collected at the necessary spatial and temporal resolutions. Even when 

such data exists, it is often aggregated at a regional or national level, obscuring important 

variations in irrigation intensity, frequency, and water sources used by individual farms [3], 

[22]. 

In Italy, where irrigation is a critical adaptation tool for maintaining maize yields, the lack 

of detailed, farm-level irrigation data complicates efforts to model the full extent of 

drought resilience. Irrigation systems vary widely in efficiency, from traditional surface 

irrigation to more advanced drip irrigation techniques. Drip irrigation, for example, 

significantly reduces water losses and improves water use efficiency compared to flood 

irrigation, but data on the adoption rates and effectiveness of these systems are often 

unavailable [3], [22]. As a result, models that fail to differentiate between irrigation 
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methods may either overestimate or underestimate the extent to which irrigation can 

mitigate drought impacts. 

The timing of irrigation is another crucial aspect to consider. Water stress during sensitive 

growth stages, such as pollination and grain filling, can cause significant yield reductions, 

even if irrigation is applied later in the season. Modelling the effectiveness of irrigation 

thus requires accurate data not only on the amount of water used but also on when it is 

applied in relation to the crop's phenological stages. The variability in irrigation timing and 

its impact on crop growth further complicates drought modelling [3], [23]. 

Another important factor in modelling irrigation is the dynamic relationship between 

irrigation and water resources. While irrigation can provide short-term relief during 

droughts, it also contributes to long-term water scarcity, especially in regions where 

groundwater extraction is unsustainable. In the Mediterranean region, including Italy, 

where water resources are already stressed, increased irrigation during prolonged dry 

periods can exacerbate water shortages. This creates a feedback loop that can further 

deplete water resources and increase vulnerability to future droughts [3], [11].  

Finally, irrigation modelling must also consider the future viability of irrigation as an 

adaptation strategy in the face of climate change. Projections from the European Drought 

Risk Atlas suggest that, under the RCP 8.5 scenario, water availability in southern Europe, 

including Italy, will decrease significantly, which could limit the ability of farmers to rely on 

irrigation during future droughts. As temperatures rise and rainfall becomes more uneven, 

competition for water resources between agriculture, industry, and urban areas is 

expected to increase, further complicating the use of irrigation as a drought mitigation tool 

[3]. 

 

1.2 Maize: Cultivation, Characteristics, and Climate Vulnerabilities 

This section reviews the specific vulnerabilities of maize cultivation in the context of 

climate change. It examines the crop's sensitivity to environmental stressors such as 

drought and heatwaves, detailing how these factors affect maize yields. Additionally, it 
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highlights the broader socio-economic implications of yield variability and discusses 

potential adaptation strategies to mitigate climate risks. 

1.2.1 Maize Production and Applications 

Maize (Zea mays) stands as one of the world’s most significant crops [4], with a wide range 

of applications spanning from food production to industrial uses. It holds a central 

position in global agriculture due to its versatility and adaptability [24]. As a staple food 

crop, maize serves as a crucial source of calories and nutrients for millions of people, 

particularly in developing countries. In many regions, it forms the foundation of traditional 

diets, consumed in various forms such as flour, cornmeal, and oil [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

Globally, maize production has been on a steady rise, driven by increasing demand for 

food, animal feed, and industrial uses. According to a report by the FAO, maize production 

has grown significantly over the past few decades and continues to expand, particularly in 
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development [25]. This growth is fuelled by advancements in agricultural technology, 

improved seed varieties, and the expanding demand for biofuels and livestock feed, 

making maize a cornerstone of both traditional and modern agricultural systems [25]. 

Beyond its role in human nutrition, maize is vital in animal husbandry, where it is 

commonly used as feed for livestock. Its high-energy content makes it an efficient 

feedstock, particularly for cattle, swine, and poultry. The crop's ability to grow in diverse 

climates and its adaptability to different soil conditions have made it a preferred choice 

for forage production globally, further solidifying its importance in the agricultural sector 

[4], [24]. According to recent studies, maize ranks as one of the most important crops 

worldwide, both in terms of acreage and economic value. Its contributions to global food 

security and agricultural sustainability cannot be overstated [4], [24]. 

In addition to its uses in food and feed, maize is increasingly recognized for its potential in 

industrial applications. It serves as a primary feedstock for biofuel production, especially 

ethanol. The rise in demand for renewable energy sources has accelerated the expansion 

of maize cultivation dedicated to biofuels, particularly in regions like the United States and 

parts of Europe. As concerns about climate change and energy security grow, maize-

based biofuels offer an alternative to fossil fuels, contributing to the global shift towards 

more sustainable energy solutions [24]. 

1.2.2 Maize General Characteristics 

Maize is a versatile crop, known for its ability to adapt to a wide range of climatic and soil 

conditions. Maize utilizes a specialized photosynthesis process called C4 photosynthesis, 

which allows it to efficiently capture carbon dioxide and convert it into energy even under 

high temperatures and low water availability [25]. This adaptation makes maize highly 

productive in environments with sufficient warmth and sunlight. The crop thrives in 

temperatures ranging from 20°C to 30°C and can grow in a variety of soils, though it 

performs best in fertile, well-drained soils with a neutral pH [25]. Maize is sensitive to 

frost, which limits its cultivation in colder regions, particularly during early growth stages. 

Its broad adaptability has contributed to its global expansion, where it is cultivated 

extensively for both human consumption and industrial uses [25]. 
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The life cycle of maize is divided into distinct growth phases that determine the final yield. 

Germination and emergence occur shortly after sowing, provided soil temperatures are 

above 10°C. During this phase, the seed absorbs water, and the root system begins to 

establish. As the plant enters the vegetative growth stage, rapid leaf and stem 

development occurs, allowing the plant to form a canopy that captures sunlight. This 

stage is critical for maximizing photosynthesis, which supports grain development later 

on. The flowering phase, also known as the reproductive stage, marks the formation of 

tassels (male flowers) and silks (female flowers). This period is highly sensitive to water 

stress, as pollination occurs, and any deficit in water availability can significantly reduce 

kernel formation. Following successful pollination, maize enters the grain-filling stage, 

where the kernels develop and accumulate starch, directly influencing yield. Finally, the 

plant reaches physiological maturity when the kernels have accumulated maximum dry 

matter, at which point the plant ceases growth [25]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Maize schematic growth periods. Source: FAO, Crop Information, Maize 
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The duration of maize’s growth cycle is influenced by temperature, with faster growth 

occurring in warmer climates. When average daily temperatures during the growing 

season exceed 20°C, early maturing varieties typically complete their growth cycle in 80 to 

110 days, while medium-maturing varieties may take between 110 and 140 days. For 

varieties grown as a vegetable, such as baby corn, the maturation period is shorter by 

approximately 15 to 20 days. The duration of each phase and the overall growing season is 

determined by various factors, including environmental conditions and the maize variety 

used. Appropriate water management, particularly during the flowering and grain-filling 

stages, is essential to achieving optimal yields [25]. 

Maize's water requirements are substantial, with the crop needing between 500 and 800 

mm of water throughout its growing cycle. Water stress during the flowering and grain-

filling stages is particularly detrimental, as it can prevent kernel formation and reduce 

grain size, leading to lower yields. In contrast, excessive water, particularly in poorly 

drained soils, can restrict root oxygen, further impacting plant growth. Efficient water 

management, including timely irrigation, is crucial for achieving optimal yields, especially 

in regions with variable rainfall patterns [25]. 

Sowing dates play a critical role in the success of maize cultivation, aligning the growth 

cycle with favourable climatic conditions. Maize sowing can be categorized into early, 

normal, and late sowing periods, each with distinct impacts on crop development and 

yield [26]. Early sowing is typically done when soil temperatures have reached the 

minimum threshold (above 10°C) to encourage rapid germination and ensure that the 

plant avoids heat stress during flowering. This method can increase the yield potential, 

but it carries a risk of exposure to frost. Normal sowing is usually carried out when the risk 

of frost has passed, providing the crop with favourable growing conditions for optimal leaf 

and root development. Late sowing, on the other hand, occurs after the optimal window 

and often results in lower yields due to heat stress during pollination and a shorter grain-

filling period. In Southern Europe, including Italy, maize is generally sown between April 

and May to take advantage of early summer rainfall, while in tropical regions, staggered 

sowing throughout the year allows for multiple harvests [26]. 
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1.2.3 Climate Change Impacts on Maize Production 

Climate change presents a complex set of challenges for maize production, with the 

effects varying depending on specific climate stressors such as water excess, heat waves, 

and drought. Each of these factors has the potential to significantly disrupt the growth 

cycle of maize and affect yield outcomes. The increasing frequency of intense rainfall and 

flooding due to climate change can result in waterlogging, a condition where excess water 

saturates the soil, preventing roots from receiving sufficient oxygen. Waterlogged 

conditions impede the plant’s ability to absorb essential nutrients, leading to stunted 

growth, poor kernel development, and reduced overall productivity. Moreover, water 

excess during critical growth periods, such as the grain-filling stage, can significantly 

reduce yield potential by restricting photosynthesis and increasing the prevalence of 

diseases that thrive in overly moist environments [3], [20], [27]. 

Simultaneously, heat waves are becoming more frequent and severe, placing additional 

strain on maize cultivation. High temperatures, particularly during the flowering and grain-

filling stages, can exacerbate water loss through increased evapotranspiration, resulting in 

heightened water stress. Maize is particularly sensitive to heat stress during pollination, 

when temperatures exceeding 30°C can impair kernel formation and reduce yield. Studies 

have shown that prolonged heat waves not only decrease maize yield but also reduce the 

crop’s quality, as extreme heat accelerates the plant’s life cycle, shortening critical stages 

like grain filling [3], [5]. This accelerated development often leads to smaller, less dense 

kernels, which diminishes both the quantity and nutritional value of the crop [5], [28]. 

Drought, or water stress, represents one of the most significant threats to maize 

production under climate change. Maize requires substantial water throughout its growing 

season, particularly during the reproductive phase [9]. In drought-prone areas, such as 

the Mediterranean region, including northern Italy [29] [30], irrigation is often used to 

mitigate the effects of insufficient rainfall [31]. However, the sustainability of relying on 

irrigation is increasingly in question. Irrigation helps maintain productivity in dry 

conditions, but as competition for water intensifies—especially in agriculture-dependent 

regions—this approach may not provide a long-term solution [31]. As already presented in 
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section 1.1.2, according to studies on Mediterranean agriculture, future projections 

suggest that water availability will decline significantly, particularly in southern Europe, 

placing further strain on irrigation systems. This is reflected in the European Drought Risk 

Atlas [3], which highlights that while irrigation is essential for maize production, it cannot 

fully compensate for the expected reductions in water resources under climate change 

scenarios [12], [31]. Research has shown that while irrigation can improve yields in the 

short term, over-reliance on it risks depleting groundwater and exacerbating water 

scarcity. In fact, some studies predict that the region could save up to 35% of water by 

implementing more efficient irrigation methods, yet the long-term sustainability of these 

practices depends heavily on addressing broader water management issues [12], [31], 

[32]. As water becomes scarcer, the pressure to balance the needs of various sectors is 

expected to grow, potentially leading to more frequent conflicts over resource allocation 

[3], [33]. 

 

1.3 Research Objectives 

This thesis aims to develop an initial methodology for the preliminary assessment of 

agricultural damage caused by drought, focusing specifically on maize cultivation with a 

provincial spatial resolution over Italy. The framework established in this research is 

designed to predict yield anomalies under the RCP 8.5 climate scenario, using basic 

climatic variables as foundational elements. Although the process is developed for maize, 

the ultimate aim is to create a methodology that can be easily adapted to other crops 

present in the ISTAT database, supporting broader applications across different 

agricultural sectors. 

 

1.4 Contribution and Structure of This Work 

The contribution of this work lies in the development of a methodology to assess 

agricultural damage caused by drought, focusing specifically on maize cultivation within 

the context of climate change. This methodology provides an initial approach using basic 
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climatic variables to predict yield anomalies under the RCP 8.5 scenario. The research 

contributes to the field by offering a simple model that integrates climate projections and 

agricultural risk assessments at a more localized scale, concentrating on the provincial 

level and focusing on high-productivity zones in Italy. Moreover, no similar study has been 

conducted on a provincial scale for Italy, making this a valuable addition to understanding 

regional vulnerabilities to drought. 

In section 1, a comprehensive literature review of key elements relevant to the thesis is 

presented, followed by the presentation of research objectives. The review explores 

existing research on climate projections, the impact of drought on agriculture, challenges 

in modelling agricultural drought, and the role of irrigation. These topics provide a 

foundation for the methodology and research focus, highlighting the most pertinent 

aspects already established in the literature. 

In section 2, the study methodology is presented, in particular the data sources employed 

in this study are outlined; the methodology for modelling agricultural drought is explained, 

with specific focus on how climate features are used to estimate yield anomalies at the 

provincial scale. This section also discusses the limitations of the model, particularly 

regarding the simplification of climatic variables and the challenge of applying local-level 

data to broader climate projections. 

In section 3, the results of the study are presented, including projected yield anomalies for 

maize under future climate scenarios. These results are analysed at the provincial level, 

highlighting the regions most vulnerable to drought within the specific zone studied. 

In section 4, the findings are discussed in relation to existing literature. Finally, 

suggestions for future research are provided, highlighting the need for more detailed 

irrigation data and more sophisticated models that incorporate additional variables 

affecting drought resilience. 

 

  



25 

 

2 Methodology 

This chapter outlines the methodology employed for conducting the analyses in this 

thesis. The goal of the methodology is twofold: first, to establish a clear, structured 

process for building a predictive model that evaluates the impact of agricultural drought 

on maize production, and second, to highlight both the limitations and areas for future 

improvement. By providing a coherent and reproducible framework, this study aims to lay 

the groundwork for further refinement and enhancement of the model. 

The methodology emphasizes the development of a model capable of quantifying the 

damage or variation in agricultural yield due to agricultural drought conditions. The focus 

is on identifying yield anomalies—deviations from expected production levels—

potentially driven by climatic factors, such as changes in temperature and precipitation. 

By applying statistical and regression-based approaches, the study primarily aims to 

capture the short-term impacts of drought. While local trends were analysed and 

accounted for through detrending, the underlying causes of these long-term trends were 

not the focus of this thesis. 

Additionally, this chapter details the steps taken for data preparation, preprocessing, 

feature engineering, and the selection of regression models, with a particular focus on 

hyperparameter tuning to maximize performance and minimize overfitting. Each step is 

explained in detail to provide transparency and ensure that the methodology can be 

replicated in future improvements of the pipeline. Throughout, the limitations 

encountered during the study are highlighted, offering a roadmap for future 

enhancements and refinements in modelling agricultural yield anomalies under climate 

stress. 

2.1 Data description 

This section provides a comprehensive overview of the data sources used in this study. 

The data encompass two key components: climatic data (both historical reanalysis and 

future projections) and maize cultivation data. The climatic data includes high-resolution 

temperature and precipitation records, which serve as the primary variables for assessing 



26 

 

yield anomalies. The historical data were sourced from the VHR-REA_IT dataset [34], 

produced through a detailed downscaling process from ERA5 reanalysis to ensure 

accuracy across regional scales. The future projections data were sourced from the VHR-

PRO_IT dataset, which offers high-resolution climate projections under different 

greenhouse gas concentration scenarios [35].  

The VHR-REA_IT and VHR-PRO_IT datasets were selected because they represent the 

most comprehensive and high-resolution climate datasets available for Italy. There are no 

other comparable sources for both climate and agricultural production data for the 

country. Agricultural production data from Eurostat, for instance, are derived from ISTAT 

[36], which is the primary source for provincial-level records of cultivated area and 

production. As such, the ISTAT Agriculture Database [29] was chosen for maize cultivation 

data, providing annual provincial-level records that allow for a detailed analysis of maize 

yields across Italy. 

Although other climate datasets were considered, such as the Copernicus SIS Hydrology 

Meteorology Derived Projections database [37], it was not selected due to its lower spatial 

resolution (5x5 km), which is less suitable for the provincial-scale analysis required in this 

study. 

2.1.1 Historical Climatic Data: overview and bias assessment 

The selection of temperature and precipitation as the key variables for this study was 

primarily driven by their fundamental role in agricultural processes and the availability of 

high-quality data. Given the objective of this study to develop a model for predicting yield 

anomalies, focusing on these primary climate variables provided a clear and manageable 

starting point for analysing the relationship between climatic conditions and agricultural 

performance.  

The climatic data used for this thesis were extracted from the VHR-REA_IT dataset, which 

stands for Very High Resolution Dynamical Downscaling of ERA5 Reanalysis over Italy 

[38], provided by the CMCC Delivery System [34]. VHR-REA_IT was developed as part of 

the HIGHLANDER European project [39] and was produced using the COSMO-CLM 
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regional climate model. This model employs dynamic downscaling, which involves using a 

high-resolution regional climate model, COSMO-CLM in this case, to refine the coarser 

output from a global reanalysis, such as ERA5, by simulating atmospheric processes at a 

finer scale. This process is essential for improving regional-level climate predictions that 

account for local topography and atmospheric dynamics [38]. The ERA5 reanalysis, 

produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), 

provides a global dataset of weather data from 1950 to the present. It assimilates 

historical weather observations into a numerical model to provide a consistent 

reconstruction of past atmospheric conditions. For more details on the ERA5 dataset, 

refer to Hersbach et al. (2020), which outlines the reanalysis method and its applications 

[40]. 

The COSMO-CLM model (COSMO model in CLimate Mode), used for the downscaling 

process, is a well-established regional climate model based on non-hydrostatic 

atmospheric dynamics, making it ideal for high-resolution simulations in complex terrains 

like Italy. For further details on the setup and production of the VHR-REA_IT dataset, 

reference can be made to the work of Raffa et al. (2021), which discusses different nesting 

strategies in the downscaling process [41]. 

The dataset spans from 1981 to 2023 and provides hourly values for temperature and 

precipitation, stored in NetCDF format, which facilitates efficient management and 

analysis of multi-dimensional climate data. The dataset follows the WGS84 (EPSG 4326) 

coordinate system, ensuring compatibility with global geospatial standards. The data are 

retrieved through the CMCC Foundation’s Data Delivery System (DDS), which offers 

streamlined access to high-resolution climate datasets. 

Although the accuracy assessment of the VHR-REA_IT dataset was not conducted as part 

of this thesis, such evaluations were carried out in the original study that developed VHR-

REA_IT. The dataset's performance was compared to observed data, with bias and 

variance analysed for both temperature and precipitation [38]. 

For temperature, the analysis revealed a notable seasonal variation in bias. Across Italy as 

a whole, the largest positive biases were observed during the summer months (JJA), with 
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VHR-REA_IT showing a bias of up to 1.9°C in some areas, particularly in the Northeast and 

Insular Italy. In contrast, bias was much smaller during the winter (DJF) and autumn (SON) 

seasons. The Northwest and Northeast regions exhibited minimal bias during the winter 

months, while Central and Southern Italy displayed relatively high bias in summer, 

reaching around 2.1°C in some regions (Figure 3). This suggests that while VHR-REA_IT 

captures winter temperatures accurately, it tends to overestimate temperatures during the 

summer, particularly in southern and insular regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Seasonal spatial distribution of 2 m temperature (period 1989–2020) of E-

OBS, ERA5, and VHR-REA_IT on their relative grids (first three columns). In the last two 

columns: seasonal spatial distribution of 2 m temperature bias with ERA5, and VHR-

REA_IT. Source: Figure 2 from Raffa et al. [35] 
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For precipitation, the dataset exhibited more pronounced bias and variability. As shown in 

Figure 4, ERA5 generally underestimated precipitation, with a stronger negative bias 

during the summer (JJA) and autumn (SON) seasons. For instance, in Northeast Italy, ERA5 

underestimated summer precipitation by around 70%, while VHR-REA_IT provided a 

closer approximation, though still overestimating precipitation in certain regions. In 

Southern Italy and Insular Italy, VHR-REA_IT displayed a positive bias, particularly during 

the summer months, with overestimations reaching 86% in some cases. Overall, VHR-

REA_IT tended to show less bias than ERA5, particularly in the winter and spring months, 

but the magnitude of overestimation during the summer, especially in southern regions, 

should be considered. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4: Seasonal spatial distribution of precipitations (period 1989–2020) of E-OBS, 

ERA5, and VHR-REA_IT on their relative grids (first three columns). In the last two 

columns: seasonal spatial distribution of 2 m temperature bias with ERA5, and VHR-

REA_IT. Source: Figure 3  from Raffa et al. [35] 
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This analysis highlights the regional variability in both temperature and precipitation 

biases across the dataset, with VHR-REA_IT performing better than ERA5 in capturing 

precipitation patterns, though still facing challenges in accurately estimating summer 

conditions, particularly in the southern and insular regions of Italy. These regional 

differences are crucial for understanding the limitations and applicability of the dataset in 

climate impact studies, especially for agricultural analyses like those conducted in this 

thesis. 

2.1.2 Future Projections Climatic Data 

The future climatic data used in this study were sourced from the VHR-PRO_IT dataset 

(Very High-Resolution PROjections for ITaly) [42], also developed as part of the 

HIGHLANDER [39] and it is available through the CMCC Foundation’s Data Delivery 

System (DDS) [42]. The project data provide hourly projections of temperature and 

precipitation under the RCP 8.5 scenario for the period from 2030 to 2070.  

The VHR-PRO_IT dataset was selected for this study due to its high spatial resolution of 

2.2 km [35], which aligns with the resolution of the historical VHR-REA_IT dataset, 

ensuring spatial consistency between the two time periods. Additionally, its structure—

stored in NetCDF format and using the WGS84 (EPSG 4326) coordinate system—is 

identical to that of the reanalysis data. This consistency allows for seamless integration 

and processing using the same tools developed for managing historical data, without the 

implication of further data engineering, simplifying data handling and analysis across both 

datasets. 

The downscaling process was applied to projections from the Italy8km-CM climate 

projection (CMIP5 global model), using the same COSMO-CLM regional climate model as 

in VHR-REA_IT (2.1.1) to improve the resolution of the projections. The model 

configuration was based on the COSMO-DE setup, originally developed by the Deutscher 

Wetterdienst (DWD) for numerical weather prediction, ensuring high reliability in 

simulating regional climate dynamics [35]. For detailed information on the model setup, 

reference can be made to the relevant study. The downscaling was processed by dividing 
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Italy into Northern, Central, and Southern regions, allowing for more detailed regional 

analysis of climate impacts [35]. 

It is important to note that the historical data used in this study extend only up to 2005. 

The global forcing is driven by the observed natural and anthropogenic atmospheric 

composition for the period 1989–2005, and the RCP4.5 and RCP8.5 greenhouse gas 

concentration trajectories for the years 2006–2050. Therefore, projection data for the 

period 2006–2018 are derived from the RCP8.5 scenario and not from historical 

observations [35]. 

The dataset underwent extensive performance and consistency validation on a daily basis 

for both temperature and precipitation. The VHR-PRO_IT dataset shows a significant 

improvement in bias reduction when compared to other models, particularly Italy8km-

CM, for both 2m-temperature and total precipitation. However, the dataset still exhibits 

some biases, with a wet bias for precipitation in Northern Italy and a dry bias in Central 

and Southern Italy. These biases align with the Euro-CORDEX ensemble for the northern 

regions but differ in central areas, where most Euro-CORDEX models report a wet bias 

[35]. 

In terms of model consistency, VHR-PRO_IT demonstrates strong alignment with the 

Italy8km-CM projections and the Euro-CORDEX ensemble mean for climate changes in 

temperature and precipitation. The primary differences occur in Northern Italy under 

RCP4.5 and Central Italy under RCP8.5, primarily due to variations in precipitation. The 

model falls within the Euro-CORDEX envelope, highlighting its reliability in projecting 

climate changes at a regional scale [35]. 

Additionally, at the daily scale, VHR-PRO_IT has been validated for 2021–2050 against 

historical data (1989–2018), showing consistency with projected temperature and 

precipitation changes. The dataset’s performance is particularly strong in Northern Italy, 

although there are some discrepancies in precipitation in central regions, indicating areas 

for further refinement [35]. 



32 

 

2.1.3 Maize Cultivation Data 

The crop chosen for this study is maize, selected due to its representativeness within the 

available data and the opportunity to compare the results with existing studies in the 

literature. The data on maize cultivation were sourced from the ISTAT (Italian National 

Institute of Statistics) Agriculture Database, specifically from the section on crop 

statistics [29]. The data include two key variables: maize cultivated area and the total 

maize production. These variables were collected on an annual basis at the provincial 

level, covering the period from 2006 to 2022, which was the most recent data available at 

the time of this study. 

The data on cultivated area and production are derived through estimative methods, as 

reported in database metadata. These estimates are made based on evaluations 

conducted by experts in the agricultural sector, with information provided by local 

authorities. The experts' estimates may include data obtained from direct inspections in 

the field, as well as information from external sources such as professional organizations, 

producer associations, and administrative data. Additionally, auxiliary data sources 

related to maize cultivation may also be considered in the estimation process [29]. 

Figure 5: Maize cultivated area and production in Turin province. 
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Figure 6: Maize cultivated area and production in Treviso province. 

Figure 7: Maize cultivated area and production in Perugia province. 
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Figure 8: Maize cultivated area and production in Foggia province. Notice vertical axes scale change compared 

to previous provinces (Figure 5, Figure 6, Figure 7). Some data are missing. 

Figure 9: Maize cultivated area and production in Foggia province. Notice vertical axes scale change compared to 

previous provinces (Figure 5, Figure 6, Figure 7). Some data are missing. 
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2.2 Data preparation and preprocessing 

2.2.1 Data Engineering and Features Preparation 

The precipitation and temperature data retrieved from the VHR-REA_IT dataset were 

subsequently processed to meet the specific requirements of this study using custom 

Python tools. These tools were developed to ensure efficient data handling, focusing on 

both monthly temporal and provincial spatial aggregation. The data were processed in two 

main phases: the creation of meteorological temporal aggregated georasters and the 

calculation of spatial averages at the provincial level.  The spatial boundaries were derived 

from georeferenced polygons with a 1-meter resolution, provided by Eurostat. The 

nomenclature for territorial units at levels 0 (NUTS 0) and 3 (NUTS 3), updated to 2021, 

was employed as it was the most recent available at the time of the study [43]. 

Phase 1: Creation of temporal aggregated meteorological Georasters 

In this phase, the temperature and precipitation data were first downloaded as hourly 

NetCDF files. For each year and month in the selected time period, the script iterated 

through the following steps: 

1. Data Download: 

Using a custom Python function, hourly temperature and precipitation data were 

downloaded from the CMCC database in NetCDF format for each month. This step 

involved looping over each year and month, saving the hourly data in a temporary 

directory. 

2. Temporal Aggregation: 

The downloaded hourly data were aggregated to a monthly resolution. For 

temperature, the monthly average was calculated, while for precipitation, the 

monthly sum was computed. These operations were done using Python's xarray 

library to resample and perform temporal aggregation. 
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3. Merging NetCDF Files: 

The monthly NetCDF files were then merged to create a continuous dataset for 

each year. This step reduced the complexity of handling individual monthly files, 

streamlining subsequent spatial processing. 

4. Conversion to GeoTIFF: 

The merged NetCDF files were converted into GeoTIFF format, a widely used 

geospatial raster data format. This format facilitated the subsequent spatial 

averaging process and ensured compatibility with geographical information 

systems (GIS). 

5. Cropping by Region (NUTS 0): 

After generating the GeoTIFFs, the data were spatially cropped to fit within the 

boundaries of Italy using the NUTS 0 level (country-level) georeferenced polygons 

from Eurostat. This step was necessary because the original download covered 

Europe, and cropping ensured that only data relevant to Italy were stored in fixed 

memory, resulting in lighter and more manageable files. 

Phase 2: Spatial Averaging 

In the second phase, the processed georasters were spatially aggregated to calculate 

provincial-level averages. This step involved: 

1. Province Selection: 

The NUTS 3 boundaries for Italy were used to define the provinces. A list of all 

provinces was generated from the Eurostat dataset. 

2. Spatial Cropping: 

For each province, the geospatial data were cropped to match the specific 

provincial boundaries. This ensured that the calculated averages were 

representative of the spatial extent of each province. 

3. Calculation of Averages: 
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Once the data were cropped to provincial boundaries, the script calculated the 

spatial average of mean temperature and cumulative precipitation for each 

province. This was achieved by masking the data outside the provincial polygons 

and computing the mean of the remaining values. 

4. Transformation into a Time-Series Dataset: 

The calculated provincial monthly aggregated (average temperature and 

cumulative precipitation) data were transformed into a structured time series, 

where each row represented a province, and each column corresponded to a 

specific year and month. This monthly dataset was then further transformed into an 

annual dataset, where monthly data were stacked, and both year and month were 

extracted from the date column. The data was pivoted to display 12 columns, each 

representing one of the months of the year, with each row corresponding to a 

province for a specific year. 

5. Merging Temperature and Precipitation Data: 

Given that separate georasters, and consequently time-series datasets, were 

created for temperature and precipitation, the final step involved merging the two 

datasets on a provincial basis. This unified dataset included both monthly 

temperature and precipitation values. 

 

2.2.2 Feature selection 

As previously mentioned in the preceding section, the selected climate features for this 

analysis are monthly average temperature and cumulative monthly precipitation. This 

choice was made to facilitate the development of the prototype pipeline for model 

production and interpretation, which represents the focus of this thesis. These features 

were easily accessible to produce via data engineering and to work with, which sufficed 

for the purposes of this study. Furthermore, for a first approximation, temperature and 

precipitation are considered significant enough to assess their influence on maize yield 

anomalies [3], [27]. 
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An a priori feature selection was performed based on the lifecycle of maize, which 

typically spans from March (when the first sowing takes place) to October (the latest 

harvest). As reported in sections 1.2.2 and 1.2.3, maize is particularly sensitive to 

temperature, requiring minimum temperatures of at least 12°C during its early growth 

phase to prevent damage, as growth halts if temperatures fall below 10°C. The crop’s 

growth cycle typically lasts between 100 and 140 days, and multiple sowings occur during 

the agricultural year, depending on local conditions and practices [26], [44]. Therefore, for 

each year, the final selection of features focused on the monthly average temperature and 

monthly cumulative precipitation during this period, spanning from March to October. 

 

2.2.3 Quantitative and Qualitative Data Analysis 

Once the dataset was processed, both quantitative and qualitative analyses were 

conducted to better understand the structure and relationships within the data: 

• Correlation Analysis (Features): Pearson and Spearman correlations were 

computed to measure the relationships between the features themselves. 

Pearson’s correlation assesses the linear relationships between two continuous 

variables, while Spearman’s correlation captures ranked and non-linear 

relationships. Evaluating the correlation between features is crucial to 

understanding how they interact and ensuring that highly correlated features are 

not redundant. This helps prevent multicollinearity, which could skew the model’s 

ability to identify the unique contributions of each feature to yield anomalies. 

• Correlation Analysis (Features and Target): Additionally, Pearson and Spearman 

correlations were used to evaluate the relationship between the features 

(temperature, precipitation) and the target variable (crop yield anomaly). These 

correlations help assess which features have the strongest linear and ranked 

relationships with the target, guiding feature selection and model development. 

Furthermore, potential correlations between the target variable and features 

corresponding to months outside the lifecycle of maize (before March and after October) 
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may reflect broader intra-seasonal climatic patterns. These correlations could stem from 

climatic conditions in off-season months that influence the subsequent growing season, 

indirectly affecting yield anomalies. While this hypothesis was not examined in detail in 

this study, future research could explore these relationships to understand how climatic 

interactions between seasons contribute to variations in crop yield. 

2.2.4 Features preprocessing 

Several preprocessing strategies were employed to ensure that the data was appropriately 

transformed for analysis, all applied at the provincial level: 

- Standardization: 

Standardization was performed using StandardScaler from sklearn.preprocessing. 

This method rescales the features so that they have a mean of 0 and a standard 

deviation of 1, ensuring that all features are on the same scale. The formula used 

for standardization is:  

𝑋′ =
𝑋 −  𝜇

𝜎
 

 

where X is the original feature value, μ is the mean of the feature, and σ is the 

standard deviation. 

- Normalization: 

For normalization, Normalizer(norm='l2') from sklearn.preprocessing was applied. 

This method scales each sample individually to have unit norm, making it 

particularly useful for sparse data or datasets with high variance. The L2 

normalization formula is: 

𝑋′ =
𝑋

||𝑋||
2

=
𝑋

√∑ 𝑋𝑖
2 𝑛

𝑖=1  

 

 

 where ∥X∥ represents the L2 norm (Euclidean distance) of the feature vector. 
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Initially, a log transformation was considered for precipitation data to reduce skewness 

and stabilize variance, addressing the inherent variability often found in precipitation 

distributions. The transformation was applied using the formula: 

𝑋′ = log (𝑋 + 1) 

where 1 is added to avoid the issue of taking the logarithm of zero values. However, given 

that the precipitation data was standardized prior to the log transformation, it was 

recognized that the addition of 1 might significantly affect smaller values. In such cases, 

the selection of an appropriate constant (smaller than 1) should be carefully evaluated to 

avoid distorting the data. After considering these factors, it was decided to exclude the log 

transformation in the final analysis to maintain consistency in the data processing 

pipeline. This approach, however, could be revisited and further explored in future steps, 

particularly in relation to selecting a more suitable constant or considering alternative 

transformations. 

Following these preprocessing strategies, three different datasets were utilized in the 

analysis: one with original features, one with standardized features, and one with 

normalized features. 

2.2.5 Target preparation 

First of all, the spatial distribution of the available data of agricultural production and 

cultivated area data, sourced from ISTAT [29], was assessed by grouping the provinces 

into four Italian macro areas based on similar climates: Islands, North, Central, and 

South. To ensure the inclusion of provinces with significant maize production but 

potentially sparse data collection, a criterion was necessary to select provinces for the 

study. The chosen criterion was that at least in one year, from 2006 to 2022, the area 

cultivated with maize in the province exceeded 10,000 hectares, and that each province 

had at least three records of maize production data. This dual-threshold approach 

ensured that only provinces with significant maize cultivation and at least three records of 

maize production data were included, providing a robust dataset for temporal analysis. 

This strategy not only guards against the inclusion of provinces with sporadic data that 
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could undermine the study's robustness and reliability but also guarantees a statistically 

meaningful time series for each selected province. 

Following the selection of provinces based on the criteria of significant maize cultivation 

and sufficient data records, the agricultural production and cultivated area data, sourced 

from ISTAT [29], were reprocessed to compute the crop yield according to the formula: 

𝑌𝑖𝑒𝑙𝑑𝑐𝑟𝑜𝑝 [
𝑘𝑔

ℎ𝑎
] =

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑐𝑟𝑜𝑝 [𝑘𝑔]

𝐴𝑟𝑒𝑎𝑐𝑟𝑜𝑝[ℎ𝑎]
 

This focus on yield rather than total production is crucial because yield normalizes 

production relative to the size of the cultivated area. Maize production alone does not 

provide a full picture, as it varies greatly depending on the size of the area planted with the 

crop in any given year. By calculating yield, the study captures agricultural efficiency, how 

much production is obtained per hectare, making regions with different land areas under 

cultivation comparable. This allows for a more accurate comparison across provinces and 

years, as it removes the variability introduced by differing or fluctuating cultivated areas. 

Next, trends in crop yields were analysed using linear regression to determine whether 

there was a consistent increase or decrease in yields over time. This trend analysis is 

essential because the study focuses on yield anomalies—the deviation from what is 

considered a normal or expected production level. While long-term changes in yields fall 

outside the scope of this study, instead, the primary focus is on understanding short-term 

deviations from the established trends, which are hypothesized to be influenced by 

seasonal climatic factors, such as fluctuations in temperature and changes in 

precipitation patterns. 

The central hypothesis being tested in this study is that these yield anomalies are 

primarily driven by climate variability. By analysing the deviations from long-term trends, 

the study aims to isolate the short-term climatic events on maize production. 

The significance of the observed trends was determined by examining the p-values and 

confidence intervals from the regression analysis. A p-value is a statistical measure that 

helps determine the probability of obtaining the observed results of a test under the 
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assumption that the null hypothesis is true.  In this context, A p-value less than 0.05 

indicates a statistically significant trend. 

Additionally, the confidence intervals were analysed to assess the precision of the 

estimated trends. A confidence interval provides a range of values which is believed to 

contain the true value of the parameter with a certain level of confidence. Significant 

trends were identified when the confidence intervals did not include zero, indicating that 

the observed trend was different from no change. 

After identifying significant trends within the crop yield data for each province, necessary 

adjustments were made. For those provinces with established trends, the crop yield data 

were detrended by subtracting the trend component using the formula: 

 

𝑌𝑖𝑒𝑙𝑑𝑝,𝑦𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑
= 𝑌𝑖𝑒𝑙𝑑𝑝,𝑦 − 𝑆 ∗ (𝑦 − 𝑦𝑠𝑡𝑎𝑟𝑡)         𝑤ℎ𝑒𝑟𝑒 𝑆: 𝑡𝑟𝑒𝑛𝑑 𝑠𝑙𝑜𝑝𝑒, 𝑝: 𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒, 𝑦: 𝑦𝑒𝑎𝑟 

 

Provinces without detectable trends retained their original crop yield data unchanged. 

To derive the target variable for the analysis, the crop yield anomaly, an average crop yield 

was first calculated for each province. This average was based on simple crop yield data 

for provinces without trends and on detrended crop yield data for those with trends. 

Subsequently, the crop yield anomaly was computed annually using the formula: 

𝑌𝑖𝑒𝑙𝑑 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑝,𝑦 [%] =
𝑌𝑖𝑒𝑙𝑑𝑝,𝑦 − 𝑌𝑖𝑒𝑙𝑑𝑎𝑣𝑔𝑝

𝑌𝑖𝑒𝑙𝑑𝑎𝑣𝑔𝑝

∗ 100                𝑤ℎ𝑒𝑟𝑒  𝑝: 𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒, 𝑦: 𝑦𝑒𝑎𝑟  

 

This formula normalizes the crop yield anomaly, rendering it as a ratio that indicates how 

much each year's yield deviates from the average in percentage. This normalization allows 

for comparisons across different regions and scales by accounting for variations in 

absolute yield figures, thus establishing the crop yield anomaly as the key metric for 

subsequent analysis in this study. 
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2.3 Regression Models 

To predict the crop yield anomaly based on climatic variables, a regression analysis was 

conducted. Five different types of regression models were employed and compared: 

Linear Regression, Random Forest Regressor, Extra Trees Regressor, k-Nearest Neighbors 

(KNN) Regressor, and XGBoost Regressor. These five regression models were selected to 

capture a wide range of relationships in the data, from simple linear patterns to complex 

non-linear interactions. For more detailed insights beyond what is covered in the following 

paragraphs, refer to scikit-learn library documentation [45], [46], [47], Dobson et al. [48], 

Avila [49], Liaw et al. [50], Geurts et al. [51], Taunk et al. [52], XGBoost library 

documentation [53] and Chen et al. [54]. 

 

2.3.1 Linear Regression 

Linear regression is one of the most fundamental and widely used models, valued for its 

simplicity and interpretability. It assumes a linear relationship between the input variables 

(features) and the target variable (yield anomaly). The general form of the linear regression 

model is expressed as: 

 

𝑦 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 +  𝜖 

Where: 

• y represents the crop yield anomaly (target variable), 

• X1, X2 ,…,Xn represent the features (temperature, precipitation), 

• β0, β1, …,βn  are the coefficients or weights, 

• ϵ is the error term. 

While linear regression provides insight into the direct relationships between the features 

and the target variable, its limitation lies in its inability to model non-linear interactions 

between variables, which can be common in complex phenomena. However, non-linear 
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interactions could be captured by introducing interaction terms (e.g., X1 × X2) within the 

linear model. Additionally, a broader class of models, such as Generalized Linear Models 

(GLM), can introduce a non-linear link function, providing a more flexible framework for 

capturing non-linear relationships [48]. 

In this thesis, however, the analysis was performed using only the simple linear model 

without the inclusion of interaction terms or more advanced models. 

 

2.3.2 Random Forest Regressor 

Random Forest [49], [50] is an ensemble model built on multiple decision trees. By 

averaging predictions from multiple trees, Random Forest can account for non-linear 

relationships and reduce overfitting. It is particularly suited for complex datasets where 

interactions between variables may not follow a linear path. Each tree in the forest is 

constructed from a random subset of both features and training samples, enhancing the 

model's robustness against noise [45]. 

The model's prediction is: 

𝑦 =
1

𝑇
 ∑ ℎ𝑡(𝑋)

𝑇

𝑡=1

 

 

Where: 

• ht(X) is the prediction from the t-th tree, 

• T is the total number of trees. 

Random Forest was selected due to its resilience to overfitting, high-dimensional data 

handling, and its effectiveness in capturing intricate, non-linear dependencies. 
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2.3.3 Extra Trees (Extremely Randomized Trees) 

Extra Trees is another ensemble method similar to Random Forest, but with one key 

difference: it introduces more randomness by selecting split points for trees at random, 

rather than choosing the best split based on a criterion or information gain. This added 

randomness helps the model generalize better, particularly in noisy datasets, as it 

reduces variance and avoids overfitting [49], [51]. 

The Extra Trees Regressor generates multiple trees and aggregates their outputs, but with 

more randomness in the selection of splits. The prediction for a new instance X is the 

average of the predictions from all the trees. Like Random Forest, Extra Trees generates 

multiple trees and aggregates their predictions. However, the random nature of split 

selection means that it might discover unique patterns within the data that other models 

may overlook. The decision to include Extra Trees was motivated by its potential to 

perform well with diverse climate data and capture subtleties in yield variation [46]. 

 

2.3.4 k-Nearest Neighbours (KNN) 

k-Nearest Neighbours is a non-parametric model that makes predictions based on the 

values of the k-closest neighbours in the training data. It operates by computing the 

distance (Euclidean in this case) between the input and the points in the dataset, 

selecting the closest neighbours, and averaging their outcomes to predict the yield 

anomaly [47], [49]. 

The formula for KNN regression is: 

𝑦 =
∑ 𝑤𝑖𝑦𝑖

𝑘
𝑖=1

∑ 𝑤𝑖
𝑘
𝑖=1

 

Where yi represents the yield anomaly values of the k-nearest neighbours, and wi 

represents the weight assigned to each neighbour. The weight wi can be uniform (if all 

neighbours are treated equally) or distance-based (where closer neighbours have a higher 
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influence on the prediction). In the case of distance-based weighting, wi =
1

di
, where di is 

the distance between the input and the i-th nearest neighbour.  

While KNN does not assume any prior relationships between features, its simplicity 

comes with limitations: it can struggle with high-dimensional data and may be sensitive to 

the choice of k [52]. 

 

2.3.5 XGBoost Regressor 

XGBoost is an optimized implementation of the Gradient Boosting algorithm, designed to 

be both efficient and accurate. It builds trees sequentially, with each new tree correcting 

the errors made by the previous ones, thereby improving accuracy over time. Additionally, 

XGBoost includes regularization mechanisms that prevent overfitting, a common issue in 

highly flexible models [53], [54]. 

The prediction for XGBoost is based on the sum of the outputs from all trees: 

𝑦 =  ∑ 𝑓𝑡(𝑋)

𝑇

𝑡=1

 

where ft(X) represents the prediction from the t-th tree. XGBoost was chosen due to its 

strong track record in machine learning tasks, especially when dealing with large datasets 

and non-linear interactions between features. 

 

2.4 Models’ calibration and validation 

In this section, the process of calibrating and validating the models is outlined, focusing 

on the steps taken to ensure optimal performance and generalizability. The goal of this 

phase was to fine-tune the models by selecting the best hyperparameters and validating 

their performance on unseen data, ensuring a balance between accuracy and the risk of 

overfitting. Additionally, feature importance was evaluated both through correlation 
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analysis and SHAP values [55], [56], which are later batter explained, providing deeper 

insights into the relationships between the input features and the model predictions. 

 

2.4.1 Hyperparameter Tuning Process 

For the algorithms requiring hyperparameter tuning (Random Forest Regressor, Extra Trees 

Regressor, k-Nearest Neighbours Regressor, and XGBoost Regressor), a grid search was 

employed to identify the optimal combination of hyperparameters. The key 

hyperparameters involved in the analysis are listed in Table 1. The grid search was 

performed using a custom metric, 𝐷, specifically designed to balance the R2 scores of 

both the training and test sets, ensuring the model generalizes well without overfitting. The 

definition of the R2 metric will be provided in the following paragraph (2.4.2). 

Table 1: Models’ hyperparameters involved in tuning process 

Regression model Hyperparameters 

Random Forest Regressor n_estimators, max_depth 

Extra Trees Regressor n_estimators, max_depth 

K-Nearest Neighbours  n_neighbours, weights 

XGBoost Regressor n_estimators, max_depth 

 

The custom metric 𝐷 is a Euclidean distance measure that reflects how close the model's 

performance is to the ideal case, where the training and test R2 scores are equal. The 

formula for the D metric is: 

𝐷𝑅2 =

√2 −  √(𝑅2𝑡𝑒𝑠𝑡 − 1)2 + (
𝑅2𝑡𝑒𝑠𝑡

𝑅2𝑡𝑟𝑎𝑖𝑛
− 1)

2

√2
 

In this equation, 𝐷𝑅2 = 1 represents the optimal case where R2train =  R2test, indicating 

no overfitting and perfect generalization. By maximizing  𝐷, the hyperparameters are 
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selected to ensure a balance between training and test performance, reducing the risk of 

overfitting (which would be indicated by a high R2train  but a lower R2test). 

The grid search was repeated 30 times, each time using a fixed test set size, where 20% of 

the dataset was reserved for testing. Reiterating the grid search over multiple data splits 

helps to mitigate the impact of a single, potentially unrepresentative train-test split on the 

final hyperparameter selection. Averaging the results across these 30 iterations reduces 

the influence of outliers or random variations in the data, thus providing more reliable 

hyperparameter estimates. 

The final set of hyperparameters was selected based on the combination that achieved 

the highest mean 𝐷 score across iterations, ensuring that the chosen model configuration 

consistently balanced performance on both the training and test sets across multiple data 

splits. 

2.4.2 Models Evaluation Method and Metrics 

After determining the optimal hyperparameters through grid search, the final models were 

trained and evaluated using 5-fold cross-validation. This technique divides the dataset 

into five subsets (folds), with each fold serving as the validation set once while the 

remaining four are used for training. Cross-validation is particularly useful for reducing 

overfitting, as it ensures that the model is tested on different subsets of the data, 

providing a more reliable estimate of its generalization ability [57]. The evaluation metrics 

were computed for each fold, and the average scores were reported to provide a robust 

assessment of the model's general performance. The selected evaluation metrics are: 

• R² (Coefficient of Determination): This metric assesses how well the model's 

predictions correspond to the actual values, with values ranging from 0 to 1. A 

value of 1 indicates a perfect fit, so higher R² values suggest that the model 

captures more variance in the target variable. 

• RMSE (Root Mean Squared Error): RMSE measures the square root of the average 

squared differences between predicted and actual values, indicating how far 
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predictions deviate from reality. Lower RMSE values signify more accurate 

predictions, as large errors are penalized more heavily.  

• MASE (Mean Absolute Scaled Error): MASE is a scale-independent metric that 

compares the model’s error to that of a naive baseline model. Specifically, it 

compares the Mean Absolute Error (MAE) of the model with the MAE of the naive 

model. The MAE is calculated using the formula: 

𝑀𝐴𝐸 =
1

𝑛
∑ | 𝑦𝑡 − 𝑦�̂�|

𝑛

𝑡=1

 

where 𝑦𝑡  is the actual value at time 𝑡, 𝑦�̂�  is the predicted value at time 𝑡, and 𝑛 is the 

number of observations.  

MASE is then calculated as: 

𝑀𝐴𝑆𝐸 =
𝑀𝐴𝐸𝑚𝑜𝑑𝑒𝑙

𝑀𝐴𝐸𝑛𝑎𝑖𝑣𝑒
 

A MASE value lower than 1 means the model outperforms the baseline, while 

values higher than 1 indicate worse performance. The naive model used in this 

study generates predictions based on a normal distribution with mean and 

standard deviation equal to the target mean and standard deviation. 

The final models were selected based on their R² scores, prioritizing the models that 

achieved the highest R² values across the cross-validation folds given the condition that 

they present 𝑀𝐴𝑆𝐸 < 1. This ensured the selection of models with the best predictive 

accuracy while minimizing the risk of overfitting, thanks to the prior hyperparameter 

tuning process. 

2.4.3 SHAP Feature Importance Analysis 

To gain a deeper understanding of how each feature contributed to the model’s 

predictions, a SHAP (SHapley Additive exPlanations) analysis was performed. SHAP is a 

method based on game theory that explains individual predictions by computing the 

contribution of each feature to the final prediction. Specifically, SHAP computes Shapley 

values, which fairly allocate the “payout” (the model's prediction) among the features by 

treating each feature as a "player" in a cooperative game. The Shapley values are the only 
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values that satisfy key properties such as local accuracy, consistency, and missingness, 

making SHAP a highly reliable method for interpreting model predictions [55], [56]. 

In addition to providing explanations for individual predictions, SHAP allows for global 

model interpretation through feature importance measures. SHAP feature importance is 

calculated as the mean absolute Shapley value of each feature across all instances, 

allowing to determine which features have the greatest overall influence on the model. 

Unlike permutation-based feature importance, which measures the decrease in model 

performance when a feature is shuffled, SHAP feature importance is based on the 

magnitude of feature attributions [55]. 

Moreover, SHAP summary plots combine feature importance with feature effects, 

showing the distribution of Shapley values for each feature across all data points. This 

helps in understanding both the overall importance of a feature and the direction of its 

impact (positive or negative) on the predictions. For example, a high SHAP value for a 

feature could indicate that increasing its value tends to increase the predicted target [55]. 

SHAP also enables the interpretation of models like k-Nearest Neighbours (KNN), which 

otherwise lack built-in feature interpretability. 

This SHAP-based analysis was conducted to complement the a priori correlation analysis 

of features and their relationship with the target variable. By comparing SHAP values with 

the previously calculated Pearson and Spearman correlations, we could validate whether 

the initial feature assumptions of relevance were consistent with the model’s actual 

behaviour during inference. This provided a more holistic view of how well the selected 

climatic variables explained the crop yield anomalies and whether further refinements 

could be made in future model iterations. 

 

2.5 Inference Procedure: Historical and RCP8.5 Scenarios 

With the processed data ready, inference was performed using the best-performing 

models that were identified through the model evaluation process. The model.predict 

function from Scikit-learn was used to estimate agricultural yield anomalies, and this was 
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applied to two datasets: the baseline dataset (2006–2023) and the future scenario dataset 

based on the RCP 8.5 projection. The baseline inference allowed for a comparison 

between predicted and actual yield anomalies over the training period, while the RCP 8.5 

scenario provided predictions for future agricultural yield anomalies. 

For the baseline dataset, predictions were compared with actual observations by 

calculating the Mean Absolute Error (MAE), which quantifies the average magnitude of 

errors between predicted and actual values, and it was also used to compute Mean 

Absolute Scaled Error (MASE). This provided insight into the model's performance on data 

it was trained on. Additionally, the frequency distribution of predicted anomalies was 

evaluated using histogram plots and Kernel Density Estimation, providing a visual 

representation of the spread and shape of predicted yield anomalies. 

For both the baseline and RCP 8.5 datasets, the average yearly yield anomaly was 

calculated. In the case of the RCP 8.5 scenario, the average was computed over a 20-year 

period centred on 2040 and 2060, offering insights into how agricultural yield is expected 

to change under future climate conditions. For the baseline dataset, the average yearly 

yield anomaly was calculated over the full period of 17 years (2006–2023), centred on 

2014, to compare the model’s historical predictions with the actual conditions. 

Finally, provincial average yearly yield anomalies are visualized on maps, showing yield 

anomalies as percentage values. These maps enable a clear comparison between regions 

under both baseline and future climate conditions, providing an accessible interpretation 

of the regional impacts on agricultural yield. 
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2.6 Methodology limitations 

Several limitations underpin this study, which may affect both the accuracy and 

generalizability of the results: 

1. Data Limitations: 

o The historical climatic data used in this study were not bias-corrected, 

although bias was evaluated. Uncorrected biases may influence the 

predictions [38]. 

o Additionally, regarding future projection data, from 1989 to 2005, the dataset 

consistency  was evaluated using historical data, while for the period from 

2006 to 2018, the projections from the RCP8.5 scenario were used. This 

transition creates a limitation, as the model relies on scenario data starting 

in 2006, effectively losing 20 years of historical control data for validation 

purposes [35]. 

o The time series for maize yield data is relatively short, covering only 17 years. 

Moreover, the spatial coverage is limited, as there are few provinces with a 

sufficiently long and complete historical record, which constrains the 

robustness of the results. 

2. Model Limitations: 

o Although a comparison of different models was conducted, the analysis was 

limited to a small set of models, which may not fully capture the complexity 

of maize yield anomalies. As a result, the models used might not be the 

most optimal for this specific task. 

o Based on existing literature [3], it is known that the features used in this 

study may not be the most optimal for yield prediction, and thus the results 

are not expected to be highly accurate. 

o There is also a risk of spatial overfitting in the model training process. 

Provinces that are geographically and climatologically similar may be 
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overrepresented in the training set compared to the validation set, which 

could skew the model’s ability to generalize. 

3. External Factors: 

o External influences, such as market conditions (e.g., shifts in demand), 

different climatic events (e.g. floods, hailstorms) or other non-climatic 

factors like irrigation, which can significantly impact agricultural production, 

were not included in the model. These unmodeled factors may have a 

considerable effect on yield, which was not accounted for in this study. 

o Additionally, the model may be sensitive to other climatic factors that were 

not explicitly considered, such as temperature extremes, storms, or 

humidity, which can also impact yield beyond the effects of drought alone. 
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3 Results 

This chapter presents the results of the analyses performed on both the climate and 

maize datasets, as well as the evaluation of predictive models. The aim is to assess 

drought-related risks to maize cultivation, with a focus on both historical and future 

scenarios. The structure of this chapter is designed to guide the reader through the key 

stages of the analysis, from the data exploration phase to model evaluation and future 

inference. 

The first section provides an analysis of the datasets used, including comparison between 

historical climate data and future projections. The maize dataset is examined through its 

geographic distribution, overall trends, and feature correlations. This section aims to 

establish a robust understanding of the data, laying the groundwork for the subsequent 

modelling and inference. 

In the second section, the performance of various models is discussed, beginning with an 

initial filtering based on the Mean Absolute Scaled Error (MASE) metric. Models achieving 

a MASE below 1 are further analysed, with their R² and RMSE scores reported. The two 

most promising models are then compared in detail, evaluating their statistical 

distributions and performance in predicting true data. This comparison provides key 

insights into the models' accuracy and applicability for drought risk estimation. 

Finally, the third section explores the future inference results, based on the best-

performing models. Distributions and inference maps are presented to visualize the 

potential impact of drought on maize yields under future climate scenarios. These findings 

offer critical insights into the vulnerability of maize cultivation across different regions and 

the expected changes in yield anomalies under the RCP 8.5 scenario. 

 

3.1 Datasets analysis and comparison 

This section presents the results of the preliminary analyses that contributed to the 

definition of the final dataset used for model training. These basic evaluations were aimed 
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at ensuring that the dataset is sufficiently representative and valid for use as an initial 

structure in the model development pipeline. 

3.1.1 Maize production data analysis 

The preliminary analysis of maize production data across all provinces is presented first. 

Figure 10 and Figure 11 provide an overview of this analysis, which guided the selection of 

the provinces of interest for the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: average provincial maize cultivated area per macroregion (NUTS1) 

Figure 10: average provincial maize production records per macroregions 

(NUTS1) 
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Figure 10 displays the average number of years with available data per province for each 

macroregion (North West, North East, Center, South, and Islands, NUTS1 classification 

major socio-economic regions  [43]). On the surface, all macroregions appear to have, on 

average, a sufficient number of years with data per province to consider reliable time 

series. In other words, for most provinces, the 17-year period is well-represented with 

relatively few missing data points. However, Figure 11 highlights that the vast majority of 

cultivated land dedicated to maize is located in the North. Given the need to balance 

having sufficiently large production areas—areas that are less subject to very localized 

fluctuations in production—with having enough data on production and cultivated area 

(ensuring there are not too many missing records to form a reliable time series), provinces 

were selected based on the two criteria presented in the Methodology (2.2.5): they must 

have at least 10,000 hectares dedicated to maize cultivation in at least one record and at 

least three years of available records. The map in Figure 12 shows the provinces that meet 

these criteria. 
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Following this, the presence of trends in crop yield was assessed for the provinces that 

met the selection criteria. In Figure 13 are presented the graphs for the provinces where 

trends were detected: the crop yield records (blue points) are compared with the 

regression curve (orange line), which illustrates the identified trend. The significance of 

these trends is ensured by a p-value less than 0.05, along with the examination of 

confidence intervals.  

 

  

Figure 12: Italy map with provinces selected for the final dataset 

(green) 
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Figure 13: Crop yield trend (slope and p-value reported) for Alessandria, Cuneo, Reggio Emilia, Lodi, Trieste, Vercelli 

provinces 
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For negative slopes, a confidence interval entirely below zero confirms a significant 

decreasing trend, while for positive slopes, a confidence interval entirely above zero 

confirms a significant increasing trend. In both cases, a confidence interval that does not 

cross zero strengthens the reliability of the trend. Figure 14: Significant Crop Yield trends 

comparison with p-value and confidence interval illustrates all significant slope values, 

along with their respective p-values and confidence intervals. 

 

 

 

 

 

 

 

 

 

 

The distribution of the detrended crop yield anomaly, as visualized in the histogram (Figure 

14), does not conform to a Gaussian (normal) distribution. This conclusion is supported 

by the results of two formal statistical tests for normality: the Kolmogorov-Smirnov (K-S) 

test and the Anderson-Darling (A-D) test. The K-S test yielded a test statistic of 0.4448 and 

an extremely low p-value (7.728e-86), indicating a significant departure from normality. 

Similarly, the A-D test produced a test statistic of 2.1627, which exceeded the critical 

values for all significance levels (from 15% to 1%), further reinforcing the rejection of the 

null hypothesis that the data follows a normal distribution. 

Figure 14: Significant Crop Yield trends comparison with p-value and confidence interval 
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To better understand the spread of the detrended crop yield anomaly, the following 

statistical measures were calculated: 

Table 2: Summary of key statistical measures for the detrended crop yield anomaly distribution, including standard deviation, 
interquartile range (IQR), range, and 95% confidence interval, providing insights into the spread and variability of the data. 

Distribution measure Value 

Standard Deviation 16.4 % 

Interquartile Range  18.91 

Range 107.89 

95% Confidence Interval [-32.14, 32.14] 

 

The standard deviation of 16.4% reflects the average variability in crop yield across 

provinces, while the Interquartile Range (18.91) shows the spread of the middle 50% of 

the data. Additionally, the 95% confidence interval indicates that most of the data lies 

within the range of [-32.14, 32.14], capturing the extent of the anomaly values. Given the 

nature of the data - characterized by regional variability and potential localized production 

shocks - this non-normality is not unexpected and does not hinder the analysis. The 

distribution, although non-Gaussian, remains informative for modelling purposes. 

Furthermore, the dataset's size and the variability between provinces likely contribute to 

Figure 15: Detrended crop yield anomaly distribution for selected 

provinces 
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the observed distribution shape, which still provides a reliable basis for the subsequent 

steps of the model development. 

 

3.1.2 Climatic Variables in the Selected provinces 

This study does not focus on the validation of the dataset used, as the climatic data is 

derived from pre-existing, reputable sources, VHR-REA-IT [34] for historical data and VHR-

PRO-IT [42] for future projections. Given the reliability of these sources, the dataset was 

taken as valid without further verification within this research. 

The two graphs in Figure 16 and Figure 17 provide a comparison between historical (1981-

2022) and projected future (2030-2070) climate data for the selected provinces. 

Specifically, they depict the mean and standard deviation of monthly temperatures (in 

Kelvin) and monthly cumulative precipitation (in kg/m²) across the year. 

 

Figure 16: Monthly precipitation comparison, Historical (1982-2022) vs Projection (2030-2070) mean and standard deviation 
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The graph in Figure 16 illustrates the changes in monthly precipitation. Historical data is 

represented by blue dots, while future projections are shown in orange. The error bars 

reflect the standard deviation for each month. In the future projections, a general trend of 

reduced precipitation is observed, particularly in the summer months (June to August), 

where the projected values are significantly lower. The variability (standard deviation) is 

also more pronounced in certain months, such as January, indicating potential shifts in 

seasonal precipitation patterns. 

The graph in Figure 17 compares the monthly temperature data. The historical data (blue) 

and future projections (orange) show a clear trend of increased temperatures across most 

months. The warming is particularly evident in the summer months (June to August), 

where the mean temperature is projected to rise substantially. The standard deviations 

suggest that temperature variability is expected to remain relatively stable, although with a 

slight increase in some months, particularly in winter. 

Figure 17: Monthly temperature comparison, Historical (1982-2022) vs Projection (2030-2070) mean and standard deviation 
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These visualizations highlight key differences between the historical and future climate 

scenarios for the selected provinces, qualitatively demonstrating the expected impacts of 

climate change in terms of both temperature and precipitation variability. 

 

3.1.3 Variables and Target Correlation 

The analysis evaluated the correlations (Pearson and Spearman) between the selected 

features (monthly temperature and precipitation variables spanning from March to 

October). Consecutive monthly temperatures showed a correlation, as expected. 

However, the correlation between temperature and precipitation features was less 

pronounced, suggesting that these variables do not exhibit strong interdependencies that 

would significantly impact their individual behaviour or the overall analysis. 

Following this, both Pearson and Spearman correlation coefficients were calculated to 

explore linear and rank-order relationships between the features and the target variable 

(Crop Yield Anomaly). Figure 18 and Figure 19 display the results for the Pearson and 

Spearman correlations between the features and the target. 

 

 

 

 

 

 

 

 

 Figure 18: Variables-Target Pearson correlation 
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While some correlations between the features and the target are evident, none are 

particularly strong or highly significant. For instance, the highest correlations—such as 

those for precipitation in June and September (6_Psum and 9_Psum)—remain moderate 

and consistent with expectations from the literature. Even the best correlations are not 

strong enough to be considered highly predictive. 

The Spearman correlation, which accounts for non-linear relationships, shows similar 

trends to Pearson but highlights a stronger positive correlation for June precipitation 

(6_Psum) and a negative correlation for September precipitation (9_Psum). This suggests 

that precipitation exerts a more noticeable influence on yield anomaly compared to 

temperature, though the overall impact is moderate. 

This outcome aligns with literature findings [3], which suggest that while these variables 

are important, they are not the most reliable indicators for predicting drought impact on 

maize yield. They were chosen for their simplicity and availability in the context of 

producing an initial model creation process, rather than for their strong predictive power 

for yield anomalies. 

 

Figure 19: Variables-Target Spearman correlation 
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3.2 Model Evaluation Results 

This section presents the performance of the five different models, each subjected to 

various preprocessing techniques, evaluated based on three metrics: Mean Absolute 

Scaled Error (MASE), Root Mean Square Error (RMSE), and the coefficient of determination 

(R²). The models are assessed using their optimal hyperparameters, selected based on 

the D metric, as described in the methodology chapter. Additionally, comparison graphs, 

including frequency distribution histograms and cumulative frequency graphs between 

observed and predicted values, are provided to offer a visual assessment of the models' 

accuracy. 

3.2.1 Models performance: Metrics  

The first step in the model evaluation process required each model to achieve a MASE 

score below 1. Only the Linear, Extra Trees, Random Forest, and K-Nearest Neighbours 

(KNN) models with original features met this criterion, indicating that their predictive error 

was lower than that of the naive model, which generates random predictions based on the 

mean and standard deviation of the real distribution. For these models, additional 

performance metrics, such as R² and RMSE, are also presented in Table 3 to further 

assess their predictive accuracy. 

The MASE metric is designed to evaluate forecast accuracy by comparing the model's 

prediction error to that of a naive forecast. A MASE value below 1 suggests the model's 

predictions are more accurate than the naive method, while a value greater than 1 

indicates inferior predictive accuracy. It is worth noting that the RMSE value is very close 

to the standard deviation of the observed data distribution. This emphasizes the 

importance of knowing that the MASE is less than 1, reinforcing the hypothesis that there 

is indeed a meaningful correlation, as the model does not simply learn the mean and 

distribution of the target. The model performs better than a naive model, which relies on 

predicting based on the mean and standard deviation of the observed data. 

For the Random Forest, Extra Trees, and K-Nearest Neighbours (KNN) models, which 

require hyperparameter tuning, the optimal configurations were selected based on the 𝐷 
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metric (2.4.1), as summarized in Table 4. This table details the key hyperparameters used 

for each model, alongside their corresponding 𝐷 values, further supporting the model 

evaluation process. 

Table 3: Comparison of R² and RMSE values across different regression models using original data preprocessing. The R² 
column includes the 90% confidence intervals, highlighting the predictive accuracy of each model. 

PREPROCESSING 

REGRESSION 

MODEL R2 

R2 90% CONFIDENCE 

INTERVAL RMSE 

ORIGINAL DATA 

LINEAR 0.14 [0.08, 0.20] 15.1 

RANDOM FOREST 0.11 [0.05, 0.17] 14.3 

EXTRA TREES 0.19 [0.14. 0.24] 14.9 

K-NN 0.22 [0.11, 0.31] 14.3 

 

Table 4: Hyperparameter tuning results for Random Forest, Extra Trees, and K-Nearest Neighbours (K-NN) models that 
achieved MASE < 1. The selected hyperparameters and corresponding 

REGRESSION 

MODEL HYPERPARAMETER 1 HYPERPARAMETER 2 DR2 

RANDOM FOREST n_estimators = 50 Max_depth = 2 0.301 

EXTRA TREES n_estimators = 70 Max_depth = 4 0.327 

K-NN n_estimators = 9 Weights = uniform 0.372 

 

Overall, the R2 values across all models are relatively low, indicating limited predictive 

accuracy in this context. However, among the evaluated models, K-Nearest Neighbours 

(KNN) demonstrated the best performance. Additionally, it must be noted that the RMSE 

values for the models were very close to the standard deviation of the observed yield 

anomaly distribution, suggesting that some models may simply predict the mean and 

standard deviation of the data. For this reason, the MASE metric, which compares the 

model's performance to a dummy model that predicts based on the mean and standard 

deviation, is particularly useful. Models with a MASE value less than 1 indicate that they 
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have effectively learned patterns in the data, rather than just predicting the mean and 

standard deviation. 

The final model selection focused on KNN, which utilized monthly average temperature 

and cumulative monthly precipitation from March to October as the features not 

preprocessed. A single KNN model was applied uniformly across all provinces to 

maximize the amount of data available for the model. By pooling data from all provinces 

into one model, the analysis benefited from a larger dataset. However, this approach may 

lead to the loss of more localized specificity, as the model does not account for unique 

regional differences. 

 

3.2.2 KNN Model: Predicted vs. Observed Data 

The analysis of the predicted values generated by the K-Nearest Neighbours (KNN) model 

reveals several notable characteristics and discrepancies when compared to the 

observed data. Figure 20 and Figure 21 illustrate the frequency distribution and the 

cumulative frequency of the predicted values. The distribution in Figure 20 shows a 

concentration of values around 0%, with the majority of predictions falling within a narrow 

range. The standard deviation of the predicted values is 9.2%, and the range is 47.56%, 

indicating that the predictions are tightly clustered around the centre. This is further 

supported by the interquartile range of 12.6 and the 95% confidence interval of [-0.64, 

1.01], which highlight the limited variability captured by the model. 

Table 5: Summary of Distribution Measures for Model Predictions. The table shows the standard deviation, interquartile range, 
range, and 95% confidence interval of the predicted values from the KNN model 

Distribution measure Value 

Standard Deviation 9.2 % 

Interquartile Range  12.6 

Range 47.56 

95% Confidence Interval [-0.64, 1.01] 
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Figure 20: Frequency distribution of Model Predictions with density curve. The histogram and 

density curve illustrate the predicted values from the KNN model, with most values clustered 

near 0% 

Figure 21: Cumulative Frequency of Model Predictions. The plot shows the cumulative frequency 

of predicted values from the KNN model, with most predictions concentrated around the centre 
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The cumulative frequency in Figure 21 reinforces this observation, with a steep rise in the 

curve indicating that most of the predicted values are concentrated around the mean, 

with relatively few extreme values. The predicted data exhibits a narrow spread, failing to 

account for a wider range of variability. 

Figure 22 and Figure 23 then compare the observed values with the predicted data. The 

cumulative frequency comparison in Figure 23 highlights a key difference: the observed 

values are distributed over a much broader range, with more variability and extreme 

values, while the predicted data remains narrowly concentrated. Similarly, the frequency 

distribution comparison in Figure 22 illustrates that the predicted values exhibit a sharp 

peak, while the observed values are more evenly spread out. 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 22: Frequency distribution comparison: Predictions (blue) vs Observed Values (red). The 

predicted values are tightly centred, while the observed values show more spread. 
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This underestimation of variability and failure to capture extreme values can be explained 

by two factors. First, the features used in the model may not be optimal, limiting the 

model's capacity to account for all factors influencing yield anomalies. Second, the 

relatively small size of the dataset may restrict the model's ability to generalize and 

capture more complex patterns in the data. Consequently, while the KNN model provides 

reasonably accurate central predictions, it struggles to accurately reflect the full range of 

observed yield anomalies. 

As shown in the scatter plot (Figure 24), there is a weak but noticeable correlation 

between the predicted and observed yield anomalies. 

 

 

 

Figure 23: Cumulative Frequency Comparison: Predictions (blue) vs Observed Values (red). 

The predicted values are concentrated around 0%, while the observed values display greater 

variability 
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To further evaluate the model’s performance, a binary classification of positive (gain) and 

negative (loss) yield anomalies was conducted. The confusion matrix in Figure 25 provides 

an overview of the model's ability to discern between positive and negative values. 

Despite struggling with extreme values, the model demonstrates reasonable 

performance, correctly classifying nearly 76% of the yield anomalies. Specifically, 41.0% 

of positive and 34.7% of negative yield anomalies were accurately predicted. 

 

 

Figure 24: Predicted vs. Observed Yield Anomalies: the scatter plot compares predicted 

yield anomalies with observed values, with the red dashed line representing a perfect fit. 

While a weak correlation is evident, the model underestimates extreme values and 

struggles to capture the full variability of the observed data. 
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However, there is a significant error in the false positives (cases where the observed value 

is negative, but the model predicted positive). This is particularly concerning because 

accurately predicting losses (negative yield anomalies) is crucial for this study, which 

focuses on identifying and assessing agricultural damage. The 13.7% of cases where 

negative yield anomalies were incorrectly predicted as positive is an area that requires 

further improvement, as it directly impacts the model's utility in capturing important loss 

events. 

While the binary classification performance is relatively strong compared to the overall 

predictive accuracy of the model, care was taken to mitigate overfitting throughout the 

analysis. Overfitting was controlled primarily through hyperparameter tuning. In the case 

of K-Nearest Neighbours (KNN), the key hyperparameter used to prevent overfitting was k 

(the number of nearest neighbours considered), as this determines the extent to which 

the model generalizes rather than memorizing training data. Additionally, overfitting was 

further minimized by employing 5-fold cross-validation during model training, which 

Figure 25: Confusion Matrix [%] of Predicted vs Observed Yield 

Anomalies. The matrix shows the model's accuracy in predicting 

positive (gain) and negative (loss) anomalies, with more errors in 

false positives 
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ensured that the model's performance was evaluated across multiple subsets of the data, 

enhancing its ability to generalize to unseen records. 

 

3.2.3 Feature Importance in KNN Model 

This section presents the feature importance results from the K-Nearest Neighbours 

(KNN) model. These results provide insight into the relative influence of each climatic and 

agricultural feature used in the model to predict yield anomalies. By comparing the 

feature importance to the correlation analysis, it is possible to evaluate whether the same 

features that show strong correlations with yield anomalies are also prioritized by the 

model. This comparison helps in understanding how the model interprets the data and 

identifies the most influential factors affecting yield predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 26: KNN Feature Importance (SHAP values) 
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The analysis of feature importance for the KNN model, as shown in the SHAP (SHapley 

Additive exPlanations) plots (Figure 26, Figure 27), reveals that precipitation-related 

variables have the greatest impact on predicting crop yield anomalies. Specifically, the 

precipitation values from months June (6_Psum), July (7_Psum), March (3_Psum), and 

September (9_Psum) are among the most influential features. In contrast, temperature 

variables play a smaller role in the model's predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: SHAP Summary Plot for KNN, showing the impact of each feature on yield anomaly predictions. 

Higher precipitation values (magenta) in June and July have the greatest influence. 
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The SHAP Summary Plot (Figure 27) provides further insights into how individual feature 

values influence the model's predictions. Features like 6_Psum and 7_Psum show a clear 

pattern where higher values (represented by the magenta points) tend to positively impact 

the model's output (i.e., higher yield anomaly predictions), while lower values (blue 

points) have a negative impact. This is consistent with the idea that higher precipitation 

during these months supports better crop performance [28]. On the other hand, 

temperature variables, such as May and September temperature, exhibit a smaller range 

of influence, further confirming that temperature has a limited effect on the model's 

predictions compared to precipitation. 

This is fairly different from the results of the Pearson and Spearman correlation analyses 

(Figure 18, Figure 19), where temperature variables, especially September, July and April 

mean temperatures, show relatively higher correlations with the target variable (crop yield 

anomaly).  

While both the feature importance and correlations highlight the relevance of 

precipitation, the KNN model places more emphasis on precipitation during key months 

like June, July, and September, reflecting the model's sensitivity to seasonal rainfall 

patterns. This aligns with the existing literature [3], [28], which emphasizes the dominant 

role of precipitation in determining crop yields, particularly for maize. On the other hand, 

the higher correlation of temperature variables in the correlation analysis suggests that 

temperature has a stronger direct linear relationship with yield anomalies, even though its 

influence is less prioritized by the KNN model. 

 

3.3 Inference Results on RCP 8.5 Projection Using KNN 

This section presents the results of the inference on the RCP 8.5 projection, using the K-

Nearest Neighbours (KNN) model to estimate the average yearly yield anomaly. Although 

the model has several limitations at this stage, it is still applied to provide insights into 

potential future outcomes. The analysis focuses on understanding how future climate 

conditions under the RCP 8.5 scenario may impact agricultural production, with particular 
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attention to trends and deviations in yield anomalies. These results, despite the model's 

constraints, allow for an initial evaluation of possible future scenarios. 

Table 6: Summary of key statistical measures for RCP8.5 scenario; 2030-2050 and 2050-2070 periods comparison 

Distribution measure Value (2030-2050) Value (2050-2070) 

Standard Deviation 7.3% 7.7% 

Interquartile Range  9.85 9.41 

Range 46.82 47.71 

95% Confidence Interval [-1.43, -0.24] [-2.35, -1.10] 

 

From both Table 6 and the distribution plot (Figure 28), it is evident that, despite the 

narrower spread compared to the present-day historical data, the projected distributions 

for the future (2030-2050 and 2050-2070) show a shift toward negative values compared 

to frequency distribution of baseline scenario (2006-2022). This shift indicates a 

consistent trend towards yield reductions in future periods. The narrower spread of the 

future projections is consistent with the model’s limitations, as discussed in the model 

evaluation section, where it was noted that the model is less capable of capturing 

extreme events. In addition, the 95% confidence intervals for the future periods further 

Figure 28: Frequency distribution of predicted yield anomalies for the periods 2030-2050 and 2050-2070 under the RCP 8.5 

scenario 
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confirm this shift towards negative anomalies. Both future periods (2030-2050 and 2050-

2070) show confidence intervals entirely in the negative range, indicating a greater 

certainty of negative yield anomalies in the future. 

The reduced spread and the tighter confidence intervals for future periods compared to 

the present-day data suggest that the model predicts fewer extreme high or low yield 

years, but consistently negative yield anomalies under the RCP 8.5 scenario. 

 

The spatial distribution of the average annual yield anomaly in the maps (Figure 29) aligns 

with the earlier analysis. The 2040 projection shows several provinces experiencing mild 

to moderate negative yield anomalies, with some provinces showing resilience with near-

zero or slightly positive values. However, the 2060 projection reveals a worsening 

scenario, with a much broader area affected by negative anomalies. Many provinces face 

increasingly severe reductions in yield anomaly, with values dropping below -4% in some 

areas. This spatial pattern reinforces the trend observed in the yield anomaly 

distributions: as the timeline progresses towards 2060, the risk of yield reductions 

becomes more pronounced across key agricultural regions. 

Figure 29: Average annual yield anomaly for selected provinces under the RCP 8.5 scenario, centred around 2040 and 2060 
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4 Results Discussion and Conclusions 

The findings from the model evaluation and projection analysis show that, although the 

model achieved a low overall accuracy, it performed reasonably well in distinguishing the 

binary difference between loss and gain events. This distinction provides valuable insights 

into drought vulnerability and potential agricultural risks, even with limited predictive 

accuracy. 

It is important to note that the model predicts a more constrained distribution, failing to 

adequately capture the extremes of yield anomalies. This limitation, consistent with the 

model’s overall performance, contributes to an underestimation of the most severe 

impacts on crop yield. While this narrower distribution reflects the model's inability to 

detect extreme values, it still offers a useful perspective on more moderate trends in yield 

variation, aligning with broader patterns identified in the literature. 

These results, however, are largely in line with expectations given the methodological 

limitations of the study. Several factors likely contributed to the model's constrained 

predictive capability. First, the absence of bias correction in the climatic data likely 

introduced errors into both the historical validation and future projections, limiting the 

accuracy of predictions. Additionally, the short time series of yield data and the limited 

spatial coverage constrained the model’s ability to generalize, making it more difficult to 

capture extreme variations in yield anomalies. 

The choice of features also played a critical role in shaping the model's performance. 

Based on the existing literature, it is known that the features selected for this analysis, 

while relevant, may not fully capture the complexity of factors influencing agricultural 

yield. For example, the absence of more refined variables related to evapotranspiration or 

soil moisture could have hindered the model’s ability to accurately predict extreme losses 

or gains. 

Moreover, the risk of spatial overfitting in the model's training process may have 

influenced the results. Provinces that are geographically and climatologically similar were 
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likely overrepresented in the training set, which could have limited the model’s ability to 

generalize to other regions with differing conditions.  

Furthermore, the yield anomaly may potentially be influenced by climatic factors beyond 

drought, such as extreme weather events like floods or hailstorms. However, the present 

study intentionally focused on assessing maize vulnerability specifically to drought 

conditions. As such, the contribution of other climatic events to yield anomalies was not 

considered. Including these factors would pose considerable challenges, as it would 

require disentangling the influence of various events and distributing their contributions to 

the overall agricultural anomalies. 

Additionally, external factors such as irrigation practices and market dynamics could 

significantly impact yield outcomes. These influences were also beyond the scope of this 

analysis, given the specific focus on drought vulnerability. Irrigation, in particular, can play 

a crucial role in mitigating yield losses during periods of low rainfall, but reliable data on 

irrigation usage is often scarce and difficult to model. Similarly, market fluctuations, 

including changes in crop prices or demand, could alter planting decisions and yield 

results in ways that are not directly related to climatic factors. 

Taken together, these limitations explain the relatively narrow distribution of predicted 

values and the model’s underperformance in capturing extreme events. The results are, 

therefore, not unexpected, given the methodological constraints, and provide a clear 

direction for future work aimed at refining the model and improving its generalizability. 

 

4.1 Recommendations for Future Work 

Moving forward, several steps could be taken to improve the model and address its 

limitations. A priority would be to reduce the number of features used in the model. Given 

the relatively small size of the dataset, reducing the feature set could help minimize noise 

and improve the model's generalizability, particularly in future projections. 

In addition to this, bias correction of the climatic data should be applied to both historical 

and projected datasets. This would enhance the model’s accuracy and reliability, as bias-
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corrected data would provide a more accurate foundation for future risk assessments. 

Furthermore, refining the features used in the model, such as incorporating more 

sophisticated variables like the Standardized Precipitation Evapotranspiration Index 

(SPEI), could allow for a more nuanced understanding of drought impacts, enhancing the 

overall quality of the predictions. 

Additionally, using aggregated cereal data, which offers a more extensive historical 

record, could provide more robust insights. However, this approach comes with 

challenges, as it involves combining crops with different seasonal cycles, potentially 

complicating the interpretation of the results. 

To further refine the model, one potential improvement would be to use a mask for the 

climatic data to focus only on cultivated areas. By limiting the data to relevant agricultural 

zones, the model could better reflect the actual conditions impacting maize cultivation, 

potentially improving accuracy and relevance in the predictions. 

Another critical area for future work is refining the preprocessing strategies. The current 

preprocessing techniques were not as effective as anticipated, and it is likely that a more 

carefully designed approach could yield a significant improvement in the model's 

performance. 

Once a more satisfactory model is achieved, it will be possible to conduct statistical 

inference to derive probability distributions with greater accuracy. This will be particularly 

useful for identifying extreme events through return periods, enabling a more accurate 

assessment of the risk of extreme yield anomalies 

While the current regression model has been relatively successful in distinguishing 

between gain and loss in yield anomalies, it struggles to capture the full distribution of 

yield anomalies, particularly the extreme values, often predicting outcomes closer to the 

mean. As a potential future improvement, the adoption of multiple classification models, 

each trained on a specific yield anomaly threshold, could allow the model to better 

capture the distribution of anomalies, particularly at the extremes. By estimating the 

probabilities of exceeding or falling below different thresholds, it would be possible to 
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generate a more nuanced probabilistic distribution of predicted yield anomalies. This shift 

from regression to classification could improve the model’s ability to handle varying 

degrees of risk. 

 

4.2 Conclusions 

This study has laid the groundwork for assessing maize vulnerability to drought under 

future climate conditions using a data-driven approach. While the results reflect certain 

limitations, they provide useful insights into how climate change may impact agricultural 

production in Italy's most productive provinces. Despite the model's relatively low overall 

accuracy, it demonstrated some capacity to distinguish between loss and gain events, 

which is a valuable step toward identifying areas at greater risk of agricultural damage due 

to drought. 

One significant contribution of this work is the development of an initial framework for 

modelling yield anomalies at the provincial level. Although a single model was used 

across all provinces, the predictions are still specific to each province, reflecting their 

unique climatic conditions. This approach enables localized assessments while 

maintaining a consistent methodology, providing valuable insights into how regional 

differences may affect agricultural vulnerability to drought. 

However, the model’s limitations, such as its inability to capture extreme values and its 

relatively narrow predicted distributions, underscore the need for further refinement. The 

projections of average annual yield anomaly does not contradict existing literature [3], but 

the underestimation of extreme yield losses suggests that the true extent of future 

agricultural risk may be higher than predicted. The methodological constraints, including 

data limitations and the choice of features, contributed to these results, but the model 

still represents a quite meaningful step forward in understanding the impacts of climate 

change on maize cultivation. 

Looking ahead, several key improvements have been identified. These include refining the 

feature set, applying bias correction to the meteorological data, and reducing the number 
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of features to improve generalization. Additionally, the proposal to shift from a regression-

based approach to a classification model offers a promising direction for future work. By 

classifying yield outcomes at various thresholds, the model could generate a probabilistic 

distribution of predicted anomalies, providing a more detailed risk assessment. This 

approach could better capture the complexity of yield outcomes. 

In conclusion, this study demonstrates the potential of provincial-level modelling for 

drought vulnerability assessments in agriculture. While the model’s current limitations 

require further exploration and refinement, its ability to provide localized insights 

highlights its relevance for future agricultural strategies, particularly in the context of 

climate adaptation. By continuing to refine the model and expand its scope, future work 

could contribute to more accurate and actionable predictions, supporting efforts to 

mitigate the growing risks posed by climate change to the agricultural sector.  
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