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Abstract 
 

Constant population growth leads to an increase in the demand for food. Until now, 
traditional agricultural techniques have been able to meet human demands, but at 
the expense of the environment. In recent years, new regenerative techniques such 
as no-tillage (NT), agroforestry (AF) and organic farming (OF) have emerged with 
the aim of safeguarding the environment. However, there is still no consensus on 
the outcome of their implementation as the interplay of many factors lead to 
different results. The aim of this analysis is to define under which environmental 
conditions maize yield may increase or decrease when regenerative management 
(NT, AF, OF) is implemented and the possible relationship between environmental 
factors and relative productivity. For that purpose, a global dataset of observations 
taken from different literature studies was used and several environmental factors 
were analysed to see if it was possible to define intervals in which homogeneous 
changes in productivity would occur. Subsequently, predictive models of effect size 
were obtained for each management using Random Forest model which also 
provides ranking of the most important variables affecting prediction. From the 
results, NT and AF appeared to have a higher potential for increasing maize 
productivity when the cultivated sites were in less favourable environmental 
conditions for the maize growth (Hyper-Arid and Arid climatic zone, Unsuitable 
and Hight Heat Stress GDD, Low SOC content ...) while OF recorded an average 
decrease in all the zones. The factor that mostly influence the effect size is different 
for each management with aridity index ranking first for NT while pH affected 
primarily AF and OF. 
 

Considering the accuracy of the Random Forest model based on R2 values, most 
reliable estimate turned out to be NT (R2 = 0.36), followed by OF (R2 = 0.13), and 
finally AF (R2 = 0.07) which did not seem to return reliable values. Once AF is 
discarded considering the low accuracy of its model, the geographic area where NT 
seemed to lead to the highest increase in productivity were located in North-West 
America, North Africa, and India, while those where OF had the highest potential 
were South America and South Africa. Both practices, however, seems to have 
positive effect size in the North-East America. Moreover, the analysis shows that 
the relationship with the environmental component and the relative productivity is 
complex, and that it is not possible to define ranges of the variable in which the 
maize production increases or decreases with high accuracy. 
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Abstract 
 

La costante crescita della popolazione negli anni futuri porterà ad un aumento della 
domanda di cibo pari circa al 60% rispetto a quella attuale. Finora, le tecniche 
agricole tradizionali sono state in grado di soddisfare le richieste produttive 
dell’uomo, ma a spese dell'ambiente. Negli ultimi anni sono emerse nuove tecniche 
rigenerative come il no-tillage (NT), l'agroforestry (AF) e l'agricoltura biologica 
(OF) che non hanno più come unico obiettivo la produttività del suolo, ma anche la 
salvaguardia dell'ambiente. Tuttavia, non c'è ancora consenso sull'esito della loro 
applicazione per quanto riguarda la produttività delle culture. L'obiettivo di questa 
analisi è definire per ogni tecnica rigenerativa (NT, AF, OF) le condizioni ambientali 
in cui la resa del mais aumenta o diminuisce, e la possibile relazione tra i fattori 
ambientali e la produttività relativa. A tal fine, è stato utilizzato un dataset globale 
di osservazioni tratte da diversi studi di letteratura e sono stati analizzati diversi 
fattori ambientali per verificare se fosse possibile definire intervalli in cui si 
verifichino cambiamenti omogenei nella produttività. Successivamente, per ogni 
tecnica agricola, sono stati ottenuti modelli predittivi sulla produttività relativa 
(effect size) utilizzando il modello Random Forest. Questo modello è anche in grado 
di fornire una classifica delle variabili più importanti che influenzano la previsione. 
Dai risultati, NT e AF sembrano avere un potenziale maggiore per l'aumento della 
produttività del mais quando i siti coltivati si trovano in condizioni ambientali 
meno favorevoli per la sua crescita (zone climatiche ad alto stress idrico o di calore 
...), mentre OF ha registrato una diminuzione media in tutte le zone. Il fattore che 
influenza maggiormente l’effect size è diverso per ogni pratica, l’aridity index è al 
primo posto per il NT, mentre il pH è la variabile principale per AF e OF. 
Considerando l'accuratezza del modello Random Forest in base ai valori di R2, la 
stima più affidabile è risultata essere NT (R2 = 0,36), seguita da OF (R2 = 0,13) ed 
infine da AF (R2 = 0,07) che non sembra restituire valori affidabili. Una volta 
scartata l’AF, il NT sembra registrare il maggiore aumento della produttività del 
mais in Nord America, in Nord Africa e in India, mentre quelle in cui OF ha il 
maggiore potenziale sono il Sud America e il Sudafrica. Entrambe le pratiche, 
tuttavia, sembrano avere un effetto positivo nell'America nord-orientale. Inoltre, 
l'analisi mostra che la relazione con la componente ambientale e la produttività 
relativa è complessa e che non è possibile definire con precisione degli intervalli in 
cui la variazione della produttività del mais sia omogenea. 

Keywords  Produttività, Effect Size, Pratiche rigenerative, No-Tillage, Agroforestry, 

Organic Farming, Maize, Random Forest. 
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1 Introduction 

1.1 Background and main objective of the project 
 
Agricultural productivity will have to be increased by 60% to be able to meet 

the planet’s demand for food as the global population is projected to go 

beyond 9 billion by 2050 (Department of Economic and Social Affairs, 

2017). Meanwhile, half of the habitable land is already used for this purpose 

(Ritchie and Roser, 2019) with humanity overexploiting the Earth’s 

capacities with negative impacts on the environment. In fact, many 

consequences have been associated with the use of non-sustainable farming 

practices. 

 

Conventional agriculture focuses on food productivity by relying heavily on 

external inputs (synthetic fertilisers and other agricultural chemicals). It has 

high production costs and leads to overproduction of land. These techniques 

also manipulate the physical properties of the soil and aim to control weeds 

and achieve monoculture fields. They have led to the reduction of biodiversity 

and the damage of ecosystems leading to crop resilience (Choden and 

Ghaley, 2021). Additionally, overexploitation of the soil has led to soil 

degradation resulting in the reduction of the concentration of organic carbon 

as well as the decline of its productive capacity. It is reporting that the soil 

has been unable to store about 80 billion ton of CO2, increasing thereby its 

concentration in the atmosphere (Lal, 2004). Also, with reduction in soil 

production capacity, anthropogenic inputs are increased to maximise its 

productivity. The excessive use of fertilizers, pesticides, insecticides, and 

herbicides has led to the contamination of soil as well as water. For instance, 

38% of the world's water bodies (Choden and Ghaley, 2021) are 

contaminated while about 60-75% of the European cultivated soils have 

unnecessary nutrient inputs (European Environment Agency, 2023). 

 

Conventional farming techniques have made it possible to satisfy the world 

population's demand for food, but in the light of the preceding observations, 

the damage caused to the environment is not negligible and compromises its 

productive capacity. In that context, these production techniques are more 

and more questioned leading to the consideration of more sustainable 

alternatives such as regenerative agriculture which target both current and 

future productivity, with the aim of safeguarding the environment, and 

particularly the soil. 
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Key among the regenerative agriculture techniques are no-tillage (NT), 

organic farming (OF) and agroforestry (AF) which are being promoted as 

sustainable farming practices. However, contrasting findings are reported 

across  studies that compare the productivity of regenerative and traditional 

farming techniques (Félix et al., 2018; Choden and Ghaley, 2021; 

Achankeng and Cornelis, 2023). 

 

The NT focuses on minimizing the soil disturbance; this management does 

not allow the drilling of the soil; therefore, the seeds are planted into an 

unprepared terrain. Usually, the land is covered at least for the 30% with 

mulch, a protective layer deposed on the topsoil (Triplett and Dick, 2008).  

Compared with the traditional tillage, NT was associated positive effect on  

soil conservation, water consumption, nutrient regulation, and crop diversity 

within Europe and North Africa (Choden and Ghaley, 2021). However, a 

global NT analysis showed no consistent variation in crop productivity with 

outcome mainly depending on management practices (Su, Gabrielle and 

Makowski, 2021a). A study considering the relation between crop relative 

productivity, soil texture, rotation, and climate in Europe found an average 

reduction of 8.5% in maize yield under NT while under particular conditions, 

crop yield increased also by 4% (Achankeng and Cornelis, 2023). 

Considering the situation in Asia, this management seems to do not have 

significant impact on crop productivity with studies reporting a general 

reduction around 2% in China while it leads to an increase in productivity 

varying from 0% to 10.2% in South Asia according to the crop class (Zhao et 

al., 2017; Anantha et al., 2021; Hashimi, Kaneko and Komatsuzaki, 2023).  

In America this practice is already implemented in many croplands with  a 

positive improvement for the environmental factors and the crop yield is 

related to the type of crop without any consistent changes in productivity 

(Nunes et al., 2018; Awe, Reichert and Fontanela, 2020; Jacobs et al., 

2022). 

 

The OF is a management which avoids the introduction in the land of 

synthetic fertilizers or pesticides. In the OF land cover material is composed 

by organic scraps (leaves, grass, crop residues …), but it can also be made by 

an inorganic material (stones, plastic …) (FAO, 2024). Compared to the 

conventional agriculture, it increases the carbon sequestration lowering the 

emission of greenhouses gas, increase the soil organic carbon (SOC) and the 

soil biodiversity, it also reduces the energy consumption and nutrient losses.  

A global meta-analysis showed that OF is generally 18.4% less productive 

than conventional farming (de la Cruz et al., 2023). However, the available 

data did not allow an accurate analysis because they did not have a good 
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distribution as about 86% of the observations came from studies conducted 

either in North America or Europe (de la Cruz et al., 2023). This study also 

considers just three environmental factors for the analysis (pH, soil texture 

and climate). Other studies have shown that the yield with the 

implementation of OF is typically 20-50% lower than the conventional 

farming system, but the results are closely related to site characteristics 

(Choden and Ghaley, 2021). However, OF seems to be more suitable for the 

arid zone because it has a strong resilience against the water stress with an 

increase of 16% in productivity especially for African countries (Hine and 

Pretty, 2006; Niggli, 2015). The main challenge of this technique which 

results in lower yield compared to conventional farming is the control of 

weeds and pets, and the nutrients availability as nitrogen and phosphorus 

(Hine and Pretty, 2006; Niggli, 2015; Choden and Ghaley, 2021). 

 

AF is a practice that include woody autochthonal species into the productive 

system of agricultural crops. Their introduction augments the biodiversity of 

the site, and it is also favourable to modify the microclimate regulating the 

temperature thanks to the presence of the tree shading. A global meta-

analysis shows that this management has an average increase of 7% in the 

maize yield, the best situation is recorded in subtropical and tropical zones, 

where the growth of productivity is equal to 16% (Baier et al., 2023). The 

result is affected by the species of woody plant implemented and the region 

of the study. It is important to underline that, even if it is a global analysis, 

most of the available observation are located in Africa. Indeed, 61% of the 

studies were carried out in Africa, while only 3% are in Europe and Middle 

East (Baier et al., 2023). An European study demonstrate that the crop 

productivity with the implementation of this management can have different 

results which vary according  to the density of the trees and their age (Ivezić, 

Yu and Werf, 2021). This study also reported a reduction around 2.6% every 

year due to the age of the plants. 

In summary, it is possible to say that previous studies have showed that the 

regenerative practices (RP) have led to either increase or decrease in 

productivity compared to conventional techniques. However, the results are 

still not globally clear, since most of the studies are site specific, and the 

global analyses do not consider many environmental factors together. The 

central point is that there is no universal rule regarding the outcome of the 

RP as many components must be considered, including for example climate, 

the type of crop used, soil properties, the terrain etc. In addition, though 

these studies have analysed the variation in productivity between 

regenerative and conventional farming techniques, they only focus on one 

type without investigating their comparative potential across various factors 
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and which management could be potentially more beneficial for a specific 

location. Consequently, the main goal of this analysis is to locate potential 

areas suitable for regenerative management practices while also assessing 

the underlying environmental factors. Defining the geographical position 

where the implementation of one or more RP would lead to an increase in 

productivity will help inform management and provide insight to decision 

making towards smart farming. 

 

Therefore, this study aims specifically at: (1) analysing major moderators 

explaining yield discrepancy among different RP (NT, OF, or AF) at a global 

scale, (2) mapping the spatial distribution of yield under different RP along 

with the main influencing factors, (3) and finally determining which RP could 

be the best option to adopt for specific locations, and where their 

implementation can be an advantage for the agricultural activity. The study 

is based on a predictive machine learning model which uses several 

biophysical factors and global experimental observations to quantify the 

relative productivity at unknown locations along with the related variable 

importance.  In that regards observation collected through different studies 

were used to achieve these objectives. 

1.2 Research questions 
 

The research questions that are addressed include the following:   

1. How does relative crop yield vary across several components of 

climatic and environmental factors under different RP? 

2. How does the spatial distribution in relative crop yield and related 

local factors vary across different RP at global scale? 

3. Which regenerative management technique (NT, OF, or AF) could be 

potentially more beneficial for specific location? 

1.3 Scope of the study 
 

Due to the limited time available, it was not possible to consider many crop 

types this study. Therefore, the study will focus only on maize productivity.  

 

Another limitation is due to the distribution of the observation points in the 

dataset. The Figure 1 shows their distribution according with the cropland 

density. Most of the observation points belong to areas where agricultural 

activity is heavily practised. However, not all the high-density croplands are 

considered. For instance, there are no observations belonging to the India 

region, as well as Russia. While most of the observations are in the United 

State. That could be a limitation for the study, because it will not consider 
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geographical areas that could play a key role in determining maize 

productivity trends. Moreover, the observations are not well divided into the 

three RPs, Figure 2 shows their distribution into the cropland.  

 

 
 

Figure 1, Observation points distribution across the cropland 2020 (International Food 
Policy Research Institute, 2020). 
 

 

Figure 2, Observation distribution of the dataset divided per RPs. 

1.4 Structure of the study  
 

The study is divided into two main parts. The first one is related to the 

inspection of the dataset. Its aim is to analyse the data and understand if 

there is a linear relationship between the productivity and some variables 

according to the management techniques. The second one involves the 

implementation of a machine learning model to predict the maize 

productivity all over the world based on the observation points in the dataset 

and a set of environmental factors. 
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2 Research material and methods  

2.1 Data source    
 
The dataset used for the analysis combined various data with observations 

coming from different studies (Pittelkow et al., 2015; Félix et al., 2018; Jian, 

Du and Stewart, 2020; Su, Gabrielle and Makowski, 2021b). For each point 

the coordinates and several environmental variables are available. Moreover, 

all the observations report the maize productivity of the land under 

traditional agricultural practice and under one of the three regenerative 

management that will be analysed. The sources used to create the dataset 

have been reported in the Appendix 1. The dataset contains 260 different 

coordinates unequally distributed across the globe. However, it contains 

more observations, this is due to the fact that, for some locations are available 

data from different years. The study considered all of them. Coordinates with 

a larger number of observations have greater reliability because the values of 

the variables do not represent an outlier caused by an extraordinary event 

that may have occurred during the sampling period, but a representative 

value for the analysed region. About 49% of the location has less than five 

observations and just 31 geographical positions have two observations 

(Figure 3). 

  

 
Figure 3, Number of observations per coordinates. The observation contains the 
productivity of the land (traditional and one RP), and the environmental variables. 

2.2 Effect Size 
 
The effect size (ES) is the main focus used in this study. It has been computed 

from the available data in the dataset (maize productivity under traditional 

techniques and under RP). It allows to quantify the changes of the subject 

comparing control and treatment groups (Xu et al., 2021). In this study, the 
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subject is the land productivity with crop yield considered as indicator, while 

the groups are plots submitted to different agricultural managements. 

Usually, management experiments are carried out with some plots with the 

traditional way of management (control) while other plots are submitted to 

a conservative management (the one whose effect is to be detected, the 

treatment plot). The ES can be expressed according to the following 

equation: 

 

𝐸𝑆 = 𝑙𝑛 ( 
𝑦𝑡

𝑦𝑐
).                                 1  

 

The variables are: 

- yt = treatment yield. It is the productivity recorded in the treatment 

plot. 

- yc = control yield. Productivity of the control plot. 

 

If the ES is negative, the productivity of the treatment is lower than the 

control, which means that the RP has a lower productivity compared with the 

traditional. On the other hands, if it is positive, the traditional technique has 

a lower productivity than the detected one. If it is equal to zero, there is no 

difference between the two yields. Therefore, the threshold between a 

positive result for the implementation of the RP and a negative output is ES 

equal to 0. 

2.3 Potential factors affecting crop productivity 
 
The potential factors affecting crop yield considered in this study (Tables 1) 

are mainly environmental especially its abiotic components including 

climate, soil properties and landform features (Liliane et al., 2020). 

Consequently, the biotic components such as pests, insects and diseases that 

also affect crop production are not considered. 

 

The process of defining Table 1 is described in Figure 4. First, the potential 

environmental factors which could influence maize productivity were 

selected based on literature. These factors were classified according to 

different category and sub-category. However, if the factor in Table 1 is 

accessible and the published data are reliable and of good quality, it is 

maintained otherwise it is not taken into consideration for the analysis. This 

step has been repeated for all the variables and the final factors that are 

retained are reported in bold. 
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Table 1: Factors affecting the crop productivity. 
 

  Sub-Category Parameter Factors 

S
o

il
 

Physical property 

Soil colour Minerals 

Soil structure 

BD 
Porosity 
Biological soil properties 
SOC 
Soil texture 

Soil water availability 

Water holding capacity  
Hydraulic conductivity  
Saga Wetness Index  
Water Table Depth  

Chemical property 

Soil salinity Electric conductivity 

Soil acidity pH 

Nutrients 
N, P, K, Mg, Ca, and S 

Fe, B, Cl, Zn, Cu, Mn, and Mo 

Biological property 

Flora Plants 

Fauna Animal species 

Micro-organisms 
Bacteria  
Protozoa  
Fungi 

C
li

m
a

te
 Climatic component 

Sun exposition 
Insolation (direct, diffuse) 
Light (quality, quantity, duration) 

Temperature 
Mean temperature  
GDD 
PE 

Rainfall Precipitation 

Humidity 
Relative humidity  
AI 

Wind Wind velocity 

Atmospheric gasses CO2 and O2 concentration 

Climatic stress 

Water 
Drought (SPEI)  
Flood 

Temperature 
Heat stress  
Cold stress 

L
a

n
d

fo
r

m
 

Terrain 

Topography 
Slope  
Elevation 
Physical form  

Erosion 
Distance to water  
Wind 
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Table 2: Zone ranges and studies. 
 

Category Zones Range Study 

Bulk Density 

Favourable BD BD < 1.2 kg/dm3 (Minnesota Pollution 
Control Agency, 2024) 

& 
(Chen and Weil, 2011) 

Transition BD 1.2 kg/dm3 < BD < 1.47 kg/dm3 

Restrictive BD BD > 1.47 kg/dm3 

Soil Texture 

Sandy From class 1 to 3 

(Allakonon et al., 2022)  Silty From class 4 to 10 

Clay From class 11 to 12 

SOC 

Low SOC SOC < 5 g/kg 
(Oldfield, Bradford and 

Wood, 2019)  
Moderate SOC 5 g/kg < SOC < 10 g/kg 

High SOC SOC > 10 g/kg 

pH 

Acidic pH < 6.3 
(Sirisuntornlak et al., 

2021)  
Neutral 6.3 < pH < 7.4 

Alkaline pH > 7.4 

Olsen-P 

Low P P < 10.9 mg/kg (Bai et al., 2013)  
& 

(Fulton, Advisor and 
Counties, 2010) 

Moderate P 10.9 mg/kg < P < 21.4 mg/kg 

High P P > 21.4 mg/kg 

GDD 

Unsuitable GDD < 800°C/y 

(Croitoru et al., 2020) 
& 

(Dong et al., 2021) 

Suitable 800°C/y < GDD < 2700°C/y 

Low Heat Stress 2700°C/y < GDD < 4000°C/y 

Moderate Heat Stress 4000°C/y < GDD < 6000°C/y 

High Heat Stress  GDD > 6000°C/y 

Climate  

Hyper-Arid AI < 0.05 

(Allakonon et al., 2022)  

Arid 0.05 < AI < 0.2 

Semiarid 0.2 < AI < 0.5 

Sub-Humid 0.5 < AI < 0.65 

Humid AI > 0.65 

Insolation 

 Low DfI  DfI < 0.45 kWh/m2 (Yang et al., 2019) 
& 

(Campillo, Fortes and 
Del Henar Prieto, 2012) 

Moderate DfI  0.45 kWh/m2 < DfI < 0.55 kWh/m2 

 High DfI  DfI > 0.55 kWh/m2 

Slope 

Flat Slope < 0.2% 

(FAO, 2006) 
& 

(Neumann et al., 2010) 

Level 0.2% < Slope < 1% 

Gently 1% < Slope < 5% 

Sloping 5% < Slope < 15% 

Steep Slope > 15% 

Elevation 

Low Elevation Elevation < 250 m 

(Arshad, 2021) Moderate Elevation 250 m < Elevation < 1000 m  

High Elevation  Elevation > 1000 m  
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The variables retained were further described based on specific ranges of 

their values which in turn were labelled as zones (Table 2). Primarily, range 

definition was based on literature. However, when it was not possible to find 

any literature-based ranges, the zones were individuated through its 

distribution into the dataset. For that purpose, the distribution of the factor 

based on histograms helped define the zones as well as the spatial extension 

of each class. A distribution is accepted if the data is divided into the ranges 

equally as far as possible, but at the same time the geographical location and 

class size on the globe must be taken into account. Based on these two 

aspects, it was possible to determine whether the division could be 

appropriate or not.   For cases where the distribution was not consistent, the 

ranges were defined again until the class extent and related observations 

were satisfactory. 

 

Although many potential factors are presented in Table 1, only the selected 

(in bold) ones are further considered in the next sections. 

 

 
Figure 4, Diagram for the decision of the variables involved in the study and the division 
into zones. 
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2.3.1 Soil physical and chemical properties 
  
The soil properties (bulk density, SOC, sand, silt, clay, pH) considered (Table 

1) in this study were downloaded from SoilGrids at 250 m resolution (Poggio 

et al., 2021). SoilGrids represents a global soil information platform which 

was generated using about 110,000 world soil profiles from all over the world 

with data available at different soil depths. Data were first downloaded for 

the following depths 0 - 5 cm, 5 - 15 cm, 15 - 30 cm and a depth averaging was 

carried out to get the soil properties for the 0 – 30 cm depth.  

 

The bulk density (BD), texture (sand, silt, clay) and SOC define the soil 

structure which affects the fluid movement in the ground, the stability 

against erosion, the extent of carbon sequestration as well as soil fertility 

(MSU Extension Service, 2005).  

 
✓ Bulk Density (BD):  
 
The BD is the ratio between the mass of the soil dry fraction and its volume 

(kg/dm3). It is an important indicator of the level of soil porosity and 

compaction. The soil compaction influences the root growth and therefore, 

the productivity of the crop (Almendro-Candel et al., 2018). 

 

The zone ranges were defined for the BD (Table 2) based on the average of 

the threshold of each soil types (Minnesota Pollution Control Agency, 2023) 

and on the ranges used in a previous study (Chen and Weil, 2011). When the 

BD has low values, for the plant is easier to reach the nutrient and the water, 

while with high values the terrain is compact and the roots growth is limited 

by the high mechanical impedance (Vepraskas, 1988). 

 
✓ Soil Texture: 
 
The soil texture represents the percentage of clay, silt and sand contained 

in a unit soil sample. It affects the physical properties of the soil, particularly 

the available water capacity (Amsili, van Es and Schindelbeck, 2021). 

 

The USDA soil texture classification (Figure 5) was used to define three zones 

(Table 2). The clay represents the soil with a prevalence of fine particles 

(texture class 1,2 and 3 class). The silty, is the class which collects the soil 

with a medium size, and which has almost an equal division between the fine 

frictions of the hearth; therefore, there is not a particles size which strongly 

prevail on the others (from texture class 4 to 10). And finally, the sandy zone 



23 
 

is the one which collect the soil with big particles size (texture class 11, and 

12). 

 
Figure 5, Soil texture triangle (Moeys, 2018). USDA classification of the soil texture. 

 
✓ Soil Organic Carbon (SOC) 
 
The SOC is the carbon component of the soil organic matter (SOM) which 

allows the storage of the nutrients, the water retention and gives habitat and 

energy to microorganisms. It is also the result of the biological activity in the 

soil and can indirectly describe the biological properties of soil (FAO, 2017). 

The division of the zones (Table 2) was based on a global meta-analysis which 

demonstrated that, the highest productivity was recorded in a range of SOC 

between 5 g/kg and 20 g/kg with the yield being 1.2 times higher at 10 g/kg 

compared to 5 g/kg SOC (Oldfield, Bradford and Wood, 2019). 

 

✓ pH 
 
pH is the measure of the hydrogen ions in the soil and defines the acidity and 

the alkalinity of soil water. It affects soil biochemical processes, and nutrient 

availability depending on the acidity level. For instance, when the pH has low 

values (acidic soil) the growth of the plant is limited to the presence of some 

toxic substances in the soil (aluminium and manganese) and to the absence 

of others (calcium, magnesium and phosphorous). High level of pH 

corresponds to deficiencies of zinc, copper, manganese, and boron and to 

high level of sodium. Usually a neutral pH is the optimal condition for the 

growth of the crops (The State of Queesland, 2024). 
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✓ Olsen-Phosphorus 
 

The phosphorus (P) is a fundamental macronutrient, it regulates cellular 

processes of the plants, their water content, and reduces the adverse effects 

of salts; therefore, it directly affects the productivity of the plants (Kumar, 

Kumar and Mohapatra, 2021). The P data (1 km resolution) was acquired 

from the platform provided by the global study of McDowell et al. (2023). 

This study used the bicarbonate-extractable Olsen P as the measure of plant 

available soil P with data (n = 574,375) from regional or global databases and 

published studies. 

 

2.3.2 Climatic components 
 
The Growing Degree Days (GDD), aridity and insolation were used as the 

climate variables considered in this study. 

 
✓ Growing Degree Days (GDD) 
 
GDD describes the amount of heat a crop needs to develop from one life-

cycle phase to another (Ahmad et al., 2017). It required daily maximum 

temperature, daily minimum temperature, and base temperature (Tb) for its 

computation. Considering maize, the Tb is around 5-10°C (Fatima et al., 

2020). The GDD data (1 km) was obtained from Ahvo et al. (2023) analysis. 

 

Typically, the maize reaches its complete maturity when the GDD is in a 

range between 2000 and 3000 according with the Tb used and the maize 

species (Emmalea, 2020; Vâtcă et al., 2021). Maize also needs a minimum 

GDD to reach its maturity according with the FAO classification it must be 

higher than 800°C/y; as well as a maximum value after which it is no more 

suitable resulting in heat stress. When the GDD exceeds this threshold, it 

changed its name into Killing Degree Days (KDD) (Croitoru et al., 2020; 

Dong et al., 2021). On the base of these considerations, and on the data 

distribution, the zones have been defined. 

 
✓ Aridity Index (AI) 
 
AI is the ratio between the precipitation and the potential evapotranspiration 

(PE) based on study by Zomer et al. (2022). The same study provided the AI 

map (1 km resolution) which was used in this study.  

 

Based on it, five different climate zones were defined following the European 

classification (European Union, 2019). The first three zones (Hyper-Arid, 

Arid, and Semiarid) have similar characteristics, they are region where water 
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scarcity and high climate variability occur, they are also characterized by 

degradation phenomena. On the opposite, when the AI has higher value, the 

region belongs to the Humid zone, which are places where the precipitation 

are well distributed over the year and are higher than the evapotranspiration 

(Henry, 2005). In this study, the ‘Cold Zone’ (European Union, 2019) 

considered by the European climate classification was left out because there 

are no observations belonging to this climate zone. 

 

✓ Insolation 
 
Solar light intercepted by crops affects their photosynthetic activities 

resulting in growth and productivity. This study considered the diffuse 

insolation (DfI) which was derived from a 1 km digital elevation model 

(Amatulli et al., 2018) using the Saga software (Conrad et al., 2015). The DfI 

represents the part of total solar radiation which is scattered by the 

atmosphere, and which reaches the ground (Szatten and Więcław, 2021). 

The division of this variable into zone was based on the dataset distribution. 

 

2.3.3 Terrain 
 
The terrain features in this study include the elevation and the slope. 

Elevation generally affects the climatic condition of the site (Baker and 

Capel, 2011) along with the slope which controls erosion processes (Ma et al., 

2019). They were freely accessible (1 km resolution) on the platform provided 

by the global study of Amatulli (Amatulli et al., 2018). 

The zone division for the elevation was based on the data distribution while 

the FAO analysis (FAO, 2006) was used for the slope. 

2.4 Modelling with Random Forest  
 
This study used the Random Forest (RF) algorithm to build a quantitative 

relationship between the factors used as predictors and the ES which 

represents the target variable. It has already been implemented in many 

studies related to the ecological problem (Marques Ramos et al., 2020; 

Burdett and Wellen, 2022; Ahvo et al., 2023) and it has been demonstrated 

that, considering the regression problem, the RF is one of the most reliable 

and accurate method that can be used (Su et al., 2022). Basically, (1) it creates 

randomly a bootstrap sample from the training data, (2) randomly select a 

subset of predictors (mtry), (3) train a tree based on the bootstrap sample 

and the subset of predictor, (4) repeat the same activities (random 

bootstrapping and selection of subset of predictor variables) several times, 
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and finally (5) compute the average of all the predictions from all trees 

involved in the regression. 

 

The NT data was split into training and testing set. For the OF and AF, the 

whole dataset was used for training the model because the number of 

observations was too small to further divide into two sets. A feature selection 

was carried out based firstly on a correlation threshold of 0.70 and secondly 

on the forward feature selection (ffs) procedure during model training as 

carried out by Meyer et al. (2019). For the first approach, some predictors 

with correlation higher 0.70 were removed. The ffs removes iteratively the 

variables that reduce the accuracy of the model and finally retains those that 

contribute most accuracy (Meyer et al., 2019). 

 

Using the RF, it is possible that overfitting will occur. It is a negative aspect 

because it reduces the ability of the model in the prediction of the unknown 

values (Meyer et al., 2019) , this is the reason why the spatial cross-validation 

as internal validation of the model has been used to increase the accuracy of 

the predictive model. 

 

A tuning of the hyperparameters was carried out for the number of predictors 

to use at each split (mtry) and the minimum number of observations in a leaf 

(n). The number of trees was set at 500 for all the models. 

 
Figure 6 allows to visualize the steps followed to get the final results of the 

analysis. The first phase is the preparation of the data and the computation 

of the correlation between every predictor. The model requires the choice of 

a spatial variable to be used for cross-validation. Different spatial variable 

can produce models with different accuracy. Therefore, the coordinates, the 

geographical regions (Africa, America etc…), climate class were tested as 

spatial variables. For that purpose, the model is trained and the statistical 

values of the training dataset are computed. These steps are repeated for all 

the spatial variable in order to obtain the most accurate prediction. The 

model with the lowest root mean square error (RMSE) and the highest R2 

were chosen. If both previous conditions are fulfilled the highest relevance 

has been given to R2. The last two steps require the computation of the 

Shapley values (SVs, see section below) which state which factors are the 

most important in the prediction. Finally, the models were used to produce 

the maps (5 km resolution) of the predicted ES, of the prediction uncertainty 

(see section below) as well as that of the predictors with the highest SV for 

each location at a global scale. 
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Figure 6, Machine learning diagram. 
 
The assessment of the model accuracy was based on R2 and RMSE. The R2 

and the RMSE are defined for both the training and the test data. The R 

statistical software language was used for all analysis in this study.  For the 

different predictions, the ranger based RF was implemented using the R 

‘caret’ package (Kuhn, Kuhn and Max, 2015) using tenfold cross-validation 

with three repetitions. 
 
2.4.1 Variable importance based on Shapley values (SVs) 
 
The analysis of the variable importance was based on the SVs (i.e. Shapley 

values). It gives an average rank of the most relevant variables (Corley, 2017). 

They were first computed for the training set of each model to get the partial 

dependency plots which shows the trend in the relationship between 

predictor and ES. At a second stage, the SV was computed at grid level for 

every raster cell in order to obtain a map which shows the most important 

predictor contributing to the spatial variability of the ES at a specific location. 

 

2.4.2 Uncertainty map 
 
To have a better idea of the accuracy of the model, uncertainty analysis was 

carried out that resulted an uncertainty map for each of the predictions. It 
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allows to visualize in which area there is an accurate prediction and the area 

where the result does not have a good reliability. For that purpose, the 

Quantile Regression Forest method (QRF) was used (Vaysse and 

Lagacherie, 2017) with the hyperparameters obtained from the tuning of the 

model. It carries out the accuracy assessment by computing the upper and 

lower limit of the confidence interval (CI). It defines the interval within which 

90% of the predicted values fall. The upper limit is defined by the 95th 

quantile, while the lower one by the 5th quantile (Dharumarajan et al., 

2024). The lower the length of the CI, the lower the uncertainty of the model. 
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3 Results 

3.1 Descriptive analysis  
 
The objective in this section is to define whether there is a relationship 
between ES and the factors analysed in the section 3.2. It is divided into three 
parts. In the first, the distribution of observations in the different zones for 
each category is shown. In the second, the boxplots show the statistical values 
for each zone and RP. Finally, the graphical representation of the factors and 
the ES for each management makes it possible to detect whether there is a 
linear trend between the relative productivity and the variables. 
 

3.1.1 Data distribution into the zones 
 
Each variable in the dataset has been divided into ranges in order to 
understand if would have been possible to define some environmental 
boundaries in which the RP has a similar ES average value. The spatial extent 
of the defined zones for the different variables used in this study are specific 
for each factor with some zones having larger or lower extent (Figure 7, 
Figure 8, Figure 9). This is understandable since factors with more classes 
(> 3, e.g. climate zones, GDD, slopes) will present more spatial variability 
with lower extent with some classes compared to those with only three classes 
(e.g. BD, SOC etc.). 
 

The distribution of the observations into each zone is presented in Table 3. 
The observations are 2956 in total with 82% of them belonging to the NT 
management, 17% to the AF, and 1% to the OF. Therefore, it is more probable 
to have observations for every class in the NT management compared to AF 
and OF. Indeed, looking at Table 3 it is visible that only the Hyper-Arid 
aridity index zone does not have any data for the NT, while the number of 
zones without observations increase for the AF and even more for the OF. 
 

For the NT, most of the variables tend to have two classes that have roughly 
the same number of points and then a third to which belongs less than 15% 
of the data (Table 3). It is the only management which has some observations 
for the Alkaline pH, the Arid climate, the Unsuitable and Low Heat Stress 
GDD, and Steep slope zones. For NT and AF, the factor with the worst 
distribution is the pH, where more than 90% of the data belonging to Acidic 
pH class. For these two groups, factors with less skewed distribution are DfI, 
AI, Olsen-P and elevation. Specifically, AF usually has one zone in which 
most of the observations belongs. The OF is the management where typically 
the less homogeneous division occurs, except for pH and SOC. The worst 
situation is recorded in the DfI where all the observation points belong to one 
class. 
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Figure 7, Global extension of the zones of the different factors belonging to the soil 
category. 
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Figure 8, Global extension of the zones of the different factors belonging to the climatic 
category. 
 

 

Figure 9, Global extension of the zones of the different factors belonging to the landform 
category. 
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Table 3: Observation distribution into the different zones.  
The red colour represents the classes which have an overall number of observation lower 
than 50, while the blue are the classes with an overall number of observation higher than 
1000.  
 

  Zone NT AF OF All managements 
    Obs. % Obs. % Obs. % Obs. % 

All  2431 82 492 17 33 1 2956 100 

B
D

 

Favourable BD 94 3.87 13 2.64 - 0.00 107 3.62 

Transition BD 1129 46.44 399 81.10 27 81.82 1555 52.60 

Restrictive BD 1208 49.69 80 16.26 6 18.18 1294 43.78 

T
ex

tu
re

 Clay 902 37.10 81 16.46 2 6.06 985 33.32 

Silty 1298 53.39 86 17.48 27 81.82 1411 47.73 

Sandy 231 9.50 325 66.06 4 12.12 560 18.94 

S
O

C
 Low SOC 989 40.68 457 92.89 4 12.12 1450 49.05 

Moderate SOC 1169 48.09 33 6.71 24 72.73 1226 41.47 

High SOC 273 11.23 2 0.41 5 15.15 280 9.47 

p
H

 

Acidic 2242 92.23 482 97.97 23 69.70 2747 92.93 

Neutral 180 7.40 10 2.03 10 30.30 200 6.77 

Alkaline 9 0.37 - 0.00 - 0.00 9 0.30 

O
ls

en
-P

 Low P 928 38.17 183 37.20 6 18.18 1117 37.79 

Moderate P 603 24.80 147 29.88 15 45.45 765 25.88 

High P 900 37.02 162 32.93 12 36.36 1074 36.33 

A
I 

Hyper-Arid - 0.00 - 0.00 - 0.00 0 0.00 

Arid 50 2.06 - 0.00 - 0.00 50 1.69 

Semiarid 573 23.57 176 35.77 - 0.00 749 25.34 

Sub-Humid 355 14.60 110 22.36 2 6.06 467 15.80 

Humid 1453 59.77 206 41.87 31 93.94 1690 57.17 

D
fI

 

Low DfI 326 13.41 67 13.62 - 0.00 393 13.29 

Moderate DfI 310 12.75 291 59.15 - 0.00 601 20.33 

High DfI 1795 73.84 134 27.24 33 100.00 1962 66.37 

G
D

D
 

Unsuitable 18 0.74 - 0.00 - 0.00 18 0.61 

Suitable 1715 70.55 - 0.00 31 93.94 1746 59.07 

Low Heat Stress 276 11.35 - 0.00 - 0.00 276 9.34 

Moderate Heat Stress 249 10.24 360 73.17 - 0.00 609 20.60 

High Heat Stress 173 7.12 132 26.83 2 6.06 307 10.39 

S
lo

p
e 

Flat 463 19.05 - 0.00 - 0.00 463 15.66 

Level 1174 48.29 218 44.31 6 18.18 1398 47.29 

Gently 638 26.24 272 55.28 27 81.82 937 31.70 

Sloping 155 6.38 2 0.41 - 0.00 157 5.31 

Steep 1 0.04 - 0.00 - 0.00 1 0.03 

E
le

v
a

ti
o

n
 

Low Elevation 1046 43.03 130 26.42 21 63.64 1197 40.49 

Moderate Elevation 1009 41.51 124 25.20 12 36.36 1145 38.73 

High Elevation 376 15.47 238 48.37 - 0.00 614 20.77 
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For having more information about the cropland division into the different 

environmental variables and the observation distribution into the classes, it 

is possible to look at the Appendix 3A. 

 

3.1.2 Effect Size (ES) variation for management with different variables 
 
The distribution of the ES (i.e. effect size) of the different management within 

the defined zones of the variables belonging to the soil, climate, and landform 

category, is shown in Figure 10. 

 

Looking at the different boxplots (Figure 10), it is evident that AF tends to 

have the highest positive impact on maize yield compared to NT and OF with 

an increase of about 30% in average (Appendix 2). Under AF, all the zones of 

the variables have a positive ES value except for Favourable BD, the only 

class in which about 8% reduction in productivity occurs (Figure 10, 

Appendix 2). The highest increase on maize yield under AF was observed 

under higher P (50%, Appendix 2), in Sandy soil (42.1%, Appendix 2) and in 

Semiarid areas (40.4%, Appendix 2) while no significant change can be 

recorded for Low P (8.6%, Appendix 2), High Heat Stress GDD (8.3%, 

Appendix 2), and Low Elevation (9.4%, Appendix 2). 

Under NT, about 6% reduction in productivity occurred in average (Appendix 

2) when considering all the factor zones. However, some increase in maize 

yield occurred in Sandy soil (almost 1%, Appendix 2), Unsuitable GDD 

(2.8%, Appendix 2) High Heat Stress (0.5%, Appendix 2) and Arid climate 

areas (6.8%, Appendix 2) where this management was the most impactful. 

The lowest ES was recorded for neutral pH class with a reduction of about 

18% (Figure 9, Appendix 2). The average value suggests however that the 

implementation of this RP (i.e. regenerative practice) does not lead to 

excessive changes in productivity.  In fact, about 88% of the identified zones 

show an ES mean value between -10% and +10% (Appendix 2). 

OF appears to be the RP that presents the least benefit on maize yield in its 

implementation with no positive average ES values (Appendix 2). The only 

cases in which it presents a relative productivity greater than NT are: Neutral 

pH, Low P, Clay texture, and Sub-humid climate (Figure 10). Its best 

performance occurred with High Heat Stress GDD (> 6000°C/y, Table 2) 

with only 3% reduction while the Acidic soils recorded the highest reduction 

with 25% decrease in productivity (Appendix 2).  

 
In order to have more information about the mean value and the standard 

deviation for each zone, it is possible to have a look at Appendix 2. While into 

the Appendix 3B, there are more information about the boxplot and the 

outliers. 
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Figure 10, Boxplot of the effect size for the regenerative managements within the zones 
of soil, environmental and landform factors. The ends of the box represent the 25th and 75th 
quantiles and the median value is reported in the middle of the box. The horizontal black 
lines report the highest and the lowest values of the class excluding the outliers. They are 
also called whiskers, and their length is equal to 1.5 times the interquartile (75th quartile 
minus 25th quartile). The values which are not included in this range are called outliers.   
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It is important to emphasise that outliers were not reported in the boxplots. 

These are observations that have a value greater than the upper whisker (75th 

quantile plus 1.5 times the interquartile), and lower than the lower whisker 

(25th quartile minus 1.5 times the interquartile). Table 4 shows both the 

number of outliers per management and the total number of observations 

 

NT recorded the lowest percentages of outliers, while the highest were found 

with AF followed by OF (Tabel 4). The zones which do not have outliers are 

the ones with the lowest amount of observation.  For the NT, the highest 

percentage of outliers (24.18%) occurred with High SOC (> 10 g/kg, Table 2), 

while under OF highest number of outliers (23.81%) were found in the Low 

Elevation zone.  This allows us to understand that for these two farming 

techniques, the boxplots consider almost all the observations (around 95% 

for NT, and 90% for OF) while for AF about 30% of the data were considered 

as outliers.  The minimum percentage values of outliers for NT, OF and AF 

are 2.13% (Favourable BD), 15.15% (High diffuse insolation) and 18.46% 

(Low elevation) respectively. The worst situation occurs in the Semiarid 

climatic zone for the AF, where outliers account for 62.5% (Table 4). This 

means that more than half of the observed values belonging to this zone are 

not represented by the boxplots. 

 

From the description of the boxplots and the analysis of the outliers, it is 

interesting to note that the zoning of the different factors seems to have more 

homogeneous values for NT and OF, while the range of ES covered by AF 

seems to be wider in each zone. This may be due to three reasons. The first 

concerns the number of observations for classes. In fact, it is possible that by 

increasing their number, the value of the ES for each zone stabilises (e.g. 

Moderate elevation zone for the NT). On the other hand, having a small 

number of observations may mean that there is a low dispersion, but that the 

value obtained from the statistical analysis is not representative of the class, 

this occurs in several classes: Unsuitable GDD, Steep slope, and Alkaline pH 

for NT; Sloping slope for AF; and Clay texture, Sub-humid climate, and High 

Heat Stress GDD for OF (Figure 10,11 and 12; Tabel 3). 

The second could be that the zone division is optimal for some RP and not 

for others. In fact, the NT management seems to fit better to the class division 

compared with the AF, particularly for the BD, SOC where NT presents its 

lower deviation standard for every zone, while it is the wider for AF 

(Appendix 2). The last possibility is that the ES does not strictly depend on 

that factor and therefore either the average values are the same for each zone 

(e.g. elevation for the NT, Figure 12), or there is high dispersion (P or SOC 

for AF, Figure 11).   
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Table 4: Outliers table. 
 

  Zone NT AF OF 

    Outliers Obs % Outliers Obs % Outliers Obs % 

B
D

 Favourable BD 2 94 2.13 3 13 23.08 - - - 

Transition BD 108 1129 9.57 193 399 48.37 5 27 18.52 

Restrictive BD 69 1208 5.71 23 80 28.75 0 6 0.00 

T
ex

tu
re

 

Clay 64 902 7.10 23 81 28.40 0 2 0.00 

Silty 85 1298 6.55 28 86 32.56 5 27 18.52 

Sandy 30 231 12.99 168 325 51.69 0 4 0.00 

S
O

C
 Low SOC 84 989 8.49 203 457 44.42 0 4 0.00 

Moderate SOC 29 1169 2.48 15 33 45.45 4 24 16.67 

High SOC 66 273 24.18 1 2 50.00 1 5 20.00 

p
H

 Acidic 163 2242 7.27 215 482 44.61 5 23 21.74 

Neutral 16 180 8.89 4 10 40.00 0 10 0.00 

Alkaline 0 9 0.00 - - - - - - 

O
ls

en
-P

 

Low P 84 928 9.05 58 183 31.69 0 6 0.00 

Moderate P 29 603 4.81 69 147 46.94 3 15 20.00 

High P 66 900 7.33 92 162 56.79 2 12 16.67 

A
I 

Arid 2 50 4.00 - - - - - - 

Semiarid 44 573 7.68 110 176 62.50 - - - 

Sub-Humid 47 355 13.24 40 110 36.36 0 2 0.00 

Humid 86 1453 5.92 69 206 33.50 5 31 16.13 

D
fI

 Low DfI 28 326 8.59 38 67 56.72 - - - 

Moderate DfI 46 310 14.84 156 291 53.61 - - - 

High DfI 105 1795 5.85 25 134 18.66 5 33 15.15 

G
D

D
 

Unsuitable 0 18 0.00 - - - - - - 

Suitable 97 1715 5.66 - - - 5 31 16.13 

Low Heat Stress 21 276 7.61 - - - - - - 

Moderate Heat Stress 46 249 18.47 194 360 53.89 - - - 

High Heat Stress 15 173 8.67 25 132 18.94 0 2 0.00 

S
lo

p
e 

Flat 40 463 8.64 - - - - - - 

Level 55 1174 4.68 106 218 48.62 0 6 0.00 

Gently 83 638 13.01 112 272 41.18 5 27 18.52 

Sloping 1 155 0.65 1 2 50.00 - - - 

Steep 0 1 0.00 - - - - - - 

E
le

v
a

ti
o

n
 

Low Elevation 71 1046 6.79 24 130 18.46 5 21 23.81 

Moderate Elevation 70 1009 6.94 75 124 60.48 0 12 0.00 

High Elevation 38 376 10.11 120 238 50.42 - - - 
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3.1.3 Relationships between regenerative practice (RP), effect size  
         (ES), and environmental factors 
 
It is interesting to notice that in many cases the observation points are 

distributed into vertical columns suggesting that many points with same 

variable value have different ES (Figure 10, Figure 11, Figure 12). The 

relationships between the ES and different factors are presented in Figure 

10, Figure 11, and Figure 12. The R2 values appeared to be very low no matter 

the management and variables (< 10%) except for pH under OF which 

recorded R2 = 0.3. While no clear trend could be recorded under NT and OF, 

climatic factors and the SOC generally decreased with increasing ES with the 

opposite for pH and phosphorus under AF.  

 

 

 
 

Figure 11, Relationship between the effect size and the soil factors. Black line: trend line, 
red dotted line: effect size equal 0, red rectangle:  linear model with worst estimation between 
all the soil variables, green rectangle best estimation between all the soil variables. 
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Figure 12, Relationship between the effect size and the climatic factors. Black line: trend 
line, red dotted line: effect size equal 0, red rectangle:  linear model with worst estimation 
between all the soil variables, green rectangle best estimation between all the soil variables 
 

 

 
 

Figure 13, Relationship between the effect size and the landform factors. Black line: trend 
line, red dotted line: effect size equal 0, red rectangle:  linear model with worst estimation 
between all the soil variables, green rectangle best estimation between all the soil variables. 
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3.2 Effect size (ES) prediction using Random Forest (RF)  
      model 
 
The following section will describe the result got from the RF (i.e. random 

forest) prediction model. The first part will present the model performance 

followed by the variable importance based on the SV. 

 

The second part is related to the predictive maps including those displaying 

where the RP have a higher productivity than the conventional.  

It will present the predictive maps, a statistical table which would quantify 

the average reliability of the model and the map of uncertainties that will 

describe the accuracy of the predicted value for each cell. 

 

Finally, the last maps intend to show in which cropland the RP have a positive 

effect on the maize yield and which prediction has the highest ES. 

 

3.2.1 Model performance 
 
The performance of the RF model in predicting the ES is summarized in 

Table 5 for both the training and the test set data. The average values of 

accuracy of the model are not optimal. The R2 is always lower than 0.5 for 

both the training and the test data. The highest performance for testing the 

model occurred with modelling with all the dataset (R2 = 0.25) and under NT 

(R2 = 0.23). Performance after cross-validation resulted in low R2 values for 

OF (R2 = 0.12) and even lower for the AF (R2 = 0.07).  

 
Table 5: Performance statistical values of the random forest for predicting 
the effect size and spatial variable used for the spatial cross-validation.  
 

    R2 RMSE Spatial variable 

A
ll

 Train data 0.317 0.244 
Coordinates 

Test data 0.258 0.353 

N
T

 Train data 0.359 0.214 
Coordinates 

Test data 0.237 0.252 

A
F

 

Train data 0.072 0.536 Climatic class 

O
F

 

Train data 0.126 0.208 Region 
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3.2.2 Variable importance based on Shapley value (SV) 
 
Figure 13 reports the partial dependency plots which show the influence of 

the predictors on the prediction of the ES. The graphs are divided into the 

four different predictions and report the main three variables used from the 

machine learning model. While Figure 15 exhibits the spatial distribution of 

the variables with the highest SV according with the prediction.  

 

The first graphs in Figure 14 are related to the All managements prediction. 

In this case, the main variable is GDD. The ES tents to be positively 

influenced when it belongs to the Moderate Heat Stress class (4000-

6000°C/y, Table 2) and when the elevation has values between 500 and 1000 

m (Moderate Elevation, Table 2). Indeed, there is a negative covariate 

contribution for higher clay content (>40 %). The GDD covers almost all the 

cropland (88.74%) followed by the clay (6.01%), and the elevation has the 

lowest percentage (Figure 15a). 

 

For NT, the most important average contributor to the ES turns out to be AI 

(Figure 14b). It contributed best for values < 0.4 (Arid areas, Table 2) and a 

small range of humid area (0.8-1.0) compared to very humid areas when 

index values are beyond 1. Considering the DfI, it has a positive influence on 

the productivity in the second half of the Moderate DfI class (0.50-0.55, 

Table 2) while increasing values of BD seemed to be associated with either 

decreasing (up to 1.2) or neutral ES (> 1.2). Spatial coverage of these factors 

shows that Dfl ranked first covering about 83.26% of the cropland followed 

by AI (13.14%) and BD (< 4%) (Figure 15b).  

 

For AF (Figure 14c) the most significant variable is the pH and it covers about 

72.92% of the cropland in Figure 15c. When its value is between 1 and 2 there 

would seem to have the greatest negative impact on the value of productivity. 

In contrast, the range in which the covariate contribution seems to be 

positive is between 2.5 and 4. On the other hand, BD appeared to have 

positive effects when the observation belonged to the Transition BD zone (1.2 

- 1.47 kg/dm3, Tabel 2) while a negative influence is recorded when the 

observation belongs to the Restrictive BD class (> 1.47 kg/dm3, Table 2). 

With regard to SOC, the SV trend is variable in the Low SOC class (< 5 g/kg, 

Table 2), while it appears to have a positive influence when the observations 

belong to Moderate SOC zones (5-10 g/kg, Table 2). However, only the pH 

associated the BD have the highest spatial influence in ES prediction for most 

cells in the AF grid prediction (Figure 15c). 
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Figure 14, Partial dependency plot for the three more relevant variables for each 
prediction. The red line underlines the division between a positive implementation (below 
the red line) of the regenerative management for a negative result (under the red line). The 
green dots represent the known point from the dataset and the SV computed from the model. 
These graphs help to understand the relationship between the predicted variable (ES) and 
the predictor used in the model; therefore, the black line can be seen as the trend that 
describe the relationship between the two variables according with the RF model.  
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Figure 15, Shapley value maps. It shows the spatial distribution of the predictors with the 
highest SV. It allows to understand the variable with the highest relevance used form the 
predictive model. On the left side of the images are reported all the main predictors that have 
been used to obtain the maps.  
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The pH turned out to be also the key variable affecting the ES under OF 

(Figure 14d). In this case, it appeared to reduce the maize yield when values 

are below 4 (Hyper-Acidic pH) but a higher positive contribution when 

beyond (Acidic pH). It is the most relevant predictor for almost all the OF 

map (99.4%) (Figure 15d). For P, there seems to be a positive contribution 

when the Low P class occurs (< 10.9 mg/kg, Table 2), while high values lead 

to the decrease of the productivity (> 40 mg/kg).  The GDD is the one with 

the lower SV range covered, but it is interesting to notice that it leads to a 

decrease in productivity for the Low Heat Stress and Moderate Heat Stress 

GDD (2700 - 6000°C/y, Table 2), while it has a positive influence within the 

Suitable GDD class (800 - 2700°C/y, Table 2) and High Heat Stress GDD (> 

6000°C/y). 

 

Considering all the predictions, it seems that the key variables across 

managements are the pH and BD, since they were involved in most of the 

models even if with different percentage of influence. Though P, elevation, 

GDD, and SOC were involved only in one predicted model, they still had main 

role in the predictions but just in the single management.  

 

3.2.3 Spatial distribution of the Effect Size (ES) and uncertainty maps 
 
Figure 16 shows the predictive and the uncertainty maps for all the dataset 

and for each management. They allow to understand how the maize yield 

varies across the globe and in which geographical regions the model is more 

accurate. While Table 6 allows to understand the average ES values for every 

continent.  

 

The implementation of NT (Figure 16b), seems to provoke a general decrease 

in the productivity of around -7.38% (Table 6). The area with a positive ES 

covered 26.35% of the cultivated land and are mostly located in India, South 

of Europe, North Africa, and in the eastern United States. The most frequent 

values are between -15% and -10% (Figure 16b). Compared with the Figure 

16a, it usually has lower predicted values. Considering the uncertainty map 

(Figure 15b’), the CI is between 0.14 and 3.37. Most of the cropland has an 

uncertainty around 0.8 and 1 and that it has higher accuracy compared with 

the ‘All management’ map (Figure 16a’). The areas with the highest 

uncertainty seem to be the United States and Central India. 

 

All the cropland has a positive value of ES if the AF prediction is considered 

(Figure 16c, Tabel 6). The lowest relative productivity value is 3%, and the 

highest is 66%. The area which reaches an increase of yield higher than 20% 

covers 82.20% of the land, and the most frequent values in the map are 
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around 40% and 45% (Figure 16c). The regions with the best result seem to 

be Central Africa and China. It is the management which has the most similar 

ES distribution compared with the ‘All managements’ prediction. The 

uncertainty map (Figure 16c’) shows that the CI values are around 0.9 and 

2.0. The places with the lowest accuracy are the North India and the United 

States. The most frequent interval is between 1.2 and 1.4. Therefore, it is the 

prediction with the highest uncertainty compared with the other three RP. 

 
The OF prediction seems to have the highest reduction of productivity in 

Europe, while the best result is in Southern part of the world with an increase 

equal to 1.32% in South America (Figure 16d, Table 6). The values are 

between -27% and +12%. ES mostly is around -8% and -6%. The uncertainty 

map (Figure 16d’), in this case, seems to have more homogeneous CI values 

compared with the others as they are between 0.22 and 1.31. The highest 

accuracy seems to be the North America and the most frequent range for CI 

is around 0.8 and 0.9. 

 

It is interesting to notice that the dataset prediction (Figure 16a) seems to 

not be related with the other managements. Since NT is considered, they 

have a different ES distribution in the space, while AF has a similar spatial 

trend but the variable range do not match with the one of the first prediction. 

OF seems to be the most similar (same ES value for Europe, and Africa), 

however the CI between the two estimations do not coincide. This means that 

the regenerative techniques have different effect on the land productivity and 

that it cannot be describe properly by the “All management” prediction. 

 
Table 6: The table shows the average ES predicted value according with the 
world regions divided for each management.  
 

Region NT AF OF 

North America -5.37 % 31.19 % -3.59 % 

South America -13.89 % 55.57 % 1.32 % 

Europe -8.36 % 36.45 % -9.51 % 

Africa -6.08 % 35.20 % -2.00 % 

Asia -6.57 % 29.98 % -3.25 %  

Australia -1.73 %  29.78 % -5.15 % 

World -7.38 %  32.76 % -3.11 % 

 
For more information about the correlation of the predictors for the different 
predictive models have a look at Appendix 4A. While, to have a better 
visualization of the predictive maps, more images are available in the 
Appendix 4B. 
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Figure 16, Prediction and uncertainty maps for all the models. On the left side are reported 
the effect size map. While, the right side shows the confidence interval of the predictions. 
On the bottom of the figure the legends are reported. For all the maps has been used the 
same scale.   
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3.2.4 Positive implementation of the regenerative practices (RPs) 
 

The aim of this section is to define where the ES is positive and which 

technique has the highest increase in productivity. 
 

Looking at Figure 17a, the area where the AF has the highest ES cover almost 

60% of the cropland followed by the NT with a percentage around 17% and 

by the OF (around 6%). Considering the distribution of the managements, 

the AF seems to obtain the best result in tropical and equatorial zones mostly, 

and in North Europe. The NT and OF, instead, are mainly located in the 

United State, Central Europe, and Central Asia. It is interesting to notice that 

seems to do not be a location where all the managements have negative ES. 

On approximately 18% of the cropland both NT and OF lead to a reduction 

of the productivity, they are mostly located into the tropical and temperate 

climatic classes where the AF prediction is not considered. Its uncertainty 

map (Figure 17b), shows that the cropland with the best accuracy is the 

northernmost area of the globe. The highest CI is located in the coordinates 

where the AF has the highest increase in the productivity, while it has the 

lowest value for the NT cells. The confidence interval is between 0.20 and 

2.77, and most of the cell has a value around 1.2 and 1.4. 
 

AF has positive values for almost all the cropland in which it is defined (60%, 

Figure 17c). Consequently, it appears to be the management with the highest 

number of cells that have a growth in the maize yield with the highest ES 

value (Figure 17a,c). The percentage of the world where the NT appears to 

increase the productivity is around 26%, while for the OF is 35% (Figure 17c). 

Less than 1% of the cells present a positive ES for all the managements 

considered together and they are mostly located in Central Africa and in the 

Middel Easte countries. Most of the map present a positive implementation 

for both OF and AF (27%), usually this class is located in South America, 

Central Africa, and South-East Asia. NT and AF, indeed, covered 9% of the 

cropland and are mostly in North Africa. While NT and OF (2%) usually have 

positive effects in North-West America. The uncertainty map (Figure 17d) is 

similar to the previous one, both have lower values on the northern part of 

the globe and the lowest accuracy belong to the region where there is the AF.  
 

The results in Figure 17 seem to be too optimistic with the RP having the 

potential to augment the maize yield almost all over the globe. For this 

reason, another map is produced to show the pattern in productivity 

distribution if only the NT and OF managements are considered. The AF has 

been excluded because it seems to be the least accurate prediction (Table 5). 

The results are shown in Figure 18. 
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Figure 17, Location where the regenerative managements could lead to an increase in 
productivity. Map a: cropland with the highest positive management effect size; map b: 
uncertainty map for map a. It reports the CI of the management shown in map a; therefore, 
if in one location the AF has the highest relative productivity, in the same position, map b 
reports the CI of the AF. Map c: managements with positive ES, in this case more than one 
regenerative technique can be defined for each cell. Map d: uncertainty map of map c, it has 
been obtained considering in each location which RP has the highest CI compare to the 
other plotted in the same cell. 
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Figure 18, Location where the NT and/or OF could lead an increase in productivity. Map 
a: cropland which management has the highest positive effect size. Map b: uncertainty map 
for map a. It reports the CI of the management shows in the map a; therefore, if in one 
location the OF has the highest relative productivity, in the same position, map b reports the 
CI of the OF. Map c: managements with positive ES, in this case more than one agricultural 
strategy can be defined for each cell. Map d: uncertainty map of map c, it has been obtained 
considering in each location which RP has the highest CI compare to the other plotted in the 
same cell. 
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The two managements have a similar distribution compared with the 

previous image. However, there are 41.12 % of the cropland where the ES has 

negative values. The NT has the highest ES in the northern part of the globe, 

while the OF has it in the southern part (Figure 18a). Looking at Figure 18c, 

23.75% of the cells have a positive ES only for the NT, and 32.53% for the OF, 

while both the managements are positive for 2.60% (Figure 18c).  

 

The CI is between 0.21 and 3.37 with most of the values around 0.8 and 1 

(Figure 18b,d). It is interesting to notice that the most accurate prediction 

occurs when the ES is negative. Even if the range of the CI is higher, the most 

frequent value interval is lower in the second prediction. It is therefore 

possible to state that the reliability of Figure 18 is higher than the one in 

Figure 17.  

 

To have a better visualization of the predictive maps, more images are 
available in the Appendix 4. 
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4 Discussion 
In this section, the results of the analysis will be discussed and an attempt 

will be made to understand the limitations and strengths of the analysis. It 

will also compare the results obtained with literature data. It is divided into 

three parts. In the first, the accuracy of the model is analysed by comparing 

R2 and RMSE with studies that used the same predictive method. In the 

second, the results related to the environmental factors will be commented 

on. And finally, the maps obtained through the machine learning process will 

be analysed.  

4.1 Performance of the model 
 
Results showed that prediction accuracy of the RF models were low (R2 < 0.4) 

especially for AF (R2 = 0.07) and OF (R2 = 0.13). The analysis seems to 

present less reliable result compared with other studies which used the same 

predictive method. For instance, a global-scale study that predicted ES values 

for NT achieved an R2 value equal to 0.52 (Su et al., 2022). Remaining studies 

are usually site-specific focusing mainly on maize yield prediction, recording 

R2 between 0.35 to 0.85 (Jeong et al., 2016; Marques Ramos et al., 2020; 

Burdett and Wellen, 2022; Morales and Villalobos, 2023). However, the aim 

of some of these studies was to demonstrate the predictive ability of the RF 

model and usually they had a bigger dataset compared to the single RP of this 

study. Moreover, most of the analyses considered local and not global scale 

and the predictions are not related to the regenerative management but to 

detect the maize productivity over the time.  

 
Compared to Su et al. (2022) findings, this study considered more 

observations introducing thereby more variability in the ES of NT.  The low 

accuracy of the AF is probably due to the data distribution. The highest 

accuracy was gotten when the spatial variable used was ‘climate class’. 

However, its observations did not cover the whole climatic areas compared 

to the other two RP as they belong only to the tropical and temperate classes.  

 

A possibility to get more reliable estimation would to be to increase the 

observation points for each management considering not only the total count 

but also the spatial distribution particularly for the AF. Additional 

consideration would be to consider a higher number of predictors such as 

multispectral images (e.g. Sentinel2 derived) with higher resolution (10 – 30 

m) which were reported along with deep learning (Sayago and Bocco, 2018; 

Sun et al., 2020; Desloires, Ienco and Botrel, 2023; Mohammad et al., 

2023). 



51 
 

4.2 Relationship between Effect Size (ES) and environmental  
      factors 
 
The descriptive analysis allows to make some hypothesis about the relation 

between the ES and the environmental conditions through different 

managements. 

 

The first aspect visible from the results (Section 3.1.2) is that the 

implementation of AF seems to lead to a general increase in productivity 

regardless of the values of the environmental factors considered, whereas OF 

appears to have almost exclusively negative ES values under all 

environmental conditions, and NT does not present huge variation of relative 

productivity. This could mean that AF would be more resilient to different 

environmental factors compared with the other managements. However, 

either the high dispersion (high number of outliers, Table 4) or the low 

number of observations belonging to each zone of the variables related to AF 

do not allow to define reliable average values for its classes. On the other 

hand, OF does not have enough data per zone. Despite the greater number of 

observations, the NT also does not return clear pattern for its results. 

 

If we look at the average values for each management, those obtained for NT 

do not deviate from the results obtained in the study of Achanken and 

Cornelis (2023). Whereas, when considering the overall analyses for AF, the 

average ES in this study seems to be optimistic. In fact, according to Baier et 

al. (2023), an increase of 16% occurred in the best cases while from 

Appendixes 2 it is visible that the zones mean values are around 30%. For de 

la Cruz et al. (2023) study, OF leads on average to a decrease of 20-50% in 

productivity while for the present analysis the reduction is around 15%. This 

is slightly lower than the minimum reported with the previous result. The 

deviation can be due to the different size of the dataset considered, as the 

available one has fewer observation points compared with the previous study. 

 

Finally, the linear graphs (Section 3.1.3) show that it is not possible to 

describe the relation between the environmental factors and the ES with a 

linear model suggesting more complex interactions requiring the 

implementation of more advanced data analysis models. For this reason, a 

predictive model was used that also allowed to define the covariate 

correlation through SV. This analysis showed that the factors that most 

influence the ES prediction are different for each management and that the 

prediction considering the entire dataset seems reductive as it is unable to 
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describe the variability of the individual RPs. The most significant results for 

each management are discussed below. 

 

AI is the most reliable predictor for the NT prediction. The zone which mostly 

affect positively the ES is the Hyper-Arid and Arid climate zones. This result 

seems to be coherent with a global study which sustains that the 

implementation of this management has a probability of around 0.5 to 

increase the maize productivity into the dry areas (Su, Gabrielle and 

Makowski, 2021c). Considering site specific studies, it is possible to state that 

the productivity variation changes according to the climate. For instance, 

Galani et al. (2022) analysis confirms the positive effect of NT practices 

within the Arid and Hyper-arid climate zones. While it seems to do not have 

either substantial or positive variation for the Humid climate zone according 

with the Achankeng and Cornelis (2023).    

 

Both the AF and the OF are mostly influenced by the pH. The previous 

management is negatively affected by pH value lower than 3, while OF for 

values lower than 4. For AF, a global meta-analysis caried by Baier (2023), 

demonstrates that the most significant implementation for the maize 

productivity occurs in moderate acidic condition (5-6 pH) while negative 

effects are registered for hyper-acidic soil (pH lower than 4). Therefore, the 

two results seem to be coherent for the low pH range, while they give a 

different result for higher values. However, the available dataset does not 

have many observations for the neutral pH class to account accurately for 

such variability. For OF, the study of de la Cruze et al. (2023) seems to not 

detect significant variation for strong acidic pH for the maize yield. 

 

Maize grows better in warmer temperate regions and humid subtropics, in 

well drained soils such as sandy loam soils, high SOC, flat areas (good soil 

fertility and sun exposure), and adequate nutrient supply (NPK) (Otegui and 

Slafer, 2000; NSW Department of Primary  Industries, 2009). However, it 

is interesting to notice that AF and NT, were able to still increase ES or reduce 

losses in productivity under unfavourable conditions such as   arid, semi-arid 

areas (water stress high), unsuitable or high heat stress, low SOC soils, acidic 

soil, sloping and gently sloping areas, sandy soils. These results can be 

justified from the environmental benefits related to the implementation of 

these managements.  

 

AF, in fact, allows to increase the SOM above and below the ground. 

Consequently, it enhances the soil health and the SOC availability (Dollinger 

and Jose, 2018). Moreover, the tree roots increase the water storage and the 
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microorganism presence in the terrain that augment the nutrients in the soil. 

They also reduce the typical erosion processes in the arid and semiarid 

climate (Gayathri et al., 2024). On the other hand, NT has benefits on the 

environment with the coverage of the land surface which reduces its 

exposition to erosion processes and minimizes evapotranspiration. 

Moreover, by avoiding the soil disturbance, the microbiological community 

increases and improve the soil structure (Choden and Ghaley, 2021). From 

these considerations, it is possible to say that these RP seem to advantage the 

maize productivity in many critical environmental conditions, thanks to the 

increase of soil quality (enhance of SOC, better soil structure, pH increase, 

etc.), soil humidity, and nutrients availability. The situation is different for 

the OF because the weed control is more challenging with  more pest and 

disease pressures which are  higher in this management (Czarnecka et al., 

2022). Though it also leads to the some improvement of soil properties (soil 

structure, SOM, water capacity, etc., Choden (2021), it however requires time 

to obtain the optimal condition to get a proper productivity (Durrer et al., 

2021). 

4.3 Predictive maps and positive implementation of  
      regenerative practices (RPs) 
 
The final part of the analysis detected the predictive models and defines in 

which geographical areas a positive increase in productivity occurs and under 

which management. 

 

As far as the NT is concerned, there is on average a decrease of 7.38% (Tale 

6) when it is implemented. The areas with the best results (ES around 0.2) 

are North-West America, North Africa and India (Figure 17b). It is 

interesting to note that the areas where ES is highest coincide with Arid or 

Semiarid climate, Moderate or High DfI, and Restrictive BD zones. A study 

carried out by Liu and Basso (2020) observed how the implementation of 

this technique in the Mid-West part of the United States led to a reduction in 

crop productivity loss when adverse climatic phenomena occurred. This 

technique in addition is used to cultivate 23% of US cropland (Triplett and 

Dick, 2008). In India, on the other hand, a study by Pradhan et al. (2016) 

showed that maize productivity does not undergo significant changes but 

that it has substantial benefits to the environmental component. Another 

analysis in North-West of India location showed that it leads to a productivity 

increase of around 10% and that on average it reduces the water demand for 

maize cultivation (Jat et al., 2013). Finally, in North Africa, a study reported 

that this practice leads to improvements in cultivation, but that productivity 
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is compromised by the presence of weeds when they are not controlled 

(Mrabet, 2011). 

 

AF has a productivity increase around 32.76% (Table 6). The areas where it 

is most favourable (ES > 0.5) are found in Central-West Africa and China 

(Figure 17c). These areas coincided with the geographical areas belonging to 

the Acidic pH, Transition BD, and Moderate SOC. The results seem to be 

consistent with studies in the literature, as far as Africa is concerned. 

Numerous analyses have shown the positive effects on productivity linked to 

this management (Félix et al., 2018; Choden and Ghaley, 2021). For 

example, a study carried out in Ethiopia showed that productivity can even 

increase by 50% under particular conditions (Dilla et al., 2019). As far as 

China is concerned, however, not many croplands are subjected to this RP. 

In fact, about 1% of the cultivated land are reported to be under AF (Hong et 

al., 2017). A recent analysis demonstrates that a reduction around 30% 

occurs when the agroforestry is implemented, this is probably due to the 

nutrients and water competition between the trees and the maize (Yang et 

al., 2023). However, some analyses showed that it led to an increase in the 

soil properties, particularly it enhances the nutrient content in the soil and 

the SOC; moreover, even if the shadows of the trees reduce the amount of 

light reaching the crops and the photosynthetic rate, it also increases the light 

use efficiency raising the soil productivity compared with the sole tree stands 

and sole crops (Guo et al., 2020; Qiao et al., 2020; Dong et al., 2021; Wan 

et al., 2024). The discrepancy of the result can be due to the low reliability of 

the AF predictive model. 

 

Considering OF, it registered an average reduction of 3.11% (Table 6). It also 

tends to perform best in South America and South Africa (Figure 18d) with a 

productivity increase of 10%. The highest values fall in the Acidic pH, Low P, 

and Moderate or High Heat stress GDD zones. Considering previous 

analyses, there is no much implementation of this management in Africa 

compared to the other RPs. It might be due the need for more investments  

as systems with herbicide-mediated weed control were more successful 

(Lotter, 2015). In fact, only 0.12% of croplands had implemented this RP in 

2007 (El and Scialabba, 2007). A global analysis registered a reduction in 

the productivity equal to 40% in Africa, and equal to 50% in South America 

(de la Cruz et al., 2023). However, only 12 and 4 observations respectively 

belong to these two geographical zones limiting the generalization of current 

analysis.  
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There are also some locations in which more than one RP can increase the 

maize productivity (Figure 17c, Figure 18c). For instance, in South America, 

South Africa and in South-East Asia, both AF and OF showed positive ES 

while in Central Africa the positive managements seem to be NT and AF. 

Moreover, NT and OF seemed to be the best opportunities for the United 

States. All the RPs could lead to an augment of maize yield only in 0.33% of 

the cropland (Middel Easte and Central Africa).  

 

The results obtained from this analysis is mainly a starting point, as the 

available observations are limited, but at the same time, in certain situations 

it seems to give more interesting results than previous literature studies. 

4.4 Limitations a way forward  
 
The results of the analysis do not have a high reliability on the basis of 

statistical values. However, the study can be considered as a starting point 

for future surveys on the productivity of RPs (i.e. regenerative practices).  

 

The main limitations of this study were the low number of observations for 

OF and the poor spatial distribution of observation points for AF. Another 

limitation was the available predictors. Many environmental factors were 

used, but some key aspects such as soil water availability and climatic stress 

were not considered. Therefore, the dataset should be implemented in order 

to have a larger number of observations homogeneously distributed in the 

regions and more soil and climate factors to be sampled in each territory. 

Finally, the resolution of the multispectral maps used by the RF (i.e. random 

forest) model could have a higher resolution (10-30 m).  
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5 Conclusion  
The aim of this study was to locate potential areas suitable for regenerative 

management practices while also assessing the underlying environmental 

factors. For such purpose, the effect size of three RP (NT, AF, OF) collected 

from existing global literature was subjected to both descriptive statistics and 

modelling using RF with the consideration of different environmental 

factors. 

 

From this analysis it was possible to observe that the variation in productivity 

related to the distribution of the ES was not only related to the type of 

management used, but also to various environmental components. From the 

statistical analysis and the partial dependency graphs, it was possible to 

deduce that the implementation of NT and AF would seem to have better 

results when the cultivated sites are in less favourable environmental 

conditions for the maize growth (Hyper-Arid and Arid climatic zone, 

Unsuitable and Hight Heat Stress GDD, Low SOC content, Acidic soil). 

Thanks to the SV rank average of the predictive models, it was also possible 

to observe that the factors that most influence ES are different for each 

management. In fact, for NT, it was AI, while pH ranked first for AF and OF. 

In particular, Hyper-Arid and Arid zones (AI < 0.2) seemed to have a positive 

covariate correlation for the NT productivity while Arid pH (4-6 pH) 

positively influenced the maize yield when the OF technique was 

implemented. Also, AF seemed to be negatively affected by very low pH 

values (< 2).  

 

Predictive models made it possible to observe how ES varied with each 

management. The best performing RP is AF, where mostly occurs an increase 

in productivity of over 20%. While for NT and OF there tends to be a 

reduction of 10-15% and 6-8% respectively. When considering the spatial 

distribution, AF and OF had higher values in the southern part of the globe 

(Central Africa, South America, and South-East Asia), while NT in the 

equatorial zone. Considering the accuracy of the RF model based on R2 

values, most reliable estimate turned out to be NT (R2 = 0.36), followed by 

OF (R2 = 0.13), and finally AF (R2 = 0.07) which did not seem to return 

reliable values. Once OF is discarded considering the low accuracy of its 

model, the geographic area where NT seemed to lead to the highest increase 

in productivity were located in North-West America, North Africa, and India, 

while those where OF had the highest potential were South America and 

South Africa. Both RP, however, presented positive ES value in North-West 

America.  
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This study could be used as a preliminary analysis to understand whether the 

implementation of an RP might lead to benefits in maize production. 

Furthermore, it showed that potential for positive influence would be highest 

in climatic zones of high stress, and therefore emphasised the importance of 

conducting more in-depth global analyses to obtain more reliable results.  
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Appendix  

Appendix 1 
 
Table 7: Sources table. 
 

Source Number of Observations 

Felix at al. (2018) 2 

Jian et al. (2022) 584 

Pitteölow et al. (2014) 1536 

Su et al. (2021) 834 
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Appendix 2 
 
 

Table 8: Statistical values table. The table reports the average and the 
standard deviation of the ES divided for each zone.  
 

  Zone NT AF OF 
    Average StDv Average StDv Average StDv 

B
D

 Favour BD -0.067 0.154 -0.088 0.457 - - 

Transition BD -0.085 0.328 0.371 0.555 -0.199 0.331 

Restrict BD -0.046 0.280 0.156 0.456 -0.139 0.119 

T
ex

tu
re

 

Clay -0.092 0.298 0.057 0.463 -0.030 0.134 

Silty -0.059 0.295 0.206 0.434 -0.199 0.331 

Sandy 0.007 0.327 0.421 0.565 -0.194 0.076 

S
O

C
 Low SOC -0.029 0.295 0.328 0.547 -0.050 0.087 

Moderate SOC -0.080 0.276 0.258 0.551 -0.216 0.301 

High SOC -0.132 0.394 0.379 0.717 -0.167 0.430 

p
H

 Acidic -0.056 0.295 0.324 0.548 -0.245 0.337 

Neutral -0.181 0.350 0.321 0.469 -0.058 0.148 

Alkaline -0.076 0.102 - - - - 

O
ls

en
-P

 

Low P -0.069 0.341 0.086 0.595 -0.032 0.145 

Moderate P -0.046 0.251 0.427 0.429 -0.231 0.384 

High P -0.073 0.287 0.499 0.488 -0.213 0.233 

A
I 

Arid 0.068 0.188 - - - - 

Semiarid -0.032 0.293 0.404 0.695 - - 

Sub-Humid -0.088 0.365 0.334 0.442 -0.030 0.134 

Humid -0.077 0.288 0.249 0.433 -0.199 0.310 

D
fI

 Low DfI -0.107 0.282 0.427 0.481 - - 

Moderate DfI 0.041 0.350 0.408 0.600 - - 

High DfI -0.076 0.291 0.089 0.356 -0.188 0.303 

G
D

D
 

Unsuitable 0.028 0.043 - - - - 

Suitable -0.078 0.295 - - -0.199 0.310 

Low Heat Stress -0.029 0.231 - - - - 

Moderate Heat Stress -0.073 0.399 0.412 0.577 - - 

High Heat Stress 0.005 0.292 0.083 0.356 -0.030 0.134 

S
lo

p
e 

Flat -0.120 0.346 - - - - 

Level -0.072 0.240 0.376 0.622 -0.139 0.119 

Gently -0.018 0.342 0.281 0.477 -0.199 0.331 

Sloping -0.047 0.353 0.493 0.192 - - 

Steep -0.057 - - - - - 

E
le

v
a

ti
o

n
 

Low Elevation -0.086 0.335 0.094 0.347 -0.237 0.357 

Moderate Elevation -0.040 0.256 0.487 0.498 -0.103 0.155 

High Elevation -0.074 0.304 0.364 0.617 - - 
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Appendix 3 
 
A. Division of the cropland and the observation points into the  
     different environmental zones 
 
✓ Bulk density 
 

 
Figure 19, Division of the cropland into the BD zones. 
 

 

Figure 20, Observation points distribution into the different zones of BD, printed on the 
cropland map. In the figure, the brownish areas represent the cropland, while in grey are 
reported the land without cropland. 
 
Table 9: The table reports the percentage of the cropland and number of 
observations belonging to one of the three BD zones. 
 

 

Zones Range 
Cropland 

percentage 

Number of 

observations 

Favourable BD Lower than 1.2 kg/dm3 19.17% 107 

Transition BD Between 1.2 kg/dm3 and 1.47 kg/dm3 63.80% 1555 

Restrictive BD Higher than 1.47 kg/dm3 17.03% 1294 
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✓ Soil texture 

 
Figure 21, Division of the cropland into the soil texture zones. 
 

Table 10: The table reports the percentage of cropland and number of 

observations belonging to the different soil texture zones.  
 

Zones 
Cropland 

percentage 

Number of 

observations 

Clay 43.97% 985 

Silty 35.72% 1411 

Sandy 20.31% 560 

 
✓ SOC 

 

Table 11: The table reports the percentage of the cropland and number of 
observations belonging to the different SOC zones. 
 

Zones Range 
Cropland 

percentage 

Number of 

observations 

Low SOC Lower than 5 g/kg 40.04% 1450 

Moderate SOC Between 5 g/kg and 10 g/kg 37.48% 1226 

High SOC Higher than 10 g/kg 22.48% 280 

 

 
Figure 22, Division of the cropland into the SOC zones. 
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Figure 23, Observation points distribution into the different zones of SOC, printed on the 
cropland map. In the figure, the brownish areas represent the cropland, while in grey are 
reported the land without cropland. 
 
✓ pH 
 

 
Figure 24, Division of the cropland into the different pH zones. 
 
Table 12: The table shows the percentage of cropland and number of 
observations belonging to the different pH zones. 

Zones Range 
Cropland 

percentage 

Number of 

observations 

Acidic Lower than 6.3 51.56% 2747 

Neutral Between 6.3 and 7.4 30.10% 2000 

Alkaline Higher than 7.4 18.33% 9 
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Figure 25, Observation points distribution into the different zones of pH, printed on the 
cropland map. In the figure, the brownish areas represent the cropland, while in grey are 
reported the land without cropland. 
 
✓ Olsen-P 

 
Figure 26, Cropland division into the different Olsen-P zones. 

 

Figure 27, Observation points distribution into the different zones of Olsen-P, printed on 
the cropland map. In the figure, the brownish areas represent the cropland, while in grey 
are reported the land without cropland. 
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Table 13: The table shows the percentage of cropland belonging to the 
different Olsen-P zones.  
 

Zones Range 
Cropland 

percentage 

Number of 

observations 

Low P Lower than 10.9 mg/kg 58.24% 1117 

Moderate P Between 10.9 mg/kg and 21.4 mg/kg 20.14% 765 

High P Higher than 21.4 mg/kg 21.62% 1074 

 
✓ AI 

 
Figure 28, Cropland division into the different climate zones. 

 
Figure 29, Observation points distribution into the different climatic zones according with 
the AI value, printed on the cropland map. In the figure, the brownish areas represent the 
cropland, while in grey are reported the land without cropland.  
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Table 14: The table reports the percentage of the cropland and number of 
observations belonging to the different climatic zones. 
 

Zones Range 
Cropland 

percentage 

Number of 

observations 

Hyper-Arid AI lower than 0.05 2.75% 0 

Arid AI between 0.05 and 0.20  9.18% 50 

Semiarid AI between 0.020 and 0.50 27.16% 749 

Sub-Humid AI between 0.50 and 0.65 13.16% 467 

Humid AI higher than 0.65 47.75% 1690 

 
✓ DfI 

 

 
Figure 30, Cropland division into the different DfI zones. 
 

 

Figure 31, Observation points distribution into the different zones of DfI, printed on the 
cropland map. In the figure, the brownish areas represent the cropland, while in grey are 
reported the land without cropland. 
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Table 15: The table shows the percentage of cropland and the number of 
observations belonging to the different zones.  

Zones Range 
Cropland 

percentage 

Number of 

observations 

Low DfI Lower than 0.50 kWh/m2 12.67% 393 

Moderate DfI 
Between 0.50 kWh/m2 

and 0.55 kWh/m2 
30.16% 

601 

High DfI Higher than 0.55 kWh/m2 57.17% 1962 

 

✓ GDD 
 

 
Figure 32, Cropland division into the different GDD zones. 
 

 
Figure 33, Observation points distribution into the different zones of GDD, printed on the 
cropland map. In the figure, the brownish areas represent the cropland, while in grey are 
reported the land without cropland. 
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Table 16: The table reports the percentage of the cropland and the number 
of observations belonging to the different GDD zones. 
 

Zones Range 
Cropland 

percentage 

Number of 

observations 

Unsuitable GDD lower than 800°C/y 2.48% 18 

Suitable 
GDD between 800°C/y and 

2700°C/y 
32.35% 1746 

Low Heat Stress 
GDD between 2700°C/y and 

4000°C/y 
14.06% 276 

Moderate Heat Stress 
GDD between 4000°C/y and 

6000°C/y 
19.54% 609 

High Heat Stress GDD higher than 6000°C/y 31.57% 307 

 
✓ Elevation 

 
Figure 34, Cropland division into the different elevation zones. 
 

 

Figure 35, Observation points distribution into the different zones of the elevation, 
printed on the cropland map. In the figure, the brownish areas represent the cropland, 
while in grey are reported the land without cropland. 
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Table 17: The table shows the percentage of cropland and the number of 
observations belonging to the different zones.  

Zones Range 
Cropland 

percentage 

Number of 

observations 

Low Elevation Lower than 250 m 40.92% 1197 

Moderate Elevation Between 250 m and 1000 m 42.03% 1145 

High Elevation Higher than 1000 m 17.05% 641 

 
✓ Slope 

 

Figure 36, Cropland division into the different slope zones. 
 

 

Figure 37, Observation points distribution into the different zones of the slope, printed on 
the cropland map. In the figure, the brownish areas represent the cropland, while in grey 
are reported the land without cropland. 
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Table 18: The table reports the percentage of the cropland and the number 
of observations belonging to the different Slope zones. 
 

Zones Range 
Cropland 

percentage 

Number of 

observations 

Flat Slope lower than 0.2% 13.03% 463 

Level Slope between 0.2% and 1% 35.32% 1398 

Gently Slope between 1% and 5% 33.45% 937 

Sloping Slope between 5% and 15% 13.64% 157 

Steep Slope higher than 15% 4.56% 1 
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B. Boxplot with outliers and number of observations per      
     environmental zones divided for management 
 
✓ Climatic factors 

 
Figure 38, Boxplot of the effect size for the RPs within the zones of climatic factors. The ends of 
the box represent the 25th and 75th quantiles and the median value is reported in the middle of the box. 
The horizontal black lines report the highest and the lowest values of the class excluding the outliers 
which are represented by the black dots. They are also called whiskers, and their length is equal to 
1.5 times the interquartile (75th quartile minus 25th quartile). The values which are not included in this 
range are called outliers.   
 
Table 19: Number of observations in every climatic factor zone per 
management.  
 

  Zone Number of observations 

    NT AF OF 

C
li

m
a

te
 

Hyper-Arid 0 0 0 

Arid 50 0 0 

Semiarid 573 176 0 

Sub-Humid 355 110 2 

Humid 1453 206 31 

D
fI

 

Low DfI 326 67 0 

Moderate DfI 310 291 0 

High DfI 1795 134 33 

G
D

D
 

Unsuitable 18 0 0 

Suitable 1715 0 31 

Low Heat Stress 276 0 0 

Moderate Heat Stress 249 360 0 

High Heat Stress 173 132 2 
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✓ Soil factors 

 
Figure 39, Boxplot of the effect size for the RPs within the zones of soil factors. The ends of the box represent 
the 25th and 75th quantiles and the median value is reported in the middle of the box. The horizontal black lines 
report the highest and the lowest values of the class excluding the outliers which are represented by the black dots. 
They are also called whiskers, and their length is equal to 1.5 times the interquartile (75th quartile minus 25th 
quartile). The values which are not included in this range are called outliers.   
 

Table 20: Number of observations of every soil factor zone divided for the RP. 
 

  Zone Number of observations 
    NT AF OF 

B
D

 

Favourable BD 94  13 0 

Transition BD 1129  399 27 

Restrictive BD 1208  80 6 

p
H

 

Acidic 2242  482 23 

Neutral 180  10 10 

Alkaline 9  0 0 

P
h

o
sp

h
o

ru
s Low P 928 183 6 

Moderate P 603 147 15 

High P 900 162 12 

S
O

C
 

Low SOC 989 457 4 

Moderate SOC 1169 33 24 

High SOC 273 2 5 

S
o

il
 t

ex
tu

re
 

Clay 902 81 2 

Silty 1298 86 27 

Sandy 231 325 4 
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✓ Landform factors 
 

 
Figure 40, Boxplot of the effect size for the RPs within the zones of landform factors. The ends of the box 
represent the 25th and 75th quantiles and the median value is reported in the middle of the box. The horizontal black 
lines report the highest and the lowest values of the class excluding the outliers which are represented by the black 
dots. They are also called whiskers, and their length is equal to 1.5 times the interquartile (75th quartile minus 25th 
quartile). The values which are not included in this range are called outliers.   
 
Table 21: Number of observations for every landform factor zone per 
management.  
 

  Zone Number of observations 

    NT AF OF 

E
le

v
a

ti
o

n
 

Low elevation 1046 130 21 

Moderate elevation 1009 124 12 

High elevation 376 238 0 

S
lo

p
e 

Flat 463 0 0 

Level 1174 218 6 

Gently 638 272 27 

Sloping 155 2 0 

Steep 1 0 0 
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Appendix 4 
 
A. Correlation of the predictors 
 
✓ All managements 
 

 
Figure 41, Correlation matrix of the predictors for the prediction of the ES map, when the 
RF model consider all the different managements together. 
 

 
Figure 42, Correlation pyramid for the 'All management' prediction 
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✓ No-Tillage 
 

 
Figure 43, Correlation matrix of the predictors for the prediction of the ES map, when the 
RF model consider NT as RP. 
 

 
Figure 44, Correlation pyramid for the 'NT management' prediction 
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✓ Agroforestry 
 
 

 
Figure 45, Correlation matrix of the predictors for the prediction of the ES map, when the 
RF model consider AF as RP. 
 

 
Figure 46, Correlation pyramid for the 'AF management' prediction 
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✓ Organic farming 
 
 

 
Figure 47, Correlation matrix of the predictors for the prediction of the ES map, when the 
RF model consider OF as RP. 
 

 
Figure 48, Correlation pyramid for the 'OF management' prediction 
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B. Prediction and uncertainty maps 
 
✓ All managements 

 

 
 
Figure 49, Prediction (a) and uncertainty (b) map of the ‘All managements’ prediction. 
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✓ No-Tillage 
 

 
 

Figure 50, Prediction (a) and uncertainty (b) map of the ES for the NT management.  
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✓ Agroforestry 
 

 
 
Figure 51, Prediction (a) and uncertainty (b) map for the AF management. 
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✓ Organic Farming 
 

 
 
Figure 52, Prediction (a) and uncertainty (b) map of the OF management.  
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C. Positive and highest effect size (ES) maps  
 

 
Figure 53, Location where the regenerative managements (NT, OF, AF) could lead to an 
increase in productivity. Map a: cropland with the highest positive management effect size; 
map b: uncertainty map for map a. It reports the CI of the management shown in map a; 
therefore, if in one location the AF has the highest relative productivity, in the same position, 
map b reports the CI of the AF. While, when there are both the management in the cell the 
highest CI is plotted in the same cell. 
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Figure 54, Location where the regenerative managements (NT, OF, AF) could lead to an 
increase in productivity. Map a: managements with positive ES, in this case more than one 
regenerative technique can be defined for each cell. Map b: uncertainty map of map a, it has 
been obtained considering in each location which RP has the highest CI compare to the 
other plotted in the same cell. 
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Figure 55, Location where the NT and/or OF could lead an increase in productivity. Map 
a: cropland which management has the highest positive effect size. Map b: uncertainty map 
for map a. It reports the CI of the management shows in the map a; therefore, if in one 
location the OF has the highest relative productivity, in the same position, map b reports the 
CI of the OF. While, when there are both the management in the cell (“Negative ES”) the 
highest CI is plotted in the same cell.  
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Figure 56, Map a: managements (NT, OF) with positive ES, more than one agricultural 
strategy can be defined for each cell. Map b: uncertainty map of map a, it has been obtained 
considering in each location which RP has the highest CI compare to the other plotted in the 
same cell. 
 


