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Abstract

This thesis investigates the dynamics of T-cell populations during clonal ex-

pansion, utilizing mathematical models to replicate and analyze these pro-

cesses. By focusing on single-cell resolution data from various cell families,

the study aims to uncover heterogeneity in cell behavior. Comparisons among

different approaches -Cyton, ODE and stochastic- highlight the Cyton model’s

superior adaptability in capturing complex dynamics. The work emphasises

the need for nuanced models incorporating biological rules to better represent

immune system responses.
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Introduction

This work focuses on analyzing data regarding the growth of an immune sys-

tem cell population (T-cells) in response to the detection of a pathogen and

on identifying a mathematical model that describes and synthetically repro-

duces the process. The immune system comprises various type of cells, among

which T and B lymphocytes are primarily responsible for the adaptive im-

mune response, the component that develops during an individual’s lifetime.

Antigen-presenting cells, as their name suggests, are instead those classes of

cells that present the antigen of the detected pathogen to the näıve immune

cell. An antigen is any molecule capable of binding to an antibody and being

recognized by the immune system as either self, tolerated, or non-self, mean-

ing foreign and potentially dangerous, thus triggering an immune response.

This triggers a cascade of metabolic events in the T cell, leading it to divide

and reproduce, creating a population of specialized cells. These continue to

reproduce until the infection is eradicated, after which the T cell population

regresses, leaving behind only a set of modified cells known as memory T cells,

capable of responding quickly to a new infection by the same pathogen. This

phenomenon has often been studied in laboratory and “in vivo” over the years

at the population level, characterising the total or average response of the cells.

After a series of advancements in research, recent years have seen a focus on

analyzing behavior at the single-cell level, significantly increasing the resolu-

tion of the study in terms of depth and precision. Despite the principles of this

process being well known for some time, the description of the heterogeneity

of dynamics among different cell pedigrees remains to be investigated. There-
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fore, we analysed proprietary data related to clonal expansion at the single-cell

resolution for 16 different “families” of T cells.

Additionally, understanding the characteristics that cells inherit from their

predecessors is key to determining if it is possible to predict in advance, prior

to the clonal phase, the effectiveness of a certain cell pedigree in combating

an infection. For example, one possible application could be the ability to

“preselect” which cell strains are preferable for culturing in preparation for

infusion into an immunodeficient patient. This is particularly relevant for cur-

rent employed immunotherapies in oncology.

This work was conducted in collaboration with the cell biology research group

at Swinburne University of Technology based in Melbourne, Australia, em-

ploying original data from a research project by Kajal Zibaei, as part of her

PhD thesis in Biochemistry at the same university.
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Chapter 1

Literature Review

We will present a brief discussion of the biological process in action, recalling

the concept of activation of näıve T cells and clonal expansion and introducing

the main theme of heterogeneity between siblings’ response and diversification

of cells across generations. The discussion about the biological aspects of the

problem is inspired by the work of Kajal Zibaei [47].

1.1 Biological problem

T cells play a pivotal role in the cell-mediated immune response, recognising

and eliminating a variety of pathogens based on the antigens presented on

their surface [16]. T cells originate from hematopoietic cells in bone marrow

as non-specialized cells: after migration in the thymus, the cells undergo a

complex process called “maturation” following biochemical pathways and be-

come specialised in targeting a particular pathogen. From that moment every

T cells has on its own surface more copies of a “unique” receptor (T cell re-

ceptor, TCR) capable of attaching to a very limited set of antigens. In general

each cell has only one type of TCR, slightly different from that of other cells.

The T lymphocytes’ process of differentiation is determined by the expres-

sion of certain membrane proteins among which the most important ones are

5



CD4 and CD8 [40]. In the first step, cells do not present on their surface

neither CD4 and CD8 proteins and for this reason are call Double Negative

[40],whereas at the end of the maturation process the cells are divided in

two groups, namely the T-helper (showing on their surface CD4) and T-killer

(showing CD8) [16]. When cells are mature, the variety of T-cell receptors

(TCR) in the resulting population represent the fundamental factor for hav-

ing an immune response able to counteract a broad range of pathogens (with

associated antigens’ variability) [36]. The specificity of the receptor exposed

by each mature T cell implies a narrowness of the response, since a single cell

can provide a response to only limited variations of antigen in diverse setting

of infections [25]. To react in presence of new antigens, the immune system

uses näıve T cells able to adapt to the new pathogen in the bloodstream, giv-

ing start to an adaptative response.

Figure 1.1: The image shows the complex variety of cells of the immune system.

Image taken from Ref. [43]

In the human body, mature näıve CD8+ T cells migrate to lymphnodes

to search for their cognate antigen [18]. Once näıve CD8+ T cells encounter

their cognate antigen, presented to them by antigen presenting cells (APCs),
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an activation process starts, necessary for priming the adaptive immune re-

sponse [18]. APCs can be divided in two types, professional and “somatic

cells”: almost every cell can display antigens via the major histocompatibility

complex (MHC) but some cells are completely dedicated to this task. Within

the professional APC classes we can find macrophages, B cells and dendritic

cells (DC), with the latter being the most common ones. DCs are the cells

used in this particular experiment [2], which is at the centre of this work.

The interface that forms between APCs and näıve T cell during the activation

process is called the “immunological synapse” (IS). The IS is a platform that,

through stabilised adhesion, permits TCR signaling activation and signal ter-

mination.

The MHC is a large locus on DNA that codes for cell surface proteins, essential

for the adaptive immune system. These cell surface proteins are called MHC

molecules. The role of these proteins is to permit the recognition of self-cells

through the binding to a self-antigen, such cells will not be targeted by the

immune system. On the contrary, when a non-self cell is found an immune re-

sponse is triggered, since they are considered harmful. MHC is at the heart of

compatibily in organs trasplants (where the name comes from) and influences

susceptibility to autoimmune diseases.

When T cells encounter a pathogen, they enter an initial phase of rapid

expansion, resulting in a large population of progeny cells.

This phase is called clonal expansion and is characterised by the re-

peated duplication of cells, starting from näıve T cells. These cells are

considered the origin of the population and are here labeled as gen-

eration 0. Each time a cell divides, it is considered no longer alive,

counting as -1 to the number of cells in the generation to which it be-

longs. The two daughter cells are considered newborns and each count

as +1 in the generation following the mother’s.

Once the pathogen is cleared, a contraction phase occurs, reducing the
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Figure 1.2: Example sketch of a prototypical cells subdivision process and

counting through generations

cell count by 90-95%, employing immunosuppressor cells such as regulatory T

cells (Treg). The remaining cells are now only a small population of long-lived

memory cells [41]. These memory cells can persist in the body for several

years and be quickly reactivated upon re-exposure to the same antigen. This

reactivation happens faster in memory cells compared to näıve cells. Memory

cells are diverse, including central memory T cells (TCM), reside in lymphn-

odes and can proliferate, but do not have immediate effector functions. On

the contrary, effector memory T cells (TEM), which are found in peripheral

tissues, can immediately respond upon re-exposure to a specific antigen.

The clonal heterogeneity in T cell subtypes is a hallmark of adaptive im-

munity. T cells tend to exhibit varied functional and phenotypical characteris-
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tics, allowing them to evolve into effector T cells or differentiate into different

memory cell subtypes. Although antigen-specific T cells may display similar

responses at the population level, individual cells show significant variability

in their proliferation capacity and differentiation patterns [6]. Understanding

how the population balances effector and memory T cells to ensure effective

pathogen clearance and the availability of adequate memory cells for secondary

responses remains a critical question in immunology. Moreover, the relation-

ship between effector and memory T cells and the origin of memory T cell

differentiation continues to be a subject of extensive research [1, 6].

Understanding the fate of division and differentiation is central and two

main hypotheses were proposed regarding the development of memory cells

from näıve cells. One theory suggested that a single näıve cell could become

either an effector or a memory T cell. Another theory proposed that a single

näıve cell could give rise to both effector and memory cells. Studies favoring

the first scenario suggested that individual näıve CD8+ T cells are prede-

termined to become either effector or memory T cells, with some researchers

attributing this determination to the initial priming by antigen-presenting cells

(APCs) [21] and the timing of receiving signals during an infection. However,

more recent research, including single-cell adoptive transfer experiments by

Stemberger et al., has demonstrated that a single näıve cell can indeed differ-

entiate into both effector and memory T cells [41]. Tagging individual näıve

cells allowed for high-throughput analysis of näıve CD8+ T cells and, following

their progeny upon activation [38], researchers have been able to track cellu-

lar lineage and fate, confirming that a single näıve T cell can produce both

short-lived effector and long-lived memory T cells.

These findings support the “single cell, multiple fate” scenario, though

different mechanisms for memory differentiation have been proposed [21, 42].

One model, the “linear differentiation” model, suggests instead that memory
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Figure 1.3: The two basic theories on how T cells differentiate in memory cells.

On the left the single-cell, single-fate hypothesis; on the right the single-cell,

multiple-fate hypothesis.

cells are direct progeny of effector cells and that differentiation into memory

cells occurs only after the antigen is cleared or significantly reduced. This

model posits that higher TCR affinity might allow some cells to escape apop-

tosis (i.e. death) and differentiate into memory cells. Another model, the

“progressive differentiation” model [28], proposes that näıve T cells acquire

proliferative, survival, and cytotoxic capabilities based on the strength of the

signals they receive (the cytotoxicy, is the ability to harm another cell po-

tentially provoking its lysis, e.g. its destruction). The stochastic nature of T

cell-APC interactions leads to varied signal strengths among individual T cells,

resulting in progeny with different differentiation potentials. According to this

model, stronger signals produce progeny better equipped to survive and differ-

entiate into TCM or TEM [28, 27]. In contrast, another set of studies suggests

that prolonged or intermediate signaling is unnecessary for initiating clonal

expansion and differentiation [21]. Once näıve T cells receive the initial signal,

they and their progeny follow a preprogrammed differentiation path, indepen-

dent of subsequent signal strength or duration. For example, Van Stipdonk

et al. demonstrated that näıve T cells could commit to clonal expansion and

differentiation even with brief stimulation in vitro, though longer stimulation

was required in vivo for optimal response [42].

A third model, the “decreasing potential model”, finally suggests that re-
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peated stimulation diminishes effector cell functionality, making them more

prone to apoptosis. Consequently, the death of effector cells reduces the num-

ber of developed memory cells [22]. This model aligns with observations that

prolonged inflammatory signals or sustained activation can adversely affect ef-

fector cell differentiation. Although both the “progressive differentiation” and

“decreasing potential” models agree on the “one näıve T cell, multiple fate”

scenario, they propose different mechanisms for effector and memory differen-

tiation.

Despite these various models, the exact factors influencing T cell fate deci-

sions remain unclear. It is not yet fully understood how and when cells diverge

in their differentiation paths. Single-cell studies hold promise for elucidating

these mechanisms, providing insights into the timing and determinants of ef-

fector and memory T cell differentiation.

In this regard, one proposed mechanism for heterogeneity among genera-

tions is asymmetric cell division, as suggested by Chang et al. During the first

mitotic division of CD8+ and CD4+ T cells, signaling molecules co-localise

with the microtubule-organizing center (MTOC), maintaining this localisation

and potentially influencing the fate of the daughter cells [9]. Asymmetric divi-

sion may thus be a critical factor in generating inter-clonal heterogeneity, with

implications for the functional diversity observed among T cell populations.

The phenomenon of unequal partitioning during mitosis has been closely

observed in T cells, with researchers noting the importance of prolonged con-

tact between T cells and antigen-presenting cells (APCs) in ensuring asym-

metric cell division (ACD). This interaction is critical for the development of

daughter cells with distinct phenotypic markers and functionalities, specifi-

cally effector and memory cells.

Similarly, Lin and colleagues proposed that the differential inheritance of
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Figure 1.4: The three models on how once that the immune response is trig-

gered the population differentiate into effector and memory T cells. All three

models support the hypothesis of single-cell, multiple-fate. Image modified

from Ref. [47]
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proliferation-promoting factors during the first division results in the creation

of two distinct cell populations. These populations, over the first three gen-

erations, diverge into more activated or more quiescent subsets, eventually

forming the effector and memory cell groups, respectively [32]. Despite evi-

dence supporting ACD’s role in lymphocyte fate determination, its significance

remains a topic of debate.

An alternative hypothesis suggests instead that the functional fate of in-

dividual T cells is predetermined prior to their first division. For instance,

in vivo tracking of clonal progeny of CD8+ T cells indicated that the intra-

clonal diversity might stem from variations in signaling during the interaction

between näıve T cells and dendritic cells (DCs). This implies that the func-

tionality of CD8+ T cells could be established before the initial cell division

[5]. Alternatively, another model posits that T cell differentiation begins be-

fore the first division and is amplified during subsequent divisions. This was

supported by a study from Lemaitre et al. [30], which involved isolating näıve

CD8+ T cells in micro-arrays and stimulating them with DCs. The analy-

sis of progeny from wells containing a single T cell revealed significant size

disparities within and between clones. Further examination of phenotype di-

versity, particularly the expression levels of CD25 and CD62L, suggested that

this diversity was independent of family size [8]. These findings support the

idea that clonal differentiation patterns are largely unaffected by stimulation

conditions. Comparisons of progeny from two daughter cells after the first

division also indicated that activation-induced division could be a source of

intra-clonal diversity [30].

These studies have illuminated various aspects of clonal diversification in T

cells, highlighting how different factors contribute to heterogeneity. Activation

signals received by näıve T cells from APCs during activation and additional

stimulation during amplification, along with asymmetric partitioning of sig-

naling molecules during the first division, can all influence clonal disparity.
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However, the specific roles of individual cells and their impact on the over-

all immune response remain incompletely understood. While population-level

studies have provided significant insights into cell differentiation and prolifera-

tion during immune responses, many questions can only be addressed through

single-cell analysis. The ability to track and study individual cells offers unique

insights into their developmental processes.

Recent advances in experimental technologies have indeed made single-cell

analysis feasible both in vivo and in vitro. Although studies at the single-cell

level have been highly informative, they are less common due to their labor-

intensive and time-consuming nature. Tracking individual cells during acti-

vation and amplification could clarify many aspects of the immune response,

including the development of effector and memory cells. In recent years, re-

searchers have employed single-cell approaches such as single-cell transfer to

trace the lineage of individual cells. However, these techniques often lack infor-

mation about the relationships between cells within individual clones, which

is crucial for evaluating hypotheses about lymphocyte fate determination.

Furthermore, intra-clonal disparity and burst size have been significant areas

of research. Studies have explored the patterns of differentiation and pheno-

type heterogeneity within clones. The activation signals and environmental

factors influencing these processes are complex and multifaceted. The diverse

outcomes observed in clonal populations highlight the importance of both in-

trinsic cellular mechanisms and extrinsic environmental influences. Single-cell

studies, despite their challenges, have the potential to unravel the intricate

dynamics of T cell differentiation and proliferation, providing deeper insights

into immune responses and the development of cellular immunity.

The debate over the importance of ACD versus pre-determined function-

ality prior to the first division highlights the complexity of lymphocyte fate

determination. Single-cell analyses offer promising avenues for understand-

ing these processes at a finer resolution, although they come with significant
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methodological challenges. Advances in single-cell technologies continue to

push the boundaries of our knowledge, offering new perspectives on immune

cell development and function. These insights are critical for developing more

effective immunotherapies and vaccines by leveraging our understanding of T

cell biology.

As already mentioned, the numerical output of individual T cells exhibits

a marked disparity from one clone to another [15, 30]. The importance of

heterogeneity is exemplified by the fact that the number of progeny generated

by an original cell, or the number of division cycles individual lymphocytes

undergo before ceasing to proliferate, is a key determinant of the strength of

an immune response. Numerous studies have explored how various intrinsic

and extrinsic signals received by a cell influence the programming of immune

response outcomes. For instance, it has been shown that individual näıve

T cells can produce a highly variable number of offspring, regardless of the

stimulation conditions [15, 30]. It is interesting to note that despite expecta-

tions, a delay in activation during infection would not affect differentiation [41,

11]: indeed in vivo lineage tracking of barcoded näıve CD8+ T cells revealed

that both early and late activated T cells produce a heterogeneous number of

progeny [15].

Both B cells and T cells have been subjects of quantitative studies exam-

ining their proliferation upon stimulation and this will be one of the focuses of

the mathematical investigations undertaken in this Thesis. Two critical fac-

tors, the concentration of the stimulus and the duration of stimulation, were

shown to impact population growth. For varying concentrations of stimuli

and stimulation durations, a similar growth profile was observed: following

priming, cell numbers increased until a point where the population stopped

growing and entered a contraction phase. The main difference was that higher

concentrations of stimuli and longer priming times resulted in more cells being

produced. However, it was noted that there is an intrinsic limit to the num-
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ber of offspring each B cell can produce, which cannot be altered by changing

stimulation conditions [44, 19]. This hypothesis was further supported by ex-

periments that interrupted expansion for a short period following stimulation.

Upon resuming previous conditions, cells started expanding again, but those

returned to the media only proliferated less compared to those that continued

receiving stimuli. Restimulating the cells after interruption caused them to

expand again and reach the maximum cell number, though at a later time

point compared to non-interrupted cultures [44].

A key conclusion from these studies is that the intrinsic mechanism control-

ling cell proliferation is likely division-based rather than time-based, meaning

there is a limit to the number of progeny each cell can produce rather than a

time period within which a cell can proliferate. Further studies on B cells also

indicated that the differentiation process could reprogram the division destiny

of cells [44].

Population-based in vitro studies of T cell expansion showed that cell pro-

liferation starts immediately upon activation, followed by a gradual increase

in the number of quiescent cells, which reaches nearly 75% by day seven when

expansion ceases. In vivo, the expansion profile followed a similar pattern,

with the main difference being the division destiny and subsequent lifespan

of the cells: lower division destiny and shorter lifespan were observed in vitro

compared to in vivo [34]. That study also suggested that early signals received

by T cells program their capacity to produce offspring, while later during cell

division, extrinsic signals can modify this intrinsic feature [34].

Under different stimulation conditions, lymphocytes generate heteroge-

neous immune responses. Therefore, other deterministic factors likely influence

the varying capacity of clones to produce different progeny. The population-

based analysis of proliferation patterns of T cells and B cells revealed common

results indicating intra-clonal diversification of burst size (i.e. the total num-

ber of cells produced during the clonal expansion phase). However, the reg-

ulation of disparity between families remains unclear: some hypotheses have
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been proposed about how different signals or even intrinsic characteristics of

the founder cell before priming can contribute to the outcome of an immune

response. Tracking individual cell fate and analyzing its expansion profile is

necessary to understand the role of different contributing factors in the final

response profile.

In this regard, a combination of multiple division tracking dyes has en-

abled researchers to track multiple founder cells’ families while they expand

in a single culture environment [35]. This research suggested that the divi-

sion capacity of näıve CD8+ T cells is programmed at the beginning of the

immune response and that the division destiny of clones is highly similar in

response to different stimuli [35]. Notably, more than half of the progenies are

produced by a small fraction of founder cells, indicating that tracking the fate

of these progenitors [7] over a long time can elucidate the determinant factors

controlling the response.

T cells tend to form clusters during their activation and interaction with

APCs, making it challenging to follow individual cells over extended periods.

However, recent advances in microscopy techniques, particularly time-lapse

imaging and the development of platforms that facilitate isolating single cells

with minimal disturbance, have made it possible to monitor individual primary

lymphocytes during activation and subsequent clonal expansion. Quantitative

analysis of survival features like time to divide, time to die, and division destiny

of individual families have been modeled using the Cyton model [19], which

is one of the major mathematical focus of the present work. This model

allowed to put data from many single-cells experiments into perspective. For

instance, consistently with previous observations, the time to the first division

was longer than subsequent division rounds, and variation in division times

was independent of the generation number (or equivalently, the division rounds

the cell underwent).

The observation that death data did not fit an exponential model led au-

thors to suggest that an internal age-dependent mechanism regulates lympho-
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cyte death. Cells that died showed no signs of growth (or very little growth)

upon their last division, indicating that they lacked the capacity for further

division [20]. Interestingly, there was significant concordance in division des-

tiny within individual families, meaning most descendants died in the same or

close round of division, suggesting descendants might inherit this feature from

their founder cell. Specifically, the size of founder cells before the first division

was highly correlated with the division destiny of its descendants. Siblings

also showed high correlation in their time to division and death, reinforcing

the idea that some features of founder cells are inherited by their progeny.

Overall, it is now established in experimental immunology that quantitative

information and advance microscopy can reveal aspects of immune response

that cannot be discerned otherwise. This is where mathematical biology shows

its value.

1.2 Mathematical models in cellular-scale im-

munology

The behaviour of näıve T cells in response to encountering a pathogen/antigen

shows a wide variability, particularly in the size of the progeny generated, since

it can vary by several orders of magnitude. This variability has not been ex-

perimentally clarified, but it can be attributed to the heterogeneity of the

näıve cell population and the contribution of the external stimuli, which vary

in terms of duration and intensity, as well as in the way they are passed on to

descendants. As mentioned, asymmetric cell division could be another element

contributing to the variability of clonal expansion.

To delve deeper into these phenomena, population studies and in-vitro exper-

iments have typically been conducted, but that approach loses resolution at

the single-cell level and misses the temporal resolution of individual events.

For this reason, an individual analysis approach of clone families was chosen
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for the present work. This allowed for the exact quantification of the number

of cells over time and the evaluation of birth and death times, establishing

a genealogical relationship between the cells participating in the experiment.

The total response variability was investigated starting from the single mother

cells, providing insight into clonal heterogeneity and how this characterises the

overall immune response.

The key goal from a quantitative perspective is a mathematical model that

describes how the lifespan of a single cell can influence the advanced phase of

population expansion, also trying to predict how the duplication rate varies

over time and among families derived from different näıve cells.

In general, the reader should appreciate that there are various types of

models that describe the dynamics of the immune system at different scales,

starting from the molecular scale, attempting to model the biochemical reg-

ulatory cycles of cells, up to tissue-level or multiscale models, as extensively

described in the Review by Eftimie et al. [14]. We will only focus on the

mathematical models used to describe and study growth, reproduction and

movement of cells taking part in immune response, at the cellular level.

The majority of the models developed to study different aspects of T lym-

phocyte and immune system dynamics make extensive use of ordinary differ-

ential equations (ODEs) and concentrate on quantifying T and B cell turnover,

T cell movement, differentiation patterns, immune responses to infections and

cancer (Luo et al. [33], Bains et al. [4], Boer and Perelson [13], Reynolds

et al. [37], Ankomah and Levin [3]). Despite ODEs systems can be easily

fitted to experimental data (thus avoiding overfitting issue due to too many

parameters), there exist also more complex approaches for cell-level dynamics,

which are used for theoretical investigation of various aspects of the immune

system. Among them, there are delay differential equations (DDEs) models

to account for time delays in immune responses, as seen in the work by Lee

et al. [29] and Kim et al. [24], probabilistic and stochastic models like those
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by Davis and Adler [12] and Choo and Murali-Krishna [10], which instead

describe cell proliferation and death probabilities or analyze memory CD8 T

cell population dynamics.

The complexity of these models varies from simple equations to extensive

frameworks for exploring non-trivial behavior.

Model Type Description Example Studies

ODE (Or-

dinary Dif-

ferential

Equations)

Used for quantifying cell turnover, move-

ment, differentiation patterns, and immune

responses to infections, autoimmune dis-

eases, and cancer.

Bains et al. 2009;

Boer and Perelson

2013; Ankomah and

Levin 2014; Reynolds

et al. 2013

DDE (Delay

Differential

Equations)

Account for time delays in immune re-

sponses, such as the delay between viral in-

fection and immune response, or between ini-

tial T cell stimulation and full activation.

Lee et al. 2009; Kim

et al. 2007

Stochastic

Models

Analyze the random nature of processes,

such as the proliferation and maintenance of

memory T cell populations. These models

often incorporate randomness to describe bi-

ological variability.

Choo and Murali-

Krishna 2010

Probabilistic

Models

Describe probabilities of different biological

events, like cell proliferation and death, to

capture the variability and uncertainty in bi-

ological processes.

Davis and Adler 2013

Table 1.1: A selection of typical examples of mathematical models used to

study the immune system. Note that this is a list of only few, representative

models.

In particular and in regards to the problem at the heart of this Thesis,
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the Cyton model was proposed by Hawkins et al. [19] in 2007 as extention

of a previous work published by Gett and Hodgkin [17]. The model utilizes

a system of ODEs with the use of convolution terms over time to describe

a population of lymphocytes with structure, i.e., divided by generations to

which each cell belongs, starting from the activation and clonal expansion

phase. The Cyton model was developed with a top-down approach, aiming to

model the cellular processes necessary to describe the data, thereby choosing

the two fundamental processes of division and death, with the addition of a

term for the reduction of activity [19].

We will discuss the Cyton model in more detail in Chapter 3, describing it

comprehensively.
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Chapter 2

The experiment, its material

and methods

2.1 Experimental setting and data collection

As already mentioned, the data used for the analysis in this thesis were ob-

tained by Dr. Kajal Zibaei, a doctoral student at Swinburne University of

Technology from 2016-19, based on previous research work. All data discussed

here are original.

The data pertain to the division and death times of primed CD8+ näıve

T cells, with single-cell granularity, obtained through recordings of the wells

where each cell was placed. In practice, a T cell was placed in a well, and

its behaviors were then observed under a microscope. At the time of division,

one of the two daughter cells was individually transferred to a new well. Re-

peating this procedure at each cell division allows precise determination of a

“genealogical structure” of the population and measurement of the intervals

between divisions.

The procedure was continued identically up to the fifth generation, when only

2 cells of the genealogical tree were selected, continuing with this procedure

while all the others were kept together, losing the genealogical characterisation
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and birth-division time measurements but maintaining a cell count over time.

The cells were observed and photographed according to two distinct pro-

cedures:

- The first aimed to photograph the Immunological Synapse (IS), which forms

during antigen presentation by Dendritic cells to näıve T cells, from formation

to signaling to termination.

- The second aimed to record the entire cell division process at the population

level.

High-magnification images and images of cells in epifluorescence were cap-

tured using a “Super Resolution” Nikon STORM microscope. The Nikon

STORM is a laser microscope that allows the reconstruction of the position in

a 3D environment of a fluorescent molecule by combining various information,

enabling the analysis of single molecules in interacting complexes like those

formed in the IS. This aspect of the experiment will not be further detailed

in this work, as the collected data mainly refer to a qualitative description of

the observable characteristics of the cells and the IS formed, rather than the

timing of differentiation processes. It is worth mentioning that laser is not

equivalent to optical imaging and this can influence the biological process of

the cells, which tend to have a shorter lifespan in this setting.

Regarding the data on tracking, the entire response process of näıve T

cells to a pathogen, they were obtained by following the population develop-

ment for a period of 2 weeks, using an inverted optical microscope combined

with a confocal unit and a camera. näıve T cells were isolated from OT-1

transgenic mice; these cells expressed a fluorescent protein useful for tracking

their position over time. The antigen-presenting cells (APCs), in this case,

dendritic cells (DCs), were extracted from the bone marrow of C57BI/6 mice,

then brought into contact with the antigens and placed in microwells. The
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next day, näıve T cells were added to the wells, averaging one cell per well.

Images were initially captured at 10-minute intervals.

The recording starts from the interaction between DCs and näıve T cells and

continues uninterrupted until the mother cell’s first division. At that point,

recording is stopped to separate the daughter cells into two wells using a micro-

manipulator, and it is not possible to record the cytokinetic processes during

this phase. From that point on, the cells were left free to duplicate up to

the 4th generation, measuring the lifespan of each. Upon reaching 8 cells per

well, 2 cells per well were isolated into new wells, allowing detailed tracking of

two branches of the genealogical tree. The others were left in the well where

they developed, providing only information on the total population quantity.

From the first to the fourth generation, the interval between frames was set to

30 seconds, and after the relocation of the two cells, from the 5th generation

onward, to 2 minutes.

Therefore, single-cell resolution data are complete up to the fifth genera-

tion, beyond which only partial analysis of a part of the progeny of the näıve

T cell can be conducted. However, the quality of the total cell count data for

each pedigree remains unchanged.

The analysis of the frames was conducted using TACTICs, a software devel-

oped in Matlab by Dr. Raz Shimoni at Swinburne University. The processing

of the frames consists of a series of steps that analyze the previously obtained

fluorescence images.

The procedure used is as follows: first, an attempt was made to reduce the

noise present in the obtained images, often due to exogenous elements such

as light characteristics or the sensor. Next, the background of the image was

subtracted, and the contours of the foreground elements were better defined.

The next phase was segmentation, where small objects were removed from

the image, or holes created during filtering were filled. Commonly to similar
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Figure 2.1: Cells subdivision and transfer in wells. Image modified from Ref.

[47]

tracking procedures, one of the problems to be solved is the possible image

overlap of two cells. This can be managed automatically via an algorithm or

manually.

Each cell must be assigned an ID, which must be maintained in consecutive

frames. The crucial point of this phase is the “assignment problem”; the al-

gorithm used to assign the ID to the cell is based on recognizing a minimal

distance traveled by a cell after division. When the cells do not respect this

distance and remain very close to each other, errors may occur, causing cells

to change IDs. To solve this problem, a manual analysis was conducted, frame

by frame, additionally labeling the frames where cells underwent death or

division.

Cells that did not exhibit division or death during the data collection pe-

riod were ultimately annotated as having an “unknown fate”.

This entire process, which, incidentally, can still give rise to errors, allows for

tracking and recognizing cell families across various generations, not without

some hiccups.

The data were then cross-referenced to reconstruct family lines, namely

pedigrees, starting from each individual näıve mother cell. The data from the
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Figure 2.2: This image shows the process of data gathering from the activation

of näıve T cells to the reconstruction of the pedigrees. Image from Ref. [39]

first two experimental phases, those preceding the isolation of only two cells,

constitute the first four generations of the pedigree. From phase 3, only the

isolated cells were incorporated into the cell’s genealogical structure, while

those left in culture together were considered only in the total cell count gen-

erated by that particular mother cell.

The data structures at the end of the analysis are of two types: a genealogi-

cal tree that includes morphology and division and death times for each tracked

cell (thus allowing generation analysis) and a second data set that represents

the total number of cells associated with that pedigree over time.

The latter measurement results from further data processing, as the frames of

the two environments, the well with the set of cells in culture for counting and

the wells containing the cells for genealogical analysis, were taken at different

time intervals, thus necessitating synchronization of the counts to obtain a

stable and reliable measure.

The activation and subsequent duplication process of näıve T cells, al-

though known, is not yet fully understood in all its details. As mentioned,

once T cells come into contact with DCs, an interface called the immunologi-
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Figure 2.3: This image shows how the cells were tracked, with each näıve T

cell having a different initial number and the progeny addressed accordingly.

Image from Ref. [47]

cal synapse (IS) forms between them, acting as a platform for translating the

chemical signal. In the T-DC conjugation, the surface molecules of both cells

rearrange to stabilise the synapse. Research results suggest that the space be-

tween the cell and the synapse is a significant factor in determining the level

of TCR signaling, either inhibiting or promoting it. T cell activation leads

to proliferation and differentiation; one of the events generated in this phase

is cell growth. Although the metabolism of activated näıve T cells is known,

little is known about how the growth of such cells influences the ultimate fate

of the progeny. One feature that is known to influence replication is size, since

it impacts the division time of daughter cells [45]. For example, the size of

founder B lymphocytes at the time of the first division appears to influence

the maximum number of generations a particular family can undergo before

reaching a quiescent state. Since each näıve T cell generates an entire family

of clones that contributes to the immune response, knowledge about activa-

27



tion dynamics and the links between physical characteristics and population

development can help better understand important aspects of the immune

response.

2.2 Available data, its structure and charac-

teristics

The in vitro experiments discussed in this work are designed to resemble in-

vivo dynamics as closely as possible.

The possible outcomes for each cell are: division, death or survival, where the

latter occurs if, at the end of the experiment (15 days), the cell is still alive

but not undergoing any division or death processes, making its fate unknown.

The first aspect studied was the size of the progeny derived from a single

näıve cell. It was observed that in the first few days, there is a numerical

expansion due to the pure duplication of cells, until about day three or four.

After this period, some families slow down in duplication and stop growing,

which may be linked to a loss of synchronization in cell divisions. Most fam-

ilies reach a population peak between days 4 and 5, showing heterogeneity in

the number of individuals per family and the time required for the population

to decrease.

It is then possible to compare the progression of a single family with that

of others to see how each contributes to the bulk response: it is observed that

only a small fraction of the families, 5 or 6 out of 16, contribute from half to

over two-thirds of the total response.

Analyzing the life spans across generations, it becomes evident that divi-

sion and death rates are not static over time and between generations, but
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Figure 2.4: This image shows the number of cells for each pedigree during

various timestamps. Every pedigree is associated to a different alphanumeric

code and color and it is experimentally obtained in an independent way. Image

from Ref. [47]

exhibit observable differences between families. The most notable difference

is in the time required to divide, which is much longer for generation 0 cells

(näıve T cells) compared to subsequent generations. For mother cells, this time

ranges from one to one and a half days, while for subsequent generations, it

averages half a day with right-skewness up to two days. An example of this is

shown in figure 2.7. Cells in the dataset begin to die starting from generation

five, and in advanced generations, there is an increase in cell lifespan leading

to an unknown fate.

The anomalous behavior of these cells results in a “defect” in the data

meant to describe division and death rates, as the absence of observable events

makes accurate quantification impossible. The completeness of records would
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Figure 2.5: The total number of cells from each pedigree was quantified at

24 hour time intervals. Plots consist of stacked bar chart showing how the

16 clones together give rise to a cumulative expansion and contraction that

represents how a bulk culture might behave. Image from Ref. [47]

be very important, in fact, the data could be highly informative for a detailed

description of the biological phenomenon as a whole, potentially indicating

if these cells have become quiescent or have differentiated into memory cells.

Thus, the data are considered censored, meaning there is a lack of information

due to no events occurring. This limits the extension of some of our results,

as we will see.

Several approaches have been developed over time to handle “censored” data,

with the most common being KM and CR-analysis. Unfortunately, neither

is appropriate in this case as both assume homogeneous survival probability

distributions over time, which is not correct here.

Also note that cells that lived for more than 18 and a half hours and ex-

hibited anomalous behavior leading to an unknown fate were defined as “Long
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Figure 2.6: Here are the pie charts, at different times, of the relative abundance

of cells divided in pedigrees. Image from Ref. [47]

Lived”.

The initial phase of clonal expansion can be described by specific functional

forms, such as exponential, Gompertz, or sigmoid functions, with the latter

being the best at describing the process, in this case. This characterisation

also enables the analysis of the expansion rate over time, showing no strong

correlation between the initial expansion rate and the maximum number of

cells reached during the full immune response of a pedigree. Most pedigrees

instead display the same initial expansion rate, which diverges after one or two

days: this highlights that no characteristic in the early dynamics is yet known

to define a high-clone-producing pedigree. These considerations are expanded

and discussed in Ref. [47]

Finally it is worth mentioning that the data show a very strong correlation

between the lifespans of two daughter cells from the same mother, regardless

of their generation. This may suggest a synchronization in cell cycle control

processes established at the time of individual division, not inherited vertically

through intergenerational passage, but only affecting few generations [47].

It is difficult to establish which characteristics inherited by daughter are deter-
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Figure 2.7: An example of plot from Kajal’s data, showing the number of cells

of a pedigree in each generation in time. The population develops starting

from a single cell and stays still until the mother cell divides. After this slow

start, dynamics become faster with narrow increase and decrease front. As

said in the text not the entire population is described here and part of the

data is lost, this is caused by the measurement procedure. The effects can be

seen in the reduction of the cell numbers between 5th and 6th generation, this

breaks a pattern of monotonous population growth through the generations.

minant of a prolific pedigree and this is why a number of refined mathematical

models have been proposed. We describe the most cited and used one, the

Cyton model, in the next chapter. We will then use that model to describe

the data we have.
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Chapter 3

Introduction to the Cyton

Model

My original work initially focused on implementing the Cyton model, a model

of integro-differential equations proposed in 2007 by the research group of

Philip Hodgkin, a group based in Melbourne. I first studied the equations

that make up the model.

The Cyton model is a mean-field model, that describes the behavior of a phe-

nomenon related to a “large” population, devoid of the elements of stochas-

ticity. Therefore, it is not possible to reconstruct the variability of the process

itself from this model, it only provides an average description of signals. In

fact, the phenomenon that we are trying to describe is one in which the av-

erage over repetitions of this phenomenon in an individual and the average

over a phenomenon characterised by a very large number of participating in-

dividuals are the same. Or in other words we assumes the hypothesis that

the dynamics driving the entire population are the same as those driving the

single individual, and therefore the microscopic process is essentially the same

as the macroscopic one.

Analyzing the Cyton model technically, it can be said that it is a structured

population model. The population structure is organized into sub-populations
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that reflect the generations to which each cell belongs, which is given by the

number of divisions that have occurred between the näıve cell and the daugh-

ter cell we are analysing. The population that describes each generation in-

creases depending on the divisions of the cells from the previous generation

and decreases due to the effects of division and death phenomena within the

generation itself.

3.1 The equations of the model

The equations of the Cyton model are as follows:


ṅ0(t) = −nB

0 (t)− nD
0 (t)

ṅi(t) = +2nB
i−1(t)− nB

i (t)− nD
i (t) with i = 1, 2, ...

where the terms nB
i and nD

i represent, respectively, the number of cells in

the i-th generation that divide and die at time t, and are defined as follows

nB
i (t) = ni(0)q

B
i (t) +

∫ t

0

2nB
i−1(τ)q

B
i (t− τ) dτ

nD
i (t) = ni(0)q

D
i (t) +

∫ t

0

2nB
i−1(τ)q

D
i (t− τ) dτ

both variables nx
i are formed by two additive terms:

• The first term represents the effect of the division/death phenomenon on the

initial population of cells belonging to the i-th generation.

• The second term, on the other hand, represents the effect of division/death

brought by the cells that gradually divide in the previous (i-1)-th generation
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and enter the current i-th generation, subsequently dividing or dying.

Let us now focus on the coefficients of the model. These are time-varying

and represented by the functions q
B/D
i (t). Each of these functions represents

the instantaneous/in time rate of division (B) and death (D) for cells belong-

ing to the i-th generation. Such rates actually have an underlying structure

dependant on the probability distributions related to the birth and death pro-

cesses.

qBi = γi p
B
i (t)

(
1−

∫ t

0

pDi (t) dτ

)
= p̂Bi (t) P̄

D
i (t)

qDi = pDi (t)

(
1− γi

∫ t

0

pBi (t) dτ

)
= pDi (t)

¯̂
PB
i (t)

The rates qBi therefore represent the effects of division after taking into ac-

count the effect of death, while qDi is the analogous for the death process.

Assuming that the two processes are concurrent and independent (following

the experimental results), the structure of the division rates is nothing more

than the instantaneous probability/probability density function of dividing at

time t, reduced by the value of the Progressor Fraction γi, multiplied by the

cumulative probability of not having undergone the death process by time t.

For the death rates, a similar calculation is performed, considering the cumu-

lative probability of the division process and the probability density function

for death.

The probability distributions p
B/D
i (t) are defined based on the analysis of

biological data obtained from experiments with lymphocytes. In this study we

are concerned about the dynamics of T lymphocytes only, but the response of

B cells has also been investigated deeply [46, 23]. Since they are not directly

observable, as the phenomena censor each other, it is necessary to modify the

behaviors of the cells ad hoc to suppress the biochemical cycles of the division
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and, alternatively, death processes.

Given that these processes are right-skewed, meaning they sometimes occur

with long delays compared to the population mean, asymmetric distributions

such as the gamma, Weibull, or log-normal are used to describe them. The

log-normal distribution has proven to be the most appropriate and has there-

fore been chosen as the functional form for the “basic” distributions (pi) of

the model [26, 31].

Figure 3.1: Probability density function used to model the phenomena of death

and division, images from Ref. [19]

Returning to the terms n
B/D
i of the model, the second term is a convolution

integral, with the variable 2nB
i−1(τ), which represents the cells born at time τ ,

interacting with the parameter q(t) delayed by τ . This represents, for each

instant of the continuous signal nx
i−1, the comparison of the same with the

entire probability distribution q(t), starting from the moment of “birth”.

The differential equation for the first generation is then expressed as follows:

ṅ0(t) = −ni(0)q
B
i (t)− ni(0)q

D
i (t) = −ni(0) · (qBi (t) + qDi (t))
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While those for subsequent generations (taking generation number 1 for ex-

ample) become:

ṅ1(t) = +2nB
0 (t)− n1(0)q

B
1 (t)−

∫ t

0

2nB
0 (τ)q

B
1 (t− τ) dτ

−n1(0)q
D
1 (t)−

∫ t

0

2nB
0 (τ)q

D
1 (t− τ) dτ

For the subsequent generations (say generation y), the terms can be explic-

itly expressed as compositions of terms from the previous generation (ny−1)

interacting with the distributions of the current generation (qy).

By recursively repeating this operation, it is possible to connect back to the

terms related to the initial generation indicated as n0, linked to a combination

of all terms q
B/D
i from the intermediate generations (between y and 0). Thus,

the model exhibits a structure alike that shown in figure below.

Figure 3.2: Structure of the populations model and scheme of transitions in

an equivalent discrete system

Cells start from generation 0 (in green) and with each division progress into

subsequent generations (in blue). When a cell dies, it enters the “population

of the dead” (in orange). In the diagram, the arrows pointing to the right

indicate transitions for the division process, while those pointing to the left

(which necessarily end in the “population of the dead”, the sink node of the

graph) indicate the process of cell death.
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3.2 Further considerations about the model

The Cyton model considers only two phenomena: cell division and cell death,

treating them as independent and competing processes in determining the fate

of the cell. Technically, this does not imply that at any given moment the Cy-

ton model assumes only one of these actions occurs, but rather it imagines

that each phenomenon can be described by independent clocks. A sample is

drawn from each of the two distributions, and the action that occurs first is

the one that will actually be observed to unfold at the extracted time.

Another hypothesis of the Cyton model is that division events reset the mech-

anisms responsible for “vital” processes, necessitating the extraction of new

concurrent division and death times after each division.

To describe the mechanism of decreased cell activity as generations progress,

and thus reduced involvement in the division process, the Cyton model intro-

duces a variable called the Progressor Fraction (gamma) for each generation.

This identifies the fraction of the population that, on average, participates in

the division process. From the perspective of an individual cell, it represents

the probability of actually undergoing division. The two+1 phenomena, i.e.,

division, death, and actual participation in the process (latter identified by

gamma) appear to depend on the number of division rounds a cell undergoes

since the stimulation of the näıve cell. Hence, there is a dependence of the

probability distribution values and gamma on the generation to which the

cell belongs. Gamma, in particular, is expected to decrease as generations

advance, reflecting biological phenomena.

Indeed, another important aspect highlighted in the Cyton model, partic-

ularly in the 2011 paper Ref. [46], is how gamma is defined. The authors

proposed a calculation involving a normal distribution, which represents the

distribution of generations at which cells die. It appears that the underlying

hypothesis is that cells die around a predetermined/fixed generation i on av-
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erage, with uniform variability across preceding and succeeding generations,

thus exhibiting a unimodal and symmetric process centered around the mean.

This is biologically sound but, as far as we are aware, needs to be tested more

thoroughly.


γ0 if i = 0

γi =
∫ +∞
i+1

N (n,µde,σde) dn∫ +∞
i

N (n,µde,σde) dn
if i = 1, 2, ..

The value of gamma associated with generation 0 is considered a free pa-

rameter, thus it can vary independently of the definition of subsequent gamma

values. The latter are instead related to the ratio of two integrals, where the

numerator represents the survival function from i+1 to infinity of a normally

centered distribution with parameters µde and σde. The second is the same

survival function but evaluated at i.

γi =
N̄(i+ 1)

N̄(i+ 1) +
∫ i+1

i N (n, µde, σde) dn
=

N̄(i+ 1)

N̄(i)
(3.1)

The normal distribution N represents the probability density function of

death, with respect to the variable n which varies among integers and rep-

resents the generation at which a cell dies. This complicated formulation is

derived from experimental observations and meticulous data modeling efforts

aimed at reducing the number of parameters used to define the trend of gamma

across generations. Recognising the work done by the researchers, in this thesis

we questioned whether a simpler description of this trend might be adequate.

To perform this analysis, we first sought the optimal gamma values for de-

scribing our data and subsequently evaluated how well these values adhered
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to the aforementioned definition.

In one of the version of the Cyton model [46], log-normal distributions

are used to describe the processes of division and death. A log-normal distri-

bution is characterised by its mean and standard deviation, which uniquely

define it. Experimentally, a significant difference in division times has been

observed between undifferentiated näıve cells and the populations generated

during clonal expansion. Thus, the Cyton model adopts a pair of distributions

(division/death) for generation zero, representing näıve cells, and another pair

(division/death) for the development of all subsequent generations. This is an

important feature.

Another important aspect of the Cyton model is that what are called the

probability distributions of division/death at first glance seem to be merely

event rates over time. If this were the case, they would not necessarily sum to

1. However, it is crucial to note that they are descriptions of how the division

or death process unfolds over time, and thus they function as probability den-

sity functions (pdf) for a cell belonging to that generation. Conceptually, these

must integrate to 1, as the idea is that within some time t, at most infinite,

there is certainty that this phenomenon will occur, though it can be distributed

between the initial moment and the maximum moment in any manner.

The observability of division and death phenomena allows these processes

to be described over time, characterised either by rates or alternatively by

a probabilistic description (which integrates to 1 over time). However, it is

not possible to individually observe the effects of division and death, as the

coexistence of the two means that the occurrence of one limits the free observ-

ability of the opposite event. Thus, the two phenomena are always observed

net of each other, (which does not mean the net effect of population increases

or decreases, as that is represented by the sum of the two “net” phenomena).
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It is possible, however, to alter the biochemistry of a cell by exposing it to

certain simple molecules and proteins, which can induce a cessation of the

division process, as done in Ref. [19]. At this point, the phenomenon that can

be freely observed is death. However, it must be considered that this altered

state may also influence the normal functionality of the death process, and

therefore the distribution found may not be entirely accurate.

We now conclude this section with some general consideration on the Cy-

ton model and its characteristics.

The system lacks disturbance or perturbation terms, and the complete het-

erogeneity of the population (thus, the stochastic element defining how differ-

ent agents divide, reproduce, and act during the immune response) is entirely

encapsulated within the probability distributions of division and death.

This model is “sophisticated” from a certain perspective, as it encompasses

various elements of stochasticity arising from separate phenomena. These can

include environmental variability in which the population is immersed, “ran-

domness” due to individuals with different characteristics within the popula-

tion, and even individual internal variables of the cell (e.g. phases of the cell

cycle). All these sources of variability are described and included in the dis-

tributions (we keep mentioning). For this reason, we can say that the model

adopts a phenomenological approach.

The cyton model is thus a phenomenological model, meaning it is based

on the description of measurable processes concerning the cell population and

does not attempt to infer the microscopic dynamics that drive these processes.

It is, of course, possible to make hypotheses about the biochemical causes of

the phenomena, but it is important to remember that the real element is the

observable measurements.

The Cyton model is an unconstrained model, meaning there are no ex-

plicit constraints on the solutions of the model, which is entirely based on
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the parameters that define it. Saying that the Cyton model is unconstrained

expresses that the constraints of “mass” conservation and the admissibility of

state variable values are not intrinsic to the system’s equations but depend

solely on how the division and death distributions are chosen.

These parameters are determined based on the death and division distri-

butions. Once the probability distributions of death and division for each

generation are defined, the entire set of system coefficients is determined and

thus not influenced by the dynamics.

One final element to note is the fact that in evolution, a few very fit/good

individuals contribute the most to the advancement of the species against

selection. This process is thus a succession of continuous bottlenecks, which

is something also observed in our data (as seen in figure 2.6, in the previous

chapter).

Note that the shape and parameters of the aforementioned distributions

must be experimentally assessed, as they fully characterise the solution of our

system of differential equations. Fitting the model involves adjusting the dy-

namics by varying the distributions and their parameters. The final analysis

involves comparing the optimal distributions after regression with the actual

distributions experimentally found for the division and death processes of in-

dividual cells or the population.
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Chapter 4

Analysis of results

In this chapter, we will first address and explain the fitting process of the

Cyton model and the procedure used. This will include an analysis of how the

data was handled and the structure of the stochastic optimization algorithm.

Next, we will examine the results obtained from the fitting process, evaluating

how well the model describes both the benchmark data from Ref. [46] and

the original data in our possession. For the latter, we will compare the models

fitted for all pedigrees together and for the pedigrees divided into groups.

Finally, the results of a sensitivity analysis, assessing the model’s response to

parameter variations, will be presented.

4.1 Fitting the model

The process of studying the model and analyzing its correct implementation

was carried out using real data. The first dataset, which we will call the

benchmark, consists of the data presented in the Ref. [46], where a thorough

description of the Cyton model is given. These data represent the response of

a set of B cells to an infection.

These data were analysed by fitting the model. Once the fitting was

achieved in-depth exploration of the biological process was conducted, using
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original data for the clonal expansion of CD8+ T cells in response to interac-

tion with a pathogen.

Figure 4.1: Set of benchmark data used for the model evaluation phase in the

present thesis. Image from Ref. [46]

4.1.1 Optimising the Cyton model for our experimental

data

The fitting procedure

To analyse the data using the Cyton model, one must first fit the model to

the data. This entails adjusting the model’s free parameters, namely the mean

and variance of the distributions related to division/death processes, as well

as the progenitor fraction gamma for each generation. Varying these parame-

ters allows the simulated model results to approximate the actual data trend.

“Matching” was done by measuring the distance between the data point and

the simulated curve point; that distance was then appropriately modified to

obtain a score. After testing different formulas for score calculation, including
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linear, exponential, and polynomial functions, a quadratic form was chosen,

as follow

Score : S = (d · 20)2 (4.1)

with d representing the difference between the values predicted by the model

and the actual data.

Distance : d =

Np∑
i=0

(yDi − yMi )

This choice was made so that the obtained models, while tending towards a low

mean error (as in the case of the linear score), would favor a lower variability in

the fit error. This way, all the models stay close to the target points, instead of

giving equal importance to both small and large errors, which is what happens

with linear forms.

The final goal was to push the model curves representing population dy-

namics as close as possible to the points present in the data. The fitting pro-

cedure was refined through successive attempts, modifying and adding steps

to the pipeline. A standard protocol was eventually established, which was

subsequently applied in all fitting attempts. This protocol is composed of two

sections:

• The first section, in which the parameters of the distributions are varied, is

further divided into three steps. 1) Initially, models are simulated by exploring

the parameter space using a grid search. A grid search is a systematic method

of searching through a manually specified subset of the hyperparameter space

of a learning algorithm. Based on the best models obtained from the grid

search (best in terms of score, which will be assumed from here on), the next

two steps of stochastic optimisation are performed. 2) The next step involves

optimising only six parameters: the mean and variance of the death rate kept

homogeneous for all generations, the mean and variance of the division rate

for the 0 generation of näıve cells, and finally, the mean and variance of the

division rate for generations following the first, which are the ones charac-

terised by clonal expansion. 3) The second version of stochastic optimisation
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further includes the subdivision of death rate distributions similar to what is

done for the division rates, thus having one distribution for the 0 generation

and another distribution for generations from 1 onwards. In this first phase

of the pipeline, only the division and death rates were varied, while the pro-

gressor fraction gamma was kept static/invariant to reduce the dimensionality

of the problem. The gamma values used for each generation were predefined

based on some biological hypotheses about the data: the average generation of

death being the 5th and deaths being normally distributed with a variance of

1. Following the formula defined in Wellard et al. [46] for γi, individual values

for each generation were obtained. This dimensionality reduction procedure

practically meant only searching for the best distributions of rates conditioned

to the fixed gamma values.

• In the second phase, starting from the best models obtained in the first

phase and fixing the parameters that describe them (mean and variance of the

distributions), the value of gamma (progressor fraction) for each generation

was varied freely. In this phase, the goal was to find the best trend of gamma,

conditioned on the set of parameters found in the first optimisation phase.

It should be noted that this procedure could lead us to the global opti-

mum only under the assumption that the optimisation of the mean/variance

parameters of the distributions and the trend of gamma across generations are

independent. This means that whether we optimise them together or sequen-

tially does not affect the “reciprocal” behavior of the optimisation dynamics.

However, this assumption is too strong and is a limitation of the study, made

necessary by the limited computational resources. To further investigate this

analysis in the future, we could move to a single optimisation phase that in-

cludes all parameters, or we could repeat this optimisation procedure cyclically,

seeking convergence as the optimisation iterations progress.

At the end of the fitting phase, the parameters obtained from stochastic
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optimisation are analyzed. If these parameters exhibit limited variability, it

can be said that the model is in a local optimum, albeit within a “limited

zone”. On the other hand, if the expressed variability is wide, it is likely that

the different optimisation dynamics have led the models to “scattered” local

optima.

An additional element considered is that the variability expressed by the pa-

rameters post-optimisation can be useful in understanding the importance of

the parameter itself. If high variability does not result in a significant dif-

ference in scores between models, it can be inferred that the model is not

particularly sensitive to that parameter’s value. Conversely, if a parameter ex-

hibits low variability (the value remains the same across different optimisation

dynamics), it is likely that this parameter is a defining characteristic of the

phenomenon described by the Cyton model.

Details on the Stochastic Optimisation Algorithm

All the stochastic optimisation algorithms described here were implemented

from scratch in MATLAB and operate as follows: starting from a fixed set of

parameters (whether means and variances or gamma values for each genera-

tion), the algorithm adds or subtracts a random quantity between 0 and 0.5,

with a decreasing optimisation step starting from 0.1.

death mean death std. dev. division mean division std. dev.

µ = 6.0 σ = 1.5 µ = 7.5 σ = 0.9

µ = 6.0 σ = 0.9 µ = 2.0 σ = 2.2

µ = 7.0 σ = 2.0 µ = 4.0 σ = 0.4

Table 4.1: Table with examples of parameters for initial models before the

stochastic optimisation

In the initial optimisation steps, this adjustment occurs for multiple pa-
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rameters simultaneously, then for only one parameter per step (i.e. in each

optimisation step, only one parameter is modified), using a variable and de-

creasing optimisation step size during the procedure. Once the new set of

parameters is obtained, the algorithm simulates the model, calculates the dis-

tance/score relative to the real signal, and if the new score is better than the

previous one, the parameter modification is retained. If the score is worse, the

probability of retaining the modification decreases as the score worsens, this

means that in case of worsening of the score the acceptance of the modification

has a probabilistic nature.

The algorithm is based on the idea of simulated annealing with stochastic cor-

rections of the variable to be optimised and probabilistic acceptance of these

variations.

How to fit the original data

Moving on to the analysis of the original data, these are divided by families,

meaning by the originating näıve cell, and, for each family, the number of cells

in each generation over time is tracked. As a first step, we used the fitting

pipeline on a “fictitious” population, created by combining the time-course

data of all the pedigrees, starting from a 0 generation composed of 16 cells

and advancing generation by generation up to 8. We stopped our analysis at

generation 5th because in that generation the data are “truncated”, as only 4 of

the 16 clones present were continuously monitored, while the others from that

moment on were only used for counting. This experimental decision resulted

in the loss of generation-wise data, meaning that, for the remaining clones, we

only have the total number of cells without a breakdown by generations, so we

cannot fully apply the Cyton model. Due to this reset in the data (around the

equivalent time 8000) starting from generation 5 we decided to fit the Cyton

model only up to the fifth generation only, excluding the subsequent ones.

Firstly, we considered the variability of the dynamics exhibited by different
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cell pedigrees, with some families producing a large progeny and others much

less.

We then decided to divide the 16 pedigrees at our disposal into three

groups, based on the total cell count data for each pedigree. The families

that reached the highest cell peaks were grouped as ‘best individuals’, the

ones that produced the fewest cells were called ‘worst individuals’, and the

remaining families that did not stand out either positively or negatively were

labeled ‘middle’. This gave us an idea of typical outcomes for clonal expan-

sions.

The question we posed was whether the phenomenon of response to a

pathogen, with the activation of näıve cells and subsequent expansion, is ho-

mogeneous among the pedigrees involved. We wanted to determine if all pro-

cesses can be described in the same manner, considering intrinsic variability,

or if the macroscopic process is an average of structurally different processes.

Our idea was to compare the fitted models for the three groups (best, worst,

and middle) and the population containing all pedigrees, evaluating whether

the parameters of the distributions for division and death phenomena differ

significantly or reflect the same pattern across all groups. We fitted the Cyton

models using the described pipeline on each group.

The data structure for each group is the sum, for each generation, of the num-

ber of cells belonging to the pedigrees of that group over time.

Another analysis we considered is fitting the model to a single pedigree,

whether it is an “outlier” (either high or low) or an average one. However, this

approach presents technical limitations, as the early generations consist of a

very small number of cells (1, 2, 4, ...), resulting in very irregular data signals

with abrupt vertical jumps. This poses a problem for the Cyton model, which

was developed as a mean-field model and thus is less effective at representing

individual cases (for this task, a stochastic agent-based model could be more
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appropriate). For this reason, we decided to use the “group” fitting approach

(best, worst, middle) to have more data and thus slightly smoother and less

irregular signals.

The question of whether cellular variability is simply intrinsic to the process

or requires the addition of external factors is interesting because it explores the

microscopic dynamics inherent to each individual rather than just the average

trend across the entire population. This approach aims to be as grounded

as possible in the biochemical reality of the processes behind such complex

phenomena, without losing focus on observable variables.

Data manipulation

The data extracted from the 2011 Cyton paper [19] contained multiple mea-

surements (values on the y-axis) for each time point. To achieve a smoother

signal, we decided to use a transformation of the measurements as the actual

signal for the fit. Both the mean and the median of the measurements were

tested, and the mean was ultimately chosen because we expect that, given

how the distance score is constructed, the model tends to converge towards

the mean of the measurements.

Data manipulations were performed to evaluate the results of the fitting

pipeline with more complete and accurate data. We tried inserting “fictitious”

points into the data dynamics in addition to the actual ones using a simple

averaging technique on both the x-axis and y-axis, but this did not yield sig-

nificant advantages.

Details of the Grid-search procedure

The grid search on the model parameters (µ, σ, and γ0) was not performed

in a single pass spanning all possible values of the parameter state space.
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Figure 4.2: The image shows the total number of cells data (the curve in

yellow above) and the same data divided by generation with original points

highlighted in blue and added points highlighted in red

Instead, it was conducted using four different “offsetted” grids. This approach

allowed for a reduction in search time while maintaining a wide variability

of evaluated parameters. The grids in various searches were always “offset”

relative to each other, thus covering different values of the spectrum. This

strategy helped reduce the problem’s dimensionality and, consequently, the

required computational time. The idea behind this strategy is that by selecting

the 35 best points and the 5 worst points for each grid search and subsequently

applying stochastic optimisation techniques, the initial set of selected values

is broad enough to avoid local optima.
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Introduction to sensitivity analysis

To evaluate whether the model that describes the data, found at the end of the

optimisation pipeline, is unique, meaning the parameters defining it are truly

characteristic of the curves of the described dynamics, we proceed to assess

the sensitivity of those curves to the variation of these same parameters. We

conducted an analysis allowing the obtained parameters to vary by 10% and

then analyzed the variation in the score obtained. It was observed that the

score had oscillations greater than 10%, resulting in “elasticity” and indicating

that for certain parameters, the sensitivity is high. This means it is important

that the parameters are as they are, allowing us to say that the correct model is

“unique” and not equivalent to other models with different parameters values.

52



Algorithm 1 Pseudo-code of stochastic optimization

≫ Research for starting points:

> Run the 4 “offsetted” grid searches, evaluating the model defined by the

parameters present in each of the grid points

> From each grid search select the 35 models with the lowest score and 5

with the worst score

≫ Stochastic optimization of PARAMETERS DISTRIBUTIONS on the

160 selected points:

> 1st algorithm: optimize 3 log-normal distributions, gen0+ death, gen0

division, gen1+ division

> 2nd algorithm: optimize 4 log-normal distributions, gen0 death, gen1+

death, gen0 division, gen1+ division

> From each algorithm select the 50 resulting models with the best fitting

score

≫ Stochastic optimization of the PROGRESSOR FRACTION γ on the 100

selected points:

> algorithm: optimizes the gamma values for each generation, keeping fixed

the values of the 4 log-normal distributions found in the previous steps

≫ Analysis of results: best model and parameter variability
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4.2 Results from the fit

Let us now analyze the results obtained at the end of the fitting process.

Fit of the benchmark data

The data used to validate the model are well described/fitted by the model.

Despite the limited number of points available, the simulated curves closely

match the dynamics present in the data, adequately following the data both

in the steeper growth phases and in maintaining the populations over longer

timescales (as seen in generations 1 and 2).

Plots of the individual generations are included in Appendix A for better

observation.

Figure 4.3: Fitted dynamics of the best Cyton model obtained at the end of

the fitting procedure over benchmark data. Each color represent a generations

from the 0th to the 7th, the smooth curves are the predicted dynamics.
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By using a score that evaluates the distances of data points from the sim-

ulation in an aggregated manner (recall score from equation 4.1), the mean

distances were minimized, leading the curves to pass close to the data points

without having to “exactly cross” them.

From the image of the simulated curves, it is evident that the Cyton model

describes well the phenomenon under analysis. We will compare these perfor-

mances with those of an ODE model and a stochastic model (which start from

the same hypotheses as the Cyton) in subsequent chapters 5 and 6.

Now, we present the theoretical progressor fraction (gamma) curve, ob-

tained from the data using the form stated in the Cyton model paper, formula

3.1 and we compare it with the gamma curve obtained post-optimisation.

Figure 4.4: The profiles of gamma over generation, from the second generation

(n°1) to the eighth (n°7). In blue the theoretical values from the formulation

equation 3.1, in red the values obtained at the end of the fitting procedure on

benchmark data.
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The dynamics obtained from the optimization process are similar in form

to the theoretical ones, giving us the impression that the idea behind equa-

tion 3.1 used to describe the behavior is sensible, but it shows a delay in the

decrease of values. In particular, it is noted that the curve found through the

optimization process, starts with a lower gamma value for the first generation,

this results in higher values for all subsequent generations compared to the

theoretical curve. The distance between the two curves increases up to the

6th generation and then decreases, becoming zero at the 8th generation, likely

due to the “extinction constraint” of the population.

To evaluate the effectiveness of the overall Cyton model and understand

also how well a model with specific parameters describes the data, a sensi-

tivity analysis was performed. This process involved taking a definite model,

obtained at the end of the fitting pipeline, and varying its parameters within

a range of -10% to +10% of their value. We defined and evaluated two KPI

parameters: 1) the mean of the absolute value of the difference between the

scores (mean(|s̃− s∗|)). 2) the mean of the ratio of the absolute value of the

difference in scores to the optimal score value (mean(|s̃− s∗|/s∗)). The result

is shown in the table below.
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varied parameter mean(|s̃− s∗|) mean(|s̃− s∗|/s∗)

death gen 0 mean 3133.7 4.674

death gen 0 std.dev. 34.8 0.050

death gen 1+ mean 773.2 1.046

death gen 1+ std.dev. 14.9 0.021

division gen 0 mean 8401.1 13.591

division gen 0 std.dev. 39.0 0.041

division gen 1+ mean 293.0 0.420

division gen 1+ std.dev. 2.9 0.004

Table 4.2: Table shows the mean difference in fit error between the optimal

model and a model with one parameter varied in a (-10%, +10%) range. The

first number is the absolute difference, the second one is the relative variation

in fitting score.

From this data, it is understood that some parameters are more impor-

tant than others. In fact, varying them leads to a significant change in the

score, while others seem to have a minimal impact, at least within the range

of variations considered. In particular, it seems that the greatest impact on

the model comes from the means of the distributions, which always exhibit

greater sensitivity compared to the associated standard deviations. A possible

explanation for this could be that the absolute values of the standard devi-

ations are one to two orders of magnitude smaller than those of the means,

and thus their relative variation does not significantly affect the shape of the

log-normal distribution under examination.

It was decided not to show the graphs containing more details of the sen-

sitivity analysis, as they are not the focal point of this thesis and would not

add anything to the summarized data presented in the table above.
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Fit of original data - all pedigrees together

The fit on original Kajal’s data was performed following the same procedure

previously described and used for the benchmark data. It is important to

remind that only the first 5 generations were subject to fitting due to the lim-

itations of the data collection procedure, and the data for the more advanced

generations were not considered.

A first fit was performed on the entire set of summed pedigrees, mimicking a

population of 16 näıve T cells that activate and enter the clonal phase. The

best model resulting from this fit presents the following parameters:

distribution mean std.dev.

death gen 0 µ = 7.559 σ = 0.329

death gen 1+ µ = 5.768 σ = 0.7535

division gen 0 µ = 4.792 σ = 0.111

division gen 1+ µ = 4.718 σ = 0.087

Table 4.3: Table with the parameters of the best fitting Cyton model for the

“all-pedigree” group. It is possible to compare these values with the ones

below obtained fitting each of the other groups of pedigree.

Here we present the plot of the very same model:
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Figure 4.5: All pedigree cells group - Plot of generation 0 - 4, in red the real

data, in blue the simulated dynamics with the parameters of the best Cyton

model

It is observed that already in generation 4 (the fifth), the change in cell

count induces an effect that narrows the curve, resulting in a steeper decrease

in the number of cells. This might be why the model cannot follow the signal in

the higher part or in the tail, differently than the previous generations (which

describe the natural process and are not affected by the counting procedure).

A similar effect from this problem will also be noticed in generation 4 of the

other groups, in particular in the “worst pedigree” group.

Fit of original data - the different groups

Subsequently, fits were performed on the three previously created pedigree

groups: worst, middle, and best.
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Now we analyze the parameters of the best model obtained at the end of

the fitting pipeline for these three groups.

parameter worst (4gen) worst middle best

death gen 0 mean µ 5.615 7.280 7.222 5.226

death gen 0 std.dev. σ 0.278 0.276 0.294 0.220

death gen 1+ mean µ 5.615 5.846 5.799 5.226

death gen 1+ std.dev. σ 0.278 0.780 0.691 0.220

division gen 0 mean µ 4.835 4.775 4.737 4.900

division gen 0 std.dev. σ 0.241 0.0001 0.100 0.109

division gen 1+ mean µ 4.937 5.015 4.730 4.643

division gen 1+ std.dev. σ 0.145 0.284 0.085 0.021

Table 4.4: Parameters value of the best model for each cells group. We also

added the results of the fit of the worst group on 4 generations instead of 5,

trying to eliminate the impact of the variation in counting procedure.

The plots of the best model for each group have been included in Appendix

B for space reasons.

Here we only present a brief comparison between the last fitted generation

(the 5th) of each group.

Figure 4.6: Comparison between the 5th generation of each group. Starting

from left we show the best group, the mid group, the worst group.
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In all the models the change in the counting procedure happened during

the data gathering phase has an impact on how the dynamics of the population

is affected. The most relevant effect is the insertion of a unnatural bi-modal

dynamic in the worst group.

The Cyton model fit better the best group and worse the worst group as an

effect of this twist in the data.

Figure 4.7: Plot of the cell population trends over time for the three groups.

The overall shape is a skewed bell curve, but each group has different timing

for the rise and decrease phases.

To analyze how the dynamics of the Cyton model, fitted to the data for the

various groups, contribute differently to the total cell population, we present

an image similar to the one shown in chapter 2, illustrating how the popu-

lation fraction of each group (best, mid, worst) changes over time. It was
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not possible to replicate the precision of the original image, which included

the breakdown by individual pedigrees, as the model was fitted to the groups

rather than individual families. The x-axis represents time measured in hours,

while the y-axis shows the number of alive cells for each group at the time of

measurement.

It is evident that the best group has the highest absolute numbers among

the three groups, while the mid group exhibits a decline that extends for a

longer period. Notably, the pedigrees divided in this manner do not show an

absolute dominance of one group over another throughout all time, but rather

dynamics with faster evolution times. In fact, it can be observed that by time

t=80 hours, the best group has already gone extinct, while the worst group

still persists and is, at that point, the majority of population.

In the figure below we show the profile of the progressor fraction γ for each

group.

Figure 4.8: Values of the progressor fraction in the various generations fitted

(the first five). For each group it is shown the profile of γ of the best model

obtained at the end of the fitting procedure
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In this case, the values do not exhibit the convex shape expected from the

first part of the profile calculated with formula 3.1. However, the decreasing

profile of the progressor fraction remains, with different values depending on

the group of näıve cells observed. Excluding the “worst-4” group, whose values

can be shifted by the fact that the 5th generation is not considered in the fit-

ting (this should make us aware of how changes in the counting process in the

data might affect the values), the others groups show a clear order, coherent

with the different trend in the groups, with the best over the others and the

worst at the bottom.

In the end, we consider the variability of the parameters resulting from the

fitting procedure, analyzing the values of the top 20 models for each group.

First, we calculated the mean value across the 20 models for each parameter,

and then estimated the standard deviation of these values from the mean. As

explained before, high variability in the parameters indicates that there are

many models that fit our data well, suggesting the existence of multiple local

optima from an optimisation perspective.
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parameter worst(4g.) worst middle best all-ped

death gen0 µ 6.162 (0.60) 6.274 (0.81) 6.207 (0.85) 6.468 (0.92) 6.193 (0.87)

death gen0 σ 0.432 (0.13) 0.616 (0.23) 0.464 (0.30) 0.590 (0.32) 0.589 (0.14)

death gen1+ µ 5.973 (0.27) 5.860 (0.03) 5.508 (0.23) 6.011 (0.53) 5.695 (0.11)

death gen1+ σ 0.500 (0.18) 0.747 (0.06) 0.496 (0.20) 0.812 (0.39) 0.714 (0.10)

div. gen0 µ 4.849 (0.07) 4.649 (0.14) 4.867 (0.09) 4.822 (0.08) 4.849 (0.07)

div. gen0 σ 0.222 (0.05) 0.047 (0.08) 0.066 (0.05) 0.094 (0.02) 0.102 (0.03)

div. gen1+ µ 4.929 (0.03) 5.044 (0.04) 4.678 (0.04) 4.676 (0.03) 4.697 (0.03)

div. gen1+ σ 0.137 (0.05) 0.275 (0.01) 0.106 (0.03) 0.029 (0.03) 0.088 (0.02)

Table 4.5: Mean and standard deviation in the format mean (std. dev.) of

the parameters of the 20 models with the best fitting score for each group (the

parameters are µ and σ of the 4 distributions of the Cyton).

A point that was brought to my attention by the cell biology research group

at Swinburne University is that the difference between the sensitivity analysis

conducted for the benchmark data and this variability analysis of the results

of optimization process, lies in their focus. The former (sensitivity study) ex-

amines whether random variations in good models can lead to either good or

poor models (thus assessing whether the parameter space is essentially “flat”).

However, it does not allow for a complete evaluation of the existence of mul-

tiple suitable models to describe our dynamics (i.e., the existence of multiple

equally optimal local optima in a non-flat space). This latter aspect is high-

lighted by a results variability study.
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Chapter 5

Comparison with ODE model

In this chapter, we introduce a simpler ODE model compared to the Cyton

model to evaluate the differences in descriptive capabilities for the clonal ex-

pansion process. Following a similar structure to the previous chapter, we

present the fitting method and the results it yielded on the benchmark data

from Ref. [46], followed by the results on our original data.

The ODE model

To evaluate the accuracy of the Cyton model in fitting the biological data at

our disposal, we compared the results with those obtained by fitting a simpler

mathematical model, a system of ordinary differential equations (ODE), which

is introduced below.

The system, starting from the same assumptions as the Cyton model, sim-

ulates the phenomena of division and death, using a different coefficient for

each generation. It is not necessary to model the behavior of the progressor

fraction (gamma) as this is implicitly included in the division rate.

The equations of the system are therefore:
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

ṅ0(t) = −a0n0(t)−m0n0(t)

ṅ1(t) = +b1n0(t)− a1n1(t)−m1n1(t)

ṅi(t) = ... with i = 2, 3, ...

Where ai represents the division rates, mi the death rates, and the birth terms

bi are exactly double the division terms bi = 2ai−1.

Fitting procedure

Also in this case, the model was initially fitted to the data from the Cyton

paper [46].

The fitting procedure was modified due to the structural differences from

the previous model, but the stochastic nature of the optimisation algorithm

was retained. Division and death rates for each generation were varied, starting

from an initial set of values where all division rates were set to 2 and all death

rates to 1.5. Subsequently, at each optimisation step, a random variation was

applied to one of the parameters, mediated by a variable optimisation step

size (θ), whose value was made to oscillate during the optimisation process,

following a decreasing trend. This approach was inspired by the concept of a

“thermal hysteresis cycle” typical of simulated annealing algorithms.

Fitting results on the benchmark data

The fitting results, however, showed a poorer adaptation to the data compared

to the Cyton model. The simulated curves were unable to rapidly follow the

changes in dynamics observed in the data and completely missed the delay

effect between successive generations (which is strongly visible in generations

0, 1, and 2).
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Figure 5.1: Fitted dynamics of the best ODE model obtained at the end of

the fitting procedure over benchmark data. Plots of the individual generations

are included in Appendix C.

We now present the parameters resulting from the fitting process over 100

repetitions and their variability:

67



Figure 5.2: On the left there are the division rates and on the right the death

rates for each generation obtained at the end of the fitting procedure. We also

show the variability in the results plotting every set of parameters obtained

by different iterations of the optimisation pipeline.

It can be observed that the division rates exhibit a clearer dynamic, with

parameters whose values remain more stable across repetitions. In contrast,

the death rates show greater dispersion in the results.

Additionally, the plot includes signals representing the average parameters

across all obtained models (in yellow), the average among the best 20 result-

ing models (in green), and the best 5 (in blue), and highlighting the values of

the best model, which had the lowest fitting error.

To better illustrate these trends, we compare them, isolating them from

the results of all 100 simulations:
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Figure 5.3: Resume and comparison of the trends of division and death param-

eters obtained by the optimisation pipeline. Here are shown the parameters

of the best model and various aggregated results such as the mean over each

independent iteration, the mean over the 20 best models, and over the best 5.

Despite the previously shown variability, the results demonstrate common

trends. Indeed, the overall average trends and those considering only the

best models follow similar dynamics. This suggests that the model and the

optimisation algorithm are reliable and stable, capable of achieving an optimal

fit for the considered data. Also for this reason, a behaviour common to all

the models that we would like to point out is the exchange of position of the

two curves between the 6th and 7th generation, a crucial point in which the

death process become more important for the decaying of the population.
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Fitting results on the original data

Here we present the plots for the best ODE model used to describe the popula-

tion named “all-ped”, which includes the combined data from all the available

cell families.

Figure 5.4: All pedigree - Plots for generations 0 to 4, where the real data

points are shown in red, and the simulated trends using the best-fit parameters

for the ODE model are displayed in blue.
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It is easy to notice that the model is much less capable of following the

data dynamics, both in terms of amplitude (the simulated dynamics do not

reach the values present in the data) and in terms of the timing of the signal’s

rise and fall, the simulated dynamics with the ODE model are in fact much

slower to change trends with respect to the Cyton model.

We have placed the plots of the three pedigree groups (worst, mid, best)

in Appendix D for space reasons.

Let us compare the four groups by observing the trends of the parameters

belonging to the best ODE model for each of them.

Figure 5.5: The image shows on the right the values of the division rates for

each generation, on the left the death rates for each generation for the different

groups of fitted pedigrees.
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Figure 5.6: Comparison of the rates of the two processes for the various groups

It is notable that the division parameters exhibit the typical decreas-

ing trend of reduced participation in division processes, previously modeled

through the progressor fraction. Furthermore, the death rates remain at zero

for the first 4 generations, taking on positive values only from the 5th genera-

tion onward. Also here we can see the generation where the two curves cross

each other and the death process overcome the division one.
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Chapter 6

A Stochastic model

In this chapter we present a stochastic agent-based model we implemented

with the aim of reproducing in silico the behavior observed experimentally in

a cell population.

To achieve this, we based the stochastic model on a birth-death process,

with a structure similar to that of the Cyton and ODE models, as illustrated

in the figure 3.2 in Chapter 3. Indeed, by taking this stochastic model to the

continuous limit, one should obtain the results of the ODE model.

The structure of the model considers two probability values, one for the death

phenomenon and one for the division phenomenon, for each of the generations

to which a cell can belong, similar to what is done in the ODE model. Im-

plementing this model, we adopted one of the assumptions from the Cyton

model, where the probability of death varies with the generations following

a Gaussian distribution centered on the fifth generation, while the division

probability remains constant through all the generations.

At the start of the simulation, the cells are in generation 0. At each time

interval ∆T , a random number is drawn for each living cell at that moment.

This number determines the behavior of each cell during that time interval,

defining which state transition the system will undergo. If the number drawn
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satisfies a certain condition (i.e. rng < div rate), the cell duplicates; if it

satisfies another similar condition, the cell dies; if neither condition is satisfied,

the cell remains inactive for that time step.

Figure 6.1: In this figure is shown the process explained before, in which a

random number is extracted by an RNG algorithm and, depending from the

region where it belongs to, a different event is chosen.

As in other models, the duplication of a cell results in its disappearance

from the current generation and the appearance of two new cells in the next

generation (see figure 1.2 of clonal expansion).

We use this structure to evaluate whether a stochastic agent-based model

can reflect the variability observed in the data, in terms of differences between

the dynamics.

6.1 Results

We performed stochastic simulations aiming to replicate the behaviors ob-

served in both the benchmark data and our original data.

For our data, we specifically aimed to closely approximate the simulation to

the group containing data from all the pedigrees at our disposal, effectively

representing the entire cell population.

The initial results obtained from the stochastic models set up in this way show

population dynamics with a trend opposite to the right-skewed bell curve that

we would expect from this type of process. This discrepancy is likely due to the
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relationship between the division and death rates, which takes the following

form:

Figure 6.2: Plot of the ratio between division and death rates across genera-

tions, with a constant division rate and a death rate that follows a Gaussian

distribution.

We then attempted to “invert” the Gaussian distribution representing the

death rates by applying a “ones’ complement” transformation (Rate = 1 −

Gaussian). This results in an increasing trend in the ratio between the rates,

which is the opposite of the previous trend.

At this point, the simulations of the resulting population dynamics better

reflect the expected trends, as shown in the following figure.
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Figure 6.3: Plot of the total population for 250 independent stochastic simula-

tions. The characteristic bell-shaped skewed form, typical of biological clonal

expansion phenomena, can be observed.

We then proceeded to compare the simulated dynamics generation by gen-

eration, first with the benchmark data and then with our original data.

Benchmark data

76



77



In these graphs, it can be observed that although the dynamics shown by the

data are overestimated by the simulations, the timing of growth and the shape

of the curves for each generation to some extent resemble those measured. The

data used generally fall within the range of possible simulations, though they

are often far from the average. Additionally, the typical skewed shapes with

increasingly delayed growth as the generations progress can be seen.

Comparing Kajal’s data

78



The opposite situation occurs when comparing the simulations with our orig-

inal data. In the data, the dynamics are significantly faster than those simu-

lated (an effect that was already observed for the ODE model but is now even

more pronounced). The simulations, however, extend over much longer peri-

ods of time and fail to reach the high amplitude peaks observed in our data.

The model is not able to mimic the process we observe in the experiments.
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Chapter 7

Conclusions and open questions

We feel confident to say that our procedure, which involves training the model

on the entire pedigree population and subsequently on subdivisions of this

population, such as the worst, mid, and best groups, represents an effective

method for extracting “objective” and concentrated data from the “broad” dy-

namics of population curves, provided that the fitting is performed correctly.

The first step aims to perform a fit under conditions as similar as possible to

those of other published experiments that use the Cyton model on very large

populations. This approach allows for a quicker comparison based on quanti-

tative components that serve as proxies for the qualitative differences in the

observed dynamics.

Indeed, using this method in combination with more detailed data on the

processes analyzed can help highlight the differences in data gathered from

processes with different characteristics.

We did not gain significant biological insights from our simulation experi-

ments, as our objective was to compare how different models could effectively

describe the data regarding immune cell populations during their clonal ex-

pansion phase. It was found that the Cyton model, thanks to its greater

adaptability, was able to closely reproduce the dynamics observed in the data,

which is due to its extremely high degrees of freedom. The pure ODE model,
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without the introduction of additional constraints, is too limited to capture

the highly heterogeneous dynamics observed in nature, while the stochastic

model is useful for evaluating the variability of the simulations and whether

the range of possibilities matches the actual measured data. It is important to

highlight that there are different levels of detail for comparing simulations and

real data. These can be at the level of the total population or, more specifically,

by observing cell behaviors, for example by dividing them into generations or

pedigree groups. Therefore, the analysis we conducted aims to be less coarse

and more comprehensive in studying the phenomenon in question, although it

is undoubtedly more challenging.

It was observed, following the computational experiments, that it is still

not possible to create fully agnostic models (i.e., models that start solely from

basic “first principles” of cellular activity) and data-driven models that can

effectively simulate the behavior of cell populations observed in vivo. This is

because the biology of these processes is not yet fully understood in detail.

Contributing to this challenge are the difficulties in measuring and studying

the details behind complex behaviors such as cell division or apoptosis, par-

ticularly phenomena like phase transitions in the cell cycle and interactions

between organelles and proteins within the cell. A systemic approach to the

biology of these events is therefore not yet feasible, and it is necessary to intro-

duce knowledge in the form of top-down rules in the models to be simulated.

Our mental representations of how processes function within cells can be trans-

lated into the choice of specific ad-hoc distributions for defining a phenomenon

or the adoption of certain types of equations over others.
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Appendix A

Plot of single generation of

fitted Cyton model on

benchmark data

Appendix of Chapter 4.
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Figure A.1: Data and fitted curve referring to the Cyton model of the first

four generations (0-3) of the population from benchmark data. The smooth

curves represent the best model obtained from fitting.
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Figure A.2: Data and fitted curve referring to the Cyton model of the last four

generations (4-7) of the population from benchmark data.
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Appendix B

Plot of single generation of

fitted Cyton model on original

data

Appendix of Chapter 4.
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Plot of the fit on to the best pedigree group

Figure B.1: Best Pedigrees - Plots for generations 0 to 4, where the real data

points are shown in red, and the simulated trends using the best-fit parameters

for the ODE model are displayed in blue.
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Plot of the fit on to the mid pedigree group

Figure B.2: Mid Pedigrees - Plots for generations 0 to 4, where the real data

points are shown in red, and the simulated trends using the best-fit parameters

for the ODE model are displayed in blue.
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Plot of the fit on to the worst pedigree group

Figure B.3: Worst Pedigrees - Plots for generations 0 to 4, where the real data

points are shown in red, and the simulated trends using the best-fit parameters

for the ODE model are displayed in blue.

In this last group is clearly showed how the last generation is affected by

the change in the way of tracking cells, that happen in the middle of the

replicative phase.
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For these reason, it has been decided to not take into account the generation

number 4 of this group during the fit of the cyton model. The blue curve stands

for the simulated dynamics without the intervention of the modification to the

data.
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Appendix C

Plot of single generation of

fitted ODE model on

benchmark data

Appendix of Chapter 5.
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Figure C.1: Data and fitted curve referring to the ODE model of the first four

generations (0-3) of the population from benchmark data. The smooth curves

represent the best model obtained from fitting.
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Figure C.2: Data and fitted curve referring to the ODE model of the last four

generations (4-7) of the population from benchmark data. Note how different

the rise and fall of the curves of the ODE model are from the real data.
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Appendix D

Plot of single generation of

fitted ODE model on original

data

Appendix of Chapter 5.
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Plot of the fit on to the best pedigree group

Figure D.1: Best Pedigrees - Plots for generations 0 to 4, where the real data

points are shown in red, and the simulated trends using the best-fit parameters

for the ODE model are displayed in blue.
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Plot of the fit on to the mid pedigree group

Figure D.2: Mid Pedigrees - Plots for generations 0 to 4, where the real data

points are shown in red, and the simulated trends using the best-fit parameters

for the ODE model are displayed in blue.
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Plot of the fit on to the worst pedigree group

Figure D.3: Worst Pedigrees - Plots for generations 0 to 4, where the real data

points are shown in red, and the simulated trends using the best-fit parameters

for the ODE model are displayed in blue.

As discussed in the main text, the generation 4 is influenced by the issue

with “censored” data.
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Appendix E

Example of fitting pipeline

A graphical presentation of the process and progression of a Cyton model

fitting pipeline is presented.

Figure E.1: Logarithmic scale score of the points resulting from the grid search,

which will be used as the starting points for the stochastic optimization pro-

cedure.

After performing the 4 grid-search and selecting 40 points from each (the

35 best and 5 worst evaluated), we proceed to the first step of the stochastic

optimization. This involves optimizing the parameters of the probability dis-
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tributions in two variants. The first variant optimizes 3 different distributions

(death gen 0+, division gen 0, division gen 1+), while the second variant op-

timizes 4 distributions (splitting the death process into two distributions: gen

0 and gen 1+).

Figure E.2: Dynamics of the scores during the optimization process for each

starting point, on the right a zoom on the scores below the value 104.

Figure E.3: Comparison of the scores between the starting points of the

stochastic optimization, obtained from the grid-search, and the scores of the

points post-optimization with 4 distributions.
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It can be observed that the optimization leads to an improvement for each

starting point, regardless of the initial score. Moreover, the resulting scores

are typically within the 2000-5000 interval.

Subsequently, the second step of optimization is performed, aiming to find

the optimal values of the progressor fraction γi for each generation.

In the figure above, a comparison is shown (on a logarithmic scale due to

the wide range of the interval) between the scores of the models at the end of

the optimization (in blue) and the scores of the same models after applying a

variation to the parameters (in red). This variation ranges from 0 to 10% of

the parameter’s value.

In green, the logarithm of the difference between the two scores is shown.

This procedure was conducted to evaluate the quality of the models through

sensitivity analysis, aiming to understand whether the model is specific in ac-

curately describing the data or if it is not significantly different in performance

from a model with different parameters.

As can be observed, the variations imposed on the model cause the score to
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change by several orders of magnitude, demonstrating the high specificity of

the obtained models.
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Appendix F

Code repository

The entire Matlab code implemented for this project and used to produce the

described results has been archived in the GitHub repository:

https://github.com/AStocchi/Tesi_cyton-model_codes
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