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Abstract

In this work the scattering process of a massive vortex-antivortex dipole from a
disklike obstacle has been investigated. The term “massive” [22], [22], [3] refers
to the fact that vortices of one species host the atoms of the other species, which
thus play the role of massive cores. The motion of massless vortices is described by
first-order motion equations, while the inclusion of core mass introduces a second-
order time derivative that doubles the number of independent dynamical variables
needed and is responsible for a much richer phenomenology. Infact, while complete
integrability is reached in the massless case [19] due to the presence of a sufficient
number of conserved quantities to ensure such character, the introduction of core
masses makes the system not-integrable as the number of degrees of freedom over-
takes the number of necessary conserved quantities. The main purpose of this
work is then analyzing the dynamical features of a massive pair scattered against
a circular obstacle, shedding a light on eventual chaotic behaviour.

The analytical model that will be employed, the so called Point-like model, is of
recent development in scientific literature [22], [2] but already proved its accuracy
through various comparisons with the well-known Gross-Pitaevskii equations. Re-
cent advances in research [1] showed how, concerning the case of a pair of massless
vortices trapped in a circular box, its dynamics is described by a simple precession
motion around the trapping center, while the introduction of increasingly bigger
core masses leads to the emergence of instabilities [22], [2]. Moreover the absence
of tangential entrainment between the fluids composing the cores and the body of
vortices has been established, emphasizing how no dissipation should arise in such
rotational dynamics. Trapped quantum vortices are also allowed to collide and an-
nihilate when counter-rotating or undergo a coalescence process when corotating
[21]

The present work proposes a novel methodology aimed to investigate the behaviour
of the vortex pair when interacting with a disk-like obstruction, based on consider-
ing its reduction in asymptotic regimes, allowing to identify interesting dynamical
sub-regimes.
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Introduction

After an introductory chapter devoted to the phenomenology of ultracold bosons,
including Bose-Einstein condensation [8], [16], the emergence of the Superfluid
regime [8] as well as the relevance of vortices in scientific literature, the second
chapter will contain a brief review of the Gross-Pitaevskii equation in the mean-
field limit, together with the hydrodynamic picture [18] of quantum fluids that is
extremely advantageous to investigate topological excitations in fluid mediums.

In the third chapter the Point-like model will be derived through the approxi-
mation of the usual mean-field Hamiltonian accounting for two-body interactions
adopting a flat density profile for the condensate that neglects the presence of vor-
tex singularities. The resulting Hamiltonian of N free vortices will be extended to
account for the presence of a circular confining boundary by means of the Virtual
Images Method.

The passage to the massive model is performed by introducing a Lagrangian that
contains a quadratic kinetic term depending on vortices’ masses [2], appropriately
justified thanks to the method of the time-dependent variational lagrangian [20]
by means of trial quantum-mechanical wavefunctions. The two-component wave-
function, accounting for the presence of biatomic BEC, plugged into the Gross-
Pitaevskii Lagrangian functional allows to write Euler-Lagrange equations associ-
ated to each time-dependent variational parameter.

In the fourth chapter a different description of the system will be proposed: by
making use of the dynamical-algebra approach [19], [4], it is possible to express
the model Hamiltonian as a linear combination of generators of a Lie Algebra that
allows to find conserved quantities from algebra’s invariants. Locating the model
in a specific algebraic framework indeed, aside from giving deeper insights in the
mathematical characterization of the system by exhibiting the presence of eventual
symmetries, permits a more rigorous justification of numerical results by means
of deducted conservation laws. A novel result is presented and discussed, showing
the surprising existence of dynamical sub-regimes where the role of mass can be
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Introduction

neglected, restoring a much simpler dynamics emobied by the Helmoltz-Kirchoff
equations. This result appears to be perfectly compatible with the conserved quan-
tities and confirmed by a vast number of numerical simulations.

In conclusion chapter five contains results from numerical simulations. The re-
sulting motion of the vortex dipole will be analyzed and justified firstly through
the consideration of dynamical equations in two asymptotic regimes and then in
the light of the algebraic description presented in the previous chapter. The pres-
ence of a few conserved quantities infact can conduct to the derivation of a relation
between initial velocities and their values long after the influence of the circular
obstacle, justifying the existence of a deflection angle after the dipole’s interaction
with the obstacle.
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Chapter 1

Phenomenology of ultracold
bosons

“Disorder is simply the order we
are not looking for.”

Henri Bergson

Bosons are subatomic particles that follow Bose-Einstein statistics, character-
ized by having integer spin (e.g. photons, Higgs boson,..). Unlike fermions, which
obey the Pauli exclusion principle, bosons can occupy the same quantum state.
At sufficiently low temperatures, bosons can undergo a phase transition known
as Bose-Einstein condensation where a large fraction of particles condenses
into the same quantum state (the lowest energy state), leading to a macroscopic
quantum phenomena.

Such groundbreaking phenomenon was originally proposed on the theoretical level
by Satyendra Nath Bose and Albert Einstein in the early 1920s, predicting that
below a critical temperature, a dilute gas of bosons would exhibit an exotic col-
lective behaviour. Experimental observations arrived only in the mid-1990s when
advancements in cooling and trapping techniques made it possible to achieve BECs
in dilute atomic gases.

At low temperatures, bosons can also be observed in the state of superfluid.
Originally discovered in the 1930s, superfluid state was first observed in helium-4
and it is characterized by the complete absence of viscosity allowing the fluid to
flow without dissipation. As properly emphasized in the following, Superfluidity
and BEC can co-occur in the same system but the two states are not synonyms of
the same spectrum of phenomena.
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Phenomenology of ultracold bosons

1.1 Bose-Einstein Condensation
The condensation phenomena [16] interests spinless quantum particles at low tem-
peratures. Contrary to classical ones, quantum particles are indistinguishable since
over a lenghtscale comparable to the de Broglie wavelenght, Heisenberg’s uncer-
tainty principle emphasizes the intrinsic indetermination that characterizes the
quantum realm. Through the method of the most probable distribution [18] within
the theory of Grand Canonical Ensemble, typycally adopted when dealing with
large systems made up of a fluctuating number of particles, it is possible to find
the partition function that describes the system. More specifically, owing to its
symmetrical character, bosons are described by the following

ZB =
∏
p

[
1

1− ze−βϵp

]
where ϵp = p2/2m and index p comes from the enumeration of all possible mo-
menta that particles may possess, meaning that p⃗ = ℏk⃗, with wavevector k⃗ =
2π/L(nx, ny, nz) and ni ∈ Z. This implies then that momenta of particles assume
discrete values. Parameters µ and z = eβµ respectively stands for the chemical
potential and the fugacity. The Bose-Einstein distribution function describes then
the distribution of bosons over energy E as

fBE(E) =
1

e(E−µ)/kBT − 1

where given E0 the lowest energy level, it is required that µ ≤ E0. Reason-
ably, BE statistics reproduces Boltzmann’s distribution for classical particles for
(E − µ)/kBT ≫ 1 (i.e. in the classical limit, for high energies E).

The average occupancy of the p− th energy level is given by

⟨np⟩ =
ze−βϵp

1− ze−βϵp

which presents an accumulation of particles in state p = 0 for E → µ+. For math-
ematical convenience a passage to a continuum description is typically addressed
by replacing previous variables with continuous quantities, allowing to recast the
number of particles at energy E by means of the function

N(E) = fBE(E)g(E) =
1

e(E−µ)/kBT − 1

2π(2m)
3
2V

h3

√
E ∼

√
E

e(E−µ)/kBT − 1

where g(E) is the density of states in the continuous picture for an ideal gas con-
fined in a box of volume V .
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1.1 – Bose-Einstein Condensation

Figure 1.1: The Boltzmann, Bose-Einstein and Fermi-Dirac distribution functions
for T ≫ 0 on the left, for T ≈ 0 on the right

As shown in the following picture [8], the occupancy of the energy levels N(E)
goes to zero for E → 0 due to the diminishing density of states in this limit, while
the occupancy of a state (corresponding instead to fBE(E) ) diverges as E → µ.
Exploiting the passage to the continuous picture leads to recast the occupancy of

Figure 1.2: Solid line represents the occupation of energy levels, while the dashed
line stands for the occupation of energy states

energy levels by means of the Riemann zeta function as

N =
(2πmkBT )

3
2V

h3
g3/2(z)

a formulation that more advantageously permits to predict the emergence of Bose-
Einstein Condensation. Indeed function gβ(z) has the form

gβ(z) =
+∞∑
p=1

zp

pβ
z=1→ ζ(β) =

+∞∑
p=1

1

pβ
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Phenomenology of ultracold bosons

and g3/2(z) is bounded from above reaching its maximum value for ζ(3/2) ≈ 2,612
(for z = 1). The system becomes then saturated with particles with a critical
number Nc. More precisely, this indicates the saturation of the excited states
meaning that any additional particle added to the system (beyond Nc) enters (at
zero energy cost) the ground state that acquires an incredibly large population.

Considering the case of fixed particle number instead, the condensation phenomena
can be observed when crossing a specific critical temperature Tc: for tempera-
tures beyond such value condensation occurs, otherwise the gas is in the normal
phase. Such critical value is given by

Tc =
h2

2πmkB

[
N

ζ(3/2)
V
] 3

2

directly linked to the condensate fraction ⟨n0⟩/N describing the proportion of
condensed particle

⟨n0⟩
N

= 1−
(
T

Tc

) 3
2

It is important to remark that such low-temperatures collective phenomena refers
to a condensation in momentum space (and not in real physical space) with p = 0
and can be outlined as follows:

Figure 1.3: Illustration of the macroscopic occupation of quantum state p = 0: for
T = 0 the fraction of condensed particles is maximum, while it decreases for T > 0
as higher energy levels become populated

By investigating the behaviour of the heat capacity cV (the amount of energy re-
quired to raise the temperature by a unit amount at constant volume) it becomes
possible to emphasize an important aspect. By means of thermodynamical con-
siderations based on the derivation of a suitable equation of state, it is possible to
show that the behaviour of cV (T/Tc) when crossing the critical value T/Tc = 1 is
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1.2 – Superfluidity

subject to a drastic change. Indeed:

cV

{
∼ T 3/2 if T < Tc

= C if T ≫ Tc
(1.1)

the presence of discontinuities in the first derivative of cV is the sign of critical
behaviour meaning that a transition between two distinct states of matter is
occurring. As appropriately discussed in the following section, a strong analogy

Figure 1.4: Heat capacity as a function of critical parameter T/Tc

is noticed in the behaviour of the heat capacity of liquid Helium that similarly
exhibit critical behaviour.

1.2 Superfluidity
The exploration of low temperatures began in 1820s, where experimental chemists
discovered a way to liquefying chlorine at a temperature of 239K. Later on nitro-
gen and hydrogen followed until, in the early 1900s H. K. Onnes succeded in the
liquefaction of helium 4He, reaching an extraordinary temperature of 4K, worth a
Nobel Prize in Physics. The first observation was the absence of resistance below
4K, then at around 2,2K its heat capacity undergoes a discontinuous change, lead-
ing to postulate the the existence of two distinct phases of liquid helium: helium-I
above a certain critical temperature Tλ and helium-II below. Moreover helium-II
showed to remain liquid even for T → 0 and together with other experimental ob-
servations, its phase diagram started to differ from a conventional fluid. In 1930s it
was suggested that the condensation phenomena theorized by Einstein and Bose
could have been useful to explain superfluid behaviour. However Bose-Einstein
condensation was meant to describe an ideal (quantum) gas with no (or negligi-
ble) interactions, predicting the emergence of a macroscopic collective behaviour
[8]. The strong similarity in the discontinuity appearing in the plot of the heat
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Phenomenology of ultracold bosons

Figure 1.5: Comparison between the phase diagram of helium and a conventional
fluid. An important difference lays in the lack of a triple point.

capacity infact led to develop a two-fluid model by Lev Landau, that considered
helium-II as a combination of a viscosity-free fluid and a conventional viscous one.

Later on the discovery that composite electrons forming Cooper pairs could un-

Figure 1.6: Comparison between the heat capacity cV of a BEC (left) and liquid
helium (right).

dergo a condensation phenomena allowed to observe superfluidity in the fermionic
isotope 3He showing the possibility to exploit condensation. In this regard then,
superfluids and superconductors (regarded as fluids made of charged Cooper pairs)
can be seen as manifestations of Bose-Einstein condensation. It is important to
stress the fact that despite helium superfluid exhibits some BEC properties the two
states are not identical: while at T = 0 BEC prescribes the macroscopic occupation
of the lowest energy quantum state, liquid helium may possess particles laying at
higher energy levels. Indeed condensation is a phenomena that has been theorized
in an ideal quantum gas (i.e. not interacting) while the presence of not-negligible
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1.3 – The emergence of vortices in ultracold bosons and BECs

interactions in quantum fluids and superconductors addresses major complications.

Superfluid 4He [9] can flow without friction through pipes, extremely narrow chan-
nels where conventional fluids would be governed by viscosity, but it also presents a
critical velocity above which superflow breaks down and most importantly quan-
tized vortices to which is devoted this work.

1.3 The emergence of vortices in ultracold bosons
and BECs

The study of quantum vortices in superfluids began in 1950s when Richard Feyn-
man published a groundbreaking article regarding the properties of liquid Helium.
The observation of topological excitations in such fluids indeed was a proof of su-
perfluid character [9], marked by the emergence of a microscopic order. Indeed,
superfluid state is characterized by the macroscopic occupation of a quantum state
resembling the condensation phenomena, resulting in a collective phase coherence.

The creation of a Bose-Einstein condensate in dilute trapped ultracold atomic
gases led to the discovery of a new possible superfluid medium that, from the ex-
perimental viewpoint, possesses many technical advantages. The dilute-gas BECs
[11] indeed differ from superfluid 4He since the GPE provides a remarkably detailed
description, allowing a careful comparison of theory and experiment. Moreover the
investigation of bosonic mixtures of BECs [12], [3] allowed to observed quantized
vortices profoundly different from the one typically present in single-component
BECs. As a consequence of a peculiar interplay between repulsive inter-species
and intra-species interactions, one of the two components can be confined in the
vortex cores of the other component, leading to a complete phase separation. Such
configuration, the immiscibility regime, arises for sufficiently intense inter-species
interactions where the cores correspond to density peaks of the other species and
viceversa. On the pratical level a finite repulsive coupling causes a slight com-
penetration of the two due to the centrifugal force acting on the internal species.
This results in a light mismatch between peaks and singularities as depicted in
figure 1.7. Internal species play the role massive cores providing an inertial (ki-
netic) contribution in the dynamics requiring a more general approach based on
the introduction of a customized Lagrangian.

Being the dynamics ruled by a non-linear Schröedinger equation (GPE), one typ-
ically refers to soliton solutions, particular non-linear waves that emerge in the
1D case. Solitons can be seen as localized excitations which, because of the
competition between dispersion and non-linear effects, propagate keeping their
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Phenomenology of ultracold bosons

Figure 1.7: Density profiles of the two involved species: the peaks of b-species
(core) correspond to singularities of a-species (vortex body.

shape unaltered. Depending on the sign of the interaction parameter, either dark
or bright solitons are possible. Despite the problem under investigation is not
one-dimensional, the profiles of the vortex core and body can be described by
wavefunctions possessing soliton properties, typically addressed as solitary waves.
Nevertheless in binary mixtures symbiotic solitons emerge as a consequence of
the interplay between attractive and repulsive forces between the components, re-
sulting in structures addressed under the name of vortex-bright soliton complexes
[22].
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Chapter 2

Mathematical formalism of
Quantum Fluids

“Mathematics is the art of giving
the same name to different things.”

Henri Poincarè

This section is devoted to the presentation of the essential mathematical aspects
employed in the description of ultracold bosons. Firstly the Weakly interacting
Bose Gas will be presented together with a brief description of the Bogoliubov
approximation scheme and the derivation of a fundamental equation in the Mean-
Field Limit : the Gross-Pitaevskii Equation.

The second part of this chapter focuses on the emergence of vortex states : first from
a topological perspective by rearranging the GPE in the Hydrodynamic Picture
exploiting the deep connection between quantum fluids and classical ones. Subse-
quently vortices will be seen from a thermodynamical point of view analyzing the
Bose Gas in low-dimensions and discussing the renowned Berezinskii-Kosterlitz-
Thouless phase transition.
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Mathematical formalism of Quantum Fluids

2.1 GPE in Mean-Field limit
Considering a system made up of N-bosons under the hypotesis of dilute gas and
below the critical temperature the Bogoliubov approximation scheme [16],
[18] allows to find important information relative to the energy spectrum of the
system under investigation.

Within the second-quantization picture, the Hamiltonian describing a Bose gas
with interactions modeled for a two-body interaction potential U(r⃗) reads:

H =

∫
d2xψ†(x, t)H0(x)ψ(x, t)+

1

2

∫
d3x

∫
d3sψ†(x, t)ψ†(s, t)U(|x−s|)ψ(x, t)ψ(s, t)

(2.1)
where H0 = − ℏ2

2m
∇2 + V (r⃗) and typically U(|r⃗ − s⃗|) = U0δ

3(r⃗ − s⃗).

While in absence of a trapping potential it is possible to exploit the harmonic-
oscillator basis {ϕα(r⃗)} and represent the quantized field in terms of superposition
of plane-waves, when the system is actually confined in a box a more general rep-
resentation of the field ψ is necessary. The Generalized Bogoliubov approach
suggest to express the field in terms of a set of unknown modes Al(t) and basis
{fl(r⃗)}:

ψ(x, t) =
∑
l

Al(t)fl(r⃗) = Φ(r⃗, t) +
∑
l /=0

Al(t)fl(r⃗) = Φ(r⃗, t) + ∆ψ(r⃗, t) (2.2)

differentiating the term corresponding to the ground state Φ(r⃗, t) = A0(t)f0(r⃗)
(where as a consequence of Bogoliubov approximation scheme [A0, A

†
0] ≃ 0 and so

A0 is a scalar quantity) and the one concerning weakly occupied modes ∆ψ. In such
setting the statistical average of operator ∆ψ(r⃗, t), accounting for both thermal
and quantum fluctuations, approaches zero at T = 0, suggesting that quantum
fluctuations become negligible in the thermodynamic limit. Thus considering the
non-linear Schröedinger equation arising from the mean-field Hamiltonian (2.1)
and its expectation value from both sides:

iℏ∂t⟨ψ(r⃗, t)⟩ = H0(r⃗)⟨ψ(r⃗, t)⟩+ U0⟨ψ†(r⃗, t)ψ2(r⃗, t)⟩ (2.3)

by means of eq. (2.2) and of the Mean-field approximation for operator prod-
ucts, one obtains the Gross-Pitaevskii equation:

iℏ∂tΦ(r⃗, t) = H0(r⃗)Φ(r⃗, t) + U0|Φ(r⃗, t)|2Φ(r⃗, t) (2.4)

describing the dynamical evolution of field Φ(r⃗, t), the system’s order parameter:
the lowest energy quantum state is macroscopically occupied by a large number of
bosons.
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2.2 – Hydrodynamic picture and Topological Excitations

2.2 Hydrodynamic picture and Topological Exci-
tations

The passage to the Hydrodynamic picture [18] provides an advantageous frame-
work in which reformulating the GPE, as well as exploit the emergence of single
and multi-vortex configurations in the fluid medium.

Starting from the Mean-Field Hamiltonian (2.1) we here recall that field ψ plays
the role of an order parameter describing the numerical density of particles, since
N =

∫
d2r⃗|ψ|2. Obeying to classical (field) Poisson Brackets {ψ(r⃗), ψ∗(s⃗)} =

δ2(r⃗− s⃗)/iℏ, the resulting dynamics is ruled by non-linear Schröedinger equations
of the form: {

iℏψ̇ = ℏ2
2m

∇2ψ + V (r⃗)ψ + U |ψ|2ψ
iℏψ̇∗ = ℏ2

2m
∇2ψ∗ − V (r⃗)ψ∗ − U |ψ|2ψ∗ (2.5)

Introducing new fields ρ, θ linked to ψ by means of field transformations

ψ, ψ∗ → ρ
.
= |ψ|2, θ

.
=

1

2i
ln

(
ψ

ψ∗

)
it is first possible to prove that their PB are still canonical (meaning that {ρ(r⃗), θ(s⃗)} =
1/ℏδ2(r⃗ − s⃗)) observing that ψ =

√
ρeiθ. At this point it is possible to plug fields

ρ and θ inside the mean-field Hamiltonian:

H =

∫
d2r⃗

[
− ℏ2

2m
|∇ψ|2 + V (r⃗)|ψ|2 + U

2
|ψ|4

]
=

∫
d2r⃗

[
ℏ2

2m

(
1

4ρ
(∇ρ)2 + ρ(∇θ)2

)
+ V (r⃗)ρ+

U

2
ρ2
] (2.6)

due to relations

∇ψ = ∇
(√

ρeiθ
)
= eiθ

(
∇ρ
2
√
ρ
+
√
ρi∇θ

)
and

|ψ|2 = 1

4ρ
(∇ρ)2 + ρ(∇θ)2

Dynamical equations are calculated as follows, for field ρ:

ρ̇ = {ρ,H} =
1

ℏ
δH
δθ

=
1

ℏ

∫
d2r⃗

[
ℏ2

2m
2ρ∇θ · ∇ δθ(r⃗)

δθ(x⃗)

]
=

1

ℏ

∫
d2r⃗

[
ℏ2

2m
div
(
ρ∇θδ2(r̃− x̃)

)
− δ2(r̃− x̃)div(ρ∇θ)

]
= − ℏ

2m

∫
d2r⃗div(ρ∇θ)δ2(r̃− x̃) = − ℏ

2m
∇(ρ∇θ)

(2.7)
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Mathematical formalism of Quantum Fluids

where in last line Green-Gauss formula has been employed to assure that∫
d2r⃗div

(
ρ∇θδ2(r̃− x̃)

)
= 0

Similarly for field θ:

θ̇ = {θ,H} = −1

ℏ
δH
δρ

= −1

ℏ

∫
d2r⃗

[
δ

δρ

ℏ2

2m

(
1

4ρ
(∇ρ)2 + (∇θ)2δ2(r⃗ − x⃗)

)

+ V δ2(r⃗ − x⃗) + Uρδ2(r⃗ − x⃗)

]

= −1

ℏ

∫
d2r⃗

[
ℏ2

2m

(
1

2ρ
∇ρ∇δ2(r⃗ − x⃗) +

(∇ρ)2

4ρ2
δ2(r⃗ − x⃗)

)]
− ℏ2

2m
(∇θ)2 − V − Uρ

= − ℏ2

2m
(∇θ)2 − V − Uρ+

ℏ2

2m

(
∆ρ

2ρ
− (∇ρ)2

4ρ2

)
(2.8)

where the following expression based on the rearrangement of term ∇ρ∇δ2(r⃗−x⃗) =
∇
(
∇ρδ2(r⃗− x⃗)

)
− (∇2ρ)δ2(r⃗− x⃗) has been employed, together with the fact that

first term vanishes when integrated over a surface S∞ as a consequence of Green-
Gauss theorem.

Finally, the hydrodynamic form of the Gross-Pitaevskii equation is embodied by
the set: ρ̇+

ℏ
m
∇ · (ρ∇θ) = 0

θ̇ + ℏ2
2m

(∇θ)2 = −Uρ− V + ℏ2
2m

(
∆ρ
2ρ

− (∇ρ)2

4ρ2

)
(2.9)

where the former one strongly resembles the well-known continuity equation of
classical fluid dynamics while the latter is a Bernoulli-like equation, depending on
the interaction potential U and an external potential V .

Velocity field and density current field, respectively, are given by:

v⃗ =
ℏ
m
∇θ = ℏ

2mi|ψ|2
(
ψ∗∇ψ − ψ∇ψ∗) (2.10)

J⃗ = m|ψ|2v⃗ (2.11)

2.2.1 Thomas-Fermi Approximation
While in the not-interacting regime (e.g. g = 0) the GPE clearly reduces to the
usual Schröedinger equation for which the ground state is well-known. In the
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2.2 – Hydrodynamic picture and Topological Excitations

regime of strong repulsive interactions instead we expect a significant difference
with respect to the Gaussian wavefunction characterising the previous case. An an-
alytical approach is addressed within the Thomas-Fermi approximation [8], which
consists in neglecting ℏ2-terms: being the ground state stationary by definition,
one finds that ρ̇ = 0 ⇒ ∇θ = 0 implying then θ = −µt. Together with the second
dynamical equation stating that θ̇ = −µ = −Uρ − V (r⃗) and that the density
profile of the condensate is given by:

ρ(r⃗) =
µ

U

(
1− mω2

2µ
r2
)

=
µ

U

(
1− r2

R2
TF

)
(2.12)

under the hypotesis of an harmonic trapping potential of the form v(r⃗) = mω2r2/2.
Being RTF the Thomas-Fermi radius, it is then clear how ρ ≈ const could be a
reasonable approximation aside from the region r → RTF , as depicted in figure 2.1.

Indeed the agreement between the numerical solution of the GPE and TF profile,

Figure 2.1: Condensate wavefunction as a function of position in the repulsive
interaction regime (continuous line) and in the not-interacting regime (dashed
line). The profile flattens in almost the entire region, aside from a small region
towards the boundary where it rapidly goes to zero.

depicting an inverted parabola as a function of r, is remarkable: Such regime,
where kinetic terms (originally ∝ ∇2ψ) can be neglected, falls in the regions where
ρ→ 0 since the hydrodynamic Hamiltonian presents some divergent terms (∆ρ/ρ
and ∆lnρ) that are not accounted within the TF approximation. This is the rea-
son why while in the numerical solution the profile goes to zero asymptotically for
r → RTF , TF prediction prescribes a linear behaviour. The critical regions where
the Thomas-Fermi approximation loses its validity correspond to the profile’s sin-
gularities, located in the cores of the vortices.
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Figure 2.2: Dashed red line represents TF density profile, while the continuous
black line depicts the numerical solution of the GPE

2.2.2 Vortex Configurations
In order to exploit the vortex configuration, the case of multiple vortex solution
will be analyzed within the TF regime. Field θ has the form

θ(r⃗, t) = −µt+ φ(r⃗) = −µt+ arctg(y/x)

Plugging such expression in the definition of the velocity field 2.12 then allows to
notice that

divṽ =
k

2π
∆θ = 0 (2.13)

Moreover from the continuity equation in 2.9 one has ∇(ρ∇θ) = ∇ρ·∇θ+ρ∆θ = 0
meaning that ∇ρ·∇θ = 0. Assuming a parabolic density profile of the form ρ ≃ cr2

for r⃗ ≃ 0 and ρ ≃ const elsewhere allows to perfectly compensate diverging be-
haviours (induced by ∆ρ/ρ and ∆lnρ) with the profile’s singularities for r⃗ → 0.

Velocity field exhibits a double representation [18], an electric and a magnetic
one respectively:

v⃗ =
k

2π
∇θ = k

2π
ê3 ∧

r⃗

|r⃗|2
(2.14)

v⃗ =
k

2π
ê3 ∧∇A = − k

2π
curl

(
Aê3
)

(2.15)

thus incorporating two important features in the same mathematical entity:

div(ṽ) = 0, curl(ṽ) = w̃ /= 0

showing that the fluid is incompressible but rotational. The scalar field A = A(r⃗)
is defined as:

A(r⃗)
.
=

1

2
ln

(
x2 + y2

λ2

)
(2.16)
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2.2 – Hydrodynamic picture and Topological Excitations

with parameter λ being the healing length, has the structure of a Green Function
since ∆A(r⃗) = 2πδ2(r⃗). Nevertheless the presence of singularities, embodied by
the cores of the vortices, makes field θ singular (for r⃗ → 0) meaning that the quan-
tity ∇θ = −curl

(
Aê3
)

is defined (almost) everywhere except for singular points.
This is taken into account by the following argument based on the introduction of
topological classes of curves.

Consider two closed curves Γ and γ and a singularity located in the origin. As
sketched in figure 2.3 the two present a fundamental difference being that one en-
circles the singular point contained in the origin. This fact acquires more relevance

Figure 2.3: Curves Γ (in green) and γ (in red) belong to different topological
classes as the former encircles the singularity in the origin, while the latter doesn’t
contain it.

when evaluating the circulation of the velocity field v⃗ along the different paths.
Indeed along curves of type γ one finds:

C =

∮
γ

dr⃗ · v⃗ =

∮
γ

dr⃗
k

2π
∇θ = k

2π

∫ r⃗2

r⃗1

dr⃗ · ∇θ = k

2π

(
θ(r⃗2)− θ(r⃗1)

)
= 0 (2.17)

being r⃗1 = r⃗2 thus representing the initial and final point of a closed curve. Con-
versely for Γ-type curves, a different result is obtained:

C =

∮
Γ

dr⃗·v⃗ =

∮
Γ

dr⃗
k

2π
∇θ = k

2π

∫ 2π

0

dφrêφ·
(
ê3∧

r⃗

|r⃗|2

)
=

k

2π

∫ 2π

0

dφ = k (2.18)

This fundamental difference addresses the distinction between two main classes of
curves labelled by a specific homotopy index n (referring to the number of times the
Γ-type curve wraps around the singularity). This allows to reveal the presence of a
vortex that now acquires a topological character [8], [18]. In a compact formulation,
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Mathematical formalism of Quantum Fluids

given γ a generic curve in the 2D-space and Sγ the surface with border γ:

C =

∮
γ

dr⃗·v⃗ =

∫ ∫
Sγ

d2r⃗ê3·curlṽ = − k

2π

∫ ∫
Sγ

d2r̃ê3curl
2
(
Aê3
)
=

k

2π

∫ ∫
Sγ

d2r̃∆A

(2.19)
in virtue of Stokes’ theorem and using the vectorial identity ∇divB̃ = ∆B̃curl2B̃.
In the present case where B⃗ = Aê3, one can see how ∇div

(
Aê3
)
= 0 thus proving

the final equivalence in previous equation. Now taking advantage of A being a
Green Function, it is possible to verify the existence of a vortex configuration as
follows:

C =

∮
γ

dr⃗ · v⃗ =

{
0 if r⃗ = 0 /∈ Sγ

k if r⃗ = 0 ∈ Sγ

(2.20)

The relation between circulation C and vortex charge k is prescribed by the so
called Feynman-Onsager condition∮

γ

dr⃗ · v⃗ = k ⇒
∮
γ

dr⃗ · p⃗ = mk = 2πNℏ (2.21)

and incorporates the quantization of the vortex charge (resulting from the Bohr-
Sommerfeld quantization process), resulting in

k = 2πN
ℏ
m

= N
h

m
(2.22)

In conclusion, a strong analogy between quantum fluids and Bose-Einstein con-
densates can be outlined by considering the z-component of angular momentum
operator:

L̂z = m(r⃗ ∧ v⃗) · ê3 =
k

2π
m

[
r⃗ ∧
(
ê3 ∧

r⃗

|r⃗|2

)]
· ê3 =

k

2π
m = Nℏ (2.23)

such formula shows indeed how all the particles in the superfluid medium possess
the same angular momentum (along z-axis). Vortex formation can then be seen as
a condensation phenomena where quantum state Lz gets macroscopically occupied.
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Chapter 3

Point-like Model

“The essence of mathematics is in
its freedom.”

Georg Cantor

It is known that the description of ultracold bosons passes by the Gross-
Pitaevskii equations in the so-called Mean-Field Limit, non-linear partial differen-
tial equations for the (classical) field ψ possessing a space and time dependence.
Since such equations can be faced only numerically, a powerful model of recent
development in scientific literature is known as the Point-like Model [22], [2],
[3]that fundamentally allows the reduction of the original mathematical model
based on a partial differential equation to a system of coupled ordinary differen-
tial equations. Despite the intrinsic non-linearity of the system, the analytical
advantage of approaching ODEs contrary to PDEs is evident. This procedure
is addressed in first place considering massless vortices i.e. vortices whose core,
represented by the region where the density profile of the condensate faces a sin-
gularity, is assumed empty (see section 2.2) for which a simplified Hamiltonian
can be obtained in virtue of some hypotesis. Motion equations naturally follows
by means of canonical Poisson Brackets as the system possesses an Hamiltonian
structure.

In second place a further level of complexity is introduced by accounting for the
presence of core masses leading to the Massive Point-like Model : a second-order
system resulting from the introduction of 4 new degrees of freedom (vx1 , vx2 , vy1 ,
vy2) that is able to account for much more complex and rich dynamics. The pres-
ence of massive cores is addressed by means of the Time Dependent Variational
Lagrangian Method [20], to which a brief section is properly devoted. In chapter 4,
dedicated to the algebraic description of the system, it will be properly discussed
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Point-like Model

how while complete integrability is reached in the massless case due to the pres-
ence of a sufficient number of conserved quantities, the introduction of core masses
makes the system not-integrable since the number of d.o.f. overtakes the number
of prime integrals.

Such analytical model already proved its accuracy through various comparisons
with numerical results of the well-known Gross-Pitaevskii equations. Recent works
showed how, concerning the case of a pair of massless vortices trapped in a cir-
cular box, its dynamics is described by a simple precession motion around the
trapping center, while the introduction of increasingly bigger core masses leads to
the emergence of instabilities. Moreover the absence of tangential entrainment be-
tween the fluids composing the cores and the body of vortices has been established,
emphasizing how no dissipation should arise in such rotational dynamics. Highly
irregular patterns have also been noticed when asymmetrical initial conditions are
introduced.

This chapter is then devoted to the complete derivation of the Point-like model
in its massless version at first and then including massive cores together with the
resulting dynamical equations.

3.1 The case of free massless vortices

In the general scenario a quantum fluid can present many vortices, requiring a
further generalization of the single vortex configuration discussed in section 2.4.
Recalling the double representation of the velocity field, in the case of N vortices,
the electric picture gives:

v⃗(r⃗) =
∑
i

ki
2π
ê3 ∧

r⃗ − r⃗i
|r⃗ − r⃗i|2

=
∑
i

ki
2π

∇θi =
∑
i

Ni

2π

h

m
∇θi

=
ℏ
m

∑
i

Ni∇θi = σ∇θ
(3.1)

while the magnetic formulation provides:

v⃗(r⃗) =
∑
i

ki
2π
ê3 ∧

r⃗ − r⃗i
|r⃗ − r⃗i|2

=
∑
i

ki
2π
ê3 ∧∇Ai = σ

∑
i

ê3 ∧Ni∇Ai

= σê3 ∧∇A = −σcurl
(
Aê3
) (3.2)

where the parameter σ .
= ℏ/m has been introduced, aside from the use of quanti-

zation formula 2.22. Fields θ and A are now accounting for multiple contributions
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3.1 – The case of free massless vortices

coming from the many vortices in the gas, meaning that

θ(r⃗) =
∑
i

Niθi(r⃗), A(r⃗) =
∑
i

NiAi(r⃗) (3.3)

where relations ∇θi = ê3 ∧ ∇Ai together with ∆A = 2π
∑

iNiδ
2(r⃗ − r⃗i) still hold

with minimal adjustments.

Presented arguments lead to evaluate the circulation of the velocity field, in the
case of a many-vortex configuration, as:∮

γ

d2r⃗ · v⃗ =

∫ ∫
Sγ

dŝê3 · curlṽ =

∫ ∫
Sγ

dŝê3 · ê3σ2π
∑
i

Niδ
2(r̃− r̃i)

=

∫ ∫
Sγ

dŝ · w⃗ =
∑
i

ki

(3.4)

again, in virtue of Stokes’ theorem. Motion equations are of trivial derivation as
it would be sufficient to evaluate:

˙⃗rj = v⃗(r⃗j) =
∑
i /=j

ki
2π

ê3 ∧
(
r⃗j − r⃗i

)
|r⃗j − r⃗i|2

(3.5)

The index i = j has been removed in order to avoid the divergence emerging when
two vortices are too close (r⃗i → r⃗j). The same dynamics describing a gas of N free
vortices can be exploited passing through a careful manipulation of the hydrody-
namic mean-field Hamiltonian.

Indeed one may recall the Hamiltonian arising from the hydrodynamic picture:

H =

∫
d2r⃗

[
ℏ2

2m

(
1

4ρ
(∇ρ)2 + ρ(∇θ)2

)
+ V (r⃗)ρ+

U

2
ρ2
]

(3.6)

as properly discussed in section 2.3, the condensate’s density profile ρ can be
assumed almost constant on the entire domain, aside from the small regions cor-
responding to the cores of the vortices where it drastically goes to zero in corre-
spondence of the singularity. Within the Point-like Model an apparently rough
approximation is conducted, consisting in the assumption that the density is con-
stant everywhere in the planar domain: ρ ≃ ρ0. Moreover a circular box geometry
of radius R is assumed, meaning that confining potential V (r⃗) has the form:

V (r⃗) =

{
0 if r⃗ < R

+∞ if r⃗ = R
(3.7)
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Under this assumptions, the system’s Hamiltonian gets approximated as

H ≃ ρ0

∫
D

d2r⃗

(
ℏ2

2m
(∇θ)2 + V (r⃗) +

U0

2
ρ0

)
≃ ρ20

ℏ2

2m

∫
D

d2r⃗(∇θ)2 + C (3.8)

being C = U0ρ
2
0πL

2/2 a constant contribution with L the size of the planar domain.
Recalling that (∇θ)2 = (∇A)2 and making use of the well-known vectorial identity

Figure 3.1: Behaviour of the condensate profile with respect to spatial coordinates.
The assumption that ρ(r⃗) ≃ ρ0 is reasonable almost everywhere, except for the
singularities in correspondence of an area of ≈ πλ2.

(∇A)2 = div(A∇A)− A∆A, one obtains:

H ≃ ρ0ℏ2

2m

∫
D

d2r⃗(∇A)2 = ρ0ℏ2

2m

∫
D

d2r⃗
(
div(A∇A)− A∆A

)
=
ρ0ℏ2

2m

[∫
D

d2r⃗
[
ê3 · curl(ê3 ∧ A∇A)

]
−
∫
D

d2r⃗
(∑

i

Ni

2
ln
|r⃗ − r⃗i|2

λ2

∑
j

2πNjδ
2(r⃗ − r⃗j)

)]

=
ρ0ℏ2

2m

[∮
Γ

dr⃗ · (ê3 ∧ A∇A)−
∑
i

Ni

2
ln
|r⃗j − r⃗i|2

λ2

∑
j

2πNj

]
(3.9)

where the last equality holds by virtue of Stokes’ theorem. Focusing on the first
contribution, it is possible to rearrange it as follows, observing that ∇A ∼ (r⃗ −
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3.1 – The case of free massless vortices

r⃗i)/|r⃗ − r⃗i|2:

C∞ =
ρ0ℏ2

2m

∮
Γ

dr⃗ · (ê3 ∧ A∇A) =
ρ0ℏ2

2m

∫ 2π

0

Rdφêφ · (ê3 ∧ A∇A)

=
ρ0ℏ2

2m

∫ 2π

0

Rdφêr ·

(∑
j

Nj

2
ln
|r⃗ − r⃗j|2

λ2

∑
i

Ni
r⃗ − r⃗i
|r⃗ − r⃗i|2

)

=
ρ0ℏ2

2m

∫ 2π

0

dφ

(∑
j

Nj

2
ln
|r⃗ − r⃗j|2

λ2

∑
i

NiRêr ·
r⃗ − r⃗i
|r⃗ − r⃗i|2

)
R≫λ→ ρ0ℏ2

2m

∫ 2π

0

dφ

(∑
i

Ni

)2

ln

(
R

λ

)
=
ρ0ℏ2

2m
2π

(∑
i

Ni

)2

ln

(
R

λ

)
(3.10)

since êr = êφ ∧ ê3. By sending the boundary to infinity, physically obtained in the
limit R ≫ λ meaning that a fictious boundary at high distance (R ≫ |r⃗i|) is set,
then its effects can be neglected and so the term r⃗ · (r⃗− r⃗i)/|r⃗− r⃗i|2 ≈ 1 resulting
in the last equivalence in previous equation. Such term represents a divergence
that does not play any crucial role in the system’s dynamics.

In conclusion, it has been proved that Hamiltonian (3.8) can be reduced to the
following (see [23]), apart from an infinite constant represented by the term C∞:

H = C∞ − ρ0ℏ2

2m

∑
i

Niln
|r⃗j − r⃗i|

λ

∑
j

2πNj = C∞ − ρ∗
4π

∑
i

∑
j /=i

kikjln
|r⃗j − r⃗i|

λ

(3.11)
where has been introduced the parameter ρ∗

.
= ρ0m and recalled the expression

for the vortex charge ki = 2πNiℏ/m = Nih/m. Note that the term i = j has
been removed from the summation to neglect an unphysical contribution to the
Hamiltonian. This is indeed equivalent to eliminate an area ≈ λ2 relative to the
vortex cores: for r⃗ → r⃗j infact, the term (∇θ)2 ≈ 1/|r⃗− r⃗j|2 features a divergence
that must be removed.

However the assumption of ρ ≈ const is physically inaccurate, since a real su-
perfluid medium possesses a not uniform density profile that goes to zero close to
the vortex cores, compensating the divergent behaviour of (∇θ)2. Nevertheless in
the next section it will be proved that despite the choice of a physically reasonable
density profile, the expression of the vortex Hamiltonian won’t be altered.

Dynamical equations are easily derived through the canonical Poisson Brackets
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with respect to canonical variables xj, yj such that {xi, yj} = δij/(ρ∗ki):

ẋn = {xn,H} =
1

ρ∗kn

∂H
∂yn

=
1

ρ∗kn

∂

∂yn

(
− ρ∗

4π

∑
i

∑
j /=i

kikjln
|r⃗i − r⃗j|

λ

)
= − 1

2πkn

∑
i /=n

kikn
yn − yi
|r⃗n − r⃗i|2

(3.12)

Similar calculations performed for ẏn result in the Helmoltz-Kirchoff equations

ẋn = − 1

2π

∑
i /=n

ki
yn − yi
|r⃗n − r⃗i|2

(3.13)

ẏn =
1

2π

∑
i /=n

ki
xn − xi
|r⃗n − r⃗i|2

(3.14)

perfectly reproducing eq.3.5.

3.1.1 Parabolic density profile in the proximity of cores
Previously a rough approximation on the condensate’s density profile has been
considered, assuming it flat in all of the occupied space. With the goal of per-
forming a more "gentle" approximation, it is possible to assume the existence of a
series of subdomains Dk, each one covering an approximate area D0 ≃ πλ2, where
the condensate has a non-trivial density profile ρ(r) = c|r⃗ − r⃗k|2, while it remains
constant ρ ≃ ρ0 in every other point of the domain D0. Formally speaking, the
density profile is assumed to be:

ρ =

{
ρ0 if r⃗ ∈ D0

c|r⃗ − r⃗k|2 if r⃗ ∈ Dk

(3.15)

This way the overall planar domain can be expressed as a partition of sub-regions:

D = D0 ∪k Dk

Through this assumption it is possible to adapt Hamiltonian (3.8) in the following
way:

H =
ℏ2

2m

∫
D0

d2r⃗
[ρ
4
(∇lnρ)2 + ρ(∇θ)2

]
+
∑
k

[
ℏ2

2m

∫
Dk

d2r⃗
[ρ
4
(∇lnρ)2 + ρ(∇θ)2

]]

≃ ℏ2

2m

[
ρ0

∫
D0

d2r⃗(∇θ)2 +
∑
k

∫
Dk

d2r⃗
[
c+ c|r⃗ − r⃗k|2(∇θ)2

]]
(3.16)
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3.1 – The case of free massless vortices

Figure 3.2: Partition of planar domain D as the union of k subdomains and the
region D0. Note that curves Γk and Γ0 are clockwise and counterclockwise respec-
tively to ensure the evalutation of the overall line integral over D.

where has been exploited the fact that:

ρ

4
(∇lnρ)2 = c

4
|r⃗ − r⃗k|2

(
∇ρ
ρ

)2

=
c

4
|r⃗ − r⃗k|2

(
2c|r⃗ − r⃗k|
c|r⃗ − r⃗k|2

)2

= c

Now considering the fact that the fiels θ can be expressed as a superposition of
many local θi-fields, the integration over disk Dk leads to the simplification:

∇θ =
∑
i

Niê3∧
r⃗ − r⃗i
|r⃗ − r⃗i|2

= Nkê3∧
r⃗ − r⃗k
|r⃗ − r⃗k|2

+
∑
i /=k

Niê3∧
r⃗ − r⃗i
|r⃗ − r⃗i|2

≃ Nkê3∧
r⃗ − r⃗k
|r⃗ − r⃗k|2

since the subdomains Dk are far enough and thus the influence of all components
θi with i /= k becomes negligible. This allows to approximate the Hamiltonian to:

H =
mσ2

2

[∑
k

2cπλ2 +
∑
k

∫
Dk

d2r⃗

[
c|r⃗ − r⃗k|2

(∑
i

Niê3 ∧
r⃗ − r⃗i
|r⃗ − r⃗i|2

)]

+ ρ0

∫
D0

d2r⃗(∇θ)2
]

≃ mσ2

2

[∑
k

2cπλ2 +
∑
k

∫
Dk

d2r⃗c|r⃗ − r⃗k|2N2
k

|r⃗ − r⃗k|2

|r⃗ − r⃗k|4
+ ρ0

∫
D0

d2r⃗(∇θ)2
]

=
mσ2

2

[∑
k

(
2cπλ2 + πλ2cN2

k

)
+ ρ0

∫
D0

d2r⃗(∇θ)2
]

(3.17)
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In the case of a free boson mixture (e.g. for R ≫ λ) it is possible to further rear-
range the previous expression noticing the emergence of a constant contribution

C(λ) = mσ2

2

[∑
k

(
2cπλ2 + πλ2cN2

k

)]
(3.18)

that doesn’t play any role in the derivation of dynamical equation. Indeed

H = C(λ) + mσ2

2

∫
D0

d2r⃗ρ0(∇θ)2 = C(λ) + mρ0σ
2

2

∫
D0

[
div(A∇A)− A∆A

]
= C(λ) + mσ2

2

[ ∮
Γ

dr⃗ · (ê3 ∧ A∇A)−
∫
D0

∑
i

Ni

2
ln
|r⃗ − r⃗i|2

λ2

∑
j

2πNjδ
2(r⃗ − r⃗j)

]
(3.19)

where the last term vanishes in virtue of the definition of the delta function: in the
domain D0 infact, δ2(r⃗ − r⃗j) = 0. Thus considering the remaining term, the line
integral can be rearranged observing that it represents the circulation along the
overall domain D0, whose border can be written as Γ = Γ0 ∪ (

∑
k Γk) as depicted

in figure 3.1. The curves Γk infact reflect circulations over the boundary of the
k − th subdomain where density singularities are present. This way one obtains:

∮
Γ

dr⃗ · (ê3 ∧ A∇A) =
∮
Γ0

dr⃗ · (ê3 ∧ A∇A)−
∑
k

∮
Γk

dr⃗ · (ê3 ∧ A∇A)

R≫λ→ C∞ −
∑
k

∮
Γk

dr⃗ · (ê3 ∧ A∇A)

where the line integral over Γ0 represent a diverging contribution in the R ≫ λ
limit, e.g. by sending the boundary to infinity and so considering a free vortex
gas. In conclusion, Hamiltonian (3.8) in the case of a parabolic density profile
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3.2 – The inclusion of boundary effects

reduces to:

H = C(λ) + C∞ − mρ0σ
2

2

∑
k

∮
Γk

dr⃗ · (ê3 ∧ A∇A)

= C(λ) + C∞ − mρ0σ
2

2

∑
k

A(r⃗k)

∮
Γk

dr⃗ · (ê3 ∧∇A)

= C(λ) + C∞ − mρ0σ
2

2

∑
k

A(r⃗k)

∮
Γk

dr⃗ · ∇θ

= C(λ) + C∞ − mρ0σ
2

2

∑
k

A(r⃗k)

∮
Γk

dr⃗ ·
(
Nk∇θk +

∑
j /=k

Nj∇θj
)

= C(λ) + C∞ − mρ0σ
2

2

∑
k

A(r⃗k)(2πNk)

= C(λ) + C∞ − mρ0σ
2

2

∑
k

∑
j

Nj

2
ln
|r⃗k − r⃗j|2

λ2
2πNk

(3.20)

in virtue of the approximation
∑

k

∮
Γk
dr⃗ ·(ê3∧A∇A) ≃

∑
k A(r⃗k)

∮
Γk
dr⃗ ·(ê3∧∇A)

justified by the fact that the field A can be shown to be almost constant in the
surroundings of the integration domain Γk.

Previous calculations then lead to:

H = C(λ) + C∞ − ρ∗
4π

∑
k

∑
j /=k

kkkjln
|r⃗k − r⃗j|

λ
(3.21)

showing how, despite the introduction of a more physical approximation for the
condensate’s density profile, the same Hamiltonian has been found. Since no im-
provements in the model have been made, in the following discussions the original
approximation ρ ≈ const will be considered as it proves to capture the same
amount of physical informations as the parabolic profile.

3.2 The inclusion of boundary effects
The inclusion of boundaries or obstacles in the domain is addressed by means of
the Virtual Charge Method, typically employed in Electrostatics and Fluid
Dynamics to account for walls or obstacles in the domain. Considering a particle
with charge +e in position r⃗ = (x, y), the presence of a wall in position x = 0 is
addressed by assuming the existence of a virtual particle with charge −e in posi-
tion r⃗∗ = (x∗, y∗) = (−x, y). The same principle applies to the vortex gas case,
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Point-like Model

where each virtual vortex possesses an opposite circulation −k.

In the simplest scenario the vortices can be thought as confined in a half-plane
D = R+, while virtual vortices are positioned at r⃗i = (x∗i , y

∗
i ) = (−xi, yi). This

way it becomes necessary to introduce:

θtot
.
= θ(r⃗) + θ̄(r⃗) =

∑
i

Niarctg
(y − yi
x− xi

)
−
∑
i

Niarctg
(y − y∗i
x− x∗i

)
(3.22)

and similarly

Atot
.
= A(r⃗) + Ā(r⃗) =

∑
i

Ni

2
ln
|r⃗ − r⃗i|2

λ2
−
∑
i

Ni

2
ln
|r⃗ − r⃗∗i |2

λ2
(3.23)

Hamiltonian (3.8) then can be treated as follows, taking advantage of the well-
known vectorial identity concerning (∇A)2:

H ≃ ρ0
ℏ2

2m

∫
D

d2r⃗(∇θ)2 = ρ0
mσ2

2

∫
D

d2r⃗(∇Atot)
2

= ρ0
mσ2

2

∫
D

d2r⃗
[
div(Atot∇Atot)− Atot∆Atot

] (3.24)

To exploit the second integral, it is possible to rearrange its argument in the
following way:

Atot∆Atot =

(∑
i

Ni

2
ln
|r⃗ − r⃗i|2

λ2
−
∑
i

Ni

2
ln
|r⃗ − r⃗∗i |2

λ2

)

×

(∑
j

2πNjδ
2(r⃗ − r⃗j)−

∑
j

2πNjδ
2(r⃗ − r⃗∗j )

)

=
∑
i

Ni

2
ln
|r⃗ − r⃗i|2

λ2

∑
j

2πNjδ
2(r⃗ − r⃗j)

−
∑
i

Ni

2
ln
|r⃗ − r⃗∗i |2

λ2

∑
j

2πNjδ
2(r⃗ − r⃗j)

(3.25)

where the term δ2(r⃗ − r⃗∗j ) is trivially null since we are performing the integra-
tion over the domain D where virtual vortices are not present. Thus its integral
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3.2 – The inclusion of boundary effects

becomes:

ρ0
mσ2

2

∫
D

d2r⃗

[(∑
i

Ni

2
ln
|r⃗ − r⃗i|2

λ2

∑
j

2πNjδ
2(r⃗ − r⃗j)

−
∑
i

Ni

2
ln
|r⃗ − r⃗∗i |2

λ2

∑
j

2πNjδ
2(r⃗ − r⃗j)

]

= ρ0
mσ2

2

(
1

2

∑
i

∑
j /=i

2πNiNjln
|r⃗j − r⃗i|2

λ2
− 1

2

∑
i

∑
j

2πNiNjln
|r⃗j − r⃗∗i |2

λ2

)

=
ρ∗
4π

[
1

2

∑
i

∑
j /=i

kikjln
|r⃗j − r⃗i|2

λ2
− 1

2

∑
i

∑
j

kikjln
|r⃗j − r⃗∗i |2

λ2

]
(3.26)

where has been introduced ρ∗
.
= ρm and recalled the expression for the vortex

charge k = 2πNℏ/m = Nh/m. Note that the summations have been separated
in order to eliminate one term corresponding to i = j for which the logarithm
function is not defined.

The first contribution in equation (3.24) can be instead manipulated thanks to
Stokes’ theorem, introducing Γ as a curve that encircles D: such curve can be
thought as the union of the y-axis and a semicircumference that lies in the half-
plane R+ as showed in figure 3.3. Though Γ = γ ∪ γR leads to:

C(Γ) = ρ0
mσ2

2

∫
D

d2r⃗
[
div(Atot∇Atot)

]
= ρ0

mσ2

2

∫
D

d2r⃗
[
ê3 · curl(ê3 ∧ Atot∇Atot)

]
= ρ0

mσ2

2

∮
Γ

dr⃗ ·
[
ê3 ∧ Atot∇Atot

]
= ρ0

mσ2

2

(∮
Γ

dr⃗ ·
[
ê3 ∧ Atot∇Atot

]
+

∫
γR

dr⃗ ·
[
ê3 ∧ Atot∇Atot

])
(3.27)

recalling the identity êr = êφ ∧ ê3 and being R the radius of γR. Observing that
both Atot = const ≡ 0 along γ (the y-axis) and that Atot(R) = const ≡ 0 along
semicircumference γR, one may conclude that C(Γ) ≡ 0. Finally, the systems’
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Point-like Model

Figure 3.3: Sketch of how the curve laying on the wall can be considered as a closed
curve made by the union of the y-axis γ and the semicircumference γR ∈ R+.

Hamiltonian reduces to:

H = − ρ∗
4π

[∑
i

∑
j /=i

kikjln
|r⃗j − r⃗i|2

λ2
− 1

2

∑
i

∑
j /=i

kikjln
|r⃗j − r⃗∗i |2

λ2

− 1

2

∑
i

k2i ln
|r⃗i − r⃗i

∗|2

λ2

]
(3.28)

then by exploiting the expression of the conformal transformation for the positions
of the virtual vortices, one obtains:

H = − ρ∗
4π

1

2

∑
i

∑
j /=i

kikjln
|r⃗j − r⃗i|2

|r⃗j − r⃗∗i |2
+
ρ∗
4π

1

2

∑
i

k2i ln
x2i
λ2

(3.29)

3.2.1 Circular confinement and disk-like obstruction

To model a confinement effect in a circular box of radius R, one must exploit a
suitable conformal transformation linking the i− th real vortex position with the
position of its corresponding anti-vortex. This is expressed through:

r⃗∗i = r⃗i
R2

|r⃗i|2
(3.30)

This way it becomes necessary to recall:

θtot
.
= θ(r⃗) + θ̄(r⃗) =

∑
i

Niarctg
(y − yi
x− xi

)
−
∑
i

Niarctg
(y − y∗i
x− x∗i

)
(3.31)
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while potential Atot

Atot
.
= A(r⃗) + Ā(r⃗)

=
∑
i

Ni

2
ln
|r⃗ − r⃗i|2

λ2
−
∑
i

Ni

2
ln
|r⃗ − r⃗∗i |2

λ2
(3.32)

Accounting for these revised potentials and assuming again a flat density profile,
it is possible to perform some manipulations on Hamiltonian (3.8), observing that
if ρ ≃ const then (∇lnρ) = 0:

H ≃ ρ0
ℏ2

2m

∫
D

d2r⃗(∇θ)2 = ρ0
mσ2

2

∫
D

d2r⃗
[
div(Atot∇Atot)− Atot∆Atot

]
(3.33)

where has been introduced the parameter σ .
= ℏ/m. In the second integral the

expression concerning potential Atot can be reformulated noticing that Atot∆Atot =
(A+ Ā)∆(A+ Ā), leading to:

mρ0σ
2

2

∫
D

d2r⃗
[
Atot∆Atot

]
=
mρ0σ

2

2

∫
D

d2r⃗

[∑
i

Ni

2

(
ln
|r⃗ − r⃗i|2

λ2
− ln

|r⃗ − r⃗i
∗|2

λ2

)

×
∑
j

2πNj

(
δ2(r⃗ − r⃗j)− δ2(r⃗ − r⃗j

∗)

)]

=
mρ0σ

2

2

[∑
i

Ni

2

(
ln
|r⃗j − r⃗i|2

λ2
− ln

|r⃗j − r⃗i
∗|2

λ2

)]∑
j

2πNj

=
ρ∗
4π

[∑
i

∑
i /=j

kikjln
|r⃗j − r⃗i|

λ
−
∑
i

∑
j

kikjln
|r⃗j − r⃗i

∗|
λ

]

(3.34)

where the term δ2(r⃗ − r⃗∗j ) is null since we are performing the integration over the
domain D where no virtual vortices are present and again from the first summa-
tions it has been removed the term i = j in order to eliminate the emergence of a
diverging behaviour. Moreover it have been introduced ρ∗

.
= ρm and the expres-

sion for the vortex charge k = 2πNℏ/m = Nh/m.

The first integral in equation (3.33) can be instead manipulated by virtue of
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Stokes’ theorem. Introducing γ as a curve of radius R that encircles D and recall-
ing the identity êr = êφ ∧ ê3:

C(γ) = mρ0σ
2

2

∫
D

d2r⃗
[
div(Atot∇Atot)

]
=

mρ0σ
2

2

∫
D

d2r̃
[
ê3 · curl(ê3 ∧ Atot∇Atot)

]
=
mρ0σ

2

2

∮
Γ

dr⃗ ·
[
ê3 ∧ Atot∇Atot

]
=
mρ0σ

2

2

∫ 2π

0

Rdφêφ ·
[
ê3 ∧ Atot∇Atot

]
≃ mρ0σ

2

2
Atot(R⃗)

∫ 2π

0

Rdφêφ ·
[
ê3 ∧∇Atot

]
=
mρ0σ

2

2
Atot(R⃗)

∫ 2π

0

Rdφêφ · (∇θtot)

(3.35)

thanks to the relation ∇θi = ê3 ∧ ∇Ai. Previous approximation is justified once
again by the fact that potential Atot is almost constant in the surroundings of the
singularity. Observing now that ∇θi = ê3 ∧ r⃗i/|r⃗|2, then the final expression of
diverging constant C(γ) reads:

C(γ) = mρ0σ
2

2
Atot(R⃗)

∫ 2π

0

Rdφêφ ·
(∑

i

Niê3 ∧
r⃗i
|r⃗|2

)
=
mρ0σ

2

2
Atot(R⃗)

∫ 2π

0

dφ
∑
i

Ni =
mρ0σ

2

2
Atot(R⃗)2π

∑
i

Ni

=
ρ∗
4π

(∑
i

ki
)∑

j

kjln
|R⃗− r⃗j|2

|R⃗− r⃗j
∗|2

(3.36)

where the relation r⃗ · (r⃗ − r⃗i)/|r⃗ − r⃗i|2 ≈ 1 has been exploited. Such result shows
how the overall term

∫
D
Atot∇Atot from eq. (3.33) can be reduced to a constant

that represents a negligible contribution in the system’s dynamics. In conclusion
we obtain the following Hamiltonian:

H = C(γ)− ρ∗
4π

[
1

2

∑
i

∑
j /=i

kikjln
|r⃗j − r⃗i|2

λ2
− 1

2

∑
i

∑
j /=i

kikjln
|r⃗j − r⃗∗i |2

λ2

− 1

2

∑
i

k2i ln
|r⃗i − r⃗i

∗|2

λ2

]

= − ρ∗
4π

[∑
i

∑
j /=i

kikjln

(
R2 − 2r⃗i · r⃗j + |r⃗j|2|r⃗i|2/R2

|r⃗j|2 − 2r⃗j · r⃗i + |r⃗i|2

)
−
∑
i

k2i ln

(
1− |r⃗i|2

R2

)]
(3.37)
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where in the last line the proper expression of the conformal transformation r⃗i∗
.
=

r⃗iR
2/|r⃗i|2 has been plugged, together with the form of constant C(γ). It is im-

portant to notice that by inverting the conformal transformation concerning the
position of the i − th antivortex it is possible to invert the physical setting by
keeping unchanged the system’s Hamiltonian. This way the vortices outside the
boundary can be considered as real vortices (while previously were considered as
virtual ones) and the ones inside are now their corresponding virtual images. In-
fact while in the original formulation the model is meant to describe N vortices
confined inside the circular boundary, in the present work the purpose is to in-
vestigate the behaviour of vortices laying outside and colliding against it. This
equivalence can be simply proven by revising potentials θ and A by inverting the
role of real and virtual vortices. This leads to changing Ni → −Ni and renominate
r⃗i → s⃗i

∗, r⃗i
∗ → s⃗i in the expression of potential 3.32:

A
′

tot
.
= A

′
(r⃗) + Ā′(r⃗) + A0(r⃗)

= −
∑
i

Ni

2
ln
|r⃗ − r⃗i|2

λ2
+
∑
i

Ni

2
ln
|r⃗ − r⃗i

∗|2

λ2
+
∑
i

NiA0(r⃗)

=
∑
i

Ni

2
ln
|r⃗ − s⃗i|2

λ2
−
∑
i

Ni

2
ln
|r⃗ − s⃗i

∗|2

λ2
+

1

2
ln

(
|r⃗|2

λ2

)∑
i

Ni

(3.38)

It now possesses an extra term A0 that in the R⃗ → 0 limit (e.g. when the size of
the obstacle is vanishingly small) cancels the terms arising from virtual vortices
allowing to reproduce the original vector potential of N free vortices in the plane.
Indeed for R⃗ → 0 virtual vortices collapse in the origin si = |s⃗i| = R2/s∗i → 0
and such contributions are cancelled out thanks to A0. Being Atot still a Green
function, it now satisfies

∆Atot = 2π
∑
i

Ni

(
δ2(r⃗ − s⃗i

∗)− δ2(r⃗ − s⃗i)
)
+ 2πδ2(r⃗)

∑
i

Ni (3.39)

Moreover, previous additive term A0 produces an extra contribution in the velocity
field v⃗(r⃗) that becomes

v⃗(r⃗) =
∑
i

[
ki
2π
ê3 ∧

r⃗ − s⃗i
|r⃗ − s⃗i|2

− ki
2π
ê3 ∧

r⃗ − s⃗i
∗

|r⃗ − s⃗i
∗|2

]
+

1

2π

(∑
i

ki

)
ê3 ∧

r⃗

|r⃗|2
(3.40)
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Plugging the new potential A′
tot in equation (3.33) results in the modification of

its second contribution (given by (3.34)) as:

mρ0σ
2

2

∫
D

[
A

′

tot∆A
′

tot

]
=
ρ∗
4π

[∑
i

∑
j /=i

kikjln
|r⃗j∗ − r⃗i

∗|2

λ2
−
∑
i

∑
j

kikjln
|r⃗j∗ − r⃗i|2

λ2
+
∑
i

NiA0(r⃗i)

]

=
ρ∗
4π

[∑
i

∑
j /=i

kikjln
|s⃗j − s⃗i|2

λ2
−
∑
i

∑
j

kikjln
|s⃗j − s⃗i

∗|2

λ2

+
1

2

(∑
j

Nj

)∑
i

Niln
|s⃗i|2

λ2

]
(3.41)

since δ2(r⃗− r⃗j∗) = δ2(s⃗− s⃗j) is now an active contribution. We are still performing
the integration over the domain D but as the role of vortex and anti-vortex has
been inverted, no (new) virtual vortex s⃗j∗ is present. For the same reason, from the
first summations it has been removed the term i = j to prevent from an unphysical
contribution to H. Conversely the first of term in 3.33 gets modified as follows

mρ0σ
2

2

∫
D

d2r⃗
[
div(Atot∇Atot)

]
= C(Γ)− C(γ)

=
mρ0σ

2

2

[ ∮
Γ

dr⃗ ·
[
ê3 ∧ Atot∇Atot

]
−
∮
γ

dr⃗ ·
[
ê3 ∧ Atot∇Atot

]] (3.42)

considering γ as a curve of radius R⃗ representing the disk boundary and introducing
a second curve Γ, a circle of radius r⃗ → ∞ encircling the plane with opposite
directions. By noticing that

∑
i

(
NiAi(r⃗)−NiĀi(r⃗)

)
=
∑
i

Ni

2
ln

|r⃗ − s⃗i|2

|r⃗ − s⃗i
∗|2

→ 0, r⃗ → +∞

and that A0(r⃗) is constant along curve Γ, one may write

C(Γ) = mρ0σ
2

2

∮
Γ

dr⃗ ·
[
ê3 ∧ Atot∇Atot

]
=
mρ0σ

2

2
A0(r⃗)

∑
i

Ni

=
mρ0σ

2

2
2π

(∑
i

Ni

)2
1

2
ln

(
|r⃗|2

λ2

)
→ +∞, for r⃗ → +∞

(3.43)
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thus representing a diverging constant. Conversely, the second line integral gives:

C(γ) = mρ0σ
2

2

∮
γ

dr⃗ ·
[
ê3 ∧ Atot∇Atot

]
=
mρ0σ

2

2
A(R⃗)

∮
γ

dr⃗ ·
(
ê3 ∧∇A

)
=
ρ0ℏ
2
A(R⃗)

∮
γ

dr⃗ · v⃗(r⃗) = ρ0ℏ
2
A(R⃗)

(
−
∑
i

ki +
∑
i

ki

)
= 0

(3.44)

where, again, the fact that A(R⃗) = const along γ has been employed. The com-
bination of 3.41 and 3.43 together finally produces the Hamiltonian for a disk-like
obstruction:

H = C(Γ)− ρ∗
4π

[
1

2

∑
i

∑
j /=i

kikjln
|s⃗j − s⃗i|2

λ2
− 1

2

∑
i

∑
j /=i

kikjln
|s⃗j − s⃗i

∗|2

λ2

− 1

2

∑
i

k2i ln
|s⃗i − s⃗i

∗|2

λ2
− 1

2

(∑
j

kj

)∑
i

kiln
|s⃗i|2

λ2

]
= C(Γ)− ρ∗

4π

[∑
i

∑
j /=i

kikjln
|s⃗j − s⃗i|2

λ2

− 1

2

∑
i

∑
j

kikjln
(|s⃗j|2|s⃗i|2 +R4 − 2R2s⃗i · s⃗j)

λ2|s⃗j|2

]
(3.45)

It has been shown indeed that

H(r⃗1, .., r⃗n; r⃗1
∗, .., r⃗n

∗) = H(s⃗1
∗, .., s⃗n

∗; s⃗1, .., s⃗n)

and so that the dynamical descriptions of a gas of N vortices confined in a circular
trap and scattered against a disk-like obstruction are equivalent. In the simplest
scenario, when N = 2, the previous Hamiltonian gets reduced to the one typically
considered in literature [22], [2], [3] when dealing with quantum vortices:

H1,2 = − ρ∗
4π

[
k1k2ln

|R2 − z1z̄2|2

|R(z1 − z2)|2
− k1ln

(
1− |z1|2

R2

)
− k2ln

(
1− |z2|2

R2

)]
(3.46)

where vector zj
.
= xj + iyj is such that |zj|2 = |r⃗j|2.

Dynamical equations are easily derived through the canonical Poisson Brackets
with respect to canonical variables xj, yj such that {xi, yj} = δij/(ρ∗ki):{

ẋj = {xj,H1,2} = 1
ρ∗kj

∂H1,2

∂yj

ẏj = {yj,H1,2} = − 1
ρ∗kj

∂H1,2

∂xj

(3.47)

that clearly differ from the Helmoltz-Kirckhoff equations due to the profound
change in the Hamiltonian that here includes a complex interaction term.
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3.3 Massive Vortices and dynamics
A further generalization of the model, able to grasp more physically meaningful
aspects, prescribes to incorporate the presence of massive cores: this is performed
by the introduction of a Lagrangian of the form

L =
2∑

j=1

[
mj

2

(
ẋj

2 + ẏj
2
)
+
kjρ∗
2

(
yjẋj − xj ẏj

)]
−H (3.48)

wheremj represent the masses hosted by the j−th vortex. Such Variational Ansatz
can be properly justified by means of the so-called Time-dependent variational
Lagrangian approach whose major details will be properly discussed in the fol-
lowing subsection.

In Lagrangian formalism, dynamical equation are found thanks to the well-known
Euler-Lagrange equations : d/dt(∂L/∂q̇i) = 0, q = x, y and i = 1,2 for Lagrangian
(3.48):

m1ẍ1 = −k1ρ∗ẏ1 + ρ∗k1
2π

[
k2

x1−x2

|r⃗1−r⃗2|2 + k1
x1

R2−|r⃗1|2 + k2
R2x2−|r⃗2|2x1

R4−2R2x1x2+|r⃗1|2|r⃗2|2
]

m1ÿ1 = k1ρ∗ẋ1 +
ρ∗k1
2π

[
k2

y1−y2
|r⃗1−r⃗2|2 + k1

y1
R2−|r⃗1|2 + k2

R2y2−|r⃗2|2y1
R4−2R2y1y2+|r⃗1|2|r⃗2|2

]
m2ẍ2 = −k2ρ∗ẏ2 + ρ∗k2

2π

[
k1

x2−x1

|r⃗2−r⃗1|2 + k2
x2

R2−|r⃗2|2 + k1
R2x1−|r⃗1|2x2

R4−2R2x1x2+|r⃗1|2|r⃗2|2
]

m2ẍ2 = +k2ρ∗ẋ2 +
ρ∗k2
2π

[
k1

y2−y1
|r⃗2−r⃗1|2 + k2

y2
R2−|r⃗2|2 + k1

R2y1−|r⃗1|2y2
R4−2R2y1y2+|r⃗1|2|r⃗2|2

]
(3.49)

that in a compact vectorial formulation become:

mj
¨⃗rj = kjρ∗ê3∧ ˙⃗rj+

ρ∗kj
2π

[
ki

r⃗j − r⃗i
|r⃗j − r⃗i|2

+kj
r⃗j

R2 − |r⃗j|2
+ki

R2r⃗i − |r⃗i|2r⃗j
R4 − 2R2r⃗ir⃗j + |r⃗i|2|r⃗j|2

]
(3.50)

It is interesting to observe that in the limit R → 0 or more precisely |r⃗i|, |r⃗j| ≫
R, meaning that the size of the obstacle is vanishingly small, one restores the
dynamical equations describing a gas of N free massive vortices. Indeed in this
limit Lagrangian (3.48) loses the contribution of the boundary coming from H,
leading to: 

m1ẍ1 ≃ −k1ρ∗ẏ1 + ρ∗k1
2π

[
k2

x1−x2

|r⃗1−r⃗2|2
]

m1ÿ1 ≃ k1ρ∗ẋ1 +
ρ∗k1
2π

[
k2

y1−y2
|r⃗1−r⃗2|2

]
m2ẍ2 ≃ −k2ρ∗ẏ2 + ρ∗k2

2π

[
k1

x2−x1

|r⃗2−r⃗1|2
]

m2ÿ2 ≃ k2ρ∗ẋ2 +
ρ∗k2
2π

[
k1

y2−y1
|r⃗2−r⃗1|2

] (3.51)

where it has been assumed k1 = −k2 as the two vortices are part of a vortex-
antivortex dipole. In the following chapter, the massive vortex dynamics will be
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3.3 – Massive Vortices and dynamics

simulated numerically by means of the software Wolfram Mathematica to study
the scattering of a dipole against a circular obstacle.

3.3.1 Time-dependent Variational Lagrangian Method
This methodology is widely employed in non-linear problems and is particularly
useful in three-dimensional problems where numerical simulations are computa-
tionally expensive. Indeed it is worth mentioning that, despite the dynamics
in object evolves in a two-dimensional domain, the dynamics is originally three-
dimensional. Due to the regime of interaction considered the condensate is almost
compressed on a 2D disk leading to a dynamics that is essentially planar due to
the negligible elongation of the system along its vertical component. Although not
exact, this technique is a good qualitative approach that allows to find approxi-
mated but analytical results for a complex system.

First recall that a Bose-Einstein Condensate at zero temperature is described
within the Non-linear Schröedinger Equation (NLSE):

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ + V (r⃗)ψ + U0|ψ|2ψ (3.52)

where V (r⃗) is the trapping potential and U0 = 4πℏ2a/m is the effective interaction
potential as a result of Bogoliubov theory [16], [18], with a the scattering length.
Considering an harmonically-trapped BEC, the expression of its confining potential
reads:

V (r⃗) =
1

2
mω2

(
λ2xx

2 + λ2yy
2 + λ2zz

2
)

The basic idea behind the variational method is to take a trial function with a fixed
shape, but with some free (time-dependent) parameters. On the practical level the
TDVL method bypasses the Gross-Pitaevskii equation and limits the dynamics on
a finite set of time-dependent variational parameters, by introducing Variational
Ansatz: it consists in assuming that in the specific regime where interactions are
weak enough, the Gaussian shape of the exact solution (where g = 0) is almost
unaltered. Thus one assumes that:

ψ(x, y, z, t) = A(t)
∏

η=x,y,z

exp

[
− (η − η0(t))

2

2ω2
η

+ iηαη(t) + iη2βη(t)

]
(3.53)

where ω ≪ |r⃗i − r⃗j|. It comes useful to notice that all such parameters possess
a physical meaning and directly influence many relevant quantities. Indeed the
velocity of the Gaussian wavepacket linearly depends on α:

v⃗(t) =
⟨ψ|v̂|ψ⟩
⟨ψ|ψ⟩

=
ℏ
m
α⃗(t)
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Point-like Model

while its width on ω:

(∆x)2 =
⟨ψ|(x− x0(t))

2|ψ⟩
⟨ψ|ψ⟩

=
(ωx(t))

2

2

The amplitude A(t) on the other side is found by imposing the normalization
condition on the trial wavefunction and reads:

A(t) =

[
N

π3/2
∏

η=x,y,z ωη(t)

]1/2
So while α can be recasted as a slope, parameter β as a (curvature)−1/2.

On the other side, this methodology allows to study the collective mode dynamics
of the condensate, by analyzing dynamical equations for the variational parame-
ters. Concerning the center of the condensate E-L provides:

η̈0 + λ2ην
2η0 = 0, η = x, y, z (3.54)

showing how it oscillates harmonically with frequencies λην and forming the so-
called dipole mode. It is important to observe how in this particular choice of
trapping potential, the motion does not depend on the number of particles, and
therefore it is not affected by non-linear effects. As a result the center of mass of the
condensate responds like a classical particle to the external potential. Concerning
the width ∆x ∼ ωx, its dynamics is ruled by:

ω̈x + λ2xν
2ωx =

ℏ2

m2ω3
x

+

√
2

π

aℏ2N
m2ω2

xωyωz

(3.55)

and similarly for the other components. Then the remaining variational parameters
can be trivially determined through the center’s coordinates and the widths by
means of the relations:

βη = − mω̇η

2ℏ2ωη

, αη = −mη̇0
ℏ2

− 2βηη0 (3.56)

The investigation of the collective mode dynamics leads to important results con-
cerning the expansion/contraction dynamics of the condensate and its oscillatory
behaviour, through the solution of the equation for variational parameter ωη.

In this context, as provided in the work [2], a two-component dilute Bose-Einstein
condensate is considered and so the overall system’s wavefunction can be seen as
a superposition of ψa representing the wave function of the a-component that con-
tains the vortices and ψb, the wavefunction of the component trapped in the vortex
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3.3 – Massive Vortices and dynamics

cores. In this regard the authors applied the methodology outlined in [20] to the
b-component. From the lagrangian viewpoint, the dynamics of Nv classical massive
vortices is accounted by the following Lagrangian (referring to the a-component)

La =
Nv∑
j=1

1

2
Mj

˙⃗2rj +
Nv∑
j=1

πnℏqj ˙⃗rj × r⃗j ˙̂z − E(r⃗1, ..., r⃗n) (3.57)

where aside from the Newtonian kinetic term, the central contribution, familiar
in the Lagrangian of a set of charged particles in presence of electromagnetic
potentials, involves velocity and position. The potential energy can be seen as
the contribution of both the interaction energy of vortex r⃗j with its virtual image
on the boundary (Φj) and the interaction energy of vortices r⃗j and r⃗k (Vjk), thus
resulting in E =

∑
j Φj +

∑
j Vjk. For the present problem the variational Ansatz

(3.53) will be slightly adjusted as follows:

ψb(x, y, z, t) =
Nv∑
i=1

(
Nb

Nvπσ2

) 1
2

exp

[
− |r⃗ − r⃗j(t)|2

2σ2
+ ir⃗ · α⃗j(t)

]
(3.58)

describing a Gaussian wavepacket with linear phase r⃗ · α⃗j, with b-component cores
small due to condition σ ≪ |r⃗i − r⃗k|. At this point the TDVL method involves
the substitution of Ansatz (3.58) inside the Lagrangian functional, since solving
the NLSE (3.52) can be recasted as the minimization of the action related to the
Lagrangian:

L[ψ] =

∫
d3r⃗

[(
ψ∗∂ψ

∂t
− ∂ψ∗

∂t
ψ

)
− ℏ2

2m
|∇ψ|2 + V (r⃗)|ψ|2 + g

2
|ψ|4

]
(3.59)

After some algebra, the system can be traced back to a Lagrangian that now
depends on the aforementioned variational parameters, meaning that:

L[ψ] = T [ψ]− E[ψ] → L
(
r⃗(t), ˙⃗r(t), α⃗(t), ˙⃗α(t)

)
(3.60)

from which, by means of Euler-Lagrange equations, dynamical equations for such
parameters are of trivial derivation. In particular, noticing that ψb is a localized
wavepacket centered in r⃗j(t) and moving with velocity ˙⃗rj(t) = ℏα⃗j/mb, it is possible
to find the following expression:

Lb = −
Nv∑
j=1

Nb

Nv

(
ℏr⃗j · ˙⃗αj +

ℏ2

2mb

α⃗j
2

)

=
Nb

Nv

Nv∑
j=1

[
mb

2
˙⃗2rj −

ℏ2

2mb

(
α⃗j −

mb

ℏ
˙⃗rj
)2]

=
Nv∑
j=1

1

2
Mc

˙⃗2rj =
Nv∑
j=1

Mb

2Nv

˙⃗2rj

(3.61)
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where Mc = Nbmb/Nv = Mb/Nv, with Nv is the number of point vortices. The
second equality in previous equation follows from noticing that, since neglecting a
total time derivative doesn’t alter the resulting equations, the term r⃗j · ˙⃗αj becomes
− ˙⃗rj · α⃗j + d(r⃗j · α⃗j)/dt apart from the total time derivative.

The combination of the previous result for Lb together with the La variational
Lagrangian provide the assumed model Lagrangian (3.57), proving the effective-
ness of the discussed variational method.
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Chapter 4

Algebraic Description

“By believing passionately in
something that still does not exist,
we create it. The nonexistent is
whatever we have not sufficiently
desired.”

Franz Kafka

A different perspective on the the description of the dynamical behaviour of
quantum vortices has been outlined in [19] where, by means of a group-theoretical
approach, the system has been classified in a specific algebraic framework thanks
to its symmetries and conserved quantities. Such a description is strongly based
on the field-theoretical formulation of the system and mainly focus on the con-
cept of symmetries and how they relate to conservation laws. Indeed the location
of a dynamical system into a precise algebraic structure allows not only to find
its (eventual) symmetries but also, in virtue of Noether’s Theorem, to identify its
(eventual) conserved quantities, a crucial step in understanding the system’s be-
haviour.

Nevertheless, the integrability character of the model drastically changes when
accounting for the presence of massive cores, strongly limiting the analytical ap-
proaches to its investigation. Their inclusion infact leads to the increase of the
overall dynamical variables resulting in a system with 8 degrees of freedom con-
trary to the only 4 present in the massless scenario. This complication will be
bypassed analyzing the asymptotic regimes where the influence of the boundary
can be neglected allowing to restore 2 conservation laws related to the translational
symmetries along the x, y-axis.
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Algebraic Description

After a brief discussion on a few important topics in Classical Mechanics, an in-
spiring algebraic approach to the (massless) disk-pair system will be presented and
extended to the massive scenario. Despite the lack of complete integrability, the
system doesn’t appear to be chaotic. Indeed KAM Theorem points out how non-
integrable systems do not automatically lead to chaotic dynamics. Aside from the
transient regime with the high non-linear interaction with the obstacle, the dipole
will be shown to present some important conservation laws that suggest an overall
stable character, subsequently confirmed by numerical simulations.

4.1 General Aspects of Analytical Mechanics
Poisson Brackets represent a powerful instrument when dealing with Hamiltonian
dynamics: not only they are deeply linked with Hamilton’s equations, but they
also provide a straigthforward way to find conserved quantities. Moreover they
are deeply related to Noether’s Theorem, which basically states that for every con-
tinuous symmetry of the action of a physical system, there exists a corresponding
conserved quantity Q called Noether Charge. Invariance under specific transfor-
mations implies then the emergence of the associated conserved Noether Charges.

The set of all symmetries of a dynamical system that can be composed and inverted
forms a group, called the Symmetry Group of the system, where each element
corresponds to a specific symmetry transformation. For continuous symmetries,
the symmetry group is often a Lie Group, where the infinitesimal generators of
these transformations form a Lie Algebra, encoding the structure of the symme-
try transformations. The conserved quantities correspond to the generators of the
symmetry transformations in the Lie Algebra.

For the specific case, the following sections will rely on a methodology based on the
concept of dynamical algebra [19], [4], a Lie Algebra closed under commutation.
Such closure property means that the commutator of any two algebra elements is
still an element of the algebra. Since a Lie Algebra is uniquely determined once all
commutators [êj, êk] = i

∑
m fjkmêm are given (recalling that ê1, ê2, ..., ên are the

generators of its corresponding n-dimensional vector space), then a model Hamil-
tonian Ĥ belongs to a specific dynamical algebra A whenever it can be expressed
as a linear combination of the algebra’s generators. Operatively:

Ĥ =
∑
j

hj êj

This allows to identify conserved quantities with algebra’s invariants but also to
provide a trivial diagonalization of sub-Hamiltonians Ĥk, assuming the separability
of Hamiltonian Ĥ =

∑
k Ĥk.
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4.2 – The Scattering Model of a Vortex Pair

4.1.1 Integrability of dynamical systems and chaos
An important tool that comes into play when dealing with a dynamical system is
the concept of integrability: ad dynamical system is said to be integrable if it
possesses enough conserved quantities (integrals of motion) to allow the system’s
equations of motion to be solved exactly, typically by quadratures.

Formally, for a system with n degrees of freedom (with a 2n-dimensional phase
space) described by a Hamiltonian H(qi, pi), the system is said to be Liouville
Integrable [5] if there exist n independent conserved quantities

{H, Fi} = 0, 1 = 1, ..., n

(often called first integrals) in involution:

{Fi, Fj} = 0, ∀i, j
On the practical level, the integrability property of a system allows its description
in terms of its conserved quantities: thanks to Noether’s theorem infact, if the sys-
tem possess n symmetries and so n conserved quantities that are in involution, then
it is integrable. This condition often allows to find analytical solutions, contrary
to generic dynamical systems for which the lack of a sufficient number of prime
integrals prevents from finding exact solutions. Despite chaotic systems are not-
integrable, not all systems that lack of complete integrability are chaotic since they
may exhibit regular or quasi-periodic motions that may be stable over time. In-
fact in order to be defined chaotic, a system must possess high sensitivity to initial
conditions, typically measured by means of the Lyapunov exponent. In this regard
an important result is given by KAM Theorem (Kolmogorov-Arnold-Moser) which
describes indeed how, under certain conditions, non-integrable systems that are
"close" to integrable ones can still exhibit quasi-periodic motion on tori (which is
regular and not chaotic) showing that non-integrable systems do not automatically
lead to chaos.

4.2 The Scattering Model of a Vortex Pair
A dynamical-algebra approach to the study of Vortex Quantum Dynamics (VQD)
completely relying on the algebraic characterization of the system has been per-
formed by V. Penna [19], where it has been considered the case of two massless
vortices with different combination of vorticity fields scattered against a circular
obstacle. Such VQD has been studied by means of the so called spectrum generat-
ing algebra method, consisting in the identification of a complete set of generators
forming a Lie Algebra (the dynamical algebra). Prime integrals of the system then
naturally arise from algebra’s invariants, typically expressed as linear combinations
of the generators.
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Algebraic Description

4.2.1 Mass-less case

Recall then the Hamiltonian of N free point-like vortices in a frictionless fluid 3.11

H(r⃗1, ..., r⃗n) = − ρ

4π

∑
i /=j

kikjln

(
|r⃗i − r⃗j|

λ

)

and canonical Poisson Brackets

{xi, yj} =
δij
ρkj

where momenta pxj
= ρkjxj and pyj = ρkjyj has been introduced, fulfilling

[xi, pj] = iℏδij.

It has been shown that:

Jx = ρ
∑
m

kmxm (4.1)

Jy = ρ
∑
m

kmym (4.2)

Jz = −ρ
2

∑
m

km(x
2
m + y2m) (4.3)

respectively the generator of translations along x-axis, the generator of translations
along y-axis, and the generator of rotations fulfill the equation

−ρJ∗ = 2CJz + J2
x + J2

y

where J∗ is the analogue of the Casimir operator and has the form

J∗ =
ρ

2

∑
i /=j

kikj[(xi − xj)
2 + (yi − yj)

2]

and C = ρ
∑

j kj stands for the total vorticity. Most importantly, such generators
are constants of motion, indeed satisfying, for a = x, y, z, relations:

{Ja, J∗} = 0, {H, Ja} = {H, J∗} = 0 (4.4)
{Jx, Jy} = C, {Jz, Jx} = Jy, {Jy, Jz} = Jx (4.5)

showing how they suitably represent generators of the e(2)-like algebra, in the light
of the closedness property. The author showed how in the case of N = 2 vortices,
for k1, k2 > 0 they rotate along concentric circumferences which collapse into a
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4.2 – The Scattering Model of a Vortex Pair

single circular orbit for k1 → k2. When k1 → −k2 the full VA-regime emerges, see-
ing the pair running along straight parallel lines. The system is indeed completely
integrable as the number of conserved quantities overtakes the number of degrees
of freedom, given only by the vortices’ positions.

When accounting for the presence of the circular obstacle (see section 3.2.1) one
should recall that the system’s Hamiltonian changes, becoming

H1,2 = − ρ∗
4π

[
k1k2ln

|R2 − z1z̄2|2

|R(z1 − z2)|2
− k1ln

(
1− |z1|2

R2

)
− k2ln

(
1− |z2|2

R2

)]

but despite the system loses 2 conserved quantities in the light of the fact that
the obstacle prevents from keeping translational symmetries along x, y− axis, the
integrability character is maintained allowing to adopt a fully analytical approach.
The author showed infact that, introducing D2 = |r⃗1 − r⃗2|2, it is possible to find
4 conserved quantities (different from the previous ones) that in the VV-pair case
can be identified with the generators of su(2) algebra, while the VA-pair gets ap-
proached within the su(1,1) algebraic scheme.

The VA-pair scenario possesses a limiting case when k2 → −k1: a transition
takes place from a confined behaviour where the trajectories are represented by
circumferences to a situation where the pair freely drifts away in the plane. This
appealing results suggest that the disk-pair dynamics could be suitably reformu-
lated in terms of a generalized angular momentum dynamics. The main difference
between VV and VA dynamics seems to stand in the energetic disadvantage of the
former as a consequence of vorticity accumulation. The VA-pair on the contrary
appears much more stable because of the proper balance induced by the opposite
circulation fields.

4.2.2 Massive case

When accounting for the presence of massive cores the situation drastically changes:
the emergence of new degrees of freedom embodied by the masses lead to the loss
of the system’s integrability. The number of d.o.f. (now 8) overtakes the number
of prime integrals (2) and the system can no longer be described in terms of its
conserved quantities, requiring then a different approach with respect to the one
previously adopted. Assuming that the non-linear interaction effects induced by
the obstacle are exhausted at finite distance, it seems reasonable to postulate the
existence of an asymptotic regime where the vortex pair behaves undisturbed. This
means that way before encountering the obstacle and way after its collision, the
system should be modelled by the original Hamiltonian describing free vortices
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(3.11). These two regions are marked by condition R ≪ |r⃗i|, |r⃗j| stating that the
vortices’ positions are (in modulus) way bigger than the obstacle’s radius and so
that such vortices are located far from it. The original dynamical equations (3.49)
get approximated as follows:

m1ẍ1 ≃ −k1ρ∗ẏ1 +
ρ∗k1
2π

[
k2

x1−x2

|r⃗1−r⃗2|2

]
m1ÿ1 ≃ k1ρ∗ẋ1 +

ρ∗k1
2π

[
k2

y1−y2

|r⃗1−r⃗2|2

]
m2ẍ2 ≃ −k2ρ∗ẏ2 +

ρ∗k2
2π

[
k1

x2−x1

|r⃗2−r⃗1|2

]
m2ÿ2 ≃ k2ρ∗ẋ2 +

ρ∗k2
2π

[
k1

y2−y1

|r⃗2−r⃗1|2

]
(4.6)

Various experimental observations suggest that in such asymptotic regimes accel-
eration terms should be negligible since the velocities remain constant in terms of
modulus and direction aside from the region surrounding the obstacle. Thanks to
this observation, previous equations get rewritten as:

ẋ1 ≃ − k2
2π

y1−y2

|r⃗1−r⃗2|2

ẏ1 ≃ k2
2π

x1−x2

|r⃗1−r⃗2|2

ẋ2 ≃ − k1
2π

y2−y1

|r⃗2−r⃗1|2

ẏ2 ≃ k1
2π

x2−x1

|r⃗2−r⃗1|2

(4.7)

perfectly reproducing the Helmoltz-Kirkchoff equations for massless vortices. In-
terestingly then, considering the system far from the influence of the obstacle seems
to allow for its reduction to a specific dynamical sub-regime of lightweight vortices
where the mass does not play an important role. Helpful insights in the system’s
dynamics are given by means of a perturbative expansion, that provides a more
rigorous method to validate the set of equations 4.7.
Expressing then spatial coordinates as:

xj ≃ Xj + ϵxj + o(ϵ2) (4.8)
yj ≃ Yj + ϵyj + o(ϵ2) (4.9)

where the zero-order term corresponds to the basic approximation and the first-
order correction depends respectively on the perturbative parameter ϵ ≪ 1. For
the first equation of the set (4.6) one obtains:

m1ẍ1 ≃ −k1ρ∗ẏ1 +
ρ∗k1
2π

[
k2

x1 − x2

|r⃗1 − r⃗2|2

]

m1

(
Ẍ1 + ϵẍ1

)
≃ −k1ρ∗

(
Ẏ1 + ϵẏ1

(1)
)
+
ρ∗k1k2
2π

(
X1 −X2

)
+ ϵ
(
x1 − x2

)
|r⃗1 − r⃗2|2

(4.10)
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and since

|r⃗1 − r⃗2|2 ≃
[(
X1 −X2

)
+ ϵ
(
x1 − x2

)]2
+

[(
Y1 − Y2

)
+ ϵ
(
y1 − y2

)]2
≃
(
X1 −X2

)2
+
(
Y1 − Y2

)2
+ 2ϵ

(
X1 −X2

)(
x1 − x2

)
+ o(ϵ2)

+ 2ϵ
[(
Y1 − Y2

)(
y1 − y2

)
+ o(ϵ2)

= |R⃗1 − R⃗2|2 + 2ϵ
(
R⃗1 − R⃗2

)
·
(
r⃗1 − r⃗2

)
+ o(ϵ2)

(4.11)

where R⃗i refers to the zero-order contribution of vector r⃗i, meaning that R⃗i =
r⃗i

(0) = X2
i + Y 2

i , while r⃗i = r⃗i
(1) is its first-order correction. Exploiting the

Taylor’s expansion of the fraction in (4.10) and defining ∆ =
[
(X1 − X2)(x1 −

x2) + (Y1 − Y2)(y1 − y2)
]

1

|r⃗1 − r⃗2|2
≃ 1

|R⃗1 − R⃗2|2 + 2ϵ∆
=

1

|R⃗1 − R⃗2|2
(
1 + 2ϵ∆/|R⃗1 − R⃗2|2

)
≃ 1

|R⃗1 − R⃗2|2
− 2ϵ∆

|R⃗1 − R⃗2|4
+ o(ϵ2)

=
1

|R⃗1 − R⃗2|2
−

2ϵ
[
(X1 −X2)(x1 − x2) + (Y1 − Y2)(y1 − y2)

]
|R⃗1 − R⃗2|4

+ o(ϵ2)

(4.12)

where second-order corrections have been neglected. Finally, separating zero-order
terms from first-order contributions one finds two distinct dynamical equations:
m1Ẍ1 ≃ −k1ρ∗Ẏ1 + ρ∗k1k2

2π
X1−X2

|R⃗1−R⃗2|2

m1ẍ1 ≃ −k1ρ∗ẏ1 + ρ∗k1k2
2π

[(
x1−x2

)
|R⃗1−R⃗2|2

− 2
(
(X1−X2)(x1−x2)+(Y1−Y2)(y1−y2)

)
|R⃗1−R⃗2|4

(X1 −X2)

]
(4.13)

and observing once again that it is possible to assume the acceleration of the "bulk"
term as negligible Ẍ1 ≃ 0 due to experimental observation, the first equation con-
cerning the zero-order term of the perturbative expansion is in perfect agreement
with its corresponding equation in set (4.7):

Ẏ1 ≃
k2
2π

X1 −X2

|R⃗1 − R⃗2|2
(4.14)

Thus this shows that the "bulk" dynamics addressed in the zero-order approxima-
tion is indeed stable under perturbations. Conversely the dynamics concerning the
first-order contribution is linear in perturbations ϵ ≪ 1, proving to be negligible
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in the overall dynamics of the system when considering the asymptotic regimes.
Overall, the dynamics of vortex 1 is ruled by the following equations of motion:{

Ẋ1 = − k2
2π

Y1−Y2

|R⃗1−R⃗2|2

Ẏ1 =
k2
2π

X1−X2

|R⃗1−R⃗2|2
(4.15)

together with the first-order correction describing the oscillatory dynamics:
m1ẍ1 ≃ −k1ρ∗ẏ1 + ρ∗k1k2

2π

[
(x1−x2)

|R⃗1−R⃗2|2
− 2
(
(X1−X2)(x1−x2)+(Y1−Y2)(y1−y2)

)
|R⃗1−R⃗2|4

(X1 −X2)

]
m1ÿ1 ≃ k1ρ∗ẋ1 +

ρ∗k1k2
2π

[
(y1−y2)

|R⃗1−R⃗2|2
− 2
(
(X1−X2)(x1−x2)+(Y1−Y2)(y1−y2)

)
|R⃗1−R⃗2|4

(Y1 − Y2)

]
(4.16)

Similar considerations and calculations concern the second vortex, whose dynamics
is governed by: {

Ẋ2 = − k1
2π

Y2−Y1

|R⃗2−R⃗1|2

Ẏ2 =
k1
2π

X2−X1

|R⃗2−R⃗1|2
(4.17)

jointly with
m2ẍ2 ≃ −k2ρ∗ẏ2 + ρ∗k2k1

2π

[
(x2−x1)

|R⃗2−R⃗1|2
− 2
(
(X2−X1)(x2−x1)+(Y2−Y1)(y2−y1)

)
|R⃗2−R⃗1|4

(X2 −X1)

]
m2ÿ2 ≃ k2ρ∗ẋ2 +

ρ∗k2k1
2π

[
(y2−y1)

|R⃗2−R⃗1|2
− 2
(
(X2−X1)(x2−x1)+(Y2−Y1)(y2−y1)

)
|R⃗2−R⃗1|4

(Y2 − Y1)

]
(4.18)

Resulting motion equations require a careful discussion: assuming the validity of
eq. 4.7, valid in the asymptotic regimes, requires their compatibility with 4.6. For
this to be true, the asymptotic dynamics described by the Helmoltz-Kirchoff must
be compatible with the request ẍi = ÿi = const ≡ 0 for i = 1,2. This is indeed
verified whenever ẋi = ẏi = const, representing a constraint on the dynamical
evolution of the system, satisfied only if yi − yj = xi −xj = const. The fact that
the role of the masses loses its importance is a then a consequence of postulating
the existence of specific sub-regimes where the following conditions are constantly
verified:

y1 − y2 = const⇒ ẋ1 = ẋ2 = const⇒ ẍ1 = ẍ2 ≡ 0

x1 − x2 = const⇒ ẏ1 = ẏ2 = const⇒ ÿ1 = ÿ2 ≡ 0
(4.19)

where the fact that ẋ1 = ẋ2 together with ẏ1 = ẏ2 has been noticed as directly
coming from 4.7 since k1 = −k2. The results coming from this methodology state
then whenever the distancing between the vortices is kept constant their respective
velocities remain so, resulting in a uniform motion (e.g. with zero accelerations)
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4.2 – The Scattering Model of a Vortex Pair

resembling the trivial dynamics of free massless vortices.

Another interesting perspective can be considered when accounting for the sys-
tem’s conserved quantities. In such asymptotic regimes where the influence of the
obstacle is negligible, translational symmetries along x, y − axis are gained. Such
generators differ from the ones concerning the massless scenario, and read:

Jx
.
=
∑
j

(
pxj

+ ρ∗
kj
2
yj

)
=
∑
j

(
mjẋj + ρ∗kjyj

)
(4.20)

Jy
.
=
∑
j

(
pyj − ρ∗

kj
2
xj

)
=
∑
j

(
mj ẏj − ρ∗kjxj

)
(4.21)

Jz
.
=
∑
j

[
ρ∗
2

(
x2j + y2j

)
+
(
xjpyj − yjpxj

)]
=
∑
j

[
mj

(
xj ẏj − yjẋj

)
− ρ∗

kj
2

(
x2j + y2j

)] (4.22)

where momenta pxj
= mjẋj + ρ∗kjyj/2 and pyj = mj ẏj − ρ∗kjxj/2 are now the

standard ones. To begin one should prove that such generators are indeed prime
integrals by evaluating the corresponding Poisson Bracket against the Hamiltonian.
For the generator along the x-axis one finds:

J̇x = {Jx,H} = {px1 + px2 ,H}+ ρ∗
k1
2
{y1,H}+ ρ∗

k2
2
{y2,H}

= −∂H
∂x1

− ∂H
∂x2

+ ρ∗
k1
2
ẏ1 + ρ∗

k2
2
ẏ2 = ρ∗

k1k2
4π

x1 − x2
|r⃗1 − r⃗2|2

+ ρ∗
k1k2
4π

x2 − x1
|r⃗2 − r⃗1|2

+ ρ∗
k1
2

(
k2
2π

x1 − x2
|r⃗1 − r⃗2|2

)
+ ρ∗

k2
2

(
k1
2π

x2 − x1
|r⃗2 − r⃗1|2

)
= 0

(4.23)

where in the last equivalence asymptotic equations (4.7) have been employed.
Moreover by observing that (x1 − x2) = −(x2 − x1), it has been proved that
J̇x = 0. Similar calculations are performed for other generators.

In conclusion, the approach adopted so far consisted in neglecting the transient
regime where the vortex dipole interact with the obstacle and the loss of integra-
bility prevents from approaching the system in an exact, analytical way. In the
so called asymptotic regimes, indicated by the condition R ≪ |r⃗j|, despite the sys-
tem is still not completely integrable, the emergence of previously lost conserved
quantities may shed a light in further understanding such complex interaction dy-
namics. From the aforementioned generators it is possible to find 3 conservation
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laws by imposing, respectively: Jxin
= Jxout , Jyin = Jyout , Jzin = Jzout .

m1vx1,in
+m2vx2,in

+ ρ∗
k1
2
y1,in + ρ∗

k2
2
y2,in

= m1vx1,out +m2vx2,out + ρ∗
k1
2
y1,out + ρ∗

k2
2
y2,out

(4.24)

m1vy1,in +m2vy2,in − ρ∗
k1
2
x1,in − ρ∗

k2
2
x2,in

= m1vy1,out +m2vy2,out − ρ∗
k1
2
x1,out − ρ∗

k2
2
x2,out

(4.25)

m1x1,invy1,in −m1y1,invx1,in
+m2x2,invy2,in −m2y2,invx2,in

− ρ∗
k1
2

(
x1,in

)2 − ρ∗
k1
2

(
y1,in

)2
ρ∗ − ρ∗

k2
2

(
x2,in

)2 − ρ∗
k2
2

(
y2,in

)2
= m1x1,outvy1,out −m1y1,outvx1,out +m2x2,outvy2,out −m2y2,outvx2,out

− ρ∗
k1
2

(
x1,out

)2 − ρ∗
k1
2

(
y1,out

)2
ρ∗ − ρ∗

k2
2

(
x2,out

)2 − ρ∗
k2
2

(
y2,out

)2
(4.26)

Moreover the same relations can be deducted by means of the asymptotic equations
(4.7). In the following chapter this novel method will be tested analytically in the
perfectly symmetrical scattering, while a numerical check will be provided in more
complicated scenarios where new physical effects arise.
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Chapter 5

Simulations of the
VA-scattering

“I... a universe of atoms, an atom
in the universe.”

Richard P. Feynman

Vortices are present in a broad range of phenomena in physics, from quan-
tum optics, to superconductors [7] and Josephson-junction arrays, but the most
representative and controllable environments are represented by ultracold quan-
tum gases [11] and superfluids [9]. The experimental realization of Bose-Einstein
Condensation by means of laser cooling and evaporating cooling techniques in ru-
bidium, sodium and potassium atoms opened a vast number of theoretical and
experimental challenges. After many experiments, quantized vortices have been
observed in superfluid 2He, extremely close to the ideal frictionless fluid, and sub-
sequently in superfluid 4He. Moreover the detection of vortices in ultracold bosons
(BECs) shed a light on a new vast phenomenology to explore leading to experi-
ments containing rotating condensates and many technological employments.

The introduction of the Point-like model in scientific literature permitted to focus
the attention on the dynamical features of quantum vortices, investigating their
trajectories when trapped into circular boxes by means of harmonic potentials.
Such analytical model has been validated by means of numerical comparisons [14]
with the original mean-field dynamics arising from the Gross-Pitaevskii equation.
Recent works suggested how the emergence of massive cores, occurring within bo-
son mixtures, profoundly changes the dynamics playing the role of an non-rotating
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inertial mass and resulting in a singly quantized vortex in one hyperfine compo-
nent surrounding a core of the second component [6].

The system under investigation is then constituted by a pair of quantum vor-
tices arising from a binary mixture of BECs. The mixture considered is made of
Potassium 41K, of mass ma = 1,42 ∗ 10−25kg, and Rubidium 87Rb, with approxi-
mate mass of mb = 6,48 ∗ 10−26kg. The former will be addressed as the a-species,
acting as a confining potential on the latter, the b-species, that plays the role
of a non-rotating massive core. Being the vortex-antivortex dynamics (VA) the
object of this work the two vortices have opposite charge (e.g. k1 = −k2) with
counter-rotating angular velocities Ω = 5rad/s. Such dipole can be considered as
a free particle of overall mass M ≈ 2m but close to a boundary (the border of the
domain, a wall or an obstacle as in this case), the emergence of interaction effects
drastically alter its dynamics.

In the following tractation various numerical simulations with an increasing level
of complexity will be presented with the main purpose of approaching the most
realistic experimental scenarios. In the first part basic physical settings will be
investigated and compared with the main goal of emphasizing the main param-
eters guiding the transition from different dynamical behaviours. Trivial initial
settings will be taken into account such as a 1-dimensional velocity field direct to
the obstacle, the influence of the order of magnitude of initial velocities as well
as other geometrical factors with the goal of exploring the phenomenology behind
vortex scattering processes. In the subsequent discussion it will be introduced
a 2-dimensional velocity field with different components, various inclinations of
the dipole’s axis but also mass unbalances will be examined in order to simulate
realistic scenarios that are much more likely to occur in experimental setups.

5.1 The recombination of the pair

The first simulations explore the most basic scenario where the two vortices with
equal masses are initially located symmetrically with respect to the y − axis and
at fixed distance from the obstacle, with non-zero initial velocity only along the
vertical axis of value vyin = 5 ∗ 10−6m/s. It is interesting to note, despite the
high non-linearity of the dynamical system, the overall appearing stability of such
trajectories. The vortex-antivortex dipole seems to be a solid configuration that
is just altered when the balance between attraction and repulsion forces between
them is disrupted by the appereance of repulsion effects induced by the proximity
to the obstacle. Indeed, the original dipole length is restored and the trajectories
appears perfectly symmetrical with respect to the y − axis.
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5.1 – The recombination of the pair

Figure 5.1: Perfectly symmetrical scattering when symmetrical initial conditions
are imposed for both positions and velocities.

The same identical phenomenology is observed increasing the order of magnitude
of the initial velocity: by imposing vyin = 5 ∗ 10−4m/s it has been possible to
notice once again the recombination of the pair at the original length despite the
emergence of visible oscillations. In this regard the presence of a higher veloc-
ity field seems to induce dynamical instabilities responsible for the appearance of
an oscillatory dynamics of the vortices. Indeed the equilibrium distance, when
the equilibrium between attraction and repulsion forces between them is reached,
seems to be no longer present and the dipole continuously expands and contracts
like a spring subject to periodic forces.

Considering the most basic scenario where totally symmetrical initial conditions
are imposed, the conservation of (4.21) provides specific relations between the ini-
tial velocities of the pair and their final velocities. Concerning the first generator
Jxin

= Jxout gives, emphasizing that k1 = −k2:

m1vx1,in
+m2vx2,in

+ ρ∗
k1
2
y1,in + ρ∗

k2
2
y2,in

= m1vx1,out +m2vx2,out + ρ∗
k1
2
y1,out + ρ∗

k2
2
y2,out

(5.1)

where the imposition of null horizontal initial velocities for the vortices and the
experimental observation that vx1,out ≈ vx2,out ≈ 0, as a consequence of the (al-
most) uniform motion along y, allow to prove the equivalence. For the the second
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Simulations of the VA-scattering

Figure 5.2: Velocity field has only y-component of 5 ∗ 10−4 for both vortices.
Increasing the velocity results in stimulating the oscillatory dynamics, despite the
mean trajectories reflect the original set up.

generator instead Jyin = Jyout gives:

m1vy1,in +m2vy2,in − ρ∗
k1
2
x1,in − ρ∗

k2
2
x2,in

= m1vy1,out +m2vy2,out − ρ∗
k1
2
x1,out − ρ∗

k2
2
x2,out

(5.2)

that under the straightforward observation that vy1,in = vy2,in and vy1,out = vy2,out ,
but also x1,in = x1,out and x2,in = x2,out due to the symmetry property of the
observed dynamics, one finds that

vG,y,in = vG,y,out

The quantity vG,y = (vy1+vy2)/2 can be seen as the dipole’s center of mass vertical
velocity that, in the light of the resulting relation, appears to be conserved during
the scattering process. For the last generator then, by imposing Jzin = Jzout it is
possible to obtain:

m1x1,invy1,in −m1y1,invx1,in
+m2x2,invy2,in −m2y2,invx2,in

− ρ∗
k1
2

(
x1,in

)2 − ρ∗
k1
2

(
y1,in

)2
ρ∗ − ρ∗

k2
2

(
x2,in

)2 − ρ∗
k2
2

(
y2,in

)2
= m1x1,outvy1,out −m1y1,outvx1,out +m2x2,outvy2,out −m2y2,outvx2,out

− ρ∗
k1
2

(
x1,out

)2 − ρ∗
k1
2

(
y1,out

)2
ρ∗ − ρ∗

k2
2

(
x2,out

)2 − ρ∗
k2
2

(
y2,out

)2
(5.3)

58



5.1 – The recombination of the pair

which leads to the conservation law:

y21,in + y22,in = y21,out + y22,out (5.4)

in the light of the fact that x1,in = −x2,in.

It is then possible to conclude that, in the perfectly symmetrical scattering pro-
cess, the aforementioned approach based on the consideration of the asymptotic
regimes provided reasonable and consistent results. Nevertheless satisfaction of
aforementioned conservation laws has been verified numerically and provides sat-
isfactory results.

As properly discussed in previous chapter, the existence of such dynamical sub-
regimes in which the role of masses is negligible permits to restore the dynamics
of massless vortices embodied by the Helmoltz-Kirchoff equations. To numerically
validate such result, various comparisons has been conducted simulating massive
vortices and their massless counterpart. As showed by following pictures, the
agreement is extraordinary and overall the dynamics is equivalent except for the
transient in which the highly non-linear interactions with the obstacle induce weak
oscillations. This represents a further confirmation of the methodology introduced

Figure 5.3: Comparison between massive (left) and massless dynamics (right) of
the VA scattering. Simulations present identical initial conditions.

and especially a validation of the consequent statements concerning the role of the
masses.
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5.2 The emergence of the deflection angle

To explore the role of asymmetrical initial conditions, by keeping the elongation
of the dipole fixed for the entire sequence of tests, its center of mass has been
gradually shifted with respect to the center of the obstacle. What emerges is
that it exist a critical positioning for the center of mass ( approximately xcenter ∈
(1.75, 2.25)) in which the dynamical behaviour drastically changes as a consequence
of a phase transition. While for values smaller than 1.75 the dipole is stretched
and one vortex encircles the obstacle, for xcenter ≥ 2.25 the pair remains compact
and stable at fixed length. An interesting phenomena is the resulting curvature
effect produced by the obstacle on the trajectories of the vortices.

Figure 5.4: Velocity field has components identically null. In the left picture the
center of mass of the dipole is positioned at xbar = 0,5 ∗R and at xbar = 1 ∗R

in the right one.

An interesting phenomena is the deflection angle produced behind the obsta-
cle: despite the two vortices recombine in a dipole with original length unaltered,
their trajectories appears to be bent of a certain angle with respect to the x−axis.

As properly discussed in section 4.2.2, the asymptotic approach led to the dis-
covery of conservation laws that have been verified analytically in the perfectly
symmetrical scattering process. For the asymmetrical setting, the conservation of
generators (4.21) has been verified numerically and the agreement is satisfactory.
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5.2 – The emergence of the deflection angle

Figure 5.5: By keeping the dipole’s length fixed, its center of mass is placed at
xbar = 1,5 ∗ R (left) and xbar = 2 ∗ R (right). When xbar is placed far enough, a
visible qualitative change in the dynamics occurs.

5.2.1 The influence of geometric factors

Another relevant parameter altering the dynamical behaviour of the system is the
elongation of the vortex dipole: changing the length of the pair results in altering
the overall dynamical behaviour of the system. As can be seen in the following, the
overall effect of decreasing such length is increasing the interaction effects between
the components, leading to configurations where the the attraction to its corre-
sponding anti-vortex is much greater than the repulsion induced by the obstacle to
the left vortex (in blue). Although it would be reasonable to assume that in virtue
of the proximity of the vortices their mutual interactions should be stronger than
the influence of the boundary, resulting in keeping the dipole much more compact
and less likely to stretch, simulations showed multiple numerical errors for a wide
range of positionings. Resulting plots showed how, close to the boundary, the tra-
jectories started to split in order to surround it but somehow end up too close to
it that the strong repulsion forces resulted in pushing the vortices far away in the
plane region. This phenomena occurs for xcenter ∈ (0.5, 1.5), the region in which
a dynamical phase transition occurs separating the two different behaviours: the
bypassing on one hand and the deflection on the other. So despite a slight, moder-
ate shift produces a deflection angle analogue to the one discussed in the previous
section, when the dipole is too tight vast numerical errors appear and a drastic
transition between two behaviour is present. Moreover the closedness of the vor-
tices results in the visible emergence of ripples in their trajectories as a consequence
of the constant competition between attraction and repulsion forces between them.
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Figure 5.6: The transition from capture to deflection occurs much sooner as a
consequence of the reduced initial distance between the vortices (here fixed at
d = 0,5 ∗ R). Moreover a stronger oscillatory pattern arises due to the stronger
interactions between the dipole’s components.

From this first set of physical settings what emerges is the surprisingly stabil-
ity and compactness of the VA-pair when colliding against a smooth obstacle.
The emergence of perfectly symmetrical trajectories, aside from ripples of vari-
able magnitude, is a reasonably unexpected result considering the high degree of
complexity of the dynamical equation. Moreover a deep influence of the relative
positioning of the dipole with respect to the obstacle and the mutual distance
between the vortices arised. On one hand, by keeping the dipole’s length fixed
and shifting its center of mass, a visible deflection angle appears after the pair
recombines. On the other, a stable, safe distance seems to be able to avoid critical
phenomena and guarantee (almost) smooth orbits.

5.3 Experimental Scenarios

Since a large gas of vortices depicts a scenario with many possible configurations,
trivial settings with identical velocity components or masses are rare in experi-
mental situations. In order to explore more realistic experimental set ups it will
now be considered more complex settings that are much more likely to occur.

62



5.3 – Experimental Scenarios

5.3.1 Inclined axis

Another geometrical parameter guiding the transition from the two distinct regimes
(capture and deflection) is the inclination of the dipole’s axis. In the present sec-
tion, by keeping the vortex’s position fixed (blue), the antivortex (orange) will be
located at the same, constant distance but appropriately positioned in order to
produce slightly increasing angles.

Figure 5.7: Initial velocity field has components v⃗1 = v⃗2 = (5 ∗ 10−5m/s; 5 ∗
10−5m/s); the dipole is inclined of 30 (left) and of 45 (right) with respect to the
x-axis.

Figure 5.7 shows how for angles α ∈ [0, 45) the dipole is still subject to a tran-
sient elongation, while surrounding the disk, followed by the usual recombination.
Conversely, for higher inclinations (α ≥ 60) the situation changes and the dipole
preserves its length while bending the trajectory of its center of mass as a result
of the interaction induced by the obstacle.

5.3.2 The influence of velocity differences

To investigate the role of asymmetrical initial velocities, in the first round of sim-
ulations it will be taken into account the case of a velocity field directed along
the y-axis for one vortex, while the other is initially stationary. Simulations show
how despite initial positions are symmetrical, the trajectories recombine along an
inclined axis. The introduction of unbalances in initial velocities then produces an
asymmetrical scattering also presenting wider oscillations compared to the ana-
logue setting with equal velocities. Moreover such oscillatory behaviour appears
to be asynchronous, meaning that when the oscillation amplitude of one vortex
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Figure 5.8: Initial velocity field has components v⃗1 = v⃗2 = (5 ∗ 10−5m/s, 5 ∗
10−5m/s); the dipole is inclined of 60 with respect to the x-axis. This setting
shows the passage from the capturing dynamics to the deflection of the vortices’
trajectories.

Figure 5.9: Perfectly symmetrical scattering with v⃗1 = (0; 0), v⃗2 = (0; 5∗10−4m/s)
(left); while xbar is slightly shifted (right). Both simulations are consistent with
original scenarios, aside from wider oscillations with an apparent asynchronous
behaviour.
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reaches its maximum, the other vortex is close to its minimum oscllatory behaviour.

Figure 5.10: Contrary to the case of equivalent velocities, the region in which
the capture occurs is much wider. Velocity fields are still set as v⃗1 = (0; 0),
v⃗2 = (0; 5 ∗ 10−4m/s).

Another interesting result concerns figure 5.10, showing that in a few scenarios the
introduction of destabilizing features may support the pair recombination. Indeed
the setting depicted in right panel was already explored with completely symmet-
rical initial conditions and showed the occurrence of various numerical errors. The
latter are a consequence of the fact that xbar = 3 lays in the crossing region be-
tween the capture and the deflection behaviours, where the excessive closeness of
left vortex (blue) to the disk produces significant repulsion effects able to push the
vortex away and disrupting the dipole’s structure. While infact for xbar < 3 one
observes the capture by the obstacle, for values greater than the critical one the
deflection of the pair’s trajectories occurs.

5.3.3 The influence of mass unbalances

This series of simulations is meant to explore mass-induced instabilities, by vary-
ing the core’s mass of one vortex and investigating the scattering properties of the
resulting dipole, with the initial velocity fields kept fixed at v⃗1 = (0; 5 ∗ 10−5m/s),
v⃗2 = (0; 5 ∗ 10−5m/s). Recalling that we indicated as species A the one laying
in the vortex core and species B the one trapped into the other, for the former
has been considered 87Rb and 41K for the latter, consistently with experimental
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settings. Species A possess an approximate mass of 1,42 ∗ 10−25kg, while the B
species 6,48 ∗ 10−26kg.

The greater kinetic contribution is intuitively embodied by the mass located in
the vortex core, meaning that reducing of one order of magnitude the mass of B
species (the massive core) is not expected to produce significant differences in the
system’s dynamics. Numerical simulations strongly confirm this guess, suggesting

Figure 5.11: Reducing the core’s masses of one order of magnitude doesn’t produce
visible effects (left), while increasing it provides the emergence of ripples in the
trajectory of heavier vortex (right)

that mass-induced instabilities may arise only when the kinetic contribution of
the core becomes significant, possibly overtaking the one of species A. For this
reason, only the increase of mb of one and also two orders of magnitude depicts
interesting and reasonable patterns. To explore the effects of such oscillations in
the scattering dynamics without them being a driving factor, the core’s mass has
been maintained at 6,48∗10−25kg (only one order greater than the one employed in
experiments) with the main goal of exploring combined effects of mass unbalances
and geometrical factors.

As can be noticed by following pictures, such combination produces a notice-
able increase in the oscillatory behaviour of the system: When the y-component
velocity of lighter vortex its oscillations get wider and a slight deflection angle in
left direction appears. Contrary, when heavier vortex possesses a non-zero velocity
along y-axis its oscillatory behaviour drastically increases and a slight deflection
angle in right direction can be noticed. This suggest that counterintuitively, aside
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Figure 5.12: With two orders bigger, the mass of vortex 2 (orange) produces
remarkable ripples in its trajectory.

Figure 5.13: An increase of the y-component velocity of one vortex further increase
the amplitude of oscillations. For left panel v⃗1 = (0; 5∗10−4m/s), v⃗2 = (0; 0), while
v⃗1 = (0; 0), v⃗2 = (0; 5 ∗ 10−4m/s) for the right one.

from the emergence of strong oscillations, the presence of mass unbalances, thus
shifting the center of mass of the dipole, is not directly correlated with an asym-
metrical scattering. The emerge of a deflection angle (so the recombination along
an inclined axis) arises when a consistent difference bewteen velocity profiles is
introduced.
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5.4 The case of VV-scattering
Despite the main focus of this work has been the investigation of the dynamics
of the vortex-antivortex pair, a few experimental settings involving vortex-vortex
dipoles have been explored for the sake of curiosity. Despite their limited em-
ployment in physical applications, it turned out that VV-dipoles can express a
much more complex and fascinating dynamics, presumably as a consequence of
the superposition of the two vorticity fields possessing equal sign. Indeed the
main hypotesis is that the accumulation of vorticity may be an instability feature
for the system that breaks the ordered motion previously observed for the VA-pair.

Despite the pattern is much more exotic than the VA scattering case, the dy-
namics still doesn’t appear to be chaotic. Indeed the system doesn’t seem to be
sensible to initial conditions as a regular overall motion can be observed despite
the higher complexity. If observed for longer times, trajectories don’t close re-
sulting in an aperiodic motion that is the combination of a precession of the two
vortices around their center of mass with a rotation of the latter around the disk-
like obstruction. Nevertheless the introduction of non-zero velocity components

Figure 5.14: Velocity field is identically null for both vortices and k1 = −k2. The
overall dynamics is drastically different from the VA case as a consequence of an
accumulation of local vorticity.

in the simulation specifics easily alters the observable pattern as shown by figure
5.15, despite the superposition of the aforementioned combined motions can be
noticed. When the two vortices are initially placed on opposite sides of the disk
a surprising phenomenon has been observed, seeing the two vortices co-rotating
around the obstacle on the same orbit.
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5.4 – The case of VV-scattering

Figure 5.15: Initial velocity field has components v⃗1 = v⃗2 = (5 ∗ 10−6; 0) and
k1 = −k2

Figure 5.16: Vortices are initially located symmetrically above and below the
obstacle, with initial velocity fields v⃗1 = v⃗2 = (0; 5 ∗ 10−6)
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Chapter 6

Conclusions and Further
Developments

The present work has been devoted to the investigation of vortex-antivortex (VA)
scattering against a disk-like obstacle with the main purpose of discovering and
characterizing its phenomenology. Assuming the existence of two asymptotic
regimes where the influence of the obstacle proved to be reasonable and func-
tioning. One the one hand it led to acquire translational symmetries, that were
lost in proximity of the disk, and its corresponding conserved quantities able to
provide a formula for the observed deflection angle behind the obstacle. On the
other is gave a much more important result, stating that such asymptotic regimes
are identified by the restoration of Helmoltz-Kirchoff equations describing massless
vortices. As observed from numerical observation indeed, far from the influence of
the obstacle the dipole appears to be moving in a uniform motion where accelera-
tion components are negligible.

From the analytical viewpoint it has been necessary the implementation of a per-
turbative expansion of dynamical equations with the main purpose of separating
zero-order contributions from first-order corrections. While the former, represent-
ing the bulk dynamics, resemble equations for massless vortices, the latter obey an
ODE with linear dependence on perturbations and describe the oscillatory com-
ponent of the observed trajectories. Further studies may rely on the investigation
of the stability character of such trajectories in order to comprehend the eventual
occurrence of chaos as the present study didn’t notice any. Moreover the expansion
of presented methodology may produce other important relations able to connect
initial and final configurations of the system with the main purpose of character-
izing the emergence of a rotation of the dipole’s axis after interacting with the disk.
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Conclusions and Further Developments

A broad number of simulations emphasized the influence of many parameters
in such complex dynamics: from the elongation of the dipole to the centering
with respect to the obstacle and also the inclination of the dipole’s axis when
approaching the obstacle. A considerable amount of experimental settings have
been explored, starting from the most trivial ones and reaching a satisfactory level
of complexity, all emphasizing the influence of many geometrical and dynamical
parameters. The capture phenomenon have been observed with many different
scenarios and in this regard the dipole proved to be remarkably stable despite the
highly non-linear interactions with the obstacle. Indeed, the possibility to uncou-
ple the zero-order dynamics to the first-order correction proved the existence of an
“average” dynamics that is substantially stable. Such stable feature stands even
when mass unbalances or asymmetrical velocities are introduced, aside from an
eventual stimulation of the oscillatory character. Despite an appreciable ensemble
of settings has been considered, many other parameters influencing the scattering
dynamics are yet to be discovered, possibly leading to the emergence of new phe-
nomenologies.

Quantum vortices are key in understanding various quantum mechanical systems
and have a broad range of practical implications in quantum technology, supercon-
ductor design, plasma physics and quantum optics [14], [15], [7], [10]. The journey
in understanding their complex phenomenology and non-linear interaction dynam-
ics is long, harsh and full of mysteries. Many different approaches and points of
view are necessary to properly investigate such complex physics and this work has
the willingness of being a glimpse of one of the many.
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Appendix A

Field Theory and Second
Quantization

Within classical mechanics mathematicians and physicists developed a series of
tools, addressed under the name of Field Theory [17], that permit to describe an
almost infinite number of different problems arising in physics. Within its classi-
cal picture a field is a multivalued function of space and time that describes some
physical entity of interest like position, velocity and vorticity but also electric and
magnetic fields, or the quantum wavefunction. Field theory admits two perfectly
equivalent pictures, a first one based on the introduction of a Lagrangian L and a
second formulation relying instead on the development of an Hamiltonian H. The
link between the two representations is embodied by a Legendre transformation
through which is defined the concept of momenta.

The former approach relies on the Lagrangian, defined as L(qi(t), q̇i(t), t)
.
= K−U

the difference between kinetic and potential energy. In this framework the inde-
pendent variables are represented by qi, q̇i, i ∈ [1, n], generalized positions and
velocities in configuration space, where n is the number of independent quantities
representing also the system’s degrees of freedom. The action, defined as the line
integral of the Lagrangian along some curve γ in configuration space between two
points, is formally expressed as a functional

S[q; t1, t2]
.
=

∫ t2

(γ)t1

L
(
q(t), q̇(t), t

)
dt (A.1)

where t1 and t2 indicate the instants of the initial and final configuration of the
system. Hamilton’s principle of stationary action allows to deduce, from the
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action functional, suitable dynamical equations:

δS = 0 ⇒ ∂L

∂qi
− d

dt

∂L

∂q̇i
= 0, ∀i = 1, ..., n (A.2)

known as Euler-Lagrange equations.

Conversely in Hamilton’s picture of mechanics, dynamics is described by canonical
variables qi, pj, i, j ∈ [1, n] representing generalized coordinates of phase space
P and obeying usual Poisson Brackets

{A.B} =
n∑

i=1

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
, ∀A,B ∈ F (P) (A.3)

which in present case give {qi, pj} = δij. The dynamical generator of the system
is embodied by the Hamiltonian H defined as:

H(qi, pj) =
∑
i

piq̇i − L(qi.q̇i) (A.4)

where, as previously mentioned, the connection with Lagrangian formalism is
addressed by a Legendre transformation defining the canonical momenta: pi

.
=

∂L/∂q̇i. Hamilton’s equations are:

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

(A.5)

Within this formulation of mechanics, conserved quantities are found through
canonical PB by means of the following argument: consider a generic function
A = A(qi, pl), its time derivative is calculated as

dA

dt
=
∑
i

(
∂A

∂qi
q̇i +

∂A

∂pl
ṗl

)
=
∑
i

(
∂A

∂qi

∂H
∂pi

− ∂A

∂pl

∂H
∂qi

)
.
= {A,H} (A.6)

where Hamilton’s equations have been employed. Thus it comes clear how, in
order for quantity A to be conserved, it is necessary that condition {A,H} gets
satisfied. This formalism is convenient when incorporating the second quantization
process, employed anytime a quantum phenomena concerning many-body systems
is investigated.

While the first quantization process prescribes the replacement of the canoni-
cal variables and Poisson Brackets with operators and commutators, the second
quantization involves the quantization of the wavefunction ϕ viewed as a field
involving normal modes. In particular, the starting point is the expression of the
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wavefunction in terms of a linear combination of (time-independent) orthonormal
vectors ϕl forming a basis B = {ϕl} of a Hilbert space. Thus ϕ =

∑
l al(t)ϕl(t)

where al can be interpreted as the normal modes of the wavefunction; canonical
Poisson Brackets are then exploited depending on canonical variables al:

{A,B} =
∑
l

[
∂A

∂al

∂B

∂a∗l
− ∂A

∂a∗l

∂B

∂al

]
(A.7)

where {ai, a∗m} = δim/iℏ. The second quantization scheme provides an explicit
way to replace such PB with commutators by substituting normal modes a∗m, ai
with operators b†m, bi giving: [bi, b

†
m] = δim in parallel with the expression of the

quantized field ϕ̂(q, t) =
∑

l bl(t)ϕl(t).

Owing to its operator character, ϕ̂ fulfills the commutator [ϕ̂(q, t), ϕ̂†(s, t)] =
δn(q − s) representing the commutator of a bosonic field within Quantum Field
Theory. The algebraic description of bosonic-field commutators is then com-
pleted with commutators featuring the total number operator N̂ :

[ϕ̂(q, t), N̂ ] = ϕ̂(q, t) (A.8)

[ϕ̂†(q, t), N̂ ] = −ϕ̂†(q, t) (A.9)

Such canonical quantization is performed within an Hamiltonian formalism as
follows. Consider a Lagrangian of the form

L = L
(
ϕα, ϕ̇α

)
=

∫
d3xL

(
ϕα, ∂iϕα, ϕ̇α

)
(A.10)

and introduce momentum-like fields πα as canonically conjugate to ϕα defined as:

πα(y, t)
.
=

δL
δϕ̇α(y, t)

=
∂L

∂ϕ̇α(y, t)
(A.11)

leading to express the field Hamiltonian as follows:

H
(
πα, ϕα

)
=
∑
α

∫
d3y
[
πα(y, t)ϕ̇α(y, t)− L(ϕα, ϕ̇α)

]
=

∫
d3yH

(
πα, ϕα

)
(A.12)

where H
(
πα, ϕα

)
embodies the Hamiltonian density. At this point the field-version

of usual PB between two fields A, B reads:

{A,B} =

∫
d3y

∑
α

[
δA

δϕα(y, t)

δB
δπα(y, t)

− δA
δπα(y, t)

δB
δϕα(y, t)

]
(A.13)
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where for δA/δϕα it is intended the functional derivative of field A with respect to
field ϕα (intuitively δϕ(x)/δϕ(y) = δ3(x− y)). Thus our (field) canonical Poisson
Brackets read:{
ϕα(x, t), πβ(y, t)

}
= δαβδ

3(x− y),
{
πα(x, t), πβ(y, t)

}
=
{
ϕα(x, t), ϕβ(y, t)

}
= 0

(A.14)
As previously discussed, the second quantization process prescribes the replace-
ment of (field) PB A.14 with (field) commutators of the form {., .} → iℏ[., .]
together with ϕα → ϕ̂α(x, t), πβ → π̂β(x, t). For non-relativistic bosonic field
theories it is possible to consider the following Hamiltonian

H =

∫
d2xψ†(x, t)H0(x)ψ(x, t)+

1

2

∫
d3x

∫
d3sψ†(x, t)ψ†(s, t)U(x, s)ψ(x, t)ψ(s, t)

(A.15)
depending on fields ψ, ψ†, with U(x, s) a potential accounting for interactions
between particles.
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Appendix B

Symmetries and Noether’s
Theorem

The concept of symmetry [13] is central in both classical and quantum physics
due to its profound connection with the emergence of conservation laws. A symme-
try is a transformation that leaves the system invariant, meaning that the equation
of motion, as a system of differential equations, have the same form in the new
and old variables. Another way to interpret a symmetry is a transformation that
leaves the Lagrangian invariant modulo an additional total derivative.

Consider a system with a finite degrees of freedom described by a Lagrangian
L(q, q̇, t) function of the generalized coordinates qi, i = 1, ..., n, its time derivatives
q̇i and time t. Applying an invertible point transformation of the form:

t′ = t′(t), q′i(t) = q′i(q, t)

the Lagrangian will now be a different function of the new coordinates: L′(q′i, q̇i
′, t′).

Although Lagrangians and Actions in the two reference systems must be unaltered,
being scalars under point transformations,

S[qi; t1, t2] = S ′[q′i; t
′
1, t

′
2], L(qi, q̇i, t) = L′(q′i, q̇i

′, t′)

the crucial fact is that what changes is their functional dependence on their argu-
ments: L′ and S ′ seen as functionals depending on q′i, q̇i

′, t′.

The equations of motion in the new set of coordinates are directly derived from
the Lagrangian L′ by means of Euler-Lagrange equations, but they generally dif-
fer from the original ones. For such point transformation to be a symmetry it
is required the equivalence between the equation of motions in the two reference
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frames, implying that the functional dependence of L and L′ on their respective
arguments is the same, modulo and additional total derivative:

L(q′i, q̇i
′, t′) = L(qi, q̇i, t) +

df

dt
⇔ S[q′i; t′1, t′2] = S[qi; t1, t2]

Such transformations may be continuous or discrete giving rise to corresponding
types of symmetries. The set of all symmetries of a dynamical system that can
be composed and inverted forms a group, called the Symmetry Group of the sys-
tem, where each element corresponds to a specific symmetry transformation. For
continuous symmetries, the symmetry group is often a Lie Group, where the in-
finitesimal generators of these transformations form a Lie Algebra, encoding the
structure of the symmetry transformations. The conserved quantities correspond
to the generators of the symmetry transformations in the Lie Algebra.

A key result, connecting the concepts of symmetry and conservation law is em-
bodied in Noether’s Theorem stating that if the action of a dynamical system
is invariant under a continuous group (non-singular) transformations of the gen-
eralized coordinates and time of the form

t′ = t′(t), q′i = q′i(q, t)

and if the equations of motions are satisfied, then the quantity

Q
.
=
∑
i

δL

δq̇i
δqi + Lδt

is conserved. Basically it states that for every continuous symmetry of the ac-
tion of a physical system, there exists a corresponding conserved quantity Q called
Noether Charge. Invariance under specific transformations implies the emer-
gence of the associated conserved Noether Charges: if the system’s Lagrangian
does not explicitly depend on time, the system is said to possess time transla-
tion symmetry, leading to the conservation of energy. If the Lagrangian does
not explicitly depend on a certain spatial coordinate, the corresponding momen-
tum is conserved implying space translation symmetry, while whenever the
Lagrangian is invariant under rotations, angular momentum is conserved and ro-
tational symmetry is gained.
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