
POLITECNICO DI TORINO

Master Degree
in Mathematical Engineering

Master degree thesis

Analyzing skiing performance:
a Bayesian approach to account for athlete abilities and

varying race conditions

Supervisor Candidate
prof. Mauro Gasparini Giulia Monchietto
Supervisor sign Candidate sign

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Academic Year 2023-2024





†



Acknowledgements

4



Contents

1 Introduction 9
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Relevance and contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Literature review 13
2.1 Rank Ordering Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Extreme value distributions and Exploded Logit model . . . . . . . . . . . 14
2.3 Bayesian Approaches in dynamic sports environments . . . . . . . . . . . . 14
2.4 Handling ties and missing data in Bayesian Models . . . . . . . . . . . . . 15
2.5 Direct use of race times in performance modeling . . . . . . . . . . . . . . 16

3 Data 17
3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Theoretical Framework of Luce-Plackett models 21
4.1 Rankings and orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Order Statistics Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Mathematical formulation of order statistics models . . . . . . . . . 22
4.2.2 Plackett-Luce Model . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Rank ordered logit Model . . . . . . . . . . . . . . . . . . . . . . . 27

5 Theoretical Framework of Bayesian Models 29
5.1 Probability foundations and Bayes’ rule . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Probability density . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Conditional densities . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.3 Bayes’ rule derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Bayesian modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Bayesian update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Data order invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 Model interpretability . . . . . . . . . . . . . . . . . . . . . . . . . 34

5



5.2.4 Bayesian data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Markov Chain Monte Carlo approaches (MCMC) . . . . . . . . . . . . . . 35

5.3.1 Conjugate priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.2 Numerical integration via grid-based methods . . . . . . . . . . . . 36
5.3.3 MCMC methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.4 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.5 Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . . . 39
5.3.6 Gibbs sampling method . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Hierarchical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.1 Example: Hierarchical Bayesian model for runners race times . . . . 45

5.5 Comparison with the Frequentist Approach . . . . . . . . . . . . . . . . . . 47

6 Methodology 49
6.1 Plackett-Luce model approach . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.2 Model parameter interpretation . . . . . . . . . . . . . . . . . . . . 49
6.1.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.4 Ties handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.5 Partial rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Bayesian hierarchical model approach . . . . . . . . . . . . . . . . . . . . . 52
6.2.1 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.2 Model parameters interpretation . . . . . . . . . . . . . . . . . . . . 53
6.2.3 Hierarchical model graphical representation . . . . . . . . . . . . . 55
6.2.4 Athletes performance measure uncertainty quantification . . . . . . 56
6.2.5 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.6 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Results and discussion 61
7.1 Plackett-Luce model results . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Hierarchical Bayesian model results . . . . . . . . . . . . . . . . . . . . . . 63

7.2.1 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Conclusions 79

6



Summary

This master thesis develops a statistical model to analyze athlete performance in alpine ski-
ing competitions, while accounting for variability introduced by race-specific factors such
as weather, track characteristics, snow conditions, and race length. In multi-competitor
sports, rank ordering has commonly been employed for performance evaluation, with mod-
els like the Luce-Plackett and the Rank Ordered Logit model by Allison and Christakis
(1994) facilitating more consistent comparisons of athlete performances across different
races. In this thesis, the Luce-Plackett ranking model has been first implemented, high-
lighting challenges in the interpretation of latent variables. To address this issue, a more
interpretable hierarchical Bayesian model has been developed, which quantifies skiers
ability, by estimating the percentage deviation of each athlete’s time, from the average
competition time. The latter model incorporates both individual athlete abilities and race-
specific factors, using race times as the primary data source. The abilities derived from
both models were compared, resulting in similar rankings. Nevertheless, the Bayesian
model offers a key advantage: it provides a directly interpretable measure of ability, and
allows for model updates as new race data are introduced, without the need for a full
model re-computation.

7



Knowledge is power.

[F. Bacone]



Chapter 1

Introduction

1.1 Background and motivation

The landscape of sports has been significantly transformed by the advent of innovative
technologies exploiting statistical modeling, machine learning, and data management tech-
niques. This transformation has given rise to the field of sports analytics, which involves
the application of the latter advanced techniques to analyze the vast and complex datasets
generated in sports contexts. At its simplest, sports analytics translates sport-related
datasets into meaningful insights that can drive decision-making and performance im-
provements. While sports such as basketball or motor sports have already seen substan-
tial advancements through analytics, alpine skiing is still in the early stages of integrating
these scientific methods into performance analysis.

Alpine skiing is a sport defined by a multifaceted nature. Performance is influenced by
a myriad of factors, including athlete abilities, weather conditions, and snow conditions.
Different weather conditions such as wind, temperature, and visibility can strongly alter
the race outcomes. Slopes and snow conditions can vary significantly too, influencing
the techniques and abilities required from the athletes, as well as the speed and average
timing of the competitions. The complexity is further heightened by track variations, not
only between different specialties, like among giant slalom, slalom, super G and downhill,
but also within each specialty. Thus, each race presents a unique set of track conditions,
which is also influenced by the fact that every race has its own course setter. The course
design variability results in differences in the number of gates present, the angle between
one gate and the successive one, and the distance between them.

Given the significant variability inherent in alpine skiing, traditional methods for as-
sessing athlete abilities, commonly employed in sports like athletics or swimming, prove
inadequate. These sports, characterized by standardized environments and consistent con-
ditions, allow for direct comparisons of performance across time and events. In athletics,
for example, track dimensions, surface conditions, and even environmental factors such as
wind resistance are highly regulated, permitting a relatively straightforward evaluation of
an athlete’s performance through time trials and distance measurements. In contrast, the
dynamic and unpredictable nature of alpine skiing, coupled with the challenge of course
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variability, renders such methods unsuitable, necessitating the development of adaptive
approaches that can account for these complexities and identify new performance metrics.

1.2 Relevance and contribution
Measuring athletes’ abilities is of paramount importance in every sport, including alpine
skiing, as it provides insights into their performance levels at any given period. Athletes’
abilities are not static, they evolve over time due to factors such as training, experience
and physical growth. By capturing a snapshot of their abilities at different points through-
out their evolution, coaches and sports scientists can track the progression of individual
athletes and identify trends in performance, enabling a more nuanced understanding of
each skier’s development trajectory.

This ability to measure and monitor athletes’ progression offers multiple benefits. First,
it provides a concrete basis for adjusting training regimens. With objective data, coaches
can identify areas of strength and weakness, allowing them to tailor training programs
more effectively to address individual needs. For example, if an athlete consistently un-
derperforms in certain disciplines, such as special slalom, the training focus can shift to
improve that specific skill set. Conversely, strengths can be reinforced and refined to max-
imize competitive advantage. In order to do that, ability can be measured considering
each type of race results alone, and computing an ability measure that is specialty-specific.
On the other hand, an individual performance measure, considering all the competitions,
across a group of athletes facilitates the creation of training subgroups based on equivalent
skill levels. This can significantly enhance the effectiveness of training sessions. Grouping
athletes with similar abilities together allows for more targeted coaching, where exercises
and drills can be designed to challenge and improve skills at an appropriate level for the
group. This minimizes the risk of top athletes not being challenged enough or lower-level
athletes feeling overwhelmed, thus promoting balanced development within the group.
Moreover, such an approach can also be strategically adapted to spread top performers
across different training subgroups. By placing higher-performing athletes among groups
with varying abilities, less experienced skiers can benefit from the presence of more skilled
peers, leading to improved performance through peer-driven motivation and learning. In
the long term, systematic measurement of athletes’ abilities also supports talent identifi-
cation, helping to recognize promising skiers early in their careers.

From a statistical perspective, this thesis seeks to advance the development of models,
particularly Bayesian and ranking models, within the context of alpine skiing competi-
tions. The objective is to build models that possess the following key characteristics:

• Easy interpretability: parameters should provide clear and meaningful quantifi-
cation of abilities, allowing coaches, athletes, and analysts to easily understand the
measures obtained.

• Scalability: the pool of athletes observed should be of arbitrary size. The number
of athletes involved in a single race usually ranges from 10 up to a limit number of
150 athletes.
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• Accuracy: they should capture the true skill levels of athletes as closely as pos-
sible. By accounting for different competition formats, conditions, and disciplines,
the models should represent performance fairly and robustly, enabling more precise
comparisons across varying race scenarios.

1.3 Problem Statement
In the context of alpine skiing, the study consider a pool of 12 young female athletes, aged
10 to 11, which took part in a competitive racing circuit throughout the winter season,
going from December 2023 to April 2024.

The competition format is diverse: in some races, athletes from both age groups com-
pete together, while in others, the 10-year-olds and 11-year-olds race separately. The
athletes also participate in three distinct disciplines: giant slalom, special slalom, and
flipper. Giant slalom involves gates that are more widely spaced, requiring broader turns.
Special slalom demands quick and sharp turns due to its tighter gate placements. Flip-
per presents a mix of long stretches between gates followed by sequences of closer gates,
adding another layer of complexity, and requiring more agility.

For each race, completion times have been recorded, and rankings are based on these
times. However, because of the varying conditions—different race formats, age divisions,
and external conditions—it is difficult to compare finish times across competitions. This
variability complicates the evaluation of athletes’ overall performance. Therefore, there is
a need to develop a method that accurately quantifies each athlete’s ability, identifies those
who are particularly promising, and distinguishes between those with average or below-
average performance across all these different race types. In this statistical analysis, we are
interested in obtaining an overall performance measure, across all alpine skiing specialties.

1.4 Methodology
To address the challenges posed by the problem, the first step of this thesis has been to
review the state of the art. This review provided foundational insights into the models
previously used in similar contexts. Building on these examples, the initial approach
focused on analyzing competition rankings by applying an order statistics model, Plackett-
Luce model. This method enabled the estimation of abstract measures of athlete ability,
that can be ordered to obtain a ranking of the top-performing athletes. However, this
approach has a limitation: the ability measure was tied to latent variables, which lacked
a direct and interpretable relationship with the actual race times, making it difficult to
infer a meaning in practical terms. Additionally, since current model estimation methods
works well with at maximum 15/20 parameters, scalability problems arise when the pool
of athletes analyzed increases.

To improve interpretability, race times have been successively considered. However,
analyzing directly track times introduces an additional complexity, as race times are in-
fluenced not only by the athletes’ abilities but also by varying race conditions.

To address these complexities, an hierarchical Bayesian model was developed. This
model introduced more interpretable parameters, separating the athlete’s ability from
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competition-specific factors. By doing so, it provided a clearer representation of both
the intrinsic performance level of each athlete and the external conditions influencing
their race times. The hierarchical structure allowed the model to handle these layers of
complexity, and the possibility to incorporate informative priors offered the flexibility to
include external data, such as the mean and standard deviation of each race completion
times, further enhancing the model’s robustness.

1.5 Structure of the thesis
The structure of the thesis is organized as follows. In Chapter 2, a literature review of
the state of the art is conducted, providing context and identifying gaps in the existing
research on statistical models in alpine skiing performance analysis. Chapters 3 and 4 focus
on the theoretical foundations of the models used in the study. Chapter 3 outlines the
framework of order statistics models, such as the Plackett-Luce model and its extension,
the Rank Ordered Logit model, while Chapter 4 introduces the Bayesian approach. In
Chapter 5, the methodology employed in the study is further detailed, describing how the
models were applied and adapted to address the specific challenges posed by alpine skiing
competitions. Finally, the results of the model implementations are presented.
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Chapter 2

Literature review

The literature on sports analytics has evolved significantly over the past few decades,
driven by the need to develop sophisticated models for assessing competitors’ strengths
and predicting outcomes in various sports. Traditional approaches have predominantly
focused on ranking data, which provides a basis for comparing competitors in head-to-head
competitions.

2.1 Rank Ordering Models

Early models, such as the Bradley-Terry and Thurstone-Mosteller, which were introduced
in the mid-20th century, were pioneering in this regard. These models represent competi-
tors’ strengths as parameters within probability frameworks that predict the outcomes of
one-to-one contests based on ranking data alone. However, these models were largely con-
fined to paired comparisons and did not account for scenarios where multiple competitors
participate simultaneously, such as in alpine skiing.

For sports where multiple competitors participate in a single event, the outcome has
often been best determined by rank ordering in literature. This approach allowed for a
more consistent comparison of an athlete’s performance across different races, as scores
or race times can be subject to greater variability, induced by external factors too. Addi-
tionally, collecting more specific data, other than the final rank, can be difficult in some
cases. Thus, traditional rank orderings models, such as the Plackett-Luce model and its
extensions, as the Exploded Logit model, by [1], have provided a framework for estimat-
ing competitor abilities based on observed rankings. The latter models assume that each
competitor’s unobservable performance follows a specific distribution (e.g., Gumbel, Nor-
mal, or Gamma), and inferences are drawn by modeling the probability of observed rank
orderings across multiple competitions.
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2.2 Extreme value distributions and Exploded Logit
model

Extreme value distributions, traditionally employed to model maxima and minima, also
offer significant utility in ranking models. Specifically, when the Gumbel distribution is
used to model latent variables, it allows for the derivation of a closed-form expression
for ranking probabilities, thereby enhancing the model’s computational tractability and
interpretability. Given that their approach was based solely on the availability of ranking
data, latent variables were employed to represent the unobserved, underlying performance
levels of athletes, which are inferred from the competition rankings.

In more detail, for each athlete i in a competition, there is an associated latent per-
formance variable Yi, which depends on the athlete’s ability θi. Mathematically, this
relationship can be expressed as:

Yi ∼ F (y | θi).

Commonly, F (y | θi) is assumed to be a Gumbel distribution, which is appropriate for
modeling maximum values, such as in this case, the highest performance in a competition.

The cumulative distribution function of the Gumbel distribution is given by:

F (y | θi) = exp (− exp (−(y − θi)))

This distribution has been chosen because it leads to a convenient form for expressing
rankings probabilities. The model constructed on this assumption is commonly refered to
Exploded logit model.

The exploded logit model, also known as the rank-ordered logit model, has been used
to model the probability of a particular ranking of athletes in a competition. Suppose to
have a set of athletes competing, and their performances ranked, such that athlete 1 is
ranked first, athlete 2 is ranked second, and so on. The probability of this ranking can be
expressed as a product of conditional probabilities:

P (Y1 > Y2 > · · · > Yn | θ1, θ2, . . . , θn) =
n−1Ù
i=1

exp(θi)qn
j=i exp(θj)

This probability function P (Y1 > Y2 > · · · > Yn | θ1, θ2, . . . , θn) can be employed as
likelihood, to estimate the abilities θi of each athlete based on observed ranking data from
multiple competitions, in a frequentist approach, or used as a distribution function in
a bayesian approach. The latter ranking probability distribution has been employed in
different sports, in horse races as illustrated by [2] and in alpine skiing too, as in [3].

2.3 Bayesian Approaches in dynamic sports environ-
ments

In sports where athlete performance is expected to change over time, static models are
insufficient. To address this limitation, [3] applied a Bayesian approach in the context of
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women’s world alpine skiing competitions. More in detail, their approach models competi-
tors’ performances using independent extreme value distributions, with each competitor’s
ability evolving over time as a Gaussian random walk.

Considering multiple time istants, each athlete’s ability θi is thus allowed to change.
This time-varying ability has been modeled by Glickman and Hennessy, as a latent variable
following a the dynamic process of a Gaussian random walk:

θit+1 = θit + δit+1

where δit+1 ∼ N (0, τ2) is a random variable representing changes in the athlete’s
ability between competitions, while the variance τ 2 controls the extent of ability variation
over time. The paper utilizes Markov Chain Monte Carlo (MCMC) simulation to perform
inference on the posterior distribution of the ability parameters θit. Given the observed
rankings, the posterior distribution of the abilities is updated iteratively, allowing for the
estimation of the competitors’ abilities.

2.4 Handling ties and missing data in Bayesian Mod-
els

The Bayesian framework also provides a natural way to handle ties and missing data. For
ties, the posterior distribution is computed by averaging the probability over all possible
permutations of the tied competitors. For missing data, the Bayesian approach treats the
missing values as latent variables, integrating over their possible values during the MCMC
sampling process.

Mathematically, let Y represent the complete data, which consists of observed data
Yobs and missing data Ymis. We aim to infer the parameters θ given the observed data.
The joint distribution of the parameters and the complete data can be expressed as:

p(θ, Yobs, Ymis) = p(θ) p(Yobs, Ymis | θ)

where p(θ) is the prior distribution of the parameters, and p(Yobs, Ymis | θ) is the
likelihood of the complete data given the parameters.

The posterior distribution of the parameters given the observed data is obtained by
marginalizing over the missing data:

p(θ | Yobs) =
Ú

p(θ, Ymis | Yobs) dYmis

Using the relationship p(θ, Ymis | Yobs) = p(θ | Yobs) p(Ymis | θ, Yobs), this can be
rewritten as:

p(θ | Yobs) =
Ú

p(θ | Yobs) p(Ymis | θ, Yobs) dYmis

This integral accounts for the uncertainty about the missing data by averaging over
all possible values Ymis could take, given θ and Yobs.
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2.5 Direct use of race times in performance modeling
Race times have been used in sports literature, often in cases where large datasets were
available and coupled with the use of machine learning algorithms. In [4], the authors
applied different machine learning approaches to build a speed-skater performance predic-
tion model. The study exploited competition results data directly, with other 71 features,
to obtain knowledge in order to design appropriate training programs for the athletes.
Diverse ML approaches have been tested: logistic regression, random forest, K-nearest
neighbor, naive Bayes, neural networks and support vector machines, with the latter
showing to be more viable to establish performance prediction models. In order to select
the optimal features, and decrease computational complexity, lasso regression methods
have been used. In further detail, lasso regression, short for Least Absolute Shrinkage
and Selection Operator, is a type of linear regression that incorporates a regularization
technique to enhance prediction accuracy and interpretability. The key feature of lasso
regression is that it minimizes the sum of the absolute values of the model parameters
(coefficients), effectively shrinking some coefficients to zero. This leads to a sparse model
where only the most important predictors are retained. The formula for lasso regression
can be expressed as:

β̂ = arg min
β

 nØ
i=1

yi − β0 −
pØ

j=1
βjxij

2

+ λ
pØ

j=1
|βj |


where yi is the observed response, xij represents the predictors, β0 is the intercept, βj

are the coefficients for the predictors, λ is the regularization parameter that controls the
strength of the penalty on the coefficients.

Another interesting direct use of race times can be found in [5]. The paper makes
a significant contribution by leveraging race times, to develop a model that accurately
reflects the performance of athletes in both Para and able-bodied cross-country skiing
categories. The model employs as variables the race time differences for each skier, com-
pared to the winner, in particular the average percent difference. All statistical analyses
were performed using linear mixed modeling, testing for interactions among the different
categories in which athletes can be identified.
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Chapter 3

Data

3.1 Data description
To accurately evaluate athlete abilities, two primary datasets were utilized, each offering
detailed insights into individual performances and overall competition statistics.

The data were collected during the 2023/2024 winter season, with competition results
sourced from regional FISI (Federazione Italiana Sport Invernali) events in Piedmont, as
well as FIE (Federazione Italiana Escursionismo) races held in Bardonecchia. The analysis
focuses on female athletes, aged 10 to 11.

1. Athlete performance data: This dataset contains detailed results of 135 single
performances of 12 athletes across 22 different ski competitions. Each entry includes:

• Position: the rank of the athlete in a specific competition.
• Athlete: the name of the athlete.
• Time: the time taken by the athlete to complete the race, measured in seconds

(with a precision of 0.01s).
• Competition: the name of the competition in which the performance was recorded.

We can observe that data are incomplete. Indeed, not all the 12 athletes have taken
part in all 22 competitions. Competitions in which, just 2 or 3 of the athletes in the
case study were present, have been included in the dataset too.

2. Competition Statistics: This dataset summarizes key statistics from 21 different
ski competitions. Each record includes:

• Competition: the name of the competition.
• Mean time: the average race time across all participants in that competition

(not just the 12 considered in the previous dataset).
• Standard deviation: the variability in race times for each competition, indicating

the spread of times around the mean.
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3. Athletes’ Fitness Tests: this dataset contains data from fitness tests conducted
on 12 athletes. It includes a variety of physical measurements and test results that
provide insights into the athletes’ physical capabilities. Data have been collected on
October 2023, thus before the start of the race season. Each entry includes:

• Surname and name: identification of the athlete.
• Age: the age of the athlete, given as a year of birth.
• Weight: the weight of the athlete in kilograms.
• Height: the height of the athlete in centimeters.
• HCG: a specific body measurement (height of the center of gravity).
• Foot size: the size of the athlete’s right and left foot, respectively.
• Flexibility: the flexibility test measures how far an athlete’s hands can extend

beyond the tips of their feet while sitting with legs straight. The result is
recorded in centimeters, indicating the distance the hands surpass the feet.

• Sprint times (mt30 and mt60): times recorded for 30-meter and 60-meter sprints,
respectively, in seconds.

• Parallel bars: the number of repetitions performed on parallel bars.
• Harre test: time taken to complete the Harre test, a measure of agility, recorded

in seconds. The Harre test is performed on a cross-shaped course. Starting at
one end, the athlete performs a forward roll, then turns 90 degrees around a
central cone, jumps over and passes under a 55 cm high obstacle, returns to the
central cone, repeats the process with a second and a third identical obstacles,
and finally sprints to the finish line.

• Long jump test: the long jump test measures explosive strength and involves
performing a standing long jump from a stationary position with feet together.
The distance of the jump is measured in centimeters.

• Backward roll plus jump: the backward roll plus jump test starts with the
athlete standing, performing a half backward roll until their toes touch the
ground. From this position, the athlete unfolds, stands up, and immediately
executes a vertical jump with feet together. The test is scored with a "yes"
or "no" based on whether the athlete can perform the sequence of movements
continuously.

• Ratio SLF-Height: measurements related to the athlete’s long jump-to-height
ratio.

3.2 Summary statistics
The dataset encompasses a variety of statistics across different ski competitions, with
particular attention to the mean and standard deviation of race times. The attached graph
(Figure 3.1) illustrates the variability in race statistics across the 22 different competitions,
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3.2 – Summary statistics

Figure 3.1: Mean and standard deviation of race times measured in seconds across 22 ski
competitions.

showing mean and standard deviation for each competition, computed across all athletes
race times.

In particular, the left panel of the graph shows the mean race times for each competi-
tion, revealing fluctuations between 40 and 60 seconds. These variations suggest that the
conditions of each race, which could include factors such as weather, track difficulty, and
competitive pressure, significantly impact overall performance. Certain competitions ex-
hibit particularly high mean times, which may be indicative of more challenging conditions
or a longer race track.

The right panel of the graph presents the standard deviation of race times within each
competition, which ranges from about 2 to 7 seconds. A higher standard deviation indi-
cates greater variability among competitors, suggesting that there was a wider disparity in
the abilities of the participants or that conditions underlined more the different athletes’
abilities. Usually, more challenging conditions lead to more time disparities.

The substantial variability in both the mean and standard deviation across the com-
petitions underscores the necessity of considering these factors when analyzing athlete
performance.

Regarding athlete participation in the competitions analyzed, Figure 3.2 illustrates the
number of races each athlete attended. Notably, none of the athletes participated in all
22 competitions. Athletes 12 and 9 had the highest level of engagement, each competing
in 14 events, while athlete 3 had the lowest participation, taking part in only 6 races.
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Figure 3.2: Plot illustrating the total number of competitions each athlete has competed
in.
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Chapter 4

Theoretical Framework of
Luce-Plackett models

4.1 Rankings and orderings
Consider a set of objects O = {O1, O2, ..., ON }, where each object is uniquely identified
by an integer i. Let the set of indices for these N objects be denoted by I = {1, 2, ..., N}.
A complete ranking assigns a specific order of preference to the items, identifying the best
one, the second best, and so on, down to the worst. The two most used representations
of a ranking are the rank vector and the order vector:

• The rank vector lists the ranks given to the objects, where ’1’ represents the best
object and ’N’ the worst. It presumes the objects have been previously indicized. For
example, suppose four friends want to do a running competition. In this case O =
{Anna, Barbara, Claudio, Davide} and index 1 is assigned to Anna, 2 to Barbara
and so on. They compete, recording the completion times, and the final rank vector
is given by (4,2,3,1). Thus, Davide has arrived first at the finish line, Barbara was
the second one, Claudio third and the last one to complete the race was Anna.

• The order vector lists the object themselves, in order from the best to the worst. In
the example above, the order would have been (Davide, Barbara, Claudio, Anna).

Both rankings and orderings are permutations. In this context, we will consistently
identify objects using integers and define the set of all possible rankings as the set of
permutations of the N integers, expressed as:

PN ≡ {Permutations of the ranks 1,2,...,N},

We will work with a sample of M rank vectors, represented as:

r1, r2, ..., rM ∈ PM

While the objects being ranked can represent a wide variety of entities—such as words,
people, items, or ideas—throughout this thesis, we will focus on ranking athletes.
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4.2 Order Statistics Model
Order statistics models were first introduced by Thurstone in his work [6]. These models
are based on the premise that each object possesses an inherent quality or perceived value,
which is not entirely deterministic but can instead be modeled as a random variable.
Assuming the presence of different judges, that have to determine the rankings of N
objects, the randomness reflects the variability in judgments or perceptions across different
evaluators. If the object quality we want to measure is quantitative, different judges can
measure it in different ways, with different levels of precision. On the other hand, if
the quality under analysis is qualitative, evaluators may perceive it differently based on
subjective criteria. In cases where the "judges" represent different points in time at which
the quality is measured, the variability in outcomes can be influenced by the differing
conditions at each time. For example, recalling the four friends from the previous section,
suppose they decide to repeat the running competition every week, over the course of
some months. The results may differ from week to week due to factors such as fatigue
or changes in race conditions. In this scenario, the competitions themselves serve as the
judges, while the objects being ranked are Anna, Barbara, Claudio, and Davide, each of
whom has a performance measure, modeled as a random variable that produces different
outcomes at each race instance. In Thurstone’s model, the random variable associated
with each object represents its latent utility, and the ranking of these objects is determined
by the ranking of the r.v. outcomes.

4.2.1 Mathematical formulation of order statistics models
Consider a set of items having indices in I ⊂ N+, and let’s introduce a new set of indices
J = {1, ..., M}, which represents the M judges. Each judge j, assigns a ranking by
sorting N random utilities, denoted as y1j , y2j , ..., yNj , where each utility corresponds to
one object i ∈ I. These utilities are stored in the vector yj ∈ RN , and we assume
the utility vectors for different judges to be independent. Within this framework, the
probability of observing a specific ranking Rj ∈ PN for judge j is expressed as:

P (Rj) = P (y[1]j > y[2]j > · · · > y[N ]j), (4.1)

where the subscript [i] refers to the index of the object placed in the i-th position,
while ([1]j , [2]j , ..., [N ]j) denotes the rank vector of Rj . It is important to note that the
rank vector probability (4.1) is invariant under any strictly increasing transformation of
the latent variables y[i]j , as long as the relative ordering between the objects is preserved.

To make the statistical model more tractable, we assume that the latent variables
follow a particular family of distributions. Specifically, yij are assumed to be independent
and expressed as:

yij = αij + ϵij

where αij is the expected utility of object i given by judge j and ϵij is the i.i.d. random
component. Two main distributions for ϵij are commonly employed in literature, leading
to distinct ranking models:
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• Thurstone model: the main idea is to assume ϵij to be distributed as a standard
normal r.v., whose cumulative distribution is given by:

F (ϵ) = P (ϵ ≤ z) =
Ú z

−∞

1√
2π

e− t2
2 dt

• Plackett-Luce model: In the model developed, ϵij is assumed to be distributed
following an extreme value distribution (Gumbel distribution). The Plackett-Luce
model has gained significant popularity in applications due to the fact that assuming
a Gumbel distribution for the latent variables yields a closed-form expression for the
ranking probability, as we will discuss in the next section.

4.2.2 Plackett-Luce Model
The Plackett-Luce model is a probabilistic choice model widely used in decision theory
and discrete choice analysis. The model has been developed, in first place by Luce in
[7], as a top-choice model, subsequently it has been extended to accomodate rankings by
Plackett in [8]. In this context, the objects of choice, referred to as alternatives, can range
from products to sport competitors, or political candidates in elections. As outlined in [9],
Plackett-Luce model can also be viewed as an extension of the conditional logit model,
developed by McFadden in [10]. Both McFadden and Plackett-Luce models foundation
lies in the assumption that the latent variable associated with each alternative follows an
Extreme Value distribution.

Gumbel distribution

In top-choice models, the Gumbel distribution is frequently used to represent random
variables associated with each alternative. In decision-making contexts, an extreme value
distribution, such as the Gumbel distribution, is often a good fit because it is designed to
model the minima or maxima of a set of random variables. This is particularly relevant
when the goal is to select the best or worst option based on underlying quality measures
of different objects. The Gumbel distribution, in particular, has full support over the real
line, S = (−∞, +∞). Its cumulative distribution function is given by:

F (x) = exp
3

− exp
3

−x − u

β

44
where:

• u is the location parameter, indicating the mode of the distribution.

• β > 0 is the scale parameter, controlling the spread of the distribution.

A different re-parametrization is often beneficial for simplifying computations and ob-
taining a certain interpretation of parameters. This alternative formulation is achieved
by changing parameters variables, as described in [11], where:
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I
α = 1

β

π = exp( u
β )

(4.2)

Exploiting this re-parametrization, the following Gumbel CDF is obtained:

F (x) = exp
3

− exp
3

−x − u

β

44
=

= exp
!
−eαu · e−αx" =

= exp
!
−π · e−αx"

Top-choice probability

In order to develop the Plackett-Luce ranking model, the first essential step is to derive
the formula for the top-choice ranking probability. We begin by considering the simplest
case, involving the computation of the probability for a pairwise comparison between two
alternatives. Let y1 and y2 be the two latent variables, relative to two alternatives, the
probability of y2 being greater than y2, i.e., P (y2 > y1), can be computed as follows:

P (y2 > y1) =
Ú +∞

−∞
p(y2)(

Ú y2

−∞
p(y1) dy1 )dy2

where p(y) denotes the y probability density function. Substituting the Gumbel CDF
computed in y2, we obtain:

P (y2 > y1) =
Ú +∞

−∞
exp

!
−π1e−α1y2

"
· p(y2) dy2

Since both y1 and y2 are Gumbel-distributed with the common scale parameter α (i.e.,
α1 = α2 = α), the density of y2 can be written as:

p(y2) = d

dy2
F (y2) = α exp (α(u2 − y2) − exp (α(u2 − y2)))

Thus, substituting p(y2), and expressing the parameters in function of π1 and π2, as
defined in the re-parametrization (4.2), the following expression is obtained:

P (y2 > y1) =
Ú +∞

−∞
απ2 exp

!
−αy2 − (π2 + π1)e−αy2

"
dy2

Next, we transform the expression dividing and multiplying for the factor (π2 + π1) ,
leading to:

P (y2 > y1) =
Ú +∞

−∞
α · π2

π2 + π1
· (π2 + π1) exp (−αy2) exp

!
−(π2 + π1)e−αy2

"
dy2

Lastly, since probability measure integrates to one, we obtain the following simplification:

P (y2 > y1) = π2

π2 + π1
(4.3)
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With similar computations to those used for pairwise comparisons, it is possible to derive
the formula for the top-choice probability, when more than two alternatives are present,
P (y1 > y2, ..., yN ):

P (y1 > y2, ..., yN ) = π1

π1 + π2 + ... + πN
(4.4)

Plackett-Luce model formulation

Building upon the reasoning used to compute top-choice probabilities, we now extend this
framework to model the ranking of N items. Specifically, the probability of a specific
ranking is given by:

P (Y1 > Y2 > · · · > YN | π1, π2, . . . , πN ) =
N−1Ù
i=1

πiqN
j=i πj

This formula represents the product of conditional probabilities, where each term de-
scribes the likelihood that an item is ranked ahead of the remaining items based on their
respective utilities.

Breaking this down further:

• First rank: The probability that item 1 is ranked first among all N items is given
by:

P (item 1 is first) = π1qN
j=1 πj

• Second rank: Given that item 1 is ranked first, the probability that item 2 is ranked
second among the remaining N − 1 items is:

P (item 2 is second | item 1 is first) = π2qN
j=2 πj

• Subsequent ranks: This process continues for each subsequent rank, where the
probability of an item being ranked i-th is conditioned on the prior i − 1 rankings.

Thus, the overall probability of observing the ranking R is the product of these condi-
tional probabilities:

P (R) =
N−1Ù
i=1

πiqN
j=i πj

This expression represents the closed-form solution for the Luce model, where the
ranking probability is determined by the relative utility values πi of the items.
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Parameters interpretation

Let us explore the meaning of the Gumbel distribution parameters in more detail. Since
we have assumed that α is fixed, where α = 1

β , this corresponds to fixing the scale of the
distribution. The variability between the latent variables lies in the location parameter,
represented by π or u in the original parametrization. To clarify this, we can rewrite the
formula for pairwise comparison (4.3), and by introducing the Euler-Mascheroni constant
γ = 0.5772, we get the following:

P (y2 > y1) = π2

π2 + π1
=

= eαu2

eαu1 + eαu2
=

= eαu2eγ

eγ(eαu1 + eαu2) =

= eα(u2+βγ)

eα(u1+βγ) + eα(u2+βγ)

Here, we can observe that ui+βγ represents the expected value of the Gumbel distribution.
This demonstrates that the larger the location parameter of one variable compared to the
other, the higher the probability that it will be greater than the other parameter. This
relationship highlights the direct influence of the location parameter on the comparison
outcome in the Gumbel-based model.

Independence of Irrelevant Alternatives Assumption

The Independence of Irrelevant Alternatives (IIA) assumption is a core principle in discrete
choice theory, particularly in models such as the Plackett-Luce model. It states that the
relative probability of preference between two alternatives should remain unchanged when
other irrelevant alternatives are added or removed from the choice set. In other words,
the ratio of probabilities of sorting two items preferences is independent of the presence
of other items in the set.

To illustrate this, suppose to have to decide if apples (A) or bananas (B) are more tasty.
The presence or absence of coffee (C) as an irrelevant alternative should not affect the
comparison between apples and bananas. Thus, if a person prefers apples over bananas,
the introduction of coffee should not change their relative preference.

Mathematically, the IIA assumption can be expressed as:

P (A | {A, B, C})
P (B | {A, B, C}) = P (A | {A, B})

P (B | {A, B}) .

In the Plackett-Luce model, where the probability of selecting an item is proportional
to the exponential of its utility, this principle holds. Suppose the utilities for apples,
bananas, and coffee are uA, uB, and uC , respectively. The probabilities of selecting apples
or bananas from the set {A, B, C} are:

P (A | {A, B, C}) = eαuA

eαuA + eαuB + eαuC
,
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P (B | {A, B, C}) = eαuB

eαuA + eαuB + eαuC
.

The ratio of these probabilities is:

P (A | {A, B, C})
P (B | {A, B, C}) = eαuA

eαuB
.

Notice that this ratio is independent of uC , the utility of the irrelevant alternative
coffee. This demonstrates the IIA assumption, which ensures that irrelevant alternatives
do not influence the relative probabilities of the relevant choices.

4.2.3 Rank ordered logit Model
The Rank Ordered Logit model (ROL) (often referred to as Exploded Logit Model) is
an extension of the Plackett-Luce model previously introduced, used for analyzing sets
of ranked items. According to [1], this model builds upon the assumption of a random
utility framework, as Plackett-Luce model. In this scenario, each item i ∈ I, being ranked
by j ∈ J , has an associated utility that consists of both a systematic and a random
component. The systematic component captures the predictable part of the utility, while
the random component represents unobserved factors.

yij = αij + ϵij

The ROL model provides an extension to the Plackett-Luce framework, by allowing
the incorporation of both item-specific and judge-specific attributes. This enhancement
makes it possible to analyze how the characteristics of the items being ranked and the
individuals doing the ranking, influence the final rankings.

In this context, the systematic component of the utility function, αij , can be expanded
to include explanatory variables. The general utility function can be written as:

αij = x′
iβ + z′

jγi + w′
ijδ,

where xj is the vector representing the attributes of item i, zj denotes the character-
istics of respondent j, and wij captures any interactions between the attributes of item i
and respondent j. The vectors β, γ, δ are the corresponding coefficients that quantify the
effects of these attributes on the utility. Specifically, item covariates effect β is assumed
to be equal for all judges. On the other hand, γi, that quantifies judge characteristic
effects, has an effect that can differ across items. Suppose, the items are runners, and the
judges are running competition, the fact that a competition is a long distance one, e.g. a
marathon, can have a positive effect for long distance runners, while having a remarkable
negative effect for a 100m speed-runner.

Incorporating these attributes into the model allows for an analysis of how both the
items and the individuals characteristics influence the rankings outcome. For instance,
item-specific attributes could include characteristics such as price, quality, or other mea-
surable features, while respondent-specific attributes might include demographic factors
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like age or income. The interaction terms provide an additional layer of detail by allowing
the effects of item attributes to vary according to judge-specific characteristics.

Consider again the example where the "items" being ranked are runners, and the rank-
ings are conducted by different races, which act as judges. Each runner i is characterized
by height (h), weight (w), and number of weekly training sessions (t). Meanwhile, each
race j is characterized by its length (len) and total elevation gain (elev). The utility
function for runner i in race j, can be modeled as:

µij = β1 · hi + β2 · wi + β3 · ti + γ1i · lenj + γ2i · elevj + δ1 · (lenj × wi).

In this example, the parameters β1, β2, β3 describe how the runner-specific attributes
(height, weight, number of trainings) influence the probability of a higher ranking. Simi-
larly, γ1i and γ2i reflect the impact of race-specific characteristics (length and elevation)
on the utility of the runner. The interaction term δ1 allows for the possibility that the
effect of a runner’s weight depends on the length of the race, capturing more nuanced
relationships between the attributes.
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Chapter 5

Theoretical Framework of
Bayesian Models

5.1 Probability foundations and Bayes’ rule

5.1.1 Probability density
Given a sample space Ω (the set of possible outcomes) and a measurable space E, we
define a random variable X as a measurable function X : Ω −→ E.
When E is a subset of Rn (as in this case, since from now on we will consider E = R+),
the probability distribution of an absolutely continuous variable X can be described by a
probability density function (PDF). The density function fX associated with the random
variable X is defined as a function fX : E −→ [0, ∞) that satisfies the following condition:

P (X ∈ A) =
Ú

A
fX(x) dx, (5.1)

for any measurable subset A ⊆ E. Here, P (X ∈ A) represents the probability that the
random variable X takes a value within the set A. The function fX(x) is non-negative
and integrates to 1 over the entire space E:Ú

E
fX(x) dx = 1 (5.2)

In our sport applications, as we will later see, the r.v. X will represent either ski racing
times or various characteristics of athletes and races.

5.1.2 Conditional densities
Conditional density is a fundamental concept since it allows the computation of an event
probability, given that certain outcomes are known to have occurred. Using the previously
defined concepts of random variables and density functions, we introduce Bayes’ rule for
computing conditional densities.
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Given two random variables X and Y defined on the same sample space Ω, the condi-
tional probability density function of X, given that Y = y, is denoted by fX|Y (x|y) and
is defined as:

fX|Y (x|y) = fX,Y (x, y)
fY (y) (5.3)

where:

• fX,Y (x, y) is the joint probability density function of X and Y .

• fY (y) is the marginal probability density function of Y , that can also be defined as:

fY (y) =
Ú

E
fX,Y (x, y) dx. (5.4)

5.1.3 Bayes’ rule derivation
Similarly to 5.3, the conditional probability density function of Y given X = x is:

fY |X(y|x) = fX,Y (x, y)
fX(x) , (5.5)

Thus, the joint probability density function fX,Y (x, y) can also be expressed as:

fX,Y (x, y) = fX|Y (x|y)fY (y) = fY |X(y|x)fX(x) (5.6)

Using this relationship, we can express the conditional probability density function
fX|Y (x|y) in terms of the conditional probability density function fY |X(y|x) and the
marginal densities fX(x) and fY (y), as follows:

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y) (5.7)

This equation is known as Bayes Rule.
Often, the un-normalized density is used, which is:

fX|Y (x|y) ∝ fY |X(y|x)fX(x) (5.8)

Interpretation of Bayes’ Rule

Suppose some data are available and the task is to gain insights about their distribution.
Firstly, one has to assume the family of distributions to which data belongs. This choice of
distribution family is typically characterized by certain parameters, that are not directly
observable and must be inferred. Bayes’ Rule, from which Bayesian inference originates,
can be interpreted as a way to update the prior belief about the distribution of a parameter
X (unobservable quantity), based on new evidence provided by data Y (observable data).
In the context of Bayesian inference:

• fX(x) represents the prior distribution, which reflects the initial belief about the
parameter X before observing the data Y .
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• fY |X(y|x) is the likelihood, representing the probability of observing the data Y
given that the parameter X takes a specific value x.

• fX|Y (x|y) is the posterior distribution, which reflects the updated belief about
the parameter X after observing the data Y . It represents the probability that the
underlying distribution has parameter X, given that data Y have been generated.

• fY (y) is the marginal likelihood, which serves as a normalizing constant ensuring
that the posterior distribution integrates to one. This interpretation stems from
expression (5.4).

5.2 Bayesian modeling
Bayesian modeling poses its foundations on Bayes’ rule. As [12] explains, Bayesian mod-
eling has two fundamental ideas:

1. Bayesian inference is a re-allocation of credibility across all the existent different
possibilities, adjusting belief according to observed data.

2. The possibilities over which we allocate credibility, are parameter values within
meaningful mathematical models.

5.2.1 Bayesian update
To illustrate the first concept, consider the example of modeling a runner’s performance
in 10km races. Initially, if we have no prior knowledge about the runner’s ability, we
might allocate credibility evenly across a wide range of possible race times, from the
fastest possible times, such as values in the neighborhood of the world record, to much
slower times. This represents a non-informative prior distribution (such as the uniform
distribution), where all possible times are considered equally plausible and we do not have
an idea yet.

Once the runner completes his first race, and we observe that his time is 50 minutes,
our belief, or credibility, about his true average race time needs to be updated. Specifically,
we increase the credibility for those times around 50 minutes, while drastically reducing
the credibility for extreme values, such as the possibility that the runner could break the
world record of 26:24 minutes. This process of updating our beliefs based on new data
leads to what is known as the posterior distribution, that represents Bayesian modeling’s
outcome.

The posterior distribution represents the re-allocated distribution of credibility, where
the sum of credibility over all possible times still equals one, ensuring it remains a valid
probability distribution. Posterior distribution reflects our updated understanding of the
runner’s performance, shifting our focus from the broad, uninformed prior to a more
concentrated belief around the observed time, thus providing a more accurate model of
the athlete’s abilities.
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Mathematically, the posterior is expressed using Bayes’ rule:

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y) , (5.9)

Now, suppose we observe additional data, denoted Y ′. We can update our beliefs
again, from fX|Y (x|y), representing the new prior, to the new posterior distribution
fX|Y ′,Y (x|y′, y).

Example: Bayesian update

We now proceed to graphically illustrate how Bayesian updating works by sequentially
incorporating two observations into the model. Assume a runner race time is a random
variable T belonging to the family of gaussian distribution. Thus, fT is characterized by
two parameters, the mean µ and the variance σ2. Consider for simplicity σ2 to be known
in advance.

T ∼ N (µ, σ2). (5.10)

The goal is to get to know the true value of µ. In order to do that, we start with a
uniform prior distribution, which reflects our initial state of lack of knowledge regarding
the runner’s true race time distribution. The prior assumes that any time between 20 and
80 minutes is equally likely.

µ ∼ U(20, 80).

Upon observing the first race time of 50 minutes (T1 = 50), we update our prior beliefs
to obtain the posterior distribution f(µ|T1). The posterior is derived by combining the
uniform prior with the likelihood function, as previously explained. In this example the
likelihood f(T1|µ), is chosen to be (5.10).

f(µ|T1) = f(T1|µ) · f(µ)s
f(T1|µ) · f(µ) · dµ

As we can see from the first plot of 5.1, this update shifts our belief, concentrating the
probability density around the observed value, i.e. T1 = 50, while reducing the credibility
of extreme times, such as those near the world record.

Next, we incorporate a second observation T2 = 47 minutes. The posterior from the
first update f(µ|T1), now serves as the prior for this new update. Again, we combine this
prior with the new likelihood function, which is centered at the newly observed time of
47 minutes.

This second update f(µ|T1, T2), further refines our beliefs, shifting the posterior dis-
tribution slightly towards the value of 47 minutes and narrowing the range of plausible
race times, as we can clearly see from the second plot in 5.1.
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Figure 5.1: Plot of prior, likelihood, and posterior distributions after the two updates.

5.2.2 Data order invariance
In Bayesian inference, the property of data order invariance ensures that the final posterior
distribution is unaffected by the sequence in which data points are incorporated, provided
that data are conditionally independent.

Mathematically, the property can be stated as follows. Assume the likelihood of Y ,
fY |X is conditionally independent of other data’s likelihood fY ′|X , meaning that:

fY,Y ′|X(y, y′|x) = fY |X(y|x) · fY ′|X(y′|x) (5.11)

Under this assumption, the order of updating has no effect on the final posterior
distribution. We can demonstrate this proposition, as follows:

fX|Y ′,Y (x|y′, y) =
fY ′,Y |X(y′, y|x)fX(x)s

x fY ′,Y |X(y′, y|x∗)fX(x∗)dx∗

Using the independence assumption:

fX|Y ′,Y (x|y′, y) =
fY ′|X(y′|x)fY |X(y|x)fX(x)s

x fY ′|X(y′|x∗)fY |X(y|x∗)fX(x∗)dx∗

Since multiplication is commutative, this can be rewritten as:

fX|Y,Y ′(x|y, y′) =
fY |X(y|x)fY ′|X(y′|x)fX(x)s

x fY |X(y|x∗)fY ′|X(y′|x∗)fX(x∗)dx∗
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In conclusion, we find that:

fX|Y ′,Y (x|y′, y) = fX|Y,Y ′(x|y, y′). (5.12)
Data order invariance implies that, in the context of the earlier example with a runner’s

competition times, if we assume that the times are independent of each other, the order in
which the results of different competitions are entered into the model does not influence
the final posterior distribution of the runner’s performance.

However, it is important to note that this assumption of independence may not always
hold true in practice. For instance, an athlete’s performance can improve or deteriorate
over time due to factors such as training, fatigue, or changes in strategy, which introduce a
dependency between successive competition times. Nevertheless, when competitions in a
sufficiently short time-lapse are considered, these effects are often minimal, and the events
can be reasonably approximated as independent.

5.2.3 Model interpretability
For what concerns the second key idea 2, a crucial step in bayesian modeling is defining the
set of possibilities over which credibility is allocated. This is practically done by choosing
the appropriate family of distributions that best represent the data and the context of
the problem. For example, if we are modeling race times, a normal distribution might be
an appropriate choice if we believe that the times are symmetrically distributed around a
mean.

On the other hand, if the observed data do not seem to be well described by the chosen
distribution, we can consider expanding the set of possibilities by selecting a different
family of distributions or modifying the model. This check is typically performed during
the posterior predictive check, which will be explained in greater detail later. Thus, two
crucial concepts stand out:

1. The mathematical distributions chosen for the model must be comprehensible and
equipped with meaningful parameters that can be interpreted within the context of
the problem.

2. The chosen distribution should closely reflect the possible data.

5.2.4 Bayesian data analysis
The process of Bayesian data analysis can be summarized in the following steps:

1. Define an adequate likelihood for all observable quantities in the problem, depend-
ing on parameters (unobservable quantities), ensuring the model is meaningful and
aligned with the underlying scientific problem.

2. Choose a prior that reflects initial beliefs or assumptions about the parameters.

3. Update the model by conditioning on observed data, yielding a posterior distribution.

4. Conduct a posterior predictive check to compare model predictions with observed
data.
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5.3 Markov Chain Monte Carlo approaches (MCMC)

5.3.1 Conjugate priors
In Bayesian statistics, determining the posterior distribution directly from Bayes’ Rule
often requires computing the marginal likelihood. For continuous parameters, this process
typically involves solving an integral, as

fY (y) =
Ú

E
fX,Y (x, y) dx, (5.13)

that can be analytically intractable. Historically, this challenge has been addressed by
utilizing a specific class of prior distributions known as conjugate priors. Conjugate priors
are selected so that the posterior distribution remains within the same family as the prior
distribution. This choice allows for the update process to involve only the modification of
the parameters within the already known distribution family, using specific formulas. As
a result, the need for computationally intensive calculations is avoided.

Example: conjugate priors

To make an example, consider the case of a binomial likelihood function, which is often
used to model the number of successes Y in a fixed number of trials, N , with p representing
the probability of success.

Y |p ∼ Binomial(N, p),

If we assume a prior distribution for p that is a Beta distribution:

p ∼ Beta(α, β),

the posterior distribution after observing the data will also be a Beta distribution. Specif-
ically, if we observe Y = k successes out of N trials, the posterior distribution becomes:

p|Y = k ∼ Beta(α + k, β + n − k).

This result simplifies the process of updating our beliefs based on new data and avoids
the need for complex numerical integration.

Limitations of conjugate priors

While conjugate priors facilitate analytical solutions, they are not always available or
suitable, particularly for more complex models. In such cases, alternative methods are
necessary to approximate the posterior distribution. One common approach is the vari-
ational approximation, where the complex posterior distribution is approximated by a
simpler, more tractable distribution. This approximation is chosen by minimizing the
difference, often measured by Kullback-Leibler divergence, between the true posterior and
the approximating distribution. However, we will not delve into the details of this method
since it is out of the purpose of this master thesis.
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5.3.2 Numerical integration via grid-based methods
When dealing with Bayesian inference for models with a small parameter space, such
as one or two parameters, numerical methods can be employed to approximate the in-
tractable integrals involved in determining the posterior distribution. A straightforward
and effective technique in such cases is the grid-based method, which involves discretizing
the parameter space into a grid of equally spaced points and computing the integral by
summing over these points.

To illustrate this approach, let’s revisit the example of estimating the 10 km running
time distribution of a runner. Suppose we model the runner’s competition times Y using
a normal distribution, with known variance σ2,

Y |µ ∼ N (µ, σ2)

where the parameter µ represents the mean running time. Our goal is to estimate the
posterior distribution for µ, given observed competition times Y1, ..., YN .

In the grid-based method, we first define a range of plausible values for µ, say from
µmin to µmax, and divide this range into a finite number of points, choosing appropriate
step size, creating a grid. Each point on this grid represents a possible value of µ.

Next, we calculate the likelihood of the observed data for each value of µ on the grid.
Assuming a normal likelihood function, the likelihood for a specific µi, given observed
data y = (y1, y2, . . . , yN ) can be expressed as:

fY |µ(y|µi) =
nÙ

j=1

1√
2πσ2

exp
A

−(yj − µi)2

2σ2

B
,

assuming {Yj}N
j=1 pairwise independent.

The posterior for each µi is then proportional to the product of the prior fµ(µi) and
the likelihood fY |µ(y|µi):

fµ|Y (µi|y) ∝ fY |µ(y|µi) · fµ(µi).

To approximate the integral for the marginal likelihood, which is necessary to normalize
the posterior, we sum the posterior values over all grid points:Ú

µ
fY |µ(y|µ)fµ(µ)dµ ≈

Ø
i

fY |µ(y|µi) · fµ(µi) · ∆µ,

where ∆µ represents the spacing between grid points.
By summing these products across the grid, we obtain an approximation for the

marginal likelihood, as shown in figure 5.2.
This grid-based approach, though simple, is effective when the parameter space is

low-dimensional.
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Figure 5.2: Grid-based summation with 30-Second Intervals vs. true posterior distribution
(in red).

5.3.3 MCMC methods
An introductory metaphor

Imagine a company that wants to understand customer preferences for a new product
line, they are planning to launch. To gain insights, the company decides to conduct a
survey among a sample of potential customers. Instead of asking every potential customer,
which would be time-consuming and expensive, they collect responses from a large but
manageable sample, say 10,000 customers. By analyzing the responses from this sample,
the company can estimate the distribution of preferences across the entire customer base.
For example, they might find that 60% of the sampled customers prefer the blue colored
product, while the 40% prefer the red one. This sample proportion provides an estimate
of the true proportion of all customers who prefer that color. The larger the sample size,
usually, the more confident the company can be that the sample accurately reflects the
true customer preferences. This is because a larger sample usually reduce the likelihood
of sampling errors and provide a more accurate representation of the population. This
approach is similar to the Markov Chain Monte Carlo (MCMC) method in that it relies on
using a large, representative sample to approximate the underlying distribution of interest.

General framework

When neither conjugate priors nor variational or grid approximations provide adequate
solutions, an alternative approach involves randomly sampling a large number of repre-
sentative combinations of parameter values from the posterior distribution. This method
is commonly referred to as Markov Chain Monte Carlo (MCMC). By definition, a Markov
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chain Monte Carlo method for the simulation of a distribution f , is any method producing
an ergodic Markov chain, whose stationary distribution is f .

Let’s take a Bayesian inference problem as an example. Suppose the posterior distri-
bution is complex and cannot be computed analytically, thus, MCMC methods allow to
simulate a large number of samples, that collectively approximate this distribution. These
samples can then be used to estimate quantities of interest, such as means or credible in-
tervals, without the need for an explicit analytical solution.

Through techniques such as the Metropolis-Hastings algorithm or Gibbs sampling,
MCMC facilitates Bayesian inference across a wide range of applications, providing flex-
ibility where conjugate priors and variational methods fall short. We will delve further
into MCMC methods in the upcoming section.

Before detailing the procedures of Metropolis-Hastings algorithm and Gibbs sampling,
some basic concepts about Markov chains and their definition will be presented.

5.3.4 Markov chains
Given a state space S, a stochastic process is a collection of random variables {Xt}t∈T ,
where T is an index set, where each t typically represents a time instant, and each Xt

takes values in the state space S. Mathematically, a stochastic process is defined as a
function

X : T × Ω → S,

where Ω is a sample space within a probability space (Ω, F ,P). For each t ∈ T , Xt is a
random variable defined on Ω, meaning Xt : Ω → S. The distribution of these random
variables evolves over time, according to certain probabilistic rules.

A Markov chain is a specific type of stochastic process that satisfies the Markov prop-
erty. This property implies that the probability of transitioning to any particular state is
dependent solely on the current state and the time elapsed. For the sake of simplicity, we
discuss first Markov chains with a discrete state space S. Formally, the Markov property
of order T can then be expressed as follows:

P(Xt+1 = st+1 | Xt = st, Xt−1 = st−1, . . . , X0 = s0) = P(Xt+1 = st+1 | Xt = st, ..., Xt−T +1)

for all t ∈ T and for all states s0, s1, . . . , st, st+1 ∈ S. This equation states that the
conditional probability of moving to the next state st+1 depends only on the current state
st and the T − t + 1 states before, and not on any prior states st−T , st−2, . . . , s0.

For a Markov chain, the transition probability at time t, thus the probability to go in
a certain state j at the successive step t + 1, given that the chain current state is j, is
defined by

P t
ij = P(Xt+1 = j | Xt = i)

for all i, j ∈ S. The collection of all transition probabilities Pij forms the transition
matrix P .
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A Markov chain is called time homogeneous if

P(Xt+1 = j | Xt = i) = pij , ∀t

. In words, the transition probabilities are not changing as a function of time.

Ergodicity

A Markov chain {Xt} is called ergodic if the limit

π(j) = lim
t→∞

Pi{Xt = j}

exists for every state j and does not depend on the initial state i. The vector π is
called the stationary distribution.

In other words, the probability π(j) of being in state j after a long time is independent
of the initial state i.

Consider the following important implication. If a Markov chain is ergodic, then

π(j) ≡ lim
t→∞

(P t)ij = lim
t→∞

(P t+1)ij = lim
t→∞

(P tP )ij = lim
t→∞

Ø
s∈S

(P t)isPsj =
Ø
s∈S

π(s)Psj .

Where the second equality above holds because, if the limit exists, the distinction
between t and t + 1 does not matter. So we can write this as

π⊤ = π⊤P,

where π is a column vector. Hence the name stationary probability for π. It is a
distribution that does not change over time.

The ergodicity property of Markov chains will be crucial when discussing Markov Chain
Monte Carlo (MCMC) methods. Indeed, ergodicity ensures that the Markov chain has a
unique stationary distribution π, towards which the chain converges, that is independent
of the initial state. This property will be essential for the convergence of MCMC methods.

5.3.5 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, as outlined in [13] and [14], is a fundamental method
within the family of Markov Chain Monte Carlo (MCMC) algorithms. It is designed
to generate samples from a target probability distribution π(x), when direct sampling
is challenging, often due to the complexity or intractability of the distribution. Indeed,
in Bayesian modeling, when often normalizing constants involve intractable integrals,
direct methods are not applicable because they would require the full specification of the
distribution.
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Overview of the Algorithm

The core idea of the Metropolis-Hastings algorithm is to construct a Markov chain, having
as stationary distribution, the desired target distribution π(x). This can be achieved
through an iterative process that generates a sequence of samples, {X(t)}T

t=1, such that
the distribution of X(t) converges to π(x) as t increases up to infinity. In other words, for
large values of t, the probability of visiting state x in the chain, should be approximately
equal to the probability of X = x, where X is a r.v. distributed according to the target
distribution.

Detailed Algorithm Steps

Given the current state X(t) = x(t) at iteration t, the algorithm proceeds as follows:

1. Proposal Step: the algorithm generates a new candidate state Y by sampling from
the distribution:

q(y|x(t)),
called proposal distribution. Y is the sampled value, representing a specific proposed
state that the algorithm will evaluate, and potentially move to, in the next iteration.
The proposal distribution q(y|x) is a critical component of the Metropolis-Hastings
algorithm, as it determines how new candidate states (proposals) are generated from
the current state of the Markov chain.
The choice of the proposal distribution is based on several key considerations: sim-
plicity and computational efficiency, adaptation to the target distribution and problem-
specific requirements. For example, if the target distribution is known to have certain
symmetries or constraints (e.g., positivity or boundedness), proposals should be cho-
sen accordingly. Thus, for a symmetrical target, a normal distribution could be a
good fit. Common choices of proposals include:

• Gaussian distribution: for continuous target distributions, a common choice is
a normal distribution centered at the current state x, q(y|x) ∼ N (x, σ2), where
σ2 is a variance parameter that controls the spread of the proposed samples.

• Uniform distribution: another simple choice is a uniform distribution within
a specified interval around the current state x, such as q(y|x) ∼ Uniform(x −
α, x + α), where α is a parameter controlling the width of the interval.

• Laplace distribution: in some cases, a Laplace (double exponential) distribution
is used to allow for heavier-tailed proposals.

2. Acceptance Probability: Compute the acceptance probability, ρ(x(t), y), which is
defined as:

ρ(x(t), y) = min
I

1,
π(y)q(x(t)|y)

π(x(t))q(y|x(t))

J
. (5.14)

The ratio expressed in (5.14), represents the relative probability of the proposed state
y, compared to the one of the current state x(t). Thus, the proposed jump is accepted
with certainty if the posterior distribution is higher at the proposed position than at
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the current position. While the proposed jump is probabilistically accepted, if the
posterior is lower at the proposed position than at the current position. Should the
proposed move be rejected, the algorithm retains the current position for the next
iteration, effectively counting it again in the sampling process.
Note that target distribution is known up to a normalizing constant. Since the
latter constant cancels out in expression (5.14), the evaluation of the resulting ratio
is feasible.

3. Transition Step:

• Draw ut from a uniform distribution on [0, 1].
• If ut ≤ ρ(x(t), y), then accept the candidate, setting X(t+1) = Y . Otherwise,

reject the candidate and retain the current state, setting X(t+1) = x(t).

Key Properties

• Ergodicity: The Markov chain produced by this algorithm is ergodic, meaning that
as t → ∞, the distribution of X(t) approaches the target distribution π(x) regardless
of the initial state X(1). As a consequence, X(1) can be arbitrarily chosen and the
sequence in which the sampled points appeared, and the trajectory are irrelevant.

• Stationarity: If the chain reaches stationarity, the distribution of X(t) is exactly
π(x).

Metropolis-Hastings limitation

One significant limitation of the Metropolis algorithm is its sensitivity to the choice of
proposal distribution. For the algorithm to perform efficiently, the proposal distribution
must be well-aligned with the posterior distribution. If the proposal distribution is either
too narrow or too broad, the algorithm may result in a high rejection rate for proposed
jumps, causing the Markov chain to stagnate in a localized region of the parameter space.
This inefficiency reduces the effective sample size, meaning that the number of independent
samples generated is substantially lower than the total number of iterations.

5.3.6 Gibbs sampling method
Gibbs sampling is a specialized form of Markov chain Monte Carlo (MCMC) that, like
the Metropolis algorithm, involves a random walk through the parameter space. The
key difference lies in how Gibbs sampling progresses from one point to the next in this
space. The algorithm begins at an arbitrary point, and the next step depends solely on the
current position, without considering any previous steps, thus satisfying Markov property.

In Gibbs sampling, rather than proposing a new position for all parameters at once
(as in Metropolis-Hastings), the algorithm updates one parameter at a time. Typically,
parameters are cycled through in a fixed order, and then repeating, rather than selecting
parameters at random. This cycling ensures that all parameters are regularly updated.
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Fixed update order is particularly important in models with many parameters, where ran-
domly selecting parameters could result in some parameters being infrequently updated,
if iterations are not enough.

In particular, at the beginning of the proposal step, a particular parameter θi is se-
lected. Then, Gibbs sampling draws a new value for that parameter directly from its
conditional probability distribution, given the fixed current values of all other parameters
and the observed data, denoted as

p(θi | {θj}j /=i, S).

Successively, this newly sampled value for θi is combined with the current values of the
other parameters to form the new position in the parameter space. The algorithm then
repeats this process for each parameter in turn.

An important feature of Gibbs sampling is that the proposal distribution for each
parameter is exactly the conditional posterior distribution of that parameter, given the
current values of the other parameters. This alignment between the proposal distribution
and the posterior distribution ensures that the proposed move is always accepted. Unlike
the Metropolis-Hastings algorithm, where proposed moves can be rejected if they do not
improve the posterior probability, Gibbs sampling inherently avoids this issue, leading
to a more efficient exploration of the parameter space. This characteristic makes Gibbs
sampling particularly advantageous when the complete joint posterior, p({θi}n

i=1 | S),
cannot be analytically determined and cannot be directly sampled, but all the conditional
distributions, p(θi | {θj}j /=i, S), can be determined and directly sampled.

Moroever, as we can derive from the two methods explanations, effective size of the
Gibbs sample is larger than the effective size of the Metropolis sample for the same length
of chain.

Illustrative example: Gibbs sampling in practice.

Let’s consider a bivariate random variable x = (x1, x2), which is distributed according to
a normal distribution with mean vector µ = (µ1, µ2) and a 2 × 2 covariance matrix Σ
given by:

Σ =
3

σ2
1 σ1,2

σ1,2 σ2
2

4
Sampling directly from this bivariate normal distribution can be challenging. How-

ever, by using Gibbs sampling, we can simplify the problem by utilizing the conditional
distributions f(x1 | x2) and f(x2 | x1), which are both univariate normal distributions.

The conditional distribution f(x1 | x2) is given by:

x1 | x2 ∼ Normal
A

µ1 + σ1,2

σ2
2

(x2 − µ2), σ2
1 −

σ2
1,2

σ2
2

B
Similarly, the conditional distribution f(x2 | x1) is given by:

x2 | x1 ∼ Normal
A

µ2 + σ1,2

σ2
1

(x1 − µ1), σ2
2 −

σ2
1,2

σ2
1

B
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By iteratively sampling from these conditional distributions, we can efficiently generate
samples from the joint distribution of x.

As we can see from 5.3, just either x1 or x2 are sampled at each iteration.

Figure 5.3: Bidimensional trace plot of the samples generated using Gibbs sampling al-
gorithm.

MCMC methods assumptions

To effectively implement Markov Chain Monte Carlo methods, certain fundamental as-
sumptions must be met to ensure the accuracy and efficiency of the sampling process.
First and foremost, the prior distribution must be specified by a function that is also
computationally tractable. This implies that the prior should be expressible in a form
that allows for straightforward evaluation at any given point within the parameter space.
In conjunction with the specification of the prior, the likelihood function, denoted as
f(Y |θ), where Y represents the observed data and θ denotes the parameter of interest,
must also be computable for any given value of Y and θ. Moreover, a minimal regularity
condition on both the target and the proposal distributions should be imposed. Defined
as S, the support of target distribution f , S should be connected and the support of f
should be contained in the proposal q support. Indeed, assuming that there exists A ∈ S,
such that Ú

A
f(x)ds > 0, ∀x ∈ S

but Ú
A

q(y|x)dy = 0, ∀x ∈ S

Then, in this case, f is not the limiting distribution of the Markov chain, since for x0 /∈ A,
the chain {Xt}t∈T never visits A. On the other hand, if S is not connected, more than one
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connected components are present. Thus, starting from a given connected component,
states belonging to another connected component cannot be visited by the chain.
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5.4 Hierarchical models
Bayesian hierarchical models extend the concept of Bayesian inference by introducing a
structure in which parameters are organized into different levels, reflecting their depen-
dencies. In these models, the parameters at one level are treated as random variables
whose distributions are influenced by parameters at higher levels. This hierarchical struc-
ture allows for the sharing of information across different groups or levels, leading to more
informed and robust inferences.

5.4.1 Example: Hierarchical Bayesian model for runners race
times

We now extend the previous example by introducing a Bayesian hierarchical model, where
runners are grouped into two categories: long-distance runners and short-distance runners.
Each category has its own average race time, denoted as µL for long-distance runners and
µS for short-distance runners. The race time for each individual runner, denoted as Ti,
depends on the category mean µC where C ∈ {L, S}.

Hierarchical Model Structure

• Category-Level Distribution: Each category mean µC is assumed to be drawn from
a normal distribution centered at a global mean µG, with known variance τ 2 for
simplicity, reflecting the variability between different categories.

µC ∼ N (µG, τ2) for C ∈ {L, S}

• Runner-Level Distribution: Each runner’s race time Ti is drawn from a normal dis-
tribution centered at the mean of the category to which the runner belongs, with a
known variance σ2, reflecting the variability in times within the category.

Ti ∼ N (µC , σ2) for C ∈ {L, S}

• Hyperprior Distributions: non-informative prior distributions on the global mean µG

are placed, reflecting our initial uncertainty about these parameters.

µG ∼ U(20, 80)

Formally, we define hyper-parameters as parameters that define the prior distributions
of other parameters within a hierarchical Bayesian model. In the latter case, µG is an
hyper-parameter. Hyperpriors are the prior distributions assigned to these hyperparame-
ters. In the example, the uniform distribution followed by µG is an hyperprior.

To visualize the hierarchical structure, consider the following graph representing the
dependency structure:
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µG

↓ ↓
µL µS

↓ ↓
TL,1, TL,2, . . . TS,1, TS,2, . . .

In this graph:

• µG (level 1) influences both µL and µS (level 2),

• µL and µS each influences the observed times TL,i and TS,j (level 3) of the athletes
in their respective categories.

This hierarchical Bayesian model not only refines our estimates of individual runner
times but also accounts for the variability both within and across runner categories.

Bayesian Updating Process

We begin by observing the race time TL,1 = 50 minutes for a runner in the long-distance
category. The likelihood of this observation, given the category mean µL, is:

TL,1|µL ∼ N (µL, σ2)

The prior for µL is the normal distribution centered at µG, which itself is still uncertain:

µL ∼ N (µG, τ2)

After observing TL,1, we update our belief about the parameters (µG, µL) using Bayes’
rule, combining the hyperprior f(µG) with the likelihood f(TL,1|µL), as follows:

f(µL, µG|TL,1) ∝ f(TL,1|µL) · f(µL|µG) · f(µG)

The process of observing multiple runners from both categories allows us to refine the
global mean µG and the category-level means µL and µS . In particular, the posterior for
µG is updated based on the observed data from both categories, as it indirectly influences
µL and µS through their priors.
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5.5 Comparison with the Frequentist Approach
The Bayesian approach differs from the frequentist approach, particularly in how uncer-
tainty is treated and how new data is incorporated. In the frequentist paradigm, we
typically obtain a point estimate of the parameter of interest, in the example above, the
runner’s average 10km time. This estimate is derived by maximizing the likelihood of the
observed data, which is a procedure known as Maximum Likelihood Estimation (MLE).

Suppose we estimate the runner’s race time after observing half of the race season. In
the frequentist approach, if we wish to update our estimate at the end of the season, we
would have to recompute the entire model by combining the new data with the old ones,
and finding the parameter value that maximizes the likelihood across all the collected
data. This approach does not naturally accommodate incremental updates; instead, it
requires a complete reanalysis every time new data is added.

In contrast, the Bayesian approach offers a more flexible framework. After each race,
we can update our model by incorporating the new time observation into the posterior
distribution obtained from the previous data. This updating process allows us to refine our
model continuously without needing to recompute everything from the beginning. With
each new piece of data, the posterior distribution from the previous analysis becomes the
prior distribution for the next analysis, making the Bayesian approach adaptive to new
information.

Moreover, the Bayesian approach does not just yield a point estimate like the frequen-
tist method. Instead, it provides a full probability distribution over the possible values
of the parameter. This posterior distribution encapsulates all the information about the
parameter, including its mean, variance, and credible intervals, thereby offering a more
nuanced understanding of the uncertainty associated with the parameter.
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Chapter 6

Methodology

In this study, we apply two distinct methodologies—a Bayesian hierarchical model and
a ranking model—to analyze athlete performance in ski competitions. The Bayesian
hierarchical model incorporates both individual athlete abilities and competition-specific
factors, using track times as the primary data source. On the other hand, the ranking
model focuses on rankings rather than track times, not taking into account of race-specific
variabilities. The final objective of both models is to assess athletes ability, obtaining an
ability measure that does not depend on factors of variability.

6.1 Plackett-Luce model approach
The first approach that we have undertaken, has been to focus solely on ranking data,
employing the methods mentioned in literature ([3], [2]). As discussed in the introduction
section, performance measures are subjected to great variability, while rankings, focusing
only on comparison outcomes, enable to reduce the noise present in track times due to
factors such as race conditions.

6.1.1 Model specification
In this light of this, we have developed a Plackett-Luce model based on alpine skiing
competitions ranking results. In this context, the skiers represent the items to be ordered,
while the skiing competitions serve as the judges that rank the athletes. Each skier is
assigned an index i ∈ I, where |I| = N , and each competition is indexed by j ∈ J , with
|J | = M . Skiing performances, for which precise track times are considered unobservable,
are modeled using a Gumbel probability distribution. Every athlete is characterized by
their own location parameter, while the scale parameter is assumed to be constant across
all athletes.

6.1.2 Model parameter interpretation
The resulting model, as described in Section 4.2.2, provides estimates of skiers’ abilities,
which are captured by the "worth" parameter for each item. Specifically, the worth values
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πi are estimated, with:
πi = e

ui
β .

Here, β represents the scale parameter of the Gumbel distribution, while ui denotes the
location parameter. The location parameter can be interpreted as proportional indicator
of each skier’s ability: the higher the parameter value, the greater the athlete’s perceived
ability. In order to identify the model, the average ability among the skiers considered, has
been chosen as a reference. It is important to clarify that, since we do not employ precise
track time data, the Gumbel distribution obtained for each athlete does not correspond
to the actual distribution of race times. Indeed, a higher ability parameter (i.e., a higher
location parameter ui) implies that the athlete’s performance distribution is skewed toward
higher values. However, since faster athletes have shorter race times, this distribution
reflects an abstract measure of performance, that is inversely proportional to recorded
completion times.

6.1.3 Implementation details
The model has been implemented in the R environment using the PlackettLuce package,
which provides functions for preparing ranking data and fitting the Plackett-Luce model.
This package has been particularly selected because it accommodates ties of any order
and can handle partial rankings effectively.

Specifically, partial rankings refer to rankings in which some of the athletes considered
in the study are absent from the ranking list. This can occur when an athlete either fails
to finish the race or does not participate at all. In other words, partial rankings do not
provide a complete ordering of all competitors, yet they still offer valuable information
for the model.

To prepare the data, we used the ranking function to create a "ranking object" from
a dataframe structured with the following three columns:

• ID: representing the indices of the rankings, with each index corresponding to a
specific competition instance.

• Item: identifying the athlete by their respective index in the dataset.

• Rank: indicating the rank assigned to the athlete (referred to by the Item index) in
the competition corresponding to the given ID.

Once the ranking object was created, it was passed to the PlackettLuce function, which
fits the model and estimates the athletes’ abilities.

6.1.4 Ties handle
In this section, we present how ties are handled in the PlackettLuce function, as described
in [15]. A single ranking can be expressed as:

R = {C1, C2, . . . , CJ}
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where the items in set C1 are ranked higher than those in C2, and so forth. If any set Cj

contains multiple items, these items are tied in the ranking. For a set of items S, we can
define the function:

f(S) = ϵ|S|

AÙ
i∈S

πi

B 1
|S|

where |S| represents the cardinality of the set, ϵn is a parameter related to the frequency
of ties of order n (with ϵ1 = 1), and πi is the parameter representing the worth of item
i. A model is said to accept ties up to order D, if the maximum number of ties, thus the
maximum number of elements in each set Cj , is given by D. Under the Plackett-Luce
model with ties up to order D, the probability of observing ranking R is given by:

P (R) =
JÙ

j=1

f(Cj)rmin(Dj ,D)
k=1

q
S∈(Aj

k
) f(S)

where Dj denotes the cardinality of Aj , the set of remaining alternatives from which Cj

is selected, and
!Aj

k

"
represents all possible combinations of k items from Aj . If no ties

are present, meaning D = 1, the parameters simplify to the form used in the theoretical
framework from previous chapters. For example, if C1 contains only one item indexed by
k (i.e., C1 = {k}), the function returns the following:

f(C1) = ϵ1

Ù
i∈C1

πi

 1
1

= πk.

For what concerns the ϵ|S| parameter, [15] suggests to relate it to the probability that |S|
items, of equal worth, tie for first place, given that the first place is not a tie of higher
order.

6.1.5 Partial rankings
In our study, the dataset contains subset rankings, where only a subset of athletes is fully
ranked in each observation. This occurs when some athletes do not complete the race or
are missing from certain competitions, resulting in partial rankings. To handle this, the
function in Plackett-Luce package, adjusts the likelihood function to account for the fact
that the set of alternatives in the denominator only includes the remaining items from the
subset of ranked athletes.
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6.2 Bayesian hierarchical model approach
Building on the approach outlined in [5], we quantify skier’s ability by estimating the
percentage deviation of the athlete’s time from the average competition time. Importantly,
we did not select the first-place finisher as the reference time as in [5]. This decision was
motivated by the fact that each of the analyzed competitions involves a slightly different
group of athletes. Using the first-place finisher as the reference could introduce bias, when
top athletes are absent from the race. In contrast, the average competition time offers
a more stable reference, being less affected by the absence of individual competitors. In
this problem, the performance of athletes in ski competitions involves multiple levels of
variability, which necessitates the use of an hierarchical model. In particular, a two-levels
description has been identified:

1. Athletes’ ability: at the most granular level, we are interested in modeling the per-
formance of individual skiers. Each one of them has a latent, unobservable "ability"
that determines their performance in a competition. This ability can be thought of
as a personal characteristic, influenced by factors such as amount and quality of the
training, experience, motivation, and overall physical fitness. However, the observed
race time for an athlete is not a direct reflection of their ability, as it is also affected
by external conditions of the specific competition in which they are taking part and
the environment.

2. Competition specific effects: at a higher level, the competition itself introduces
variability. Each race has different characteristics, such as course difficulty, weather
conditions, altitude, and snow quality, all of which affect the performance of the
athletes. In this study, it is assumed that all skiers in a given race compete under
the same conditions, though this may not be entirely accurate in practice.

The key challenge of the problem lies in the fact that athlete performance and com-
petition conditions are intertwined. An hierarchical model enables us to capture the
interactions. In particular, it is assumed that, the race time observed, results from a com-
bination of the athlete’s underlying ability and the external conditions of the competition.
Moreover, the hierarchical model structure reflects the nested nature of the data: athletes
compete in multiple events, and each event conditions influence performances of multiple
athletes.

6.2.1 Model specification
Let I denote the set of indices representing the athletes, where each athlete is identified
by an index i ∈ I, and J representing the set of indices corresponding to the competitions,
where each competition is identified by an index j ∈ J .
The core of the model is the assumption that the observed race time for athlete i in
competition j, denoted by yij , follows a log-normal distribution, thus:

log(yij) ∼ N (θi + βj , σ2)

Where:
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• θi represents the model parameter accounting for the ability of the athlete,

• βj accounts for the average time for competition j,

• σ2 represents the variance that captures the residual variability in race times not
accounted for by athlete abilities or competition characteristics. Alternatively, it can
be interpreted as an inverse measure of the athlete’s consistency and performance
stability across competitions.

The logarithmic transformation is appropriate for two key reasons: the positivity of
race times and their typically right-skewed nature.

• Firstly, yij > 0 for each i and j. Indeed, an athlete cannot complete a race in negative
time. The log-normal distribution is well-suited to model such strictly positive data
because it ensures that all the values predicted by the model are positive, without
employing domain constraints. This is achieved by modeling the logarithm of the
race times, which can take any real value, but when exponentiated back to the
original scale, the outcomes are positive.

• Secondly, race times in competitive settings frequently display right-skewed distri-
butions, characterized by a concentration of faster times around lower values, which
correspond to the most competitive athletes. In contrast, slower performances form
a long tail extending towards higher values, spread over a wider range of times.
This pattern is illustrated in Figure 6.1, which shows histograms from six different
competitions.

6.2.2 Model parameters interpretation
Ability parameter: an inverse measure

The ability of an athlete is interpreted as the percentage variation in his race time, with
respect to the average competition time. This means that an athlete’s ability is quantified
by how much faster or slower they are compared to the average participant. Specifically,
it is an inverse measure, an athlete who completes the race in less time than the average
has a lower ability coefficient, indicating higher performance, as they are outperforming
the average competitor.

Mathematically, the ability of an athlete ai is defined as:

ai = exp(θi) − 1

In this formulation, θi is the model parameter associated with the athlete i.
The interpretation of this equation is as follows:

• when θi is negative, exp(θi) is less than 1, leading to ai being negative. This implies
that the athlete’s race time is expected to be shorter than the average competition
time, indicating a superior performance. A more negative θi corresponds to a faster
athlete, as it leads to a lower ai value.

53



Methodology

• When θi is zero, exp(θi) = 1, and hence ai = 0. The latter implies that athlete’s
performance is equal to the average competition time. In this case, the athlete’s
ability is neutral, neither outperforming nor underperforming relative to the average.

• When θi is positive, exp(θi) is greater than 1, resulting in a positive ai. This
indicates that the athlete usually takes longer than the average to complete the
track, implying lower performance compared to the other competitors. The larger
θi, the greater the deviation above the average time, and thus the lower the athlete’s
ability.

In the hierarchical model, θi is assumed to follow a normal distribution, reflecting our
prior belief that athletes’ abilities are normally distributed around a central tendency with
some variability. Specifically, we define the prior for θi as follows:

θi ∼ N (µθi , σ2
θi

)
Here, µθi is the prior mean of the log-ability for athlete i, which we assume follows a

non-informative distribution:

µθi ∼ N (0, 1)
This hyperprior reflects our belief that, in the absence of observed data, each athlete

is supposed to perform as an average competitor. A value θi = 0 corresponds to ai = 0,
indicating that the athlete’s race time is expected to be equal to the average competition
time. A moderate variance of 1 has been chosen to ensure the model adheres more closely
to the interpretation of ai as a percentage.

The variance of the log-ability σ2
θi

is given a Gamma prior::

σ2
θi

∼ Gamma(0.001, 0.001)
This weak prior allows to give more importance to the data, in order to determine the

consistency of athletes across competitions. The Gamma distribution with hyperparame-
ters 0.001 and 0.001 represents a minimally informative prior, providing little constraint
on the possible values of σ2

θi
.

Competition-specific parameters

For each race j ∈ J , we define µj as the logarithm of the competition-specific parameter
βj , where µj directly represents the average track time in race j, taking into account
all participating athletes. βj , also follows a normal prior distribution, and its prior is
expressed as:

βj ∼ N (µβ, σ2
β)

Where:

• µβ is exactly computed from data as the observed log-transformation of the race times
mean in competition j, providing an empirical estimate of the central tendency of
that specific competition,
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• σ2
β is computed as the observed log-variance of the race times in competition j,

capturing the inherent variability in race times within that competition.

This informative prior ensures that each competition has its own baseline average
race time, which can vary depending on factors such as weather, track conditions, or
competition difficulty. By incorporating the observed mean and variance, the model can
account from the beginning of the characteristics of each event. Since the analysis is
limited to only 12 skiers out of 50 to 80 participants per competition, it is not practical
to reliably estimate the mean and standard deviation from this smaller subset of data.
Therefore, the use of an informative prior is advantageous.

Normal distribution mean interpretation

In the light of the more interpretable parameters ai and µj , the mean θi +βj of the normal
distribution can be expressed as:

θi + βj = log(ai + 1) + log(µj) = (ai + 1) · µj

The latter expression allows us to retrieve the interpretation of athlete’s ability ai as the
percentage deviation from the average competition time bj , consistent with the interpre-
tation provided in the general framework section.

Residual Variability

The model also accounts for residual variability in race times, denoted by σ2
y . This residual

variability captures factors that are not explained by athlete ability or competition-specific
effects, such as random noise, day-to-day performance fluctuations, or unmeasured envi-
ronmental factors. We place a Gamma prior on σ2

y :

σ2
y ∼ Gamma(0.001, 0.001)

As with the prior for σ2
θi

, this Gamma prior is weakly informative, allowing the data to
largely determine the level of residual variability. This choice reflects the lack of knowledge
about external and unpredictable factors.

6.2.3 Hierarchical model graphical representation

Here, the graphical representation of the hierarchical model is presented, offering a visu-
alization of the model’s structure. The diagram illustrates how the various components
are interconnected, with arrows indicating dependencies. Specifically, for example, yij

distribution depends on θi, βj and σ2
y , while θi distribution depends on both µθi and σ2

θi
.
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Figure 6.2: Graphical representation of the hierarchical model used to model athlete
abilities across various alpine skiing competitions.

6.2.4 Athletes performance measure uncertainty quantification
Given the inherent uncertainty surrounding race conditions, which are not known in ad-
vance, the hierarchical Bayesian model does not provide direct estimates of the mean track
times for upcoming competitions before they occur. Instead, the model accomplishes a
descriptive purpose, by extracting the insights of athletes’ abilities from the data. A pos-
sibly useful application of this model is the construction of an overall ability ranking of
the athletes. In such a scenario, we can use credible intervals, or just the expected value
of the posterior distribution of the ability parameters, to establish the skiers ordering.

Intervals of credibility

In more detail, we define a credible interval (or Highest Density Interval, HDI) for a
parameter θ, as the range of values for θ, that have a posterior probability above a certain
threshold, such that the total probability of these values is 1 − α, where α is typically
chosen to be 5%. This interval gives us a measure of the uncertainty around the parameter
estimate and the most credible range of values for θ.

To compute the credible interval for an athlete’s ability θi, we start with the posterior
distribution for θ̂i, which is given by the following equation:

P (θ̂i | D) =
Ú

µθi

Ú
σ2

θi

P (θ̂i | µθi , σ2
θi

)P (µθi | D)P (σ2
θi

| D)dµθidσ2
θi (6.1)

Here, θ̂i represents the predicted ability for skier i, D represents the observed data,
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µθi and σ2
θi

are the mean and variance of the ability parameter’s prior distribution. To
compute the credible interval from this posterior distribution, we follow these steps:

1. Generate Posterior Samples: Obtain posterior samples for θ̂i from the posterior
distribution using Markov Chain Monte Carlo sampling methods.

2. Sort the Samples: Sort the posterior samples of θ̂i in ascending order.

3. Select the Central Interval: For a 95% credible interval, discard the lowest and
highest 2.5% of the samples. The remaining 95% of the posterior samples represent
the credible interval. More formally, if Sθ̂i

denotes the sorted array of posterior
samples, the 95% credible interval is defined as:

[Sθ̂i
[0.025], Sθ̂i

[0.975]]

This interval provides a range where the skier’s ability parameter θi is likely to fall
with 95% probability, based on the observed data. This credible interval can then be
used to rank athletes by comparing their expected abilities and the uncertainty associated
with each estimate. Suppose the posterior distribution of a parameter θ, to be a Poisson
distribution with parameter 0.02. In this scenario, the credible interval is about (9, 26),
as shown in the following plot:

Figure 6.3: Credible interval representation of a Poisson(0.02) posterior distribution.

6.2.5 Model validation
In Bayesian analysis, the posterior distribution provides relative probabilities for the var-
ious parameter values under consideration. This means that the posterior tells us which
parameters are less unlikely than others but does not necessarily indicate whether the
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most probable parameters actually provide a good fit to the data. For example, consider
a scenario where we are deciding if a runner is a professional athlete or a beginner. In
both cases, we assume that their 5km times follow a normal distribution, with a mean of
15 minutes for a professional and 40 minutes for a beginner, and a fixed standard devi-
ation of 3 minutes. Suppose we record the following times: T1 = 25, T2 = 20, T3 = 23.
According to the posterior distribution, the model indicating the runner is a professional
athlete might be favored. However, the data clearly do not align well with the assumption
that times are normally distributed around a mean of 15 minutes, as the observed times
are significantly higher. To assess whether the most credible parameter values provide
qualitatively a good fit to the data, we can use a posterior predictive check, as proposed in
[12]. This involves simulating data using parameter values with high posterior credibility
and comparing these simulated data to the actual observed data. If the simulated data
resemble the real observations, then we can conclude that the parameter values are a
good description of the data. On the other hand, if the simulated data pattern deviates
significantly from the real data one, even the most probable parameter values may not be
adequate for explaining the observed outcomes.

6.2.6 Implementation details
The hierarchical Bayesian model in 6.3 has been implemented using JAGS (Just Another
Gibbs Sampler) within the R statistical computing environment. JAGS is a software
package designed for the Bayesian analysis of complex hierarchical models. It provides a
flexible and powerful framework for specifying and fitting Bayesian models using Markov
Chain Monte Carlo methods, particularly Gibbs sampling.

R packages

In this implementation, the r2jags package has been employed to interface between R
and JAGS. The r2jags package is a widely used tool that facilitates the execution of
JAGS models from within the R environment. It provides functions to compile JAGS
models, to handle the conversion of R data frames and matrices into formats that JAGS
can process and to run the MCMC algorithms. The package also supports the retrieval
and processing of the posterior samples, making it easier to conduct Bayesian inference
and perform model diagnostics. In our implementation, r2jags has been utilized to fit
the hierarchical Bayesian model by specifying the model structure and priors in JAGS
and running the MCMC simulations to obtain posterior distributions. While for what
concerns the posterior density plots and the credible intervals, they have been obtained
using the R package ggmcmc.

.
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Figure 6.1: Histograms and density plots of 6 competitions among the races considered
in the case study.
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Chapter 7

Results and discussion

Building upon the methodology outlined in the previous chapter, this section provides a
comprehensive overview and discussion of the results derived from the implementation of
the previously defined models: the order statistics model Plackett-Luce and a Bayesian
hierarchical approach. Both have been applied to analyze athlete performance in ski
competitions, using rankings and competitions track times, respectively, as data.

7.1 Plackett-Luce model results
For what concerns the approach employing Plackett-Luce model, we have exploited the
PackettLuce package. Given that the directed graph constructed from the ranking data
is connected, we have not required the use of pseudo-ranks.

In this regard, ranked items can be represented as nodes in a directed graph, where
directed edges between nodes denote the implied wins and losses between pairs of items.
Specifically, an adjacency matrix can be defined to represent the graph, enabling us to
verify the connectivity of the graph and ensuring that all nodes are reachable from one
another. This property is crucial for the proper application of the Plackett-Luce model,
as it relies on the assumption of a connected ranking structure, in order for the maximum
likelihood estimate to be defined.

Therefore, the Standard Maximum Likelihood method was employed to fit the data,
utilizing the default "Iterative Scaling" algorithm. The algorithm achieved convergence
within 15 iterations. It is important to note that, given the case study involved 12 athletes,
the procedure was computationally manageable, without the need of further exploring
acceleration techniques.

The Z-tests for the estimated ability parameters assess the null hypothesis that the dif-
ference between each parameter and the mean worth value is zero, using the group’s mean
as a reference point. Table (7.1) presents the estimated coefficients, standard errors, and
p-values obtained from the analysis. From these results, it is evident that skiers indexed
as 3, 4, and 11 display abilities that significantly deviate from the average, underperform-
ing compared to the group mean. In contrast, skiers indexed as 2, 5, 6, 8, and 9 show
performance above the average. The standard error values provide further insight into the
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consistency of each athlete’s performance, with most skiers exhibiting a standard error
of approximately 0.4. However, athletes 3, 4, and 11, who also underperformed, showed
higher standard error values, indicating either greater inconsistency in their results or low
partecipation in competitions.

Table 7.1: Table of skier estimated ability, standard error and p-value choosing as reference
the mean ability value with Plackett-Luce model.

Skier Estimate Std. Error P-value
1 0.68901 0.41570 0.0974
2 1.61279 0.44047 0.0003
3 -4.99757 1.18099 2.32e-05
4 -3.57481 0.78092 4.70e-06
5 1.85377 0.44042 2.56e-05
6 2.77352 0.43873 2.59e-10
7 -0.01022 0.40090 0.9797
8 1.65475 0.42593 0.0001
9 2.43365 0.42462 9.96e-09
10 -0.03666 0.42026 0.9305
11 -2.30488 0.63875 0.0003
12 -0.09335 0.41245 0.8209

As outlined in [16], standard errors vary depending on the chosen reference level.
Quasi-standard errors (QSE) solve this issue by remaining constant regardless of which
item is set as the reference. The latter result is achieved by QSE by introducing in the
computation the covariance terms of all the other parameters with respect to the reference
one. While a detailed proof of QSE’s independence from the reference is beyond the scope
of this master thesis, we will provide a formal definition of QSE. For further explanation,
readers can refer to [16]. Quasi-standard error for item i, can be defined as follows:

QSEi =

ó
Σii − 2Σir

n
+
qn

k=1 Σrk

n2

where:

• Σii is the variance of the estimated parameter for item i,

• Σir is the covariance between the parameter for item i and the reference item r,

• n is the number of items,

• Σrk is the covariance between the reference item and item k.

This ensures that even when a natural reference exists, as in this case, the mean group
performance, the uncertainty surrounding the worth of that item can be assessed, allowing
possible further comparisons where the same variables but different reference levels are
used. Thus log-abilities with quasi-standard errors have been visually represented in
Figure 7.1.
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Figure 7.1: Skiers’ abilities estimated log-values and quasi standard errors obtained ap-
plying Plackett-Luce model.

One aspect worth to be underlined of models relying on latent variables is poor inter-
pretability. The ability coefficients obtained from the Plackett-Luce model rely on latent
variables which quantify the underlying ability of each individual, but they are abstract
constructs that do not correspond to any directly observable measures.

7.2 Hierarchical Bayesian model results
The following section presents the results obtained from the implementation of the hier-
archical Bayesian model. The model was implemented using the JAGS framework, with
three Markov chains initialized and run in parallel. Each chain was executed for 100,000
iterations, with an initial burn-in period of 2,000 iterations to ensure that the model
reached a stable sampling phase. Convergence of the chains was assessed using the Rhat
diagnostic coefficient, which indicated that all chains successfully converged within the
allocated number of iterations.

As discussed in the methodology chapter, ability of an athlete has been interpreted as
the percentage variation in his race time, with respect to the average competition time.
Mean estimates, standard errors and the ability measure computed from the parameter
mean estimate are displayed in Table (7.2). Specifically, we recall that in order to obtain
the previous interpretation, ability measure has been computed as:

ai = exp(θi) − 1.
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Thus, for example, taking the skier indexed by 6, she is expected to perform about 13.5%
better than the average competitor, given the pool of athletes considered.

As we can see from both numerical results and HDI displayed in Figure 7.2, SD assume
quite high values, meaning that either insufficient data have been provided to obtain more
accurate estimates, or athletes performance was inconsistent.

Figure 7.2: HDI for athlete abilities sorted in decreasing order of mean parameter value.

Parameter Mean SD Ability (%)
theta[1] 0.001 0.109 0.001
theta[2] -0.039 0.111 -0.038
theta[3] 0.097 0.115 0.102
theta[4] 0.125 0.111 0.133
theta[5] -0.017 0.110 -0.017
theta[6] -0.136 0.111 -0.135
theta[7] 0.004 0.110 0.007
theta[8] -0.054 0.111 -0.054
theta[9] -0.053 0.111 -0.053
theta[10] 0.007 0.110 0.008
theta[11] 0.071 0.113 0.074
theta[12] 0.002 0.110 0.005

Table 7.2: Summary of results applying the Bayesian hierarchical approach: Parameter,
Mean, SD, and Ability (%)
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7.2.1 Model validation

In order to validate the model two different validations have been carried out:

• Rank comparison: Rankings have been constructed using the estimated abilities
from the hierarchical Bayesian model. The latter rankings have been compared
against two benchmarks: the rankings derived from the Plackett-Luce model and
the average rank for each athlete, computed directly from the observed data.

• Posterior predictive check: A posterior predictive check has been conducted to
evaluate how well the model reproduces the observed data. Specifically, distributions
of the athlete abilities and competition-specific parameters were simulated based
on the posterior estimates of the model. These simulated distributions were then
compared to the actual data to identify any discrepancies.

Rank comparison

Ranking estimated abilities obtained from both models (hierarchical Bayesian model and
Plackett-Luce), enables to make a comparison of the orderings obtained, in order to check
for consistency of results between the models. Rank orderings obtained are shown in
Figure 7.3 and Table 7.3. The results show a strong overall consistency in the rankings,
demonstrating that both models capture similar underlying patterns in athlete perfor-
mance. Notably, the positioning of three athletes coincides exactly between the two
models. However, for what concerns the remaining athletes, while the specific ranks differ
between the models, these discrepancies can largely be attributed to the proximity of the
ability estimated measures of those athletes. In both the hierarchical Bayesian model
and the Plackett-Luce model, several athletes have very similar estimated ability values,
resulting in minor differences in rank assignments.

Subsequently, the rankings obtained have been compared with the average rank of each
skier, directly computed from data. As we can see from Table 7.3, the Plackett-Luce model
outcome almost coincides with average rank orderings, except from minor differences in
the positioning between the 7-th and the 10-th positions.
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Rank Model 1 Model 2 Avg Rank
1 6 6 6
2 9 8 9
3 5 9 5
4 8 2 8
5 2 5 2
6 1 1 1
7 7 12 10
8 10 7 12
9 12 10 7
10 11 11 11
11 4 3 4
12 3 4 3

Table 7.3: Comparison of Model 1: Plackett-Luce, Model 2: hierarchical Bayesian model,
and average rank athlete orderings. In columns Model 1, Model 2 and Avg Rank are
present the index of the athlete assigned to the position given by Rank column.

Figure 7.3: Comparison of abilities ranking obtained from the model fitting of a Bayesian
hierarchical model and Plackett-Luce model.

Posterior predictive check

In this section, we validate the hierarchical Bayesian model by generating and analyzing
simulated race times for each competition. Specifically, for each athlete i in competition
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j, we simulate 100 race times from the distribution

ŷij ∼ N (θi + βj , τ)

where θi represents the estimated athlete’s ability, βj denotes the average race time es-
timate for that competition, and τ is the estimated precision parameter controlling the
variability in race times. The idea behind posterior predictive check is to compare the
model’s simulated predictions from the posterior distribution with the actual race times
recorded for each athlete in the corresponding competition. For each competition, we
simulate 100 race times for every athlete. These simulated race times are then plotted
alongside the actual observed race times. Importantly, if an athlete did not participate
in a particular competition, the simulated data are represented, but real data to compare
the results are missing.

As we can see from the subsequent plots, where real data is represented with an "X"
symbol, visually the mean of the simulated data mostly coincide with real collected data.
Exceptions exist, such as in Race 1 in Figure 7.4, where athlete 1 and 5 real performances
constitute outliers of their posterior distribution. This discrepancy can be attributed to
the fact that both athletes in that competition went off the track at some point during the
competition, which caused them to stop and then resume the race from the point where
they left off, thereby losing valuable time. The other exception is given by race 12 in
Figure 7.9, where skier 6 outperformed all the performance expectations from the posterior
distribution. This can be considered as a proper outlier, since all other predictions for the
same athlete are coherent with the posterior distribution given by the model.
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Figure 7.4
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Figure 7.5
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Figure 7.6
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Figure 7.7
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Figure 7.8

72



7.2 – Hierarchical Bayesian model results

Figure 7.9
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Figure 7.10
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Figure 7.11
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Figure 7.12
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Figure 7.13
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Figure 7.14: Posterior predictive check for each of the 21 analyzed alpine skiing competi-
tions.
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Conclusions

The primary objective of this thesis was to develop statistical models for quantifying and
comparing athlete abilities in alpine skiing competitions, accounting for the varying race
conditions and disciplines. The goal was to develop an easily interpretable, scalable and
accurate model.

The results revealed both advantages and limitations in using ranking models. These
models fail to provide a clear relationship between the estimated parameters and actual
race completion times, making interpretation challenging. Additionally, ranking models
are intrinsically not updatable, requiring a complete re-computation whenever new data
is introduced. Nevertheless, in situations where only ranking data are available and the
analysis involve less than 15-20 athletes, ranking models proved to be a valid alternative
for evaluating and comparing athlete abilities within the considered group.

In contrast, the hierarchical Bayesian model offered a more interpretable and flexible
framework for assessing athlete abilities. This approach utilized informative priors, as-
suming prior knowledge of the overall mean and standard deviation for each race. Athlete-
specific abilities were interpreted as the average percentage difference from the race’s mean
time, while competition-specific parameters captured the overall race time and variability.

However some limitations exist. It is only valid if the competitions being analyzed
feature a relatively consistent set of athletes, ensuring the stability of the average comple-
tion times across races. For instance, if a below-average athlete competes in two different
races—one with highly skilled competitors and another with significantly less experienced
participants—their estimated ability would vary drastically. In the first race, their ability
might be judged as below average, while in the second, they could appear far superior,
leading to inconsistencies in ability measurement.

Despite these limitations, posterior predictive checks demonstrated that, under the
assumptions discussed, the hierarchical Bayesian model effectively captured athlete per-
formance and race-specific parameters. This suggests that the model is a reliable tool
for assessing skier abilities, provided the data are carefully selected to ensure consistency
across competitions.
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