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Chapter 1

Introduction

Connectivity is the most widespread feature of modern networks. From social networks as
Facebook or LinkedIn to communication systems, and from economic grids as marketing
or user bank systems to networks of neurons with even a moderate degree of complexity
are not casual, which means it is not possible to assume any statistical distribution about
connections of the networks mentioned above also because these are not static. Classical
statistical analysis would be able neither to describe nor to predict behaviors within
connected systems.
As data becomes more interconnected and systems grow more advanced and intricate,
harnessing the diverse and evolving relationships within our data is crucial, also using
technologies built to leverage relationships and their dynamic nature. Graphs are pow-
erful structures that not only excel at representing interconnected information but also
support various types of analysis: each element within a graph serves as a entry point to
explore the entire network, providing a variety of pathways for exploration and numerous
opportunities for analysis. Capturing complex relationships between entities are often
challenging to model using traditional relational databases in all interconnected domains
such as social networks, recommendation systems, biological networks, fraud detection,
and knowledge graphs. Graphs leverages the connectivity of data to uncover meaningful
insights that may not be apparent in isolated data points or tabular data structures.
These meaningful insights could be translated into graph-based features of a machine
learning model, enhancing the predictive accuracy and model performance.
The main aim of this thesis will be to deepen this area, exploring its possible applications
in real use cases, highlighting how graphs can offer an original and efficient solution in
terms of graph feature extraction, data modeling, and computational efficiency of the
algorithms used compared to classical machine learning techniques.
Chapter 2 introduces the basic graph data science concepts, covering the idea of a graph,
the main areas of interest in graph data science, potential real-world examples of graph
applications, and how graphs enhance the lifecycle of a machine learning project.
Chapter 3 discusses the technologies for storing connected data to leverage relationships
between data. It explores the difference between native and non-native graph databases,
and examines the various graph models used by graph databases, highlighting their key
differences.
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Introduction

Chapter 4 explores different analytical tools to understand the relationships between data,
either through a more localized approach with graph queries or with graph algorithms. It
examines key graph algorithms for answering questions about pathways, flow dynamics,
influencers and group interactions.
Chapter 5 presents three distinct real use cases approached through a graph-based method-
ology. The first case involves link prediction problem by analyzing historical relationships
through graphs, leading to accurate forecasts of future network behaviors. The second
case focuses on solving a classic recommendation problem using graphs, emphasizing their
computational benefits for real-time analysis and data modeling. The third case deals with
a fraud detection problem, utilizing graph-based features to enhance model performance
over traditional methods.
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Chapter 2

Introduction to Graphs and
Graph Data Science

2.1 Networks and Graphs

A network is a set of relations between entities, which could include people, web docu-
ments, organizations, neurons, or electrical elements. A graph is the mathematical con-
cept used to model a network, so it is, very simply, the mathematical representation of a
network. Graphs are valuable to represent how objects are either physically or logically
connected in networks. They are the unique models to catch not only the single data
points but also relationships among data. This structure consists of a set of vertices, also
called nodes, connected by edges or links. Nodes represent objects of the real world, while
links represent relationships between these entities. A graph in which we attribute names
and meanings to the nodes and links becomes what is known as a network.
Suppose that we have the graph shown in Figure 2.1. As pure mathematical diagram,
this same graph can be used to model several types of networks in very heterogeneous
domains by assigning different semantics to nodes and links, as shown in Figure 2.2:
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Figure 2.1: Generic graph.
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Introduction to Graphs and Graph Data Science

• A social network, if the nodes are people and each link represents any sort of rela-
tionship between them (friends, family members, coworkers).

• An informational network, in which the nodes are information structures such as
Web pages or documents, and links represent logical connections such as hyperlinks
or citations.

• A communication network, in which nodes are electronic devices that can broad-
cast messages, and the edges represent direct links along which messages can be
transmitted.

• A transportation network,if the nodes are destinations and edges represent direct
connections using flights or roads or trains.

If a graph is an abstract mathematical concept, networks, as representation of some real
systems, are subjected to forces that act on them and change their structure. These forces
are elements that exist outside the network but influence how the network’s structure
evolves over time. The nature of these forces are specific to the type of network. In social
networks, for example, each person has unique characteristics, and similarities between
characteristics of two people influence link creation or deletion. The knowledge of these
specific contexts enables the prediction of how the network will evolve over time [1].
Graphs are dynamic models: they do not have a fixed schema, so they can be continuously
enriched as the network evolves and their flexible nature allows to answer different and
always changing questions. Graphs are also real information maps, with a highly commu-
nicative and visual power, able to display multiple kind of information at the same time
in a way that the human brain can easily understand.

2.2 Graph concepts
Which are the key elements of the graph world? Even though a graph is a simple structure,
it is fundamental to understand how to represent it and how to use the main concepts
around it. More formally than mentioned above, a graph is a pair G = (V, E), where V
is a collection of vertices and E is a collection of edges over V .
Graphs can be directed or undirected, depending on whether a direction of traversal is
defined on the edges. In directed graphs, an edge (i, j) ∈ E can be traversed from i to j
but not in the opposite direction: the starting node i is called the tail of the link, while the
ending node j is called head of the link. In undirected graphs relationships are considered
bidirectional, so they can be traversed in both directions without defining a star or end
node. Simply if we have arrows as links of the graph, the graph is directed and these
arrows indicate the direction of the relationship.
Graphs can be weighted or unweighted: when a weight, i.e. a numerical value with some
meaning is assigned to a link or a node, the graph is said to be weighted, otherwise it is
said to be unweighted. In weighted graphs, the values assigned to links can denote various
measures such as cost, time, distance, capacity, and other similar metrics.
Graphs can be connected or disconnected. Before we understand this distinction, let us
define what a path is in a graph. A sequence of vertices in which each consecutive pair
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2.2 – Graph concepts

(a) Social network (b) London Tube network

(c) Citation network (d) Marketing network

Figure 2.2: Examples of networks. [2–4]

in the sequence is connected by a link is called a path. A graph is considered connected if
there exists a path between any pair of nodes within the graph, regardless of the path’s
length. If the graph contains isolated parts, it is considered disconnected. These isolated
clusters, where nodes are interconnected, are known as connected components.
Graphs can be classified as cyclic or acyclic. A cycle refers to a path that begins and
ends at the same node. Both directed and undirected graphs can contain cycles, but in
directed graphs, paths must follow the direction of relationships.
Graphs can exhibit varying degrees of sparsity or density. The sparsity of a graph is
determined by the number of actual relationships it contains relative to the total possible
number of relationships, which would exist if every pair of nodes were linked. A graph in
which each node is connected to all the other vertices is called complete. When the ratio
between the number of relationships in the graph and the number of links in a complete
graph is close to zero, the graph is said sparse, while if this ratio is close to one, it is
defined dense.
Graphs can be monopartite, bipartite or k-partite. Many networks include data with vari-
ous types of nodes and relationships. A graph with only one type of node and relationship
is called monopartite. A bipartite graph consists of two sets of nodes, where relationships
only connect nodes from different sets. For k-partite graphs, k denotes the number of
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Introduction to Graphs and Graph Data Science

distinct node types in the data [5].

2.3 Graph Data Science Journey
Graphs are powerful structures useful not only for modeling connected information, but
also for supporting multiple types of analysis. In a graph each node and each relationship
is an access point for analysis, from which it is possible to traverse the rest of the graph,
providing several analysis patterns. [6]
Graph Data Science is a graph-data driven approach to gain knowledge from the rela-
tionships in data. It can be broken in three main areas:

• Graph statistics provides basic connection-related metrics about a graph, such as
the number of nodes and the distribution of the number of relationships. These
measures usually represent the starting point in a graph analysis because they are
simple to collect and a good test of early hypotheses for further more complex
analysis.

• Graph analytics involves a sophisticated range of queries and algorithms specifically
tailored to uncover meaningful insights within graph data, with a primary focus on
the relationships among entities rather than on each individual entity. When we
know precisely what we are looking for, graph queries allow to answer these specific
questions; otherwise when we only know the general structure we are looking for
but not the exact pattern we can use graph algorithms. Queries and algorithms
are typically applied together during graph analytics phase: queries reveal local
patterns in the graph because they are based on parts of the graph surrounding
a node, instead algorithms concern the whole graph being extremely capable of
finding structures and revealing patterns in it.

• Graph powered machine learning is the application of graph data and analytics
results to train machine learning models. Graph statistics and analytics are often
used in conjunction to answer certain types of questions about networks and the
following insights, applied to improve machine learning.

2.4 Use cases for GDS
Graph Data Science helps to answer big questions involving four different areas: move-
ment, influence, groups and interactions, patterns. These areas answer the following ques-
tions [7]:

• How do things move through a network? Uncovering how things flow through a
network and the pathways they might take involves deep path analysis in order to
find out the best routes across our connected data.

• What are the most influential points of the network? Determining these influencers
involves detecting the control points in a network based on their position, including
their connections. These nodes can accelerate or slow the flow of things through
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2.4 – Use cases for GDS

networks from finances to opinions, performing as fast propagation nodes, bridges
between less connected groups, or bottlenecks.

• What are the groups and the interactions between them? Detecting communities
requires grouping and partitioning nodes based on the number and strength of
interactions for uncovering unusual patterns, predicting similar behavior, finding
duplicate entities, or simply preparing data for other analyses.

• What patterns are noteworthy in the network? Uncovering network patterns consists
in finding similar and related information in large datasets. The goal may be to
look for a known relationship pattern or compare nodes to find similarities or still
evaluate the whole structure of a network to correlate patterns to certain social
behavior to examine.

The power of GDS to uncover and leverage network structure drives a wide range of
real use cases from financial and marketing world to manufacturing and IT networks. We
report here only a few but significant examples of GDS applicability.

• Fraud Detection. Payment services apps try to deliver money as quickly as possible
to valid users while also ensuring money is not sent for illegal purposes or hiding
the true recipient through circuitous paths. Banks and credit card companies lose
billions of dollars every year due to fraud and GDS can increase the amount of
fraud detected reinforcing existing ML pipelines used as traditional methods of
fraud detection. Identifying fraudulent activities typically begins with detecting
deviations from typical transactional patterns or interactions with known fraudulent
entities, analyzing relationships and behaviors within the transactional graph.

• Recommendation engines. Recommendation system is a classic problem when a
wealth of content is provided to users and one needs to know what content users
have not yet seen but are most likely to enjoy. Recommender systems became famous
through Netflix or Youtube and e-commerce platforms but they drive some of the
most important parts of a business from product development to human resources
for preserving employees through upskilling training.

• Supply Chain Management. A supply chain network is the representation of supply
chain elements and their interactions as a graph. They include suppliers, manu-
facturers, distributors, customers and so on. All these elements are independent
entities, perhaps providing the same services to multiple companies but also inter-
connected, because they work together through informational and financial flows.
Supply chains face a variety of risks, from natural disasters to contamination of raw
products, delivery delays, and labor shortages. Furthermore, the efficient operation
of the entire chain as a whole is ensured if the individual components work well. De-
tecting elements in the chain that can disrupt a large part of the chain significantly
affecting normal behavior, or finding the best path, balancing cost and efficiency
with customer satisfaction and sustainability could be interesting use cases in the
field of supply chain management.

11



Introduction to Graphs and Graph Data Science

• Customer 360. Companies have increasingly more information about customers in-
cluding master data (name, age, gender, address), transactions (purchase orders,
types of items bought, phone calls, purchase times), relationships and more. With
graphs, marketers can gain a more comprehensive view of their customers as the
relationships the customers hold with each other, the relationships between all the
purchased products, and more. Performing customer 360-analysis allows for opti-
mized marketing programs and offers.

2.5 Graph powered machine learning
A machine learning project is a complex task that requires more then selecting the right
algorithms to apply data. If we want to define a clear workflow for it, we could refer to
the CRISP-DM model [8] acronym for Cross Industry Standard Process for Data Mining,
a schema commonly used for data mining tasks but it can be also applied to generic
machine learning projects. CRISP-DM model has six interconnected main phases, with
data at the core of each single phase.

• Business understanding: understanding of the domain and the business perspective
allows us to define goals and a raw project plan.

• Data understanding: the knowledge of data sources available, the different types of
data and their content enables us to define an architecture design to get or extract
data for the next steps of the ML workflow.

• Data preparation: collecting data from multiple sources and organizing it in the
form required by the specific algorithm of the following phase involves a set of
methods for merging, cleaning and enriching data. Another outcome of this phase
is the identification of the database management system for storing data.

• Modeling: selecting and applying different algorithms and tuning their parameters
to optimal values permit us to build a range of predictive models.

• Evaluation: evaluating models using testing data and defining performance measures
is an important phase before a model can be deployed, as also reviewing the steps
executed to construct the model and checking whether the business objectives are
satisfied.

• Deployment: this phase consist in deploying the project in a production environment
monitoring its performance constantly or simply generating reports with the results
of prediction models. [9]

In brief this machine learning cycle describes how data flows from the data sources through
the learning process to end users in the form of visualizations or predictions. More pre-
cisely, the goal of a ML process will be to deduce a model capable of mapping the input
data known as features with the potential output, that in the case of recommendation
example could consist of predicting what users could be interested in, given a list of items
rated by users as features.
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2.5 – Graph powered machine learning

Defined a generic machine learning workflow through the CRISP-DM model, it can be
decomposed into three macro phases each of which merges one or more of the mentioned
above steps:

1. Data source management phase concerns all the tasks of gathering, merging, clean-
ing and preparing the training data for the learning phase. It matches to the stages
of data preparation and understanding of the CRISP-DM model.

2. Learning phase is the step in which ML algorithms are applied to the training
dataset and corresponds to the modeling phase.

3. Predictive phase consists in storing and then accessing the predictive models in
order to provide predictions during the evaluation and deployment steps.

Graphs can empower machine learning workflow to represent these features using graph
data models and to improve or simplify this mapping phase. In this sense we talk about
Graph powered machine learning. The main aim of this thesis will be to deepen this area
of Graph Data Science and explore its possible applications in real use cases.
Graphs enables to merge multiple data sources into a single connected dataset in order to
represent all the knowledge as a consistent and machine-ready data structure. Providing
multiple performant access patterns for data sources and allowing the process of data
enrichment using external sources are also valuable graph-powered data management
features during the data understanding and data preparation phases of the CRISP-DM
model.
The knowledge of the specific forces acting on the networks permits to understand related
network dynamics and use them to deliver better machine learning features. Several
types of graph algorithms are valuable to analyze and explore data, also speeding the
identification of salient features and improving the quality of learning phase. The schema
flexibility of graph data technology permits various models to coexist in the same dataset
and to access them as fast as possible to real time predictions. These graph-powered data
analytics features are involved principally in the modeling and the deployment phases.
Graphs have also a high communication power for sharing results, analyzing them or
helping people navigate data by highlighting connections between elements in a way so
easily understandable to the human brain. These graph-powered data visualization fea-
tures are particularly important during business and data understanding and evaluation
phases.
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Chapter 3

Storing connected data

If we want to empower our machine learning workflow through graphs, we have to be able
to store, access and handle these structures efficiently using technologies built to leverage
relationships between data when real systems become increasingly complex and hence
data increasingly interconnected. To achieve this task, we need a general-purpose data
management technology called graph database. The key to realize when to use a graph
database is understanding the value of connections between data. It does not matter the
particular use case domain: from finance to healthcare or logistics, the relevant aspect
for which graph databases are designed is to represent relationships in order to give links
the same importance as data itself and navigate them in an efficient way.

3.1 Native vs. non-native graph databases

A graph databases is a collection of relationships that uses graph structures to store and
manage entities or nodes and the connections between these entities. A DBMS built
to handle graph workloads across the entire computing stack, from the query language
to the database management engine and filesystem and from clustering to backup and
monitoring, is called a native graph database [10].
Not all graph databases are native, that is, designed to understand and support graph
workloads: other graph databases called nonnative graph databases offer a graph view
on top of a nongraph storage model. The alternative non-native can be divided into two
categories:

• Those that layer a graph API on top of an existing nongraph storage model, such as
relational store or NoSQL data structures such as key/value, document or column-
based stores

• Those that promote multimodel semantics where one system theoretically can sup-
port several data models.

There are two main elements that distinguish native graph technology from the non-
native option: processing and storage. Graph processing refers to how a graph database
manages database operations such as queries or algorithms for the analysis of graphs,
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Storing connected data

while graph storage refers to the underlying structure of the database that contains the
graph data model. [11]
Our goal will be to understand how the two database alternatives- native and non-native
one- will handle these two aspects.
A native graph database exhibits a property called index-free adjacency, which means
that each node maintains direct references to its adjacent nodes. There are two standard
ways of representing a generic graph G = (V, E), directed or undirected, weighted or
unweighted, in order to be processed: as a collection of adjacency lists or as an adjacency
matrix.
The adjacency list representation of a graph G = (V, E) consists of an array Adj of lists,
one for each vertex in V . For each vertex u in V , the adjacency list Adj[u] contains all
the vertices v for which there exists an edge (u, v) ∈ E, the vertices adjacent to u in G.
For the adjacency matrix representation of a graph G = (V, E), we assume that the
vertices are numbered 1,2, . . . , |V | in some arbitrary manner and this representation of G
consists of a |V | × |V | matrix A = (aij) such that aij = 1 if (i, j) ∈ E, otherwise aij = 0.
If G = (V, E) is a weighted graph, and w is the weight of the edge (u, v), adjacency list
can be easily adapted by storing the weight w of this edge in Adj[u] or setting auv = w,
instead of 1, in the adjacency matrix representation.

(a) (b) (c)

Figure 3.1: Two representations of a directed unweighted graph (a) as an adjacency list
(b) and as an adjacency matrix (c) [12]

Figure 3.1b is an adjacency list representation of the directed graph in figure 3.1a. Vertex
1 has two neighbors 2 and 4, so Adj[1] is the list [2,4]. Vertex 2 has only one neighbor, so
Adj[2] will be [5]. In this case, we consider only the outgoing links, but we do the same
with the ingoing links: for directed graph we have to choose a direction and be coherent
with it during adjacency list creation.
Figure 3.1c is an adjacency matrix representation of the directed graph in figure 3.1a.
As for the adjacency list, it is necessary to choose one direction and use it during matrix
creation. The first line, for example, is related to vertex 1. This row in the matrix has
1 in columns 2 and 4 because vertex 1 has two outgoing relationships, to vertices 2 and
4. All the other values are 0. The second row, related to vertex 2, has 1 in columns 5
because vertex 2 has one outgoing relationship to vertex 5. Note that, looking at the
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3.1 – Native vs. non-native graph databases

columns of this matrix, it is possible to see the ingoing relationships for each vertex
of the graph. The adjacency matrix of a graph requires memory directly proportional to
|V |×|V |, independent of the number of edges in the graph, while the memory required by
an adjacency list representation of a directed or undirected graph is directly proportional
to |V |+ |E|. An adjacency list representation provides a compact way to represent sparse
graphs but we may prefer an adjacency matrix representation, however, when the graph
is dense or when we want to determine whether a given edge (u, v) is present in the graph
without searching for v in the adjacency list Adj[u], at cost of using more memory. [12]
Index-free adjacency implies that each node functions as a kind of micro-index of the
other nearby nodes stored in the node itself, which is much cheaper than using global
indexes. A traversal across a relationship in a native graph database has a constant cost,
O(1)1 in computational terms, therefore native graph queries perform at a constant rate
simply proportional to the amount of graph searched, independent of the total size of the
graph.
A nonnative graph engine is optimized for an alternative storage model, such as columnar,
relational, document, or key/value data, so when dealing with graphs, the database has
to perform costly translations to and from the native storage model. An approach based
on data denormalization could optimize translations but this solution typically leads to
high latency when querying graphs. For this reason a nonnative graph database will never
be as performant as a native one because it requires a translation process.
To better understand the value of native graph database for a machine learning project
and compare its performance to the alternative nonnative, we can consider a highly
connected domain like the social network one. A social network exemplifies a network
that is densely interconnected with a varied structure, in which the connections between
data are not evenly distributed across the domain: due to its connected nature, a social
network can be modeled easily as a graph, as shown in figure 3.2.
Suppose now that we would like to store this social network model by using the relational
database or any other NoSQL database based on a global index. The connections between
the entities in the example are represented in figure 3.3.
To find Alice’s friends we have to perform an index lookup, at cost O(log n). Since there
is no stored relationship in a non-native graph database, this engine uses global indexes
to simulate a connection between data and to link nodes together. Traditional indexing is
crucial for improving read performance in the nonnative graph database: database index
is a structure, very similar to the index of a book in its function, that organizes data
records on disk in a way that speeds up its recovery, mapping record keys to the location
on disk and at the same time growing when database grows, also taking up significant
amounts of disk space.
Index lookups may be acceptable for occasional lookups and they can generally work for
small networks, but this approach incurs significant computational costs upon reversing
the traversal direction. If we want to find out who is friends with Alice, because in

1O notation is used in computer science to describe the performance or complexity of an algorithm. Big
O specifically describes the worst-case scenario, and can be used to describe the execution time required
or the space used, in memory or on disk, by an algorithm.
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Storing connected data

Figure 3.2: A social network example

Figure 3.3: Storing the social network links in a nonnative graph processing engine [13]

general friendship is not a symmetric relationship, we would need to conduct multiple
index lookups, one for each node that could potentially be friends with Alice. While it
costs O(log n) to determine Alice’s friends, the reciprocal query to find who is friends
with Alice costs O(m log n).
In a native graph database leveraging index-free adjacency, bidirectional joins are precom-
puted and stored as relationships, enabling efficient traversal in both directions without
requiring additional index lookups. Using such a graph database, finding Alice’s friends
involves simply traversing her outgoing FRIENDOF relationships, each at a constant
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O(1) cost. To discover individuals who are friends with Alice, we track each of Alice in-
coming FRIENDOF relationships back to their origins, with each traversal costing O(1).
To perform the same traversal required before now it costs only O(m) instead O(m log n):
it is related only to the number of hops m, not to the total number of relationships n [13].
Traversing the relationships in a nonnative graph processing engine is expensive, because
each hop requires an index lookup, algorithmically more expensive than traversing a
physical relationship as in a native graph database. This cost is amplified when we try
to traverse the relationship in the opposite direction from the one for which the index
was constructed or when extending traversal beyond a single step for example to compute
friends-of-friends or friends-of-friends-of-friends. In their Neo4j in Action [14] Partner and
Vukotic conducted an experiment to discover friends-of-friends within a social network,
exploring up to a depth of five using both a relational database and Neo4j. The network
comprises 1,000,000 individuals, each with around 50 connections and the results show
how the Neo4j solution is the best one to store connected data as we see in the following
table 3.4.

Figure 3.4: Partner and Vukotic’s experiment results [14]

Starting from depth three, friends-of-friends-of-friends, the difference between the two
databases in terms of response time is clear: thirty seconds compared to a fraction of
a second to complete this query. At a depth of five, the relational database takes too
long to execute the query, whereas Neo4j returns results in about two seconds. At this
stage, it becomes apparent that almost the entire network is considered part of our social
circle. For many practical scenarios, it may be beneficial to refine the results to optimize
performance [14].

3.2 Graph Modeling

Another main area for graph data management is graph modeling. Graph database
will also adopt a specific data model besides selecting an appropriate solution to storage
and processing. The model design affects the performance of all analyses executed on the
graph. Therefore, modeling is a crucial aspect of data management.
In general terms, the graph model is the conceptual tool used to represent entities and the
relationships among them in real-world use cases. Different models can address different
problems from different perspectives, so defining the right model is not a trivial task.
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Numerous graph data models are widely adopted, including property graphs, hyper-
graphs, and RDF triple stores. We want to analyze and compare these different solutions
for graph modeling.

3.2.1 Property graph model: labeled vs typed property graphs

The idea behind a property graph is very simple and intuitive: in order to model complex
networks, graphs seen as a list of nodes and relationships can be enriched through addi-
tional information in the form of properties. The goal is to attach a set of attributes to
graph structures adding classes or types to nodes and relationships. There are two main
categories of property graph databases: a Typed Property Graph (TPG), and a Labeled
Property Graph (LPG). In general a property graph has the following characteristics:

• It consists of a set of entities, where an entity can represent a node or a relationship.

• Each entity has an identifier that identifies it in the graph.

• Each relationship has a direction, a name that determine the type of the relation-
ship, a start node and end node.

• An entity can have a set of properties represented as key-value pairs.

• Nodes can be marked with one or more labels in LPG, which group nodes into
defined categories or they can have a unique type as in TPG.

A property graph is still a graph of course, but its communication capability is greater
than before [9]. Starting with clear definitions of type and label helps to explore their
foundational architecture and distinguish their key differences. In graph terminology, a
type refers to a specific category of data or object, which in the context of graphs translates
to a specific node or relationship. On the other hand, a label is a textual identifier that
categorizes data or objects: its use is optional and does not require uniqueness.
The leading native property graph database management systems are Neo4j, JanusGraph,
and TigerGraph. Neo4j stands out as the sole true labeled property graph, whereas Janus-
Graph and TigerGraph are categorized as typed property graphs. Neo4j has typed re-
quired relationships and multiple optional labeled nodes, and it permits to duplicate re-
lationship names within a graph schema, even between completely different sets of nodes.
TigerGraph requires unique types for both nodes and relationships: each node must
have a unique named type, and each relationship must have a distinct name connecting
specific sets of nodes. Conversely, JanusGraph allows optional unique labels for nodes; if
labels are not provided, the database assigns them implicitly. JanusGraph’s relationships
must have unique names between sets of nodes and are labeled accordingly. Although
JanusGraph uses the term ’labels’ for both nodes and relationships, these labels actually
serve as type names rather than true labels.
JanusGraph and TigerGraph are fundamentally strongly typed graph database manage-
ment systems. They require unique names for both relationships and nodes, and they
ensure that a named relationship can only exist between two distinct types of nodes.
They adopt an object-oriented class structure approach for the architecture of nodes and
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relationships and just as in an object-oriented language, all classes and object names
must be unique: if a node is named vehicle for example, then no other kind of node
can be named vehicle constraining each entity so named to have the same data schema.
This strongly typed approach have an advantage in programming because it ensures a
one-to-one correspondence between name and type of object, preventing bugs and coding
errors.
In contrast, Neo4j enables nodes to have multiple non-unique labels, offering great flex-
ibility in graph modeling. This feature, combined with the capability to have identical
relationship types between any node types, gives Neo4j the algorithmic basis and the
schema adaptability needed for an iterative and experimental data science environment.
Instead to spend time to shape and conform data in external tools before to import
them into a graph, Neo4j imports data directly into a graph and employs graph tools
to structure the data, establish the schema, and perform immediate analysis. Through
the use of labels, Neo4j supports the simultaneous existence of multiple schemas within
a single graph, facilitating interaction via shared relationship types. Properties lack the
functionalities found in labels: labels in Neo4j are automatically indexed and they can
dynamically be applied using graph algorithms. Moreover, labels are yet a powerful data
analysis tool that can be used to visualize and explore data naturally [15].

3.2.2 The RDF vs labeled property graph models

Another way to explore and graphically depict connected data is the RDF model [16].
RDF stands for Resource Description Framework which is a W3C standard for exchanging
data on the Web. At the core of RDF model is the notion of a triple, a subject-predicate-
object data structure composed of three elements, two vertices connected by an edge,
used to capture facts as "Alice likes Imagine Dragons" or "Alice loves Italy". The subject
functions as a resource or node in the graph. The predicate serves as an edge, denoting
a relationship, and the object can be another node or a literal value, viewed as another
vertex in graph terms. Resources and relationships are distinguished by a URI, ensuring
uniqueness. Consequently, nodes and edges lack internal structure and are purely iden-
tified by a unique label. This distinction highlights one of the key differences between
RDF and labeled property graph models. In a labeled property graph, nodes possess a
distinctive ID and a collection of key-value pairs or properties, which define them. Simi-
larly, relationships within a labeled property graph are uniquely identified by an ID, and
each relationship also includes a type and a set of key-value pairs or properties for char-
acterizing the connections. Both nodes and relationships here have an internal structure
represented by this set of key-value pairs. Using RDF model, we are doing a complete
atomic decomposition of our data where nodes in the graph can be two things, resources
and also literal values. Because of this atomic decomposition of the data, we typically
have longer patterns when we perform queries in RDF. In contrast, labeled property graph
model is much more compact with a more reduced structure where values of attributes
do not represent vertices in the graph, hence it results in fast graph queries and a way to
represent data very close to our logical model.
In the RDF model, it’s not feasible to have connections of identical type between the
same pair of nodes, as this would redundantly represent the same triple without adding
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additional information. At the same time, we cannot qualify them or give connections
attributes like in labeled property model: a data modeling workaround will have to be
found in order to overcome these critical issues. To illustrate the differences, let is consider
the same network represented through two distinct graph models shown in Figure 3.5,
the property graph 3.5c and the RDF graph 3.5a.

(a) (b)

(c)

Figure 3.5: Two graph models of the same network, the RDF model (a) with its code in
Turtle (b) [17] and the labeled property model (c).

Triple stores belong to the broader category of graph databases because they manage
data that, once processed, tends to be logically interconnected. However, they are not
considered native graph databases because they lack support for index-free adjacency and
their storage engines are not optimized for storing property graphs. Triple stores store
triples as independent facts, enabling horizontal scalability for storage but limiting their
capability for deep or variable-length traversals and path queries.

3.2.3 Hypergraphs

A hypergraph is a graph model in which a relationship, called a hyper-edge, can connect
any number of nodes at the ends of a relationship, whereas in the property graph model a
relationship has only one start node and one end node. Hypergraphs are advantageous in
domains characterized by numerous many-to-many relationships. Their multidimensional
hyper-edges make hypergraphs a more expansive model than property graphs, therefore
it is always possible to represent the information in a hypergraph as a property graph
even though using more relationships and intermediary nodes. The choice will depend
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on the kinds of applications we are building and the and the way we plan to shape the
problem [13].

3.3 Nonfunctional features of a native graph database

Any data storage technology must offer assurances regarding the durability and acces-
sibility of stored data to be considered dependable. What are the main nonfunctional
requirements for a graph database? They need to guarantee consistency, recover from
crashes, and prevent data corruption as the other traditional database systems. Further,
they must scale out to ensure high availability and scale up for improved performance.
Generally native graph databases include transactional mechanisms to ensure data safety
despite possible server failures or network issues or conflicts arising from concurrent trans-
actions. Note that, not all graph databases are fully ACID as Neo4j where its ACID
transactionality permits to make comparable this technology with a relational database
management system in terms of dependability achieved.
We use Neo4j as a means of providing concrete examples about native graph database.
In Neo4j, each transaction is managed as an in-memory object that records writes to
the database. This object is facilitated by a lock manager, which applies write locks
to nodes and relationships during their creation, update, and deletion. Upon rollback,
the transaction object is discarded and the write locks are released. Conversely, upon
successful completion, the transaction is committed to disk. [13].
To choose the right graph database we have to consider other features in addition to this
transactionality:

• Recoverability-This feature relates to the database’s ability to recover and restore
operations following a malfunction. Databases, like all other software systems, are
subject to some kind of failure and at some point it is inevitable that a database
will crash, although the mean time between failures should be significantly long.
For example, when recovering from an unclean shutdown, Neo4j examines the most
recently active transaction log and applies any identified transactions to the store.
After recovery, the store will be consistent with all transactions successfully com-
mitted prior to the failure.

• Availability-A robust database must maintain high availability to meet the grow-
ing demands of data-intensive applications. Its capability to detect and, if needed,
recover from a crash ensures that data can swiftly resume availability. In a typical
production scenario we cluster database instances for high availability.

• Scalability-It is an aggregate value that we measure across multiple axes and specif-
ically for a graph database we have to consider capacity, latency and read/write
throughput. Capacity is the amount of data that is possible to store in a graph
database. That’s a critical aspect that Neo4j solves thanks to the adoption of a
dynamically sized pointers to run any size of graph workloads. Graph databases
do not suffer the same latency problems as traditional relational databases, where
more data means more join operations and consequently more index lookups. In a
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native graph database, an index is used simply to find the starting node of the query
and then we have simply a combination of pointer chasing and pattern matching to
search the data store. Operations in a graph database require less computational
effort compared to their equivalent relational operations and performance times
remain nearly constant. (read/write throughput).

One horizontally scaling technique common in NoSQL databases is sharding wherein
a large dataset is split in subsets distributed across several shards on different
servers. These shards are tipically replicated across multiple servers to increase de-
pendability and performance. Sharding a graph database is not straightforward at
all because not all graphs have such convenient and natural boundaries, so navigat-
ing a graph could involve crossing shard boundaries multiple times. This requires
many network hops, resulting in increased query times compared with the case in
which everything happens on the same shard. To overcome this issue, the related
nodes and, hence, the related links are stored on the same shard: the graph traversal
is more efficient, but the load between shards becomes highly unbalanced. Due to
the dynamic nature of graphs, this solution is not feasible in practice. It is possible
to use replication as alternative technique for scaling a graph database: this consists
in maintaining multiple copies of data, called replica, on separate computers syn-
chronized. Neo4j uses a centralized approach with a single master, also described
as master/slave replication. In this configuration, all writes to the database are di-
rected exclusively to the master, the authoritative source for the data, and read
operations are directed at slaves: by adding more slave nodes and routing all read
requests to the slaves, we can achieve a high level of scalability [9].

3.4 Graph compute engines

Does it exist an alternative in terms of graph platforms to a native graph database? The
answer is represented by the Graph compute engines [5]. These are read-only, nontrans-
actional technologies that focus on the efficient execution of offline graph analytics and
queries of the whole graph, performed as a series of batch steps.
Examples of such engines are Giraph, GraphLab, Graph-Engine, and Apache Spark. Just
to recall, Apache Spark (henceforth just Spark) is an analytics engine for large-scale
data processing. It uses a table abstraction called a DataFrame to represent and process
data in rows of named and typed columns. Nodes and relationships are represented as
DataFrames with a unique ID for each node and a source and destination node for each
relationship. In Spark graph analysis is on this data structure not transformed into a
graph format.
The choice of the production platform involves many considerations, such as the type
of analysis to be run, performance needs, the existing environment, and team technical
knowledge. Spark as example of graph compute engine, may be the right platform when
our:

• Algorithms are fundamentally parallelizable or partitionable.
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• Graph analysis can be performed offline in batch mode using data that has not been
converted into a graph format.

• Team has the capability to implement custom algorithms without relying on pre-
defined graph algorithms.

Neo4j, as native graph database, could be the preferred platform when:

• Algorithms are iterative and require high performance, especially in real-time sce-
narios.

• Graph analysis involves complex graph data and/or requires extensive path traver-
sal.

• Results are integrated with transactional workloads to enrich the existing graph.

• Team prefers prepackaged and supported graph algorithms integrating their work
with graph-based visualization tools.

Another interesting option would be to combine the potential of a graph compute engine
with that of a native graph database for graph processing for example using Spark for
high-level filtering and preprocessing of large datasets, as well as for data integration,
while Neo4j handles specific processing and integrates with graph-based applications.
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Chapter 4

Graph algorithms

As previously mentioned in 2.3 and 2.4, graph analytics consists in a sophisticated set
of queries and algorithms intricately developed to reveal significant insights within graph
data allowing the exploration of interactions between entities. While queries reveal local
patterns in the graph because they are based on parts of the graph surrounding a node,
graph algorithms are designed to operate across entire graphs and are highly effective in
identifying structures and patterns within interconnected data. They are utilized when
understanding relationships and structures is essential for answering questions about
pathways, flow dynamics, influencers, and group interactions. In general we can detect
four main categories in which the graph algorithms are grouped:

• Pathfinding & search: finds the optimal paths or evaluates route availability and
quality.

• Centrality: determines the importance of distinct nodes in the networks in terms
of influence a certain entity exert over the others.

• Community detection: detects groups clustering or partition options.

• Similarity: evaluates how alike nodes are.

Common references on the sections of this chapter are in [5], [18] and [19].

4.1 Community Detection Algorithms

Community formation occurs frequently across all types of networks, but what is a com-
munity? A community is a set of entities which interact with one another in a mutual
relationship: they may have things in common, but that is not the key factor. We are not
going to analyze their similarities but their interconnections [20].
An essential characteristic of community detection is that members typically have more
connections within their own group compared to connections outside of it. This strategy
is important for revealing cluster of nodes, isolated groups and network structure.
We will explore the most prominent algorithms for community detection:
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• Triangle Count and Clustering Coefficient algorithms for overall relationship
density.

• Strongly Connected Components and Weakly Connected Components
algorithms for finding connected clusters.

• Label Propagation algorithm for inferring groups based on node labels.

• Louvain Modularity algorithm for looking at grouping quality and hierarchies.

Common use cases of community detection include:

• Fraud detection: finding fraud rings by identifying accounts that have frequent
suspicious transactions and/or share identifiers between one another.

• Customer 360: disambiguating multiple records and interactions into a single cus-
tomer profile so an organization has an aggregated and complete source of truth for
each customer.

• Market segmentation: dividing a target market into approachable subgroups based
on priorities, behaviors, interests, and other criteria.

4.1.1 Triangle Count and Clustering Coefficient

The Triangle Count algorithm counts the number of triangles for each node in the
graph. A triangle consists of three nodes, each connected to every other node in the set.
Networks with a significant number of triangles tend to display small-world structures
and behaviors. Triangles are frequently utilized in calculating network metrics like the
local clustering coefficient.
The Local Clustering Coefficient measures the likelihood that neighbors of a spe-
cific node are connected to each other. This coefficient assesses the degree of clustering
within a group relative to its potential maximum clustering: a score of 1 signifies a clique,
where every node is interconnected with every other node.
The formula to compute the local cluster coefficient is as follows:

Cn = 2Tn

dn(dn − 1) (4.1)

where Tn is the number of triangles passing through n and dn is the degree of n.
Moreover, the algorithm can calculate the average clustering coefficient for the entire
graph. This is obtained by normalizing the sum of all local clustering coefficients.
A Cu = 0.2 for node u in Figure 4.1 means that any two nodes connected to u have a
20% chance of being connected to each other.

4.1.2 Weakly Connected Components and Strongly Connected Com-
ponents

The Weakly Connected Components (WCC) algorithm identifies groups of linked
nodes in directed and undirected graphs where two nodes are connected if there exists a
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Figure 4.1: Triangle counts and clustering coefficients for node u [5]

path between them. The direction of relationships on the path between two nodes is not
considered here. A recommended approach is to run WCC to determine if a graph is con-
nected before proceeding with general graph analysis. This precautionary step helps avoid
running algorithms on isolated components of a graph, which could lead to inaccurate
results.
The Strongly Connected Components (SCC) algorithm identifies clusters of inter-
connected nodes within a directed graph. A group is classified as a strongly connected
component if every pair of nodes within it is linked by a directed path. It differs from the
previous algorithm because the direction of relationships on the path between two nodes
is relevant here. As with WCC, SCC is often used early in an analysis to understand
how a graph is structured. Strongly connected components can help characterize similar
behaviors or preferences within a group, with practical applications in recommendation
engines.

Figure 4.2: Weakly/Strongly Connected Components [5]

We can identify in the Figure 4.2 two weakly connected components shown with dashed
outlines {A, B, C, D, E} and {F, G}, and two strongly connected components shown
shaded. Both community detection algorithms we’ve covered are deterministic, providing
identical results each time they’re executed. In contrast, the following two algorithms are
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nondeterministic examples, potentially yielding different outcomes in multiple runs, even
with the same input data.
The following two algorithms are examples of nondeterministic algorithms, where we may
see different results if we run them multiple times, even on the same data.

4.1.3 Label Propagation

The Label Propagation Algorithm(LPA) swiftly identifies communities within a
graph. In LPA, nodes choose their community based on their direct neighbors using node
labels. Moreover, node and edge weights can be taken into account. The algorithm oper-
ates on the principle that a single label can quickly dominate densely connected nodes but
may encounter difficulty crossing sparsely connected regions. To handle overlaps, where
nodes might belong to multiple communities, LPA assigns them to the label neighbor-
hood with the highest combined node and edge weights. Convergence in LPA is achieved
when each node adopts the most prevalent label among its neighbors.
LPA is often used in large-scale networks for initial community detection, especially when
weights are available. It is a nondeterministic algorithm as mentioned above, so its out-
comes may vary across multiple runs on the same graph. It’s important to note that the
sequence in which LPA assesses nodes can impact the resultant community structures.

Figure 4.3: Label Propagation Algorithm [5]

4.1.4 Louvain Modularity

The Louvain Modularity algorithm detects clusters in large networks through a re-
peated two-step process.
The first step involves a greedy approach to assigning nodes to communities, focusing
on local modularity enhancements. Modularity is calculated as the ratio of relationships
within specific groups minus the expected ratio if relationships were randomly assigned
among all nodes. It begins by determining the modularity change if a node joins a commu-
nity with each of its adjacent neighbors. The node then becomes part of the community
that offers the highest modularity increase.
The second step involves creating a new, simplified network based on the communities
identified in the first step. These two steps are repeated until no additional modularity-
increasing community reassignments can be made.
The Louvain algorithm is known for its efficiency among modularity-based methods. Be-
yond community detection, it effectively uncovers hierarchical structures across multiple
scales, providing insights into network organization at varying levels of detail.
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Modularity optimization algorithms typically aim to maximize a score that quantifies
the quality of how nodes are assigned to communities within a network. This algorithm
class, including Louvain, suffer from two issues. First, it can omit small communities
within large networks. Secondly, in extensive graphs with overlapping communities, these
algorithms might not accurately identify the overall maximum. In such scenarios, we will
use any modularity algorithm only as a guide for a rough estimate.

Figure 4.4: Louvain Modularity Algorithm [5]

4.2 Pathfinding and Graph Search Algorithms

Let us introduce this class of graph algorithms starting from a small simple graph as in
Figure 4.5.

A

B

D

C

F

E

H

G

Figure 4.5: Example unweighted graph.

Looking at it, interesting questions to do could be the following ones [21]:
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1. Is there a path from A to H? It is a reachability question investigating the existence
of paths through the graph between a pair of nodes with no expectation that those
paths are computationally optimal.

2. How many paths exist between A and H? It is a question about the robustness of the
network for example to answer something about the likelihood a random traveller
is gonna be able to get from A to H, when one of these paths will be interrupted.

3. What is the shortest or the cheapest path between A and H or between one node to
all others? The goal here is to find paths computationally optimal, also in networks
with millions nodes.

4. What is the degree of separation or the number of hops between A and H? The
smaller the degree, the greater the knowledge/ influence/trust of the other will be.

We will examine the most representative pathfinding and search algorithms that will
allow us to answer the questions above:

• Breadth First Search and Depth First Search algorithms for traversing a
graph through its relationships.

• Dijkstra Source-Target Shortest Path algorithm for computing the shortest
path between a source and a target node.

• Dijkstra Single-Source Shortest Path algorithm for computing the shortest
path between one source and multiple targets through Dijkstra algorithm.

• All Pairs Shortest Path algorithm for finding the shortest paths between the
nodes in the graph.

Common use cases of path finding include:

• Supply chain analytics: identifying the fastest path between an origin and a desti-
nation (a starting point can be a warehouse and an ending point a client or a shop)
or between a raw material and a finished product.

• Customer Journey: analyzing the events that make up a customer experience. In
healthcare for example, this can be the experience of an in-patient from admission
to discharge.

4.2.1 Breadth First Search and Depth First Search

Breadth First Search algorithm (BFS) is essential for traversing graphs. It starts at
a chosen node and systematically explores neighboring nodes at each successive distance
level, starting from the closest and moving outward. BFS is preferred in general when the
graph structure is less balanced or the target is closer to the starting point.
Depth First Search (DFS) is the other principal graph traversal algorithm. It begins
at a designated node, selects a neighbor to explore, and continues exploring as far as
possible down its branch before backtracking. This algorithm can be preferred over BFS
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(a) Breadth First Search (b) Depth First Search

Figure 4.6: Graph Search Algorithms [5]

for example if we have deeply hierarchical data with the target node closer to an endpoint
or as a practical resource for simulating potential routes in scenario modeling.
Numbers in Figure 4.6 represent the order in which these nodes have visited.
Both algorithms are often used as precursors in other algorithms for example Shortest
Path or Connected Components rather than on their own.

We can observe how search algorithms set the foundation for traversing graphs. Next, we
will delve into pathfinding algorithms.

4.2.2 Dijkstra Source-Target Shortest Path

The Dijkstra Shortest Path algorithm calculates the shortest path between a pair
of nodes considering either the number of steps or the weight, depending on whether
the graph is weighted or unweighted. Weights can signify different metrics such as time,
distance, capacity, or cost, while ’hop’ generally denotes the number of links between
nodes.
Dijkstra Shortest Path algorithm begins by identifying the least-weighted connection from
the starting node to its directly linked nodes. It records these weights and proceeds to the
nearest node. It repeats this process by calculating a cumulative total weight from the
starting node. Throughout the algorithm, it consistently selects the path with the lowest
cumulative weight to advance further through the graph, continuing until it reaches the
destination node.
This algorithm can be employed to find the best paths between two nodes, based on either
the number of steps or the value of weighted relationships. For example, it can offer real-
time solutions for determining degrees of separation, finding the shortest distance between
points, or identifying the most cost-effective route.

4.2.3 Dijkstra Single-Source Shortest Path

The Dijkstra Single-Source Shortest Path (SSSP) algorithm computes the short-
est weighted path from a starting node to all reachable nodes in the graph, following the
same principles as the standard Dijkstra algorithm.
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SSSP is useful for determining the most efficient route from a specified origin to each
individual node. It prioritizes paths based on the cumulative path weight from the starting
node, making it particularly effective for identifying optimal paths to each node, rather
than aiming to visit all nodes in a single journey.

4.2.4 All Pairs Shortest Path

The All Pairs Shortest Path (APSP) algorithm computes a shortest path group
containing all the shortest paths between all pairs of nodes, that are weighted if the
graph is weighted. It is more efficient than running the SSSP algorithm for every pair of
nodes in the graph.
This algorithm is typically applied to explore alternative routes in situations where the
shortest path is blocked or less effective.

4.3 Centrality Algorithms
Centrality algorithms are employed to assess the significance of specific nodes within a
graph and their influence on the entire network but what does influence mean? We have
to define this concept of importance for a certain node in the network that depends by
the particular use case if our goal is to answer real relevant questions as:

• Where to locate a distribution center in a logistic center in order to speed up the
truck deliveries?

• Where to locate a Starbucks point or a gas station ?

• Which seller in a market has the most pricing power?

The concept of centrality is strictly linked to the abstract concept of travel: something
like physical goods, info or ideas is moving across the network and the underlying graph
structure represents how these things spread in the graph. Centrality algorithms also pro-
vide insights into group dynamics, encompassing aspects such as credibility, accessibility,
the speed of information dissemination, and interconnections between groups. [22].
Based on the concept of influence used, we will examine the most representative centrality
algorithms that will allow us to answer the questions above:

• Degree Centrality algorithm based on the number of connections for a certain
node in a graph.

• Closeness Centrality algorithm for measuring the reachability of a node from all
the others in a graph or subgraph.

• Betweenness Centrality algorithm for finding control points in a network that
has the most power over flow between nodes and groups.

• PageRank algorithm for understanding the overall influence as we will see in detail.

Common use cases of centrality include:
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• Recommendation: identify and recommend the most popular items in your content
or product offering catalog, where popular is a synonymous of influential in this
case.

• Supply chain analytics: find the most critical node in your supply chain network,
whether it be a supplier in a network or a raw material that is part of a manufactured
product.

• Fraud & Anomaly Detection: find users with many shared identifiers or who other-
wise act as a bridge between many communities.

4.3.1 Degree Centrality

Degree Centrality is the simplest of the centrality algorithms that measures the
importance of a node counting the number of incoming or outgoing relationships from a
node that in mathematical terms represents its in-degree or out-degree respectively if the
graph is direct or simply its degree in an undirected graph.
It examines immediate connections, which is valuable for tasks such as assessing the
short-term risk of virus transmission to individuals or finding the popularity of individual
nodes. However, this algorithm is also employed in global network analysis to assess met-
rics like the minimum degree, maximum degree, average degree, and standard deviation
throughout the entire graph.

Figure 4.7: Degree Centrality Algorithm [23]

Nodes 6 and 7 in the Figure 4.7 have a high degree centrality because of the highest
number of direct connections with the other nodes.
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4.3.2 Closeness Centrality

Closeness Centrality measures how central a node is to all its neighbors within its
cluster. This measure of centrality for a node u is calculated using the formula:

Cu = 1∑︁n−1
v=1 d(u, v)

(4.2)

where d(u, v) is the shortest-path distance between another node v and the node u and
n is the number of nodes in the same group as u. Normalization of this score typically
involves considering the average length of the shortest paths rather than their sum, as
expressed in the formula for normalized closeness centrality.:

Cu,norm = n − 1∑︁n−1
v=1 d(u, v)

(4.3)

Nodes with a high closeness score are those with the shortest distances to all other nodes,
enabling them to potentially reach the entire group quickly.
Because of this algorithm is a way of detecting nodes that can most easily reached from
all the others, closeness centrality has been utilized to identify ideal locations for new
public services to enhance accessibility. In social analysis, it can pinpoint individuals in
the most advantageous social network positions for faster information dissemination.

4.3.3 Betweennes Centrality

Betweennes Centrality algorithm starts by computing the shortest (weighted) paths
between every pair of nodes in a connected graph using the APSP algorithm. Each node
is then evaluated based on how frequently it lies along these shortest paths: nodes that
appear most often on such paths receive higher betweenness centrality scores and act as
crucial links between various clusters within the graph.
Betweenness Centrality quantifies how much influence a node has on the flow of infor-
mation or resources within a graph. In network terms, a bridge can be either a node or
a link. In smaller graphs, we can identify these influential elements by observing which
node or link, if removed, would disconnect a portion of the graph.
We note that node 3 in Figure 4.8 is not involved in high number of relationships because
it has only two connections but with a high betweennes centrality: if we remove this node,
we disconnect two parts of the network and the flow of information or goods through it.

4.3.4 PageRank Centrality

All the previous centrality algorithms measure the direct influence of a node, whereas
PageRank Centrality algorithm evaluates the importance of a node based on its
linked neighbors, and iteratively considers the importance of those neighbors’ neighbors.
A node is authoritative if several authoritative nodes point to it.
The original purpose of this algorithm was to find the most "authoritative" page to rank
websites in Google search results. The core idea is that a web page with many influential
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Figure 4.8: Betweennes Centrality Algorithm [24]

Figure 4.9: PageRank Algorithm [25]

incoming links is perceived as more credible. Therefore, connections to highly impor-
tant nodes have a greater impact on the influence of the node in question compared to
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connections to less significant nodes.
The red node in Figure 4.9 has the forth highest pageRank centrality value in the graph
because it is connected to a very authoritative node, also it does not have so many nodes
that point to it.

4.4 Similarity Algorithms

Similarity algorithms determine how similar pairs of nodes are based on their neighbor-
hoods or their properties using different vector-based metrics or similarity functions: how
we measure this similarity between two entities depends on the similarity function used.
Similarity is in the eye of the observer that decides what factors care about to him and
their relative importance.
Common use cases for similarity include:

• Fraud Detection: finding potential fraud user accounts by analyzing the similarities
between the new user accounts and the flagged fraudster accounts. Possible signs
could be sudden suspicious transactions or connections to parties already considered
high risk.

• Recommendation System: in a e-commerce platform we want to identify items sim-
ilar to the one currently being viewed by a user to increase rate of purchase.

• Entity Resolution: determine similar nodes in terms of activity or identifiers in the
graph to reduce its size.

We want to investigate a graph-based structural similarity, in other terms explore how two
nodes are similar based on their relationships to find for example investment opportunities
similar to the successful ones or activity similar to that of a known fraudster.
We will examine the most representative similarity algorithms K-Nearest Neighbor
(KNN), used for determining similarity based on node properties and Node Similarity
used for determining similarity based on the relative proportion of shared neighboring
nodes in the graph.

4.4.1 K-Nearest Neighbors

The K-Nearest Neighbors algorithm calculates a distance metric for all pairs of nodes
within a homogeneous graph, establishing new connections between each node and its k
closest neighbors. The distance is computed using similarity functions, a collection of
metrics utilized to assess similarity between two arrays ps, pt of numbers that represent
node properties. KNN provide choices between different similarity metrics: using different
metrics will of course alter the similarity score and change the interpretation slightly.
We can said that the K-Nearest Neighbors algorithm evaluates specific properties of each
node by identifying the k nodes with the closest similarity in these properties, which
become the node’s k-nearest neighbors.
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4.4.2 Node Similarity

The input of the Node Similarity algorithm is a bipartite graph and it compares nodes
belonging to one set of nodes based on their outgoing relationships to the other set of
nodes. For each pair (n, m) of the same node set, we collect the outgoing neighborhood
N(n) and N(m) and the algorithm computes a similarity for that pair applied to N(n)
and N(m) vectors. The output of this algorithm are new relationships between pairs of
the first node set with similarity scores expressed via relationship properties.

4.4.3 Similarity functions

There are two types of similarity functions: categorical and numerical. Categorical func-
tions treat arrays as sets and determine similarity based on the intersection of these sets,
like the Jaccard similarity. Numerical measures assess similarity by comparing how
closely the numbers at each position in the arrays align with each other and we analyze
the most famous ones, Cosine similarity and Pearson similarity.
When a property is represented as a list of integers, similarity can be assessed using the
Jaccard score:

J(pt, ps) = |pt ∩ ps|
|pt ∪ ps|

(4.4)

counting how many features two nodes have in common. Notice that the above formula
gives a score in the range of [0,1].
When a property is a list of floating-point numbers, there are two alternatives previously
mentioned for computing similarity between two nodes. The default metric used is that
of Cosine similarity, and then the Pearson similarity.

cosine(ps, pt) =
∑︁

i ps(i)pt(i)√︁∑︁
i ps(i)2

√︁∑︁
i pt(i)2 (4.5)

pearson(ps, pt) =
∑︁

i(ps(i) − ps̄)(pt(i) − pt̄)√︁∑︁
i(ps(i) − ps̄)2

√︂∑︁
i(pt(i) − pt̄

2
(4.6)

Both these measures give a score in the range of [−1, 1] . The score is normalized into
the range [0, 1] by doing score = score + 1

2 .
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Chapter 5

Graph Powered Machine Learning
in Practice

We have focused on graph algorithms in the previous chapter for exploring the theoretical
ideas and the working behind each algorithm and some more representative use cases. The
question now is: how could we use graph algorithms to improve the learning phase of a
machine learning workflow? Extracting connected features is the most practical method
to begin enhancing ML predictions with graph algorithms. Just as people should use
context for better decisions,to understand what is essential in a situation and determine
how to apply lessons from experience to new situations, we need to include a lot of
contextual information in machine learning models in order to understand related network
dynamics and use them to deliver better machine learning features increasing predictions.
For example, e-commerce platforms customize product recommendations by using both
historical data and contextual information about customer or product similarities. Social
networks influence people to vote not only by their direct relationships, also through
friends of friends that could have more impact than the direct friends alone and so on.
Connected features are characteristics extracted from the data structure using graph-local
queries, which focus on the regions around a node, or graph-global queries, which utilize
graph algorithms to find salient and predictive features: putting together the right mix
of connected features can increase performance because it essentially influences how our
models learn.

5.1 Link Prediction Problem with graphs

Connected features play a role in improving machine learning in the context of link
prediction.
Link prediction involves predicting the probability of a relationship forming in the future
or identifying potential relationships that are absent from our graph due to incomplete
data [5]. This machine learning task was popularised by a paper "The Link Prediction
Problem for Social Networks" written in 2004 by Jon Kleinberg and David Liben-Nowell
where they deal with this problem from the perspective of social networks, asking the
question [26]:
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Given a snapshot of a social network, can we infer which new interactions
among its members are likely to occur in the near future? We formalize this
question as the link prediction problem, and develop approaches to link predic-
tion based on measures for analyzing the "proximity" of nodes in a network.

Since the dynamic nature of networks, being able to predict future links between entities
has broad applicability: we could predict future friendships in a social network making
friend recommendations, new connections between molecules in a biology network, sug-
gest potential collaborations among authors in a citation network or inferring criminal
relationships in fraud detection applications.
Kleinberg and Liben-Nowell describe a set of methods specific for link prediction problem
based on the idea that the closer two nodes are, the higher the likelihood of a relationship
between them. [26]. Given a pair of nodes, these methods compute a score that could be
considered a measure of closeness between them based on the graph topology, specifically
on their shared neighbors.
We will report here the most representative formulas [27] where N(x) is the set of nodes
adjacent to node x and N(y) is the set of nodes adjacent to node y:

• Common Neighbors: the idea is that, the more common neighbors two nodes
share currently, the more likely a link will form in between them in the future.

CN(x, y) = |N(x) ∩ N(y)| (5.1)

• Total Neighbors: the intuition is that nodes that are highly connected tend to
attract more new links over time.

TN(x, y) = |N(x) ∪ N(y)| (5.2)

• Preferential Attachment: the "rich gets richer" idea means that the larger the
current neighborhood of the two nodes, the more likely the future connection.

PA(x, y) = |N(x)||N(y)| (5.3)

• Adamic Adar: this measure also considers common neighbors between two nodes
but gives more weight to common neighbors with smaller degree.

AA(x, y) =
∑︂

u∈N(x)∩N(y)

1
log|N(u)| (5.4)

To deal with this problem we will use Neo4j as native graph database and specifically, we
will use the Graph Data Science (GDS) of Neo4j, the connected data analysis platform
that unifies the machine learning surface and graph database into a single workspace.
For queries, we will use Cypher, a standard graph query language adopted from Neo4j
and other graph databases. We will also establish a connection with the Neo4j database
through a Python driver in order to harness the power of Python in data science. GDS
deals with the link prediction problem as a binary classifier where the target variable
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to predict is a 0 − 1 indicator, 0 for no link, 1 for a link. This type of link prediction
works really well on an undirected graph where we are predicting one type of relationship
between nodes of a single label.
Our intent now is to tackle a social network recommendation task as a link prediction
problem solving it with a graph approach based on the extraction, the selection and the
application of connected features in a machine learning model. The main steps [28] of our
first graph analysis will be:

1. Graph model creation

2. Split the data into train and test sets

3. Graph feature engineering

4. Model selection and training

5. Model evaluation

5.1.1 Graph Model Creation

After establishing a connection with the Neo4j database through a Python driver, we
load our connected data into the graph database1. We will create 22,470 nodes and
171,002 relationships between them: nodes represent Facebook pages while relationships
are mutual likes between sites. This is a page-page graph of verified Facebook pages as
we can see in Figure 5.1.

from neo4j import GraphDatabase

# Connection with Neo4j db
uri = "bolt :// localhost :7687 "
driver = GraphDatabase . driver (uri , auth =(" neo4j ", " password "))
with driver . session ( database =" neo4j ") as session :

display ( session .run(" CREATE CONSTRAINT ON (p:Page) ASSERT p.id IS UNIQUE ;")
. consume (). counters )

# Import data into the database
query = """
LOAD CSV WITH HEADERS FROM
’file :/// musae_facebook_target .csv ’ AS row
MERGE (p:Page {id:row.id , faceID :row. facebook_id ,name:row.page_name , type:row.

page_type })
"""
with driver . session ( database =" neo4j ") as session :

session .run( query )

query = """
LOAD CSV WITH HEADERS FROM
’file :/// musae_facebook_edges .csv ’ AS row
MATCH (p1:Page {id:row.id_1 })
MATCH (p2:Page {id:row.id_2 })

1The data is available at https://snap.stanford.edu/data/facebook-large-page-page-network.
html
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MERGE (p1) -[: FOLLOWS ]-(p2)
"""
with driver . session ( database =" neo4j ") as session :

session .run( query )

(a) Facebook subgraph with 4895 nodes and
10340 links (b) Graph schema

Figure 5.1: Facebook Large Page-Page Network through Neo4j Bloom

5.1.2 Train and Test Datasets

Now that we have created our graph, we choose to adopt a supervised learning approach to
predict future relationships between Facebook pages. To do this, it is therefore necessary
to come up with train and test datasets on which we can build our binary classifier. When
working with graph data, it’s challenging to split the data randomly due to the risk of
data leakage.
Data leakage occurs when test data influences the creation of our model inadvertently.
This is particularly common in graphs because nodes in the training set may have con-
nections to nodes in the test set. Instead, it’s essential to partition the graph into training
and test subgraphs while preserving their overall network structure. If the graph includes
a temporal aspect, one approach is to split it at a specific time point: the training set in-
cludes data before this time, and the test set includes data after. However, this approach
doesn’t apply in our case.
We will use a utility algorithm Split relationships that divides the relationships into
a holdout set and a remaining set [29]. The holdout set is divided into two classes:
positive, i.e., existing relationships, and negative, i.e., non-existing relationships. We need
negative examples so that our model can learn to distinguish between nodes that should
be connected and those that should not be. The class is indicated by a label property on
the relationships.
Now we can proceed to the creation of the training and test set and their respective
relationships storing both into Neo4j database for our machine learning pipeline.
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# Creation of FOLLOWS_TESTGRAPH relationships
query = """
CALL gds. alpha .ml. splitRelationships . mutate (’ pages ’, {

relationshipTypes : [’ FOLLOWS ’],
remainingRelationshipType : ’FOLLOWS_REMAINING ’,
holdoutRelationshipType : ’FOLLOWS_TESTGRAPH ’,
holdoutFraction : 0.2 ,
randomSeed : 1337

})
YIELD createMillis , computeMillis , mutateMillis , relationshipsWritten ;
"""
with driver . session ( database =" neo4j ") as session :

result = session .run( query )

# Creation of FOLLOWS_TRAINGRAPH relationships
query = """
CALL gds. alpha .ml. splitRelationships . mutate (’ pages ’, {

relationshipTypes : [’ FOLLOWS_REMAINING ’],
remainingRelationshipType : ’FOLLOWS_IGNORED_FOR_TRAINING ’,
holdoutRelationshipType : ’FOLLOWS_TRAINGRAPH ’,
holdoutFraction : 0.4 ,
randomSeed : 1337

})
YIELD createMillis , computeMillis , mutateMillis , relationshipsWritten ;
"""
with driver . session ( database =" neo4j ") as session :

session .run( query )

Examples train : 109296
Negative examples train : 54648
Positive examples train : 54648

Examples test: 68400
Negative examples test: 34200
Positive examples test: 34200

Note that we have a split of 62−38 and a balanced problem in terms of positive examples
and negative ones. Before we will move on, let us have a look at the contents of our train
and test dataframes:

(a) Training dataframe sample (b) Test dataframe sample

Figure 5.2: Training and test dataframes
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5.1.3 Graph feature engineering

Now it is time to engineer some features which we will use to train our model [5]. Firstly,
we consider the specific link prediction measures which we mentioned about previously:

• common neighbors score (cn)

• preferential attachment score (pa)

• total neighbors score (tn)

• adamic adar score (aa)

The following function calculates each of these metrics for pairs of nodes and adds 4
columns to the train and test dataframes:

# Compute cn , pa , tn , aa scores
def apply_graphy_features (data , rel_type ):

query = """
UNWIND $pairs AS pair
MATCH (p1) WHERE id(p1) = pair. node1
MATCH (p2) WHERE id(p2) = pair. node2
RETURN pair. node1 AS node1 ,

pair. node2 AS node2 ,
gds. alpha . linkprediction . commonNeighbors (p1 , p2 , {

relationshipQuery : $relType }) AS cn ,
gds. alpha . linkprediction . preferentialAttachment (p1 , p2 , {

relationshipQuery : $relType }) AS pa ,
gds. alpha . linkprediction . totalNeighbors (p1 , p2 , {

relationshipQuery : $relType }) AS tn ,
gds. alpha . linkprediction . adamicAdar (p1 , p2 , {

relationshipQuery : $relType }) AS aa
"""
pairs = [{" node1 ": node1 , " node2 ": node2 } for node1 , node2 in data [[" node1 ", "
node2 "]]. values . tolist ()]
with driver . session ( database =" neo4j ") as session :

result = session .run(query , {" pairs ": pairs , " relType ": rel_type })
features = pd. DataFrame ([ dict( record ) for record in result ])

return pd. merge (data , features , on =[" node1 ", " node2 "])

training_df = apply_graphy_features ( training_df , " FOLLOWS_TRAINGRAPH ")
test_df = apply_graphy_features (test_df , " FOLLOWS ")

Note that for the training dataframe, these metrics are computed solely based on the
training relationships. In contrast, for the test dataframe, they are computed across the
entire graph.
In social networks, predictions often rely on triangle metrics, so we calculate the number
of triangles a node is involved in and its clustering coefficient to verify the impact of these
two features in our model. If we look at a social network at two distinct points in time, we
will generally find that a significant number of new edges have made among people with
a common neighbor forming triangles, fully connected subgraphs between three nodes [1].
We could use the triangle count algorithm 4.1.1 of GDS library so that for each node we
will write as node property the number of triangular structures involving it, trianglesTrain
and trianglesTest properties for respectively training and test datasets. The same goes
for the clustering coefficient algorithm 4.1.1 of GDS library.
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# Counting triangles train set
query = """
CALL gds. triangleCount . write (’ graph1 ’, { writeProperty : ’trianglesTrain ’});
"""
with driver . session ( database =" neo4j ") as session :

result = session .run( query )
df = pd. DataFrame ([ dict( record ) for record in result ])

df
# Counting triangles test set
query = """
CALL gds. triangleCount . write (’ graph2 ’, { writeProperty : ’trianglesTest ’});
"""
with driver . session ( database =" neo4j ") as session :

result = session .run( query )
df = pd. DataFrame ([ dict( record ) for record in result ])

df

A value of 794953 as global triangle count for the test set indicates that the Facebook
network is a interconnected network as could be guessed from the snapshot of a portion
of the graph in Figure 5.1.

# Local clustering coefficient train set
query = """
CALL gds. localClusteringCoefficient . write (’ graph1 ’, { writeProperty : ’

coefficientTrain ’});
"""
with driver . session ( database =" neo4j ") as session :

result = session .run( query )
df = pd. DataFrame ([ dict( record ) for record in result ])

df

# Local clustering coefficient test set
query = """
CALL gds. localClusteringCoefficient . write (’ graph2 ’, { writeProperty : ’

coefficientTest ’});
"""
with driver . session ( database =" neo4j ") as session :

result = session .run( query )
df = pd. DataFrame ([ dict( record ) for record in result ])

df

The average clustering coefficient for the Facebook network is almost 0.4, which indicates
that the network is quite tightly-knit.
The following function will add these features to our test and train dataframes:

def apply_triangles_features (data , triangles_prop , coefficient_prop ):
query = """
UNWIND $pairs AS pair
MATCH (p1) WHERE id(p1) = pair. node1
MATCH (p2) WHERE id(p2) = pair. node2
RETURN pair. node1 AS node1 ,
pair. node2 AS node2 ,
apoc.coll.min ([ p1[ $trianglesProp ], p2[ $trianglesProp ]]) AS minTriangles ,
apoc.coll.max ([ p1[ $trianglesProp ], p2[ $trianglesProp ]]) AS maxTriangles ,
apoc.coll.min ([ p1[ $coefficientProp ], p2[ $coefficientProp ]]) AS minCoefficient ,
apoc.coll.max ([ p1[ $coefficientProp ], p2[ $coefficientProp ]]) AS maxCoefficient
"""
pairs = [{" node1 ": node1 , " node2 ": node2 } for node1 , node2 in data [[" node1 ", "
node2 "]]. values . tolist ()]
params = {
" pairs ": pairs ,
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" trianglesProp ": triangles_prop ,
" coefficientProp ": coefficient_prop
}
with driver . session ( database =" neo4j ") as session :

result = session .run(query , params )
features = pd. DataFrame ([ dict( record ) for record in result ])

return pd. merge (data , features , on = [" node1 ", " node2 "])

training_df = apply_triangles_features ( training_df , " trianglesTrain ", "
coefficientTrain ")

test_df = apply_triangles_features (test_df , " trianglesTest ", " coefficientTest ")

These metrics are distinct from those used previously because they are specific to nodes
rather than pairs of nodes. Consequently, we cannot simply add these values to our
dataframe because the order of nodes in pairs is not guaranteed. So we compute the
minimum and maximum value of trianglesProp and coefficientProp for each pair of nodes.
The previous scores are neighborhood metrics in the sense they consider the directly
connected neighboring nodes focusing in the role that each node and its set of close con-
nections have in the network. To understand the effects of a node on the network, it
is important to consider the node as part of a community because communities have a
greater effect on the network than a single node and more influence in term of information
exchange. We assume that nodes within the same community are more likely to establish
a link if one doesn’t already exist between them. Additionally, we posit that commu-
nities with stronger internal connections are more inclined to form links. To begin, we
will identify larger communities using the Label Propagation algorithm 4.1.3 in Neo4j,
saving the community assignments in the property partitionTrain for the training set and
partitionTest for the test set.

# Compute communities with Label Propagation algo train set
query = """
CALL gds. labelPropagation . write (’ graph1 ’,{ maxIterations :20 , writeProperty : ’

partitionTrain ’});
"""
with driver . session ( database =" neo4j ") as session :

result = session .run( query )
df = pd. DataFrame ([ dict( record ) for record in result ])

df
# Compute communities with Label Propagation algo test set
query = """
CALL gds. labelPropagation . write (’ graph2 ’,{ maxIterations :20 , writeProperty : ’

partitionTest ’});
"""
with driver . session ( database =" neo4j ") as session :

result = session .run( query )
df = pd. DataFrame ([ dict( record ) for record in result ])

df

We will utilize the Louvain algorithm 4.1.4, which identifies intermediate clusters to
uncover fine-grained communities within a graph. Each node will be assigned a property
indicating its community after the initial iteration of the algorithm, the louvainTrain for
the training set and louvainTest for the test set:

# Compute communities with Louvain algo train set
query = """
CALL gds. louvain . stream (’ graph1 ’, { includeIntermediateCommunities : true })
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YIELD nodeId , communityId , intermediateCommunityIds
WITH gds.util. asNode ( nodeId ) AS node ,

intermediateCommunityIds [0] AS smallestCommunity
SET node. louvainTrain = smallestCommunity ;
"""
with driver . session ( database =" neo4j ") as session :

result = session .run( query )
display ( session .run( query ). consume (). counters )

# Compute communities with Louvain algo test set
query = """
CALL gds. louvain . stream (’ graph2 ’,{ includeIntermediateCommunities : true })
YIELD nodeId , communityId , intermediateCommunityIds
WITH gds.util. asNode ( nodeId ) AS node ,

intermediateCommunityIds [0] AS smallestCommunity
SET node. louvainTest = smallestCommunity ;
"""
with driver . session ( database =" neo4j ") as session :

result = session .run( query )
display ( session .run( query ). consume (). counters )

The following function will add the extracted community features to our test and train
dataframes:
def apply_community_features (data , partition_prop , louvain_prop ):

query = """
UNWIND $pairs AS pair
MATCH (p1) WHERE id(p1) = pair. node1
MATCH (p2) WHERE id(p2) = pair. node2
RETURN pair. node1 AS node1 ,
pair. node2 AS node2 ,
gds. alpha . linkprediction . sameCommunity (p1 , p2 , $partitionProp ) AS sp ,
gds. alpha . linkprediction . sameCommunity (p1 , p2 , $louvainProp ) AS sl
"""
pairs = [{" node1 ": node1 , " node2 ": node2 } for node1 , node2 in data [[" node1 ", "
node2 "]]. values . tolist ()]
params = {
" pairs ": pairs ,
" partitionProp ": partition_prop ,
" louvainProp ": louvain_prop
}
with driver . session ( database =" neo4j ") as session :

result = session .run(query , params )
features = pd. DataFrame ([ dict( record ) for record in result ])

return pd. merge (data , features , on = [" node1 ", " node2 "])

training_df = apply_community_features ( training_df , " partitionTrain ", "
louvainTrain ")

test_df = apply_community_features (test_df , " partitionTest ", " louvainTest ")

We will obtain the following samples for training and test data complete with all the
extracted graph features for the different node pairs.

5.1.4 Model selection and training

We choose to use a supervised learning approach where the node proximity scores become
the features to train a binary classifier, so we have to decide which machine learning model
we are going to use. Many of the link prediction measures are computed using similar
data and this means there is a feature interaction problem when it comes to training
a machine learning model. We could not choose a model which assume an assumption
of independence between features: if we select one of these models, we’ll need to exclude
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Figure 5.3: Training dataframe with graph features

Figure 5.4: Test dataframe with graph features

features with significant interactions to ensure accurate predictions. Alternately, we could
select a model where feature interaction is less problematic, the ensemble methods like a
random forest classifier.
Let us build a model based on all graph features in our random forest classifier.

classifier = RandomForestClassifier ( n_estimators =30 , max_depth =6, random_state =0)

columns = [
"cn", "pa", "tn","aa", # proximity features
" minTriangles ", " maxTriangles ", " minCoefficient "," maxCoefficient ", # triangle
features
"sp", "sl" # community features

]
X = train [ columns ]
y = train [" label "]
classifier .fit(X,y)

5.1.5 Model evaluation

Let us evaluate our model against the test set using accuracy, precision, recall, and ROC
curves as predictive metrics.
Firstly, considering the above classifier with all graph features we obtain the following
results:

Measure Score
0 Accuracy 0.947602
1 Precision 0.982233
2 Recall 0.901696

This model has a precision of 0.982233, which means it is very good at predicting that
links exist and a recall measure of 0.901696, which means it is also good at predicting
when links do not exist, but to a lesser extent.
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(a) Feature importance (b) ROC curve with all graph features

Figure 5.5: Random Forest classifier with all graph features

Could we improve the recall score in some way? Looking at Figure 5.5a, let us try to
remove sp and tn features because sp is the least important of the community features
while tn is the least important of the proximity measures, actually improving our recall
metric:

Measure Score
0 Accuracy 0.947178
1 Precision 0.981397
2 Recall 0.911637

(a) Feature importance (b) ROC curve without two graph features

Figure 5.6: Random Forest classifier without sp and tn features
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5.2 Graph Recommender System

Another area where a graph representation of the data and a graph-based analysis can
play an important role simplifying data management, mining and communication is rec-
ommendations.
The term recommender system refers to all software tools and techniques that, starting
from the knowledge about users and items in question, suggest items that are likely to
be of interest to a particular user [30]. In this context item is the general term used to
identify what the system recommends to users: people on social platforms, products on
any e-commerce platform, the next video on Youtube or the next movie on Netflix.
We are talking about personalized recommendations when every user receives a different
list of recommendations depending on their tastes, inferred based on previous interactions
with items or information collected by different techniques [31].
Although the main purpose of a recommender systems is to help companies to sell more
items, they also have a lot of advantages from the user’s perspective. Recommendation
engines help people find what they are looking for in a short amount of time increasing
user’s satisfaction. Consequently, the more often a user interacts with the system, the more
refined the user’s knowledge becomes improving the efficiency of the recommendation
system. They also suggest less popular items helping them to be discovered diversifying
the items sold to users.
The way in which the information about users and items is modeled and exploited de-
pends on the particular recommendation technique. According to this aspect and the
learning algorithm used to forecast user interests and provide predictions, different types
of recommender systems can be implemented.
The two main types of recommender systems are content-based and collaborative filtering.
Content-based recommendation engine uses item and users’s profiles to find similar items
in terms of content to the ones that the user liked in the past. Collaborative filtering
recommendation engine instead uses user-item interaction history to provide users rec-
ommendations: the simple idea is that if two users had the same interests in the past,
they will have the same behaviour in the future [9].
Creating a successful recommender system requires understanding the complex relation-
ships between the entities involved. Graph databases can be instrumental in this process,
providing a powerful tool for capturing and analyzing the relationships between users
and items dynamically, also uncovering the underlying relationships that might not be
immediately apparent, such as pathways between nodes [32]. We want to create a movie
real-time recommender system using Neo4j and its Graph Data Science ecosystem ex-
ploring the two primary recommendation techniques explained before and subsequently
a their hybrid recommendation version.

5.2.1 Content-based recommendations

As mentioned above, the basic process of produced content-based recommendations relies
on item and users representations to suggest items similar to those a target user liked in
the past.

52



5.2 – Graph Recommender System

We want to demonstrate how a graph model can be used to represent the item and user
profiles and how a graph analysis can simplify the recommendation phase.
To build our recommendation system we use the MovieLens dataset 2, a standard dataset
for recommendation engines containing user ratings of the movies they watched, used in
combination with data available from the Internet Movie Database (IMDb) 3 such as
genres, actors, writers and directors related to films.
We summarize the characteristics and network properties of the MovieLens dataset in
Figure 5.7.

Figure 5.7: Network information of the MovieLens dataset

We have only two entities, Movie and User in our dataset that we model as nodes labeled
respectively Movie and User. The movie features extracted from IMDb can be translated
into node properties that describe and characterize each movie. In this case each node
Movie has as properties movieId, title, actor list, writer list, director and genre list while
each node User has userId as node property. To model the ratings users assigned to
movies in order to represent users preferences explicitly, we can connect user nodes to
the movies through the RATED relationship where the assigned rating is stored as a
relationship property. The resulting graph model will look like Figure 5.8.
This simple model for the Movie node has the advantage of a one-to-one mapping between
the node and the item it represents with all the properties, but it has multiple drawbacks
as data duplication because for example the director name is duplicated in all movies
with the same director and the same for genres, actors and so on. Moreover this model
limits the efficient navigation of relationships and nodes typical of graphs because the
search is based on value or string comparison.
A more advanced model for representing movies models recurring properties as nodes:
new nodes appear in this model labeled as Actor, Director, Writer and Genre nodes,
where each node has some properties specific to the node such as name for directors and

2The data is available at https://grouplens.org/datasets/movielens/
3The data is available at https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata
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Figure 5.8: Basic graph model

writers and genre for movie genres. Now each node Movie has only the movieId and title
as properties. The relationships among the node representing the movie’s feature with the
movie itself are expressed by edges in the graph: HAS relationship to link movies with
the respective genres, DIRECTED to link the director with his movie, WROTE to link
the writers of a movie to the movie itself and ACTS-IN to connect actors to the movies
they starred in. The same node can play different roles and this can be modeled with
different labels, different relationships or both. This approach prevents data duplication
avoiding to represent the same concept in multiple nodes and it allows multiple and more
efficient access patterns to the data. The resulting graph model will look like Figure 5.9.
Different approaches can be used to provide content-based recommendations, depending
on the information available and the models defined for both users and items. One of the
most common and powerful techniques to CBRSs known as the similarity-based retrieval
can be described as "Recommend items that are similar to those the user liked in the
past" [31]. This approach requires the following steps:

1. User preferences data (RATED relationships in Figure 5.9)

2. Item features data (HAS, DIRECTED and ACTS-IN relationships in Figure 5.9)

3. A common representation for items so that the similarity among them is measurable
(NODE SIMILARITY algorithm as described in 4.4.2)

4. Similarity function that, given two item representations computes the similarity
between them (SIMILARITY FUNCTIONS as described in 4.4.3)

5. Computed similarities are stored in the graph as relationships between items, storing
only the k topmost similar items or defining a minimum similarity threshold

6. Making the recommendations in order to predict those not-yet-rated items that
could be of interest to a user.

After creating the graph property model like in Figure 5.9 implementing the previous 1
and 2 points, we want to use the Node similarity algorithm described in 4.4.2: this graph
algorithm requires a bipartite graph projection as input parameter in order to select the
relationships of interest on which to calculate the similarity among movies.
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Figure 5.9: Advanced graph model

We want to compare movies based on their content i.e. genre, director and actor infor-
mation.

# Create Graph Projection
CALL gds. graph . project (

’contentGraph ’,
[’Feature ’, ’Movie ’],
{

HAS:
{ orientation : ’NATURAL ’},

DIRECTED :
{ orientation : ’REVERSE ’},

ACTS_IN :
{ orientation : ’REVERSE ’}

}
);

Because of Node similarity is applied to a bipartite graph, we have to add a generic
label Feature to Genre, Actor and Director nodes so that contentGraph contains only
two node sets, Feature and Movie nodes, with all the HAS, ACTS-IN and DIRECTED
relationships that involve them: we want to compare movies based on their outgoing links
using the Jaccard similarity function for unweighted relationships.

#Get Movie Similarity
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CALL gds. nodeSimilarity . stream (’contentGraph ’ ,{ similarityMetric : ’JACCARD ’, topK:
20})

YIELD node1 , node2 , similarity
RETURN gds.util. asNode ( node1 ). title AS Movie1 , gds.util. asNode ( node2 ). title AS

Movie2 , similarity
ORDER BY similarity , Movie1 , Movie2

Node Similarity computes pair-wise similarities based on the Jaccard similarity score hav-
ing as topK = 20 as configuration parameter to limit on the number of scores calculated
per Movie node: only the 20 largest similarity scores are returned for each movie.

# Store SIMILAR relationships
CALL gds. nodeSimilarity . write (’contentGraph ’, {

writeRelationshipType : ’SIMILAR ’,
writeProperty : ’score ’,
topK: 20,
similarityCutoff : 0.2 ,
similarityMetric : ’JACCARD ’

})
YIELD nodesCompared , relationshipsWritten

Figure 5.10: Movie pair-wise similarities based on the Jaccard score

Next, we want to store these movie pair-wise similarities as new relationships between
movies with the similarity score adding as propriety of SIMILAR relationships: we also
use a minimum similarity threshold in Node Similarity algorithm set to 0.2 to limit the
similarity scores stored in the graph.
Storing SIMILAR relationships in the graph model is a fundamental step if our last goal
is querying the resulting model made by the RATED and SIMILAR relationships to
perform personalized recommendations.
One of the most accurate approaches to predict the interest of a user in a specific item
consists of considering the sum of all the similarities of the target item p to the other
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Figure 5.11: A subgraph of the similarity network between movies.

items the user interacted with before [9]:

interest(u, p) =
∑︂

i∈Items(u)
sim(i, p) (5.5)

where Items(u) returns all the items the users has interacted with.
#Make recommandations for a user
MATCH (user:User)
WHERE user. userId = $userId$
WITH user
MATCH ( targetMovie : Movie )
WHERE NOT EXISTS (( user) -[]->( targetMovie ))
WITH targetMovie , user
MATCH (user:User) -[]->( movie : Movie ) -[r: SIMILAR ]->( targetMovie )
RETURN targetMovie . title as Movie , sum(r. score )/ count (r) as Relevance
order by Relevance desc
LIMIT 10

where the parameter userId in this case is equal to 1. The computed relevance score can
be used to rank all the not-yet-seen movies and return the top 10 movies to the specified
user as recommendations like in Figure 5.12.

5.2.2 Collaborative filtering recommendations

Content approach is applicable only when content description related to each item is
somehow available but this information might not be readily accessible, easy to collect or
relevant.
An alternative to content methods is the well-known collaborative filtering recommenda-
tion engine, relies only on past user history, item ratings for example without requiring
the creation of items and users profiles. It can be applied to a vast variety of scenarios
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Figure 5.12: Top 10 recommended movies for user 1

because analyzes relationships between users and items to predict new user-item associ-
ations. Generally, collaborative filtering is more accurate than content-based techniques
but it suffers from what it is called the cold-start problem when the ratings matrix is
sparse: this means it fails to produce reasonable recommendations in terms of accuracy
for new items and new users when relatively little information is available.
Collaborative filtering techniques are generally classified into two main areas:

• Memory-based. These techniques, also referred to as neighborhood methods, attempt
to find a set of users or items that have historically been similar to each other in
the past (either a group of users that rated the same products the same way or
a group of items that were all rated the same way by the same users) in order to
predict the specific user rating for a particular item.

• Model-based. These methods create models for users and items that describe their
behaviour via a set of factors and the weight these factors have for each item and
each user. Model-based approaches are particularly effective in understanding and
representing user preferences recommending exactly what the user wants.

Model-based approach delivers the best result in terms of prediction accuracy but this
measure alone does not guarantee users a satisfying experience [33] [34] [35].
Memory-based methods instead capture local associations in the data allowing to rec-
ommend for example a movie quite different from the user’s typical preferences or a
lesser-known movie, based on strong ratings from one of their closest neighbors. We fo-
cus on this class of collaborative filtering recommendation system because it is really a
graph-based task with regard to local navigation of data during predictions, the explain-
ability of the recommendation process increasing the user’s trust in the system and its
stability when new information is available: in this case only a small portion of the graph
is recomputed. In the end, not least, another strong point of memory-based methods is
their time efficiency to provide near-instantaneous recommendations.
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There are two possible approaches to memory-based recommendation for collaborative
filtering:

• Item-based where the similarities are computed between items based on the users
who interact with them (rating, clicking and so on).

• User-based where the similarities are computed between users based on the list of
items they interact with.

Neighborhood methods have three main components whether they are item-based or
user-based:

• Some definition of similarity

• Some way of using similarity between homogeneous elements to construct neigh-
borhoods

• Some way of using a neighborhood of a user or item to make predictions

Now we will explore the main steps to realize a graph-powered collaborative filtering RS in
both cases, item-based and user-based. We will always adopt the same MovieLens dataset
for our purpose, without any movie feature data because the input of the recommendation
process in collaborative filtering is the user-item dataset in Figure 5.13. It is a weighted
bipartite graph with Movie and User nodes linked by RATED relationships with rating
as relationship weight.
The procedure for the similarity computation is the same as that for the content-based
approach but it is important to note that, with the neighborhood methods, the similarities
are computed using only the interactions between movies and users.
The simple idea in the user-based approach is to find similar users to our user i.e. users
that rated the same movies similarly and find other movies that the target user has not
seen yet.
Firstly we create a native graph projection in Neo4j of the User-Item dataset: if we want
to compute similarities between users, we must consider the RATED relationships in
their NATURAL orientation with their respective property, rating to measure similarity
among users. Note that we select here a different similarity function, the Cosine similarity
score because our graph projection userGraph is weighted.
# Create Graph Projection for Used - based CF
CALL gds. graph . project (

’userGraph ’,
[’User ’, ’Movie ’],
{

RATED :
{

orientation : ’NATURAL ’,
properties : ’rating ’

}

}
);
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Figure 5.13: A subgraph of the bipartite network consisting of users (pink) and movies
(orange)

Then, we calculate the Cosine similarity of each user with all the other users, keeping only
the topK = 20 similarity scores for each user and storing in the original graph as new
relationships between users, the SIMILAR-U relationships, only those with a similarity
score greater than 0.2.

#Get User Similarity
CALL gds. nodeSimilarity . stream (’userGraph ’ ,{ similarityMetric : ’COSINE ’, topK: 20})
YIELD node1 , node2 , similarity
RETURN gds.util. asNode ( node1 ). userId AS User1 , gds.util. asNode ( node2 ). userId AS

User2 , similarity
ORDER BY similarity , User1 , User2

# Store SIMILAR_U relationships
CALL gds. nodeSimilarity . write (’userGraph ’, {

writeRelationshipType : ’SIMILAR_U ’,
writeProperty : ’score ’,
topK: 20,
similarityCutoff : 0.2 ,
similarityMetric : ’COSINE ’

})
YIELD nodesCompared , relationshipsWritten

The number of nodesCompared is 610 with 9471 relationshipsWritten after 367 ms.
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Figure 5.14: User pair-wise similarities based on the Cosine score.

Figure 5.15: A subgraph of the similarity network between users.

To recommend movies for a user a, we compute a rank for movies the target user has
not rated using a weighted average rating of movies other similar users have seen. To
compute this weighted average rating we can adopt the following formula [9]:

pred(a, p) =
∑︁

b∈KNN(a) sim(a, b) × rb,p∑︁
b∈KNN(a) sim(a, b) (5.6)

where KNN(a) represents the k-nearest neighbors of the user a.

#Make recommandations for a user
MATCH (u1:User) -[s: SIMILAR_U ]-(u2) -[r: RATED ]-(m: Movie )
WHERE u1. userId = $userId$
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AND NOT ( (u1) -[]-(m))
RETURN m.Title ,sum(s. score *r. rating )/sum(s. score ) as relevance
ORDER BY relevance DESC
LIMIT 10

Figure 5.16: Top 10 recommended movies for user 1 with user-based collaborative filtering
approach

Although user-based approach have been applied successfully in different domains, in
large e-commerce sites where it is necessary to handle more users than items, user-based
filtering is not so faster to scan a vast number of potential neighbors. Large e-commerce
sites for example Amazon use alternative techniques as item-based recommendations. It
is actually a more stable approach because the average rating received by an item does
not change as quickly as the average rating given by a user to different items. It is also
known to perform better than the user-based approach when the ratings matrix is sparse.
The main idea of the item-based approach for collaborative filtering is to compute predic-
tions by using the similarity between items, not users, using only the interactions between
movies and users.
Let us start with the native graph projection as in the user-based recommendations.
# Create Graph Projection for Item - based CF
CALL gds. graph . project (

’itemGraph ’,
[’User ’, ’Movie ’],
{

RATED :
{

orientation : ’REVERSE ’,
properties : ’rating ’

}

}
);

We continue with the similarity computations among movies using the Cosine similarity
score as before and storing them as SIMILAR-I relationships between movies in the
original graph if the similarity score is greater than 0.2.
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#Get Item Similarity
CALL gds. nodeSimilarity . stream (’itemGraph ’ ,{ similarityMetric : ’COSINE ’, topK: 20})
YIELD node1 , node2 , similarity
RETURN gds.util. asNode ( node1 ). movieId AS Movie1 , gds.util. asNode ( node2 ). movieId AS

Movie2 , similarity
ORDER BY similarity , Movie1 , Movie2

# Store SIMILAR_I relationships
CALL gds. nodeSimilarity . write (’itemGraph ’, {

writeRelationshipType : ’SIMILAR_I ’,
writeProperty : ’score ’,
topK: 20,
similarityCutoff : 0.2 ,
similarityMetric : ’COSINE ’

})
YIELD nodesCompared , relationshipsWritten

The number of nodesCompared is 9724 with 193563 relationshipsWritten after 4509 ms.

Figure 5.17: A subgraph of the similarity network between movies.

To recommend movies for a user a, we use the same query adopted in the content-based
approach but with a different formula to compute the relevance score for each movie on
which the ranking is formulated. This formula to predict the rating for a not-yet-seen
movie in the dataset is [36]:

pred(a, p) =
∑︁

q∈ratedItem(a) sim(p, q) × ra,q × |KNN(q) ∩ {p}|∑︁
q∈ratedItem(a) sim(p, q) × |KNN(q) ∩ {p}|

(5.7)

where ratedItem(a) considers all the movies rated by user a and the term |KNN(q)∩{p}|
is 1 if p belongs to the set of nearest neighbors of q and 0 otherwise. The denominator
normalizes the value to not exceed the max value of the rating.
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Figure 5.18: Movie pair-wise similarities based on the Cosine score.

#Make recommandations for a user
MATCH (user:User)
WHERE user. userId = $userId$
WITH user
MATCH ( targetMovie : Movie )
WHERE NOT EXISTS (( user) -[]->( targetMovie ))
WITH targetMovie , user
MATCH (user:User) -[r: RATED ]->( movie : Movie ) -[s: SIMILAR_I ]->( targetMovie )
RETURN targetMovie . title as Movie , sum(s. score *r. rating )/sum(s. score ) as Relevance
ORDER BY Relevance desc
LIMIT 10

Figure 5.19: Top 10 recommended movies for user 1 with item-based collaborative filtering
approach
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5.2.3 A hybrid recommender system

The various recommendation approaches exploit different input and paradigms to make
recommendations, each one with its pros and cons, as we previously analyzed. Build-
ing a hybrid recommendation engine means to combine the strengths of different models
to overcome some of the problems previously mentioned as the cold-start problem for a
collaborative filtering or the great amount of information needed for a content recommen-
dation system. Among the hybridization strategies, we will focus on the parallelized ap-
proach: it requires at least two separate recommendation systems operate independently
of one another and produce distinct recommendation lists as outputs, subsequently joined
into a final set of recommendations according to the hybridization strategy [37].
We want to hybridize in a parallelized mode our two recommender systems, the content-
based and the collaborative filtering: the content approach reduces the cold-start problem
that occurs in the case of a new user or a new item, whereas the collaborative filtering
approach work more accurately without metadata about items. We adopt the same graph
model mixing multiple recommendation models in the same graph where we have user
similarities based on a collaborative filtering approach SIMILAR-U, item similarities
based on content approach SIMILAR and finally item similarities based on content-
based approach SIMILAR-I. Now that we have stored the models in the graph, we can

Figure 5.20: Mixing multiple recommendation models in the same graph

adopt a weighted hybridization strategy to provide recommendations to the target user.
A weighted hybridization strategy combines the outputs of two or more recommender
systems by computing weighted sums of their scores using the following formula:

scoreweighted(u, i) =
n∑︂

k=1
βk × scorek(u, i) (5.8)

where n is the number of recommenders and the sum of all βk must be 1. It is worth
noting that the value of βk can be dynamic, changing over the life of the recommendation
system assigning for example a higher value of βk to the content-based system until the
system has acquired enough data for the collaborative filtering approach.
In our case we want to realize a simple hybrid recommender system where n = 2 and β1
is the weight for the content-based approach, whereas β2 is the weight for the collabo-
rative filtering approach. For example we could hypothesize to have enough data for the
collaborative filtering approach so we set β1 = 0.2 and β2 = 0.8.
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#Make recommandations for a user
MATCH (user:User)
WHERE user. userId = $userId$
WITH user
MATCH ( targetMovie : Movie )
WHERE NOT EXISTS (( user) -[]-( targetMovie ))
WITH targetMovie , user
MATCH (user) -[]->( movie : Movie ) -[r: SIMILAR ]->( targetMovie )
WITH targetMovie , sum(r. score )/ count (r) AS Score1
MATCH (user) -[r: RATED ]->( movie : Movie ) -[t: SIMILAR_I ]->( targetMovie )
WITH targetMovie ,Score1 , sum(t. score *r. rating )/sum(t. score ) as Score2
RETURN targetMovie .title , 0.2* Score1 +0.8* Score2 as Relevance
ORDER BY Relevance DESC
LIMIT 10

Figure 5.21: Top 10 recommended movies for user 1 with a hybrid approach, completed
after 15 ms.
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5.3 Antifraud Models For Credit Card Transaction Dataset
Fighting fraud and more generally detecting anomalies in data, is a crucial task in mul-
tiple areas such as finance, security and healthcare. While in a recommendation machine
learning task the targets are the end users, in the fraud-fighting use case, the real stake-
holders are the company’s analysts, not users: they must adopt all the necessary measures
to prevent and detect frauds.
We want to adopt a simulated credit card transaction dataset to train a classical machine
learning model and then import all data in a graph model for exploring the benefits of a
graph approach.
Common references on the sections of this chapter are in [38], [39], [40], [41] and [42].

5.3.1 Classic Antifraud Model

The dataset4 includes transactions from the duration 1st Jan 2019 - 31st Dec 2020,
comprising both genuine and fraudulent transactions. It covers transactions made by 1000
customers using credit cards across 800 merchants with 1296675 rows and 23 columns.
Each row represents a certain transaction between a customer and a merchant with the
following features:

• trans-date-trans-time: transaction time stamp

• cc-num: credit card number of customer

• merchant: merchant name

• category: category of merchant

• amt: transaction amount

• first: first name of credit card holder

• last: last name of credit card holder

• gender: gender of credit card holder

• street: street address of credit card holder

• city: city of credit card holder

• state: state of credit card holder

• zip: zip of credit card holder

• lat: latitude location of credit card holder

• long: longitude location of credit card holder

4The data is available at https://www.kaggle.com/datasets/kartik2112/fraud-detection
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• city-pop: city population of credit card holder

• job: job of credit card holder

• dob: date of birth of credit card holder

• trans-num: transaction number

• unix-time: UNIX time of transaction

• merch-lat: latitude Location of merchant

• merch-long: longitude location of merchant

• is-fraud: nature of transaction (fraudulent or not fraudulent)

We have 1289169 genuine transactions and 7506 fraudulent transactions. The dataset
has the trans-date-trans-time feature, so we can split it in a train and a test set using a
temporal window.

Figure 5.22: Number of frauds according to the month.

We check if the proportions between genuine and fraudulent transactions are respected
in the training and test sets.
#% fraud vs % genuine transactions in df_train
0 0.994294
1 0.005706

#% fraud vs % genuine transactions in df_test
0 0.993482
1 0.006518
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Figure 5.23: Fraudulent vs Genuine transactions in the training data

In particular we have 1157940 genuine transactions and 6645 fraudulent transactions in
the training set, therefore this is a highly imbalanced dataset to be balanced in order to
not produce any biases in the analysis.
Now we want to explore amount data, amt feature, because it is an important feature in
credit card fraud analysis.
From the above plot, we note that the amt feature has a lot of outliers: this means that the
variance in the feature is huge. Also, the fraud amount distribution is very dissimilar from
the non fraud amount distribution and we can observe that fraudulent transactions often
happen in small amount, therefore the transactions in which small amount is involved
can be monitored more closely in order to detect and prevent credit card fraud. So we
need to rescale the amt feature with a robust scaler.
The job feature has 494 unique values which make it difficult for us to visualize and
analyse the feature. So we want to select the 10 most frequent values i.e. jobs where high
transaction frequencies have been noted. We can also observe that all of them have com-
pletely fraudulent transactions, so we are not able to detect some jobs "more fraudulent"
than others.
We also analyze the category feature with only 14 distinct values and we can notice that
about 3 categories have more involved in fraudulent transactions. These are grocery-pos,
misc-net and shopping-net as we can notice in Figure 5.26.
Now that we are done with the exploratory data analysis, we will proceed with rescaling
the amt feature and encoding the categorical features, job and category taking, for each
of them, the 10 most frequent values and one-hot encode them. Some features like cc-num,
first, last and trans-num are not significant in context of our analysis and hence can be
removed, other features like merchant, state, city and street can be dropped since it has
lot of unique values and it is hard to encode all of them.

# Feature extraction
rob_scaler = RobustScaler ()
df_train [’scaled_amt ’] = rob_scaler . fit_transform ( df_train [’amt ’]. values . reshape

( -1 ,1))
df_test [’scaled_amt ’] = rob_scaler . transform ( df_test [’amt ’]. values . reshape ( -1 ,1))
features_not_to_encode = [" is_fraud ", " scaled_amt ", "lat", "long", "hour", "

merch_lat ", " merch_long "] # Numeric features
features_to_encode = [" category ", "job"] # Categorical features
features = features_not_to_encode + features_to_encode
df_train_to_encode = df_train [ features ]. copy ()
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Figure 5.24: Transaction Amount vs Frauds: boxplots for amt and scaled-amt features

df_test_to_encode = df_test [ features ]. copy ()

#One -hot encoding for categorical features
def one_hot_encode_predict (data , categories_to_explode ):

encoded_dfs = []
for column_name in categories_to_explode .keys ():

#Get the top most frequent values for each column

# Create a new DataFrame with one -hot encoded columns
encoded_df = pd. DataFrame ()
top_values = categories_to_explode [ column_name ]
for value in top_values :

encoded_df [ column_name + ’_’ + str( value )] = (data[ column_name ] ==
value ). astype (int)

encoded_dfs . append ( encoded_df )
data.drop( column_name , axis =1, inplace =True)

encoded_data = pd. concat ([ data] + encoded_dfs , axis =1)
return encoded_data
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Figure 5.25: Job feature analysis.

As we have demonstrate, this dataset is highly imbalanced because the number of fraud-
ulent transactions is only about 0.5% of the total dataset. This imbalance might create
bias in our model building process predicting almost all data points as ’not fraud’: we
need to balance the classes in the target variable in order to build a fair model. For this
training we will do a stratified cross validation with an oversampler as sampling technique
implementing a Random Forest Algorithm with a hyper-parameter tuning.
After feature encoding step we proceed with a stratified cross validation. K-fold cross-
validation is a resampling procedure used to evaluate machine learning models on a
limited data sample based on a single parameter k that refers to the number of groups
that a given data sample is to be split into. Stratification is used in imbalanced problems
to preserve the class frequencies in the individual folds to ensure that we are able to get
a realistic picture of the model performance.
How to solve the problem of imbalance between classes? Using a resampling technique.
Two main strategies for random resampling in imbalanced classification include Random
Oversampling, which duplicates examples randomly in the minority class, and Random
Undersampling, which deletes examples randomly from the majority class. We will choose
the Random Oversampling technique because there is a problem of losing valuable data
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Figure 5.26: Category feature analysis

with the Random Under sampling method. Change to the class distribution should be
only applied to the training dataset, because the intent is to influence the fit of the models,
not to the test set used to evaluate their performances.
We will adopt an imbalanced-learn pipeline using the imblearn package. The main
purpose is to assemble several steps that can be cross-validated together while setting
different parameters. During the cross-validation process we should split into training
and validation segments. Then, on each segment, we should:

• Oversample the minority class.

• Train the Random Forest classifier on the training segment.

• Validate the classifier on the remaining segment.

To find the best parameters for our model from a given set of values in a grid, we also
implement a Grid Search CV on a Random Forest classifier as hyper-parameter tuning.

# Implementing the imbalanced - learn pipeline
from imblearn . over_sampling import RandomOverSampler
from imblearn . pipeline import Pipeline , make_pipeline

imba_pipeline = make_pipeline ( RandomOverSampler ( random_state =42) ,
RandomForestClassifier ( random_state =13))

params = {
’n_estimators ’: [100 , 200 , 300] ,
’max_depth ’: [4, 6, 8],

}
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kf = StratifiedKFold ( n_splits =4, random_state =None , shuffle = False )

new_params = {’randomforestclassifier__ ’ + key: params [key] for key in params }
grid_imba = GridSearchCV ( imba_pipeline , param_grid = new_params , cv=kf , scoring =’f1 ’

,
return_train_score =True , n_jobs = -1)

grid_imba .fit(X_train , y_train )
print (’Best parameters :’, grid_imba . best_params_ )
pipeline_over = grid_imba . best_estimator_

The best parameters for our classifier are 8 as max-depth and 200 as n-estimators, so we
will just use the best parameters found after the hyper-parameter tuning.

# Building our model with the best_params_
rc = RandomForestClassifier ( random_state =42 , n_estimators =200 , max_depth = 8,

n_jobs = -1)
pipeline_over = make_pipeline ( RandomOverSampler ( random_state =42) , rc)
pipeline_over .fit(X_train , y_train )
y_predicted_val_prob = pipeline_over . predict_proba ( X_test )[:, 1]

A classifier is only as good as the metric used to evaluate it. Standard metrics treat all
classes as equally important, so using conventional metrics such as accuracy in imbal-
anced problems may lead to misleading conclusions because these metrics are insensitive
to skewed distributions. Imbalanced classification problems typically rate classification
errors with the minority class as more important than those with the majority class. As
such, they require performance metrics focused on the minority class, the class where
the observations needed to train an effective model are missing, making it particularly
challenging.
Precision-Recall metrics can be useful for imbalanced problems, but which metric between
precision and recall is most important here? In the case of credit card fraud detection,
we want to avoid False Negatives as much as possible. A false negative case means that a
fraudulent positive transaction is assessed to genuine transaction, which is detrimental.
Recall is more important than Precision because in this use case we would like to have
less False Negatives in trade off to have more False Positives.
The precision-recall curve shows the trade-off between precision and recall for different
thresholds and we can clearly observe the point where we have to start trading a lot
of precision for better recall score. For this scope we want to compare the classification
reports of the model for two different thresholds, 0.5 and 0.57.

# Classification report and confusion matrix with a threshold greater or equal than
0.5

precision recall f1 - score support

0 1.00 0.96 0.98 131229
1 0.13 0.94 0.23 861

accuracy 0.96 132090
macro avg 0.57 0.95 0.61 132090

weighted avg 0.99 0.96 0.97 132090

[[125999 5230]
[ 51 810]]

73



Graph Powered Machine Learning in Practice

Figure 5.27: Precision-Recall curve with selecting threshold and Top 10 Feature Impor-
tance

# Classification report and confusion matrix with a threshold greater or equal than
0.57

precision recall f1 - score support

0 1.00 0.98 0.99 131229
1 0.22 0.91 0.35 861

accuracy 0.98 132090
macro avg 0.61 0.95 0.67 132090

weighted avg 0.99 0.98 0.98 132090

[[128409 2820]
[ 75 786]]

So we select a threshold greater or equal than 0.57 with a recall score of 0.91 on the
minority class and a number of false negative of 75 with an improvement in term of f1-
score of 0.35. Average Precision (AP) plotted in Figure 5.27 summarizes such a plot by
calculating the weighted mean of precisions achieved at each threshold, considering the
increase in recall from the previous threshold.
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5.3.2 Antifraud Model with Graph Features

Graphs might be relevant in a fraud detection use case because of the relational nature
of this problem due to the data interdependence. The idea now is to import all data into
a graph model, enriching it with new graph features directly extracted from the network
to demonstrate how this type of approach is more efficient.
Firstly we aggregate the transactions on cc-num and merchant features, adding a new
feature num-trans for each row so whenever we have the same pair of sender and receiver
of the transaction, we aggregate the result based on the number of transactions, number
of frauds and total exchanged amount. The resulting graph model has the following
structure with 1667 nodes and 461785 relationships.

Figure 5.28: From aggregated tabular data to graph model

Because of we have people as nodes and relationships between people as edges, we could
refer to this graph as a social network and adopt social network analysis or link analysis
in general as a tool for improving the quality of fraud detection systems. The goal now is
to determine which types of unstructured network information extracted from a network
can be translated into meaningful characteristics of our entities. To do that we can use
two types of approaches, score-based and cluster-based: while the former assign a score to
each node analyzing the social network node by node, the second split the social network
into communities of nodes considering the relationships.
We want to compute the pageRank centrality as scored-based metric using the pageRank
algorithm mentioned in 4.3.4. It is important to consider the node not only individually
but as part of a community of nodes because communities that behave the same way are
likely to have a greater impact on the network than a single node. So we want to implement
Louvain algorithm on our graph in order to store for each node the communityId property
that contains the id of the community the node belongs to.

# Graph proiection
G, res = gds. graph . project (

’undiGraph ’,
[’Customer ’,’Merchant ’],
{

’PAYS ’: {
’orientation ’: ’UNDIRECTED ’,
’properties ’: [’total_amt ’]

}
}
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)
# Pagerank computation
df_page = gds. pageRank . stream (gds. graph .get(’undiGraph ’), maxIterations =20 ,

dampingFactor = 0.85 , relationshipWeightProperty = ’total_amt ’)

# Louvain community detection execution
df_train_community = gds. louvain . stream (gds. graph .get(’undiGraph ’),

relationshipWeightProperty = ’total_amt ’)

The next step of our analysis is to add these graph features into our machine learning
model distinguishing each connected feature according to the label. So we will insert four
adding features pr-cc, pr-merchant, community-cc and community-merchant.

Figure 5.29: Graph features analysis

# Adding graph features
def add_graph_features (df , df_pr , df_communities ):

df_graph = df. merge (df_pr , left_on =’cc_id ’, right_on =’nodeId ’)
df_graph = df_graph . rename ( columns ={" score ": " pr_cc "}).drop(" nodeId ", axis =1)
df_graph = df_graph . merge (df_pr , left_on =’merc_id ’, right_on =’nodeId ’)
df_graph = df_graph . rename ( columns ={" score ": " pr_merchant "}).drop(" nodeId ",
axis =1)
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df_graph = df_graph . merge ( df_communities , left_on =’cc_id ’, right_on =’nodeId ’)
df_graph = df_graph . rename ( columns ={" communityId ": " community_cc "}).drop (["
nodeId "," intermediateCommunityIds "], axis =1)
df_graph = df_graph . merge ( df_communities , left_on =’merc_id ’, right_on =’nodeId ’
)
df_graph = df_graph . rename ( columns ={" communityId ": " community_merchant "}).drop
([" nodeId "," intermediateCommunityIds "], axis =1)
return df_graph

df_train_graph = add_graph_features ( df_train_with_id_node_merch , df_page ,
df_train_community )

df_test_graph = add_graph_features ( df_test_with_id_node_merch , df_page ,
df_train_community )

#Pre - processing training data
features_not_to_encode = [" is_fraud ", " scaled_amt ", "lat", "long", "hour", "

merch_lat ", " merch_long "]

graph_features = [" pr_cc ", " pr_merchant ", " community_cc ", " community_merchant "]

features_to_encode = [" category ", "job"]
features = features_not_to_encode + features_to_encode + graph_features

df_train_to_encode_graph = df_train_graph [ features ]. copy ()
df_test_to_encode_graph = df_test_graph [ features ]. copy ()

dict_cat_top_populated = one_hot_encode_top_populated_fit ( df_train_to_encode_graph
.copy () , features_to_encode , 10)

df_train_encoded_top_values = one_hot_encode_predict ( df_train_to_encode_graph .copy
() , dict_cat_top_populated )

df_test_encoded_top_values = one_hot_encode_predict ( df_test_to_encode_graph .copy ()
, dict_cat_top_populated )

# Building our model with the best_params_ and graph features
rc = RandomForestClassifier ( random_state =42 , n_estimators =200 , max_depth =8, n_jobs

= -1)
pipeline_over = make_pipeline ( RandomOverSampler ( random_state =42) , rc)
pipeline_over .fit(X_train , y_train )
y_predicted_val_prob = pipeline_over . predict_proba ( X_test )[:, 1]

# Classification report and confusion matrix with a threshold greater or equal than
0.57

precision recall f1 - score support

0 1.00 0.98 0.99 131229
1 0.26 0.92 0.41 772

accuracy 0.98 132001
macro avg 0.63 0.95 0.70 132001

weighted avg 1.00 0.98 0.99 132001

# Confusion matrix
[[129245 1984]

[ 63 709]]

We can see in 5.30 the introduction of graph features improve our results in terms of
Average Precision with an improvement in terms of f1-score of 0.41.
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Figure 5.30: Precision-Recall curve with graph features and Top 10 Feature Importance
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Chapter 6

Conclusion and future
developments

We explored a graph-based approach for the three presented problems. For the link pre-
diction problem, we identified specific graph proximity and clustering features based on
historical social interactions to predict future friendships. The graph-powered machine
learning model achieves an AUC score of around 0.97.
This model can be applied to any monopartite graphs where some relationships between
nodes are known, aiming to accurately predict new ones. Examples include e-commerce
product networks, citation networks, or biological networks.
For the recommendation system, we built a comprehensive graph-driven recommenda-
tion engine, employing various approaches from a content-based method to collaborative
filtering, and finally, a hybrid approach. The key advantage is the flexibility offered by
graph-based data representation and dynamic data management: independent models
from each recommender can be stored collectively and accessed easily during the recom-
mendation phase, facilitating real-time analysis.
For the anti-fraud detection model, we deployed two distinct approaches to address this
imbalanced issue: a traditional model and a graph-based model incorporating centrality
and cluster features. This enabled prediction of potentially suspicious connections among
entities in a transaction network, achieving an average precision score of 0.76, compared
to 0.63 obtained with the conventional model.
What are the next stages in this data science journey? Two emergent areas of Graph
Data Science journey are Graph Embedding and Graph Neural Network (GNNs) [43].
Let us try to understand without going into technical details what embedded graph and
graph neural networks are.
Richness of graph data could be a double-edge sword because firstly it expresses a wealth
of information to process and for many ML tasks it is not so simple to identify features
to be extracted for training a model. Secondly, classical ML techniques require matrices,
not graphs as input format, hence the need to transform graph data to a compressed and
tabular form.
Given an input graph, an embedding technique may be to find an encoding function
capable of converting nodes and relationships in dimensional vectors after that classical
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machine learning could be apply. Graph embedding captures the essence of a vertex’s
nature as a set of latent features in the sense that we cannot really describe them, trans-
forming graph structure into a compact set of vertex vectors. This embedding technique
allows to gather graph features without a process of feature extraction.
Generally deep learning approaches the problem of representation learning by introducing
representations that are expressed in terms of other and simpler representations [44].
Graph Neural Networks, GNNs, combine the added insight from connected data with
the modeling power of neural networks for prediction and classification tasks using graph
structure during the training cycle not just as pre-processing step. More specifically, GNNs
strenght consists in generating representations of nodes that depend on the topology of
the graph as well as on any feature information about nodes and relationships we have,
because we insert into the traditional neural network data flow an additional step called
graph convolution, during which for each vertex we convolve/combine its features with
the features of its neighbors.

80



Bibliography

[1] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, 2010.

[2] “Social network analytics.” https://medium.com/analytics-vidhya/social-network-
analytics-f082f4e21b16.

[3] “London tube network.” http://mng.bz/G6wN.
[4] “Economic networks: The new challenges.” https://www.science.org/doi/10.1126/

science.1173644.
[5] A. Hodler and M. Needham, Graph Algorithms: Practical Examples in Apache Spark

& Neo4j. O’Reilly Media, Inc., 2019.
[6] 5-Graph-Data-Science-Basics-Everyone-Should-Know.
[7] A. Hodler and M. Needham, Graph Data Science (GDS) For Dummies, Neo4j Special

Edition. John Wiley & Sons, Inc., 2021.
[8] R. Wirth and J. Hipp, “CRISP-DM: Towards a Standard Process Model for Data

Mining.,” in Proceedings of the Fourth International Conference on the Practical
Application of Knowledge Discovery and Data Mining, pp. 29–39, 2000.

[9] A. Negro and J. Webber, Graph-Powered Machine Learning. Manning Pubblications
Co, 2021.

[10] J. Webber, “Not all graph databases are created equal: Why you need a native
graph,” in Database Trends and Applications, 2018.

[11] J. Stegeman, Native vs. Non-Native Graph Database, 2023.
[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algortihms.

The MIT Press, 2022.
[13] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’Reilly Media, Inc., 2015.
[14] A. Vukotic, N. Watt, D. Fox, T. Abedrabbo, and J. Partner, Neo4j in Action. Man-

ning, 2014.
[15] B. Avey, Labeled vs Typed Property Graphs - All Graph Databases are not the same,

2021.
[16] J. Barrasa, RDF Triple Stores vs. Labeled Property Graphs: What is the Difference?,

2021.
[17] “The RDF ecosystem.” https://book.validatingrdf.com/bookHtml008.html.
[18] “Graph Algorithms.” https://neo4j.com/docs/graph-data-science/current/ algo-

rithms/.
[19] “Graph Algorithms.” https://graphacademy.neo4j.com/courses/graph-data-science-

fundamentals/1-graph-algorithms/.

81



Bibliography

[20] “Using Graph Algorithms for Advanced Analytics Part3, Community Detection.”
https://www.youtube.com/watch?v=s3HvMvyHTUY&t=853s.

[21] “Using Graph Algorithms for Advanced Analytics Part1, Shortest Paths.”
https://www.youtube.com/watch?v=Ra0qORVKsWs&t=1819s.

[22] “Using Graph Algorithms for Advanced Analytics Part2, Centrality.”
https://www.youtube.com/watch?v=msbR-S-R8&t=1682s.

[23] “Degree Centrality.” https://www.sci.unich.it/ francesc/teaching/network/de-
gree.html.

[24] “Betweenness Centrality.” https://www.sci.unich.it/ francesc/teaching/network/-
betweeness.html.

[25] “PageRank Centrality.” https://www.sci.unich.it/ francesc/teaching/network/-
pagerank.html.

[26] J. Kleinberg and D. Liben-Nowell, The Link Prediction Problem for Social Networks,
2004.

[27] “Topological link prediction.” https://neo4j.com/docs/graph-data-science/current/
algorithms/linkprediction.

[28] “Link prediction.” https://neo4j.com/developer/graph-data-science/link-prediction.
[29] “Split relationships.” https://neo4j.com/docs/graph-data-science/current/machine-

learning/pre-processing/split-relationships/.
[30] Ricci, L. Rokach, and B. Shapira, Recommender Systems Handbook. Springer, 2015.
[31] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender Systems: An

Introduction. Cambridge University Press, 2010.
[32] “Building a Real-Time Product Recommender System with Graph Databases.”

https://medium.com/badal-io/building-a-real-time-product-recommender-system-
with-graph-databases-leveraging-neo4j-and-bigquery-65b5b361d276.

[33] Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating collaborative
filtering recommender systems,” in ACM Transactions on Information Systems22:1,
pp. 5–53, 2004.

[34] Y. Koren, “Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model,” in Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 426–434, 2008.

[35] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk, “Major components of the gravity
recommendation system,” in SIGKDD Explorations Newsletter 9:2, pp. 80–83, 2007.

[36] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering
recommendation algorithms.,” in Proceedings of the 10th International World Wide
Web Conference, pp. 285–295, 2001.

[37] R. Burke, “Hybrid recommender systems: Survey and experiments.,” in User Mod-
eling and User-Adapted Interaction 12:4, pp. 331–370, 2002.

[38] “Best techniques and metrics for Imbalanced Dataset.”
https://www.kaggle.com/code/marcinrutecki/best-techniques-and-metrics-for-
imbalanced-dataset.

[39] “Credit Card Fraud Detection.” https://www.kaggle.com/code/gopibollineni/credit-
card-fraud-detection.

[40] “Antifraud Model For Payment Transactions Dataset.”

82



Bibliography

https://github.com/JulienGenovese/JulienGenovese/tree/master/use-
cases/antifraud-with-graph.

[41] “Tour of Evaluation Metrics for Imbalanced Classification.”
https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-
classification.

[42] “Exploring Fraud Detection With Neo4j & Graph Data Science.”
https://medium.com/@zach.blumenfeld/exploring-fraud-detection-with-neo4j-
graph-data-science-part-4-cff013808a45.

[43] “Graph algorithms & graph machine learning: Making sense of today’s choices.”
https://www.youtube.com/watch?v=d1oLRt1−X8.

[44] G. Ian, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.

83


	Introduction
	Introduction to Graphs and Graph Data Science
	Networks and Graphs
	Graph concepts
	Graph Data Science Journey
	Use cases for GDS
	Graph powered machine learning

	Storing connected data
	Native vs. non-native graph databases
	Graph Modeling
	Property graph model: labeled vs typed property graphs
	The RDF vs labeled property graph models
	Hypergraphs

	Nonfunctional features of a native graph database
	Graph compute engines

	Graph algorithms
	Community Detection Algorithms
	Triangle Count and Clustering Coefficient
	Weakly Connected Components and Strongly Connected Components
	Label Propagation
	Louvain Modularity

	Pathfinding and Graph Search Algorithms
	Breadth First Search and Depth First Search
	Dijkstra Source-Target Shortest Path
	Dijkstra Single-Source Shortest Path
	All Pairs Shortest Path

	Centrality Algorithms
	Degree Centrality
	Closeness Centrality
	Betweennes Centrality
	PageRank Centrality

	Similarity Algorithms
	K-Nearest Neighbors
	Node Similarity
	Similarity functions


	Graph Powered Machine Learning in Practice
	Link Prediction Problem with graphs
	Graph Model Creation
	Train and Test Datasets
	Graph feature engineering
	Model selection and training
	Model evaluation

	Graph Recommender System
	Content-based recommendations
	Collaborative filtering recommendations
	A hybrid recommender system

	Antifraud Models For Credit Card Transaction Dataset
	Classic Antifraud Model
	Antifraud Model with Graph Features


	Conclusion and future developments
	Bibliography

