
POLITECNICO DI TORINO

Master’s Degree in Mathematical Engineering

Master’s Degree Thesis

Recovering Beam Search for

the 0-1 Knapsack Problem with

Forfeits

Supervisor

Prof. Federico DELLA CROCE

DI DOJOLA

Candidate

Ghassane BEN EL AATTAR

October 2024

Summary

The 0-1 Knapsack Problem with Forfeits is a variant of the Knapsack Problem

where, given a set of items, we want to choose a subset of them such that

the total sum of their values minus the sum of forfeits induced by choosing

specific pairs of items is maximized. As in the regular Knapsack Problem,

the sum of weights of the subset of items selected must be less or equal to a

specified value (the budget).

In this thesis, we present a heuristic approach for this problem, which is

based on the Recovering Beam Search algorithm and Dynamic Programming.

Our goal was to develop an algorithm that could attain better results,

given a time limit, than a well-known commercial solver for mathematical

optimization problems, for specified instances and a large number of items.

Specifically, given a time limit, we wanted our heuristic to return a value

of the objective function closer to the optimal value than the one given by

the solver used as a reference.

1

Contents

1 Introduction 7

1.1 Combinatorial Optimization 7

1.2 Computational Complexity . 8

1.3 Linear Programming . 13

2 The Knapsack Problem 15

2.1 Linear Programming Model 15

2.2 Decision Version . 16

2.3 Branch and Bound . 18

2.3.1 Branch and Bound Algorithm 18

2.3.2 Branching . 19

2.3.3 Binary Branching . 19

2.3.4 N-ary Branching . 20

2.3.5 Bounding . 20

2.3.6 Branch and Bound for the 0-1 Knapsack Problem . . . 22

2.4 Dynamic Programming . 25

2.4.1 Stages . 25

2.4.2 States . 26

2.4.3 Recursive Optimization 26

2.4.4 Dynamic Programming for the 0-1 Knapsack Problem . 27

3 0-1 Knapsack Problem with Forfeits 33

3.1 Mathematical Formulation . 33

3.2 Literature . 34

3.2.1 GreedyForfeits . 35

2

3.2.2 CarouselForfeits . 38

4 Recovering Beam Search 41

4.1 Description of the Procedure 42

5 Recovering Beam Search for the 0-1 Knapsack Problem with

Forfeits 47

5.1 Data Representation . 47

5.2 Order of the Items . 48

5.3 Upper Bound Computation 49

5.4 Lower Bound Computation . 50

5.5 Recovering Beam Search . 57

5.5.1 Branching and Solutions Generation 57

5.5.2 Recovering Step . 57

5.5.3 Filtering Solutions . 61

5.5.4 Inserting new Partial Solutions 64

5.5.5 Overall Time and Memory Complexity 64

6 Computational Results 66

6.1 Description of Used Instances and Environment 66

6.2 General Results . 67

6.3 Choice of Beam Size . 68

6.4 Results for Bigger Time Limits 69

7 Conclusions 70

7.1 Our Solution for the 0-1 Knapsack Problem with Forfeits . . . 70

7.2 Improving the Upper Bound for each Partial Solution 70

3

List of Algorithms

1 KNAPSACKDPTOPSORT 29

2 KNAPSACK . 30

3 GreedyForfeits - Part I . 37

4 GreedyForfeits - Part II . 38

5 CarouselForfeits . 39

6 RBS method-Part I (beam width = w, search tree depth = u) 45

7 RBS method-Part II (continued from the previous page) . . . 46

8 Building Dynamic Programming Table for 0-1 Knapsack . . . 51

9 GetOrder Function . 51

10 Update Active Variables Function 53

11 Get Lower Bound Function (Part I) 54

12 Get Lower Bound Function (Part II) 55

13 Get Lower Bound Function (Part III) 56

14 Recovering Beam Search - Part I 59

15 Recovering Beam Search - Part II 60

16 Solutions Filtering and Evaluation Function Computation -

Part I . 62

17 Solutions Filtering and Evaluation Function Computation -

Part II . 63

18 Updating Solutions . 65

4

List of Figures

1 Computational Complexity Classes [?] 12

2 Types of Branching . 19

3 Example of a 0-1 Knapsack Problem 24

4 Example of a search tree in a Branch and Bound algorithm

for the 0-1 Knapsack problem described before 24

5 Example of State Tree for the Knapsack Problem [?] 28

6 A compact representation of an instance of the Knapsack prob-

lem. 31

7 An example of a dynamic programming table/array for a 0-1

Knapsack Problem. 32

5

List of Tables

1 Results Comparison for n = 5000 67

2 Results Comparison for n = 10000 68

3 Beam Tests . 68

4 Results for Larger Time Limits - I - Instance n10000 6 69

5 Results for Larger Time Limits - II - Instance n10000 7 69

6

1 Introduction

The Knapsack Problem is one of the well-known problems in the field of

combinatorial optimization [1] [2], studied for over a century. It is a problem

with a very intuitive construction, but it has numerous applications in various

fields such as, for instance, cryptography [3].

There are several variants of this problem, such as the 0-1 Knapsack

Problem, the Multidimensional Knapsack Problem, and others.

In this thesis, our goal is to develop a solution for the 0-1 Knapsack

Problem with Forfeits (or Penalties) [4]. This problem is a particular case

of the 0-1 Knapsack Problem in which there is a reduction in profit when

certain pairs of items are taken into the knapsack.

This problem is difficult to solve, as it belongs to the class of NP-Hard

problems.

A heuristic solution based on Recovering Beam Search will be presented,

with an approach to estimate an upper bound at each explored node based

on Dynamic Programming.

Initially, a description of the relevant theory to the algorithm will be

provided, followed by a detailed description of the problem, and finally, our

solution will be presented, including computational results.

1.1 Combinatorial Optimization

Combinatorial optimization is the process of searching for maximums (or

minimums) of an objective function F whose domain is a discrete but exten-

sive configuration space (unlike an N -dimensional continuous space). Some

7

simple examples of typical combinatorial optimization problems are:

• The Traveling Salesman Problem: Given the positions (x, y) of

N different cities, find the shortest possible path that visits each city

exactly once.

• Bin-Packing: Given a set of N objects, each with a specified size si,

pack them into the fewest number of containers (each of size B).

• Integer Linear Programming: Maximize a specified linear combina-

tion of a set of integersX1, . . . , XN subject to a set of linear constraints,

each of the forms a1X1 + . . .+ aNXN ≤ c.

• Job-shop Scheduling: Given a set of jobs to be performed, and a

limited set of tools with which these jobs can be done, find a schedule

for which jobs should be done when and with which tools that minimizes

the total time until all jobs are completed.

• Boolean Satisfiability: Assign values to a set of Boolean variables

in order to satisfy a given Boolean expression.

1.2 Computational Complexity

Computational Complexity Theory [5] is a branch of computer science and

mathematics that focuses on classifying computational problems according

to their intrinsic difficulty and on the relationship between these classes. A

computational problem is understood as a task solved by a computer. The

formulation of a specific problem in general terms specifies the desired output

8

for a given input.

Definition 1.1 (Computational Problem):

A computational problem can be defined as a tuple P = (I, O, s,m),

where:

• I is the set of all possible inputs,

• O is the set of all possible outputs,

• s : I → O is the problem specification, which maps each input to an

output,

• m : I → N is the measure function, which assigns a size to each input.

Definition 1.2 (Decision Problem):

A Decision Problem is a problem that can be posed as a yes-no question

regarding input values.

The various classes defined in computational complexity theory refer to

decision problems. Every optimization problem can be expressed as a deci-

sion problem by adding an appropriate bound.

Definition 1.3 (Computational Complexity):

We define the computational complexity of an algorithm as a function

that maps each instance to the execution time of the algorithm required to

solve that specific instance of the problem. We denote it as f(n), where n is

the size of the problem instance.

9

Computational complexity is generally indicated using the Big O asymp-

totic notation. We say that:

f(n) ∈ O(g(n)) if there exist n0, c > 0 such that f(n) ≤ c · g(n),∀n ≥ n0.

In particular, if g(n) is a polynomial, we say that the algorithm has poly-

nomial complexity. Otherwise, if the algorithm is O(2n) or O(n!), we say

that the algorithm has non-polynomial complexity. This is an important

distinction used to divide problems into different classes. The computational

complexity of a problem is defined by the complexity of the best algorithm

capable of solving it.

Definition 1.4 (Class P):

The class P (Polynomial Time) includes problems that can be solved by

a deterministic Turing machine in polynomial time. Formally, a problem P

is in P if there exists an algorithm A and a polynomial p such that for every

input x ∈ I, A solves P in at most p(|x|) steps, where |x| denotes the size of

the input.

Definition 1.5 (Class NP):

The class NP (Nondeterministic Polynomial Time) includes problems for

which a proposed solution can be verified in polynomial time by a determin-

istic Turing machine. Formally, a problem P is in NP if there exists a verifier

algorithm V and a polynomial q such that for every input x and proposed

solution y, V verifies whether y is a correct solution for x in at most q(|x|)

steps.

10

The NP class includes problems solvable in polynomial time by a nonde-

terministic Turing machine.

Definition 1.6 (NP-Completeness):

A problem P is NP-complete if:

1. P is in NP,

2. Every problem in NP is polynomial-time reducible to P .

The concept of NP-completeness is used to demonstrate the difficulty of

problems. If an NP-complete problem has a polynomial-time solution, then

every problem in NP also has a polynomial-time solution, which effectively

means that P = NP.

The P vs. NP problem is one of the most significant open problems

in computational complexity theory. It asks whether every problem whose

solution can be quickly verified (in NP) can also be quickly solved (in P).

This question remains central to understanding the limits of what can be

efficiently computed.

Definition 1.7 (NP-Hard):

A problem X is classified as NP-hard if there exists a NP-complete prob-

lem that reduces to it, but X has not been proven to be in NP. Hence, an

NP-hard problem does not necessarily have to belong to NP, so it may not

be verifiable in polynomial time.

Typical example of an NP-hard problem is the optimization version of an

NP-complete decision problem.

11

Definition 1.8 (Problem Reduction):

In complexity theory, problem reduction is a method for demonstrating

the difficulty of a problem by showing that another problem known as the

”starting problem” can be efficiently solved through a transformation into a

”target problem.” In other words, if we can solve the target problem, we can

also efficiently solve the starting problem. This concept is fundamental for

demonstrating the complexity of various problems and for classifying them

within different complexity classes, such as NP, NP-complete, or NP-hard.

By Cook’s Theorem, every problem in NP can be polynomial-time re-

duced to a particular problem called the Boolean Satisfiability Problem

(SAT).

The SAT problem consists of determining whether a Boolean formula can

be satisfied by assigning true/false Boolean values to the variables.

Figure 1: Computational Complexity Classes [?]

12

1.3 Linear Programming

Linear programming is a mathematical method used to solve optimization

problems in which we seek to maximize or minimize a linear function subject

to linear constraints. The standard form of a linear programming problem is

given by:

Maximize cTx

subject to:

Ax ≤ b

x ≥ 0

where c is the coefficient vector of the objective function, x is the vector of

decision variables, A is the coefficient matrix of the constraints, and b is the

vector of constraint constants. The decision variables are often non-negative

(x ≥ 0), but they can also be free. The constraints are expressed as linear

inequalities.

Variants of linear programming include integer linear programming (ILP),

where decision variables are constrained to be integers, mixed-integer linear

programming (MILP), where some variables are constrained to be integers

while others are not, and binary linear programming (BLP), where decision

variables are binary, meaning they take on only values 0 or 1.

Integer linear programming is particularly useful for modeling problems

where decision variables represent discrete units, such as the number of prod-

13

ucts to manufacture or items to select.

Binary linear programming, on the other hand, is commonly used to

represent yes/no decisions or selection among exclusive alternatives.

14

2 The Knapsack Problem

The Knapsack Problem is a well-known combinatorial optimization problem,

which involves finding the maximum profit obtainable by choosing a subset

of items, subject to the constraint on the sum of their weights being less than

a predetermined value, the budget.

This problem has several variants and different formulations, depending

on the context.

Some of these are:

• 0-1 Knapsack Problem: In this variant, which is the one of our interest

in this thesis work, each item can be selected only once. The problem

is thus to determine which items to choose to maximize profit, subject

to the sum of weights constraint.

• Unbounded Knapsack Problem: It is possible to select the same item

multiple times.

• Multi-dimensional Knapsack Problem: In this case, we have multiple

knapsacks available.

2.1 Linear Programming Model

The 0-1 Knapsack Problem can be formulated as a linear programming model

as follows. Let xi be a binary decision variable indicating whether item i is

selected (xi = 1) or not (xi = 0). The objective function aims to maxi-

mize the total value of selected items while respecting the knapsack capacity

constraint:

15

Maximize
n∑

i=1

vixi

subject to the constraint:

n∑
i=1

wixi ≤ W

xi ∈ {0, 1}, i = 1, 2, . . . , n

where n is the number of items, vi is the value of item i, wi is the weight

of item i, and W is the knapsack capacity.

2.2 Decision Version

The decision version of the 0-1 knapsack problem: given n items with weights

w1, w2, . . . , wn, value v1, v2, . . . , vn, capacityW , and value V , is there a subset

S ⊆ {1, 2, . . . , n} such that
∑

i∈S wi ≤ W and
∑

i∈S vi ≥ V ? [6]. We

recall here the NP-completeness proof of the decision version of the knapsack

problem [7].

Theorem 1 The knapsack problem is NP-complete.

Proof 1 Firstly, the knapsack problem is in NP. The proof involves consid-

ering the set S of selected items and the verification process, which computes∑
i∈S si and

∑
i∈S vi, which requires polynomial time with respect to the input

size.

16

Secondly, we show that there exists a polynomial reduction from the Par-

tition problem to the Knapsack problem. It suffices to demonstrate the ex-

istence of a reduction Q(·) in polynomial time such that Q(X) is a ”Yes”

instance for the Knapsack problem if and only if X is a ”Yes” instance for

the Partition problem.

Suppose we have a1, a2, . . . , an for the Partition problem, consider the

following Knapsack problem: si = ai, vi = ai for i = 1, . . . , n, B = V =

1
2

∑n
i=1 ai. Q(·) here is the process that converts the Partition problem into

the Knapsack problem. It is evident that this process is polynomial in the

input size.

If X is a ”Yes” instance for the Partition problem, there exists S and T

such that
∑

i∈S ai =
∑

i∈T ai = 1
2

∑n
i=1 ai. Suppose our knapsack contains

the items in S, then
∑

i∈S si =
∑

i∈S ai = B and
∑

i∈S vi =
∑

i∈S ai = V .

Therefore, Q(X) is a ”Yes” instance for the Knapsack problem.

Conversely, if Q(X) is a ”Yes” instance for the Knapsack problem, with

the selected set S, consider T = {1, 2, . . . , n} − S. We have
∑

i∈S si =∑
i∈S ai ≤ B = 1

2

∑n
i=1 ai and

∑
i∈S vi =

∑
i∈S ai ≥ V = 1

2

∑n
i=1 ai. This

implies that
∑

i∈S ai = 1
2

∑n
i=1 ai and

∑
i∈T ai =

∑n
i=1 ai −

1
2

∑n
i=1 ai =

1
2

∑n
i=1 ai. Therefore, {S, T} is the desired partition and X is a ”Yes” in-

stance for the Partition problem.

This confirms the NP-completeness of the Knapsack problem.

17

2.3 Branch and Bound

Discrete optimization problems in general are very difficult to solve because

the number of solutions grows exponentially with the number of variables and

tools from differential calculus, such as derivatives (useful for characterizing

optimal points), are not available.

Due to the combinatorial explosion of the number of solutions, explicit

enumeration is not feasible.

However, there are techniques for implicit enumeration such as:

• Branch and Bound [8]

• Dynamic Programming [9]

2.3.1 Branch and Bound Algorithm

In a branch-and-bound algorithm, a difficult problem P is recursively decom-

posed into multiple easier sub-problems F1, F2, . . . , Fn. The decomposition

(branching) must satisfy the following condition to ensure the correctness of

the algorithm:

χ(P) =
n⋃

i=1

χ(Fi)

The optimal solution of P is determined by comparing the optimal solu-

tions of the sub-problems originated from it. In case of minimization:

z∗(P) = min
i=1,...,n

{z∗(Fi)}

The recursive decomposition of problems into sub-problems generates a

tree (also called a decision tree or search tree), in which the root corresponds

to the original problem P and every other node corresponds to a sub-problem.

18

Figure 2: Types of Branching

2.3.2 Branching

For efficiency purposes, the decomposition usually involves partitioning χ(P)

into disjoint subsets so that no solution needs to be (implicitly) considered

more than once:

χ(Fi) ∩ χ(Fj) = ∅ ∀i ̸= j = 1, . . . , n

There are two main ways of branching:

• Variable fixing;

• Constraint insertion.

Each sub-problem is a restriction of its predecessor and a relaxation of

its successors.

2.3.3 Binary Branching

In this case, common branching rules are as follows.

• Branching on a binary variable: A binary variable x is selected. Two

sub-problems are generated by setting x = 0 in one and x = 1 in the

other.

19

• Branching on an integer constraint: A vector of integer variables (x1, x2, . . . , xn),

an appropriate vector of integer coefficients (a1, a2, . . . , an), and an ap-

propriate integer constant term k are chosen. Two sub-problems are

generated by inserting the constraints ax ≤ k in one and ax ≥ k+1 in

the other.

2.3.4 N-ary Branching

Rules for n-ary branching are as follows.

• Branching on an integer variable: An integer variable x ∈ [1, . . . , n] is

selected. n sub-problems are generated by fixing x = 1, x = 2, . . . , x =

n.

• Branching on n binary variables: A vector of n binary variables (x1, x2, . . . , xn)

is chosen. n + 1 sub-problems are generated by fixing some variables

as follows (one row for each sub-problem):

x1 = 1

x1 = 0, x2 = 1

x1 = x2 = 0, x3 = 1

. . .

x1 = x2 = . . . = xn−1 = 0, xn = 1

x1 = x2 = . . . = xn = 0

2.3.5 Bounding

Given a problem P :

minimize zP (x) s.t. x ∈ χP

20

a problem R:

minimize zR(x) s.t. x ∈ χR

is a relaxation of P if and only if the following two conditions hold:

• χP ⊆ χR

• zR(x) ≤ zP (x) ∀x ∈ χP .

The optimal value of the relaxation is never worse than the optimal value of

the original problem:

z∗R ≤ z∗P

As a consequence of the relaxation definition, the following corollaries

hold.

Corollary 1 If R is infeasible, then P is also infeasible.

Corollary 2 If x∗ is optimal for R and is feasible for P and zR(x
∗) = zP (x

∗),

then x∗ is also optimal for P .

Corollary 3 If z∗R ≥ z̄, then z∗P ≥ z̄.

Bounding involves associating a lower bound with each sub-problem F .

Since z∗R ≤ z∗P , the optimal value of R(F) (a relaxation of F) provides a

lower bound for each sub-problem F :

z∗R(F) ≤ z∗F

The lower bound is compared with an upper bound corresponding to the

value zP (x̄) of a feasible solution x̄ ∈ X(P). If the lower bound of F is not

21

better than the best available feasible solution (the minimum found upper

bound), then F can be discarded.

The correctness of bounding is given by the concatenation of two inequal-

ities.

• The first ensures that no solution can exist in χ(F) with a better value

than z∗R(F), since z∗F ≥ z∗R(F).

• The second is z∗R(F) ≥ zP (x̄).

Concatenating them concludes that

z∗F ≥ z∗R(F) ≥ zP (x̄)

which means that solving problem F optimally is futile because it cannot

provide any solution better than the one already known, x̄. Discarding sub-

problems in a branch-and-bound algorithm is crucial for saving time and

memory.

For maximization problems, the optimal value of R(F) provides an upper

bound for each sub-problem F and every feasible solution constitutes a lower

bound.

2.3.6 Branch and Bound for the 0-1 Knapsack Problem

A branch and bound algorithm for solving the 0-1 knapsack problem proceeds

as follows. Consider the problem instance represented by a set of n items,

each characterized by a value vi and a weight wi, and a maximum weight

limit W that the knapsack can hold. The objective is to maximize the total

value of the items placed in the knapsack while respecting the maximum

weight allowed.

22

Initially, create a root node representing the space of initial feasible solu-

tions. Subsequently, perform branching on each decision variable xi, corre-

sponding to the decision of including or not including item i in the knapsack.

At each branching, two sub-problems are generated: one where item i is

included in the knapsack and one where it is not.

For each generated node, calculate an upper bound based on a relaxation

function of the problem. In the case of the 0-1 knapsack, a common bound

is given by the optimal solution of the continuous relaxation of the problem,

where fractional items are considered.

Then, proceed to explore the search tree of sub-problems in depth, main-

taining an ordered list of open nodes based on the computed bound. During

exploration, cuts are made on nodes that cannot lead to an optimal solution,

for example when the upper bound of the node does not exceed the best

available feasible solution (largest lower bound) value.

The algorithm continues to explore the tree until there are no more open

nodes. The optimal solution is then given by the best available feasible

solution.

This approach guarantees the optimality of the found solution, as it ex-

haustively explores the entire space of feasible solutions, cutting off branches

of the tree that do not lead to solutions better than those already found.

The procedure is therefore guaranteed to return the optimal solution to the

0-1 knapsack problem.

23

Figure 3: Example of a 0-1 Knapsack Problem

Figure 4: Example of a search tree in a Branch and Bound algorithm for the

0-1 Knapsack problem described before

24

2.4 Dynamic Programming

Dynamic Programming is a technique used to solve optimization problems.

• Reduces the problem’s complexity, typically from O(2n) to polynomial

(or pseudo-polynomial, as for the 0-1 Knapsack Problem).

• An optimization problem is broken down into subproblems, defined by

variables called ”states”. Solutions for every subproblem is recursively

calculated from previously calcualted ones, starting from the base case.

2.4.1 Stages

The essential characteristic of the dynamic programming approach is the

structuring of optimization problems into multiple stages [9], which are solved

sequentially one stage at a time. Although each problem of a single stage

is solved like a normal optimization problem, its solution helps define the

characteristics of the next single-stage problem in the sequence.

Often, stages represent different time periods in the planning horizon of

the problem. For example, the problem of determining the inventory level of

a single commodity can be formulated as a dynamic program. The decision

variable is the amount to order at the beginning of each month; the goal is to

minimize the total ordering and inventory holding costs; the basic constraint

requires that the demand for the product be met. If we can only order at the

beginning of each month and want an optimal ordering policy for the next

year, we could decompose the problem into 12 stages, each representing the

ordering decision at the beginning of the corresponding month.

25

2.4.2 States

Associated with each stage of the optimization problem are the states of the

process. States reflect the information necessary to fully assess the conse-

quences that the current decision has on future actions.

In the inventory problem mentioned before, each stage has only one vari-

able describing the state: the available inventory level of the single commod-

ity.

Specifying the states of the system is perhaps the most critical design

parameter of the dynamic programming model. There are no fixed rules

for doing this. In fact, for the most part, this is an art that often requires

creativity and subtle intuition about the problem at hand. The essential

properties that should motivate the selection of states are: i) States should

convey sufficient information to make future decisions regardless of how the

process has reached the current state; and ii) The number of state variables

should be small, as the computational effort associated with the dynamic

programming approach is prohibitively high when more than two, or possibly

three, state variables are involved in formulating the model.

The latter characteristic significantly limits the applicability of dynamic

programming in practice.

2.4.3 Recursive Optimization

The last general characteristic of the dynamic programming approach is the

development of a recursive optimization procedure, which constructs a solu-

tion to the overall N-stage problem by first solving a single-stage problem

and sequentially including one stage at a time and solving single-stage prob-

26

lems until the overall optimum is found. This procedure can be based on a

process of backward induction, where the initial stage to be analyzed is the

final stage of the problem, and problems are solved by moving back one stage

at a time until all stages are included. Alternatively, the recursive procedure

can be based on a process of forward induction, where the initial stage to

be solved is the initial stage of the problem, and problems are solved by ad-

vancing one stage at a time until all stages are included. In certain problem

contexts, only one of these induction processes may be applied (e.g., only

backward induction is allowed in most problems involving uncertainties).

The basis of the recursive optimization procedure is the so-called decom-

position principle of optimality, which has already been stated: an optimal

policy has the property that, whatever the current state and decision, the

remaining decisions must constitute an optimal policy with respect to the

state resulting from the current decision.

2.4.4 Dynamic Programming for the 0-1 Knapsack Problem

Let us consider a brute force approach for this problem, where we explore the

entire state tree. The edges will consist of adding or not adding a variable to

the knapsack, therefore the number of nodes in the tree will be of the order

of 2n.

Let us now see how we can use dynamic programming to develop a faster

solution.

A solution to an instance of the Knapsack problem will indicate which

items should be added to the knapsack [10]. The solution can be broken into

n true/false decisions d0, . . . , dn−1. For 0 ≤ i ≤ n − 1, di indicates whether

27

Figure 5: Example of State Tree for the Knapsack Problem [?]

item i will be taken into the knapsack.

In order to decide whether to add an item to the knapsack or not, we

need to know if we have enough capacity left over. So the ”current state”

when making a decision must include the available capacity or, equivalently,

the weight of the items that have already been added to the knapsack.

Let dp[i][j] be the maximum value that can be obtained by using a subset

of the items i, . . . , n − 1 (last n − i items) which weighs at most j pounds.

When computing dp[i][j], we need to consider all the possible values of di

(the decision at step i):

1. Add item i to the knapsack. In this case, we need to choose a subset of

the items i+1, . . . , n− 1 that weighs at most j− si pounds. Assuming

we do that optimally, we will obtain dp[i+1][j − si] value out of items

i+ 1, . . . , n− 1, so the total value will be vi + dp[i+ 1][j − si].

2. Don’t add item i to the knapsack, so we will re-use the optimal solution

28

for items i + 1, . . . , n − 1 that weighs at most j pounds. That answer

is in dp[i+ 1][j].

We want to maximize our profits, so we will choose the best possible outcome.

dp[i][j] = max (dp[i+ 1][j], dp[i+ 1][j − si] + vi) if j ≥ si

To wrap up the loose ends, we notice that dp[n][j] = 0,∀0 ≤ j ≤ S is

a good base case, as the interval n . . . n − 1 contains no items, so there’s

nothing to add to the knapsack, which means the total sale value will be 0.

The answer to our original problem can be found in dp[0][S]. The value in

dp[i][j] depends on values of dp[i + 1][k] where k < j, so a good topological

sort would be:

dp[n][0] dp[n][1] . . . dp[n][S] dp[n−1][0] dp[n−1][1] . . . dp[n−1][S] . . . dp[0][0],

, dp[0][1] . . . dp[0][S]

This topological sort can be produced by the pseudo-code below.

Algorithm 1 KNAPSACKDPTOPSORT

1: for i in {n, n− 1, . . . , 0} do

2: for j in {0, 1, . . . , S} do

3: print (i, j)

4: end for

5: end for

The full pseudo-code is straightforward to write, as it closely follows the

topological sort and the Dynamic Programming recurrence.

29

Algorithm 2 KNAPSACK

1: for i in {n, n− 1, . . . , 0} do

2: for j in {0, 1, . . . , S} do

3: if i == n then

4: dp[i][j] = 0 // initial condition

5: else

6: choices = []

7: APPEND(choices, dp[i+ 1][j])

8: if j ≥ si then

9: APPEND(choices, dp[i+ 1][j − si] + vi)

10: end if

11: dp[i][j] = MAX(choices)

12: end if

13: end for

14: end for

15: return dp[0][S]

30

The dynamic programming solution to the Knapsack problem requires

solving O(nS) sub-problems. The solution of one sub-problem depends on

two other sub-problems, so it can be computed in O(1) time. Therefore, the

solution’s total running time is O(nS).

The solution running time is not polynomial in the input size. The next

paragraph explains the subtle difference between polynomial running times

and pseudo-polynomial running times, and why it matters.

Polynomial Time vs Pseudo-Polynomial Time

The input for an instance of the Knapsack problem can be represented in

a reasonably compact form as follows (see Figure below):

Figure 6: A compact representation of an instance of the Knapsack problem.

• The number of items n, which can be represented using O(log n) bits.

• n item weights. We notice that item weights should be between 0 . . . S

because we can ignore any items whose weight exceeds the knapsack ca-

pacity. This means that each weight can be represented using O(logS)

bits, and all the weights will take up O(n logS) bits.

• n item values. Let V be the maximum value, so we can represent each

value using O(log V) bits, and all the values will take up O(n log V)

bits.

31

The total input size is O(log(n) + n(logS + log V)) = O(n(logS + log V)).

Let b = logS, v = log V , so the input size is O(n(v + b)). The running time

for the Dynamic Programming solution is O(nS) = O(n · 2b).

So, how does our Knapsack solution runtime change if we double the

input size? We can double the input size by doubling the number of items,

so n0 = 2n. The running time is O(nS), so we can expect that the running

time will double.

However, we can also double the input size by doubling v and b, the

number of bits required to represent the item weights and values. v doesn’t

show up in the running time, so let’s study the impact of doubling the input

size by doubling b. If we set b0 = 2b, the O(n · 2b) result of our algorithm

analysis suggests that the running time will increase quadratically.

The Dynamic Programming solution to the Knapsack problem is a pseudo-

polynomial algorithm, because the running time will not always scale linearly

if the input size is doubled.

Figure 7: An example of a dynamic programming table/array for a 0-1 Knap-

sack Problem.

32

3 0-1 Knapsack Problem with Forfeits

In this thesis we study the 0-1 Knapsack Problem with Forfeits, which is

a 0-1 Knapsack Problem that considers soft conflict constraints, or forfeits.

In more detail [4], we introduce a forfeit cost to be paid each time that

both objects in a so-called forfeit pair are chosen to be part of the solution.

This variant can be of use in scenarios in which strict conflicts may lead

to infeasible solutions, or the drawback caused by avoiding all conflicts may

impact the result more than allowing some of them. We can think of several

applications of the problem, including:

• Each object is a machine that needs a worker to be operated. Forfeit

pairs represent machines that can only be operated by a worker that

we are currently paying, and hence the activation of two such machines

requires hiring a new worker, i.e. another salary;

• The chosen items represent the work shift assigned to an employee, and

forfeit pairs represent tasks that would involve extras on the salary if

assigned together;

• In deciding a series of investments, a cost could derive from making

two investment decisions at the same time.

3.1 Mathematical Formulation

Let n be the number of objects, composing the set X. Each object i ∈ X

has an associated profit pi > 0 in the set P and positive weight wi > 0 in the

set W , i = 1, . . . , n. Let F be a set of l distinct forfeit pairs F = {Fk}k=1,...,l,

33

Fk ⊆ X, |Fk| = 2 for all Fk ∈ F , and let dk > 0, in the set D, be the forfeit

cost associated with Fk, k = 1, . . . , l. Finally, let b > 0 be the available

budget, that is, the upper bound on the maximum weight of the items chosen

to be part of the solution. The problem can be formulated as follows:

max
n∑

i=1

pixi −
l∑

k=1

dkvk (1)

s.t. (2)

n∑
i=1

wixi ≤ b (3)

xi + xj − vk ≤ 1 ∀Fk = {i, j}, k = 1, . . . , l (4)

xi, vk ∈ {0, 1} ∀i = 1, . . . , n, ∀k = 1, . . . , l (5)

where:

• Variable xi is equal to 1 if object i is selected, and 0 otherwise;

• Variable vk assumes value 1 if the forfeit cost dk is to be paid according

to the chosen objects, and 0 otherwise.

The problem includes the classical 0-1 Knapsack Problem as special case

and is therefore NP-Hard.

3.2 Literature

We consider now GreedyForfeits Algorithm, a basic constructive heuristic

for this problem, and an improved heuristic approach , the CarouselForfeits

Algorithm, which improves upon the GreedyForfeits Algorithm [4].

34

3.2.1 GreedyForfeits

The GreedyForfeits algorithm (see the relevant pseudocode depicted below

in Algorithms 3 and 4) takes as input the items set X, the profit and weight

sets P and W , the budget value b, the forfeits set F , and forfeit costs set

D. The set S ⊆ X initialized in line 1 of Algorithm 3 will contain the items

chosen to be included in the solution, while the bres value, introduced in line

2, corresponds in any phase of the algorithm to the residual budget, that is,

bres = b−
∑

i∈S wi.

The main loop of the algorithm is contained in lines 3–28. In each iter-

ation, we first build the set Xiter (lines 4–9), containing the items that can

still be added to S. That is, Xiter contains any item i ∈ X which does not

currently belong to S, and such that its weight wi is not greater than bres.

If Xiter is empty, clearly no more items can be added, and the algorithm

stops returning S (lines 10–12). Otherwise, we evaluate the most promising

element of Xiter to be added to S. The main idea is to evaluate each item

i ∈ Xiter according to the ratio between profit and weight, pi.

However, for any forfeit pair Fk = {i, j} containing i and such that wi

the other item j is already in S, we subtract from pi the related cost dk.

The updated profit value, indicated as p′i, reflects the forfeit costs that would

have to be paid if i is added to S. For each i ∈ Xiter, the computation of p′i

is described in lines 14–19, while the computation of the ratio value ratioi is

reported in line 20.

Then, the element i∗ ∈ Xiter corresponding to the maximum ratio value

is identified (line 1 of ALgorithm 4). We note that it is possible for pi∗ (and

therefore for ratioi∗) to be a negative value. If this is true, it means that

35

it is not convenient to add any other item to S, and the set is returned

(lines 2–4 of Algorithm 4). Otherwise, both S and bres are updated to reflect

the addition of i to the solution (lines 5–6 of Algorithm 4), and the current

iteration ends.

Finally, if the main loop ends without encountering any of the two men-

tioned stopping conditions (meaning that trivially all elements of X could

be added to S), the set S is returned.

As in many constructive greedy algorithms, a limit of Greedy-Forfeits is

that the contribution of each item composing the solution is evaluated at the

moment it is added to it. An item appearing attractive in the first iterations

could actually lead to many forfeit costs to be added later on.

36

Algorithm 3 GreedyForfeits - Part I

Require: (X,W,P, b, F,D)

1: S ← ∅

2: bres ← b

3: While X \ S ̸= ∅ do

4: Xiter ← ∅

5: for i ∈ X do

6: if wi ≤ bres and i /∈ S then

7: Xiter ← Xiter ∪ {i}

8: end if

9: end for

10: if Xiter = ∅ then

11: return S

12: end if

13: for i ∈ Xiter do

14: p′i ← pi

15: for Fk = {i, j} ∈ F do

16: if j ∈ S then

17: p′i ← p′i − dk

18: end if

19: end for

20: ratioi ← p′i
wi

21: end for

37

Algorithm 4 GreedyForfeits - Part II

1: i∗ ← argmax[ratio]

2: if ratioi∗ < 0 then

3: return S

4: end if

5: S ← S ∪ {i∗}

6: bres ← bres − wi∗

7: end while

8: return S

3.2.2 CarouselForfeits

The Carousel Greedy (CG) paradigm, provides a generalized framework to

improve the constructive greedy algorithms, posing itself as a trade-off (in

terms of computational time and solution quality) among such greedy pro-

cedures and meta-heuristics.

The main intuition is that, generally, the choices taken according to the

greedy criteria in the first steps of the algorithm could be not very effective

due to the lack of knowledge about the subsequent structure of the solution.

Therefore, such early choices could end up compromising the quality of the

final solution.

In order to overcome this phenomenon, earlier choices are iteratively re-

considered and eventually replaced with new ones. Given a basic constructive

heuristic, a CG is composed of three main steps:

1. Using the greedy algorithm, a solution is first built, and then some of

its latest choices are discarded, obtaining a partial solution.

38

2. For a predefined number of iterations, the oldest choice is discarded,

and a new one is taken according to the greedy criteria of the basic

algorithm.

3. Finally, the solution is completed by applying the greedy algorithm,

starting from the partial solution obtained at point 2.

Algorithm 5 CarouselForfeits

Require: X,W,P, b, F,D, α, β

1: S ← GreedyForfeits(X,W,P, b, F,D)

2: S ← RemoveLastChoices(S, β)

3: size← |S ′|

4: for i← 1 to α× size do

5: S ← RemoveOldestChoice(S ′)

6: i∗ ← GreedyForfeitsSingle(X,W,P, b, F,D, S ′)

7: S ′ ← S ′ ∪ {i∗}

8: end for

9: S ′′ ← GreedyForfeitsInit(X,W,P, b, F,D, S ′)

10: return S ′′

The algorithm (here denoted as Algorithm 5) takes the same input of

GreedyForfeits, plus two parameters, α and β, such that 0 ≤ β ≤ 1 and

α ≥ 1.

Lines 1–2 correspond to the first CG step. We first use our greedy to

obtain a feasible solution S ⊆ X. We then obtain a partial solution S ′ by

dropping some of the last choices; more precisely, the last β|S| added items

39

are dropped. Let size be |S ′| at this point; the second CG step (lines 4–8) is

iterated α× size times.

In each iteration, we first drop from S the oldest choice. We then execute

a variant of GreedyForfeits called GreedyForfeitsSingle. It initializes the

solution with S instead of the empty set, executes a single iteration of the

main loop, identifying the best element to be added i according to our greedy

criterion, and returns it. S is then updated to include i.

Finally, in the third and last CG step (line 9), we complete S by executing

a second variant of our greedy, GreedyForfeitsInit, which again initializes the

solution with S ′, and completes the solution iterating the main loop until no

more items can be added. The resulting solution S ′′ is returned (line 10).

40

4 Recovering Beam Search

Our proposed solution for the 0-1 Knapsack Problem with Forfeits is based

on a Recovering Beam Search approach. In this section, this algorithm will

be described in detail

Recovering Beam Search (RBS) [11] is a hybrid heuristic method for com-

binatorial optimization problems.

This method is an enhancement of the beam search approach, which in

turn is a well-established heuristic approach originally invented in the AI

community.

BS consists of a truncated branch and bound with a breadth-first search

strategy where only the most promising w nodes at each level of the search

tree are selected as nodes to branch from; w is the so-called beam width.

Obviously, the larger the beam width, the slower the algorithm.

The nodes evaluation process at each level is the main issue of any BS

procedure: typically, a two-stage approach is applied. First, a crude eval-

uation (filtering phase) is applied to select a reduced number of nodes for

the accurate evaluation. This crude evaluation is a one-shot evaluation and

is applied to reduce the computational burden of the procedure. Then, the

selected nodes are accurately evaluated, and the best w nodes, w being the

beam width, are retained for branching. Note that the crude evaluation is

actually an optional component of the BS approach.

The accurate evaluation is typically performed by means of bounding pro-

cedures for the given problem. The more time-consuming these procedures

are, the more time-consuming the overall procedure will be.

An error in the nodes evaluation of any BS procedure that induces the

41

pruning of a good node (namely a node leading to an optimal or nearly

optimal solution) can never be recovered. This is the major drawback of

the BS approach: whenever all the best nodes are pruned, the best feasible

solution reached may be significantly far from the optimum.

To avoid this, the only means available for a BS procedure is to use

a sufficiently large beam width, sometimes dramatically slowing down the

procedure’s efficiency.

The Recovering Beam Search method overcomes this issue by introducing

a recovering step that searches for improved partial solutions with respect to

those selected by the beam.

In order to evaluate a limited number of nodes in the search tree, the

recovering step searches only for partial solutions situated at the same level

of the search tree with respect to those selected by the beam. This step,

which allows partial recovery from wrong decisions, is applied in such a way

so as to increase only slightly the CPU time required by the procedure.

4.1 Description of the Procedure

Classic Beam Search procedures cannot recover from wrong decisions: if a

branch leading to the optimal solution in the search tree is pruned in the

nodes evaluation process, there is no way to reach afterwards that solution.

The RBS method seeks to overcome this issue by means of a recovering step

that searches for improved partial solutions dominating those selected by the

beam.

Consider a combinatorial optimization problem where the objective func-

tion must be minimized. Assume that a branching scheme and correspond-

42

ingly a search tree has been devised for that problem either by considering

available branch and bound procedures or by having devised an ad hoc exact

search tree algorithm.

The node evaluation process is guided here both by lower and upper

bound procedures. Each node is evaluated by means of a convex combination

of lower (LB) and upper (UB) bounds.

The simplest way to do this is to consider a linear combination, namely

the weighted sum V = (1−α)LB+αUB, where V is the evaluation function

and 0 ≤ α ≤ 1 is a parameter generally defined by experimental testing.

The more accurate the evaluation function at each node is, the smaller the

deviation of the final solution value from the optimal solution value will be.

A correct tuning of parameter α allows to obtain high quality results also

for problems where either the LB procedure or the UB procedure (but not

both) are not too precise.

In the recovering beam search method, the filtering phase works as fol-

lows. Problem dependent dominance conditions, denoted as valid dominance

conditions, when available, are applied together with so-called pseudo dom-

inance conditions, holding in a heuristic context only. Whenever a valid

dominance condition or a pseudo dominance condition applies for a given

node, that node is pruned.

In the Recovering Beam Search method (like in the classic Beam Search

approach), the beam width is constant and is kept generally fairly low (≤ 10)

in order to minimize the overall procedure CPU time. The main feature of

the proposed method is the so-called Recovering Phase that is applied at

each search tree level.

43

Let S = {σk, k = 1, ..., l ≤ w} be the vector of current partial solutions at

a given level. These solutions are considered one at a time. The recovering

phase checks, typically by means of interchange operators applied to the

current partial solution x, whether solution x is dominated by another partial

solution y sharing the same search tree level.

If so, x is discarded. Further, if y does not belong to set S, then it becomes

a new current partial solution. If y already belongs to S, then there is room

for another partial solution to be examined by means of the recovering step

and then retained so as to maintain, when possible, exactly w nodes.

Indeed, this step often allows one to recover from previous wrong decisions

in the procedure.

Note that, in the recovering step, a partial solution may be only sub-

stituted by another partial solution sharing the same search tree level: this

guarantees that the total number of explored nodes is polynomial provided

that the search tree depth is polynomial. Note also that the dominance of

a partial solution vs another partial solution may be also considered in a

heuristic fashion by means of pseudo dominance conditions.

Consider a minimization problem with search tree depth equal to u. The

main steps of the Recovering Beam Search method are as follows (see Algo-

rithms 6 and 7).

44

Algorithm 6 RBS method-Part I (beam width = w, search tree depth = u)

1: Initialization:

2: l = search tree level = 0;

3: σ1 = best current partial solution = root node (typically no variable has

been fixed, namely σ1 = {});

4: S = vector of current partial solutions = {σ1};

5: x = incumbent best solution value = +∞.

6: for k = 1, k ≤ min{|S|, w}, k ++ do

7: Branch σk generating the corresponding children.

8: Filtering phase: prune all child nodes that are dominated by means

of valid or pseudo-dominance conditions.

9: end for

10: Empty set S: S = {}.

11: for each remaining child node do

12: Compute LB and UB. IF UB < x, THEN x = UB.

13: Compute the evaluation function V = (1 − α)LB + αUB with 0 ≤

α ≤ 1.

14: end for

15: (Algorithm continued on next page...)

45

Algorithm 7 RBS method-Part II (continued from the previous page)

1: Sort the set T of remaining children nodes in non-decreasing order of

their evaluation function: let σk be the k-th best node.

2: Set k = 1.

3: while (|S| < w) AND (k ≤ |T |) do

4: Recovering step: search for a partial solution σ̄k that dominates σk

(and shares with σk the same search tree level) by means of interchange

operators. IF σ̄k is found, THEN set σk = σ̄k. IF σk ̸∈ S, THEN

S = S ∪ {σk}, ELSE prune σk.

5: k = k + 1.

6: end while

7: l = l + 1. IF l < u, GOTO 2, ELSE STOP: x is the final solution

value.

46

5 Recovering Beam Search for the 0-1 Knap-

sack Problem with Forfeits

In this section we will detail our approach for the 0-1 Knapsack Problem

with Forfeits, which is based on the Recovering Beam Search method. Then,

in the next section, computational results will be shown, compared to the

commercial solver CPLEX.

5.1 Data Representation

As shown in section 4, the parameters we need to consider are:

• The weights, which represent the weight of adding an item to the knap-

sack

• The profits, which represent the profit of adding an item to the knap-

sack

• Forfeit pairs, the pairs i, j for which a forfeit value exist

• Forfeit values, which represent the penalty to the objective function of

including a certain pair of items i, j in the knapsack

The weights, profits and forfeit values will be stored as integer arrays,

while the forfeit pairs will be stored as arrays of pairs of integers (a pair is

considered as an array of size 2).

As we will show later, for each item i it would be ideal to have relatively

quick access to other items j such that i, j is a forfeit pair and the corre-

sponding forfeit value. To achieve this result, we can represent forfeit pairs

47

as edges in an undirected weighted graph and store it as an adjacency list.

In this way, for each item i accessing all the items j such that i, j is a forfeit

pair, we will have a complexity O(|Ei|), where |Ei| is the number of edges

connected to the item i in the graph.

5.2 Order of the Items

In a binary tree-like procedure such as the Branch and Bound algorithm, at

the i-th level of the tree the branching will be done on the i-th variable in a

specific order. This order could be relevant in achieving better performances.

We will now examine different ways to permute the variables and how to

efficiently access the correct variable at each level of the tree.

Two different ways to sort/permute the items have been compared in our

work:

• Sorting by the ratio valuesi
weightsi

. This will sort based on the total value

per single unit of weight, which is a common idea in solutions for the

regular 0-1 Knapsack Problem.

• Sorting by the ratio valuesi
forfeitCounti

. This will be sorted based on the total

value per single unit of forfeit induced by the item i. This sorting

method would put first items that have a higher value compared to the

total forfeit value of pairs where they are included.

To access efficiently the correct item at any level of the tree, we can use a

permutation array such that at the i-th position permi will be the i-th item

in the decided order, where perm is a permutation of the values 0, ..., n− 1.

48

Regarding the sorting method, we used the default C++ sorting function

provided by the Standard Template Library (STL) std::sort(). This function

is implemented using a variant of the introsort algorithm, which combines

quicksort, heapsort, and insertion sort. The time complexity in this case is

O(nlog(n)), where n is the number of items.

5.3 Upper Bound Computation

To estimate the upper bound at any particular node of the tree, we used a

dynamic programming approach.

Lemma 1 The solution of a 0-1 Knapsack Problem without forfeits with the

same parameters (weights, profits) is an upper bound to the original problem.

Proof 2 If the forfeits are 0 for each pair of items (i, j) such that 0 ≤ i, j ≤

n− 1, then the problem is exactly the same as the 0-1 Knapsack Problem.

By contradiction, if a better upper bound exists such that the contribution

of the forfeit penalty to the objective function is positive, then it would mean

that the contribution of the sum of profits in the objective function is higher

than the one for the relaxed problem. Let us define this hypotethical subset of

items that contradict our claim as Sp.

Let Sr be the subset of items that yield the optimal feasible solution for

the relaxed problem. If our claim is untrue, then it would mean that a certain

subset Sp exists such that the corresponding solution is feasible and:∑
i∈Sr

xivi <
∑
j∈Sp

xjvj (6)

If such a set Sp would exist, then that solution would also be the optimal

solution to the relaxed version of the problem, thing which concludes the proof.

49

This is obvious considering that this relaxed solution will be better than

any other possible solution. This upper bound will be the solution of the

original problem with 0 forfeits applied to the objective function.

Now, let us see how to compute this upper bound given a partial solution

in the tree. Let xk, xk+1, ..., xn−1 be a suffix of variables which are already

set to 0 or 1 in a partial solution. We can compute the corresponding upper

bound by finding the total weight sum for this partial solution Wk.

The upper bound will then be dp[k − 1][W −Wk], where dp[i][j] is the

solution to the 0-1 Knapsack Problem with the first i elements and j weight,

minus the forfeits induced by the variables in the partial solution.

The dynamic programming table will be precomputed before running

the recovering beam search and solutions to the related subproblems can be

computed in O(1). The time and memory complexity for the construction of

the dynamic programming table is O(n ∗W).

The array xorder is used to access the i− th item in the sorted order as

described before.

5.4 Lower Bound Computation

Given the upper bound computed through dynamic programming as de-

scribed before, the next step is determining how to derive a lower bound,

therefore a feasible solution, for a certain node of the tree.

In a specific node of the tree, the variables xk, xk+1, ..., xn−1 are already

fixed to either 0 or 1, so what is remaining is to find the values of the variables

x0, ..., xk−1 that yield the given upper bound value.

This can be computed in O(n) by backtracking through the dynamic

50

Algorithm 8 Building Dynamic Programming Table for 0-1 Knapsack

1: procedure BuildDP(dp, n, w, weights, values, x order)

2: for j ← 0 to w do

3: if weights[x order[0]] ≤ j then

4: dp[0][j]← values[x order[0]]

5: end if

6: end for

7: for i← 1 to n− 1 do

8: for j ← 0 to w do

9: dp[i][j]← dp[i− 1][j]

10: if j − weights[x order[i]] ≥ 0 then

11: dp[i][j] ← max(dp[i][j], dp[i− 1][j − weights[x order[i]]] +

values[x order[i]])

12: end if

13: end for

14: end for

15: end procedure

Algorithm 9 GetOrder Function

1: function GetOrder(x order, weights, values, forf count)

2: Sort x order by values[a]
weights[a]

> values[b]
weights[b]

▷ Sort in decreasing order of

value-to-weight ratio

3: return x order

4: end function

51

programming array.

This procedure (Algorithm 9) checks whether a valid transition between

a subproblem with an item included and another one with that item not

included (but everything else unaltered) exists. If this is the case, it means

that the item was included in the knapsack in the optimal solution of the

subproblem we were starting with, the one which does not include the items

already fixed in the tree.

Assuming that the solution made of these items is feasible, its value may

possibly be very far from the corresponding upper bound. Logically, if the

number of forfeit pairs and their value is big enough, their contribution to the

optimal solution will be non-negligible, and thus the solution to the relaxed

version of the problem could be very far from the one of the original problem.

To address this potential issue, we can add an additional local search to

this starting solution given by the procedure described before. In O(n+ P),

where P is the number of forfeit pairs, we can try to individually flip the

value of each variable xi corresponding to the items and check whether this

change improves upon the current solution value.

The algorithm to get the lower bound is shown in Algorithms 10, 11, 12

and 13.

52

Algorithm 10 Update Active Variables Function

1: procedure UpdateActiveVariables(n, dp, vis, currentweight, pos,

weights, values, x order)

2: while pos > 0 do

3: newcurrentweight← currentweight− weights[x order[pos]]

4: if newcurrentweight < 0 then

5: pos← pos− 1

6: continue

7: end if

8: if dp[pos − 1][newcurrentweight] = dp[pos][currentweight] −

values[x order[pos]] then

9: currentweight← newcurrentweight

10: vis[x order[pos]]← true

11: end if

12: pos← pos− 1

13: end while

14: if pos = 0 and currentweight ≥ weights[x order[0]] then

15: vis[x order[0]]← true

16: end if

17: end procedure

53

Algorithm 11 Get Lower Bound Function (Part I)

1: function GetLowerBound(vis, adj, pairs, forfeits, values,

weights, w)

2: n← size of vis

3: p← size of pairs

4: tot value← 0

5: tot weight← 0

6: for i← 0 to n− 1 do

7: if vis[i] then

8: tot value← tot value+ values[i]

9: tot weight← tot weight+ weights[i]

10: end if

11: end for

12: for i← 0 to p− 1 do

13: if vis[pairs[i].f irst] and vis[pairs[i].second] then

14: tot value← tot value− forfeits[i]

15: end if

16: end for

17: end function

54

Algorithm 12 Get Lower Bound Function (Part II)

1: for i← 0 to n− 1 do

2: if not vis[i] then

3: continue

4: end if

5: curr ← tot value− values[i]

6: for each neighbor in adj[i] do

7: if vis[neighbor.first] then

8: curr ← curr + neighbor.second

9: end if

10: end for

11: if curr > tot value then

12: tot value← curr

13: tot weight← tot weight− weights[i]

14: vis[i]← false

15: end if

16: end for

17: return tot value

18:

55

Algorithm 13 Get Lower Bound Function (Part III)

1: for i← 0 to n− 1 do

2: if not vis[i] then

3: continue

4: end if

5: curr ← tot value+ values[i]

6: neww ← tot weight+ weights[i]

7: if neww > w then

8: continue

9: end if

10: for each it in adj[i] do

11: if vis[it.first] then

12: curr ← curr − it.second

13: end if

14: end for

15: if curr > tot value then

16: tot value← curr

17: tot weight← neww

18: vis[i]← true

19: end if

20: end for

21: return tot value

22:

56

5.5 Recovering Beam Search

The core of our solution consists on the Recovering Beam Search function,

which will be the focus of this subsection.

5.5.1 Branching and Solutions Generation

At each level of the search tree, we will have a subset of solutions, whose

size depends on the chosen beam parameter. A solution is represented as

an array of values 0 and 1, but also −1 for variables which are not already

assigned to a value in the procedure.

At each level i of the tree, with 0 ≤ i ≤ n−1, the branch will be on the n−

i-th element of the array xvalues. Reminder that the array xvalues determines

the permutation of items and corresponding order of visit. Starting from the

back will make it possible to quickly compute the upper bound as described

before.

New solutions are thus generated at each level of tree by performing the

described branch operation on the solution set generated at the previous step

(level i− 1).

5.5.2 Recovering Step

The recovering step is a crucial aspect of a Recovering Beam Search-based

solution, as it would allow us to potentially recover better partial solutions

discarded during the tree exploration process.

In our approach, this step is performed before the computation of the

lower bound, upper bound, and evaluation function for a specific partial

57

solution. We will use a property of the problem to find a partial solution to

another one that dominates it.

Lemma 2 Let S be a partial solution and V its corresponding value of the

objective function. Let Sk ⊆ S such that Sk = S \ i, where i is the i-th item,

and Vk be the value of the objective function corresponding to Sk.

If Vk ≥ V , then Sk dominates S.

Clearly if an item induces equal or more total forfeit than its profit, then

removing that item from the knapsack will yield a solution which is strictly

better than the older one, as its removal would also free up space from the

knapsack and increase the remaining budget.

Thus, we can recover a better partial solution by checking for each item

i such that pos ≤ i ≤ n − 1, where pos is a variable that tracks the correct

position of the array xvalues, calculated as pos = n − 1 − level, where

0 ≤ level ≤ n− 1.

It is also important to consider the efficiency of this recovery process.

We implemented a O(n+ P) approach to verify for each item i whether it’s

optimal to remove it or not, according to the definition expressed before,

by iterating through items and their forfeit edges. Having an adjacency

list representation of the forfeit pairs allows us to perform this operation in

O(n+P) instead of O(n ∗P), as we don’t need to iterate through the entire

array of forfeit pairs for each item.

Note also that an O(n+P) procedure is relatively inexpensive compared

to the algorithm as a whole. The overall time and memory complexity of the

algorithm will be described later in this section.

58

Algorithm 14 Recovering Beam Search - Part I

1: Let newsols be a vector of vectors of integers

2: Let evaluation functions be a vector of integers

3: Let temporary solutions be a vector of integers

4: Let sols set be an unordered set of vectors of integers

5: for i← 0 to min(beam, |sols|)− 1 do

6: sols[i][pos]← 0

7: newsols.push back(sols[i])

8: sols[i][pos]← 1

9: newsols.push back(sols[i])

10: end for

11: evaluation functions.resize(|newsols|)

12: sols.clear()

59

Algorithm 15 Recovering Beam Search - Part II

1: for i← 0 to (newsols.size()− 1) do

2: Let vis be a vector of booleans of size n, initialized to false

3: for j ← n− 1 downto pos do

4: if newsols[i][j] = 1 then

5: vis[x order[j]]← true

6: end if

7: end for

8: for j ← n− 1 downto pos do

9: if newsols[i][j] = 0 then

10: continue

11: end if

12: profit← values[x order[j]]

13: penalty ← 0

14: for each neighbor in adj[x order[j]] do

15: if vis[neighbor.first] then

16: penalty ← penalty + neighbor.second

17: end if

18: end for

19: if profit ≤ penalty then

20: vis[x order[j]]← false

21: newsols[i][j]← 0

22: end if

23: end for

24: end for

60

5.5.3 Filtering Solutions

The next step of the algorithm is filtering solutions that are non-feasible or

have a lower upper bound than the current best found feasible solution.

We can find if a solution is feasible in O(n) by just adding the correspond-

ing weights. The computation of the lower and upper bound for a partial

solution has been descibed in sections 5.3 and 5.4.

Let Sl be the new partial solutions generated at a specific level of the

tree, then the complexity of this filtering step is O(|Sl| ∗ (n+ P)).

For each unfiltered solution, we then compute its evaluation function,

which, as described in Section 6, is a weighted sum of upper and lower bound

for a solution. Based on this value, new partial solutions will be sorted in

non-increasing order and inserted into the new partial solutions set to be

processed in the next level of the tree search.

Sorting solutions by their evaluation function values have a time com-

plexity of O(|FSl| ∗ log(|FSl|), where FSl is the partial solutions set Sl after

filtering.

61

Algorithm 16 Solutions Filtering and Evaluation Function Computation -

Part I
1: for i← 0 to (newsols.size()− 1) do

2: Let currentWeight← w

3: Let currentvalue← 0

4: Let vis be a vector of booleans of size n

5: for j ← n− 1 downto pos do

6: if newsols[i][j] = 1 then

7: currentWeight← currentWeight− weights[x order[j]]

8: currentvalue← currentvalue+ values[x order[j]]

9: vis[x order[j]]← true

10: end if

11: end for

12: if currentWeight < 0 then

13: continue

14: end if

15: upperbound← 0

16: if pos = 0 then

17: upperbound← currentvalue

18: else

19: upperbound← currentvalue+ dp[pos− 1][currentWeight]

20: end if

62

Algorithm 17 Solutions Filtering and Evaluation Function Computation -

Part II
1: for j ← 0 to (p− 1) do

2: if vis[pairs[j].f irst] and vis[pairs[j].second] then

3: upperbound← upperbound− forfeits[j]

4: end if

5: end for

6: if upperbound < lowerbound then

7: continue

8: end if

9: update active variables(n, dp, vis, currentWeight, pos −

1, weights, values, x order)

10: Let currlb← get lower bound(vis, adj, pairs, forfeits, values, weights, w)

11: if currlb > lowerbound then

12: optimal x← vis

13: end if

14: lowerbound← max(lowerbound, currlb)

15: if currlb > lowerbound then

16: optimal x← vis

17: end if

18: lowerbound← max(lowerbound, currlb)

19: evaluation functions[i]← compute v(α, currlb, upperbound)

20: temporary solutions.push back(i)

21: end for

63

5.5.4 Inserting new Partial Solutions

The final step of the Recovering Beam Search function is to insert new partial

solutions into the set which will be processed into the next level of the tree.

The size of this set cannot exceedthe beam size.

To store solutions, we used a hash set of arrays, thing which allowed us

to verify whether a partial solution was already inserted there. An hash set

of arrays can allow insertion and retrieval of an array in O(|A|), where A is

the array in question.

5.5.5 Overall Time and Memory Complexity

Given all the operations described in this section, the time complexity of the

algorithm is: O(n ∗W + n ∗ b ∗ (n+P)). Note that b is the beam size and is

constant. The memory complexity is: O(n ∗W + p).

64

Algorithm 18 Updating Solutions

1: for i ← 0 to (temporary solutions.size() − 1) and (sols.size() < beam)

do

2: Let vis be a vector of booleans of size n

3: Let sol position← temporary solutions[i]

4: for j ← 0 to (newsols[sol position].size()− 1) do

5: if newsols[sol position][j] = 1 then

6: x value position← x order[j]

7: vis[x value position]← true

8: end if

9: end for

10: for j ← 0 to (n− 1) do

11: x value position← x order[j]

12: if vis[x value position] then

13: newsols[sol position][j]← 1

14: else if newsols[i][j] ̸= −1 then

15: newsols[sol position][j]← 0

16: end if

17: end for

18: if ¬sols set.count(newsols[sol position]) then

19: sols.push back(newsols[sol position])

20: sols set.insert(newsols[sol position])

21: end if

22: end for

23: pos← pos− 1

65

6 Computational Results

In this section will show how our solution performs computationally, com-

pared to ”IBM ILOG CPLEX Optimization Studio”, a known mathematical

programming solver. The comparisons will be made for fixed values of n

(number of items) and 5 different instances for each chosen value of n.

The parameters alpha and beam of the recovering beam search used are:

alpha = 0.95 and b = 10.

6.1 Description of Used Instances and Environment

The instances of the problem used for our experiments were generated ran-

domly with the following structure:

• Number of items n.

• Weights from 3 to 20.

• Profits from 5 to 25.

• Number of forfeit pairs 6n. These pairs are always unique and there

are no pairs consisting of an item with itself.

• Forfeit values from 2 to 15.

• Budget 3n.

Our solution has been written and executed in C++, while CPLEX has

been used in Python from the docplex library. The instances have also been

generated in Python.

66

The machine used for all our tests is a Mac Mini with M2 Apple Silicon

processor, 8-Core CPU 10-Core GPU and 8 GB of RAM.

To have fair comparison between solutions, only 1 CPU thread was used

for both approaches.

6.2 General Results

We will now compare results of our heuristic solution with the CPLEX solver.

Comparisons will be made by comparing the value of the best feasible solution

obtained by our solution to the one found by CPLEX, for a fixed time limit

of 60 seconds. The value of n, which determines the size of the instances,

will be n = 5000 and then n = 10000.

Table 1: Results Comparison for n = 5000

Instance CPLEX Heuristic Difference %

n5000 1 20478.0 21133 3.19%

n5000 2 18915.0 20755 9.73%

n5000 3 19715.0 20924 6.14%

n5000 4 19239.0 21338 10.91%

n5000 5 20089.0 20702 3.05%

Let us compute the average difference percentage between CPLEX and

the heuristic solution as:

Average Difference Percentage =
1

n

n∑
i=1

(
Heuristici − CPLEXi

CPLEXi

× 100

)
For n = 5000 and the considered instances, this value is equal to 6.606%.

67

Table 2: Results Comparison for n = 10000

Instance CPLEX Heuristic Difference %

n10000 1 38289.0 41315 7.91%

n10000 2 38682.0 41159 6.41%

n10000 3 39291.0 41130 4.67%

n10000 4 39217.0 41617 6.12%

n10000 5 39303.0 42043 6.98%

For n = 10000, the average difference percentage is 6.62%, which shows

a similar behavior even after doubling the number of items.

These results show the effectiveness of our solution for relatively large

values of n, when a well known commercial solver like CPLEX cannot produce

an optimal solution for this problem in 60 seconds.

6.3 Choice of Beam Size

We will now show computational experiments that highlight the results by

changing the value of the beam size. The instance used is named as n10000 8,

with n = 10000. The time limit has been set again as 60 seconds.

Table 3: Beam Tests

Beam Size Objective

10 42020

20 42020

200 41972

68

We can see how increasing the beam size to 200 leads to worse results,

as the processing time for each level of the tree becomes 20 times slower. It

is important to notice that a larger beam size would lead to bigger memory

usage.

6.4 Results for Bigger Time Limits

In this subsection, we will evaluate results for bigger time limits, 5 minutes

and 10 minutes, and n = 10000. We would like to show the time required by

CPLEX to outperform our heuristic solution.

Table 4: Results for Larger Time Limits - I - Instance n10000 6

Time CPLEX Heuristic

5 minutes 39144 41472

10 minutes 43080 41476

Table 5: Results for Larger Time Limits - II - Instance n10000 7

Time CPLEX Heuristic

5 minutes 39867 41696

10 minutes 44990 41727

We can notice that at the 5 minutes mark, our heuristic still outperforms

CPLEX, by returning a larger value of the objective function. At the 10

minutes mark, CPLEX outperforms our heuristic solution. The heuristic

solution improves more slowly, as the complexity for traversing each level of

the search tree in breadh-first order is not negligible.

69

7 Conclusions

In this chapter, we recap our accomplishments in this thesis and show po-

tential future developments for the proposed algorithm.

7.1 Our Solution for the 0-1 Knapsack Problem with

Forfeits

In this work, we proposed a heuristic approach for the 0-1 Knapsack Prob-

lem with Forfeits. Specifically, our aim was to develop an heuristic approach

that, for the specified instances and large number of items, would outper-

form a highly optimized and well known commercial solver for mathematical

optimization problems.

Our heuristic combined multiple techniques such as dynamic program-

ming, branch and bound, and beam search to achieve those results.

7.2 Improving the Upper Bound for each Partial So-

lution

Finding an efficient and reliable way to compute an upper bound for a partial

solution in this problem is a non-trivial and very difficult task.

We believe that our algorithm has room for future improvements, both

in execution time and getting a value of the objective function even closer to

the optimal one with more consistency.

Our upper bound strategy, although relatively efficient, does not take

into account the contribution of forfeits in its calculation. This can result for

70

specific instances where the contribution of forfeits to the objective function

is substantial in generating upper bounds that quite far from the optimal

solution.

By finding a similarly efficient way to compute an upper bound for a

partial solution in the process that considers both the positive and negative

contributions to the objective function, we could potentially improve the

upper bound computation even further. This improvement could allow to

quickly remove certain partial solutions and converge more quickly to the

final solution of the algorithm, while potentially resulting in a better solution

value (closer to the optimal one for a greater variety of instances).

71

References

[1] V. Cacchiani M. Iori A. Locatelli S. Martello. Knapsack problems — an

overview of recent advances. part i: Single knapsack problems. Comput-

ers and Operations Research, 143, 2022, 105692.

[2] V. Cacchiani M. Iori A. Locatelli S. Martello. Knapsack problems —

an overview of recent advances. part ii: Multiple, multidimensional, and

quadratic knapsack problems. Computers and Operations Research, 143,

2022, 105692.

[3] W. Zhang B. Wang Y. Hu. A new knapsack public-key cryptosystem.

2009 Fifth International Conference on Information Assurance and Se-

curity, Xi’an, China, 2009, pp. 53-56.

[4] R. Cerulli C. D’Ambrosio A. Raiconi G. Vitale. The knapsack problem

with forfeits. In: M. Baiou, B. Gendron, O. Gunluk, A.R. Mahjoub

(eds) Combinatorial Optimization. ISCO 2020. LNCS 12176. Springer,

Cham, 2020.

[5] R. Tadei F. Della Croce. Elementi di ricerca operativa. ESCULAPIO

Bologna, 2010.

[6] D. Williamson W. Qian. Lecture 25. ORIE 6300 Mathematical

Programming I, 2014, https: // people. orie. cornell. edu/ dpw/

orie6300/ Lectures/ lec25. pdf .

[7] M. Garey D. Johnson. Computers and intractability: A guide to the

theory of np-completeness. W. H. Freeman Co., New York, NY, 1979.

72

https://people.orie.cornell.edu/dpw/orie6300/Lectures/lec25.pdf
https://people.orie.cornell.edu/dpw/orie6300/Lectures/lec25.pdf

[8] G. Righini. Branch-and-bound. Operations Research Comple-

ments, 2022, https: // homes. di. unimi. it/ righini/ Didattica/

RicercaOperativa/ Materiale/ 08% 20-% 20Branch-and-bound.

pdf .

[9] T. Magnanti J. Orlin. Dynamic programming. 15.053: Optimization

Methods in Business Analytics, 2022, https: // web. mit. edu/ 15.

053/ www/ AMP-Chapter-11. pdf .

[10] E. Demaine S. Devadas. The knapsack problem. 6.006 Introduction to

Algorithms Recitation 19, 2011, https: // courses. csail. mit. edu/

6. 006/ fall11/ rec/ rec21_ knapsack. pdf .

[11] R. Tadei F. Della Croce M. Ghirardi. Recovering beam search: Enhanc-

ing the beam search approach for combinatorial optimization problems.

Journal of Heuristics, 10, 89-104, Kluwer, 2004.

73

https://homes.di.unimi.it/righini/Didattica/RicercaOperativa/Materiale/08%20-%20Branch-and-bound.pdf
https://homes.di.unimi.it/righini/Didattica/RicercaOperativa/Materiale/08%20-%20Branch-and-bound.pdf
https://homes.di.unimi.it/righini/Didattica/RicercaOperativa/Materiale/08%20-%20Branch-and-bound.pdf
https://web.mit.edu/15.053/www/AMP-Chapter-11.pdf
https://web.mit.edu/15.053/www/AMP-Chapter-11.pdf
https://courses.csail.mit.edu/6.006/fall11/rec/rec21_knapsack.pdf
https://courses.csail.mit.edu/6.006/fall11/rec/rec21_knapsack.pdf

	Introduction
	Combinatorial Optimization
	Computational Complexity
	Linear Programming

	The Knapsack Problem
	Linear Programming Model
	Decision Version
	Branch and Bound
	Branch and Bound Algorithm
	Branching
	Binary Branching
	N-ary Branching
	Bounding
	Branch and Bound for the 0-1 Knapsack Problem

	Dynamic Programming
	Stages
	States
	Recursive Optimization
	Dynamic Programming for the 0-1 Knapsack Problem

	0-1 Knapsack Problem with Forfeits
	Mathematical Formulation
	Literature
	GreedyForfeits
	CarouselForfeits

	Recovering Beam Search
	Description of the Procedure

	Recovering Beam Search for the 0-1 Knapsack Problem with Forfeits
	Data Representation
	Order of the Items
	Upper Bound Computation
	Lower Bound Computation
	Recovering Beam Search
	Branching and Solutions Generation
	Recovering Step
	Filtering Solutions
	Inserting new Partial Solutions
	Overall Time and Memory Complexity

	Computational Results
	Description of Used Instances and Environment
	General Results
	Choice of Beam Size
	Results for Bigger Time Limits

	Conclusions
	Our Solution for the 0-1 Knapsack Problem with Forfeits
	Improving the Upper Bound for each Partial Solution

