
Politecnico di Torino

Corso di Laurea Magistrale in

Ingegneria Matematica

Reinforcement Learning
for Dynamic Stochastic Scheduling

Relatore:
Paolo Brandimarte

Candidato:
Alessia De Crescenzo

Correlatore:
Edoardo Fadda

Anno Accademico 2023/2024

Abstract

With the sharp increase of uncertainty and complexity in production pro-
cesses, dynamic scheduling nowadays plays a strong role in making enter-
prises more competitive: it is needed to handle real time events, such as
machine breakdowns, job arrivals and stochastic processing times.
The static job scheduling problem (JSP) is one of the most practically rele-
vant but rather complex scheduling problems, having been proved to be NP
hard, and it has been the subject of a significant amount of literature in the
operations research field: however, this approach is unrealistic in real-world
contexts,where dynamic events such as insertions, cancellations or modifica-
tions of orders, machine breakdowns, variation in due dates and processing
times are inevitable and drive the realized execution of a static schedule far
from its expected outcome and deteriorate the production efficiency seriously.

This work focuses on dynamic scheduling problem in job shops with new
job arrivals at stochastic times, aiming at minimizing the penalties for ear-
liness, tardiness and flowtime, according to the just-in-time (JIT) policy,
which is based on the idea that early as well as late delivery must be dis-
couraged: a Reinforcement Learning agent-based method for developing a
predictive-reactive scheduling strategy is investigated.

The approach involves generating an initial schedule and subsequently
revising it in response to the arrival of new jobs. Specifically, the proposed
method entails implementing an event-driven rescheduling policy, wherein
the arrival of a new job prompts a rescheduling of the entire timeline from
the arrival time onwards. An agent is designed to simulate time according
to the current schedule and schedule the operations of the new job.

The developed method was tested on a wide range of instances and com-
pared to a simple heuristic, namely a FIFO agent, and was able to exceed
its performance on most instances.

1

Contents

1 Introduction 4

2 Dynamic Scheduling: Literature review 6
2.1 Dynamic Scheduling . 6
2.2 A Dynamic Scheduling Framework 6

2.2.1 Dynamic Scheduling Strategies 6
2.3 Dynamic Scheduling Policies 7
2.4 Dynamic Scheduling Methods and Approaches 7

3 Problem formulation 10

4 Reinforcement Learning and Markov Decision Processes 12
4.1 Reinforcement Learning: a brief introduction 12

4.1.1 Value Functions . 13
4.2 Markov Decision Processes Modelling 16

4.2.1 Decision epochs and non-decision epochs 16
4.2.2 State representation 16
4.2.3 Action representation 17
4.2.4 Transition Probabilities 17
4.2.5 Reward function . 18

5 Environment Design 20
5.1 Environment Model . 20
5.2 Environment Implementation 21

5.2.1 Restart function . 22
5.2.2 Step function . 22
5.2.3 Reset function . 22

5.3 Ausiliary classes and methods 23
5.3.1 Event manager . 23
5.3.2 Timing . 23

2

6 Proposed method 25
6.1 Time Simulation Agent . 25

6.1.1 Main methods . 26
6.1.2 Auxiliary methods . 27

6.2 Reinforcement Learning Agent 28
6.2.1 State Features . 28
6.2.2 Action space . 29
6.2.3 Temporal Difference Learning 29
6.2.4 Function Approximation 35
6.2.5 Proposed architecture 36

7 Numerical Results 38
7.1 Training . 39
7.2 Evaluation . 42

8 Conclusions 50

3

Chapter 1

Introduction

Scheduling is the allocation of shared resources over time to competing ac-
tivities. It has been the subject of a significant amount of literature in
the operations research field. Emphasis has been on investigating machine
scheduling problems where jobs represent activities and machines represent
resources.
The job-shop scheduling problem (JSP) is a type of combinatorial optimiza-
tion problem which determines how to assign a set of jobs on a set of ma-
chines to minimize or maximize a predefined objective function under certain
constraints. It has been proved to be NP-hard, which means that the time
required to get an optimal solution increases exponentially with the problem
size.
Moreover, the process of scheduling tasks is significantly affected by unfore-
seen events such as new jobs arrivals. Therefore, the study of scheduling
in the presence of real-time disruption (dynamic scheduling) is attracting
increasing attention.
At present, the methods of solving the DFJSP are mainly heuristic and meta-
heuristic algorithms. Heuristics are simple and efficient, but often fall into
local optima and their solution quality is poor due to greed and shortsighness.
Metaheuristics improve the solution quality through parallel searching and
iterative searching, but this is time consuming (Liu et al. [2023]).
An alternative approach is that of Reinforcement Learning, a branch of Ma-
chine Learning (ML) that can provide solutions to many real-world applica-
tions from artificial intelligence to operation research or control engineering,
where an agent interacts with an environment by performing actions and
perceiving environmental states and has to learn a ’correct behaviour’ (the
optimal policy) by means of a feedback rewarding signal.

4

In particular,RL processes have two components: a decision maker and its
environment; the decision maker (the agent) observes the state of the envi-
ronment at some discrete points in time (decision epochs) and makes deci-
sions, i.e. takes actions based on the state.
The decisions made are then executed in the environment which will find
itself in a new state later. As a response to the decision maker, the envi-
ronment also returns a reward to the decision maker: the goal is to find an
optimal way to make decisions so as to maximize the long-term cumulative
rewards (Ana Esteso and Díaz-Madroñero [2023]).
The method proposed in this thesis entails implementing an event-driven
rescheduling policy, wherein the arrival of a new job prompts a rescheduling
of the entire timeline from the arrival time onwards. An agent is designed
to simulate time according to the current schedule. Each time a machine
becomes available, the agent evaluates both the next scheduled operation
and the task associated with the new job on that machine. If the new job’s
operation is not feasible (e.g., other operations must be processed first on
different machines), the agent refrains from modifying the schedule. Con-
versely, if the new operation is feasible, the agent determines whether to
insert the new operation prior to the scheduled one, taking into account the
reward in terms of penalty reduction.

Two agents were trained within the proposed approach and tested on a
wide range of instances, with varying number of dynamic jobs. The results
were then compared to those obtained by a simple heuristic, i.e. a FIFO
agent, and the superiority of the two agents was proved, especially when
working with large-scale instances.

5

Chapter 2

Dynamic Scheduling:
Literature review

2.1 Dynamic Scheduling

Most of existing methods for solving the JSP have assumed a static manu-
facturing environment where the information on the shopfloor is completely
known in advance, hence outputting a deterministic scheme without any
modification during the entire working process. However dynamic events,
such as machine breakdowns, rush orders, changes in job priorities or de-
lays in job processing, are inevitable and unpredictable and can destabilize
the production system and invalidate the current scheduling scheme. There-
fore, it is of remarkable importance to develop new scheduling methods for
Dynamic Scheduling.

2.2 A Dynamic Scheduling Framework

Before diving deep into dynamic scheduling methods, we present a brief
summary of a framework for understanding dynamic scheduling research.

2.2.1 Dynamic Scheduling Strategies

According to the type of the initial schedule, dynamic scheduling strategies
can be classified into three categories:

• Completely reactive scheduling (also named on-line scheduling), gener-
ating no pre-schedule and completing the scheduling in real time.

6

• Predictive-reactive scheduling generating a predictive schedule advance
to optimize shop performance without considering possible future dis-
ruptions and adapting the schedule to the dynamic events.

• Robust pro-active scheduling, producing a schedule in advance to an-
ticipate the effect of disturbance on manufacturing system.

Obviously, when using priority dispatching rules or heuristics, schedules
are easily constructed in real time: they are a form of completely reactive
scheduling. On the other hand, most metaheuristics belong to the second
category, that of predictive-reactive scheduling, where the schedule is ad-
justed when a dynamic event occurs.

2.3 Dynamic Scheduling Policies

Dynamic scheduling policies are needed to implement the above strategies.
The different types of existing policies are the following:

• A periodic rescheduling policy performs a periodical rescheduling and
carries out these schedules in a rolling time range.

• In an event-driven rescheduling policy, a real time event occurs accom-
panied by a rescheduling.

• A hybrid rescheduling policy performs periodical rescheduling whenever
a real time event occurs.

Baykasoğlu and Karaslan [2017] developed a GRASP-based approach for
the DJSP and were able to show that, usually, event-driven policies outper-
form periodic rescheduling policies for the problems studied in their work.

2.4 Dynamic Scheduling Methods and Approaches

As an attractive research field in both academia and industry, dynamic
scheduling has been intensively researched over the past decades. Various
methods have been presented, the most widely used among which are dis-
patching rules and metaheuristics.

Dispatching rules immediately react to dynamic events, thus achieving
the best time efficiency. However, they fail to guarantee even a local op-
timum, much less a global optimum. Meanwhile, since different rules are

7

suitable for different scenarios, it is hard for the decision maker to select the
best rule at a specific time point.

However, they are a powerful tool: Lawrence and Sewell [1997] found
that simple dispatching rules could provide comparable or even superior
performance to optimum seeking methods when the uncertainty in process-
ing times increase. Moreover, Rajendran and Holthaus [1999] conducted a
comparative study on the performance of different dispatching rules in the
dynamic flow shops and job shops, concluding that the performance of these
rules depends on routing of jobs and shopfloor configuration.

Dynamic or real time dispatching rules have been studied and imple-
mented: Morady Gohareh and Mansouri [2022] proposed a framework to
generate dynamic and global dispatching rules for the DJSP. The generated
rules have two pillars: a memory measure (pheromones,generated by simula-
tion and ant colony algorithm) and a heuristic measure, based on the Central
Limit Theorem.

Meta-heuristics are able to provide near-optimal solutions with accept-
able gaps at the cost of an higher (but reasonable) computational time. Most
metaheuristics proceed in an iterative search process: starting from an ini-
tial solution or a population of initial solutions, the algorithm improves the
solution(s) while trying to avoid local optima via perturbation mechanisms.

These methods have been widely applied to the Dynamic Job shop:
Kundakcı and Kulak [2016] introduced efficient hybrid Genetic Algorithm
methodologies for minimizing the makespan, integrating GA with different
heuristics to generate the initial population. They compared the proposed
method with some of the main state-of-art approaches and proved that it
was able to overcome them on a various range of instances.

Wang et al. [2019] proposed a multi-restart Particle Swarm Optimization
algorithm in a multi-objective DJSP setting: their method allows the restart
solution to be generated from a group of solutions drawn from local optima.
This extends the search space, while maintaining the quality of the restart
solution. When compared with six state of the art metaheuristic their ap-
proach proved to outperform five out of six and to be comparable to the last
one.

To find the best order for operations to be processed, the JSP can be
regarded as a Markov decision process (MDP), where an intelligent agent
should determine the optimal action after the occurrence of a new arrival,
by comprehensively utilizing the information form current production state
(Puterman [1994]). In recent years, Reinforcement Learning (RL) has emerged

8

as a powerful way to deal with MDPs and has been applied to different kinds
of dynamic scheduling problems.

Wang et al. [2019] present an interesting approach in their study where
they simulate the dynamic arrival of jobs in a discrete event simulation (DES)
system. In their system, both the arrival times of jobs and their processing
times are generated from an exponential and a uniform distribution respec-
tively. This results in each job being different, leading to a potentially in-
finite state space: to address this problem, they opt for an aggregate state
representation.

Most RL-based methods have a "single operation" approach: at each
time step, the agent decides which operation will be processed next on which
machine. Clearly, this is an online scheduling approach, where the schedule
is created in real-time and new job’s operations are simply added to the
machines buffers. In this work, a "multiple operations" approach is proposed:
at each order arrival, the agent adjust the schedule for the entire job shop
accordingly and outputs the ordered queues of each machine.

9

Chapter 3

Problem formulation

The n ×m Just-In-Time job-shop scheduling problem can be described by
a set of n jobs (Ji)1≤i≤n which is to be processed on a set of m machines
(Mr)1≤r≤m. Each job has a release date ri, a due date di and tardiness,
earliness and flowtime weights wti , wei , wfi .
Moreover, it needs to be processed on the machines in a given order. The
processing of job Ji on machine Mr is defined as the operation Oir. Operation
Oir requires the exclusive use of machine Mr for an uninterrupted period of
time pir, its processing time.
In this study, the assumptions and constraints are as follows:

• Each machine can process only one operation at a time;

• The order of precedence of operations belonging to the same job must
be followed and there are no precedence constraints among the opera-
tions of different jobs;

• The operation must be processed without interruption;

• Jobs are independent;

• An unlimited buffer between machines is assumed.

Finally, the objective function is the total penalty:

Pn = Tn + En + Fpn

which is defined by the sum of weighted tardiness Tn, weighted earliness En

and weighted flowtime penalty Fpn, which are described respectively by the

10

following formulas:

Tn =
n∑

i=1

wti (max(0, Ci − di))

En =
n∑

i=1

wei (max(0, di − Ci))

Fpn =

n∑
i=1

wfi (Ci − Si)

where Ci represents the completion time of the i-th job and Si represents
the starting time of processing of the i-th job.
In this work we consider the dynamic job shop scheduling problem, where
stochastic job arrival is considered as the ’stochastic’ factor: after developing
our initial schedule, we progressively receive new orders, characterized as
described before, and we perform rescheduling of the entire job shop to
account for each of these orders.

11

Chapter 4

Reinforcement Learning and
Markov Decision Processes

4.1 Reinforcement Learning: a brief introduction

Reinforcement learning is one of the three main branches of ML techniques
and can be considered as a third machine learning paradigm, alongside of
supervised learning, unsupervised learning, and perhaps other paradigms as
well: it was initially proposed in the early 1990s and has attracted a lot of
interest from the research community since then.

Different from other machine learning approaches, Reinforcement Learn-
ing is the task of learning from interactions with the environment: a learning
agent keeps interacting with its dynamic environment and chooses actions
based on the received feedback, used to update its knowledge.

According to Sutton and Barto [2018], three main elements are required
for the RL process: a policy, which maps the actions to the states; a reward
signal, which classifies this action according to the immediate return received
by the transition between states; a value function, to evaluate which actions
have positive long term effects by considering not only the immediate reward
of a state, but the long-run cumulative reward;
There is a fourth optional element in some RL systems, namely a model of
the environment that mimics the environment’s behaviour.

The agent and environment interact at each of a sequence of discrete
time steps. At each time step t, the agent receives some representation of
the environment’s state, St ∈ S, where S is the set of possible states, and on
that basis selects an action, At ∈ A(St), where A(St) is the set of actions

12

available in state St. One time step later, in part as a consequence of its
action, the agent receives a numerical reward, Rt+1 ∈ R , and finds itself in
a new state, St+1.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted πt.

Reinforcement learning methods specify how the agent changes its pol-
icy as a result of its experience. The agent’s goal, roughly speaking, is to
maximize the total amount of reward it receives over the long run.

The use of a reward signal to formalize the idea of a goal is one of the most
distinctive features of reinforcement learning. In RL, rewards are in a sense
primary, whereas values, as predictions of rewards, are secondary: without
rewards there could be no values, and the only purpose of estimating values
is to achieve more reward.

Nevertheless, it is values with which we are most concerned when making
and evaluating decisions: we seek actions that bring about states of highest
value, not highest reward, because these actions obtain the greatest amount
of reward for us over the long run.

4.1.1 Value Functions

In reinforcement learning, the purpose of the agent is formalized in terms of a
reward signal passing from the environment to the agent. At each time step,
the reward is a simple number, Rt ∈ R and the agent goal is to maximize
the cumulative reward obtained from its actions.

How might this be defined formally? If the sequence of rewards received
after time step t is denoted Rt+1, Rt+2, Rt+3, ... what precise aspect of this
sequence do we wish to maximize? In general, we seek to maximize the
expected return, where the return Gt is defined as some specific function of
the reward sequence, such as the sum of the rewards.

The latter could be used in episodic tasks, where the agent reaches a ter-
minal state after a certain number of timesteps, but it cannot be used when
dealing with interactions that have no time limits: this is why discounting
was introduced. According to this approach, the agent tries to select ac-
tions so that the sum of the discounted rewards it receives over the future is
maximized.

13

In particular, it chooses At to maximize the expected discounted return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1, (4.1)

where γ, 0 ≤ γ ≤ 1 , is called the discount rate.
Almost all reinforcement learning algorithms involve estimating value

functions, functions of states (or of state–action pairs) that estimate how
good it is for the agent to be in a given state (or how good it is to perform
a given action in a given state), in terms of expected future return. Clearly,
the rewards the agent can expect in the future depend on the chosen actions:
therefore, value functions can be defined with respect to particular policies.

Recalling that a policy is a mapping from each state-action couple (s,a)
to the probability of selecting action a when in state s, the value of a state s
under policy π, denoted vπ(s), can be defined as the expected return starting
from s and following π:

vπ(s) = Eπ[Gt|St = s] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s

]
, (4.2)

where γ is the discount rate and Eπ[·] denotes the expectation under
policy π.

Similarly, the value of taking action a in state s under policy π, denoted
Qπ(s, a), is the expected return starting from s, taking action a, and following
π:

Qπ(s, a) = Eπ[Gt|St = s,At = a] (4.3)

These functions can be estimated from experience: if an agent follows
policy π and maintains an average, for each state encountered, of the ac-
tual returns that have followed that state, then the average will converge
to the state’s value, vπ(s), as the number of times that state is encoun-
tered approaches infinity. If separate averages are kept for each action taken
in a state, then these averages will similarly converge to the action values,
qπ(s, a). Estimation methods of this kind are called Monte Carlo methods
because they involve averaging over many random samples of actual returns.

Of course, if there is an high number of states, it may not be possi-
ble to store separated averages for each state, or for each state-action pair:
the agent can keep vπ and Qπ as parameterized functions and adjust the
parameters to better match the observed returns.

14

A fundamental property of value functions used throughout reinforce-
ment learning and dynamic programming is that they satisfy the Bellman’s
equation:

vπ(s) = Eπ[Gt | St = s] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s

]

= Eπ

[
Rt+1 + γ

∞∑
k=0

γkRt+k+2 | St = s

]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r | s, a)

[
r + γEπ

[∞∑
k=0

γkRt+k+2 | St+1 = s′

]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r | s, a)
[
r + γvπ(s

′)
]
, (4.4)

for any policy π and any state s.
It expresses a relationship between the value of a state and the values of

its successor states: starting from state s, the agent could take any of some
set of actions; the Bellman equation averages over all possibilities, weighting
each by its probability of occurring. It states that the value of the start
state must equal the (discounted) value of the expected next state, plus the
reward expected along the way.

The value function vπ is the unique solution to its Bellman equation.
On the other hand, this equation forms the basis of a number of ways to
compute, approximate, and learn vπ.

15

4.2 Markov Decision Processes Modelling

RL processes can be modeled as a Markov decision process (MDP): this
stochastic mathematical model can be described by a five-tuple

MDP = ⟨S,A(s), P (s′|s, a), γ, R(s′|s, a)⟩

where S is a set of all possible states of the environment; A(s) is a set of
possible actions (alternatives) while the state is s, s ∈ S; P (s′|s, a) is a set of
probabilities that the state of the environment changes from state s to state
s’ after action a is taken; γ is a discount factor; R(s′|s, a) is a set of rewards
that the decision maker obtains after taking action a and the state of the
environment changes from state s to state s’(Zhang et al. [2017]).
It is assumed in this work that the only stochastic factor of the job shop is
represented by the arrival of different orders: whenever a new order is re-
ceived, the agent needs to make a decision on how to insert it in the schedule.
In particular, we assume job inter-arrival times as exponentially distributed
with mean 1

λ . Therefore, the arrival of orders can be modeled as a birth
chain (a Poisson process).
Moreover, we suppose that the job shop includes a buffer space to accom-
modate newly arrived jobs with a capacity of 1, meaning it can hold at most
one job at a time. If a job arrives when the buffer is empty, it can be set
to wait until the next instant of time to be either scheduled or discarded.
However, if a job arrives when the buffer is already occupied, it cannot enter
the buffer and is immediately discarded.
Finally, the state of the system is observed at each instant of time but actions
are allowed only when a new job enters the factory.

4.2.1 Decision epochs and non-decision epochs

Decision are made only when a job arrives: we call these points of time
decision epochs. Contrarily, no decisions are made during the remaining
time instants and we refer to these moments as non-decision epochs.
To model this, we decide to construct different set of actions depending on
the state and, in particular, we defined the set of action in non-decision
epochs as containing only the action "Don’t change the schedule".

4.2.2 State representation

In order to model this decision problem as a MDP, we first need to define
the system state-space: the state represents the current configuration of the

16

job shop and must be chosen such that the Markovian property holds and
therefore the state changes only depend on the present state and the chosen
action.
At each epoch, the system state can be denoted by the vector

St = (Ot, ηt, µt, θ1,t, ..., θm,t)

where

• Ot takes value equal to 1 if the buffer is full (i.e. a new order is
available) and 0 otherwise.

• ηt is a list of integers, each representing the number of completed op-
erations for the i-th job.

• µt is a list of lists containing the ordered queues for each machine.

• θt is a dataframe, containing the current schedule for the job shop up
to time t.

4.2.3 Action representation

The action space set A is defined as the set of all possible action that can
be taken by the agent; however, in the considered framework, the decision
maker takes an action only when a new arrival occurs. Therefore, we can set
At = {”Do not modify the schedule”} ∀t | Ot = 0.
For the remaining time instants, the chosen action will be represented by a
list of lists

At = (a1, ..., am)

where aj corresponds to the ordered queue to be processed by the j-th ma-
chine from the time of the job arrival up to the end of the schedule.

4.2.4 Transition Probabilities

Since the action space doesn’t include actions affecting the arrival of new
orders, the transition probabilities won’t directly depend on the chosen ac-
tion: the latter will deterministically affect the schedule of the job shop.
Moreover, the transition probabilities will simply depend on the underlying
birth process of new arrivals.

17

Therefore, we can define our transition probabilities in the following man-
ner:

P ((0, ηt+1, µt+1, θt+1) | (Ot, ηt, µt, θt) , At) =

P (No arrivals observed in [t, t+ 1]) = e−λ(t+1−t) = e−λ.

P ((1, ηt+1, µt+1, θt+1) | (Ot, ηt, µt, θt) , At) =

P (At least one arrival observed in [t, t+ 1]) = 1−e−λ(t+1−t) = 1−e−λ.

4.2.5 Reward function

Remembering that our objective is to reduce the total weighted penalty given
by tardiness, earliness and flowtime costs, simply defined by the following
formula:

Pn(t) =

Nt∑
i=1

max(wei(di − Ci), wti(Ci − di)) + wfi(Ci − Si)

where di indicates the due date of job i,Ci its completion time and Si

the starting time of its processing. Then we can define the reward obtained
over period from t to t+1 in the following terms:

rt(St+1|St, At) = Pn(t)− Pn(t+ 1)

Note that, if Pn(t + 1) < Pn(t), this indicates that total penalty of the
job shop decreased and the immediate reward is greater than 0, increasing
the cumulative reward. If Pn(t) = Pn(t+ 1), which is always true when the
job shop didn’t receive any new order, the reward will be equal to 0. Finally,
if Pn(t+1) > Pn(t) then the penalty of the job shop increased and therefore
we’ll obtain a negative reward.

18

t

Action:
At

reward

observe total volume:
check Ot

t+ 1

Action:
At+1

Figure 4.1: Events timeline

19

Chapter 5

Environment Design

A key component of this project was the implementation of the dynamic
job shop environment, achieved following the structure of the Gymnasium
library developed by openAI.

5.1 Environment Model

In order to present the implementation of the constructed environment, we
begin by describing in more detail the simulated system considered during
both the testing and training phases:

• the system is composed by m machines

• at the start of each episode, the system already presents an initial
schedule for the ns static jobs

• from the first arrival time ta, the job shop receives nd new orders,
whose arrival follows a exponential distribution.

• each time a new job arrives, the environment refers to the agent to
obtain ordered queues for each machine and then schedules the job
shop based on the given queues.

Before deep diving into the implementation of these functions , it’s im-
portant to note that the DJSP can be modeled and approached in various
ways. The method I chose addresses the problem using a "multiple" ap-
proach, focusing on the evolution of the system one job at a time.

An alternative approach is to focus on one operation at a time: when an
operation is completed on a machine, the agent’s task is to select only the

20

next operation for that machine, repeating this process until the end of the
simulation.

The methods and techniques developed for the latter are more common,
and the literature is more extensive. However, the approach considered in
this project ensures that the schedule does not actively depend on the agent
until all jobs have been processed. Thus, in case of a malfunction of the
agent, all jobs up to the last one received are scheduled and their processing
can be completed.

This is an important advantage if we consider the possibility of applying
this method within the context of digital twin technologies, where a replica
of the real environment is generated and used to schedule the system.

5.2 Environment Implementation

The Gym framework allows the construction of various environments, sim-
ulating tasks or games in which an agent interacts with its surroundings to
learn optimal behaviors.

The main methods of the environment’s class are:

• _init_ (Initialization Function): This function simply initializes the
environment.

• restart(instance name, timing, event manager) This function initializes
the environment’s parameters, such as the state space, action space,
and any environment-specific variables (e.g., job queues or machine
statuses in a job shop). It also sets up any initial conditions required
to start the simulation.

• step(action) (Step Function): This function takes an action as input
and applies it to the environment, moving it from its current state to
a new state.

• reset() (Reset Function): This function resets the environment to its
initial state, providing a new starting point for an episode. It is typi-
cally called at the beginning of each new episode or when the environ-
ment reaches a terminal state.

Therefore, following the pseudo-code of a Gym-like environment, I im-
plemented the methods above to simulate the considered environment.

21

5.2.1 Restart function

The initialization of the environment class contains some essential steps:

• reading the instance and obtain an initial solution for the first ns

jobs, using commercial solver Gurobi, therefore initializing the current
schedule of the environment.

• initialize the ordered queues following the given initial schedule and,
for each job, static or not, a counter for completed operations.

• initialize some functions such as timing, envmanager and reward, which
will be used later on in the step function, and the list of dynamic events.

This includes the initialization of one of the fundamental elements of the
whole code, which is the event list. Within this list are entered all the arrival
times of the simulated dynamic jobs.

5.2.2 Step function

The step function is central to the environment’s evolution. It processes the
incoming action taken by the agent, ensures that this action is accurately
recorded in the environment (i.e. that the system is rescheduled based on
the new queues), and updates the environment’s state up to the next event.

Three main operations take place within it:

• "timing" operation: given the queues produced by the agent, this func-
tion reschedules the remaining operations. This is achieved by solving
a Gurobi model where precedence constraints on machines are fixed
based on the action of the agent. The model is initialized once at the
start of each episode and is updated each time an operation is either
removed from or inserted into the job shop.

• "next" operation: this function handles job arrivals, by placing the
new job in the job shop buffer and fast forwarding the environment’s
time up to the time of the new arrival.

• reward computation: the reward obtained by modifying the schedule
and inserting the previous dynamic job is computed.

5.2.3 Reset function

The reset function is called at the start of each episode and its mainly re-
sponsible for reading and presenting to the environment the first job arrival
from the events list, after the environment was restarted.

22

5.3 Ausiliary classes and methods

To manage the arrival of orders more accurately, the environment was inte-
grated with an event manager and a timing structure: the former handles the
events for the environment by reading, recording, and presenting them one
at a time, while the latter is responsible for solving the scheduling problem
using Gurobi, maintaining the order presented by the agent in each queue
and taking into account setup times and precedence constraints.

5.3.1 Event manager

The event manager is initialized at each restart of the environment and
independently manages the arrival of new jobs and their departure from the
shop floor: specifically, it is responsible for keeping the queues, the counters
of completed operations for each job, and the timing model updated and
presenting each new job to the environment at the time of its arrival.

When initialized, it start by reading the list of dynamic jobs to be received
by the job shop and inserts each element in a list, together with its arrival
time.

The main method of this class is the "next" method: this is called by
the environment at each step and at each reset and starts by reading the
next arrival from the events list and inserting it in the timing model. Then,
it iterates through the current schedule up to the time of the new arrival
and generates a list of completed operations, from the time of the previous
arrival up to the last one: it removes each one from the timing model and
updates the job’s counters. Finally, if a job was completed, it fully removes
it from the timing model.

5.3.2 Timing

The timing structure is based on a Gurobi model, that is update through-
out the simulation and is responsible for producing a full schedule from the
ordered queues generated by the agent.

It is composed by 4 main methods:

• Initialize Timing method : this method initializes the model with the
first ns static jobs and the corresponding constraints.

• Insert Job method : this function updates the model by adding the
variables corresponding to each operation of the new job.

23

• Delete Operation method : this is called by the event manager each time
an operation is completed and removes all the variables and constraints
relative to it from the model. The method also checks if the operation
was the last one of the corresponding job: if that is the case, the job’s
variables and constraints are removed from the model as well.

• Timing Schedule method : this method is responsible for producing
the definitive schedule for the job shop. It takes the action of the
agent as input and, after defining the objective function and adding
the precedence constraints defined by the queues, solves the Gurobi
model, minimizing the JIT penalty.

24

Chapter 6

Proposed method

In the proposed method, at each new job arrival a Time Simulation agent
simulates time according to the current schedule and, each time a machine
becomes idle and the operation for the new job on that machine, if existing,
is feasible, refers to a Reinforcement Learning agent that decides whether
to insert the new job’s operation in the machine queue, previous to the one
scheduled next.

The latter takes its decision based on the state features, i.e. the state
representation of the machine’s queue and the tardiness of the schedule,
which are computed (or, if exact computation is not possible, estimated) by
the Time Simulation agent.

6.1 Time Simulation Agent

The Time Simulation agent main functions are that of simulating the time by
means of the current schedule and interact with the Reinforcement Learning
agent, by providing to it all necessary information, like state features and
estimated rewards, and inserting the new job’s operation in the assigned
position in the queue.

Besides the "get action" and "reset" methods, it is equipped with some
auxiliary methods, necessary to calculate the features and rewards, to check
the feasibility of actions and to restore the schedule once updated.

25

6.1.1 Main methods

The "Get action" method

This method is responsible for the simulation of the time and the interactions
with the RL agent: in particular, it is composed of the following main steps.

• The agent reads the line corresponding to the new job and generates
a graph of the job shop up to the new arrival time, necessary to check
the feasibility of the RL agent’s actions.

• For each operation of the new job, the agent adds a node to the graph,
computes the time that the operations becomes feasible tend (i.e. the
time the previous operation is completed) and estimates the due date
of such operation.

• If the queue of the corresponding machine is empty, the job is simply
appended to it.

• Else, the agent starts iterating through the current schedule, while
updating a copy of the operation counters.

• Each time the required machine becomes idle, if inserting the new
operation in the corresponding queue index is a feasible action, it calls
the RL agent to decide wheter to proceed with the insertion or not.

• If the RL agent decides to insert the new operation in the queue, the
agent adapts the current schedule accordingly, setting the starting time
of the operation in such a way that the penalty produced by the esti-
mated due date is minimized. Then, the schedule feasibility is restored
by checking that there are no overlapping operations.

• Finally, if the operation wasn’t inserted up to the end of the machine’s
queue, the agent simply inserts it at the bottom of the queue.

The "reset" method

This method simply resets the Reinforcement Learning agent at each episode
(i.e. each time a new operation is considered).

26

6.1.2 Auxiliary methods

The Time Simulation Agent was provided with some auxiliary methods, nec-
essary to check the feasibility of the chosen actions and of the new schedule,
to compute the state features to be fed to the agent and the estimated re-
ward. The cited methods are the following:

• "Check feasibility" : this function checks if inserting the operation in
the given index of the queue is feasible by inserting the corresponding
edges in the graph and checking if the latter is still acyclic. If that’s
not the case, the method output is False and the corresponding action
is not considered.

• "Restore feasibility" : this method iterates through the current schedule
and restores feasibility in case of overlapping operations within the
same machine’s queue or the same job.

• "Compute features" : this function is responsible for computing the
state features to be fed to the agent.

• "Reward" : this computes the estimate of the reward by means of the
state features.

• "Create graph" : this is responsible for generating the initial graph
containing all operations scheduled up to the last arrival time.

27

6.2 Reinforcement Learning Agent

Each time an insertion is feasible, the Time Simulation Agent refers to a
Reinforcement Learning Agent to decide whether to proceed or not with the
insertion: the latter was built using PyTorch and implements a Q-learning
approach with Temporal Difference (TD) learning and function approxima-
tion.

In particular, the Q-learning values were approximated using a neural
network, but other functions could be used, such as piece-wise linear func-
tions or decision trees: this was necessary since the considered state features
are continuous and therefore the number of states is infinite.

Another option would’ve been that of discretizing the state space, there-
fore adapting the problem to be solved via classical Q-learning tabular meth-
ods.

6.2.1 State Features

The state features are computed by the Time Simulation Agent each time
an insertion is feasible and describe both the machine and the new job state,
together with the global penalty of the current schedule.

The considered features are the following:

• Job Shop Penalty : this feature is computed by taking into account both
the completely scheduled jobs and the new job’s penalty. To estimate
the latter I consider the estimation of the due date of the last inserted
operation of the job.

• New Job Penalty : this simply corresponds to the penalty of the new
job, based on the last inserted operation and the estimate of its due
date.

• Mean Tardiness: this measures the mean tardiness of the jobs in the
queue, following the considered index, without taking into considera-
tion the tardiness weights.

• Mean Earliness: this measures the mean earliness of the jobs in the
queue, following the considered index, without taking into considera-
tion the earliness weights.

Note that the state features summarize all the information needed on
the past states and decision, so that the state transition only depends on the
present state of the job shop and the chosen action, therefore maintaining

28

the Markov Property and allowing us to solve the problem by means of
Reinforcement Learning.

6.2.2 Action space

Each time the agent gets called, it decides whether to insert or not the new
operation at the considered index of the queue: therefore, the action space
is binary.

6.2.3 Temporal Difference Learning

Temporal Difference (TD) learning is a combination of Monte Carlo ideas and
Dynamic Programming (DP) ideas. Like Monte Carlo methods,TD methods
can learn directly from raw experience without a model of the environment’s
dynamics. Like DP, TD methods update estimates based in part on other
learned estimates, without waiting for a final outcome (by bootstrapping).

Both TD and Monte Carlo methods use experience to solve the predic-
tion problem. Given some experience following a policy π, both methods
update their estimate V of vπ for the non terminal states St occurring in
that experience. Roughly speaking, Monte Carlo methods wait until the re-
turn following the visit is known, then use that return as a target for V (St).
On the other hand, TD methods need to wait only until the next time step.
At time t + 1 they immediately form a target and make a useful update
using the observed reward Rt+1 and the estimate V (St+1).

The simplest TD method makes the update

V (St)← V (St) + α [Rt+1 + V (St+1)− V (St)] (6.1)

The main difference is that the target for the Monte Carlo update is Gt,
whereas the target for the TD update is Rt+1+V (St+1). This TD method is
called TD(0), because it is a special case of the TD(λ) implemented in this
work.

From Chapter 4, we know that

vπ(s) = Eπ [Gt | St = s] (6.2)

= Eπ [Rt+1 + λGt+1 | St = s]

= Eπ [Rt+1 + λvπ(St+1) | St = s] (6.3)

Roughly speaking, Monte Carlo methods use an estimate of (6.2) as a
target, whereas DP methods use an estimate of (6.3) as a target. In Monte

29

Carlo the target is an estimate because the expected value in (6.3) is not
known; a sample return is used in place of the real expected return. The
DP target is an estimate not because of the expected values, which are
assumed to be completely provided by a model of the environment, but
because vπ(St+1) is not known and the current estimate, V (St+1), is used
instead. The TD target is an estimate for both reasons: it samples the
expected values in (6.3) and it uses the current estimate V instead of the
true vπ. Thus, TD methods combine the sampling of Monte Carlo with the
bootstrapping of DP. (Sutton and Barto [2018])

The algorithm below specifies completely TD(0).

Tabular TD(0) for Estimating vπ

1: Input: Policy π to be evaluated
2: Algorithm parameter: Step size α ∈ (0, 1]
3: Initialize V (s) for all s ∈ S, arbitrarily except that V (terminal) = 0
4: for each episode do
5: Initialize S
6: while S is not terminal do
7: A← action given by π for S
8: Take action A, observe R, S′

9: V (S)← V (S) + α [R+ V (S′)− V (S)]
10: S ← S′

11: end while
12: end for

TD predictions for control

To apply TD predictions for control, the first step is to learn an action-value
function, qπ(s, a), instead of a state-value function. This can be done either
On-Policy or Off-Policy.

Sarsa: On-Policy TD

For an on-policy method, we estimate qπ(s, a) for the current behavior policy
π for all states s and actions a. This can be done using a TD method similar
to the one used for learning vπ. The update rule for Q is:

Q(St, At)← Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)] , (6.4)

30

which is applied after every transition from a nonterminal state St. This
rule uses all elements of the transition (St, At, Rt+1, St+1, At+1), leading to
the name Sarsa for the algorithm.

In an on-policy control algorithm based on Sarsa, we continuously esti-
mate qπ for the behavior policy π, while also adjusting π toward greediness
with respect to qπ.

Q-learning: Off-Policy TD

One of the most important breakthroughs in reinforcement learning was
the development of an off-policy TD control algorithm known as Q-learning
(Watkins and Dayan [1992]). Its simplest form, one-step Q-learning, is de-
fined by:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
. (6.5)

In this case, the learned action-value function, Q, directly approximates
q∗, the optimal action-value function, independent of the policy being fol-
lowed. This greatly simplifies the analysis of the algorithm and enabled early
convergence proofs.

Eligibility Traces and TD(λ)

Eligibility traces are one of the basic mechanisms of reinforcement learning:
almost any temporal-difference (TD) method, such as Q-learning or Sarsa,
can be combined with eligibility traces to obtain a more general method
that may learn more eciently. Eligibility traces unify and generalize TD and
Monte Carlo methods. When TD methods are augmented with eligibility
traces, they produce a family of methods spanning a spectrum that has
Monte Carlo methods at one end (λ = 1) and one-step TD methods at
the other (λ = 1). In between are intermediate methods that are often
better than either extreme method. Eligibility traces also provide a way
of implementing Monte Carlo methods online and on continuing problems
without episodes.

31

In this work, we define TD(λ) mechanistically, instead of presenting its
forward view. The mechanistic, or backward, view of TD(λ) is useful be-
cause it is simple conceptually and computationally and provides a causal,
incremental mechanism for approximating the forward view and, in the off-
line case, for achieving it exactly. In fact, the forward view itself is not
directly implementable because it is acausal, using at each step knowledge
of what will happen many steps later.

In the backward view of TD(λ), each state s has an associated eligibility
trace, denoted Et(s) ∈ R+, which is a memory variable. The eligibility trace
for a non-visited state s ̸= St at time t decays by the factor γλ on each step:

Et(s) = γλEt−1(s), ∀s ∈ S, s ̸= St, (6.6)

where γ is the discount rate and λ is the trace-decay parameter.
For the visited state St, the eligibility trace decays similarly but is incre-

mented by 1:

Et(St) = γλEt−1(St) + 1. (6.7)

This type of eligibility trace is known as an accumulating trace, as it
builds up each time a state is visited and gradually fades away when it is
not visited.

Eligibility traces indicate the degree to which each state is eligible for
learning updates if a reinforcing event occurs. The reinforcing events of
interest are the moment-by-moment one-step TD errors. For example, the
TD error for state-value prediction is given by:

δt = Rt+1 + γVt(St+1)− Vt(St). (6.8)

In the backward view of TD(λ), the global TD error signal triggers up-
dates proportional to the TD error for all recently visited states, based on
their eligibility traces:

∆Vt(s) = αδtEt(s), for all s ∈ S. (6.9)

These updates can be applied step-by-step to form an on-line algorithm
or deferred until the end of an episode to create an off-line algorithm.

32

A complete algorithm for online TD(λ) is defined below.

Online tabular TD(λ)

1: Initialize V (s) arbitrarily
2: for each episode do
3: Initialize E(s) = 0 for all s ∈ S
4: Initialize state S
5: while S is not terminal do
6: A← action given by policy π for state S
7: Take action A, observe reward R, and next state S′

8: δ ← R+ γV (S′)− V (S)
9: Update eligibility trace for S

10: E(S)← E(S) + 1 ▷ (accumulating traces)
11: for all s ∈ S do
12: V (s)← V (s) + αδE(s)
13: E(s)← γλE(s)
14: end for
15: S ← S′

16: end while
17: end for

Sarsa(λ)

How can eligibility traces be used not just for prediction, as in TD(λ), but for
control? As usual, one popular approach is to learn action values, Qt(s, a),
rather than state values, Vt(s).

The idea in Sarsa(λ) is to apply the TD(λ) prediction method to state–action
pairs instead of just states. Therefore, we need a trace for each state–action
pair. Let Et(s, a) denote the trace for state–action pair (s, a).

The traces are updated in the same way as before, except they are trig-
gered by visiting the state–action pair, and the update rule becomes:

Et(s, a) = γλEt−1(s, a) + I{St = s}I{At = a}, ∀s ∈ S, a ∈ A, (6.10)

where I{·} is the identity-indicator function. Apart from this, Sarsa(λ)
is just like TD(λ), except that state–action variables are used instead of
state variables:

Qt+1(s, a) = Qt(s, a) + αδtEt(s, a), ∀s, a, (6.11)

33

where the TD error δt is given by:

δt = Rt+1 + γQt(St+1, At+1)−Qt(St, At). (6.12)

Q(λ)

When Watkins and Dayan [1992] introduced Q-learning, they also proposed
an approach to combine it with eligibility traces. However, when using Q-
learning with eligibility traces special care is required because learning about
the greedy policy is valid only as long as the greedy policy is followed.

Thus, in Q(λ), if an exploratory action is taken, the lookahead stops,
unlike TD(λ) and Sarsa(λ), which continue to look ahead until the end of
the episode. The eligibility traces are updated similarly to Sarsa(λ), but
with one key difference: they are reset to zero whenever an exploratory action
is taken.

The trace update occurs in two steps: first, the traces are decayed by γλ,
or set to zero if an exploratory action was taken. Second, the trace for the
current state–action pair is incremented by 1. The overall result is:

Et(s, a) =

{
γλEt−1(s, a) + I{St=s} · I{At=a}, if Qt−1(St, At) = maxaQt−1(St, a),

I{St=s} · I{At=a}, otherwise.
(6.13)

The rest of the algorithm is defined by:

Qt+1(s, a) = Qt(s, a) + αδtEt(s, a), ∀s ∈ S, a ∈ A(s), (6.14)

where the TD error δt is:

δt = Rt+1 + γmax
a′

Qt(St+1, a
′)−Qt(St, At).

Clearly, cutting off traces whenever an exploratory action is taken di-
minishes the benefit of using eligibility traces. If exploratory actions are
frequent, as is often the case early in learning, then multi-step backups will
rarely occur, and learning may not be much faster than one-step Q-learning.

34

6.2.4 Function Approximation

Reinforcement learning systems must generalize effectively to be applicable
in artificial intelligence and large-scale engineering applications, especially
when either the state space or the action space are not finite.

This can be accomplished by employing various supervised-learning func-
tion approximation methods, such as artificial neural networks, decision
trees, and multivariate regression techniques.

However, not all function approximation methods are equally suitable
for reinforcement learning. Many advanced neural network and statistical
methods assume a static training set, which is processed through multiple
passes.

In reinforcement learning, it is crucial for learning to occur online, while
interacting with the environment or its model. This requires methods that
can efficiently learn from incrementally acquired data. Additionally, rein-
forcement learning often needs function approximation methods that can
handle nonstationary target functions, which change over time.

To evaluate function approximation methods, appropriate performance
measures are necessary. Most supervised learning methods aim to minimize
the root-mean-squared error (RMSE) over a distribution of inputs. In the
context of value prediction, the inputs are states, and the target function
is the true value function vπ. The RMSE for an approximation v̂, using
parameter w, is given by:

RMSE(w) =
√∑

s∈S
d(s) [vπ(s)− v̂(s, w)]2, (9.1)

where d : S → [0, 1] represents a distribution over the states such that∑
s d(s) = 1, indicating the relative importance of errors in different states.
Gradient-descent methods offer a natural extension for function approxi-

mation, including techniques developed with eligibility traces. Linear gradient-
descent methods are theoretically appealing and perform well with appro-
priate features. Choosing these features is a crucial way to incorporate prior
domain knowledge into reinforcement learning systems.

Examples of linear methods include radial basis functions, tile coding,
and Kanerva coding.Nonlinear gradient-descent function approximation meth-
ods include backpropagation for multilayer neural networks.

35

6.2.5 Proposed architecture

In the proposed approach, the Reinforcement Learning agent learns via on-
line Temporal Difference learning with eligibility traces: more in particular,
the agent was implemented in such a way that it can learn either using
Sarsa(λ) or Q(λ).

To approximate the Q-value function, a neural network was used and
trained using gradient descent. The gradient descent equation for neural
network parameters is given by

θ ← θ + α · ∇J(θ)

Then, the TD(λ) state-value update equation becomes

Q(s, a)← Q(s, a) + α[Qt − Q̂(St, At)]Et(s, a)

The objective is to improve the estimate of Q(s, a) by minimizing the
difference between the target and predicted action-values. The mean squared
error between these two values was used as the loss function J(θ).

J(θ) =
1

2
∥[Qt −Q(St, At; θ)] · Et(s, a)∥2

The gradient descent equation for TD(λ) is therefore

θ ← θ + α · δt · Et(s, a) · ∇θQ(St, At; θ)

where
δt = Qt −Q(St, At; θ)

To be specific, two different neural networks were used: while Qt refers
to the target output obtained at time step t, we bear in mind that the
target output comprises the immediate reward plus the discounted estimate
of future returns obtainable from the next state until the agent reaches the
goal. That estimate is also a prediction, just like Q(St, At; θ). Technically, Qt

and Q(St, At; θ) could be obtained from the same network. However, since
the network weights are updated at every step, as Q(St, At; θ) improves,
Qt will change (not necessarily improve), and the method will be chasing a
moving target with no end.

Having two neural networks allows to decouple Q(St, At; θ) and Qt to
some extent for the calculation of the mean squared error, so that the training
becomes more stable.

36

Thus, I defined:

• Qmain, the main network that we will train to get Q(St, At; θ). As
training occurs at every step, we can expect fluctuations here.

• Qtarget, the secondary network which we will use to obtain Qt. This
network is not trained but rather, updated periodically (via a soft
update) with the learned weights from Qmain to help it improve with
fewer fluctuations than Qmain.

A memory buffer is used to collect the outputs (current state and action,
reward obtained, next state and action) of each step, from which random
baches are sampled to train the neural network Qmain.

This batch update method is preferred because it is generally more stable
than single-sample updates (the latter has high variance and may lead to slow
or non-convergence).

This is also where we compute Qt, where:

• If the agent is acting on-policy, then Q(St+1, At+1) will be obtained
from the Qtarget network using the next action taken (by policy), i.e.,

Qt = [Rt+1 + γQ(St+1, At+1)]

• If the agent is not acting on-policy, then Q(St+1, a) will be obtained
from the Qtarget network using the action that gives the best Q-value,
i.e.,

Qt =
[
Rt+1 + γmax

a
Q(St+1, a)

]

37

Chapter 7

Numerical Results

In this section we focus on the numerical results obtained by applying the
proposed approach.

We start by introducing the settings of our instance generator, i.e. on
the features of the considered job shop:

Table 7.1: Instance Generation Settings

Parameter Value
Due date type Loose

Ealiness-Tardiness Trade Off Equal
First arrival time 200

Interarrival time distribution Exponential
Average arrival time 75

Average operations per jobs 7
Initial number of jobs 10

These are the main characteristics that all instances, either used in train-
ing or testing, share. Then, the number of dynamic jobs was increased in the
training phase, to reduce the number of environment’s restarts and present
the agent with a wide range of states, while it was kept lower in the test
instances.

Two different agents were trained, implementing Q(λ) and Sarsa(λ).
Then, the performances of both agents were tested on various instances and
compared with that of a FIFO agent, simply inserting all the operations
belonging to the new job at the end of the corresponding queues.

38

7.1 Training

Training of each agent was carried out on 200 instances, each containing
ns = 10 static jobs and nd = 100 dynamic jobs. Since each job contains on
average 7 tasks, so for each instance, the agent interacts with more than 500
episodes for instance (where an episode is considered as the insertion of a
single task).

The table below contains the chosen values of the method’s hyperparam-
eters:

Table 7.2: Training Settings

Hyperparameter Value
Decaying Rate λ 0.99
Learning Rate α 0.05
Discount Factor γ 0.9
Exploration rate ϵ 0.1
Memory buffer size 10000

Batch Size 32

First, the SARSA agent (the on-policy agent) was trained: to evaluate
the agent’s performance during training, it was decided to plot the weighted
average penalty per job, calculated as the sum of the weighted tardiness and
earliness and the weighted penalty related to the flowtime.

(a) Mean penalty per instance (b) Penalty per instance

Figure 7.1: Training performances - Sarsa agent

However, as we can observe, these results are particularly affected by
variance, taking values over a wide range, and at first glance, they do not
seem to show any improvement in the agent’s performance (7.1a). The same
observations can be made about the final penalty for each instance (7.1b).

39

However, by plotting the simple moving averages of these two measures,
calculated over the previous 20 instances, a clear improvement can be ob-
served, with averages that initially reach values close to 2000 and after the
first 100 instances stabilize below 1600 for the first measure (7.2), and that
go up to 56000 and then stabilize below 44000 for the second (7.3).

Figure 7.2: SMA of mean penalty per instance - SARSA agent

Similar conclusions were drawn on the training of the Off Policy Agent
(the Q-learning agent): for this reason, only the plots of the Simple Moving
Averages of the performances are shown here. As we can observe, the agent
apparently seems to perform better than the previous one: the SMA of the
mean penalty stabilizes under 1500 after the first 100 instances, while the
SMA of the final penalty reaches values under 40000 (7.4, 7.5).

40

Figure 7.3: SMA of penalty per instance - SARSA agent

Figure 7.4: SMA of mean penalty per instance - Q-learning agent

41

Figure 7.5: SMA of penalty per instance - Q-learning agent

7.2 Evaluation

Our approach was tested on a wide range of instances, containing from 10
up to 50 dynamic jobs. The results were compared with those obtained by
using a FIFO agent, proving that the proposed method is able to outperform
it on almost all instances.

The FIFO agent, built to compare its results with those of the proposed
method, operates in the following simple way: each time a new job arrives, it
inserts each operation at the end of the queue of the corresponding machine.

The agents were tested on 3 groups of instances, each composed of 100
instances containing 10,20 and 50 dynamic jobs respectively.

The FIFO agent was able to outperform the built agents in a small per-
centage of instances when working with 10 or 20 dynamic jobs. However,
once the dimension of the problem increased, the FIFO agent was outper-
formed on all instances.

At first, the two agents were tested on a group of small instances, con-
taining 10 dynamic jobs. The mean final penalties obtained by the three
agents are shown in the table below.

42

Table 7.3: Test results - 10x10 instances

Agent Mean
SARSA 1620.22

Q-learning 1679.93
FIFO 1805.38

As we can notice, the mean performance of the two agents seems to be
much superior than that of the FIFO agent. However, when observing the
winning count of the three agents (i.e. the percentage of instances on which
each agent was able to outperform the remaining two), we can observe how
the FIFO agent was able to surmount the other two in 18% of the instances
(7.6).

Figure 7.6: Winning count % per agent - 10x10 instances

More particularly, the SARSA agents seems to perform better than the
Q-learning one, obtaining the lowest penalty on 43% of the instances. This is
also confirmed by the graphs below, that show the penalty difference between
those obtained by the FIFO agent and the tested one:

43

Figure 7.7: SARSA agent penalty differences - 10x10 instances

Figure 7.8: Q-learning agent penalty differences - 10x10 instances

The SARSA agent clearly outperforms the FIFO agent on an higher
number of instances than the Q-learning agent and, whenever the agent is

44

outperformed by the FIFO agent, the mean difference is equal to 243.35
(7.7), compared to a mean of 349.17 for the Q-learning agent.

However, when outperforming the FIFO agent, the Q-learning agent
reaches an higher mean difference than the SARSA one, as we can observe
(7.8).

When increasing the number of dynamic jobs, the percentage of instances
where the FIFO agent performance excedeed that of the other two agents
decreased: when tested on instances with 20 dynamic jobs, the two proposed
agents outperformed the FIFO one on 95% of them (7.9).

Figure 7.9: Winning count % per agent - 10x20 instances

The difference in the mean penalty per instance increased as well, as
shown in the table below:

Table 7.4: Test results - 10x20 instances

Agent Mean
SARSA 4829.29

Q-learning 4716.01
FIFO 5911.04

On the other hand, as we can note from the results shown above, the
Off-policy agent started to outperform the On-policy agent, obtaining the
best performance on 49% of instances.

45

However, as before, the results obtained with the Q-learning agent are less
stable than those obtained with the SARSA agent: when outperforming the
FIFO agent, the mean performance difference is higher; however, the same
conclusions can be drawn for the case in which the FIFO agent outperforms
the tested one (7.10,7.11).

Figure 7.10: SARSA agent penalty differences - 10x20 instances

Moreover, when the SARSA agent is outperformed, the difference is lower
than the mean difference for most instances. As for the Q-learning agent, this
happens on only 50% of the instances on which the agent was outmatched.

46

Figure 7.11: Q-learning agent penalty differences - 10x20 instances

Finally, when tested on instances with 50 dynamic jobs, the two agents
were able to fully outperform the FIFO agent performances 7.12.

Figure 7.12: Winning count % per agent - 10x50 instances

As above, the Q-learning agent reached the best performance on an higher

47

percentage of instances, compared to the SARSA agent. Moreover, as shown
in the table below, the mean penalty obtained by the Q-learning agent results
lower than that obtained by the SARSA one.

Table 7.5: Test results - 10x50 instances

Agent Mean
SARSA 25315.87

Q-learning 24877.11
FIFO 34754.28

On the other hand the results seem to be more stable when using SARSA,
confirming what seen before: when outperformed by the FIFO agent, the
Q-learning agent shows a mean difference in perfomances much higher than
the SARSA agent and the obtained difference on the single instance is higher
than such mean in 2 instances out of 3 (7.13,7.14).

Figure 7.13: SARSA agent penalty differences - 10x50 instances

48

Figure 7.14: Q-learning agent penalty differences - 10x50 instances

For both agents, the performances result to be way higher than those
of the FIFO agent, outperforming it in respectively 98% and 97% of the
instances and confirming the superiority of the proposed method: in both
cases the mean difference in penalty when outperforming the FIFO agent is
in a neighborhood of 10000 units.

49

Chapter 8

Conclusions

This thesis contributes to the research on Job Shop Scheduling with Dynam-
ical Arrivals and more in general to the field of Operational Research. The
primary contributions are twofold: both in the areas of implementation and
modeling, and in the development of a benchmark solution, obtained with a
"multiple operation" point of view, which was rarely explored before.

First of all, this project lays the foundation for an extensive research
on the topic of DJSP, having defined and implemented a custom simulation
environment, which can be adapted to both ’single operation’ and ’multiple
operation’ approaches, as well as to a wide range of agents for each. This
was achieved through an extensive literature review on job shop scheduling
problems under uncertainty and the study of the best possible structures for
modeling the problem.

Secondly, this work focuses on the development of a new method for peri-
odic predictive-reactive scheduling, based on a reinforcement learning agent
trained using temporal differences, and comparing it with a simple heuristic:
specifically, two agents were implemented, a SARSA agent and a Q-learning
agent. These interacted with all machines in the job shop, observing their
state features and choosing how to insert the new job’s operations in their
queues. For both, function approximation was used to adapt the method to
the continuous state space.

As shown in chapter 7, the two agents outperform the FIFO agent in most
cases, completely surpassing it when the number of dynamic jobs reaches
50. The performances of the FIFO agent outperform those of the proposed
method on a low percentage of the smaller instances, suggesting that the

50

method is better suited to outperform simple heuristics and dispatching rules
in large-scale problems.

Moreover, the training was conducted only on 200 instances for each
agent, due to the computational costs, but the training performances’ graphs
suggest that a more exhaustive training could lead to better results.

Finally, an interesting comparison would be that of the obtained results
with the results that could be obtained if the problem was static and all
ns +nd jobs were known at time 0, using state-of-art methods for the Static
Job Shop Problem.

This work leaves room for further research and generalizations: for ex-
ample, structural changes could be made, such as the choice of the RL agent
type or the Q-value approximation function. On the other hand, the method
could be generalized to instances with stochastic processing times, develop-
ing an agent for each individual machine, rather than a single agent for the
entire job floor.

Finally, the built environment can be generalized to consider all types
of dynamic disruptions, such as machine breakdowns, cancellation of orders,
etc., thus paving the way for broad research on the topic of dynamical job
shops.

51

Bibliography

J. M. Ana Esteso, David Peidro and M. Díaz-Madroñero. Reinforcement
learning applied to production planning and control. International Journal
of Production Research, 2023.

A. Baykasoğlu and F. S. Karaslan. Solving comprehensive dynamic job shop
scheduling problem by using a grasp-based approach. International Jour-
nal of Production Research, 2017.

N. Kundakcı and O. Kulak. Hybrid genetic algorithms for minimizing
makespan in dynamic job shop scheduling problem. Computers & In-
dustrial Engineering, 2016.

S. R. Lawrence and E. C. Sewell. Heuristic, optimal, static, and dynamic
schedules when processing times are uncertain. Journal of Operations
Management, 1997.

R. Liu, R. Piplani, and C. Toro. A deep multi-agent reinforcement learning
approach to solve dynamic job shop scheduling problem. Computers &
Operations Research, 2023.

M. Morady Gohareh and E. Mansouri. A simulation-optimization framework
for generating dynamic dispatching rules for stochastic job shop with ear-
liness and tardiness penalties. Computers & Operations Research, 2022.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., USA, 1st edition, 1994.

C. Rajendran and O. Holthaus. A comparative study of dispatching rules
in dynamic flowshops and jobshops. European Journal of Operational Re-
search, 1999.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

52

Z. Wang, J. Zhang, and S. Yang. An improved particle swarm optimization
algorithm for dynamic job shop scheduling problems with random job
arrivals. Swarm and Evolutionary Computation, 2019.

C. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning,
1992.

X. Wu and X. Yan. A spatial pyramid pooling-based deep reinforcement
learning model for dynamic job-shop scheduling problem. Computers &
Operations Research, 2023.

T. Zhang, S. Xie, and O. Rose. Real-time job shop scheduling based on
simulation and markov decision processes. In 2017 Winter Simulation
Conference (WSC), 2017.

53

List of Tables

7.1 Instance Generation Settings 38
7.2 Training Settings . 39
7.3 Test results - 10x10 instances 43
7.4 Test results - 10x20 instances 45
7.5 Test results - 10x50 instances 48

54

List of Figures

4.1 Events timeline . 19

7.1 Training performances - Sarsa agent 39
7.2 SMA of mean penalty per instance - SARSA agent 40
7.3 SMA of penalty per instance - SARSA agent 41
7.4 SMA of mean penalty per instance - Q-learning agent 41
7.5 SMA of penalty per instance - Q-learning agent 42
7.6 Winning count % per agent - 10x10 instances 43
7.7 SARSA agent penalty differences - 10x10 instances 44
7.8 Q-learning agent penalty differences - 10x10 instances 44
7.9 Winning count % per agent - 10x20 instances 45
7.10 SARSA agent penalty differences - 10x20 instances 46
7.11 Q-learning agent penalty differences - 10x20 instances 47
7.12 Winning count % per agent - 10x50 instances 47
7.13 SARSA agent penalty differences - 10x50 instances 48
7.14 Q-learning agent penalty differences - 10x50 instances 49

55

Acknowledgments

First of all, I would like to thank Professors Fadda and Brandimarte for
guiding me throughout this journey, and Lorenzo and Valerio for their

essential help in completing this project.

I would then like to extend a heartfelt thanks to my family, who has always
encouraged me to pursue every dream I had and nurture my passion in

mathematics.

56

	Introduction
	Dynamic Scheduling: Literature review
	Dynamic Scheduling
	A Dynamic Scheduling Framework
	Dynamic Scheduling Strategies

	Dynamic Scheduling Policies
	Dynamic Scheduling Methods and Approaches

	Problem formulation
	Reinforcement Learning and Markov Decision Processes
	Reinforcement Learning: a brief introduction
	Value Functions

	Markov Decision Processes Modelling
	Decision epochs and non-decision epochs
	State representation
	Action representation
	Transition Probabilities
	Reward function

	Environment Design
	Environment Model
	Environment Implementation
	Restart function
	Step function
	Reset function

	Ausiliary classes and methods
	Event manager
	Timing

	Proposed method
	Time Simulation Agent
	Main methods
	Auxiliary methods

	Reinforcement Learning Agent
	State Features
	Action space
	Temporal Difference Learning
	Function Approximation
	Proposed architecture

	Numerical Results
	Training
	Evaluation

	Conclusions

