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1. Abstract 

Accurate cost forecasting is vital in construction project management, where budget 
overruns and delays can have significant impacts. Traditional methods like Earned 
Value Management (EVM) are widely used, but they rely on static, linear assumptions 
that often fail to capture the complexities of real-world projects. This thesis explores the 
potential of machine learning (ML) algorithms to improve cost forecasting by addressing 
the limitations of EVM and offering more dynamic, data-driven predictions during 
project execution. 

A comparative analysis of six machine learning models—XGBoost, Extremely 
Randomized Trees, Random Forest, Support Vector Machine (SVM), Light Gradient 
Boosting Machine (LightGBM), and K-Nearest Neighbors (KNN)—was conducted using a 
dataset of 90 real-world construction projects, selected from 181 initial projects. Key 
project performance metrics, such as Actual Cost (AC), Earned Value (EV), and the Cost 
Performance Index (CPI), were used as inputs, along with newly introduced features: 
Project Regularity (RI) and Project Seriality (SP). These static features were introduced 
to account for non-linear project growth patterns and task structures. 

The machine learning models were trained on 75% of the data and tested on the 
remaining 25%, with performance evaluated using Mean Absolute Percentage Error 
(MAPE) and Normalized Root Mean Squared Error (NRMSE). Results indicated that all 
ML models significantly outperformed traditional EVM methods, with XGBoost 
achieving the lowest error rates. The inclusion of RI and SP further enhanced model 
accuracy, particularly in projects with non-linear progress. 

Project Regularity (RI) and Project Seriality (SP) were found to be valuable features for 
improving the predictive power of ML models. RI captured deviations from linear project 
progression, while SP reflected the structure of tasks, whether serial or parallel. These 
additional features enabled the models to better account for the dynamic and complex 
nature of construction projects, leading to more accurate forecasts at various stages of 
project execution. 

In conclusion, the study demonstrates that machine learning models offer a superior 
alternative to traditional cost forecasting methods like EVM. By incorporating dynamic 
and static project features, ML models provide more precise, adaptive, and reliable cost 
predictions, helping project managers mitigate risks and make more informed 
decisions. These findings suggest that further integration of ML in project management 
practices could lead to improved project outcomes, especially as ML techniques 
continue to evolve. 
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2. Introduction 

In the mid-20th century, project management began to take shape as a distinct 
professional discipline. This period saw the introduction of key methodologies such as 
the Critical Path Method (CPM) and the Program Evaluation and Review Technique 
(PERT), which provided structured approaches to planning and scheduling project 
tasks. These techniques, grounded in operations research, aimed to identify the most 
efficient sequence of activities, ensuring that projects could be completed on time and 
within budget while effectively utilizing available resources (Vanhoucke, 2012). 

In the mid-20th century, project management began to take shape as a distinct 
professional discipline. This period saw the introduction of key methodologies such as 
the Critical Path Method (CPM) and the Program Evaluation and Review Technique 
(PERT), which provided structured approaches to planning and scheduling project 
tasks. These techniques, grounded in operations research, aimed to identify the most 
efficient sequence of activities, ensuring that projects could be completed on time and 
within budget while effectively utilizing available resources (Vanhoucke, 2012). 

2.1. Basics of Project Management 

According to the Project Management Institute (PMI), a project is defined as “a 
temporary endeavour undertaken to create a unique product, service, or result.” The 
temporary nature of a project implies that it has a clear start and end date, 
distinguishing it from ongoing operations. A project's uniqueness refers to its output's 
distinctiveness, which could be a product, service, or result that is different from other 
similar deliverables in key aspects.(PMI, 2019) 

A project's success is typically measured by its ability to deliver the intended output 
with the features and functions initially defined. However, achieving this success is 
subject to various constraints, commonly illustrated by the Project Management 
Triangle of Constraints, also known as the Iron Triangle. This triangle highlights three 
fundamental dimensions: time, cost, and quality.(Atkinson, 1999) 

 

Figure 1-Project Management Triangle of Constraints 
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Central to project management, the Iron Triangle emphasizes the delicate balance 
required between these dimensions. Time refers to the schedule and the timely 
completion of project tasks within the set deadlines. Cost encompasses the financial 
resources allocated to the project, with a focus on adhering to the budget to prevent 
overruns. Quality pertains to the standards of the deliverables, ensuring that the final 
product meets the specified requirements and satisfies stakeholder expectations. 

Balancing cost, quality, and time is crucial to achieving the project’s scope and 
objectives. The project manager must carefully prioritize one constraint, often adjusting 
the others to meet the project’s specific goals. For instance, emphasizing quality might 
require extending the timeline or increasing costs. 

Given that projects are unique and resource-limited, they inherently involve uncertainty. 
This makes monitoring and control essential. By regularly reviewing progress and 
making adjustments as needed, project managers can effectively navigate challenges, 
ensuring the project stays on track and meets its intended outcomes. 

2.2. Project Monitoring and Control 

Project Monitoring and Control, often collectively referred to as Project Control, are 
integral components of a feedback system designed to ensure that a project stays 
aligned with its planned objectives. monitoring is the process that follows the planning 
phase and extends throughout project execution. Its primary purpose is to track the 
actual progress of the project by employing various methods and practices to gather 
real-time performance data. This involves measuring current progress in terms of cost, 
time, and scope against the project baseline. The Work Breakdown Structure (WBS) and 
Cost Breakdown Structure (CBS) are essential tools in this process, as they help to 
organize and define the scope of work and budget allocations respectively. By 
comparing actual performance metrics with these structured plans, project managers 
can identify any discrepancies, assess the project's status, and determine whether the 
project is on track or if corrective measures are needed (De Marco, 2018). 

Control, on the other hand, is the process that follows monitoring, aimed at addressing 
any deviations from the project plan. The primary goal of control is to analyze the 
causes of these variances and implement corrective actions to realign the project with 
its intended course. This may involve adjusting schedules, reassigning resources, or 
even redefining certain project elements to better meet the objectives. Effective control 
not only helps bring the project back on track but also plays a crucial role in preventive 
management, allowing project managers to anticipate potential issues before they 
become significant problems. Additionally, by continuously monitoring and controlling 
project activities, stakeholders are kept informed about the project's status, any 
concerns that arise, and the ongoing improvement efforts, thereby facilitating better 
communication and alignment with stakeholder expectations. 
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2.3. An Earned Value Management System 

Earned Value Management (EVM) was developed in the late 1960s as a direct response 
to the increasing complexity of large-scale projects within the U.S. Department of 
Defense (DoD). Traditional project management approaches, which focused separately 
on cost or schedule, were proving inadequate for managing the intricate and 
interdependent activities characteristic of defense projects. Recognizing the need for a 
more integrated system, the DoD introduced EVM to combine scope, schedule, and 
cost into a single performance measurement framework. This effort was formalized in 
1967 with the issuance of Instruction 7000.2, which laid down 35 criteria that 
contractors had to meet, forming the basis for what would eventually become the 
ANSI/EIA-748 standard for EVM. This initiative was first implemented by the U.S. Air 
Force under the Cost/Schedule Planning Control System (C/SPCS), which set the 
groundwork for EVM's development and broader application in various industries.(W. 
Fleming & M. Koppelman, 1998) 

The practical necessity of EVM became particularly evident during the troubled A-12 
"Avenger" aircraft program in the 1980s, where significant cost overruns and delays 
highlighted the limitations of existing project management tools. The failure of the A-12 
program underscored the importance of integrating cost and schedule performance 
metrics, which EVM provided, offering a more reliable method of forecasting and 
managing project outcomes. In response to these challenges, EVM was increasingly 
adopted as a key project management tool within defense and beyond. Its integration 
into the Project Management Institute's (PMI) standards in 1999 marked its recognition 
as a best practice, establishing EVM as an essential methodology for project control 
across various sectors, including construction, manufacturing, and IT. 

2.3.1. Fundamentals of Earned Value Management (EVM) 

At the core of Earned Value Management (EVM) is the establishment of a Performance 
Measurement Baseline (PMB), which serves as a reference point for measuring project 
performance. The PMB integrates the project's scope, schedule, and cost, providing a 
comprehensive framework against which actual performance can be assessed. 
Monitoring the project's performance relative to the PMB is essential for identifying 
deviations early and making informed decisions to correct course when necessary. 

Over time, several key metrics and formulas have been developed to quantify project 
performance and predict future outcomes using EVM. These metrics are essential for 
the measurement, forecasting, and analysis of a project's cost and schedule 
performance. Regardless of the type of project, EVM relies on four fundamental values: 
Planned Value (PV), Budget at Completion (BAC), Actual Cost (AC), and Earned Value 
(EV).(PMI, 2019) 
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• Planned Value (PV) also known as Budgeted Cost of Work Scheduled (BCWS) 

also known as Budgeted Cost of Work Scheduled (BCWS), represents the budgeted 
cost for the work planned to be completed within a specific time frame. It essentially 
reflects the value of work that should have been completed by a particular date 
according to the project schedule. PV is crucial for establishing the PMB and serves as a 
benchmark against which actual performance is compared to highlight deviations. 

 
𝑃𝑉 = 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑊𝑜𝑟𝑘 × 𝐵𝑢𝑑𝑔𝑒𝑡 𝑎𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 (𝐵𝐴𝐶) 

 

• Budget at Completion (BAC) 

 is the total budget allocated for the project, representing the sum of all the planned 
values. BAC is a critical metric as it defines the total financial commitment to the 
project and serves as a target for the project manager to achieve. 

 

• Actual Cost (AC) also known as Actual Cost of Work Performed (ACWP) 

measures the actual expenditure incurred for the work completed at any given point in 
time. This metric provides insight into the project's financial performance, allowing 
comparison between the planned budget and actual spending. 

  𝐴𝐶 = 𝑆𝑢𝑚 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑠𝑡𝑠 𝑓𝑜𝑟 𝑊𝑜𝑟𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 
 

• Earned Value (EV) also known as Budgeted Cost of Work Performed (BCWP) 

is the value of work actually completed in terms of the budget assigned to that work. EV 
is a vital metric as it quantifies the progress made and allows for the calculation of key 
performance indicators such as Cost Variance (CV) and Schedule Variance (SV). 

𝐵𝐶𝑊𝑃 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑊𝑜𝑟𝑘 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 × 𝐵𝑢𝑑𝑔𝑒𝑡 𝑎𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 (𝐵𝐴𝐶) 

 

2.3.2. S-Curves for Cost Monitoring and Control 

In the context of Earned Value Management (EVM), S-Curves serve as a powerful visual 
tool for representing the three key metrics: Planned Value (PV), Earned Value (EV), and 
Actual Cost (AC). These curves are plotted on a chart to facilitate a clear understanding 
of how these values evolve over time, providing a snapshot of the project's status. 
Typically, S-Curves are updated and analyzed both periodically (such as weekly or 
monthly) and cumulatively, with time represented on the x-axis and cost on the y-axis. 

The reason these graphs are referred to as S-Curves lies in their distinctive shape, which 
resembles an "S". In the early stages of a project, the curves start off slowly, reflecting 
the gradual initiation of activities, often limited to preliminary tasks like market research 
or initial planning. As the project progresses, there is a period of accelerated growth, 
characterized by rapid completion of tasks and significant resource expenditure, which 
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forms the steep middle portion of the S-curve. This phase, often referred to as the "point 
of inflection," is critical as it represents the peak period of activity where most of the 
project's resources and budget are utilized. Following this peak, the rate of progress 
typically begins to slow, marking the project's maturity phase. During this time, the 
remaining tasks are usually of lower intensity, focusing on final reviews, quality checks, 
and project closeout activities, leading to the upper asymptote of the S-curve.(Narbaev 
& De Marco, 2017) 

 

Figure 2-Typical S-Curve of a Project (Narbaev et al., 2024) 

Each S-Curve represents a different aspect of project performance: PV remains fixed as 
it represents the budgeted plan, while EV and AC are updated as the project progresses. 
The comparison between EV and AC helps identify cost variances, while the 
comparison between EV and PV allows project managers to assess any schedule 
deviations. In the typical S-Curve graph shown above, you can observe how these 
values evolve over time. The graph highlights the potential for cost overruns when the 
Actual Cost (AC) exceeds the Earned Value (EV), as well as any delays if the Earned 
Value (EV) lags behind the Planned Value (PV). Analyzing these curves is crucial for 
identifying and addressing potential issues early, ensuring that the project stays on 
track. 

2.3.3. EVM Performance Metrics 

In Earned Value Management (EVM), performance metrics are critical tools that help 
project managers assess how well a project is adhering to its budget and schedule. 
These metrics provide a quantitative measure of the project's efficiency in utilizing its 
resources and adhering to its planned timeline. The key performance metrics include 
the Cost Performance Index (CPI), Schedule Performance Index (SPI), and Cost Ratio 
(CR). 
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• Cost Performance Index (CPI) 

The Cost Performance Index (CPI) is a measure of the cost efficiency of a project. It 
compares the budgeted cost of work performed (BCWP) with the actual cost of work 
performed (ACWP). The CPI is calculated using the following formula: 

𝐶𝑃𝐼 =
𝐸𝑉

𝐴𝐶
=

𝐵𝐶𝑊𝑃

𝐴𝐶𝑊𝑃
 

A CPI value greater than 1 indicates that the project is under budget, meaning it is 
spending less than planned for the work completed. Conversely, a CPI value less than 1 
indicates a budget overrun, suggesting that the project is spending more than 
anticipated. 

• Schedule Performance Index (SPI) 

The Schedule Performance Index (SPI) measures the efficiency of time utilization in the 
project. It compares the earned value (EV) with the planned value (PV) and is calculated 
as follows: 

𝑆𝑃𝐼 =
𝐸𝑉

𝑃𝑉
=

𝐵𝐶𝑊𝑃

𝐵𝐶𝑊𝑆
 

An SPI value greater than 1 indicates that the project is ahead of schedule, meaning 
more work has been completed than was planned for that time period. An SPI value less 
than 1 indicates a delay, meaning less work has been completed than planned. 

• Cost Ratio (CR) 

The Critical Ratio (CR) is a comprehensive metric used to assess both the cost and 
schedule performance of a project. It combines the Cost Performance Index (CPI) and 
the Schedule Performance Index (SPI) to provide a single indicator of overall project 
health. The formula for CR is: 

𝐶𝑅 = 𝐶𝑃𝐼 × 𝑆𝑃𝐼 =
𝐸𝑉

𝐴𝐶
×

𝐸𝑉

𝑃𝑉
 

A CR value greater than 1 indicates that the project is spending less than planned, while 
a CR value less than 1 indicates that the project is spending more than anticipated. 

• Cost Variance (CV) 

The Cost Variance (CV) metric provides a monetary measure of cost performance. It 
shows the difference between the earned value and the actual cost incurred, and it is 
calculated using the following formula: 

𝐶𝑉 = 𝐸𝑉 − 𝐴𝐶 = 𝐵𝐶𝑊𝑃 − 𝐴𝐶𝑊𝑃 
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• Schedule Variance (SV) 

The Schedule Variance (SV) metric measures the difference between the earned value 
and the planned value. It reflects the degree to which the project is ahead or behind 
schedule and is calculated as: 

𝑆𝑉 = 𝐸𝑉 − 𝑃𝑉 = 𝐵𝐶𝑊𝑃 − 𝐵𝐶𝑊𝑆 

A positive SV indicates that the project is ahead of schedule, while a negative SV 
indicates that it is behind schedule. 

 

Figure 3-The EVM key parameters PV, AC, and EV for a project under four scenarios. Scenario 1: late project, over 
budget; Scenario (Vanhoucke & Vandevoorde, 2007) 

 

2.3.4. Estimation At Compilation (EAC) 

Estimate at Completion (EAC) is a critical metric in Earned Value Management (EVM) 
that provides a forecast of the total cost or time required to complete a project, based 
on its current performance. EAC helps project managers predict whether a project will 
be completed within the original budget and schedule, or if adjustments will be 
necessary. 
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• Cost Estimate at Completion (CEAC)  

The EAC for cost forecasts the total cost of the project upon completion. It is 
particularly useful when the original assumptions about cost performance are no longer 
valid, requiring an updated estimate based on current progress and spending patterns. 

There are several methods to calculate EAC for cost, depending on the assumptions 
made about future cost performance: 

EAC using the Cost Performance Index (CPI), Assumes that the project's current cost 
performance will continue. The formula is: 

𝐸𝐴𝐶 = 𝐴𝐶 +
𝐵𝐴𝐶

𝐶𝑃𝐼
 

EAC using Critical Ratio (CR), Accounts for both cost and schedule performance. The 
formula is: 

𝐸𝐴𝐶 = 𝐴𝐶 +
𝐵𝐴𝐶 − 𝐸𝑉

𝐶𝑃𝐼 × 𝑆𝑃𝐼
 

These formulas provide forecasts based on the project’s ongoing performance, helping 
to predict the final cost and allowing for necessary adjustments if cost or schedule 
variances are detected. 

 

• Time Estimation At Compilation(TEAC) 

The EAC for time forecasts the total duration required to complete the project, taking 
into account the current schedule performance. Similar to EAC for cost, it helps predict 
whether the project will meet its original deadline or if the timeline needs to be 
adjusted. The formula for TEAC is: 

𝐸𝐴𝐶(𝑇𝑖𝑚𝑒) =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑆𝑃𝐼
 

If the SPI is greater than 1, the project is expected to be completed ahead of schedule, 
whereas an SPI less than 1 indicates a longer completion time than originally planned. 

 

The EAC metrics for both cost and time are valuable tools for forecasting project 
outcomes, they are inherently dynamic and should be recalculated regularly as the 
project progresses. These metrics offer project managers crucial insights, enabling 
them to decide whether corrective actions are necessary to align the project with its 
objectives. EAC helps in managing stakeholder expectations and allows for 
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adjustments in resource allocation and project strategies to address any emerging 
variances. 

However, despite its utility, EAC has limitations, particularly in its reliance on historical 
performance and linear assumptions about future trends. This approach may not 
always capture the complexities and uncertainties of real-world projects, especially in 
environments where project variables are highly volatile or interdependent. As such, 
there is a growing need for more advanced forecasting methods. This is where the 
introduction of Artificial Intelligence (AI) into cost forecasting comes into play, offering 
the potential to enhance accuracy and adaptability beyond what traditional EAC 
calculations can achieve. 

 

2.4. Problem Statement 

While Earned Value Management (EVM) is a well-established methodology in project 
management, it faces several critical limitations that impact its effectiveness in cost 
forecasting. These limitations often result in inaccurate predictions, particularly in 
complex and dynamic project environments. Below are the key challenges associated 
with traditional EVM methods: 

• Assumption of Linear Cost Growth 

One of the fundamental assumptions of EVM is that project costs grow in a linear 
fashion over time. However, this assumption is frequently contradicted by the actual 
cost behavior observed in real-world projects, which often follows a non-linear, S-
shaped curve. This discrepancy is particularly evident in large-scale projects, where 
initial spending is slow, accelerates during peak periods of activity, and tapers off as the 
project nears completion. The failure of EVM to account for this non-linear growth can 
lead to significant inaccuracies in cost forecasting, especially in the early stages of a 
project when data is limited (Narbaev & De Marco, 2017; Pellerin & Perrier, 2019). 

• Inadequate Early-Stage Forecasting 

EVM's reliance on historical performance data can be particularly problematic during 
the early stages of a project. At this point, the data available is often insufficient to 
provide reliable forecasts, leading to estimates that may be overly optimistic or 
pessimistic. This limitation is exacerbated by the fact that EVM does not adequately 
adjust for the limited data points available early on, resulting in forecasts that may not 
accurately reflect the project's likely cost trajectory (Kim & Reinschmidt, 2011). 

• Overlooking Performance Trends and Future Risks 

Traditional EVM models typically assume a static labor profile and cost performance, 
which do not account for the dynamic nature of many projects. This assumption 
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overlooks critical performance trends and potential future risks that could significantly 
alter the project's cost and timeline. As a result, EVM can produce forecasts that give a 
false sense of certainty, leading project managers to underestimate the potential for 
cost overruns and delays (Ottaviani & Marco, 2021). 

• Inflexibility in Dynamic Environments 

EVM is inherently backward-looking, relying heavily on past performance to predict 
future outcomes. This approach can be problematic in dynamic project environments 
where conditions are constantly changing. EVM's static formulas may fail to capture 
these changes, leading to forecasts that do not accurately reflect the project's evolving 
realities. This inflexibility can result in flawed decision-making and missed opportunities 
to adjust course early enough to avoid project failure (Narbaev et al., 2024b). 

 

Given these limitations, there is a pressing need for more advanced forecasting 
methodologies that can adapt to the complexities of modern project environments. 
Artificial Intelligence (AI) offers a promising solution to this challenge. By leveraging AI's 
ability to analyze large datasets and detect patterns that traditional methods might 
overlook, project managers can achieve more accurate and reliable cost forecasts. This 
research aims to explore the integration of AI into cost forecasting models, with the goal 
of enhancing the precision and adaptability of project management practices, leading 
to better decision-making and improved project outcomes. 

2.5. Introduction to Machine Learning (ML) in Cost Forecasting 

2.5.1. Machine Learning Basics 

Machine Learning (ML) is a branch of artificial intelligence that focuses on developing 
algorithms and statistical models that enable computers to perform specific tasks 
without using explicit instructions. Instead of relying on hard-coded rules, ML systems 
learn from data by identifying patterns, making inferences, and improving their 
performance over time as they are exposed to more data. 

The core idea behind ML is to allow computers to learn from experience, much like 
humans do. By processing large datasets, ML algorithms can make predictions, detect 
patterns, and even make decisions based on the information they have been trained on. 
This ability to learn and adapt makes ML particularly powerful in areas where traditional 
programming falls short, such as recognizing complex patterns, adapting to new 
situations, or handling vast amounts of data that would be impractical for humans to 
analyze manually. 

Machine Learning is increasingly being used across various industries to automate 
tasks, improve decision-making, and drive innovations. Whether it's in healthcare for 
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diagnosing diseases, in finance for detecting fraudulent transactions, or in project 
management for forecasting costs and schedules, ML has become a critical tool for 
enhancing efficiency and accuracy in complex systems. 

2.5.2. Types of Machine Learning Models 

Machine Learning (ML) encompasses a wide variety of models and algorithms, each 
designed to address different types of tasks and data structures. These models can be 
broadly categorized into several types, depending on how they learn from data and the 
kinds of problems they are intended to solve. The main types of ML models include 
supervised learning, unsupervised learning, semi-supervised learning, and 
reinforcement learning.(Mahesh, 2020) 

• Supervised Learning 

Supervised learning is one of the most common types of ML, where the model is trained 
on a labeled dataset. Each example in the dataset consists of an input and a 
corresponding output label. The model learns to map inputs to outputs by minimizing 
the error between the predicted and actual outcomes. This type of learning is widely 
used for tasks such as classification and regression. For example, in project 
management, supervised learning models can predict project costs or completion 
times by learning from historical data . 

• Unsupervised Learning 

In unsupervised learning, the model is given a dataset without labeled outputs and 
must identify patterns or structures within the data. This type of learning is often used 
for clustering, where the model groups similar data points together, or for 
dimensionality reduction, which simplifies the data while retaining essential 
information. Unsupervised learning is useful in situations where the underlying 
structure of the data is unknown and needs to be explored. For instance, clustering can 
help segment projects based on similar characteristics, which can then inform resource 
allocation strategies . 

• Semi-Supervised Learning 

Semi-supervised learning is a hybrid approach that falls between supervised and 
unsupervised learning. In this method, the model is trained on a small amount of 
labeled data along with a larger set of unlabeled data. This approach is particularly 
useful when labeling data is expensive or time-consuming, as it allows the model to 
learn effectively with less labeled data. Semi-supervised learning can improve the 
accuracy of predictions when fully labeled datasets are not available, which is often the 
case in complex project management scenarios . 
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• Reinforcement Learning 

Reinforcement learning involves training a model through interactions with an 
environment, where the model receives feedback in the form of rewards or penalties 
based on its actions. The goal is to learn a strategy that maximizes cumulative rewards 
over time. Reinforcement learning is especially useful in situations where decisions 
must be made sequentially, such as in robotics or autonomous systems. Although less 
common in project management, reinforcement learning can be applied to optimize 
decision-making processes, such as adjusting schedules or resources in response to 
changing project conditions. 

 

2.5.3. How Machine Learning Models Work 

Machine Learning (ML) operates through a systematic process that transforms raw data 
into predictive models capable of making informed decisions. The process can be 
broken down into several key steps, each essential to developing a robust and accurate 
ML model. 

• Data Collection: The journey begins with gathering a dataset that is representative of 
the problem you wish to solve. This dataset serves as the foundation for the entire 
ML process, containing the features (input variables) and labels (output variables) 
needed to train the model. 

• Data Preprocessing: Raw data often contains noise, inconsistencies, or irrelevant 
information. Therefore, the next step is data preprocessing, which includes: 

o Data Cleaning: Removing or correcting erroneous data points. 

o Data Transformation: Converting data into a suitable format for analysis, such 
as normalizing numerical values or encoding categorical variables. 

o Data Reduction: Simplifying the dataset by reducing its dimensionality or 
selecting relevant features to improve model efficiency and performance. 

• Data Splitting: The pre-processed data is then split into three distinct sets: 

o Training Set: Used to train the model by adjusting its parameters to learn from 
the data. 

o Validation Set: Helps tune the model's hyperparameters and prevents 
overfitting by providing a separate dataset to test the model during training. 

o Test Set: Used to evaluate the final model's performance on unseen data, 
ensuring that it generalizes well to new inputs. 
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• Model Selection and Training: With the training data ready, the next step is to select 
an appropriate ML algorithm that fits the problem's requirements. The model is then 
trained using the training set, where it learns to map input features to the desired 
output labels by minimizing errors between predictions and actual outcomes. 

• Model Evaluation: Once trained, the model is evaluated using the test set to 
determine its accuracy, precision, recall, and other relevant metrics. This step is 
crucial to assess how well the model performs on new data and to identify any 
potential issues, such as overfitting or underfitting. 

• Hyperparameter Tuning: If necessary, the model's hyperparameters are fine-tuned 
to optimize its performance. This process often involves iterative testing and 
adjustment using the validation set to find the best configuration. 

• Model Deployment: After achieving satisfactory performance, the model is deployed 
for practical use. It is now capable of making predictions on new data, driving 
decisions in real-world applications. 

• Model Monitoring and Maintenance: Finally, the deployed model must be 
continuously monitored to ensure it maintains accuracy and relevance over time. As 
new data becomes available, the model may need to be retrained or updated to 
adapt to changing conditions. 
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Figure 4-Supervised Learning Algorithms Workflow 

 

2.5.4. Application of Machine Learning in Project Cost Forecasting  

As discussed in the preceding sections, Machine Learning (ML) has increasingly been 
recognized for its potential to significantly enhance cost forecasting accuracy in project 
management. Building on the limitations of traditional methods like Earned Value 
Management (EVM) highlighted earlier, ML models offer a sophisticated alternative, 
particularly in managing complex and nonlinear relationships within project data. This 
section reviews several key studies that have employed ML for cost forecasting, 
focusing on the phases of the project where these models were applied, the data and 
inputs utilized, and the outcomes achieved. 

Given that ML models in the conceptual phase primarily rely on project-based 
properties rather than EVM indexes, our focus here is on studies that apply ML models 
during the execution phase of projects. In the execution phase, ML models can directly 
incorporate EVM indexes along with other real-time project data, providing a more 
dynamic and responsive approach to cost forecasting. 

Pewdum, Rujirayanyong, and Sooksatra (2009) explored the use of Artificial Neural 
Networks (ANN) during the execution phase of highway construction projects in 
Thailand. The study utilized a dataset of 1,022 valid data patterns from 51 projects, 
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incorporating inputs such as traffic volume, topography, weather conditions, contract 
duration, construction budget, and the percentage of planned versus actual 
completion.  

The ANN models significantly outperformed traditional Earned Value Management 
(EVM) methods, achieving a Mean Absolute Percentage Error (MAPE) of 2.44% for 
budget forecasting and 2.77% for duration forecasting on specific projects. The study 
concluded that ANN models provide more accurate and stable forecasts than 
traditional methods, highlighting the potential of Machine Learning to improve cost and 
duration predictions during the execution phase of construction projects. 

Ottaviani and De Marco (2021) explored the improvement of cost forecasting accuracy 
using a Multiple Linear Regression (MLR) model within the framework of Earned Value 
Management (EVM). The study focused on enhancing the Estimate at Completion (EAC) 
metric, which is crucial during the execution phase of a project. Data was sourced from 
29 real-life projects, comprising a total of 805 observations. The projects spanned 
various industries, allowing the model to be tested across diverse contexts. 

The input parameters for the MLR model included key EVM variables such as the 
Planned Value (PV), Earned Value (EV), Actual Cost (AC), and other relevant project-
specific factors like Schedule Performance Index (SPI) and Cost Performance Index 
(CPI). The model was developed to address the limitations of traditional EAC 
calculations by incorporating these variables into a regression framework, thereby 
improving both accuracy and reducing error variance. 

The study's findings indicated that the MLR model provided a significant improvement in 
forecasting accuracy over traditional EVM methods. Specifically, the model achieved a 
Mean Absolute Percentage Error (MAPE) of 13.91%, compared to the 15.76% MAPE 
obtained using traditional EAC calculations. Additionally, the standard deviation of the 
error was reduced by approximately 9 percentage points, further underscoring the 
model’s enhanced reliability. These results suggest that integrating MLR models into the 
EVM framework can substantially improve cost forecasting during the project execution 
phase. 

Timur et al. (2024) conducted a study aimed at improving cost forecasting accuracy 
during the execution phase of projects through the application of the XGBoost machine 
learning model. The study utilized a robust dataset consisting of 110 real-life projects, 
which included 1,268 cost data points. The data was strategically segmented into early, 
middle, and late stages of the project lifecycle. This stage-based approach allowed for a 
nuanced analysis of forecasting accuracy, providing insights into how cost predictions 
could be refined as the project progressed. 

The XGBoost model was trained using essential input parameters derived from Earned 
Value Management (EVM), including Actual Cost (AC), Budget at Completion (BAC), 
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Earned Value (EV), and the Cost Performance Index (CPI). These inputs enabled the 
model to effectively learn from historical project data, thereby enhancing its predictive 
capabilities. The model's performance was compared against traditional EVM methods 
and other machine learning models like Random Forest, Support Vector Regression, 
LightGBM, and CatBoost. 

The results of the study were compelling, with the XGBoost model significantly 
outperforming the traditional EVM methods. The Mean Absolute Percentage Error 
(MAPE) achieved by the XGBoost model ranged from 6.53% to 9.70% in the early stage, 
6.42% to 8.57% in the middle stage, and 6.22% to 8.28% in the late stage. This 
demonstrated the model's effectiveness in providing highly accurate cost forecasts, 
particularly in the critical early and middle stages of the project. The study highlighted 
the potential of advanced machine learning models like XGBoost to offer project 
managers more reliable tools for cost estimation, ultimately leading to better decision-
making and project outcomes. 

Wauters and Vanhoucke (2014)explored the application of Support Vector Regression 
(SVR), a machine learning technique, for improving the accuracy of cost and time 
forecasting in project control, particularly within the context of Earned Value 
Management (EVM). The study focused on the execution phase of projects and used a 
dataset generated through Monte Carlo simulations, which introduced variability in 
project activity durations and costs across a diverse set of 900 project networks. 

The SVR model was trained using input parameters derived from EVM metrics, including 
the Schedule Performance Index (SPI), Cost Performance Index (CPI), and Earned 
Schedule (ES). The data were divided into training and test sets, with a robust cross-
validation and grid search procedure employed to fine-tune the model's parameters. 
This allowed the model to learn from historical project data and improve its predictive 
accuracy. 

The results demonstrated that the SVR model significantly outperformed traditional 
EVM-based forecasting methods. Specifically, the SVR model achieved a lower Mean 
Absolute Percentage Error (MAPE) compared to other methods, with MAPE values of 
1.28% for cost forecasting under the best conditions. The study also highlighted the 
robustness of the SVR model, noting that it maintained superior performance even 
when there were discrepancies between the training and test datasets. This research 
underscores the potential of SVR as a valuable tool in project management for 
enhancing the reliability of cost and time forecasts during the execution phase. 

Capone et al. (2024) conducted a study to enhance cost forecasting accuracy during 
the execution phase of projects by applying Machine Learning models, specifically 
XGBoost and Random Forest. The study utilized data from 110 completed projects 
globally, with key variables such as Actual Cost (AC), Planned Value (PV), Earned Value 



18 
 

(EV), and tracking period information. The dataset was divided into three distinct 
stages—early (1-29%), middle (30-69%), and late (70-100%)—to allow for a detailed, 
stage-based analysis of forecasting accuracy. 

The ML models were trained using normalized data from Earned Value Management 
(EVM) metrics, including AC, Budget at Completion (BAC), EV, Cost Performance Index 
(CPI), and Schedule Performance Index (SPI). The study employed a rigorous approach 
to model training, with data split into 75% for training and 25% for testing. 
Hyperparameter tuning, particularly for XGBoost, played a critical role in preventing 
overfitting and optimizing the model's accuracy across different project stages. 

The results of the study indicated that XGBoost outperformed Random Forest and 
traditional EVM methods, particularly in the early and middle stages of project 
execution. The XGBoost model achieved a Mean Absolute Percentage Error (MAPE) 
ranging from 6.46% to 9.26% in the early stage, 6.47% to 8.67% in the middle stage, and 
6.22% to 8.32% in the late stage. These findings underscore the effectiveness of ML 
models like XGBoost in providing more accurate and reliable cost forecasts, which are 
essential for informed decision-making during the execution phase of projects. 

 

Authors(Year) ML Model Used Data Source Input Parameters 
Pewdum, R., Rujirayanyong, 

T., & Sooksatra, V. (2009) 
Artificial Neural 

Network 
51 highway 

construction 
projects in 

Thailand 
(1,022 data 

points) 

Project Physical 
Feature+PD(Planned 

Duration)+BAC+WP+WS 

Ottaviani, R., & De Marco, A. 
(2021) 

Multiple Linear 
Regression 

29 real-life 
projects (805 
observations) 

CPI+WP+fEAC 

Timur, O., Ong, S., Lu, H., & 
Matous, P. (2024) 

XGBoost 
(primary model), 
Random Forest, 
Support Vector 

Regression 
(SVR), LightGBM, 

and CatBoost. 

110 global 
projects 

(1,268 data 
points) 

AC+BAC+EV+CPI 

Wauters, M., & Vanhoucke, 
M. (2014) 

Support Vector 
Regression (SVR) 

Simulated 
data via 

Monte Carlo 
(900 project 

networks) 

SPI,SPI(t),CPI,ES 

Capone, A., Greco, G., & 
Palumbo, G. (2024) 

XGBoost and 
Random Forest 

110 global 
projects 

AC, BAC, EV, CPI, SPI 

Table 1-Comparison of Project Cost Forecasting Studies 
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The application of Machine Learning (ML) in project cost forecasting has shown 
promising results, particularly in comparison to traditional methods like Earned Value 
Management (EVM). Studies such as those by Timur et al. (2024) and Pewdum et al. 
(2009) have demonstrated the superior accuracy of ML models, with significant 
reductions in forecasting errors during project execution phases. However, despite 
these advancements, the accuracy of these models often hinges on the quality and 
comprehensiveness of the input features used. 

Many of these studies primarily rely on conventional EVM metrics and other readily 
available project data, which, while useful, may not fully encapsulate the complexity of 
project networks. For instance, traditional metrics like Actual Cost (AC) and Earned 
Value (EV) focus on financial and schedule performance but fail to consider the 
structural characteristics of project tasks and their interdependencies. This omission 
can lead to less accurate predictions in complex or irregular projects, where the 
sequence and regularity of tasks can significantly impact project outcomes. 

Given these limitations, there is a growing recognition in the literature of the need for 
additional features to better capture project structures' intricacies. This is where the 
introduction of the Project Regularity Index (RI) and Project Seriality (SP) becomes 
crucial. These Indices offer a more nuanced understanding of project networks by 
evaluating the regularity and sequence of tasks, thereby providing ML models with 
richer, more detailed inputs. Incorporating these new features could address the gaps 
identified in previous studies and lead to even more accurate cost forecasting in project 
management. 

2.5.5. Project Seriality (SP) 

Project seriality refers to the network structure of a project, indicating how closely the 
network aligns with either a completely serial or parallel configuration. This is measured 
using the serial/parallel indicator (SP), which can range from 0 to 1. An SP value of 0 
represents a fully parallel project, while an SP value of 1 signifies a completely serial 
project (Batselier & Vanhoucke, 2017). Projects with SP values between these extremes 
have network structures that are closer to either a serial or parallel arrangement. 

The formula for calculating the SP is as follows: 

𝑆𝑃 =
𝑠𝑛 − 1

𝑡𝑛 − 1
 

In this formula, 𝑠𝑛 represents the maximum number of subsequent activities in the 
network (also known as the maximum progressive level), and  𝑡𝑛 is the total number of 
activities. It is important to note that for a project consisting of only one activity, the SP 
value is by definition equal to 1, indicating a completely serial project. 
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2.5.6. Project Regularity (RI) 

The concept of project regularity is a relatively new addition to the literature. To provide 
context, (Jacob & Kane, 2004) compared different time forecasting approaches—ESM, 
EDM, and PVM—and concluded that “as long as the planned value (PV) is linear, all 
formulas will always yield exact results, but if the PV is non-linear, errors or 
discrepancies could be introduced.” Thus, a project with a perfectly linear PV curve can 
be considered fully regular, with minimal potential for forecasting errors (a viewpoint 
also supported by Vandevoorde & Vanhoucke (2006). Irregularities in a project are 
therefore defined by deviations of the actual PV curve from this ideal linear form. 

 

Figure 5-Linear PV and perfect S-curve comparison (Batselier & Vanhoucke, 2017) 

To quantify the regularity of a project, a new metric called the regular/irregular indicator 
(RI) has been introduced(Batselier & Vanhoucke, 2017). This indicator is conceptually 
similar to the serial/parallel indicator (SP). Just as a completely serial project has an SP 
value of 1, a project with a perfectly linear PV curve is characterized by an RI of 1. 
Conversely, a project that is highly irregular—where the earned value (EV) remains zero 
for most of the project and only spikes to the budget at completion (BAC) near the end—
would have an RI value of 0. Most projects fall somewhere between these two extremes, 
with their RI values calculated using the following formula: 

𝑅𝐼 = 1 −
∑ 𝑚𝑖

𝑟
𝑖=1 − ∑ 𝑎𝑖

𝑟
𝑖=1

∑ 𝑚𝑖
𝑟
𝑖=1

 

In this formula, 𝑚𝑖 represents the maximum possible deviation, and 𝑎𝑖 represents the 
actual deviation of the project’s PV curve from a perfectly linear curve at specific time 
points, 𝑖, across 𝑟 equidistant evaluation points. It is important to note that 𝑟 refers to 
the shape of the PV curve, rather than the number of tracking periods. 
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 Figure 6-RI calculation (Batselier & Vanhoucke, 2017)  

3. Methodology 

This chapter details the methodological framework adopted in this study to assess and 

compare the performance of various machine learning algorithms in project cost 

forecasting. The central objective is to determine whether machine learning models can 

enhance forecasting accuracy compared to the traditional Earned Value Management (EVM) 

method. By doing so, the study aims to identify the most effective approach for predicting 

project costs, particularly in the early stages where traditional methods often fall short due 

to linear assumptions and limited data. 

To achieve this, we implement and evaluate six distinct machine learning algorithms: 

XGBoost, Extremely Randomized Trees (ExtraTrees), Random Forest, Support Vector 

Machine (SVM), Light Gradient Boosting Machine (LightGBM), and K-Nearest Neighbors 

(KNN). These models are benchmarked against the traditional EVM approach to determine if 

they offer superior accuracy in forecasting project costs. 

In addition to comparing machine learning models with the EVM method, this study also 

explores the impact of two project characteristics—Project Regularity (RI) and Project 

Seriality (SP)—as inputs in the machine learning models. The secondary objective is to 

assess the effectiveness of these indicators in enhancing the predictive power of the 

models. By systematically integrating and evaluating these inputs across different models, 

we aim to identify which characteristics, if any, contribute to more reliable cost forecasts. 

In this section, we will provide a detailed explanation of the entire methodological process, 

beginning with data collection and filtering. First, we will describe how the data was 

gathered from real-life projects and the criteria used to filter and clean the dataset for 

accuracy. Following that, we will outline the steps taken to calculate the accuracy of the 

traditional Earned Value Management (EVM) method based on the refined data, which 

serves as a baseline for comparison with the machine learning models. 
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Next, we will introduce and describe the inputs used in the machine learning models, 

highlighting both the dynamic and static features that were considered. This will be followed 

by a discussion on the implementation of these models in Python, including the specific 

algorithms utilized and the coding framework employed. 

 
Figure 7-Methodology Overview Diagram 

We will then detail the process of hyperparameter tuning, explaining how grid search was 

used to optimize the models for better performance. Finally, we will introduce the 

evaluation indicators, such as Mean Absolute Percentage Error (MAPE) and Normalized Root 

Mean Squared Error (NRMSE), which were employed to assess and compare the forecasting 

accuracy of the models. 

 

3.1. Data collection 

The data utilized in this study is sourced from the Dynamic Scheduling Library (DSLIB), a 
comprehensive empirical project database developed by the Operations Research and 
Scheduling research group at Ghent University.[] This extensive database includes 
detailed information on 181 real-life projects across various industries, making it a 
valuable resource for analyzing project management practices and outcomes. 

The dataset contains data that spans across different stages of each project's lifecycle: 

• Planned Values: These represent the data calculated before the project 
execution begins, including key planning documents and metrics such as: 

o Budget at Completion (BAC): The total budget planned for the project. 

o Gantt Chart: The project’s schedule, detailing the planned sequence and 
timing of tasks. 

o Planned Project Duration: The expected timeframe for completing the 
project. 
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• Tracking Values: These are recorded at various points during the project’s 
execution. The frequency and pattern of these tracking points vary between 
projects—some projects record data weekly, others monthly, and some have 
irregular intervals. The tracking data includes: 

o Earned Value (EV): The value of the work performed up to each specific 
tracking point. 

o Actual Cost (AC): The cost incurred for the work completed at each 
tracking point. 

o Cost Performance Index (CPI): A measure of cost efficiency calculated 
as the ratio of earned value to actual cost. 

o Schedule Performance Index (SPI): A measure of schedule efficiency 
calculated as the ratio of earned value to planned value. 

• Final Outcome Values: These capture the actual results once the project has 
been fully completed, providing the basis for comparing the initial plans with the 
actual outcomes. These include: 

o Real Duration: The actual time taken to complete the project. 

o Real Cost at Completion: The total cost incurred by the end of the 
project. 

 

In total, the dataset offers a comprehensive view of 181 projects, capturing the planned 
intentions, the ongoing tracking of progress, and the final outcomes. To illustrate how 
these stages are documented, A detailed example of a project will be provided below, 
including tables that display the planned values, actual values at various tracking 
points, and the final outcomes. 

 

 

 

 

 

 

 

 



24 
 

CODE PROJECT NAME SECTOR PD (DAYS) BAC SP RI DURATION COST 

C2011-07 Patient Transport 
System 

IT 389 180,759 € 70% 74% 445 191,065 € 

Table 2-the planned value of the project C2011-07 

 

NAME START TRACKING 
PERIOD 

STATUS DATE PLANNED 
VALUE (PV) 

EARNED 
VALUE (EV) 

ACTUAL 
COST (AC) 

COST 
PERFORMANCE 

INDEX(CPI) 

SCHEDULE 
PERFORMANCE 

INDEX (SPI) 

TP1 01/01/2010 8:00 28/01/2010 17:00 5,262.40€ 5,262.40€ 5,262.40€ 1 1 

TP2 28/01/2010 17:00 25/02/2010 17:00 5,262.40€ 5,262.40€ 5,262.40€ 1 1 

TP3 25/02/2010 17:00 25/03/2010 17:00 9,434.40€ 9,434.40€ 10,155.84€ 0.92896304 1 

….. ….. ….. ….. ….. ….. ….. ….. 

TP21 14/07/2011 17:00 11/08/2011 17:00 180,759.44€ 170,569.08€ 178,592.92€ 0.955071903 0.943624742 

TP22 11/08/2011 17:00 08/09/2011 17:00 180,759.44€ 172,251.28€ 181,673.06€ 0.948138816 0.952931034 

TP23 08/09/2011 17:00 15/09/2011 20:00 180,759.44€ 180,759.44€ 191,065.06€ 0.946062247 1 

Table 3-the Tracking values of the project C2011-07 

 

CODE PROJECT NAME REAL COST REAL DURATION 

C2011-07 Patient Transport System 191,065 € 445               

Table 4-the Final Outcome of the project C2011-07 

    

3.2. Data filtering 

3.2.1. Removing data without complete tracking information 

Following the initial collection of data, a filtering process was applied to ensure the 
quality and relevance of the dataset for subsequent analysis. The original dataset 
comprised 181 projects; however, not all of these projects provided the necessary 
completeness or consistency required for accurate and meaningful cost forecasting. 

The first step in the filtering process involved selecting projects that contained 
complete and essential data. Projects that lacked critical information—such as the 
Budget at Completion (BAC), Project Schedule, or key tracking metrics like Earned Value 
(EV) and Actual Cost (AC)—were excluded from the analysis. This initial screening 
reduced the dataset from 181 projects to 103, focusing only on those projects that had 
comprehensive data across all stages of their lifecycle. 
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3.2.2. Removing outliers using IQR Method 

After selecting 103 projects with complete tracking information, the next step in the 
data filtering process involved identifying and removing outliers to ensure the accuracy 
and reliability of the dataset. To accomplish this, we utilized the Interquartile Range 
(IQR) Method, a robust statistical technique widely used for detecting outliers in 
various datasets. 

IQR method is particularly effective because it does not rely on the assumption of a 
normal distribution, making it well-suited for datasets that may exhibit skewed or non-
normal characteristics.[] The method works by dividing the continuous range of data 
into quartiles—segments that represent the distribution of the dataset. The first quartile 
(Q1) marks the 25th percentile, while the third quartile (Q3) marks the 75th percentile, 
with the interquartile range (IQR) being the difference between these two values: 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

The IQR represents the spread of the middle 50% of the data, also known as the "middle 
fifty." This range is crucial for identifying the central tendency of the data and detecting 
outliers—values that fall significantly outside this central range. 

To determine the thresholds for outlier detection, the IQR method calculates the lower 
and upper bounds using the following formulas: 

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄1 − 1.5 × 𝐼𝑄𝑅  

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄3 + 1.5 × 𝐼𝑄𝑅 

Any data point that lies below the lower bound or above the upper bound is considered 
an outlier. The multiplier of 1.5 is a conventional choice that balances the need to 
identify genuine outliers while maintaining the integrity of the dataset by not excluding 
too many data points. 

 

Figure 8-Interquartile Range (IQR) Method for Outlier Detection 

In this study, we applied the IQR method to the "Real Cost" values of the projects in our 
dataset. The upper bound, calculated using the IQR method, was $3,376,316. As shown 
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in the plot, 11 projects had a "Real Cost" exceeding this upper bound, indicating that 
these projects are outliers with significantly higher costs. 

Notably, there were no projects that fell below the lower bound, meaning no outliers 
were identified on the lower end of the cost spectrum. By removing these 11 high-cost 
outlier projects, the dataset was refined from 101 projects to a more consistent set of 
90 projects. This careful curation of the data ensures that the subsequent analysis will 
be based on a reliable and representative sample, minimizing the potential for skewed 
results due to extreme outliers. 

 

Figure 9-Real Cost of Projects with IQR-Based Outlier Boundaries. 

3.3. Data Preparation  

3.3.1. Uploading Data into Excel Spreadsheets 

Following the data filtering process, the dataset was refined to 90 projects. To facilitate 
further analysis, all relevant data was organized and systematically uploaded into Excel 
spreadsheets. This encompassed the tracking values recorded at various points during 
the project’s execution, along with the planned values and the final outcomes 
associated with each tracking period. 

By organizing the data into Excel spreadsheets, we created a structured and accessible 
format that facilitated further analysis. This setup enabled us to apply machine learning 
models to each individual tracking point, using the performance metric indicators and 
planned values of each project. This approach ensures that the models can accurately 
assess project performance over time, providing deeper insights into how each project 
progresses through its lifecycle. 
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3.3.2. Features Selected for Analysis  

The features retained for analysis were categorized into two main types: static data and 
dynamic data. This distinction allowed for a comprehensive assessment of both the 
planned aspects of each project and the actual performance over time. These features 
serve as the inputs for the machine learning models, which will be used to predict the 
final outcomes of the projects. 

• Static Data: These are the planned values related to the project, which remain 
constant across all tracking points. The static data includes: 

o Budget at Completion (BAC) 

o Project Regularity (RI) 

o Project Seriality (SP) 

• Dynamic Data: These are the tracking values that change over time, reflecting the 
actual performance of the project at each tracking point. The dynamic data 
includes: 

o Earned Value (EV) 

o Actual Cost (AC) 

o Cost Performance Index (CI) 

These static and dynamic data points are the inputs to the machine learning models. 
The models will utilize these inputs to predict the final outcome, specifically the Real 
Cost at Completion, which serves as the target variable for the analysis. 

By retaining both static and dynamic data, and clearly defining the target, we ensured 
that the dataset is well-prepared for applying machine learning techniques to predict 
project outcomes accurately. In the table below, we can see the complete set of data 
used as inputs and targets for the machine-learning models. 

Inputs Target 

Dynamic Inputs Static Inputs Final Outcome 

CI  AC  EV  BAC  RI SP  Real Cost  

1  $         5,262.40   $         5,262.40   $    180,759.00  0.74 0.7  $    191,065.06  

1  $         5,262.40   $         5,262.40   $    180,759.00  0.74 0.7  $    191,065.06  

0.928963  $      10,155.84   $         9,434.40   $    180,759.00  0.74 0.7  $    191,065.06  

…..  …..   …..   …..   …..   …..   …..  

1  $         5,716.85   $         5,716.85   $ 3,027,133.00  0.75 0.41  $ 3,102,395.91  

0.895511  $    283,418.65   $    253,804.57   $ 3,027,133.00  0.75 0.41  $ 3,102,395.91  

0.94356  $    685,780.46   $    647,075.30   $ 3,027,133.00  0.75 0.41  $ 3,102,395.91  

….. ….. ….. ….. ….. ….. ….. 
Table 6-Inputs and Target Variables for Machine Learning Models (Before Normalization) 
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3.3.3. Data Normalization 

To ensure that the data was suitable for machine learning analysis and to make 
comparisons across projects of different scales meaningful, a data normalization 
process was applied. Normalization is essential to bring all the input features onto a 
common scale, preventing features with larger numerical ranges from 
disproportionately influencing the results of the machine learning models. 

In this study, normalization was performed using the Budget at Completion (BAC) as the 
base value. Specifically, key dynamic features such as Earned Value (EV), Actual Cost 
(AC), Cost at Completion (CAC), and the target variable Real Cost at Completion were 
normalized by dividing each of these values by the corresponding BAC for each project. 
This method effectively scaled the data to unity, where all values are expressed as 
fractions or multiples of the BAC. 

For example, after normalization: 

• A normalized Earned Value (EV) of 0.5 indicates that 50% of the planned budget 
has been earned at a given tracking point. 

• A normalized Actual Cost (AC) of 0.8 suggests that 80% of the planned budget 
has been spent. 

• A normalized Real Cost at Completion of 1.1 would indicate that the project cost 
exceeded the planned budget by 10%. 

This normalization process ensured that the machine learning models could accurately 
compare and analyze projects of varying sizes without bias from the absolute scale of 
the values. By transforming both the input features and the target variable into a 
consistent range, we enhanced the robustness and reliability of the predictive models. 

The normalized data, including the Real Cost at Completion as the normalized target, 
was then used for training and evaluating the machine learning models. The table below 
shows the normalized data used as inputs and targets for the machine learning models. 

Inputs Target 

Dynamic Inputs Static Inputs Final Outcome 

CI  AC   EV   BAC  RI SP  Real Cost  

1 0.029112797 0.029112797 1 0.74 0.7 1.057015474 

1 0.029112797 0.029112797 1 0.74 0.7 1.057015474 

0.928963 0.056184422 0.052193252 1 0.74 0.7 1.057015474 

….. ….. ….. …..  …..   …..  ….. 

1 0.001888536 0.001888536 1 0.75 0.41 1.024862768 

0.895511 0.093626098 0.083843217 1 0.75 0.41 1.024862768 

0.94356 0.226544544 0.213758464 1 0.75 0.41 1.024862768 

…..  …..   …..   …..  ….. …..  …..  
Table 7-Inputs and Target Variables for Machine Learning Models (After Normalization) 
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3.4. Implementation of Machine Learning Models 

3.4.1. Selection of machine learning models 

To evaluate the effectiveness of different machine learning models in predicting project 
costs, we selected six widely recognized algorithms, each known for its strengths in 
handling structured data and regression tasks. These models have been successfully 
applied in various forecasting contexts, and we reference relevant studies to support 
their selection: 

 

• Extreme Gradient Boosting (XGBoost): 

One of the models we have selected is XGBoost, which has been effectively applied in 
project cost forecasting. For example, (Narbaev et al., 2024b) applied XGBoost to a 
dataset of 110 projects and demonstrated its strong predictive performance. XGBoost 
belongs to the family of supervised machine learning models and works by accurately 
predicting a target variable through an ensemble approach, combining estimates from a 
series of simpler, weaker models. This method is grounded in the boosting technique 
developed by (Friedman, 2001), where each model in the sequence aims to correct the 
errors of its predecessor. 

XGBoost is particularly powerful as an ensemble algorithm because it efficiently 
implements decision trees, creating a composite model that significantly outperforms 
individual models when used alone. The model’s effectiveness is further enhanced by 
its ability to robustly handle various data types and complex relationships, as well as its 
flexibility in hyperparameter tuning, which allows for fine-tuning to optimize 
performance. 

Overall, XGBoost stands out for its scalability, precision, and ability to deliver superior 
predictive accuracy in large-scale data analysis.  

The formal additive function of the XGBoost algorithm is defined by the following 
equation (Chen & Guestrin, 2016): 

𝐿(𝜃) = ∑ 𝑙(�̂�𝑖, 𝑦𝑖)

𝑛

𝑖=1

+ ∑ 𝛺(𝑓𝑘)

𝑘

𝑘=1

 

where 𝑖 represents a given instance, 𝑛 is the total number of instances, and                  

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝜔2. 

In this equation: 

• The 𝐿 component is a differentiable convex loss function that quantifies the 
difference between the forecasted value 𝑦�̂� and the actual value 𝑦𝑖. 
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• The Ω term acts as a regularization factor, preventing overfitting by smoothing the 
learned weights 𝜔. This regularization term penalizes the complexity of the 
regression-based tree functions, where 𝑇 denotes the number of leaves in the 
tree. 

• The parameters 𝛾 and 𝜆 control the degree of regularization, with 𝛾 penalizing the 
number of leaves and 𝜆 penalizing the magnitude of the leaf weights. 

• Each 𝑓𝑘 corresponds to an independent tree structure and its associated leaf 
weights 𝜔. 

In recent years, the XGBoost model has gained significant popularity in applied machine 
learning for both classification and regression tasks, owing to its superior performance 
and speed (Jabeur et al., 2024; Uddin et al., 2022). 

 

• Support Vector Regression (SVR): 

One of the models we have selected is Support Vector Regression (SVR), which has 
been effectively applied in various predictive modelling tasks. For example, Da-Ying Li et 
al., 2009 applied SVR to real estate price prediction in China and demonstrated its 
strong predictive performance. SVR belongs to the family of supervised machine 
learning models and works by accurately predicting a target variable through the 
optimization of a hyperplane that best fits the data within a specified margin of 
tolerance.  

SVR is particularly powerful as a regression algorithm because it efficiently handles 
both linear and non-linear relationships by utilizing kernel functions to map input 
features into high-dimensional spaces. The model’s effectiveness is further enhanced 
by its ability to control model complexity through regularization, which allows for fine-
tuning to optimize performance. 

The formal objective function of the SVR algorithm is defined by the following equation 
(Smola et al., 2004): 

min
𝑤,𝑏

1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

subject to the constraints: 

𝑦𝑖 − (𝑊𝑇𝑋𝑖 + 𝑏) ≤ 𝜖 + 𝜉𝑖 

(𝑊𝑇𝑋𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖
∗ 

𝜉𝑖𝜉𝑖
∗ ≥ 0 
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where 𝑖 represents a given instance, 𝑛 is the total number of instances, and 𝐶 is the 
regularization parameter controlling the trade-off between margin size and prediction 
error. 

In this equation: 

• The ‖𝑤‖ component represents the norm of the weight vector, which SVR 
minimizes to ensure the flatness of the function. 

• The 𝜖  term defines the margin of tolerance within which no penalty is given to 
errors, allowing some flexibility in the predictions. 

• The 𝜉𝑖 and 𝜉𝑖
∗ terms are slack variables that allow for some degree of error in the 

margin, providing robustness to the model. 

SVR is highly regarded for its robustness and flexibility in handling complex, non-linear 
data relationships. The model's ability to effectively utilize kernel functions for mapping 
data into higher-dimensional spaces allows it to achieve high accuracy across various 
predictive tasks. These attributes make SVR an excellent choice for project cost 
forecasting, where the underlying data can be intricate and challenging for traditional 
regression models (Sricharan & Joshi, 2022). 

 

• Random Forest (RF): 

One of the models we have selected is Random Forest, a highly robust and widely 
utilized ensemble learning method that excels in both classification and regression 
tasks. Random Forest operates by constructing a multitude of decision trees during 
training and then aggregating their predictions to produce a more accurate and stable 
result. This ensemble approach enhances the model's robustness and accuracy, 
making it particularly suitable for complex predictive modeling tasks (Israel-Nyemeche 
et al., 2023; Salman et al., 2024) 

Random Forest is particularly powerful as a predictive algorithm because it effectively 
mitigates the risk of overfitting, a common issue in individual decision trees. It achieves 
this through a process known as bootstrap aggregation, or bagging, where each tree in 
the forest is trained on a different random subset of the training data. At each split in the 
trees, only a random subset of features is considered, introducing further randomness 
and diversity into the model. This approach not only reduces the correlation between 
individual trees but also enhances the model's ability to generalize to new, unseen data, 
leading to improved accuracy and stability (Hu, 2024). 

For example, in a study by (Israel-Nyemeche et al., 2023), Random Forest was applied 
to a large dataset in the context of predictive analytics for health insurance premiums. 
The model demonstrated superior performance compared to other algorithms, 
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effectively handling the complex relationships within the data and providing highly 
accurate predictions. This success highlights Random Forest's suitability for similar 
tasks, such as project cost forecasting, where data complexity is often a significant 
challenge. 

The formal prediction of the Random Forest model for a regression task is defined by the 
following equation: 

�̂� =
1

𝑇
∑ 𝑓𝑡(𝑥)

𝑇

𝑡=1

 

where: 

• 𝑇 is the total number of trees in the forest, 

• 𝑓𝑡(𝑥) is the prediction from the 𝑡-th tree. 

Each tree 𝑓𝑡(𝑥)  is built using a bootstrapped sample from the original data, and only a 
subset of the features is considered for splitting at each node. This method enhances 
the model’s robustness by ensuring that individual trees do not overfit to noise in the 
training data, thereby improving the ensemble's overall performance (Salman et al., 
2024). 

Overall, Random Forest is highly regarded for its simplicity, robustness, and ability to 
handle large datasets with many features. These attributes make Random Forest an 
excellent choice for project cost forecasting, where the data may be complex, noisy, 
and challenging for traditional models. 

• Extremely Randomized Trees (ET): 

One of the models we have selected is Extra Trees, or Extremely Randomized Trees, an 
ensemble learning method closely related to Random Forests but with key differences 
that introduce more randomness into the model-building process. Extra Trees has 
demonstrated strong performance in various complex tasks. For instance, in a study on 
brain tumor segmentation, Extra Trees outperformed traditional Random Forests, 
demonstrating its effectiveness in handling complex datasets, which is applicable to 
tasks such as cost forecasting (Götz et al., n.d.). Like Random Forest, Extra Trees 
constructs multiple decision trees and aggregates their predictions to improve accuracy 
and robustness. 

However, Extra Trees differs from Random Forest in two significant ways: 

1. Random Split Selection: Instead of choosing the best possible split based on 
criteria like Gini impurity or information gain, Extra Trees selects splits entirely at 
random from the range of values available for each feature. This increased 
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randomness helps to decorrelate the trees in the ensemble, reducing the 
variance of the model's predictions (Geurts et al., 2006) 

2. Use of the Entire Dataset: Unlike Random Forests, where each tree is trained on 
a bootstrapped sample of the data, Extra Trees typically use the entire dataset to 
grow each tree. This approach reduces bias and ensures that the model fully 
leverages the available data to capture complex patterns (Götz et al., n.d.). 

The prediction of the Extra Trees model follows the same formal structure as the 
Random Forest, where the prediction �̂� is the average of the predictions from all the 
trees in the ensemble. However, the key differences between the two models lie in the 
method of tree construction, as detailed above. 

Extra Trees is a powerful extension of Random Forest, particularly useful when high 
variance in the data can lead to overfitting. Its ability to produce diverse models while 
utilizing the full dataset makes it an excellent choice for tasks requiring high accuracy 
and robustness in cost forecasting (Geurts et al., 2006). 

 

• k-Nearest Neighbour (KNN): 

One of the models we have selected is K-Nearest Neighbours (KNN), a simple yet 
effective method widely applied in various predictive modelling tasks. Imandoust and 
Bolandraftar (2013) applied KNN to predict economic events, specifically in the context 
of credit risk assessment. By analyzing historical data on loan applicants, they 
demonstrated KNN’s ability to provide accurate and reliable forecasts by examining the 
patterns of similar instances. This method is non-parametric and does not require any 
assumptions about the underlying data distribution, making it versatile and easy to 
implement. 

KNN groups data into coherent clusters and classifies new inputs based on their 
similarity with previously labelled data (Taunk et al., 2019). The model operates by 
identifying the 'k' nearest data points in the training set and using these neighbours to 
make predictions, either by taking a majority vote in classification tasks or by averaging 
the target values in regression tasks. The effectiveness of KNN is enhanced by the 
choice of 'k' and the distance metric, such as Euclidean or Manhattan distance, which 
allows for fine-tuning to optimize performance. 

The KNN algorithm calculates the distance between instances using a chosen metric, 
such as Euclidean distance, defined by the following equation: 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1
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where 𝑥 and 𝑦 represent the feature vectors of two instances, and 𝑛 is the total number 
of features. The algorithm then selects the 'k' closest instances and predicts the target 
variable based on their values. 

In this equation: 

• The distance metric 𝑑(𝑥, 𝑦) determines how closeness is measured, impacting 
which neighbors are considered. 

• The parameter 'k' controls the number of neighbours involved in making the 
prediction, balancing sensitivity to noise (smaller k) with generalization (larger k). 

KNN is particularly well-suited for cost forecasting because it leverages historical 
project data to identify patterns and relationships that can inform predictions about 
new projects. By comparing a new project to similar past projects, KNN can provide 
accurate cost estimates based on the most relevant examples from the training data. Its 
simplicity, coupled with its robust performance in various applications, makes KNN a 
reliable choice in scenarios requiring high accuracy and interpretability (Batista & 
Monard, 2002; Taunk et al., 2019). 

• Light Gradient Boosting Machine (LGBM): 

One of the models we have selected is LightGBM (LGBM), a highly efficient 
implementation of the Gradient Boosting Decision Tree (GBDT) algorithm. LGBM is 
recognized for its ability to handle large-scale data efficiently while maintaining high 
predictive accuracy. Ke et al. (2017) developed LightGBM to address the scalability 
issues of traditional GBDT models, demonstrating superior performance in tasks such 
as multi-class classification and ranking. The model's efficiency and scalability make it 
particularly useful in cost forecasting, where large datasets and high-dimensional 
feature spaces are common. 

LightGBM builds decision trees sequentially, where each tree aims to correct the errors 
of the previous ones. Unlike traditional GBDT implementations, LightGBM introduces 
two key innovations: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature 
Bundling (EFB). These techniques significantly reduce training time without sacrificing 
accuracy Ke et al. (2017) 

Gradient-based One-Side Sampling (GOSS) enhances LGBM’s efficiency by focusing on 
instances with larger gradients, which are more informative. By selectively sampling 
data points based on their gradient values, GOSS allows the model to retain high 
accuracy while reducing the computational load Ke et al. (2017). Exclusive Feature 
Bundling (EFB) reduces the number of features by bundling together those that are 
mutually exclusive, meaning features that rarely take non-zero values simultaneously. 
This approach speeds up the training process without compromising the model’s 
learning ability. 
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LGBM's effectiveness in handling large datasets with high-dimensional sparse features 
makes it well-suited for cost forecasting tasks. In particular, its ability to efficiently 
process large volumes of data while maintaining high predictive accuracy is a significant 
advantage, especially in scenarios requiring quick decision-making based on complex 
data Ke et al. (2017). This has been further demonstrated in various applications. For 
instance, a study by Linda John et al. (2022) applied LGBM to predict house prices, 
showing that LGBM outperformed other models such as XGBoost in terms of both 
speed and accuracy. The study highlighted that LGBM could handle the large and 
complex datasets typically associated with real estate pricing more efficiently than 
other boosting algorithms. 

The formal objective function of LightGBM in a regression setting is defined as: 

𝐿(𝑦𝑖, �̂�𝑖) = ∑ 𝑙

𝑛

𝑖=1

(𝑦𝑖, �̂�𝑖) + ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

 

where: 

• 𝑦𝑖 and �̂�𝑖 represent the actual and predicted values, respectively.  

• 𝑙 is a differentiable convex loss function that measures the difference between 
actual and predicted values. 

• Ω(𝑓𝑘) is a regularization term that controls the complexity of the model to 
prevent overfitting. 

LGBM’s innovations in gradient-based sampling and feature bundling provide 
substantial improvements over traditional GBDT methods, ensuring that it delivers 
robust performance even in the most demanding scenarios. Its use in cost forecasting 
applications is particularly notable for its ability to provide accurate predictions quickly, 
making it an ideal choice for large-scale projects that require both precision and 
efficiency (Guo et al., 2023; John & Shaikh, 2022; Ke et al., 2017). 

 

3.4.2. Model implementation 

In this study, we implemented the selected machine learning models—XGBoost, SVR, 
Random Forest, Extra Trees, KNN, and LightGBM—using the scikit-learn library in 
Python. The dataset was first divided into training and testing sets with a 75/25 split, 
where 75% of the data was used for model development (training and cross-validation) 
and 25% was reserved for evaluating the final model performance. 

To optimize the performance of each model, we applied a grid search combined with 3-
fold cross-validation. This method systematically explored the hyperparameter space to 
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ensure that the models were fine-tuned for optimal performance on the training data 
(Hutter et al., 2019). 

For each model, a grid of potential hyperparameters was defined. For example, in the 
case of the Random Forest model, we varied parameters such as the number of trees 
(n_estimators) and the maximum depth of the trees (max_depth). Similarly, for the SVR 
model, we adjusted the regularization parameter (C) and the kernel type to identify the 
best settings. 

The grid search process was conducted using the GridSearchCV class from scikit-learn. 
During this process, the training data was divided into three subsets (folds). The model 
was trained on two of these subsets and validated on the third, with the process 
repeated three times, each time using a different fold as the validation set. This method 
allowed us to evaluate each combination of hyperparameters comprehensively. 

The performance of each hyperparameter combination was evaluated using the Mean 
Absolute Percentage Error (MAPE) as the primary performance metric. MAPE measures 
the average absolute percentage difference between the predicted and actual values, 
providing a clear indication of the model’s prediction accuracy in relative terms. 

After completing the grid search, the best set of hyperparameters was selected based 
on the average MAPE across the cross-validation folds. This careful selection was 
guided by the principle that a thorough exploration of the hyperparameter space can 
identify configurations that balance bias and variance effectively, thereby avoiding both 
underfitting and overfitting (Hutter et al., 2019). 

Once the optimal hyperparameters were identified, each model was retrained on the 
entire training set using these parameters. The trained models were then evaluated on 
the reserved 25% of the data (the test set) to assess their generalization performance. 
This final evaluation was conducted using two key metrics: Mean Absolute Percentage 
Error (MAPE) and Normalized Root Mean Squared Error (NRMSE). These metrics 
provided a comprehensive assessment of the models' predictive accuracy, ensuring 
that they were fully prepared to deliver accurate cost forecasts. 

 

• Mean Absolute Percentage Error (MAPE)  

measures the average absolute percentage difference between the predicted values �̂�𝑖 
and the actual values 𝑦𝑖. It is defined as: 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
| × 100

𝑛

𝑖=1

 



37 
 

where 𝑛 is the number of observations. MAPE is expressed as a percentage, providing 
an intuitive understanding of the average error relative to the actual values. 

• Normalized Root Mean Squared Error (NRMSE) 

 is the square root of the average squared differences between predicted values �̂�𝑖 and 
actual values 𝑦𝑖, normalized by the range of the data. It is defined as: 

 

𝑁𝑅𝑀𝑆𝐸 =

√1
𝑛

∑ (�̂�𝑖 − 𝑦𝑖)2𝑛
𝑖=1

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 

 

where 𝑦𝑚𝑎𝑥  and 𝑦𝑚𝑖𝑛 are the maximum and minimum values of the actual data. NRMSE 
provides a normalized measure of prediction error, allowing for comparisons across 
different datasets or models. 

These evaluation metrics were chosen because they offer complementary insights: 
MAPE provides a relative error percentage that is easy to interpret, while NRMSE offers a 
scale-independent measure of error that accounts for the variability of the data. 
Together, they ensured that the models' predictions were both accurate and reliable. 

After establishing the optimal hyperparameters for each model and conducting the 
initial training and evaluation, we proceeded with a series of runs designed to assess 
the impact of specific project characteristics on the performance of the machine 
learning models. The goal was to understand how the inclusion of Project Regularity (RI) 
and Project Seriality (SP) affected the predictive accuracy of the models. 

We began by creating a baseline model using a core set of features: Actual Cost (AC), 
Earned Value (EV), and Cost Performance Index (CI). This baseline provided a reference 
point against which the effects of adding additional features could be measured. 

Next, we conducted a series of runs where we incrementally added the project 
characteristics. First, we introduced Project Regularity (RI) to the baseline feature set 
and evaluated the model's performance. Following this, we added Project Seriality (SP) 
separately to see how it influenced the results. Finally, a comprehensive run was 
conducted with both RI and SP included alongside the baseline features. 

 

RUNS INPUTS 
FIRST RUN AC,EV,CI 
SECOND RUN AC,EV,CI,RI 
THIRD RUN AC,EV,CI,SP 
FOURTH RUN AC,EV,CI,RI,SP 

Table 8-Sequential Runs with Different Input Features 
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3.5. EVM Calculation and Evaluation 

To compare the effectiveness of our machine learning models with traditional methods, 
we calculated the Earned Value Management (EVM) metrics as a baseline. The Estimate 
at Completion (EAC) was the primary metric used for this comparison, allowing us to 
evaluate how well the machine learning models performed relative to this established 
approach. 

For each project, the EAC was calculated at various tracking points using the following 
formula (Batselier & Vanhoucke, 2015): 

𝐸𝐴𝐶(𝑡) = 𝐴𝐶𝑡 +
(𝐵𝐴𝐶 − 𝐸𝑉𝑡)

𝐶𝑃𝐼𝑡
 

where: 

• 𝑡 represents the tracking period 

• 𝐴𝐶𝑡 is the actual cost incurred up to time 𝑡 

• 𝐵𝐴𝐶 is the Budget at Completion, representing the total planned budget 

• 𝐸𝑉𝑡 is the Earned Value at the time 𝑡 

• 𝐶𝑃𝐼𝑡 is the Cost Performance Index at time 𝑡, calculated as 𝐶𝑃𝐼𝑡 =
𝐸𝑉𝑡

𝐴𝐶𝑡
 

After calculating the EAC for each tracking point of each project, we averaged these EAC 
values to obtain the overall estimated completion cost for each project. This average 
EAC was then used to calculate both the Mean Absolute Percentage Error (MAPE) and 
the Normalized Root Mean Squared Error(NRMSE), providing a comprehensive 
evaluation of the accuracy of the EVM-based cost forecasts. 

 

The MAPE was calculated using the following formula: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐸𝐴𝐶𝑖 − 𝑅𝑒𝑎𝑙 𝐶𝑜𝑠𝑡𝑖

𝑅𝑒𝑎𝑙 𝐶𝑜𝑠𝑡𝑖
| × 100

𝑛

𝑖=1

 

where: 

• 𝐸𝐴𝐶𝑖  is the average Estimate at Completion for the project 𝑖 

• 𝑅𝑒𝑎𝑙 𝐶𝑜𝑠𝑡𝑖 is the actual final cost of the project 𝑖 

• 𝑛  is the total number of projects 

We also calculated NRMSE for the EVM forecasts, just as we did for the machine 
learning models, using the following formula: 
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𝑁𝑅𝑀𝑆𝐸 =

√1
𝑛

∑ (𝐸𝐴𝐶𝑖 − 𝑅𝑒𝑎𝑙 𝐶𝑜𝑠𝑡𝑖)2𝑛
𝑖=1

𝑅𝑒𝑎𝑙 𝐶𝑜𝑠𝑡𝑚𝑎𝑥 − 𝑅𝑒𝑎𝑙 𝐶𝑜𝑠𝑡𝑚𝑖𝑛
 

where: 

• 𝐸𝐴𝐶𝑖  is the average Estimate at Completion for the project 𝑖 

• 𝑅𝑒𝑎𝑙 𝐶𝑜𝑠𝑡𝑖 is the actual final cost of the project 𝑖 

• 𝑛  is the total number of projects 

• 𝑅𝑒𝑎𝑙 𝐶𝑜𝑠𝑡𝑚𝑎𝑥 is the maximum real cost at completion among all projects 

• 𝑅𝑒𝑎𝑙 𝐶𝑜𝑠𝑡𝑚𝑖𝑛 is the minimum real cost at completion among all projects 

By calculating both MAPE and NRMSE, we obtained a thorough understanding of the 
accuracy and reliability of the EVM-based forecasts, which we then compared against 
the predictions generated by the machine learning models. 
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4. Result and Discussion 

The primary objective of this study is to enhance the accuracy of project cost 
forecasting by comparing the performance of various machine learning (ML) algorithms 
and determining whether Project Regularity (RI) and Project Seriality (SP) improve model 
accuracy. Despite their widespread use, Traditional Earned Value Management (EVM) 
methods often result in inaccurate predictions due to assumptions of linear cost growth 
and the static nature of their inputs. In contrast, this study employs six machine 
learning models—XGBoost, Extremely Randomized Trees (ExtraTrees), Random Forest, 
Support Vector Machines (SVM), Light Gradient Boosting Machine (LightGBM), and K-
Nearest Neighbors (KNN)—to predict the cost at completion. The models are 
benchmarked against traditional EVM to assess improvements in forecast accuracy. 

The inclusion of static features, RI and SP, as input variables alongside dynamic 
features like Actual Cost (AC), Earned Value (EV), and Cost Performance Index (CI), is 
expected to enhance the models' predictive power, particularly in complex, non-linear 
project environments. 

Data for this study was sourced from 181 real-world projects provided by the Dynamic 
Scheduling Library at Ghent University, of which 90 projects were selected after filtering 
and removing outliers. The dataset includes key variables necessary for cost forecasting 
such as Budget at Completion (BAC), Actual Cost (AC), Earned Value (EV), Cost 
Performance Index (CI), Project Regularity (RI), and Project Seriality (SP). The data was 
normalized using BAC as a base to allow for comparisons across projects of different 
scales. 

The machine learning models were trained using 75% of the dataset, with the remaining 
25% held out for testing. Four different input combinations were tested across all 
models to evaluate the impact of including RI and SP as static features: 

1. First Run: AC, EV, CI 

2. Second Run: AC, EV, CI, RI 

3. Third Run: AC, EV, CI, SP 

4. Fourth Run: AC, EV, CI, RI, SP 

Model performance was evaluated using two accuracy metrics: Mean Absolute 
Percentage Error (MAPE) and Normalized Root Mean Squared Error (NRMSE). These 
metrics allow for a clear comparison between the machine learning models and the 
traditional EVM method. 
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4.1. Machine Learning Models Results 

 

• Extreme Gradient Boosting (XGBoost): 

RUN FEATURES MAPE% NRMSE PARAMETERS 
1 AC,EV,CI 6.00191 0.054322 {'colsample_bytree': 1.0, 'gamma': 0, 'learning_rate': 0.1, 

'max_depth': 7, 'min_child_weight': 5, 'n_estimators': 300, 
'reg_alpha': 0.5, 'reg_lambda': 1, 'subsample': 0.6}  

2 AC,EV,CI,RI 5.380611 0.046125 {'colsample_bytree': 1.0, 'gamma': 0, 'learning_rate': 0.2, 
'max_depth': 10, 'min_child_weight': 1, 'n_estimators': 300, 

'reg_alpha': 0.5, 'reg_lambda': 0.1, 'subsample': 0.9}  

3 AC,EV,CI,SP 5.83487 0.055427 {'colsample_bytree': 1.0, 'gamma': 0, 'learning_rate': 0.2, 
'max_depth': 10, 'min_child_weight': 1, 'n_estimators': 100, 

'reg_alpha': 0.5, 'reg_lambda': 0.01, 'subsample': 1.0} 

4 AC,EV,CI,SP,RI 4.934205 0.04373 {'colsample_bytree': 1.0, 'gamma': 0, 'learning_rate': 0.2, 
'max_depth': 10, 'min_child_weight': 1, 'n_estimators': 300, 

'reg_alpha': 0.5, 'reg_lambda': 0.01, 'subsample': 0.9} 

Table 9-XGBoost Accuracy 

The XGBoost model results demonstrate improved cost forecasting accuracy as 
additional features are incorporated. Using only dynamic features (AC, EV, CI), the 
model achieved a MAPE of 6.00%. When Project Regularity (RI) was added, accuracy 
significantly improved, with a MAPE of 5.38%. In comparison, adding Project Seriality 
(SP) alone resulted in a MAPE of 5.83%, indicating that RI had a greater impact on 
enhancing the model’s performance than SP. 

However, the combination of RI and SP yielded the best results, with a MAPE of 4.93%. 
This suggests that while RI contributes more substantially to accuracy, including both 
static features optimizes the forecasting model’s predictive power. Overall, the results 
indicate that the integration of RI and SP leads to the most reliable cost predictions. 

 

• Extremely Randomized Tree (ERT) 

 

RUN FEATURES MAPE% NRMSE PARAMETERS 
1 AC,EV,CI 10.47520738 0.061301711 {'bootstrap': False, 'max_depth': 5, 'max_features': 

'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 10, 
'n_estimators': 100} 

2 AC,EV,CI,RI 7.769232079 0.050749483 {'bootstrap': False, 'max_depth': 5, 'max_features': 
'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 15, 

'n_estimators': 150} 

3 AC,EV,CI,SP 8.139811835 0.068115636 {'bootstrap': False, 'max_depth': 5, 'max_features': 
'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 15, 

'n_estimators': 150} 

4 AC,EV,CI,SP,RI 7.908921205 0.068884452 {'bootstrap': False, 'max_depth': 5, 'max_features': 
'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 10, 

'n_estimators': 100} 

Table 10-ERT Accuracy 
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The Extremely Randomized Trees model results show an improvement in cost 
forecasting accuracy when additional features are incorporated. In the first run, using 
only dynamic features (AC, EV, CI), the model achieved a MAPE of 10.48% and NRMSE 
of 0.0613. Adding Project Regularity (RI) in the second run reduced the MAPE to 7.77% 
and the NRMSE to 0.0507, showing a notable improvement in performance. In 
comparison, adding Project Seriality (SP) alone in the third run resulted in a higher MAPE 
of 8.14% and NRMSE of 0.0681, indicating that RI had a greater impact on accuracy 
than SP. 

However, the combination of both RI and SP (Run 4) did not yield the expected 
improvements, with a MAPE of 7.91% and NRMSE of 0.0689, performing slightly worse 
than using RI alone. This suggests that while RI plays a significant role in improving 
accuracy, adding SP did not enhance the model’s performance in this case, and using RI 
alone provided better forecasting accuracy than combining both features. 

 

• Random Forest (RF) 

 

RUN FEATURES MAPE% NRMSE PARAMETERS 
1 AC,EV,CI 7.359134 0.0643 {'bootstrap': True, 'max_depth': 5, 

'max_features': 'sqrt', 'min_samples_leaf': 4, 
'min_samples_split': 10, 'n_estimators': 200} 

2 AC,EV,CI,RI 5.492867 0.05484 {'bootstrap': False, 'max_depth': 5, 
'max_features': 'sqrt', 'min_samples_leaf': 4, 
'min_samples_split': 10, 'n_estimators': 200} 

3 AC,EV,CI,SP 5.617081 0.05541 {'bootstrap': False, 'max_depth': 5, 
'max_features': 'sqrt', 'min_samples_leaf': 4, 
'min_samples_split': 10, 'n_estimators': 200} 

4 AC,EV,CI,SP,RI 5.369513 0.05121 {'bootstrap': False, 'max_depth': 5, 
'max_features': 'sqrt', 'min_samples_leaf': 4, 
'min_samples_split': 10, 'n_estimators': 200} 

Table 11-RF Accuracy 

The results of the Random Forest model show a progressive improvement in cost 
forecasting accuracy as additional features are incorporated. In the first run, using only 
dynamic features (AC, EV, CI), the model achieved a MAPE of 7.36% and an NRMSE of 
0.0643. Adding Project Regularity (RI) in the second run significantly improved accuracy, 
reducing the MAPE to 5.49% and the NRMSE to 0.0548. Comparatively, adding Project 
Seriality (SP) in the third run resulted in a MAPE of 5.62% and NRMSE of 0.0554, 
indicating that RI had a greater positive impact on accuracy than SP. 

The fourth run, which included both RI and SP, delivered the best results with a MAPE of 
5.37% and NRMSE of 0.0512. This suggests that while RI alone had a stronger effect on 
improving accuracy, the combination of both RI and SP provided the most optimal 
forecast, further enhancing the Random Forest model’s predictive performance 
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• Support Vector Regression (SVR) 

 

RUN FEATURES MAPE% NRMSE PARAMETERS 
1 AC,EV,CI 6.420489 0.068131 {'C': 1, 'degree': 3, 'epsilon': 0.1, 'gamma': 

'scale', 'kernel': 'poly'} 

2 AC,EV,CI,RI 6.659883 0.061994 {'C': 1, 'degree': 2, 'epsilon': 0.1, 'gamma': 
'scale', 'kernel': 'poly'} 

3 AC,EV,CI,SP 6.559749 0.061795 {'C': 10, 'degree': 2, 'epsilon': 0.1, 'gamma': 
'scale', 'kernel': 'linear'} 

4 AC,EV,CI,SP,RI 6.4592 0.05858 {'C': 1, 'degree': 2, 'epsilon': 0.1, 'gamma': 
'auto', 'kernel': 'rbf'} 

Table 12-SVR Accuracy 

The Support Vector Regression (SVR) model results show marginal improvements in 
cost forecasting accuracy as additional features are incorporated. In the first run, using 
only dynamic features (AC, EV, CI), the model achieved a MAPE of 6.42% and an NRMSE 
of 0.0681. Adding Project Regularity (RI) in the second run slightly worsened 
performance, with a MAPE of 6.66% and an NRMSE of 0.0620. Similarly, adding Project 
Seriality (SP) in the third run resulted in a MAPE of 6.56% and NRMSE of 0.0618, 
indicating that neither RI nor SP had a significant positive impact on accuracy. 

However, in the fourth run, when both RI and SP were included, the model achieved a 
slight improvement with a MAPE of 6.46% and NRMSE of 0.0586. Although the 
combination of RI and SP improved the results marginally compared to the earlier runs, 
the overall performance of SVR did not show as substantial gains as seen in other 
models, suggesting that SVR is less responsive to the inclusion of RI and SP for 
improving forecasting accuracy. 

 

• Light Gradient Boosting Method (LGBM) 

RUN FETURES MAPE% NRMSE PARAMETERS 
1 AC,EV,CI 6.786865 0.068725 {'colsample_bytree': 0.6, 'learning_rate': 0.05, 

'max_depth': 3, 'min_child_samples': 20, 
'n_estimators': 200, 'num_leaves': 15, 'subsample': 

0.6} 

2 AC,EV,CI,RI 5.458081 0.058478 {'colsample_bytree': 0.8, 'learning_rate': 0.05, 
'max_depth': 7, 'min_child_samples': 20, 

'n_estimators': 100, 'num_leaves': 15, 'subsample': 
0.6} 

3 AC,EV,CI,SP 5.848209 0.062745 {'colsample_bytree': 0.8, 'learning_rate': 0.05, 
'max_depth': 7, 'min_child_samples': 20, 

'n_estimators': 100, 'num_leaves': 31, 'subsample': 
0.6} 

4 AC,EV,CI,SP,RI 4.87709 0.053228 {'colsample_bytree': 0.8, 'learning_rate': 0.1, 
'max_depth': 7, 'min_child_samples': 20, 

'n_estimators': 200, 'num_leaves': 31, 'subsample': 
0.6} 

Table 13-LGBM Accuracy 

The Light Gradient Boosting Machine (LGBM) model shows a consistent improvement in 
cost forecasting accuracy as additional features are incorporated. In the first run, using 
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only dynamic features (AC, EV, CI), the model achieved a MAPE of 6.79% and NRMSE of 
0.0687. Adding Project Regularity (RI) in the second run significantly improved the 
model’s performance, reducing the MAPE to 5.46% and NRMSE to 0.0585. Similarly, 
adding Project Seriality (SP) in the third run resulted in a MAPE of 5.85% and NRMSE of 
0.0627, although the performance was slightly less accurate compared to adding RI. 

The fourth run, which included both RI and SP, provided the best results, with a MAPE of 
4.88% and NRMSE of 0.0532. This indicates that while both RI and SP contribute to 
improved accuracy, their combined inclusion yields the most optimal forecast, further 
enhancing the LGBM model's ability to predict project costs effectively. 

 

• K-Nearest Neighbours (KNN) 

 

RUN FETURES MAPE% NRMSE PARAMETERS 
1 AC,EV,CI 5.60829 0.058587 {'algorithm': 'auto', 'leaf_size': 20, 'n_neighbors': 

5, 'p': 1, 'weights': 'distance'} 

2 AC,EV,CI,RI 4.256217 0.049886 {'algorithm': 'auto', 'leaf_size': 20, 'n_neighbors': 
5, 'p': 1, 'weights': 'distance'} 

3 AC,EV,CI,SP 5.303149 0.059782 {'algorithm': 'auto', 'leaf_size': 20, 'n_neighbors': 
5, 'p': 2, 'weights': 'distance'} 

4 AC,EV,CI,SP,RI 4.438995 0.057373 {'algorithm': 'auto', 'leaf_size': 20, 'n_neighbors': 
5, 'p': 1, 'weights': 'distance'} 

Table 14-KNN Accuracy 

 

The K-Nearest Neighbors (KNN) model results show a substantial improvement in cost 
forecasting accuracy with the inclusion of static features. In the first run, using only 
dynamic features (AC, EV, CI), the model achieved a MAPE of 5.61% and NRMSE of 
0.0586. Adding Project Regularity (RI) in the second run yielded the best improvement, 
significantly reducing the MAPE to 4.26% and NRMSE to 0.0499, demonstrating that RI 
has a strong positive effect on accuracy. 

In the third run, adding Project Seriality (SP) resulted in a MAPE of 5.30% and NRMSE of 
0.0598, which was less effective than RI in enhancing accuracy. The fourth run, 
combining both RI and SP, provided a MAPE of 4.44% and NRMSE of 0.0574. While the 
combination of RI and SP slightly improved accuracy compared to using SP alone, RI 
remained the more influential feature in improving forecasting performance. 
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4.2. Traditional EVM Result 

In this section, we will calculate the Estimate at Completion (EAC) using the Earned 
Value Management (EVM) method, based on the equation outlined in the methodology: 

𝐸𝐴𝐶(𝑡) = 𝐴𝐶𝑡 +
(𝐵𝐴𝐶 − 𝐸𝑉𝑡)

𝐶𝑃𝐼𝑡
 

Using this formula, we will compute the EAC for each project in the dataset, which 
provides a forecast of the total project cost upon completion. Once the EAC values 
have been determined for all projects using the EVM method, we will calculate the 
Mean Absolute Percentage Error (MAPE) to measure the accuracy of the EVM forecasts. 

By comparing the MAPE values from the EVM method with those obtained from the 
machine learning models (XGBoost, Random Forest, LGBM, etc.), we will assess the 
performance of traditional EVM forecasting versus more advanced, data-driven 
machine learning approaches. This comparison will highlight the improvements in 
forecasting accuracy achieved by leveraging machine learning techniques, especially 
when incorporating additional features such as Project Regularity (RI) and Project 
Seriality (SP). 

The final MAPE result for the traditional EVM method is 7.21%. This value will be used to 
compare the accuracy of the EVM method against the machine learning models. As 
seen from this result, the EVM method yields a relatively higher MAPE compared to the 
machine learning models such as XGBoost (4.93%) and LGBM (4.88%). This 
comparison highlights the potential of machine learning algorithms in providing more 
accurate cost forecasts, especially when enhanced with additional features like Project 
Regularity (RI) and Project Seriality (SP). 

In the table below, you can see the best MAPE results of the machine learning models 
compared with the EVM method. 

 

METHOD BEST MAPE RESULT FEATURES 
EVM 7.2 AC,BAC,EV,CPI 

ML-XGBOOST 4.93 AC,EV,CI,SP,RI 
ML-ERT 7.77 AC,EV,CI,RI 
ML-RF 5.37 AC,EV,CI,SP,RI 

ML-SVR 6.42 AC,EV,CI 
ML-LGBM 4.88 AC,EV,CI,SP,RI 
ML-KNN 4.26 AC,EV,CI,RI 

Table 15-Comparison of EVM with ML models 
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5. Discussion 

5.1. Regularity Index (RI) and Project Seriality (SP) Comparision 

The inclusion of static features such as Project Regularity (RI) and Project Seriality (SP) 
had a significant impact on the performance of all machine learning models. In general, 
RI consistently provided the most substantial improvement in accuracy across all 
models, while SP had a more varied effect depending on the model. 

 

• Project Regularity (RI) 

Project Regularity (RI) proved to be the most influential static feature in improving model 
performance. Models like XGBoost, LGBM, and Random Forest demonstrated 
significant gains in accuracy when RI was included alongside dynamic features like AC, 
EV, and CI. This improvement was especially noticeable in KNN, where the inclusion of 
RI alone resulted in its best MAPE score of 4.26%. The success of RI across multiple 
models suggests that it captures a critical aspect of project cost forecasting, likely 
related to the consistency and predictability of project networks, which helps the 
models generate more accurate forecasts. 

 

• Project Seriality (SP) 

The impact of Project Seriality (SP) was more mixed compared to RI. For models like 
XGBoost, LGBM, and Random Forest, the inclusion of SP alongside RI provided the best 
results, enhancing accuracy and reducing forecasting error. However, in other models 
like KNN and Extremely Randomized Trees, SP did not significantly improve 
performance and, in some cases, slightly worsened accuracy. This suggests that SP 
may not always be as crucial as RI, but its inclusion in combination with RI in models 
like XGBoost and LGBM allows these models to capture more nuanced relationships in 
the data, particularly in projects with complex task sequences. 

 

• Combined Impact of RI and SP 

When RI and SP were combined, the best results were observed in models like XGBoost 
and LGBM, where the synergy of these two features resulted in optimal accuracy. The 
combination allowed these models to capture both the regularity and structure of 
project networks, providing a more holistic view of project performance and improving 
forecasting accuracy. In contrast, models like KNN performed better with RI alone, 
indicating that some models may not benefit from the added complexity introduced by 
SP.  
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5.2. Machine Learning Models Comparison 

After analyzing the impact of Project Regularity (RI) and Project Seriality (SP) on model 
performance, it is essential to compare the machine learning models based on their 
overall forecasting accuracy. The models evaluated include XGBoost, Light Gradient 
Boosting Machine (LGBM), K-Nearest Neighbors (KNN), Random Forest, Extremely 
Randomized Trees, and Support Vector Regression (SVR). The comparison is based on 
the key metrics: Mean Absolute Percentage Error (MAPE) and Normalized Root Mean 
Squared Error (NRMSE). 

• XGBoost 

XGBoost emerged as one of the top performers across all feature sets. With a MAPE of 
4.93% and NRMSE of 0.0437, XGBoost proved to be highly reliable, particularly when 
both RI and SP were included. The model demonstrated a good balance between 
handling outliers and maintaining overall accuracy. Its consistency across multiple runs 
and flexibility in tuning hyperparameters make it a powerful tool for complex project 
cost forecasting. 

• Light Gradient Boosting Machine (LGBM) 

LGBM closely followed XGBoost, achieving the lowest MAPE at 4.88%, but with a slightly 
higher NRMSE of 0.0532. Like XGBoost, LGBM performed best when both RI and SP 
were included, suggesting that it, too, benefits from a more comprehensive feature set. 
While LGBM performed similarly to XGBoost, the slightly higher NRMSE indicates that it 
may be more sensitive to errors or outliers, but overall, it remains one of the strongest 
models for project cost forecasting. 

• K-Nearest Neighbors (KNN) 

KNN delivered the lowest MAPE at 4.26%, but only when RI was included, without SP. 
Despite its impressive MAPE, the higher NRMSE in comparison to XGBoost and LGBM 
suggests that KNN struggles with more complex relationships and error handling. 
Additionally, the model’s accuracy dropped slightly when SP was added, indicating that 
it is more sensitive to the feature selection. While KNN can outperform other models in 
certain scenarios, particularly when RI dominates, it lacks the versatility and robustness 
seen in XGBoost and LGBM. 

• Random Forest 

Random Forest performed well with a MAPE of 5.37% when both RI and SP were 
included. This model benefits from the combination of static and dynamic features, 
much like XGBoost and LGBM. However, it did not reach the same level of accuracy, 
likely due to its limitations in handling more complex interactions between the features. 
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Nevertheless, Random Forest remains a solid option, offering competitive performance 
in cost forecasting tasks. 

• Extremely Randomized Trees 

The Extremely Randomized Trees model did not perform as well as the other models, 
achieving a MAPE of 7.77%. Although the inclusion of RI improved its performance, 
adding SP did not enhance the accuracy further. The model appears less capable of 
leveraging the static features compared to XGBoost, LGBM, and Random Forest, making 
it less effective for this type of forecasting task. 

• Support Vector Regression (SVR) 

SVR had a MAPE of 6.46%, showing only marginal improvements with the inclusion of RI 
and SP. It was the least responsive to static features, and its overall performance lagged 
behind the other models. SVR’s limited adaptability and higher forecasting error suggest 
that it may not be as well-suited for complex project cost forecasting as the other 
models evaluated. 

overall, XGBoost and LGBM stood out as the best-performing models due to their ability 
to handle both static and dynamic features effectively, with XGBoost showing a slightly 
lower NRMSE, making it more reliable in handling outliers. KNN, although achieving the 
lowest MAPE, is more sensitive to feature selection and less flexible across various 
project datasets, limiting its overall effectiveness in comparison to XGBoost and LGBM. 
Random Forest also performed well but did not reach the accuracy levels of XGBoost or 
LGBM, while Extremely Randomized Trees and SVR lagged behind, showing less 
capacity to fully utilize the feature set. 

Ultimately, XGBoost emerges as the most well-rounded model, providing a balance of 
accuracy and robustness, followed closely by LGBM, while KNN remains highly effective 
in specific cases where RI dominates but lacks the versatility seen in the top models 
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6. Conclusion 

This thesis has thoroughly investigated the application of machine learning (ML) 
algorithms in improving the accuracy of cost forecasting in construction project 
management. Traditional methods, such as Earned Value Management (EVM), though 
widely used, are often constrained by their reliance on static, linear models that do not 
adequately capture the complexities and uncertainties inherent in large-scale projects. 
This limitation frequently leads to inaccurate cost forecasts, particularly during the 
dynamic phases of project execution. In response to this challenge, this research 
introduced six advanced ML models—XGBoost, Extremely Randomized Trees, Random 
Forest, Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), 
and K-Nearest Neighbors (KNN)—to predict project costs based on a more flexible, 
data-driven approach. 

The analysis was performed on a dataset of 90 real-world construction projects, 
utilizing key performance metrics such as Actual Cost (AC), Earned Value (EV), and the 
Cost Performance Index (CPI) as dynamic inputs to the models. Additionally, two newly 
introduced static features, Project Regularity (RI) and Project Seriality (SP), were 
incorporated to account for the non-linear and topological complexities of project 
structures. These features allowed the ML models to capture deviations from linear 
progress and the mix of serial versus parallel task execution, which are often overlooked 
in traditional cost forecasting methods. 

The findings clearly demonstrated that machine learning models outperform traditional 
EVM in terms of both accuracy and adaptability. XGBoost emerged as the most effective 
model, achieving the lowest Mean Absolute Percentage Error (MAPE) and Normalized 
Root Mean Squared Error (NRMSE). The inclusion of RI and SP further enhanced the 
performance of all ML models, particularly in projects with non-linear progression, 
highlighting the importance of considering structural and topological aspects of project 
management when developing predictive models. This suggests that ML algorithms not 
only provide more accurate cost forecasts but also offer the flexibility needed to 
account for the complex, dynamic nature of real-world construction projects. 

While the results of this study are promising, there are several limitations that need to 
be addressed in future research. One key limitation is the lack of comprehensive real-
world data, particularly from a broader range of industries and project types. The 
dataset used in this research was limited in scope, and while the machine learning 
models performed well, a larger dataset would provide more robust results. Future 
studies could benefit from integrating artificial or simulated data to enhance the 
models’ training and testing, especially for early-stage projects where real data is often 
sparse. This would allow for more thorough testing across a wider variety of project 
scenarios, improving the generalizability of the findings. 
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Another limitation lies in the static features used for the models. While Project 
Regularity (RI) and Project Seriality (SP) were useful, there are many other topological 
and structural features, such as network complexity, task dependencies, and resource 
allocation patterns, that could be explored as inputs to the machine learning models. 
Incorporating these additional static features could further enhance the predictive 
power of ML algorithms, especially in highly intricate projects with diverse task 
interdependencies. Future research should focus on examining how these topological 
factors, combined with dynamic metrics, can improve the overall accuracy and 
applicability of ML-based cost forecasting. 

In conclusion, this study has demonstrated the significant potential of machine learning 
algorithms to improve cost forecasting in construction project management. By 
integrating both dynamic and static project features, these models offer greater 
flexibility and accuracy compared to traditional methods like EVM. However, further 
research is necessary to expand the dataset, explore additional topological features, 
and incorporate real-time data for even more robust and adaptable cost forecasting. As 
machine learning techniques continue to evolve, their integration into project 
management holds great promise for reducing cost overruns, enhancing decision-
making, and improving project outcomes across the construction industry and beyond. 
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