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Abstract 
Wind turbines play Important part in the worldwide transition to renewable energy, but, at the 
same time, their long-term operation and reliability are threatened by mechanical and 
environmental stresses. This dissertation presents a broad perspective on the approaches related 
to vibration-based damage assessment as predictive maintenance and safety tools for wind 
turbines. This work thoroughly deals with using different structural health monitoring techniques 
over a wide range of critical components of the wind turbine, like blades, gearboxes, towers, and 
foundations. 

The primary research on wind turbine blades focuses on vibration analysis techniques that 
monitor anomalies and progressive wear that could lead to blade failure. Techniques such as 
modal analysis, operational deflection shapes, and frequency response functions are evaluated 
for their effectiveness in early damage detection and providing actionable insights into blade 
integrity. 

The thesis also looks into condition monitoring systems for detecting gearbox faults, where 
vibration signals are presented with the use of advanced signal analysis and machine-learning 
algorithms to detect characteristic patterns of gear and bearing failures before them leading to 
considerable damage or failure in operations. This part focuses on integrating time-frequency 
analysis methods that increase the possibility of detecting transient faults in complex gearbox 
systems. 

Further, vibration-based monitoring strategies of the wind turbine towers, and their foundations 
are discussed, since these are critical structural components for effective monitoring due to the 
risks associated with foundation settlement and structural fatigue. Advanced sensing 
technologies and data analytics in such devices can be explored for their ability to provide real 
time monitoring and real-time feedback on the health status of the structures in these massive 
installations. 

It identifies these methods while synthesizing the current technological gaps and challenges of 
vibration-based SHM. This opens the way for future research to make improvements in these 
systems in terms of accuracy, efficiency, and cost-effectiveness. The present technologies of 
these systems would be developed so that wind turbines become sustainable and effective, hence 
further use and success in renewable energy sources. 
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Chapter 1: Introduction 
1.1 Overview of Wind Energy as a Renewable Energy Source: 
Wind energy is a part of renewable energy and has attracted much attention in the recent past due 
to its ability to reduce greenhouse gases emissions and the utilization of fossil fuels and support 
sustainable development. Wind energy relies on transforming wind kinetic energy with wind 
turbines into mechanical energy that can be further transformed into electrical energy. In this 
chapter, the author gives the reader basic information about wind energy, its significance, recent 
developments, and present-state conditions. 

Wind power is among the renewable energy resources with the highest growth rates globally. Its 
relevance is founded in the fact that it produces energy that is clean, unlimited, and relatively 
cheaper over time. Compared to the other forms of energy generation such as fossil fuel energy 
generation, wind energy generation has the capability of emitting no greenhouse gases or other 
detrimental emissions during the process of energy generation and therefore plays an important 
role of building a low carbon energy system. 

This paper affirms that technological developments have been one of the key factors that have 
contributed to the development and effectiveness of wind power. Today’s wind turbines employ 

sophisticated equipment such as advanced material, aerodynamics and control mechanisms that 
increase efficiency and effectiveness of the equipment. These turbines are appropriate for a wide 
range of wind regimes to provide smoother energy yields. Additionally, advancement in the 
location of wind energy has also increased through inventions in offshore wind technology which 
makes it possible to harness wind energy resources off-shore where wind energy is immensely 
strong and constant. 

The utilization of wind energy is becoming popular all over the world and its capacity is rising at 
the exponential level. On the basis of Global Wind Energy Council report, the accumulative wind 
energy capacity grew up 743 GW at the end of 2020, up 14% compared to the year 2019. These 
include the support that government gives to wind power, the continually falling prices of wind 
energy technology and awareness of the impact of climate change[1]. 

Currently, Europe, China and the United States are some of the leading regions when it comes to 
wind energy capacity. Europe, especially the North Sea countries, have been the pioneers in the 
development of the offshore wind generating capacity with the United Kingdom, Germany and 
Denmark, investing hugely in the offshore wind farms. On the other hand, the People’s republic 

of China holds the record as the country with the largest installed onshore wind power capacity 
hence contributing a third of the entire wind power capacity in the world. 

Wind energy has many advantages on the economic and environmental aspects. From an 
economic perspective, it provides employment opportunities for manufacturing industries, 
installation services, maintenance crews, and other related support services. It also decreases the 
vulnerability of importing energy which in turn enhances energy security. In turn, it contributes 



positively to the environmental causes of climate change by reducing carbon emission and air 
pollution from power generation. 

Despite all its benefits, wind energy has several challenges. These challenges include intermittent 
concerns, high initial capital cost, and large land or sea space required for wind turbines. 
Nonetheless, some challenges persist and are being worked on through fresh research and 
development activities focusing on storage technologies, integration of networks and improved 
wind turbines technology. 

Wind energy has a bright future ahead as the future statistics and predictions suggest with 
continued growth and expansion of wind energy systems across the globe. With the development 
of technology and the falling cost of wind energy, wind energy is bound to become a promising 
energy source in the world and an important building block for establishing a sustainable and 
secure energy system. 

Wind energy is one of the forms of renewable energy sources and therefore serve as a healthier 
option to the fossil energy sources. Owing to stable technology improvement and encouraging 
policies, wind energy is expected to play an ever more important role in the future energy 
construction. The continuous innovation and application of wind energy technologies play a 
significant role toward attaining a renewable energy future and overcoming the impediments of 
climate change. 

Importance of Maintaining Wind Turbine Efficiency and Safety: 
In the young industry of wind energy, the effectiveness and safety of wind turbines are decisive 
not only from the point of view of finances but also from the point of view of the possibility to 
improve the basic parameters of the technology: its reliability and resource. Aspects of this 
introduction focus on the role of such characteristics in vibrational based damage assessment 
with specific reference to current work. 

There are significant relationships between the developmental characteristics of wind turbines as 
well as the efficiency of operation of wind turbines and the cost of wind farms, as well as the 
amount of electricity produced. Efficiency losses also imply a proportional decrease in the 
amount of energy generated and a proportional rise of operational costs, that dictate the need to 
closely monitor and maintain turbine performance. Studies reveal that improving the operational 
and maintenance techniques has a potential to respond to the challenge of LCOE by enhancing 
the performance and avoiding unavailability[2]. 

Lives of people and financial losses could be at risk where wind turbines face operational 
challenges such as equipment failure hence warranting safety as a precursor in wind turbine 
operation. The prospect of failure in turbines structures, particularly the offshore kind, requires 
constant surveillance in order to be prevented from happening. Different research papers have 
demonstrated that integrating well-designed condition monitoring processes as well as the 



utilization of predictive upkeep can go a long way in improving the dependability and security of 
wind turbines [3]. 

Another facet that is significant in terms of improving efficiency and guaranteeing safety is the 
assessment of damage through vibrations. The vibrations generated by these turbines are 
collected and analyzed to look for precursory signals that could suggest wear or damage before it 
gets to a critical level. It is about taking a ‘fix it before it breaks’ attitude when it comes to 

dealing with turbines to avoid costly repairs, and potentially fatal incidences [3]. 

In the present years, technology has enhanced the usage of sensors for performing vibrational 
assessments precisely. Such advancements have made possible the development of more accurate 
predictive maintenance plans especially because of the operational characteristics of the wind 
turbines. In addition, innovation has led to the incorporation of artificial intelligence and 
machine learning, making it easier to work with big data and maintain an accurate approach to 
detecting faults and scheduling the maintenance process. 

It is important to preserve the performance and reliability of wind turbines based on the 
assessment of damages through vibration measurement to support sustainable development of 
wind energy. Regardless of the advancements in technology, methodology, and system design, its 
main concern is maintaining reliability and economic feasibility of wind energy systems in order 
sustain wind’s role as one of the world’s most important renewable resources. 

Importance of Vibration Analysis in Mechanical Health Monitoring of Wind 
Turbines: 
Hence, it becomes paramount in mechanical health monitoring systems such as the vibration 
analysis in wind turbines. This involves the application of several techniques that do not require 
damaging the material under test to determine the state of health of the turbine’s mechanical 

components such as gears and bearings that may have degraded due to environmental and 
working loads [4], [5] 

The primary objective of vibration analysis is essentially to help in detecting an impending 
failure in the wind turbine drivetrain. Vibrations are measured and contained and analyzed and it 
is possible to detect irregularities before mechanical failures occur. The predictive feature 
enables more efficient scheduling of the maintenance regime to minimize the time that the 
turbines are out of commission while also increasing the shelf life of the turbine components[4], 
[5]. 

Vibration analysis employs the use of sensors and data acquisition systems for the observation of 
wind turbines as they function at any given time. This process involves the identification of 
abnormal waveforms arising from the structure’s vibration that can be as a result of wear, 

misalignment, imbalance or any other mechanical defects that are likely to cause failure in the 
equipment[5]. 



It is important to note that modern and more advanced techniques in vibration analysis include 
the application of artificial intelligence and machine learning to improve the accuracy of faulting 
and diagnosing. These technologies have enhanced the predictive maintenance plans by using the 
past data to give alternative indications on likely faults that would worsen and become major 
problems [4]. 

Nevertheless, the following are some of the critical areas that affect the effective implementation 
of vibration analysis. Due to the integrative and dynamic character common in wind turbine 
systems and the severe operating conditions, advanced control algorithms with the ability to 
address non-stationary situations can be time varying in speed and load. This requires complex 
signal processing in order to obtain useful attributes that may be related to the faults from the 
vibrational information[5]. 

Vibration analysis is a critical tool for maintaining wind turbines to work efficiently in the long 
run. This not only leads to a reduction in the expenses for the maintenance of facilities but also 
offers the assurance of safe and reliable wind energy generation. Further efforts will be required 
to address these issues and to scale them to larger, more complex systems in the unchecked 
advancement of wind turbine technologies. 

Benefits of Early Fault Detection and Preventative Maintenance in Wind 
Turbines: 
Condition monitoring of wind turbines includes vibration analysis where faults are detected at an 
early stage in order to prevent operational failures. This method involves observing and 
analyzing the signals of vibration frequently in order to detect possible deviations that can cause 
mechanical breakdowns. 

The performance of wind turbines can also be greatly enhanced by identifying operating faults 
ahead of time to minimize operating and maintenance costs. This is because if the potential 
problems are detected early enough before they become bigger failures, wind farm operators 
could be in a position to avoid costly repair and replacement costs that could have been incurred 
if these problems are well developed. Thus, it has been observed that this approach helps in 
reducing the life cycle costs of wind turbines, especially in the offshore area where the 
maintenance of wind turbines is costly due to difficult accessibility of the area [6], [7]. 

Using vibration analysis to perform fault diagnosis in wind turbines improves the dependability 
of wind turbines. Faults are discovered before they become costly and they enable one to plan 
maintenance before much loss occurs, hence reducing time wastage while boosting on energy 
production. This is important as it keeps wind turbines on the optimal working ranges so as to 
produce the expected energy and meet the reliability of investments in renewable energy [7], [8]. 

Early fault detection also enhances the safety of the wind turbine during its use and operations. 
Since maintenance faults can be detected and corrected at an early stage, large scale leakages that 
are a threat to the safety of maintenance personnel and the community is prevented. This aspect 



is critical while ensuring that the mechanical structures are intact, and health and safety 
requirements are met [8]. 

Vibration analysis also facilitates the evaluation of the state of different components present in 
the turbine. In real-time, operators can determine the extent of wear and tear of machines and 
decide when or whether to change or fix the parts, which in the long run, can enhance the 
lifespan of the turbines. This way of performing maintenance guarantees that only worn out 
components are replaced, instead of replacing many parts on a routine basis, irrespective of their 
real state of deterioration [7], [8]. 

Subsequent developments in the area of machine learning and deep learning have even more 
enriched the effectiveness of the vibration analysis methods. It increases the predictive 
capabilities as well as resolution of analysis to capture subtle nuances that conventional 
approaches may not identify. For instance, utilizing methods like GRU network coupled with 
self-attention, there is the possibility of diagnosing faults in wind turbine bearings many days 
before they develop into big problems [7]. 

Moreover, SCADA technology combined with vibration analysis ensures that all wind turbines 
are monitored in various operating conditions. With this integration, it is possible to create 
improved and specific models for detecting and analyzing faults [7]. 

The application of state-of-the-art approaches for early fault identification and preventative 
maintenance in wind turbines are vital steps towards realizing a more efficient wind generation. 
These techniques not only protect the investment made on wind energy facilities but also 
enhance the reliability and stability of renewable power. In the future, as technology advances, 
even more advanced and effective ways of fault detection will contribute towards the 
effectiveness of wind turbines from all over the world. 

Problem Statement of the Thesis: 
The growth in the usage of wind turbines around the world is evident; therefore, appropriate 
approaches should be adopted to ensure that regular assessment of structures for sign of failure is 
enhanced, and the service life is enhanced. Wind turbines, even though have benefited from 
several technological enhancements, remain vulnerable to all forms of mechanical faults mainly 
as a result of the dynamic nature and hostile operating conditions. These failures entail a good 
deal of time and involve high expenses for maintenance hence strain the effectiveness and 
feasibility of wind power projects. 

Vibrational-based damage assessment has become another important technique for the 
identification of prospects failure in wind turbines. However, analyzing the vibration signals and 
specifically for the gears and bearings when they are under different operational conditions 
presents some considerable challenges. In most industries, traditional methods prove very hard to 
identify faults when they are still in their early stages to prevent them from causing damage such 



as in the offshore wind turbines where accessing the turbines for maintenance purposes is very 
expensive. 

Advanced technologies like using machine learning algorithms with vibration analysis for 
improving the existing predictive maintenance methods available in today’s market are seen as 

progressive developments. However, it is imperative that such advancements be subjected to a 
systematic review in order to determine their viability as well as efficiency, especially when 
applied on a large scale. 

Objectives of the thesis: 
Review Recent Advances (2018 - Present): Summarize the current status of damage 
identification and health monitoring of wind turbines using vibrational-based methods, 
implemented after 2018. These initiatives cover the identification of new methods, instruments, 
and technologies that have emerged to improve the reliability and frequency of fault 
identification. 

Evaluate Effectiveness and Practicality: Explain how to apply these recent advancements to more 
real-life circumstances especially in offshore wind turbines. This involves looking into case 
studies and data sources to see what competitive advantages, drawbacks, and price tag the new 
technologies bring to operations. 

Identify Gaps and Future Research Directions: To review current research, one should look for 
missing links in the available literature and suggest how future research can help fill those gaps. 
This might be in the form of alteration of the sensor technologies used, the algorithms that are 
used in processing the collected data, or the models that are used in machine learning for early 
identification of problems with the wind turbines. 

Thesis Structure 
The thesis starts with an introduction that lays background information that includes the 
increasing use of wind energy and the need for structural health monitoring (SHM) to increase 
the life span of wind turbines. The introduction lays down the key issues related to maintaining 
wind turbines and highlights the importance of accurate damage assessment methods. The 
primary goal of this research is to analyze various vibration analysis techniques that are 
employed in the assessment of damages in different components of wind turbines such as blades, 
gearboxes, towers, and foundations. The area of study is confined to vibration based SHM 
techniques only and at the end of the chapter, a brief outline of this thesis is presented to give an 
insight into the contents of the remaining chapters. 

The following section is devoted to the discussion of wind turbine blades, which are a critical 
component of a turbine and experience high levels of stress. This chapter begins with a brief 
discussion of blade design and the types of materials used, which is then supplemented by a 
discussion of vibration based SHM techniques such as modal analysis and operational deflection 
shape analysis. This examines various approaches for damage detection such as the vibration 



natural frequencies, mode shapes and damping ratios. To contextualize these techniques, case 
studies and examples of their application from the existing literature are presented. This chapter 
concludes with a brief overview of the current trends and possible directions of development in 
the sphere of blade monitoring. 

The following chapter focuses on the inspection of the wind turbine tower, which plays a critical 
role in supporting the overall wind power system. This section gives a brief insight into tower 
designing and the problems that may be encountered. It revisits some of the vibration-based 
SHM techniques that can be employed for identifying natural frequencies and mode shapes. The 
chapter specifically outlines various damage detection approaches including FRF shifts, mode 
shape curvature and damped ratios. Examples and cases are provided to show how these 
techniques are applied in the real world. Opportunities and difficulties in tower monitoring are 
highlighted in the final section of the chapter. 

Turning to the next chapter, the monitoring of wind turbine foundations is discussed. It starts by 
introducing different types of foundations and problems that they often face. This chapter 
provides an overview of the vibration-based SHM techniques such as seismic analysis and the 
soil structure interaction analysis. They focus on procedures for damage detection like the shifts 
in natural frequencies, vibration amplitude analysis, and shifts in resonance frequencies. 
Examples from the literature are used to illustrate real-life examples of how foundation 
monitoring has been done. Finally, the chapter attempts to discuss the issues arising from the 
study and directions for the future research in this area. 

The last chapter of the thesis aims at providing a brief overview of the major findings as 
presented in each of the previous chapters. It briefly summarizes the different methodologies and 
results regarding vibration-based SHM of wind turbine components. The significance of these 
results with respect to the health monitoring of wind turbine systems and their reliability are also 
explored, with focus placed on the practical implementation of these SHM techniques. They also 
present suggestions for further investigations of technological trends and studies that may help to 
improve the efficiency of SHM in wind turbines. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1 Thesis structure 



Chapter 2: SHM of Wind Turbine blades 
Introduction to Wind Turbine Blades Monitoring: 
Wind energy is viewed as one of the important sources of renewable energy aimed to feed the 
world. Wind power generators, which are the primary structures used in the generation of power 
from wind, have technically evolved. To achieve the global target of sustainable development, 
several countries are incorporating efforts to promote energy transition, in which the 
development of renewable energy is a preferred technique for conserving resources and reducing 
greenhouse gas emissions. As a clean and renewable energy source, wind energy has promising 
prospects in electrical power generation. According to the statistics provided by the International 
Energy Agency, wind energy has experienced significant deployment in the past two decades, 
and there has been a sustained growth trend in wind power generation. Therefore, there is an 
increasing demand for the reliability and efficiency of wind turbines (WTs), which are crucial 
facilities for energy conversion [9]. 

WTs are typically installed in harsh environments where wind resources are abundant, such as 
offshore wind farms and high-latitude areas. Under these conditions, WT failures can be induced 
by harmful factors to increase maintenance costs and risks in wind energy development. Over an 
operating life of 20 years, the operation and maintenance (OM) costs of an offshore farm account 
for 30% of the total expense. In this case, health management of WTs has become an urgent 
mission for reliability improvement and cost reduction [10]. 

One of the most vital parts of a wind turbine is its blades, while these blades are exposed to 
several environmental and conducting conditions that may cause physical breakdown or 
efficiency decline. The blades in wind turbines are among the most critical components that need 
to be closely watched in order to enable maximum performance, safety, and durability of the 
turbines. Wind turbine blades are out in the open and subject constantly to changes in loads and 
temperatures as well as particulate erosion. These conditions could lead to a range of issues 
including fatigue cracks, delamination, and erosion on the material surface. Effective monitoring 
of turbine blades is essential for several reasons: concerns these are safety, efficiency and 
maintenance of these structures. Eroded blades have the potential of causing negative 
consequences such as turning turbines into what, imminent negative risks concerning human life 
and assets. Further, the physical condition of the blades may cause them to be less efficient 
airborne than before; this reduces the energy produced by turbines. Diagnosis of the extent and 
location of the damage ensures that it is possible to carry out preventive maintenance and repair 
to avoid much loss of time and money in having to repair the equipment when it has broken 
down. 

Monitoring of the wind-turbine blades is key in managing and maintaining wind energy systems. 
Therefore, as wind power rises as not only a clean but also a cost-effective source of electricity, 
proper functioning of wind turbines is among crucial priorities. The turbine blades, which are 
fixed in a rather unfavorable environment of high-temperature and heavy operational load, 



require the monitoring of their condition to achieve enhanced and safer performance and a longer 
lifespan of the product.[9] 

Damage can appear in various parts of WTs that are complex electromechanical systems. Blades 
are critical components in WTs; moreover, they are the primary components that are in direct 
contact with the wind. In addition, the energy conversion efficiency is closely related to blade 
health conditions. There is a prevailing trend that WT blades are made in increasingly large 
dimensions to improve the energy capturing ability, leading to an increase in the occurrence and 
severity of blade damage. According to a survey conducted on European onshore WTs from 1991 
to 2004, among all the components, blade damage accounts for a large proportion of both failure 
frequency and downtime per failure[11]. It is worth mentioning that reductions in maintenance 
costs are more significant than increases in operational costs caused by the implementation of 
condition monitoring owing to the high cost of WT blades. 

Common Issues and Damages in Wind Turbine Blades 
Wind power has come out as a crucial subsector in the shift towards clean energy sources. Wind 
turbines, which are the dominant technology in tapping this energy, depend on the blade strength 
and effectiveness. However, wind turbine blades encounter some problems and damage that can 
impact on their efficiency and durability. This article focuses on the typical issues and damages 
of the wind turbine blades based on the recent high impact papers from the period between 2018 
and 2023. 

Defect Type Description 
Voids Air pockets trapped in the composite material 
Delamination Layers of composite material separating 
Resin-rich Areas Excessive resin in certain areas leading to brittleness 
Resin-poor Areas Insufficient resin, resulting in weak bonding of fibers 

Table 1Common Manufacturing Defects in Wind Turbine Blades 

Structural Defects and Fatigue 
Design flaws in wind turbine blades may also be present before a blade is shipped out of a 
manufacturing line since they are inherent flaws that could be discovered at some point during 
the actual use of the blades. The most typical flaws in manufacturing are voids sustained during 
the curing cycles; delamination’s cracks in the layers of the laminate; areas with excess or 

insufficient amounts of resin due to inconsiderate fiber volume proportions. These imperfections 
tend to weaken the material of the blades and result in poor performance especially when 
subjected to operational forces. 

Wind turbine blades however submit to cyclic loading because of the fluctuating velocities and 
directions of the wind. This keeps on straining the material and may eventually cause fatigue 
damage, which is defined as the progressive and localized damage of a material due to cyclic 
loading beyond a certain point. Crack initiation damage often starts on a substation and can 
spread through structural elements if not checked in time [12]. 



Environmental and Operational Factors 
The deterioration of the blades of wind turbines is one of the biggest threats that it faces in the 
environment. It mainly results from the abrasive effect of rain droplets, hail and airborne 
particles which cause the material to disperse along the blade surface and leads to roughening of 
the surface. This form of erosion is especially detrimental to the leading edge of the blades where 
it can compromise the aerodynamic properties of wind turbines and decrease the energy capture 
efficiency [13]. 

 
Figure 2 Damaged turbine plates due to lightening 

Wind turbine blades are also subjected to varying temperature and ultraviolet radiation. These 
factors can cause deleterious changes in the composite material, thus decreasing its mechanical 
performance and durability. UV radiation affects the chemical structure of the resin matrix and 
makes it brittle, which in turn can cause micro-cracks and surface degradation while temperature 
changes cause thermal stresses that can worsen existing defects [13]. 

Thunderbolt is another factor that threatens turbine blades, particularly because of their height 
and being exposed to the elements. Lightning can instantly produce fire, localized destruction of 
laminates, and other forms of structure failure. All contemporary turbines have lightning 
protection systems installed; however, these systems are not always efficient. 

The catastrophic damage caused to the blades of the wind turbines can occur when they are 
struck directly by lightning. Heat and electrical discharge can be enough to vaporize materials 
and even lead to massive delamination. These structural abnormalities can lead to blade failure if 
not attended to hence the need to fix them as soon as possible [14]. 



 

Furthermore, indirect effects on lightning strikes, resulting from the electromagnetic field and 
currents are also possible. These can cause secondary damage that results in melting of some 
pathways within the blade that are conductive in nature and therefore further weakening of the 
blade. Lightning strikes in the case of wind turbines significantly affect the blades where the 
combined impact of multiple strikes reduces the operational life of the blades [14]. 

Common Types of Blade Faults in Wind Turbines 
A fault of significant importance to a wind turbine blade is a crack; this may be due to several 
reasons: fatigue in the material, imperfections during manufacturing, or impact from objects. Of 
these, one widespread defect is the occurrence of cracks due to cyclical loading from variable 
wind speeds and operations of the turbines. These cracks often start at points of stress 
concentration, for instance, bolt holes, blade roots, or close to structural defects. They are able to 
propagate through the blade material, causing severe damage or blade failure if not detected and 
repaired early [15]. 

Erosion impairs the aerodynamic performance of the wind turbine blades, mainly occurring at 
the leading edge due to high-velocity impacts by rain, hail, and airborne debris. This erosion 
literally abrades the protective coating away and slowly grinds the blade material; in turn, the 
blades become less effective and much noisier. The phenomenon can also result in exposing 
underlying materials to environmental factors, subsequently accelerating the degradation 
processes of UV exposure and moisture ingress, thereby compromising the blade's structural 
integrity [16]. 

The wind turbine blades are at high risk of being struck by lightning, primarily due to their 
location being at a high altitude and in lonely places. Common damages from lightning include 
delamination, matrix degradation, and fiber breaks that further weaken the structure of the blade. 

Figure 3 Different fault locations in turbine blades 



This is despite the installation of lightning protection systems on most turbines. The energies 
involved in a strike are so great that significant damage can still be done, particularly in areas 
with high levels of lightning activity [17]. 

Another common problem is the delamination of different layers of composite materials used in 
the blade. This may result from poor adhesive properties, physical impacts, or manufacturing 
defects. Delamination degrades the load-carrying capacity of the blade and may cause further 
internal damage due to layer movement under operational stresses [17]. 

Non- Destructive Tests: 
The methods of non-destructive testing in wind turbines have advanced tremendously in the last 
few years, especially the inclusion of new technologies that improve the detection and 
localization of structural issues without causing damage. These include a host of different NDT 
techniques such as Ultrasonic Testing, Radiography, and Guided Wave Sensors that can very well 
be used in the testing of wind turbines; the Guided Wave sensors can work with the wind 
turbines because of their rugged design and ability to detect the defects which are not visible 
with the naked eye in an environment which very often presents numerous test challenges. 

Sensors and SHM systems are incorporated into wind turbine systems by applying state-of-the-
art technologies in AE sensors, guided ultrasonic waves, and wireless sensor networks. To allow 
for the early detection and localization of the damage, which is an essential factor for the 
assurance of structural integrity and efficiency, this technology enables it. In these systems, 
incorporating deep learning and artificial intelligence even ensures their high efficiency since 
automatic characterization and analysis can be given for impact events and structural health data. 

The performance of such technologies, in terms of extending the operational life of wind turbines 
and ensuring safety through continuous monitoring and maintenance strategies, is highlighted in 
research papers published after 2018. Therefore, what makes NDT methods important for the 
renewable sector, especially for wind, is their effectiveness in identifying potential failures 
before they become a critical problem. 

Ultrasonic Testing (UT): 
One of the crucial non-destructive methods for the inspection of wind turbines is Ultrasonic 
Testing. In this technique, transducers working at high frequencies introduce sound waves into 
the materials. The method works by converting electrical pulses to ultrasonic waves. If the waves 
meet with internal discontinuities, such as cracks or voids in the material, they are reflected to 
the transducer. This way, it is possible to analyze the travel time of such echoes, contributing to 
the locating and sizing of the defect and providing vital information about the structural 
condition of essential components like turbine blades, towers, and foundations [18]. 

This technique is most used with Phased Array Ultrasonic Testing, or PAUT, in wind turbine 
blades under stress and susceptible to environmental actions. PAUT offers high-resolution 
images and can work with complex geometries, as in the case of blade inspections (Thompson 



and Anastasopoulos, 2019). Towers and nacelles typically include major structural and 
operational elements to be tested using GWUT. It is fit to detect structural flaws which would be 
like fatigue cracks, corrosion, or failures of welds, hence the operational safety of such structures 
is guaranteed (Miller and Smith, 2020). There is a different challenge posed by the turbine's 
foundation, often made of reinforced concrete or steel because of the heterogeneous material 
properties. However, UT is invaluable in confirming the absence of cracks, voids, or any other 
defect that could hurt long-term stability and safety [18]. 

The role of Ultrasonic Testing in wind turbines is central and crucial to the strategy of preventive 
maintenance; it helps in early detection of potential failures, thus reducing the risk of 
catastrophic failures. During the manufacturing stage, UT confirms material and assembly 
quality. It also plays a crucial role in life assessment, where the operator can determine how 
much time a component has to go before it completely wears out. As such, maintenance planning 
and cost control are effectively achieved [18]. Precise characterization of defects and high-
definition pictures are provided by UT. This can be carried out while the turbine is still operating, 
which reduces downtime. Unplanned downtimes, which mainly demand costly repairs, can be 
significantly reduced with the early detection of defects through ultrasonic testing. Can be 
applied on different materials and parts within the turbine. 

Though UT has a lot to be considered for its various benefits, it is something that is technician-
dependent, especially in appropriate conduction and interpretation. Accessing some turbine parts, 
for example, blades and high towers, might pose a challenge. In addition, environmental factors 
like wind and temperature differences tend to cause inaccuracy in the readings. 

It is expected that the current limitation of the UT equipment and techniques for wind turbine 
maintenance will be dealt with in the future through development in technologies so that it could 
be more effective and reliable [18]. 

Radiography Testing (RT): 
Radiography Testing (RT) in wind turbines is an advanced method for identifying the internal 
defects that might lead to significant failure when undetected. X-rays or gamma rays are used for 
imagining the internal structures of a turbine, such as its blades, components in the nacelle, and 
tower welds. Digital changes in RT, such as digital radiography (DR) and computed radiography 
(CR), lead to better image quality, new opportunities for analysis, and quicker throughput than 
traditional film radiography. Based on these results, it is possible to achieve more precise 
diagnostics and improved monitoring of degradation processes in critical components of the 
turbine, which will help in PM strategies and lead to increased optimization of the operational 
life of wind turbines [4]. 

Thermography: 
Thermography is an analysis technique (non-destructive, in fact) which is based on the 
acquisition of infrared images. A thermal imager, which is the instrument used to carry out 
thermographic checks, records the intensity of radiation in the infrared part of the 



electromagnetic spectrum and converts it into a visible image. In fact, all objects at a temperature 
above absolute zero emit radiation in the infrared field. The thermographic method finds 
application in numerous sectors, including steel, construction, veterinary, chemical industry, 
cultural heritage, aeronautics, automotive and, indeed, in the monitoring of mechanical 
components. In the case of wind turbines, monitoring the temperature of components is one of 
the most common methods of non-destructive testing. It can be used for preventative or 
predictive maintenance and can be measured with a variety of different sensors. 

This method, in this context, is based on the fact that all functioning components emit heat and 
when one component of the system starts to malfunction, its temperature increases beyond 
normal values. 

It is important to note that some environmental conditions can affect temperature measurements. 
For example, the temperature varies with the load, so when analyzing the evolution of the 
temperature in a bearing it is important to know whether the temperature has increased due to a 
failure or due to an increased load. A simple and effective analysis to reduce the effect of load on 
temperature monitoring is to monitor the difference between temperatures, such as that of the 
motor-side bearing of the generator and the temperature of the transmission-side bearing of the 
generator. 

Since both temperatures would increase with load, their difference should be less dependent or 
practically immune to load variation. Each component and sub-component of a wind turbine has 
an operating temperature range, so if the temperature is greater than the threshold it is possible to 
extract the information and detect a fault. Typically, failures are caused by deterioration of 
components from mechanical friction or electrical effects. In bearings and gears, friction is 
usually caused by insufficient or inefficient lubricant properties and impacts due to misalignment 
causing a rise in temperature. 

Thermography can be used as a local or global technique because it is possible to assess damage 
at the component or system level, depending on the camera resolution. However, the 
disadvantage of temperature monitoring, and therefore thermography, is that it develops slowly 
and sometimes too late compared to other monitoring methods. In other words, it could be said 
that, on its own, thermography is not as effective as other methods for early and accurate fault 
detection. 

Magnetic Particle Inspection (MPI): 
Magnetic Particle Inspection (MPI) of wind turbines is an essential non-destructive examination 
procedure utilized in the identification of lateral and deep-surface defects of ferromagnetic parts 
of wind turbines, including gears and shafts. It involves using magnets to establish a magnetic 
field on the part and then using ferromagnetic particles, which cluster around the defect area 
because of the leakage of magnetic field, to reveal the defects. MPI has recently continued to 
evolve with the aim of combining both traditional and digital methods using Industry 4. 0 
technologies together with aspects of digitalization and automation in order to provide more 



comprehensive and timely defect detection as compared with reliance on the operator for this 
purpose [19]. 

Visual Inspection (VI): 
Another fundamental technique that pertains to the assessment of wind turbines is the Visual 
Inspection (VI), as it is vital to identify surface defects with the potential to cause disastrous 
structural failure. The armed forces have also paved way in making elegance in the use of drones 
in the area of visual inspections due to the development of powerful machines and artificial 
intelligence. Remotely operated aerial vehicles mounted with image intensifiers would capture 
detailed pictures of the wind turbines that are later scrutinized either by human personnel having 
sufficient understanding of the wind turbine structures or through utilization of artificial neural 
networks to detect the presence of defects for instance, cracks, eroded areas, and some other 
forms of damages that may be present on the face of the wind turbine blades and other external 
surfaces. 

Current researchers have paid attention to the application of advanced mathematics in analyzing 
the images captured by drones with an aim of reducing the time spent with minimum accuracy in 
cases of damage. For instance, Shihavuddin et al. [20] proposed an intelligent deep learning 
system that enables autonomous processing of image data captured by drones, in order to 
identify surface flaws on wind turbine blades. This system provides nearly human-like accuracy 
in terms of suggesting the positions and severity of the damages and minimizes human 
interactivity thus possibly decreasing the cost of the inspections [20]. 

Acoustic Emission Testing (AET): 
Acoustic Emission Testing (AET) is now gaining importance as one of the effective Non-
Destructive Testing (NDT) methods used in monitoring the health of wind turbine’s structure 

especially the blades. This method involves taking snapshots of stress waves as they are 
generated by the material under consideration subjected to internal strain rates which are 
typically an indicator of some form of failure such as crack generation or crack extension. 

There has been considerable development in the technology used in AET with the recent 
advancements being centered on refining the sensitivity and accuracy of this method. For 
example, investigators are interested in extending their investigations into fiber optic sensors 
which count among the advantages over piezoelectric sensors such as small dimensions, 
insensitivity to electromagnetic signals, and high sensitivity. These fiber optic acoustic emission 
sensors are excellent for preventative maintenance tactics, as they can find minor harm to a wind 
turbine blade’s fiber at an earlier stage, when it is still manageable [21]. 

Additionally, combining machine learning with AE has proven useful in enhancement of fault 
detection and also the differentiation of various types of blade damage. Acoustic emission 
signals, thus the signals coming from the structure could be analyzed using machine learning for 
the level of the damage and for the location of the damage so that maintenance decision could be 
made ahead of time [21]. 



Such technological advancements make it clear that AET is even more important for the 
development of the new generation of renewable power plants such as wind turbines for which 
blade integrity is of significant import for efficient performance. With ongoing research, the 
capacities of AET are expected to improve immune nonappearance in real-time surveillance 
systems and decrease the maintenance expenses for wind energies. 

 

Thibbotuwa 
U. [18] 

Ultrasonic Testing 
(UT) 

Utilizes high-frequency sound waves to detect internal 
discontinuities like cracks or voids. Phased Array 
Ultrasonic Testing (PAUT) is particularly useful for 
complex geometries such as wind turbine blades, and 
Guided Wave Ultrasonic Testing (GWUT) is effective for 
inspecting towers and nacelles for structural flaws. 

Civera M. [4] Radiography 
Testing (RT) 

Employs X-rays or gamma rays to visualize internal 
structures of the turbine, useful for identifying defects 
within turbine blades, nacelle components, and welds on 
towers. Advances in digital radiography enhance image 
quality and analysis capabilities, aiding in precise 
diagnostics and monitoring. 

Sacarea A. 
[19] 

Magnetic Particle 
Inspection (MPI) 

Involves magnetizing a ferromagnetic component and 
applying ferromagnetic particles that cluster around 
defects due to magnetic leakage, highlighting surface and 
subsurface defects. Recent advances integrate digital and 
automation technologies to enhance defect detection. 

Shihavuddin 
A. [20] 

Visual Inspection 
(VI) 

Fundamental for identifying surface defects that could 
lead to structural failures. Advanced drones equipped with 
high-resolution cameras and AI-driven analysis, like deep 
learning systems, are increasingly used to automate and 
improve the accuracy of inspections. 

Ding S. [21] Acoustic Emission 
Testing (AET) 

Captures stress waves emitted from materials under stress 
to detect and locate active damage such as cracks. Fiber 
optic sensors offer advantages over traditional sensors by 
being smaller, resistant to electromagnetic interference, 
and highly sensitive, suitable for early detection in 
preventive maintenance. 

Table 2Review of tests performed on turbine blades 

 



Techniques for Wind Turbine Blade Monitoring 
There are several methods that have been invented to monitor the health of wind turbine blades. 
These techniques can be categorized into general categorizations such as visual inspection, 
acoustic emission, vibration analysis, strain measurement, thermography, and fiber optic sensors. 
One of the simplest and the most traditional methods of blade monitoring is the method of visual 
inspection. Blades are visually checked by technicians for signs of damage including crack lines 
or deterioration of surface. However, this method is time-consuming and does not identify 
subsurface injuries. The advancement in technologies such as drones has improved inspection 
through ability to reach some areas that would normally take long to inspect [22]. This 
monitoring technique is based on the detection of high-frequency stress waves generated by the 
extension of cracks or other flaws within the blades. To detect such emissions, Acoustic 
Emission sensors are mounted on the blade surface to detect the damage. AE is more sensitive, 
and it could identify early damage. However, it is vulnerable with external noise, it has to work 
in a noiseless atmosphere [9]. Vibration analysis tracks the dynamic characteristics of blades and 
their response to operational loads. Any shift in the natural frequency, the mode shapes or 
damping coefficients are signs of possible damaged structure. It is suitable for structural damage 
detection but may not specify the exact location of the damage without further analysis on the 
data collected [22] 

Stress measurements are normally taken by the use of strain gauges to determine the deformation 
of blades under load. The change of strain means can signal damage. This technique gives a clear 
picture of the blade deformation, but it involves sensitive placing of sensors and calibration [9]. 
Infrared thermography records surface temperature and may reveal areas on the blade with 
subsurface damage or material flaws. Thermography, while inexpensive and fast for large surface 
areas, is affected by surrounding climate and the conductivity of the blade material [23]. The 
strain, temperature, and other parameters are sensed through the fiber optic sensors, Fiber Bragg 
gratings, and distributed networks that are installed within the blades. These sensors are sensitive 
and can provide information on the monitoring of the given objects in real-time. Nevertheless, 
the embedding of fiber optic sensors within blades involves some specificity in fabrication 
techniques. 

Advances in Monitoring Technologies 
Modern technological systems have made wind turbine blade monitoring much more effective 
and efficient than previously imagined. Some of the further improvements consist of machine 
learning, advanced signal processing methods, and simultaneous use of multiple monitoring 
strategies. Statistical models are now being employed in analyzing the complex data that blade 
monitoring systems are developing. These algorithms are able to pick out patterns that suggest 
potentially damaged areas and hence, are more efficient to use. For instance, the application of 
Convolutional Neural Networks (CNNs) for the automated damage detection in images of the 
blade has enhanced the effectiveness of the visual inspection by a very large measure [24]. 
Vibration and acoustic emission data collected from the structures require integration of 



sophisticated signal processing tools including wavelet transforms and modal analysis for the 
purpose of identifying damage. These techniques can prevent noise and enhance the limits of 
different detection strategies [24]. 

Wind Turbine Blades: Advances and Challenges 

Introduction 
Wind energy has become one of the strategic sources of renewable energy in the world today. An 
essential component of wind energy systems are wind turbine blades that improve material, 
design and manufacturing technologies in the last few years. This article discusses the 
advancements made in the field of wind turbine blade systems; the difficulties encountered in 
their design and manufacturing; and the future prospects of wind blade systems in the context of 
the global renewable energy infrastructure. 

Advances in Materials and Design 
Some of the most key innovations to wind turbine blades are the material used in constructing 
the blades. Especially blades were made of fiberglass reinforced plastic (FRP) in the past. 
However, there has been the need to look for more efficiency and durability, which has spurred 
the search for the use of materials such as carbon fiber-reinforced plastics (CFRPs) and hybrid 
composites. 

CFRPs have higher specific strength compared to regular FRPs, which translates to longer blade 
lengths for greater wind energy capture without the added weight. This improvement is very 
important because long blades can cover more area hence produce more power. Current research 
on the use of CFRPs has noted that blades made from the material can be 30% lighter than the 
traditional blades but are stronger and more rigid [25]. Furthermore, many new composites have 
been produced by using different fibers and matrices combined together in order to get the best 
results as regards the cost, the performance and the durability [26]. 

In terms of design, which plays a crucial role in racing cars, two main aspects are aerodynamic 
efficiency and structural robustness. The advancement in computation fluids dynamics (CFDs) 
has made it easy for engineers to design blades with the right curvature and size for the highest 
energy yield and reduced drag and noise. Advanced technologies like blade tip extensions and 
serrated trailing edges have also been proved to improve the levels of efficiency [27]. In the same 
way, smart blades integrated with sensors and actuators offer a possibility to monitor and manage 
blades during their operations and thus enhance their efficiency and durability [27]. 

Manufacturing Processes 
There have been notable advancements in the production of the blades of wind turbines as well. 
Some of the conventional processes like hand lay-up and vacuum infusion are still in use but 
emerging technologies as AFP and 3D printing are increasingly being adopted. For example, 
employing AFP enables accurate placement of fibers resulting in minimum utilization of 
materials and uniformity in the manufacturing of blades [28]. 



Another technology that holds great potential in wind turbine blades fabrication is known as 3D 
printing or additive manufacturing. It also creates possible shapes that cannot be achieved by 
conventional techniques of construction such as cutting or bending metals. This capability not 
only advances the possibility of blade design but also helps in lowering the time and cost of 
prototyping and making [28]. Additionally, on-site production is also made possible by 3D 
printing, this will prove very useful to large scale wind power plants that are established in far-
flung regions. 

Challenges in Wind Turbine Blade Technology 
Nevertheless, several issues still constrained the design and utilization of wind turbine blades. Of 
them, one of the most important and challenging factors is related to the possibilities and ease of 
recycling the blade materials. Many blades are made using materials that are not easily 
recyclable, therefore raising concern on the welfare of the environment once these blades are 
discarded. Ongoing studies are on ways to create sustainable composites and better the 
configurations to recycle existing composites [29]. 

The other technical challenge is the fatigue life of the wind turbine blades. These structures are 
exposed to different and sometimes very harsh conditions causing fatigue and finally failure of 
the materials used. Reducing the certainty of the reliability of the blade is crucial for the 
sustainability of the wind power projects. This problem is currently being solved through 
research and development of new advanced materials, which possess higher fatigue 
characteristics, or through improving the design of components, as well as the techniques for 
testing their fatigue characteristics [30]. 

In addition, the enormous size of wind turbines is another issue that has arisen in logistics. 
Blades of equipment can be a hundred meters long and longer which makes transportation and 
installation of them very difficult and expensive. These problems are still being faced; new 
approaches are proposed, for instance segmented blades that can be installed on the site [31]. 

Vibration-Based Monitoring Techniques for Wind Turbine Blades 
Technological advancement in the installation of wind turbines for the production of energy as a 
natural resource for meeting human needs continues to rise across the decades. Wind power 
operates by utilizing specialized blades that are exposed to a number of stresses including the 
force of the wind as well as gravity and prevailing climate conditions such as temperature and 
humidity. The scientific monitoring of such blades’ health remains paramount, especially with a 

view of avoiding failure occurrences during their functional use while adopting best-suited 
maintenance regimes. In this context, the use of machinery vibration as a condition monitoring 
tool is favored because of its capability to predict the onset of damage and deliver time-
continuous information of structure health for real-time management decisions. This paper 
presents a summary of the respective methodologies and results derived from four recently 
published, well-received research papers which focus on developing and evaluating the 
implementation of vibration-based monitoring methodologies for wind turbine blades. 



Paper 1 
In this work, continuous wavelet transformation was adopted to analyze signals that contain 
features of damage in the wind turbine blade. CWT was used to interpret corresponding vibration 
signals and obtain features related to damage. I also found that the CWT was especially useful 
for detecting non-stationary signals and small cracks or damage that may be confined to specific 
regions of the structure [32]. 

Paper 2 
This paper is aimed at undertaking a detailed analysis of how wavelet packet transform (WPT) 
can be employed in determining the modal parameters of wind turbine blades. Decomposing the 
vibration signals into various frequency bands as was done through WPT revealed more detailed 
information on the dynamical behavior of the blade. From the above findings, it was apparent 
that this method was efficient in identifying any changes in modal parameters which may 
indicate damage to structures [33]. 

Paper 3 
In this paper, integration of machine learning algorithms with vibration analysis for damage 
identification was done. The study used supervised learning algorithms in categorizing the 
vibration data with an aim of isolating different forms of damage. The outcomes also brought out 
the promise of having machine learning to unlock further the performance of damage 
identification tools [34]. 

Paper 4 
The author examined the application of decision support system with the aid of FBG sensors and 
vibration-based methodologies. Full-spectrum fiber bragg grating (FBG) sensors with sensitivity 
greater than 90% and immune to electromagnetic interference were employed for strain and 
vibration measurements of wind turbine blades. Real vibration data obtained from the 
experimental part showed that FBG sensors were proper method for identification of structural 
damage [35]. 

Methodologies 
Thus, the four-inch studies used different techniques in analyzing the vibration signals. Paper 1  
used continuous wavelet transform for feature extraction for time-frequency analysis for 
analyzing the vibration signals that plays important role in detection of localized damages. The 
findings paper 2 showed that by applying wavelet packet transform to the signals, these were 
further divided into other bands that made modal analysis easier. Paper 3 complemented the 
conventional approach by applying an ML method where the features found in the data are used 
to train the SL algorithms for use in damage identification. The vibration data was captured using 
FBG sensors as explained by paper 4, where the acquired data is commonly used to detect 
changes to the structure. 



It is also important to note that the underlying sensor technologies of the studies under 
consideration were not the same. Paper 1 coupled gyroscopes and accelerometers while Paper 2 
mostly employed accelerometers because of their high sensitivity and accuracy. Piezoelectric 
sensors could also have been used according to Paper 3, but these authors focused on the use of 
accelerometers while mentioning that piezoelectric sensors are highly sensitive and durable high-
frequency devices. Field-installed FBG sensors, as employed by Paper 4, are suitable for 
identifying structural health due to multiple reasons; First, they do not suffer from 
electromagnetic interference Second, they can provide both strain and vibration measurements. 

The techniques of data processing used in these studies were different in one way or the other. 
Two studies employed CWT when extracting features paper 1 used CWT to gain a detailed time-
frequency representation of the vibration signals. Paper 2 also used WPT for signal 
decomposition and modal analysis. Paper 3 proposed a data processing technique that fused 
machine learning algorithms such as neural networks and support vector machines to classify the 
vibration data in order to identify the patterns of the damage. In paper 4, authors paid special 
attention to analyzing data coming from FBG sensors with the aim of detecting structural shifts. 

Results and Findings 
Paper 1 used CWT for detecting localized damages with high accuracy especially for transient 
damages. The present study by Paper 2 showed that WPT had the potential of identifying 
changes in the modal parameters hence useful in case of Structural health monitoring. In a 
related study Paper 3 established that machine learning algorithms enhanced the accuracy of 
damage detection, with neural networks offering superior classification of damages. The study 
conducted by Paper 4 showed that FBG sensors in conjunction with vibration analysis yielded a 
high level of sensitivity on the changes in structures. 

Concerning the computational aspects, Paper 1 and Paper 2 pointed out that wavelet analysis 
methods were effective, although computationally expensive. From previous studies, Paper 3 
pointed out that once the machine learning models have been trained, they can analyze massive 
amounts of data within a short time, despite the fact that training require considerable 
computational resources. In this research, Paper 4 highlighted that FBG sensors provided real-
time monitoring data of a structure, but processing the acquired data for SHM purposes was 
computationally intensive. 

The applicability of these methods was explained in each of the four research studies that were 
reviewed. Paper 1 and Paper 2 particularly insisted on the importance of accurate sensors and 
data processing in real time. Paper 3 noted on the necessity of stable data management systems 
since data is collected frequently and in huge amounts. The studies by Paper 4 elaborated on the 
benefits of using FBG sensors in real-world settings, such as increased life span and sensitivity. 

 

 



Study Technique Key Features Advantages Disadvantages 

Paper 1[32] 
Continuous 
Wavelet Transform 
(CWT) 

Time-frequency 
analysis, detects 
transient events 

High accuracy in 
damage localization 

Computationally 
intensive 

Paper 2[33] Wavelet Packet 
Transform (WPT) 

 
Modal parameter 
identification 

Detailed frequency 
band analysis 

Requires significant 
computational 
power 

Paper 3[34] Machine Learning 
Supervised 
learning, feature 
extraction 

High accuracy with 
large datasets 

High computational 
cost during training 

Paper 4[35] 
Fiber Bragg 
Grating Sensors 
(FBG) 

Strain and vibration 
measurement 

High sensitivity, 
EMI-resistant  

 
High cost, complex 
installation 

Table 3 Comparison of Vibration Analysis Techniques 

 

Study 
 

Sensor Type 
 Sensitivity Frequency 

Range 

 
Advantages 
 

Disadvantages 

Paper 1[32] Accelerometers High Low to High 

High 
sensitivity, 
wide 
frequency 
range 

May require 
frequent 
calibration 

Paper 2[33] 
 
Accelerometers 
 

High Low to High 

High 
sensitivity, 
wide 
frequency 
range 

May require 
frequent 
calibration 

Paper 3[34] Piezoelectric High High 
Durable, high-
frequency 
response 

Fragile, 
limited to 
specific 
applications 

Paper 4[35] Fiber Bragg 
Grating (FBG) 

Moderate 
 Wide 

Immune to 
EMI, suitable 
for harsh 
environments 

Higher cost, 
complex 
installation 

Table 4 Sensor Technologies for Vibration Monitoring 



Chapter 3: Foundation Monitoring 
Foundations, as in all structures resting on the ground, play a fundamental role. The 
characteristics of an adequate foundation structure concern both technical, economic (costs) and 
logistical (ease of construction site processes) aspects. 

At this point, however, it is necessary to distinguish the foundations of onshore turbines from 
offshore ones. 

This is because the fundamental difference, from a design point of view, between offshore and 
onshore, lies precisely in the choice of foundation. It is intuitive that design, construction and 
monitoring are more complex challenges in offshore wind. Furthermore, unlike onshore wind 
farms, foundation costs are much higher and absorb a large percentage of the total cost of an 
offshore wind farm. 

These costs, however, will also be significantly increased since the future offshore wind farm 
will be far from the coast and therefore will operate in deeper waters. The increase in offshore 
investment costs as a function of water depth is estimated respectively in Table 3.13. It can be 
noted that the foundation as well as its installation costs can be greatly influenced by the depth of 
the water. 

 

Figure 4 Comparison of increment of total cost w.r.t. water depth 



Figure: Change in offshore wind investment costs as water depth varies in €/ kW [36] 

As regards onshore wind turbines, the foundations are distinguished, as happens for other civil 
engineering structures, into superficial (or direct) and deep. 

In wind farms dating back to the 1990s, square-shaped foundations with constant thickness were 
used. This solution, however, highlighted several major limitations (localized damage), for which 
hexagonal and octagonal shapes were subsequently used, even with variable thickness until 
reaching today the most modern circular shapes, which allow the armor to be positioned in a 
homogeneous way, in so as to follow the stresses on the entire domain. 

In the case of offshore wind, the types of foundation are: 

• Gravity foundations, which offer a fair amount of stiffness and therefore allow small 
damping of the aerodynamic efforts coming from the rotor. 

• Single-pile foundations, which do not offer a rigid constraint, and therefore attenuates 
aerodynamic efforts well. 

• Tripod foundations, rather light and rigid structures, offer little damping. 
• Floating foundations. 

 
Figure 5  Foundations for offshore wind turbines: a) Floating wind turbines, b) Types of bottom-fixed offshore wind turbines. 

 



For both onshore and offshore turbines, the choice of foundation depends on the location and 
environmental conditions. For example, the quality and strength of the soil influence the size and 
shape of onshore foundations, while the depth of the water and the distance from the coast are 
the factors decisive for offshore turbines. 

 

Causes and consequences of damage: 
Within the context of the design and operation of wind turbines, it has been possible to notice, 
since the past, the existence of two parallel activities, but with a completely different approach in 
terms of defining the useful life as well as programming interventions of maintenance. If we 
wanted to make a spatial distinction of the wind turbine, we could say that there is an above-
ground part (specific to the industrial world) and a part in contact with the ground, i.e. the 
foundations (specific to the civil field). In the latter field, there was a total absence of both 
maintenance processes and guidelines for periodic checks. Furthermore, since the stresses within 
the foundations are difficult to monitor, in the past the path of oversizing the foundation has 
often been taken. In a context of uncertainties in the measures, however, the transition towards 
more economical solutions becomes very delicate. 

It has been seen, in fact, that among the main reasons for damage to foundations, there is poor 
structural design (solutions of small structures applied to large modern ones) and incorrect 
execution of on-site investigations and therefore, application to design phase. 

In the case of foundations, among the main problems to which attention must be paid, in addition 
to excessive displacements and deformations, is that of cracks. There are various types of 

Figure 6 Typologies of foundations in Europe at the end of 2018 according to the parameters of depth and 
distance to the coast. 



cracking, as shown in the figure. Most cracks, however, can be avoided through careful design, 
choice of materials and construction phase [37]. 

Clearly, as in all reinforced concrete structures, the cracks themselves are not the problem, but 
rather their initiation and control. In fact, excessive cracking can irreversibly compromise its 
static function. In aggressive environments, corrosion of the reinforcements could significantly 
reduce their resistant area, thus decreasing the resistance of the entire element [37], [38]. 

 

 

 

 

 

 

 

Figure 7 Types of cracks in reinforced concrete structures [37] 



 

Figure 8 Cracks processes of concrete structures during corrosion [38] 



SHM Wind turbine foundations: 
When talking about the foundations of wind turbines, a distinction must be made, the concept of 
Structural Health Monitoring must be introduced which, as mentioned in the previous chapters, 
unlike Condition Monitoring which concerns the monitoring of rotating mechanical elements, is 
based on the monitoring of structures, in this case foundations. 

Often when we talk about SHM, we imply the use of a vibrational approach, but other 
nondestructive methods can be introduced. 

Using an online monitoring system in a reinforced concrete structure can lead to a clear 
reduction in operating costs over the entire service life: 

the classic (visual) inspection detects corrosion when 25% of the structure is already damaged. 
An adequate sensor network detects corrosion when 5% of the structure is damaged. 

However, there are several challenges and issues within the monitoring of wind turbine 
foundations: for onshore wind turbines, for example, it is often necessary to install a monitoring 
system during construction. Foundations, however, are often poured in place by local concrete 
companies and therefore installing a sensor system requires coordination between these 
companies and various technicians. 

Another challenge concerns the durability and accessibility of the sensors. Indeed, the long-term 
survivability of many sensors embedded within concrete is yet to be demonstrated, and if sensors 
fail, maintenance access is not practical. 

As for offshore turbine foundations, they present similar challenges, as the sensors would have to 
live in salt water, and therefore require special protection and particular maintenance. 

 

Tim Rubert et 
al. [39] Optical strain gauges 

They propose a monitoring system based on 
deformations, using particular optical strain gauges 
(Fibre Bragg Gratings) positioned inside the 
reinforcement cage during construction. 
To do this, preliminary work must be done to know a 
priori which parts of the foundation (and in particular 
the reinforcements) will be subject to greater tensions 
and deformations, in order to build a correct finite 
element model with which to compare the monitoring 
data. A detailed analysis of the wind (which represents 
the most severe action that will act on the wind tower 
during its useful life) returns the prevailing direction 
(figure 3.28), and therefore the direction of greatest 
stress on the reinforcement bars, which will therefore 



host the sensors. This type of sensor, inside the 
concrete, gives the possibility of carrying out checks 
both during the construction phase, with the aim of 
verifying the correct execution of the structure, and 
during the operation phase, in order to verify the state 
of the foundations for ensure effective maintenance 
activities. 

Marcus Perry et 
al. [40] Fiber optic sensors 

They also used fiber optic sensors to monitor the 
presence and opening of cracks in the concrete. Results 
from the interrogated sensors suggest that foundation 
crack opening displacements respond linearly to tower 
stresses and are consistently less than ±5 µm. 

Boris RESNIK 
et al. [41] Inclinometers 

They present a method for monitoring cracks and 
deformations in the tower-foundation interface (a very 
delicate area, being an area of stress intensification). 
The use of inclinometers placed inside the tower, at the 
base of the foundation, is proposed. As with 
acceleration sensors, the signal energy and therefore 
amplitude decreases during its propagation as defects 
become larger and cracks become larger. With greater 
signal energy loss, the standard deviation ratio 
decreases. So, this feature can be used to evaluate the 
condition of the structure. 

Wout Weijtjens 
et al. [42] 

Vibrational 

They proposed an offshore wind turbine foundation 
monitoring approach based on its resonant frequencies. 
The key issues are the operational and environmental 
variability of the turbine's resonant frequencies which 
potentially hide any structural changes. They used a 
nonlinear regression model to compensate for 
environmental variations. The OWT foundations, as 
mentioned, are subject to harsh offshore conditions, 
including wave activity, a corrosive environment, 
currents and changes in the seabed, or ground 
conditions such as seabed erosion near the monopile. 
The resonant frequency can be used to detect these 
changes because several sources indicate that the 
resonant frequency is an erosion-sensitive 
characteristic. Furthermore, strong changes in resonant 
frequency can reduce fatigue life due to increased rotor 



tower interact. 

Xiao et al. [40] Vibrational 

This paper presents a vibration characterization of an 
operational wind turbine (tower) using spectrogram, 
scalogram and bi-spectrum analysis. The results reveal 
various nonstationary stochastic properties and mode 
coupling instabilities in the tower vibrations of the 
tested wind turbine. 

C. Devriendt et 
al. [43] Vibrational 

a continuous and automated monitoring approach to 
identify the frequencies and damping values of the 
fundamental modes of an offshore wind turbine. 
Automation occurs through hierarchical clustering 
algorithms (Machine Learning) 

Table 5 Review of some notable SHM examples for wind turbine foundations 

 

 

 

  



Chapter 4: Gearbox Condition Monitoring in Wind Turbines 
Introduction: 
The wind turbine's gearbox constitutes an essential element for modifying rotor blade rotation at 
a slower speed to a faster magnitude appropriate for electricity production. This component 
experiences enormous mechanical stresses and adverse environmental factors that may cause 
wear and tear and consequently reduce the turbine's efficiency and service life [44], [45]. 

 
Figure 9 A wind turbine with gearbox [46] 

 

This will help in the implementation of new condition monitoring techniques for wind turbine 
gearboxes to realize early failure detection and reduce unexpected downtime. This shift from 
corrective to planned maintenance will benefit turbine reliability and performance while 
minimizing lifetime operation and maintenance costs. Advanced monitoring techniques have 
revolutionized the way turbine health is managed. 

Recent technological advancements have brought several innovative means of monitoring the 
health of gearboxes. Modern techniques have integrated traditional methods, such as vibration 
analysis, oil analysis, and temperature monitoring, for a full-proof health assessment of 
gearboxes. For instance, Support Vector Regression models combined with residual analysis 
based on vibration and temperature data identify different faulty scenarios and indicate the 
potential of machine learning combined with traditional means of monitoring [44]. 

Predictive analytics has refined gearbox monitoring through complex algorithms, including 
GMDH neural networks by the Group Method of Data Handling and a combination of machine 
learning models such as LightGBM and XGBoost. These models predict failure and adapt to new 



data, hence constantly improving in accuracy over time, with historical and real-time data being 
used to predict critical parameters of gearboxes, such as the temperature of the oil and bearings 
[47], [48]. 

Continuous development of monitoring technologies is critical for the sustainability and 
efficiency of wind energy production. Effective gearbox monitoring strategies can improve the 
reliability of turbines, lower operational costs, and contribute to global renewable energy targets 
[44], [45], [47], [48]. 

Components of a Wind Turbine Gearbox: 
The gearbox in a wind turbine serves as the critical mechanical component that translates the 
low-speed high-torque rotation of the turbine's blades into the high-speed lower-torque motion 
needed to drive the electrical generator. 

 The major components installed are the gears, which are preferred due to their size and input 
that bears load at various points that reduce the contact pressures on gears. Helical gears are also 
in use due to formation of improved contact leading to smooth running with less noise when 
compared to spur gears [49].  

Then comes the bearings, these are crucial in order to provide support to the rotating shafts and 
also to manage the forces being imparted to the gears. Bearings that are required should be 
capable of withstanding both the radial as well as axial loads and play a significant role in the 
dependability and durability of the gearbox [50].  

Shafts are the components that join various gears or stages within the gearbox and transfer torque 
from the rotor to the generator. Another critical aspect is the ability of shafts, their design, and 
material properties that enable them to endure the torque and avoid failures [51]. 

Gearbox Design and Common Failure Modes: 
Wind turbine gearboxes are typically designed to convert the low-speed torque from the turbine 
rotor into high-speed torque suitable for generating electricity through the generator. These 
gearboxes are usually complex assemblies incorporating multiple stages, including planetary and 
parallel shaft gear sets. 

In ensuring the gearbox acquires durability and efficiency, the design should take into 
consideration aspects such as load distribution, gear alignment, and lubrication. This is essential 
to ensure that these gearboxes are reliable because of their ability to handle variable load 
conditions, which are typical in wind turbine operations [52]. 

Common Faults:  
Gearbox faults contribute to a large share of wind turbine failures that result in massive 
downtimes and maintenance expenditures. Commonly observed faults are: 



The bearings utilized in wind turbine gearboxes are heavily loaded, often out of alignment, and 
therefore tend to result in various wear and damage. Bearing failure is a chief factor that results 
in gearbox failure and eventually causes some massive mechanical breakage. 

Gear Failures: Toothed gears can cause fatigue and may crack or chip because of improper 
loading, misalignment, or lubrication errors. 

Lubrication Problems: Lubrication failure increases friction, resulting in overheating and 
accelerated wear on gears and bearings. 

Misalignment and Unbalance: There should not be any misalignment in gear with its 
components, as this causes unequal load distribution, leading to early wear out and failure of the 
components. Similarly, an imbalance in the rotor or gearbox introduces extra vibrational forces 
in the system and increases wear and tear on the mechanical components [52], [53]. 

Fault Detection and Monitoring: The development of condition monitoring techniques is the 
foundation for enabling early detection and fault diagnosis. Some commonly used methods in 
this category include vibration analysis, oil debris analysis, and temperature monitoring. Modern 
approaches further combine underlying data with machine learning algorithms to give better 
predictions and diagnosis of a fault at an incipient stage, hence leveraging both historical and 
real-time data in terms of anomaly detection and preemption of any potential failure before an 
event of catastrophic damage [52], [53]. 

These insights into gearbox design and common faults further underline the need for 
sophisticated design considerations and advanced monitoring systems to improve the reliability 
and efficiency of wind turbines. 

Techniques for Gearbox Condition Monitoring in Wind Turbines: 
Vibration analysis is to this date one of the most important elements of the gearbox condition 
monitoring process, during which the use of sensors allows for identifying variations in the 
operational vibration frequencies of gearboxes. It is possible by this technique to discover such 
conditions as misalignment, imbalance or failed bearings. In most cases, the analysis 
incorporates both time and frequency domain methods to offer a comprehensive assessment of 
gearbox viability 

Acoustic emission methods monitor the transient elastic waves produced by the sudden liberation 
of energy from sources inside the material. In gearbox monitoring this method is used to identify 
any signs of wear and tear or any formation of crack before they progress to dangerous level. The 
methodology is delicate and efficient in detecting high frequency stress waves that are 
characteristic of impending failure. 

Using the particles in the oil of gearboxes can be an effective method of assessing the wear stage 
of the gearboxes. This method involves analysis of metallic particulate matter and other wear 
debris particles that signify a certain kind of wear or degradation of the internal parts of the 



gearbox. New advancements in the field of microscopy and spectrophotometry have made it 
possible to characterize the size and composition of the sub-particles with higher degree of 
resolution and accuracy. 

Temperature measurements of the gearbox components can be of great help in diagnosing 
common problems such as excessive temperatures, which can be as a result of excess friction, 
misalignment or improper lubrication. New types of sensor technologies are capable of 
delivering more accurate temperature readings, featuring the combined use of these sensors and 
specialized systems designed to offer real-time results [54]. 

Phase demodulation techniques relate to the determination of phase aspects in the gearbox 
vibration signals. These measurements may be compared with basic ones and if things deviate it 
may point to such problems as for example gear tooth defects or misalignment. This method is 
especially suited for diagnosis of faults under different operational conditions that are 
characteristic of wind turbines. 

Condition monitoring has seen the increased use of machine learning algorithms. These 
algorithms can analyze large datasets obtained from the operations of gearboxes to identify 
details that may be missed through conventional observations. Through machine learning, it is 
possible to enhance the effectiveness of applying predictive maintenance after training the 
models on historical data which will ultimately reduce on the time taken for maintenance of the 
gearbox components and their operational life. 

Fiber Optic Sensors are applied more frequently due to high sensitivity and insensitivity to 
electromagnetic signals. Some of these sensors can be installed on different parts of the gearbox 
to monitor the parameters such as temperature, pressure and strain. Due to this, they are well 
suited for use in wind turbine applications due to their ability to work in extreme environment. 

Vibration Analysis Techniques for Wind Turbine Gearboxes: 
Vibration analysis is a vital part of the condition monitoring technique to be applied to wind 
turbine gearboxes because these are critical elements needed to transfer wind energy into 
electrical energy efficiently. Such a technique evaluates vibrations to look for anomalies 
representing mechanical problems, such as misalignments, bearing failures, or gear tooth defects. 
High-frequency resonance techniques are very effective in detecting failures that occur at 
frequencies outside the range of gearbox operation. They work by identifying the natural 
frequencies in components of the gearbox, which can be changed when the material is physically 
damaged by either cracking or too much wearing. In doing so, it modifies the vibration signature 
of that component, resulting in modification detectable by resonance. The utility of high-
frequency resonance in fault detection allows the early identification of problems that can 
potentially culminate in catastrophic failure. 
Spectral kurtosis is an advanced statistical tool used to measure the 'peaked Ness' in the 
frequency spectrum of vibration data. Hence, a more advanced method of spectral kurtosis shall 
be very effective in detecting transient faults and will mainly be adept at indicating bearing faults 



and cracks on the gear tooth. Consequentially, concentrating on parts of the vibration signal 
where deviations from the norm are apparent in the degree of 'peaked Ness' allows spectral 
kurtosis to isolate such anomalies effectively, aiding fault diagnosis in the earliest stages. This 
makes it an invaluable tool for the maintenance of the operational health of wind turbines, as it 
allows scheduling maintenance before an insignificant issue escalates into a significant problem 
[55], [56]. 
The high-frequency resonant techniques, together with the spectral kurtosis methods and 
advanced signal processing techniques, like envelope detection and time-synchronous averaging, 
further enhance the level of accuracy and reliability in fault detection. It enhances raw vibration 
data, hence enhancing the signal-to-noise ratio that isolates any characteristics of a fault. Other 
modern approaches are also using machine learning algorithms from historical data for 
predicting potential failures hence leading to proactive gearbox maintenance [57], [58]. 
Indeed, very recent studies have revealed successful practical approaches to using the named 
techniques. For example, the application of envelope time synchronous averaging has been 
applied in recent research to increase the distinguishability of the results of the detection of faults 
in the gearboxes of a wind turbine. In another similar approach, the application of spectral 
kurtosis in unison with the time wavelet energy spectrum proved successful in the extraction of 
features of faults in planet gears; this is a critical element of a gearbox [56]. 

These vibration analysis techniques are of utmost importance to the proper and reliable operation 
of wind turbines, which points to advanced diagnostic tools desperately needed in renewable 
energy. As development in these methods continues, new frontiers in the ability to predict and 
prevent failures will be established; therefore, extending long-term life with reduced 
maintenance costs. 

Acoustic Emission Techniques: 

AE techniques for gearbox health assessment in wind turbines are emerging due to their potential 
for the detection of the initial symptom of degradation and mechanical failures. These techniques 
are particularly useful when there are early signs of failure in the gears and bearings which are 
frequently used in wind turbine gearboxes [59].  

AE monitoring is the process of recording the energy that is produced at high frequencies by the 
gears in a gearbox whenever they are under stress or strain. It implies that when there is a crack 
or spall on the gearbox, the energy will be in the form of acoustic signals that can be captured 
and used for analysis.  

The recent advancement in AE involves the combination of AE with other machine learning tools 
to improve the diagnosis. Using algorithms that would enable the analysis of patterns of the 
acoustic signals it can then be possible to determine the type and severity of the gearbox faults 
with a lot of precision. This is particularly useful in cases where operational conditions may vary 



significantly over time, for instance wind turbines which CM offers an added advantage over 
traditional methods of vibration analysis [59].  

A second key area of AE use is in tracking the consequences of operational loads on gearbox 
dependability. Moreover, the AE signals reveal how various operating conditions impact the 
health of the gearbox and where potential failures may lie so long before they cause extensive 
damage.  

These techniques are accompanied by advancements in sensor technology, which enhance the 
accuracy of AE monitoring techniques and adequately fit the highly fluctuating and aggressive 
environment of wind turbines. 

Machine learning (ML) algorithms: 

Machine learning (ML) algorithms have become increasingly sophisticated in their application to 
gearbox condition monitoring in wind turbines, enhancing the ability to predict failures and 
optimize maintenance schedules. 

One novel approach is the use of Long Short-Term Memory (LSTM) networks. These networks 
are well-suited for condition monitoring because they can process time-series data and capture 
long-term dependencies within the operational data of the turbines. LSTMs analyze data from 
sensors and SCADA systems to detect anomalies by learning the normal operational patterns and 
identifying deviations that may indicate potential failures. This method has shown to improve the 
prediction accuracy and reliability of wind farms, making it a valuable tool for preventative 
maintenance strategies [60]. 

Another innovative method involves the Group Method of Data Handling (GMDH) neural 
network. This type of neural network automates the selection of its architecture through heuristic 
self-organization, which can effectively determine the most relevant input variables and the 
optimal structure of the network. The GMDH approach is particularly noted for its ability to 
avoid overfitting—a common problem in many predictive modeling scenarios. By using GMDH, 
operators can efficiently process large datasets from SCADA systems, allowing for more 
accurate and timely predictions of gearbox faults [61]. 

Both LSTM and GMDH neural networks leverage historical and real-time data to forecast the 
condition of wind turbine gearboxes, thus enhancing operational efficiency and reducing 
downtime through more precise fault detection and maintenance planning. These methods 
represent significant advancements in the field of wind turbine monitoring, reflecting a shift 
towards more data-driven, predictive maintenance frameworks. 



Fiber Optic Sensors: 

Fiber optic sensors have provided some significant developments within the related area of 
gearbox condition monitoring for wind turbine applications based upon their relative sensitivity 
to changes in physical parameter and their resistance to EMI. These sensors are equally efficient 
in evaluating fluctuating loads and stress levels experienced by the gearboxes – parameters 
critical in forecasting and averting mishaps [62], [63].  

Recent studies being carried out also endorse the usage of fiber optic strain sensors in making 
direct measurement of the input torque on wind turbine gear boxes. This approach is especially 
beneficial because it enables the use of torque measurement without some of the many problems 
which are found in traditional strain gauges, including low signal-to-noise ratios and sensitivity 
to electromagnetic noise. These fiber-optic sensors can be placed on the gearbox components and 
are capable of detecting changes in strains arising from operational loads in a real-time basis, 
implying continuous monitoring of the health status of the gearbox [62]. 

In addition, the employment of fiber optic sensors is not limited to strain detection only but can 
be expanded in various other ways. They can be incorporated into the organizational structure of 
a gearbox to provide information on values including temperature and vibration thereby 
improving the diagnostic functionality of condition monitoring systems. This makes the 
integration easier allowing for a holistic approach on maintenance solutions with the intention of 
minimizing time the wind turbines are out of service and enhancing the reliability of the 
turbines[63].  

These sensors are also crucial in pushing R&D more on gearbox technology due to their ability 
to capture intricate details and precise information that would aid in improving models and 
simulations of the gearbox characteristics under different working conditions. 

Case Studies in Gearbox Condition Monitoring: 

Paper 1: 

This study focuses on intelligent condition monitoring of wind turbines to reduce downtime and 
enhance reliability. It utilizes a feature selection-based methodology using regression models 
applied to Supervisory control and data acquisition (SCADA) data. Key parameters like gearbox 
oil and bearing temperatures are analyzed using various machine learning models, demonstrating 
the efficiency of neighborhood component analysis (NCA) in enhancing predictive accuracy 
[64]. 

 Paper 2: 

This paper discusses the use of finite element method (FEM) and artificial neural networks 
(ANN) in the monitoring and diagnosis of wind turbine gearboxes. It emphasizes the necessity 



for ongoing research in condition monitoring to improve the lifecycle of systems amidst the 
global shift toward renewable energy sources [65]. 

Paper 3: 

The paper presents a methodology for monitoring and diagnosing faults in gearbox bearings of 
wind turbines using the Kolmogorov-Smirnov test and a convolutional neural network model. It 
analyzes the temperature-power distribution of gearbox bearings and employs deep learning to 
model historical data for rapid fault detection [66]. 

Paper 4: 

The main goal of this research is to enhance gearbox condition monitoring using continuously 
recorded SCADA data points. It introduces the use of gear rotational speed monitoring and the 
Normal Mixture algorithm for clustering operational datasets, which helps in long-term 
monitoring of gearbox health [67]. 
 

Paper 5: 
This paper discusses the significant practical benefits of monitoring and issuing fault warnings 
for wind turbines, particularly for reducing maintenance costs and enhancing operational 
efficiency at wind farms. With the growth of wind farms, there has been a substantial increase in 
data from wind turbines, highlighting the need for more efficient and accurate monitoring 
methods. This study introduces deep learning techniques into the condition monitoring of wind 
turbines. By employing the adaptive elastic network method for variable selection, a model 
combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) 
networks is developed to understand the relationships between observed variables. This approach 
processes temperature data from gearbox bearings and facilitates efficient and convenient AI-
based monitoring and fault warning for overheating in high-speed side bearings. Experimental 
analyses demonstrate the method's high practicality and broad applicability [68]. 

Study Technique Key Features Advantages Disadvantages 

Paper 1 

Combination of 
Support Vector 
Regression 
(SVR) models 
and Residual 
Analysis 

 

Uses SCADA data 
for analysis 
Employs 
Neighborhood 
Component 
Analysis (NCA) for 
feature selection, 
Applies twin 
support vector 

High accuracy in 
predicting gearbox 
conditions, Statistical 
tests confirm model 
robustness, Effective 
in reducing wind 
turbine downtime 
and enhancing 
reliability 

Complexity in model 
training and tuning, 
Requires large 
datasets for optimal 
performance, 
Potential overfitting 
with highly complex 
models 



regression and 
decision trees for 
prediction 

Paper 2 

Improved 
phenomenological 
model combined 
with vibration 
mechanism 
analysis 

Integrates 
theoretical analysis 
with experimental 
verification 
Focuses on fault 
impacts in planetary 
gearboxes 
Utilizes maximum 
correlation kurtosis 
deconvolution 
(MCKD) for signal 
analysis 

Enhances detection 
of fault impacts 
through advanced 
modeling 
Provides detailed 
insights into meshing 
impacts and their 
variations with fault 
conditions 
Employs a 
sophisticated noise 
reduction technique 
to improve signal 
clarity 

Complexity in model 
setup and parameter 
tuning 
Requires precise 
experimental setup 
for verification 
Potentially high 
computational 
demand for detailed 
simulations 

Paper 3 

Kolmogorov-
Smirnov test and 
Convolutional 
Neural Network 
(CNN) 

Uses statistical tests 
to compare data 
distributions 
Employs CNN for 
predictive modeling 
of gearbox 
temperature 

Effective in handling 
large datasets 
Provides accurate 
fault diagnosis and 
predictive insights 

Complex setup and 
requires substantial 
computational 
resources 
High dependency on 
quality and quantity 
of data for training 

Paper 4 

Gear rotational 
speed monitoring 
using rotor to 
generator speed 
ratios combined 
with clustering 
algorithms. 

Monitors gearbox 
teeth deterioration 
over time by 
observing rotational 
speed ratios. 
Utilizes clustering 
algorithms like 
Normal Mixture to 
analyze operational 
data and divide it 
into consistent 
subgroups for long-
term monitoring. 

Allows for 
continuous 
monitoring without 
the need for costly 
and invasive sensor 
installations. 
Clustering of 
operational data 
provides a systematic 
approach to monitor 
under consistent 
conditions, 
enhancing diagnostic 
accuracy. 

The effectiveness is 
highly dependent on 
the consistency of 
operational 
conditions, which can 
be challenging given 
the variable nature of 
wind speeds. 
Requires complex 
data processing and 
skilled interpretation 
of the results. 

Paper 5 Combines 
Convolutional 

Employs CNN for 
feature extraction 

High accuracy and 
efficiency in fault 

Complex model 
architecture requires 



Neural Networks 
(CNN) and Long 
Short-Term 
Memory 
Networks 
(LSTM) for 
monitoring and 
diagnosing faults 
in wind turbine 
gearbox bearings. 

and dimensionality 
reduction. 
Utilizes LSTM to 
leverage historical 
data for predictive 
accuracy. 
Processes 
temperature data of 
gearbox bearings. 

detection. 
Effective use of large 
datasets. 
Predictive 
capabilities enhance 
preemptive 
maintenance 
strategies. 

significant 
computational 
resources. 
Dependence on 
quality and 
comprehensiveness 
of training data. 
Potential overfitting 
if not properly 
managed. 

Figure 10 Review of gearbox SHM 

  



Chapter 5: Tower Structure Monitoring 
The importance of Structural Health Monitoring (SHM) of wind turbine towers has grown 
significantly with the increasing reliance on wind energy. The primary goal of SHM is to 
enhance the safety and operational efficiency of wind turbines while minimizing maintenance 
costs and maximizing energy production. 

Key benefits: 
SHM systems enable the early detection of structural damage or anomalies. This allows for 
timely interventions, which can prevent catastrophic failures and extend the lifespan of the 
turbines [69], [70]. 

By continuously monitoring the health of the turbine structures, SHM facilitates the shift from 
routine to condition-based maintenance. This shift not only reduces unnecessary maintenance 
efforts but also optimizes the use of resources and spare parts management [69], [70]. 

Data collected from SHM can be invaluable for improving the designs of new turbines. Feedback 
on the performance and structural integrity of existing turbines helps manufacturers enhance 
future turbine designs, making them more robust and efficient [70]. 

Effective SHM systems can significantly reduce operation and maintenance costs, which are a 
considerable portion of the levelized cost of electricity (LCOE). By implementing predictive 
maintenance strategies, downtime is minimized, and productivity is increased, thereby improving 
the overall economic efficiency of wind energy projects [70]. 

On the other side, Implementing SHM systems involves sophisticated technology and substantial 
initial investment in terms of both installation and ongoing data management. 

The effectiveness of SHM depends heavily on the quality and analysis of the data collected. 
Managing and analyzing large volumes of data requires advanced data processing tools and 
expertise. 

In summary, while SHM systems involve considerable investment and complexity, their ability 
to enhance safety, reduce costs, and improve turbine performance makes them an essential 
component of modern wind energy operations. 

Accessibility Issues and Environmental Impacts: 

Accessibility Challenges: 
Accessibility remains a primary hurdle in effective wind turbine tower monitoring. The sheer 
height and often remote or difficult terrain surrounding turbine installations complicate regular 
maintenance and monitoring tasks. This situation is exacerbated in offshore settings where access 
is dependent on weather conditions and can lead to significant delays in routine checks and 
urgent repairs. 



Sensor Installation and Maintenance: 
Installing sensors on high and narrow tower structures requires specialized climbing skills and 
safety equipment, making the process both time-consuming and risky. Ensuring that sensors are 
properly installed and remain operational in such inaccessible locations poses a continual 
challenge. 

Maintenance and troubleshooting of installed sensors can be equally challenging. For example, 
replacing a faulty sensor or repairing minor damages to the installation points requires 
technicians to perform potentially dangerous climbs, often in adverse weather conditions [69]. 

Data Collection: 
Manual data collection is rarely feasible due to the heights involved and the physical structure of 
wind turbine towers. This necessitates the use of automated systems for continuous data 
transmission, which can be susceptible to failures or interruptions, thus necessitating physical 
inspections and interventions [69]. 

Environmental Impact on Data Accuracy 
The environment plays a significant role in both the performance and the longevity of monitoring 
sensors as well as the accuracy of the data they collect. 

Weather Conditions: 
Wind, rain, ice, and temperature fluctuations can significantly impact the accuracy of sensor 
readings. For instance, strong winds may cause structural vibrations that are normal but could be 
misinterpreted by sensors as damage or faults. 

Sensors themselves can be affected by harsh weather conditions; for example, moisture can seep 
into components, or ice can form on sensors, skewing the data or damaging the sensor entirely 
[69]. 

Sensor Calibration and Noise: 
Calibration drifts in sensors due to environmental factors can lead to inaccurate data, requiring 
frequent recalibration to ensure data reliability. Additionally, environmental noise can mask true 
readings, making it difficult to distinguish between normal and abnormal vibrations. 

Advanced filtering techniques and robust sensor designs are required to mitigate these effects 
and ensure the reliability of the monitoring systems over time [69]. 

Addressing the Challenges 
Efforts to address these challenges include technological advancements and strategic planning: 

Advanced Technologies: 
The deployment of MIMO-SAR technology offers a promising remote sensing capability that 
reduces the need for direct sensor installation on the towers, thereby minimizing accessibility 
issues. This technology can provide precise deformation monitoring from a distance, even in 
adverse weather conditions, enhancing safety and reducing the need for direct access [71]. 



Machine Learning and Data Analytics: 
Implementing machine learning algorithms can significantly enhance the processing and analysis 
of collected data. These algorithms can learn from historical data to better identify and predict 
potential issues, improving fault detection accuracy and reducing false alarms caused by 
environmental noise. 

Data analytics tools can help in discerning patterns and trends that indicate the health of the 
turbine, effectively allowing operators to predict and plan maintenance activities more efficiently 
[71]. 

By integrating these advanced technologies and methodologies, the wind energy sector can 
improve the effectiveness of SHM systems, ensuring the structural integrity and operational 
efficiency of wind turbine towers while addressing both accessibility and environmental 
challenges. 

  

Figure 11 Typical loads acting on wind turbine towers [71]. 



SHM approaches: 
The introduction of Structural Health Monitoring (SHM) for wind turbine towers has been 
marked by significant advancements in sensor technology and data analysis methods. One key 
technique is Distributed Acoustic Sensing (DAS), which utilizes fiber optic cables to measure 
dynamic strains along the turbine tower. These fiber optic sensors operate based on Rayleigh 
backscatter, allowing for real-time monitoring of vibrations and structural changes that may 
indicate damage or mechanical failure [72] 

Another innovative approach involves the use of wireless sensor networks for high-resolution 
acceleration measurements. These sensors are strategically placed on various parts of the tower 
to capture detailed vibrational data. This system not only provides real-time insights but also 
covers a wide area of the structure, offering a comprehensive view of the tower's health [69]. 

These technologies bring several advantages, including the ability to monitor structural health in 
real-time and the potential for reducing maintenance costs by transitioning from periodic to 
condition-based maintenance strategies. Real-time data acquisition enables timely detection of 
structural anomalies, potentially preventing severe failures [69], [72]. 

However, there are challenges associated with these advanced SHM systems. The complexity 
and cost of installing and maintaining such sophisticated monitoring equipment can be 
significant. Additionally, the large volumes of data generated by these systems require robust 
data processing and analysis capabilities, which can add to the operational complexity [69], [72]. 

Nonlinear State Estimation Technique (NSET) [73]: 
The Nonlinear State Estimation Technique (NSET) offers a robust approach for modeling and 
monitoring vibrations in wind turbine towers, ensuring enhanced operational safety and 
efficiency. Here's a more detailed look at the methodology, along with a table summarizing the 
key aspects: 

Detailed Methodology of NSET: 
Model Development: 

NSET creates two separate sub-models tailored to the operational characteristics of the wind 
turbine at different wind speeds. One model handles conditions below the rated wind speed, and 
another is designed for above-rated conditions. This differentiation is crucial because the 
dynamic response of the tower can vary significantly with wind speed. 

The models integrate real-time and historical data from SCADA systems, which capture essential 
operational parameters like wind speed, power output, and rotor loads. This integration allows 
for a comprehensive analysis of the tower's response under varying operational conditions. 

Data Analysis and Validation: 

The models are validated against actual performance data to ensure accuracy. This involves 
comparing the predicted vibrational characteristics with observed data, refining the model as 
necessary to improve its predictive capabilities. 



By continuously monitoring the vibrations and comparing them with the model's predictions, 
NSET can identify discrepancies that may signal emerging faults or structural weaknesses. This 
capability is crucial for preemptive maintenance and fault correction. 

Advantages of NSET: 
Early Fault Detection: Provides early warnings of potential failures, allowing for timely 
maintenance actions. 

Operational Efficiency: Detects and corrects inefficiencies, such as blade angle asymmetries, 
enhancing the overall efficiency and energy output. 

Extended Equipment Lifespan: Reduces wear and tear through optimized operations and 
maintenance, extending the lifespan of turbine components. 

Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO-SAR) 
[74]: 
The Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO-SAR) is an innovative 
remote sensing technology that significantly enhances the capabilities of Structural Health 
Monitoring (SHM) for wind turbine towers. This technology leverages the principles of synthetic 
aperture radar to provide high-resolution, three-dimensional images of structures, which are 
crucial for monitoring deformations and identifying potential structural issues. 

Detailed Methodology of MIMO-SAR: 
Sensor Technology: MIMO-SAR utilizes multiple transmitter and receiver antennas (multi-input 
multi-output) to generate finely detailed radar images. This setup allows the system to cover a 
broader range of angles and distances, providing a comprehensive view of a structure’s surface 

and its changes over time. 

High-Resolution Monitoring: The technology operates in the W-band frequency spectrum, 
which is known for its high resolution and accuracy in measuring distances and detecting small 
deformations. MIMO-SAR systems can detect displacements and deformations with sub-
millimeter accuracy, which is critical for early detection of structural issues in wind turbines. 

Data Acquisition and Analysis: MIMO-SAR systems capture Line-Of-Sight (LOS) deformation 
measurements, which are then analyzed using advanced algorithms to detect movement patterns 
indicative of structural instability or damage. This process involves the application of Fourier 
transformation techniques to discern dominant vibration frequencies, further enhancing fault 
detection capabilities [74]. 

Advantages of MIMO-SAR: 
Precision and Accuracy: Provides high-resolution data that can detect minute changes in the 
structure, which are often precursors to larger issues. 

Cost-Effectiveness: MIMO-SAR sensors, particularly those developed for the automotive 
industry, are relatively low-cost compared to traditional SHM sensors like strain gauges or 
accelerometers. 



Operational Efficiency: Capable of rapid data acquisition and processing, MIMO-SAR can 
monitor large structures quickly and efficiently, making it suitable for regular and emergency 
inspections. 

Challenges and Considerations: 
Complexity of Data Interpretation: The detailed data provided by MIMO-SAR requires 
sophisticated analysis tools and expertise in radar imaging and structural dynamics. 

Environmental Sensitivity: While MIMO-SAR is less affected by weather conditions than other 
optical imaging technologies, its performance can still be impacted by extreme environmental 
conditions. 

MIMO-SAR is transforming the way wind turbine towers and other large structures are 
monitored. By providing detailed, accurate, and timely data, this technology supports proactive 
maintenance strategies that can prevent failures, extend structural lifespans, and reduce 
maintenance costs. The integration of MIMO-SAR into wind turbine SHM exemplifies the 
merging of advanced technology with renewable energy infrastructure, promoting more 
sustainable and reliable energy production. 

Machine Learning Technique: 
Machine learning techniques are revolutionizing the field of Structural Health Monitoring 
(SHM), especially in the context of wind turbines. These techniques leverage data-driven 
algorithms to enhance the prediction, detection, and diagnosis of faults in turbine structures, 
primarily through vibration analysis and other sensor data. 

Detailed Exploration of Machine Learning Techniques 
Data Collection and Preprocessing: 

Sensors: Wind turbines are equipped with a variety of sensors that collect data on operational 
parameters such as vibration, temperature, wind speed, and power output. This data forms the 
basis for machine learning models. 

Preprocessing: The raw data from sensors often requires cleaning and normalization to ensure it 
is suitable for analysis. This may include removing noise, handling missing values, and scaling 
the data [75]. 

Feature Selection and Extraction: 
Feature Selection: This process involves identifying the most relevant data attributes that 
contribute to fault prediction. Techniques like principal component analysis (PCA) and 
correlation analysis are often used to reduce the dimensionality of the data while preserving 
essential information [75]. 

Feature Extraction: Advanced algorithms, such as Fourier transforms and wavelet transforms, 
are applied to extract meaningful features from raw sensor data, particularly from vibration 
signals. These features help in accurately characterizing the operational state of the turbine [75]. 



Model Development and Training: 
Algorithm Selection: Commonly used machine learning algorithms in SHM include decision 
trees, support vector machines (SVM), neural networks, and ensemble methods like random 
forests. Each algorithm has strengths and weaknesses depending on the complexity of the data 
and the specific SHM application. 

Training: The selected model is trained on historical data, where it learns to recognize patterns 
and anomalies indicative of faults. This training process is crucial for the accuracy of the model 
in real-time fault detection [75]. 

Model Validation and Deployment: 
Validation: Once trained, the model's performance is validated using a separate dataset to ensure 
it generalizes well to new, unseen data. Metrics such as accuracy, precision, recall, and F1-score 
are commonly used to evaluate model performance. 

Deployment: The validated model is then deployed as part of the turbine's SHM system, where 
it continuously analyzes incoming data to detect and diagnose faults in real time. 

Continuous Learning and Adaptation: 
Online Learning: Some machine learning models can update themselves continuously as new 
data becomes available. This capability allows the models to adapt to changes in the turbine's 
operational environment or mechanical wear over time. 

Feedback Loop: Implementing a feedback loop where the model’s predictions and the actual 

outcomes are compared can further refine its predictions, enhancing reliability and accuracy over 
time. 

Advantages: 
Predictive Maintenance: Machine learning enables predictive maintenance, which can 
significantly reduce downtime and maintenance costs. 

Improved Safety: Early detection of faults enhances the safety of operations by preventing 
catastrophic failures. 

Operational Efficiency: Machine learning models optimize the performance of wind turbines by 
ensuring they operate within their most efficient parameters. 

Challenges: 
Data Quality and Quantity: The effectiveness of machine learning models heavily depends on the 
quality and quantity of the data collected. 

Model Complexity: Developing and maintaining complex models requires specialized 
knowledge and resources. 

Integration with Existing Systems: Integrating new machine learning models into existing SHM 
systems can be technically challenging and costly. 



Machine learning's role in enhancing the monitoring and maintenance of wind turbines 
showcases its potential to significantly impact renewable energy technologies. As these 
techniques continue to evolve, they will likely become even more integral to the operation and 
management of wind energy assets [75]. 

Study Technique Key Features Advantages Disadvantages 

Paper 1 
[73] 

Nonlinear State 
Estimation 
Technique 
(NSET) 

Uses SCADA data 
for dynamic 
modeling of 
vibrations under 
varying operational 
conditions. Models 
are developed for 
below and above 
rated wind speeds. 

Provides accurate 
modeling with clear 
physical 
interpretation, 
capable of detecting 
faults like blade angle 
asymmetry 
effectively. 

Requires 
comprehensive 
historical data for 
model accuracy. The 
complexity of the 
model might pose 
challenges in 
practical applications. 

Paper 2 
[74] 

Multiple-Input 
Multiple-Output 
Synthetic 
Aperture Radar 
(MIMO-SAR) 

Utilizes multiple 
transmitter and 
receiver antennas to 
create detailed radar 
images. 
Enhances the 
flexibility of 
observation channels 
beyond the physical 
number of elements. 
Capable of two-
dimensional high-
resolution imaging 
by linear motion on 
a slide rail with 
synthetic aperture 
technology. 

 
Provides higher 
resolution imaging 
compared to 
traditional SAR. 
Offers a wider field 
of view and smaller 
system volume. 
Effective in various 
environmental 
conditions due to 
robust imaging 
capabilities. 

Complex setup and 
calibration needed 
due to multiple 
transmit and receive 
elements. 
Potentially higher 
cost and technical 
expertise required for 
operation and 
maintenance. Data 
processing and 
interpretation can be 
challenging due to 
the complexity of the 
data. 

Paper 3 
[75] 

Machine 
Learning 
Techniques for 
fault detection 
in wind turbines 

 

Implements various 
machine learning 
algorithms to 
predict, detect, and 
diagnose faults. 
Capable of handling 
both electrical and 

Enhances early 
detection capabilities, 
preventing 
component 
degradation. 
Reduces downtime 
by enabling 

Requires large 
datasets for effective 
training and accurate 
predictions. 
Potentially high 
computational costs 
associated with 



mechanical failures. 
Utilizes historical 
and real-time data 
for continuous 
learning and model 
improvement. 

predictive 
maintenance. 
Increases operational 
efficiency through 
autonomous learning 
and adaptation to new 
data. 

processing and 
analyzing data. 
Dependency on the 
quality and 
comprehensiveness 
of the data for model 
accuracy. 

Table 6 Review of SHM techniques of wind turbine tower 

 

  



Chapter 6: Conclusion: 
This thesis explored the intricate and vital field of vibration-based damage assessment in wind 
turbines, underscoring its significance in the maintenance and reliability of wind energy systems. 
The research has systematically examined the various methodologies employed in structural 
health monitoring (SHM) across different components of wind turbines, such as blades, 
gearboxes, towers, and foundations. 

The study began with an overview of wind energy as a renewable source, detailing its advantages 
and the rapid growth of wind power capacity worldwide. It then transitioned into the importance 
of maintaining turbine efficiency and safety, where vibration analysis plays a pivotal role. The 
effectiveness of various SHM techniques was reviewed, highlighting their contributions towards 
extending the operational life of wind turbines and enhancing their efficiency and safety. 

The research identified several key findings: 

1. Early Detection and Preventive Maintenance: The application of modal analysis, 
operational deflection shapes, and frequency response functions has proven effective in 
detecting early signs of damage, particularly in turbine blades and gearboxes. This 
proactive approach not only prevents catastrophic failures but also significantly reduces 
maintenance costs and downtime. 

2. Integration of Advanced Technologies: The integration of advanced signal processing 
and machine learning algorithms with traditional vibration analysis methods has greatly 
improved the accuracy and efficiency of fault detection. These technologies enable the 
handling of large datasets, facilitating real-time monitoring and decision-making. 

3. Challenges and Technological Gaps: Despite significant advancements, there remain 
challenges such as the high cost of SHM systems, the complexity of data interpretation, 
and the need for more durable and accurate sensors. These challenges underscore the 
necessity for ongoing research and development. 

The thesis has also proposed future research directions, including the development of more cost-
effective and robust SHM systems and the exploration of new materials and technologies that 
can enhance the sensitivity and durability of sensors used in wind turbines. 

In conclusion, as wind energy continues to expand its share in the global energy mix, the 
importance of effective SHM systems becomes increasingly paramount. This thesis contributes 
to the body of knowledge by providing a comprehensive analysis of current technologies and 
methodologies in vibration-based damage assessment. It lays the groundwork for future 
innovations that could further enhance the reliability and efficiency of wind turbines, thus 
supporting the broader adoption of wind energy as a key component of sustainable development. 

Recommendations for Future Research 
• Enhancement of Sensor Technologies: Research should focus on enhancing the 

durability and accuracy of sensors used in SHM systems, possibly through the use of new 
materials or advanced manufacturing techniques. 



• Machine Learning and AI: Further exploration into how machine learning and AI can 
be integrated into SHM systems to improve predictive maintenance strategies. 

• Economic Analysis: A detailed cost-benefit analysis of implementing advanced SHM 
systems in wind turbines, particularly in offshore settings where maintenance costs are 
significantly higher. 

This conclusion encapsulates the scope of your research and underscores its relevance and 
potential impact on the field of wind energy, offering a coherent summary of your findings and 
paving the way for future work in this vital area. 
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