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Summary

Multi-cloud solutions offer a potential avenue for reducing the dominance of current hyper-
scalers. In this context, multiple clusters can be established across different providers or in
various geographical locations and appropriately interconnected to enable interoperability.
However, existing solutions aimed at achieving this goal (such as Submariner.io and Liqo.io)
yield unsatisfactory results regarding network bandwidth. For instance, when technologies
like Wireguard are employed, the maximum speed between two clusters is a few gigabits
per second.

Wireguard, one of the most commonly used tunneling technologies in Linux, is known
for its simplicity and excellent integration with the Linux kernel. Despite its widespread
adoption, it struggles to provide high-speed connectivity between two sites when using a
standard single-tunnel configuration. This poses a significant limitation when a secure,
high-speed interconnection is required. Indeed, the ability to scale Wireguard performance
with the number of available CPU cores is limited, even with an intrinsically parallel
software architecture.

The primary aim of this thesis is to investigate the main features of Wireguard and the
state of the art of the current solutions developed to enhance its throughput. Secondly, it
aims to identify existing limitations and propose an improved architecture that facilitates
effective scaling, achieving a nearly linear throughput increase depending on the number
of involved CPU cores.

The thesis examines the architecture of a single tunnel setup, highlighting how, despite
its ability to parallelize encryption and decryption stages, the presence of serial per-tunnel
stages still limits the use of additional resources. It then shifts focus to a multi-tunnel
architecture. However, the analysis reveals that merely leveraging multiple tunnels can
result in no scaling at all due to a subtle "black hole" condition related to the NAPI poll
functions when using the standard softirq-based NAPI. This limitation can be overcome
by enabling the threaded NAPI on Wireguard interfaces. However, despite leveraging all
our nodes’ resources, this approach still shows far from linear performance improvement
when increasing the number of allocated cores.

To further enhance performance, a modified architecture is proposed. This architecture
handles all Wireguard stages inline for each flow in a signal processing context on a single
core, eliminating the costs of task and cache synchronization. This improved architecture,
tailored for multi-tunnel support, demonstrates almost a 2x performance improvement
over a multi-tunnel deployment based on the vanilla Wireguard implementation and is
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capable of supporting 18x the throughput of a single tunnel setup on our machines.
This approach is not a one-size-fits-all solution. Its main limitation currently lies

in the inability to parallelize the encryption/decryption stages for a single flow, which
could potentially penalize elephant flows. However, it provides an exciting starting point
for further discussion and represents a first step towards a more scalable Wireguard
architecture.
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Chapter 1

Introduction

1.1 Main Problem, Goals and Prosed Solution
This thesis tackles a significant issue that emerges when two remote clusters are inter-
connected using technologies such as Liqo and Submariner - the challenge of inadequate
throughput. These technologies depend on Wireguard, a simple and recent VPN mech-
anism, for their infrastructure. However, the limitations of Wireguard hinder it from
achieving high throughput.

Attaining substantial throughput is a critical objective as it enables the reduction of the
role played by hyperscalers. This is achieved by facilitating the interconnection of remote
clusters developed using different technologies or on the networks of various hyperscalers.
Indeed, multi-cloud solutions present a potential avenue to diminish the dominant position
of current hyperscalers by distributing workloads across multiple cloud providers.

The initial aim is to achieve a throughput slightly less than a 40 Gigabit/s line-rate,
with the subsequent goal of approaching a 100 Gigabit/s line-rate.

The thesis commences by analyzing the characteristics of Wireguard, pinpointing its
limitations and bottlenecks within the architecture, and exploring known methods in
literature for enhancing its throughput. Specifically, two methods are identified: altering
the Maximum Transmission Unit (MTU) and applying Generic Segmentation Offload
(GSO) and Generic Receive Offload (GRO) to the physical interface where Wireguard
packets are dispatched. These methods are not part of the final solution due to several
issues that arise when attempting to apply them. However, they remain viable options
for enhancing the throughput of a single tunnel and can be combined with the solution
proposed in the remainder of the work.

Parallelism is identified as the optimal technique to boost throughput. Consequently,
the thesis proceeds by parallelizing Wireguard and addressing various issues related to
this approach, allowing for a throughput near 50 Gbps on a 100G line.

In the final section, a novel architecture is described and evaluated. This architecture,
optimized for parallelism, eliminates all the overhead of vanilla Wireguard. The processing
of packets occurs in the same core they are received, within the same system call or soft
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interrupt request. Utilizing this architecture allows for a throughput near 90 Gbps, almost
reaching the initial goal.

The solution developed is merely a starting point. Various issues must be addressed,
and numerous future opportunities to further enhance the speed remain open.

1.2 Thesis Structure
• Chapter 2: This chapter provides background information on Kubernetes and

Intercluster Connectivity. It offers a brief overview of solutions to interconnect
clusters, such as Liqo or Submariner. Additionally, it includes a section dedicated to
VPNs and another section discussing existing works similar to the thesis.

• Chapter 3: This chapter presents an overview of the Linux networking stack, focusing
on the lower levels of the stack. It describes important concepts like NAPI, RSS, and
Interrupt, along with the journey of a packet in the stack.

• Chapter 4: This chapter is centered on Wireguard. It initially presents a general
overview of its advantages and features. The inner architecture is then described,
highlighting potential bottlenecks. The final part of the chapter is dedicated to
alternative VPNs, such as Ipsec and OpenVPN.

• Chapter 5: This chapter introduces two techniques to enhance Wireguard perfor-
mance. Firstly, it describes the effects of increasing the MTU value in a general
context and specifically in Wireguard, studying its feasibility. The second part pro-
vides an overview of offloading techniques, describing which are currently applied and
which could be applied to Wireguard in the future.

• Chapter 6: This chapter evaluates Wireguard performance. Initially, the performance
of a single tunnel is tested. Then, the impact of parallelism on Wireguard is studied,
highlighting problems (e.g., the Napi problem) and potential solutions.

• Chapter 7: This chapter delves into the changes made in the inline architecture of
Wireguard. It describes the rationale behind these changes and the code modifica-
tions. The final part contains an evaluation comparing the results with the standard
Wireguard version.

• Chapter 8: This chapter focuses on the problems of Wireguard inline and discusses
future work.
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Chapter 2

Background

2.1 Kubernetes Overview
Kubernetes [1] is an open-source platform designed to automate deploying, scaling, and
operating application containers. It groups containers that make up an application into
logical units for easy management and discovery.

The evolution of deployment methodologies has played a significant role in Kubernetes’
creation and its popularity:

• Traditional Deployment Era: Initially, applications ran on physical servers.
However, resource allocation issues arose when multiple applications ran on a single
server. The solution was to run each application on a different physical server, but
this was not cost-effective and led to underutilization of resources.

• Virtualized Deployment Era: Virtualization was introduced to allow multiple
Virtual Machines (VMs) on a single physical server’s CPU. This method improved
resource utilization and provided better scalability and security.

• Container Deployment Era: Containers, similar to VMs but lighter, share the OS
among applications. They are portable across clouds and OS distributions, providing
benefits like environmental consistency, resource isolation, and high efficiency.

Kubernetes was developed to manage these containers in a production environment.
It provides a framework to run distributed systems resiliently, taking care of scaling and
failover for applications, among other things. Some key features of Kubernetes include:

• Service Discovery and Load Balancing: Kubernetes can expose a container using the
DNS name or their own IP address. If traffic to a container is high, Kubernetes can
load balance and distribute the network traffic to keep the deployment stable.

• Storage Orchestration: Kubernetes permits to automatically mount a storage system.
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• Automated Rollouts and Rollbacks: It is possible to describe the desired state for
a deployed containers using Kubernetes, and it can change the actual state to the
desired state at a controlled rate.

• Self-Healing: Kubernetes restarts containers that fail, replaces containers, kills con-
tainers that don’t respond to user-defined health check, and doesn’t advertise them
to clients until they are ready to serve.

• Secret and Configuration Management: Kubernetes permits to store and manage
sensitive information, such as passwords, OAuth tokens, and SSH keys.

• Horizontal Scaling: It is possible to scale an application up and down with a simple
command, with a UI, or automatically based on CPU usage.

• Designed for Extensibility: Every user can add features to a Kubernetes cluster
without changing upstream source code.

In addition to these, Kubernetes also supports IPv4/IPv6 dual-stack for the allocation
of IPv4 and IPv6 addresses to Pods and Services.

Kubernetes has a large, rapidly growing ecosystem and services, support, and tools are
widely available. This makes it a reliable choice for organizations looking to implement
containerized applications. It’s worth noting that Kubernetes is not a traditional, all-
inclusive PaaS (Platform as a Service) system. It preserves user choice and flexibility
where it is important and adds powerful primitives for building distributed systems.

2.1.1 Internal Architecture Overview

A Kubernetes cluster is a set of machines, known as nodes, that run containerized
applications. These nodes host the Pods, which are the smallest and simplest units in the
Kubernetes object model that is possible to create or deploy. A Pod represents a running
process on the cluster and can contain one or more containers.

Every Kubernetes cluster has at least one worker node. The worker node(s) run the
Pods, and thus, the components of the application workloads. The worker nodes receive
instructions from the control plane, which manages the worker nodes and the Pods in the
cluster.

The control plane consists of various components, including the Kubernetes Master,
etcd, kubelet, kube-proxy, and others. The control plane’s role is to make global decisions
about the cluster (for example, scheduling), as well as detecting and responding to cluster
events (starting up a new pod when a deployment’s replicas field is unsatisfied).

In production environments, the control plane usually runs across multiple computers
for fault tolerance, and a cluster usually runs multiple nodes, providing high availability.
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2.2 Details About VPNs
A Virtual Private Network (VPN) is a technique used to extend a private network (any
network that is not the public Internet) across one or more other networks. These networks
could be untrusted (not controlled by the entity implementing the VPN) or need to be
isolated (making the underlying network invisible or unusable).

A VPN can provide access to a private network (which restricts or denies public access
to some of its resources) to users who lack direct access, such as an office network that
permits secure off-site access via the Internet. This is accomplished by establishing a
connection between computing devices and computer networks using network tunneling
protocols.

A VPN can be made secure over an insecure communication medium (like the pub-
lic internet) by selecting a tunneling protocol that incorporates the necessary security
features to ensure confidentiality and integrity. Such VPN implementations offer the
advantage of lower costs and increased flexibility compared to dedicated communication
lines, particularly for remote workers.

The operation of a VPN depends on the technologies and protocols it is built upon. A
tunneling protocol is employed to transport network messages from one end to the other.
The objective is to take network messages from applications (operating at OSI layer 7)
on one side of the tunnel and replay them on the other side, effectively replacing the
underlying network or link layers. Applications don’t need to be altered to allow their
messages to pass through the VPN, as the virtual network or link is made available to the
OS.

The configurations of Virtual Private Networks can be categorized based on the objective
of the virtual extension, which determines the appropriate tunneling strategies for different
topologies:

• Remote Access:
A host-to-network configuration is similar to connecting one or more computers
to a network to which they cannot be directly connected. This type of extension
grants that computer access to the local area network of a remote site, or broader
enterprise networks, such as an intranet. Each computer is responsible for activating
its own tunnel to the network it wishes to join. The joined network only recognizes a
single remote host for each tunnel. This can be used for remote workers, or to allow
individuals to access their private home or company resources without exposing them
to the public Internet.

• Site-to-site:
A site-to-site configuration connects two networks. This configuration extends a
network across geographically separated locations. Tunneling is only performed
between two devices (like routers, firewalls, VPN gateways, servers, etc.) situated at
both network locations. These devices then make the tunnel accessible to other local
network hosts that aim to reach any host on the other side. This is beneficial for
maintaining stable connections between sites, like office networks to their headquarters
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or datacenter. In this case, either side can be configured to initiate communication as
long as it knows how to reach the other on the medium network. If both are known
to each other, and the chosen VPN protocol is not restricted to a client-server design,
the communication can be initiated by either of the two as soon as they notice the
VPN is inactive or a local host is trying to reach another one known to be located on
the other side.

2.3 Liqo Overview
Liqo [2] [3] is an open-source project that facilitates the creation of dynamic and seamless
multi-cluster topologies in Kubernetes, accommodating heterogeneous infrastructures
across on-premise, cloud, and edge environments. Liqo offers several features:

• Peering: In the context of Liqo, peering is defined as a one-way relationship between
two Kubernetes clusters where resources and services are consumed. One cluster (the
consumer) is given the ability to offload tasks to another cluster (the provider), but
not the other way around. The consumer initiates an outgoing peering towards the
provider, which is then subject to an incoming peering from the consumer. This setup
provides maximum flexibility in asymmetric configurations, while also supporting
bidirectional peerings through their combination. Furthermore, a single cluster can
act as both a provider and consumer in multiple peerings.

• Offloading: Workload offloading is facilitated by a virtual node that is created in
the local (consumer) cluster at the conclusion of the peering process. This node
represents and aggregates the resources shared by the remote cluster. This method
allows for the transparent expansion of the local cluster, with the new node and its
capabilities seamlessly integrated into the standard Kubernetes scheduler for optimal
workload execution. This approach is fully compatible with standard Kubernetes
APIs, allowing for interaction with and inspection of offloaded pods as if they were
running locally.

• Liqo Network: The network fabric is a subsystem of Liqo that transparently
extends the Kubernetes network model across multiple independent clusters. This
allows offloaded pods to communicate with each other as if they were all running
locally. Specifically, the network fabric ensures that all pods in a given cluster can
communicate with all pods in all remote peered clusters, with or without NAT
translation. Given the support for arbitrary clusters with different parameters and
components (e.g., CNI plugins), it is not possible to guarantee non-overlapping pod IP
address ranges (i.e., PodCIDR). This may necessitate address translation mechanisms,
although NAT-less communication is preferred when address ranges are disjoint.
The network manager serves as the control plane of the Liqo network fabric. It
runs as a pod and is responsible for negotiating connection parameters with each
remote cluster during the peering process. It includes an IP Address Management
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Figure 2.1: High level vision of the network fabric established between two clusters

(IPAM) plugin, which manages potential network conflicts through the establishment
of high-level NAT rules (enforced by the data plane components).
The connection between peered clusters is established through secure VPN tunnels,
created with WireGuard(further detail in Section 4), which are dynamically set up at
the end of the peering process based on the negotiated parameters. The Liqo gateway,
a component of the network fabric, sets up these tunnels. It runs as a privileged pod
on one of the cluster nodes, populates the routing table appropriately, and configures
the NAT rules required to resolve address conflicts using iptables.
The overlay network is used to route all traffic originating from local pods/nodes and
directed to a remote cluster to the gateway, where it enters the VPN tunnel. The
same process occurs on the other side, with traffic exiting the VPN tunnel entering
the overlay network to reach the node hosting the destination pod.
Liqo employs a VXLAN-based setup, configured by a network fabric component that
runs on all physical nodes of the cluster. This component is also responsible for
populating the appropriate routing entries to ensure correct traffic forwarding.

• Storage Fabric: The Liqo storage fabric subsystem facilitates the seamless offloading
of stateful workloads to remote clusters.

2.4 Submariner Overview
Submariner[4] is a comprehensive system composed of several key components that collab-
oratively ensure secure connectivity across multiple Kubernetes clusters. It establishes
a secure and efficient connection between multiple Kubernetes clusters, flattening the
networks between them and enabling IP accessibility between Pods and Services.

The main components of Submariner, which ensure secure connectivity across multiple
Kubernetes clusters, whether on-premises or on public clouds, include:

• Gateway Engine: This component manages the secure tunnels to other clusters.

7



Background

• Route Agent: This agent directs cross-cluster traffic from nodes to the active
Gateway Engine.

• Broker: This component facilitates the exchange of metadata between Gateway
Engines, enabling them to discover each other.

• Service Discovery: This feature provides DNS discovery of Services across clusters.

Figure 2.2: Submariner internal architecture

The Gateway Engine is deployed in each participating cluster and is tasked with
establishing secure tunnels to other clusters. The Gateway Engine features a pluggable
architecture for the cable engine component that maintains the tunnels. The available
implementations include:

• An IPsec implementation using Libreswan, which is currently the default.

• An implementation for WireGuard, via the wgctrl library (further details in Section
4)

• An unencrypted tunnel implementation using VXLAN.

VXLAN connections are intentionally unencrypted. This is typically beneficial for
environments where all participating clusters run on-premises, the underlying network
fabric is controlled, and in many cases, already encrypted by other means. Another
common use case is to leverage the VXLAN cable engine over a virtual network peering
on public clouds (e.g., VPC Peering on AWS). In this scenario, the VXLAN connection
is established over a peering link provided by the underlying cloud infrastructure, which
is already secured. In both cases, the expectation is that connected clusters should be
directly reachable without NAT.
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Instances of the Gateway Engine run on specifically designated nodes in a cluster, and
there may be more than one for fault tolerance. Submariner supports active/passive High
Availability for the Gateway Engine component, meaning that there is only one active
Gateway Engine instance at a time in a cluster. A leader election process is performed to
determine the active instance, and the others remain in standby mode, ready to take over
should the active instance fail.

2.5 Related Works

This thesis is dedicated to evaluating the constraints of WireGuard, with a particular
emphasis on its scalability issues. While there are existing studies that suggest parallel
architectures to mitigate these scalability challenges associated with tunnels, none have yet
proposed something similar to the single-core, Inline architecture applied to WireGuard in
this study.

A comparable architecture has been present in IPsec since its inception (refer to
Section 4.3.1 for more details). In fact, IPsec is inherently associated with a single-core
architecture. However, WireGuard and IPsec have distinct architectural differences. The
primary distinction is that IPsec encapsulates packets at the IP level, while WireGuard
operates at a different level, encapsulating IP packets into UDP. Given their different
applications and usability, this thesis has chosen to focus exclusively on WireGuard, which
is also the primary solution used in Liqo.

The two solutions discussed in this section are primarily related to IPsec, not WireGuard:
In 2020, Amazon[5] implemented a strategy to enhance the throughput of AWS Site-to-

Site VPN, which traditionally has a maximum limit of 1.25 Gbps per IPsec tunnel. This
strategy involved the use of AWS Transit Gateway, a service that simplifies the process
of connecting multiple Virtual Private Clouds (VPCs) and on-premises networks.

The crux of this strategy is the use of multiple IPsec tunnels and a routing method
known as Equal-Cost Multi-Path (ECMP) routing (see section 8.2 for further details about
ECMP).

In the context of AWS Transit Gateway, ECMP allows the distribution of network
traffic across multiple VPN tunnels, effectively increasing the overall throughput beyond
the 1.25 Gbps limit of a single tunnel. This is achieved by using a 5-tuple hash (consisting
of the protocol number, source IP address, destination IP address, source port number,
and destination port number) to direct packets along one of the available tunnels.

However, it’s important to note that while ECMP can increase overall throughput, a
single VPN tunnel still has a maximum throughput of 1.25 Gbps. This means that the
throughput increase is achieved by distributing the load across multiple tunnels, rather
than increasing the capacity of a single tunnel.
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Figure 2.3: AWS Transit Gateway architecture with multiple tunnels

A similar solution, named Aviatrix High Performance Encryption[6, 7], was
proposed and patented by Aviatrix in November 2023. This technique establishes multiple
tunnels between two virtual routers, thereby allowing all CPU cores to be utilized for
performance scaling with the CPU resources. This allows for surpassing the limit imposed
by IPsec, which is only capable of using a single core.
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Chapter 3

Linux networking

The Linux network stack is a component of the kernel responsible for managing and
transferring network packets. This includes movement between the network interface and
the application (and vice versa), as well as from one network interface to another (for
bridging and forwarding purposes). This holds true irrespective of whether the interfaces
are physical Network Interface Cards (NICs) or virtual devices that exist solely in software.

3.1 The path of a packet
This section aims to explain various networking concepts related to Linux kernel and to
detail the journey of a packet within the stack, both when it is received and when it is
transmitted.

3.1.1 Kernel and interrupts
The kernel is predominantly an event-driven software. This means that it reacts or is
invoked when a specific set of events occur. Unlike many software systems, modern
operating systems do not operate on an “event loop”. Instead, the kernel code is executed
only when an interrupt is fired. In such instances, only the portion of the code that serves
the interrupt is executed.

The processing of hardware interrupts is serialized. This means that while an Interrupt
Service Routine (ISR) is being executed, other pending interrupts are enqueued and wait
their turn. This process is crucial as it prevents conflicts and ensures smooth operation.

Interrupt Requests (IRQs) invariably trigger a context switch, which comes with an
associated cost. A context switch refers to the process of storing and restoring the state
(context) of a process or thread so that execution can be resumed from the same point at
a later time. This allows multiple processes to share a single CPU. The context switch is
a fundamental part of a multitasking operating system.

While user-to-system context switches are typically more prevalent, system-to-system
context switches can also occur, particularly in the case of software interrupts.
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Each interrupt is linked to an Interrupt Service Routine (ISR), a function that executes
upon receipt of the interrupt. This necessitates a context switch from the currently
executing code, whether it’s user or system code. The cost of context switching can
become prohibitive when the number of interrupts is large.

To manage this, techniques like interrupt coalescing are used. These techniques allow
the system to delay interrupts and process multiple events at once, striking a balance
between reaction time and overhead.

Under heavy load conditions, polling could be a more efficient option. Polling involves
continuously checking if the device has any information to relay (for example, by reading
the register of the device). However, this method can waste resources under low to medium
load conditions.

A mixed approach is often the most effective. This involves adaptively switching
between interrupt and polling modes according to the actual workload. This approach is
used by the New API (NAPI) in the Linux kernel, which helps to improve the system’s
performance and efficiency.

3.1.2 Top-half and Bottom-Half handlers
The management of interrupts in the kernel is typically split into two steps: the Top Half
Handler (hardirq) and the Bottom Half Handler (softirq).

Figure 3.1: Top-half and bottom-half handler in Linux Kernel
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The Top Half Handler is executed upon the reception of an interrupt. It performs
operations that cannot be delayed, as any delay could potentially result in the loss of data.
During the execution of the Top Half Handler, interrupts and preemption are disabled
to ensure the integrity of the operations. This process needs to be as fast as possible to
minimize the disruption to the system.

When a device is initialized, it registers one or more top half handlers with the
request_irq() function. This registration process includes indicating the number of the
interrupt and the handler function to execute when the interrupt is fired. The execution of
the Top Half Handler is architecture-specific, usually a function named do_IRQ() retrieves
the handler from a global table using the interrupt number and executes it.

The Bottom Half Handler, on the other hand, performs tasks that require more time but
can be delayed. During its execution, interrupts are enabled, and preemption is disabled.
This handler is implemented by softirqs. It’s important to note that only one softirq
of a certain type can be executed on a CPU at a time, but multiple softirqs of the same
type can be executed concurrently on different CPUs. The execution of the Bottom Half
Handler is scheduled on the local CPU with the raise_softirq() method, which takes
the softirq type as a parameter. This method sets a bit in a global per-CPU bitmap to
mark the softirq as pending. This is usually called in the Top Half Handler.

The softirq is executed asynchronously in different spots with the do_softirq() method.
This method scans the bitmap of pending softirqs and executes the corresponding
handlers.

It’s interruptible but non-preemptible. Since interrupts are enabled, a softirq could
be re-scheduled before handling has ended. To handle such cases, the method scans the
bitmap multiple times.

To prevent the softirq from monopolizing the CPU, the scan is performed for a maximum
of MAX_SOFTIRQ_RESTART times and for a maximum time of
MAX_SOFTIRQ_TIME.

If softirqs are still pending after this, a low priority per-CPU kernel thread
ksoftirqd/n is scheduled and will handle the remaining softirqs.

3.1.3 The socket buffer
The socket buffer, or sk_buff, is a data structure that maintains the data and metadata
of a packet during its journey through the network stack. The primary objective of this
structure is to provide an efficient and uniform way for any kernel component to access
the packet, its metadata (such as the interface it was received from, timestamp when
available), and the most useful fields (like IP addresses, TCP/UDP ports).

The problem is that the format in which the packet is saved by the NIC in memory
depends on the NIC’s architecture, and it usually varies across different cards. The
kernel cannot parse data differently based on the format defined by the manufacturer.
Furthermore, some metadata, such as hardware timestamp, may not be available in all
NICs.

This necessitates a "data normalization" phase to store all frames in the same "canonical"
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format. This process helps avoid different packet parsing in the kernel for frames coming
from different link layers (for example, Ethernet vs WiFi) or with different characteristics
(like VLAN-tagged frames).

The sk_buff also retains kernel internal information and the value of most useful fields
to expedite the processing of subsequent modules.

Every socket buffer is composed of two entities as depicted in figure 3.3: the sk_buff
data structure that stores the metadata of the packet, and a buffer where the data of the
packet is stored. The head and end pointers of the sk_buff structure point to the limits
of the buffer of the packet. The data and tail pointers delimit the packet data inside the
buffer.

Figure 3.2: Socket buffer internal structure

The size of the buffer is larger than the packet itself. The data and tail can be moved
inside the buffer to create or remove space when pushing and popping headers, without
the need to copy the packet or allocate new memory.

Socket buffers are usually organized in circular lists to be queued and processed in
batches. The next and prev pointers point to nearby elements in this list.

Socket buffer code

The sk_buff structure contains several fields, which are related to different network layers

1 s t r u c t sk_buff {
2 . . .
3 s t r u c t net_device ∗dev ; // The input or output dev i c e
4 ktime_t tstamp ; // The timestamp o f r e c ep t i on
5 __be16 pro to co l ; // The L3 pro to co l o f the packet
6 __u16 transport_header ; // Po inte r s to the var i ous headers in the

b u f f e r
7 __u16 network_header ;
8 __u16 mac_header ;
9 . . .

10 }
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3.1.4 Receiving packets and RSS

Figure 3.3: Packet reception in the Linux kernel

Upon initialization, the device driver allocates specific memory areas to be used for
exchanging packets with the NIC. The structure of these buffers is unique to each driver,
but they typically include a buffer area used to store packet data through Direct Memory
Access (DMA), and a ring of descriptors used to store metadata about the packet.

This metadata includes the address of the packet data in the buffer area, its size, and
additional metadata provided by the NIC, such as a timestamp (if hardware timestamping
is supported and enabled) and the Receive Side Scaling (RSS) hash.

Modern NICs support multiple receive and transmit descriptor queues (multi-queue).
This capability allows a NIC to distribute different packets to different queues, thereby
distributing the processing load among multiple CPUs.

The NIC achieves this distribution by applying a filter to each incoming packet. This
filter assigns each packet to one of a small number of logical flows. Packets assigned to
each flow are then steered to a separate receive queue. Each of these queues can, in turn,
be processed by a separate CPU. This mechanism is generally known as “Receive-side
Scaling” (RSS) [8].

The primary goal of RSS and other similar scaling techniques is to increase performance
uniformly across the system. The filter used in RSS is typically a hash function that
operates over the network and/or transport layer headers. For example, a common
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approach is to use a 4-tuple hash over the IP addresses and TCP ports of a packet.
Some advanced NICs take this a step further by allowing the steering of packets to

queues based on programmable filters. This provides even greater flexibility and control
over packet processing, enabling more sophisticated load balancing strategies.

If the NIC supports multiple hardware queues, a copy of these memory areas is made
for each queue. Packets are then distributed through RSS. The NIC transfers one or more
packets into the buffer using DMA and signals the presence of new data with an interrupt.

The hardware interrupt handler, which is registered by the driver, handles the interrupt
raised by the NIC. It disables hardware interrupts for the device and schedules the execution
of the softirq on the local CPU with the __napi_schedule() method.

3.1.5 NAPI
NAPI [9] is a key event handling mechanism used by the Linux networking stack. Despite
its name, which once stood for "New API", it no longer represents any specific acronym.

In its basic operation, a device notifies the host about new events via an interrupt.
Upon receiving this interrupt, the host schedules a NAPI instance to process these events.
This is the primary mode of operation for NAPI, and it’s designed to handle the majority
of network events efficiently and effectively.

However, NAPI also supports an alternative mode of operation known as busy polling.
In this mode, the device is polled for events via NAPI without waiting for an interrupt.
This can be particularly useful in high-load situations where waiting for an interrupt could
lead to significant delays.

NAPI processing typically occurs in the context of a software interrupt. This allows
the system to handle network events at a low level, close to the hardware, which can help
to reduce latency and improve performance.

However, there is also an option to use separate kernel threads for NAPI processing.
This can be beneficial in certain situations, such as when dealing with a large number of
simultaneous network events, or when the system has multiple CPUs that can be used
to parallelize the processing of network events. This options was used for Wireguard in
section 6.3.2

A structure of type napi_struct is used to schedule a packet processing task. This
structure is initialized by the driver upon device initialization with the
netif_napi_add() method. This method receives a driver-specific poll function that is
bound to the NAPI structure and will be used to process packets in the softirq.

The softnet_data structure plays a crucial role in handling per-CPU receive (rx) and
transmit (tx) software queues. This structure is allocated once for every CPU when the
system starts up. It’s designed to manage the packet processing tasks that need to be
scheduled and executed.

One of the key fields in the softnet_data structure is poll_list. This field contains
a queue of elements of type napi_struct.

Each napi_struct element represents a packet processing task that needs to be sched-
uled. This queue serves as a task list for the CPU, ensuring that packet processing tasks
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are executed in an orderly and efficient manner.
The __napi_schedule() method is a critical part of this process. This method appends

the napi_struct of the current device to the poll_list of the softnet_data structure
of the local CPU. In other words, it adds the packet processing task associated with the
current device to the task list for the CPU.

Once the task has been added to the list, the __napi_schedule() method then schedules
the execution of a softirq of type NET_RX_SOFTIRQ that is responsible for
processing incoming network packets.

The net_rx_action() method is responsible for executing
softirqs of type NET_RX_SOFTIRQ. This method executes the driver-specific poll
method for every napi_struct in the local poll_list. To ensure fair handling of all
devices, each device has a maximum number of packets that it can process before yielding
control to another device. This value is stored in the weight field of the napi_struct
structure.

If a device driver is unable to process all packets within a single budget, the napi_struct
is moved into a repoll list. To prevent the softirq from running for too long, a global pro-
cessing limit is enforced. This limit spans all devices and is enforced in terms of both packets
(netdev_budget) and time (netdev_budget_usecs). If there are still napi_struct struc-
tures to handle (either in the repoll list or new ones/leftovers in the poll_list), a new
softirq is scheduled with the __raise_softirq_irqoff(NET_RX_SOFTIRQ) method.

3.1.6 Driver poll method

The driver poll method is the function associated to the napi_struct in charge of
processing packets. It identifies the next descriptor in the RX ring and allocates a new
socket buffer for the packet. Some drivers copy the entire packet into a new memory
buffer, while others simply make the skb point to the original DMA buffer. The driver
then copies additional metadata, which can vary based on the device, provided by the
NIC into the skb.

The eth_type_trans() method is executed to determine the Layer 2 features of the
packet. This includes the destination of the packet (this host, another host, broadcast,
or multicast), which is saved in the pkt_type field of the socket buffer, and the Layer 3
protocol.

The skb is then sent to the upper layer of the network stack. The system could
group multiple packets and process them at once using Generic Receive Offload (GRO).
Ultimately, the __netif_receive_skb_core() function is called.

The driver poll method iterates until there are no more packet descriptors or the budget
of the device has been consumed. If there are no more descriptors, hardware interrupts for
the device are re-enabled.
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3.1.7 Function netif_receive_skb

The netif_receive_skb() function is a critical component of the Linux networking stack.
It applies Receive Packet Steering[8] (RPS), if enabled, which is essentially a software
implementation of Receive Side Scaling (RSS). Unlike RSS, which selects the queue and
hence the CPU that will run the hardware interrupt handler, RPS selects the CPU to
perform protocol processing above the interrupt handler. This is achieved by placing the
packet on the desired CPU’s backlog queue and waking up the CPU for processing.

RPS has several advantages over RSS. Firstly, it can be used with any Network Interface
Card (NIC). Secondly, software filters can easily be added to hash over new protocols.
Lastly, it does not increase the hardware device interrupt rate, although it does introduce
inter-processor interrupts (IPIs). Thanks to RPS, netif_receive_skb() can enqueue the
socket buffer (skb) to the softnet_data of another CPU and wake it with an inter-CPU
interrupt (input_pkt_queue).

In addition, netif_receive_skb() optionally timestamps the packet if required by
upper layers and not already timestamped. It also optionally delivers the packet to network
taps using the deliver_skb() method.

Network taps are systems used by packet sniffers to capture traffic. Every Layer
3 protocol handler, including both network taps and traditional handlers like IPv4, is
represented by a packet_type structure. This structure contains the ethertype of the
protocol handled (a wildcard in case of network taps) and a function to handle the packet.
Network taps spanning all devices are stored in the ptype_all list, while device-specific
ones are in the dev->ptype_all list.

netif_receive_skb() also handles Traffic Control (TC). TC is a system used to
implement Quality of Service by managing queuing in the transmit direction. In the
receive path, it is possible to classify the traffic and apply actions according to the result.

If the device is connected to the port of a Linux Bridge, netif_receive_skb() passes
the packet to the bridge. The packet is handled with the br_handle_frame() function.
The return value of the function determines whether the packet must proceed in the
network stack (RX_HANDLER_PASS) or has been consumed by the bridge (for example,
forwarded) (RX_HANDLER_CONSUMED).

Finally, netif_receive_skb() delivers the packet to the appropriate L3 protocol
handler with deliver_skb(). Protocol handlers are stored in the ptype_base global
array. Upon system initialization, every handler adds itself to the proper list with the
dev_add_pack() method.

3.1.8 Transmission Path
Queueing Disciplines

Queueing disciplines serve as the cornerstone of Traffic Control within the Linux
Kernel. A queueing discipline stipulates the algorithm employed to enqueue and dequeue
packets within the Linux networking stack. Predominantly, there are two categories of
queueing disciplines: classless and classful.
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Classless queueing disciplines adopt a uniform approach towards all packets. Illus-
trations of classless queueing disciplines encompass:

• pfifo_fast: This embodies a straightforward First In, First Out queue and is the
default choice in Linux.

• tbf (Token Bucket Filter): This utilizes a token bucket to regulate the pace at which
packets are dequeued.

Conversely, classful queueing disciplines facilitate the division of traffic into classes
using classifiers (also referred to as filters), and manage them in diverse manners. Instances
of classful queueing disciplines comprise:

• htb (Hierarchical Token Bucket): This represents a classful variant of the token
bucket.

• prio: This enforces strict priority queuing.

Queueing disciplines can be structured in hierarchies, with the egress of a queueing
discipline being either a device or another queueing discipline. This provision enables the
implementation of intricate traffic management strategies.

The clsact (classify action) queueing discipline is a distinct type of queueing discipline
that abstains from queuing but merely classifies packets and executes actions based on the
outcome. This permits the implementation of advanced packet processing strategies, such
as traffic shaping or filtering.

Function dev_queue_xmit()

The dev_queue_xmit() function is a pivotal element in the transmission pathway of
the Linux networking stack. It is utilized by both Layer 3 protocol handlers and Layer
2 subsystems, such as the bridge, to transmit a packet. This function accepts a skb
as a parameter. The caller is responsible for setting all the necessary information for
transmitting the packet, including the output device and L2 addresses.

If available, the clsact queuing discipline is applied.
Each transmit (tx) hardware queue of the device is linked to a structure of type

netdev_queue. For multi-queue devices, the suitable tx queue is chosen with the
netdev_core_pick_tx() method.

If Transmit Packet Steering (XPS) [8] is enabled, the queue is selected based on the
current CPU from a map that associates every core to a set of available queues. Transmit
Packet Steering is a mechanism designed for intelligently determining which transmit
queue to use when transmitting a packet on a multi-queue device.

Otherwise, a hash function is applied on the skb. In both scenarios, if the packet is
bound to a L4 socket, the queue is stored in the socket structure (struct sock) and will
be used for all subsequent packets generated by the socket. The netdev_queue structure
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contains a field of type Qdisc representing the queuing discipline used to manage packets
of that queue.

The packet is then passed to the queuing discipline with the enqueue() virtual method.
Each queuing discipline provides its own implementation of this method. The queuing
discipline is then executed with the qdisc_run() method to identify the next packet (or
packets) to send.

Function ndo_start_xmit()

Every driver in the Linux networking stack may perform device-specific operations according
to the supported features and architecture of the device. These operations are common
across most drivers:

• Checking for sufficient descriptors: The driver checks whether there are enough
descriptors available to send the packet. Multiple descriptors might be needed
for a single packet, especially in cases involving offloading features or fragmented
(skbs). If there aren’t enough descriptors available, the driver signals the upper layers
to stop sending packets using the netif_tx_stop_queue() function and returns
NETDEV_TX_BUSY.

• Mapping the packet buffer: The driver maps the packet buffer to make it accessible
by the device through Direct Memory Access (DMA). This allows the device to read
the packet data directly from memory, which can significantly improve performance.

• Filling the descriptors: The driver fills the next available descriptors in the transmit
(tx) ring with information about the packet. This includes details such as the size of
the packet, the location of the packet data in memory, and any offloading features
that should be used.

• Notifying the device: Once the packet data has been prepared and the descrip-
tors have been filled, the driver notifies the device that new data is available for
transmission. This is typically done by writing to a specific register on the device.

• Handling packet transmission: Usually, the device notifies the driver of a packet
sent with the same interrupt used for reception. The poll method executed in the
NET_RX_SOFTIRQ can either schedule the cleanup of the skbs in the NET_TX_SOFTIRQ
with the dev_kfree_skb_irq() or directly free resources.

• Re-enabling transmission: If transmission was previously stopped due to a lack of
descriptors, the driver can optionally re-enable transmission once sufficient resources
are available. This is done using the netif_wake_queue() function.

3.1.9 Conclusions
The Linux networking stack is indeed a very complex and feature-rich system. It’s designed
to handle a wide range of networking tasks, from basic data transmission and reception to
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more advanced features like traffic shaping, routing, and network security. This complexity
displays the versatility and power of the Linux networking stack, but it can also make the
system challenging to understand and manage.

One of the key characteristics of the Linux networking stack is its continuous evo-
lution. The open-source nature of Linux means that developers around the world are
constantly working on new features and improvements. These enhancements can range
from performance optimizations and bug fixes to entirely new protocols and services.

However, this complexity and continuous evolution can also make the Linux networking
stack difficult to tune and forecast its behavior. The performance and behavior of
the networking stack can be influenced by a wide range of factors, including hardware
characteristics, system configuration, network conditions, and the specific workloads being
run.
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Wireguard

4.1 Overview and Terminology
WireGuard [10, 11] is a modern and simple VPN that employs cutting-edge cryptography.
Its design aims to outperform IPsec by being faster, simpler, leaner, and more versatile,
all while avoiding IPsec’s complexity. WireGuard also aspires to offer significantly better
performance than OpenVPN.

It is designed for a wide range of applications and can operate on anything from
embedded interfaces to supercomputers, making it suitable for various scenarios.

It was initially launched for the Linux kernel and has since become cross-platform, with
support for Windows, macOS, BSD, iOS, and Android, making it widely deployable.

Although WireGuard is currently undergoing intensive development and evolution, it
is, as of this writing, ready for use in a production environment.

4.1.1 Main features
• Easy to use

WireGuard is designed to be straightforward to configure and deploy. A VPN connec-
tion is established simply by exchanging public keys, with WireGuard transparently
handling everything else. There’s no need to manage connections, worry about state,
or oversee daemons. In fact, WireGuard offers an interface that is remarkably simple
and robust.

• Cryptography Details
WireGuard employs cutting-edge cryptographic techniques, including the Noise pro-
tocol framework, Curve25519, ChaCha20, Poly1305, BLAKE2, SipHash24, HKDF,
and other secure, trusted constructions. It opts for conservative and sensible choices
that have undergone review by cryptographers.

• Minimal Attack Surface
WireGuard is designed with a focus on simplicity and ease of implementation. It is
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intended to be easily implemented in a minimal amount of code, making it readily
auditable for security vulnerabilities. Comprising approximately 4000 lines of code,
WireGuard stands in stark contrast to behemoths like IPsec or OpenVpn. Auditing
these massive codebases can be a daunting task, even for large teams of security
experts. In contrast, WireGuard is designed to be comprehensively reviewable by
single individuals.

4.1.2 Inner details and terminology
WireGuard securely encapsulates IP packets over UDP. When a WireGuard interface is
added, it’s configured with a private key and the public keys of various peers, enabling
packet transmission across it. Issues of key distribution and pushed configurations fall
outside the scope of WireGuard; these are matters best addressed at other layers. In
this respect, WireGuard’s model closely resembles that of SSH. Both parties possess
each other’s public keys, allowing them to start exchanging packets through the interface
immediately.

To better understand the following sections, two terms need to be clarified:

• Device: This term is synonymous with ‘interface’. It refers to the WireGuard
interface that is created on a machine, which can potentially exist independently and
not be associated with another interface.

• Peer: This term describes the association between an interface on one machine and
an interface on another machine. A single device can have multiple peers associated
with it. In the following chapter, the term ‘tunnel’ is used interchangeably with ‘peer’

Cryptokey Routing

Central to WireGuard is a concept known as Cryptokey Routing.
This works by associating public keys with a list of tunnel IP addresses permitted

inside the tunnel. Each network interface possesses a private key and a list of peers, with
each peer having a public key. These public keys, which are short and simple, are used by
peers for mutual authentication. They can be shared for use in configuration files via any
out-of-band method, much like sharing an SSH public key for shell server access.

In WireGuard, peers are strictly identified by their public key, a 32-byte Curve25519
point. This establishes a straightforward mapping between public keys and a set of
permitted IP addresses. The interface itself has a private key, a UDP port on which it
listens, and a list of peers.

When an outgoing packet is transmitted on a WireGuard interface, the peer table is
consulted to determine the public key to use for encryption.

Conversely, when the interface receives an encrypted packet, it will only accept it after
decryption and authentication if its source IP matches the public key used in the secure
session for decryption in the table.
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More broadly, any packets arriving on a WireGuard interface will have a reliably authen-
ticated source IP, in addition to the guaranteed perfect forward secrecy of the transport.
Note that this is only possible because WireGuard operates strictly at layer 3. Unlike
some common VPN protocols, such as L2TP/IPsec, using authenticated identification of
peers at a layer 3 level results in a much cleaner network design.

In other words, when sending packets, the list of allowed IPs functions as a sort of
routing table, and when receiving packets, it acts as a sort of access control list.

It is crucial that peers can send encrypted WireGuard UDP packets to each other at
specific Internet endpoints.

Each peer in the cryptokey routing table can optionally predefine a known external
IP address and UDP port for that peer’s endpoint. This is optional because if it’s not
specified and WireGuard receives a correctly authenticated packet from a peer, it will use
the outer external source IP address to determine the endpoint.

Since a public key uniquely identifies a peer, the outer external source IP of an encrypted
WireGuard packet is used to identify the remote endpoint of a peer. This allows peers to
roam freely between different external IPs, such as between mobile networks.

Send and Receive flow

When a packet is locally generated (or forwarded) and is ready to be transmitted on the
outgoing WireGuard interface:

1. The plaintext packet arrives at the WireGuard interface.

2. The system searches for a match between the destination IP address of the packet
and a peer. If no match is found, the packet is dropped, the sender is informed by a
standard ICMP ‘no route to host’ packet, and -ENOKEY is returned to user space.

3. The symmetric sending encryption key and nonce counter of the secure session
associated with the identified peer are used to encrypt the plaintext packet using
ChaCha20Poly1305.

4. A header, containing various fields explained in section 5.1.2, is prepended to the
encrypted packet.

5. This header and encrypted packet are sent together as a UDP packet to the Internet
UDP/IP endpoint associated with the peer, resulting in an outer UDP/IP packet
containing a header and encrypted inner-packet as its payload. The peer’s endpoint is
either pre-configured or learned from the outer external source IP header field of the
most recent correctly-authenticated packet received. If no endpoint can be determined,
the packet is dropped, an ICMP message is sent, and -EHOSTUNREACH is
returned to user space.

When a UDP/IP packet reaches a specific UDP port of the host, which is the listening
UDP port of the interface associated with the WireGuard interface:
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1. A UDP/IP packet containing a specific header and an encrypted payload is received
on the correct port.

2. Using the header, WireGuard identifies that it is associated with a specific peer secure
session, checks the validity of the message counter, and attempts to authenticate and
decrypt it using the secure session’s receiving symmetric key. If it cannot identify a
peer or if authentication fails, the packet is dropped.

3. Once the packet has been authenticated correctly, the source IP of the outer UDP/IP
packet is used to update the endpoint for the peer.

4. After the packet payload is decrypted, the interface receives a plaintext packet. If
this is not an IP packet, it is dropped. Otherwise, WireGuard checks if the source IP
address of the plaintext inner-packet routes correspondingly in the cryptokey routing
table. If no match is found, the packet is dropped.

5. If the plaintext packet has not been dropped, it is inserted into the receive queue of
the WireGuard interface.

4.1.3 Versions
Wireguard is more than just the version implemented in the Linux kernel. It is divided
into several subprojects and repositories. This section aims to present two important
user-space implementations. User-space implementations are advantageous because they
allow Wireguard to be used in different contexts compared to the Linux kernel. However,
they can be slower because the packets are not confined to the kernel space and must be
copied to the user space to be processed by the module.

• Wireguard-Go:
This is the version of Wireguard written in Golang. Section 5.2.5 explains the
architecture details and discusses Tailscale’s improvements in this version.
Go, also known as Golang, is an open-source programming language created by
Google in 2007. It is designed to be efficient, easy to learn, and provides support
for modern hardware architectures. Go is known for its simplicity, built-in support
for concurrency, and robust standard library. Many tech giants like Google, Netflix,
Twitch, Ethereum, Dropbox, Kubernetes, Docker, Heroku, and more use Go in their
tech stacks.

• Wireguard-rs:
This is the Rust user-space version of Wireguard. This version also adopts a TUN
interface in its underlying architecture.
Rust is a modern, multi-paradigm, high-performance programming language that
first appeared in 2015. It was created by Mozilla Research employee Graydon Hoare
as a personal project in 2006, and Mozilla began sponsoring the project in 2009. Rust
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is designed to be blazingly fast and memory-efficient because it has no runtime or
garbage collector. Rust’s rich type system and ownership model guarantee memory
and thread safety, enabling you to eliminate many classes of bugs at compile time. In
addition, Rust provides first-class support for concurrent programming.
There is also another version of Wireguard in Rust developed by Cloudflare, which is
known as BoringTun.

4.1.4 Current Adoption
Owing to its features and simplicity, WireGuard is adopted by leading solutions that
enable the interconnection of remote clusters, such as Liqo and Submariner. The existence
of multiple versions and the open-source nature of the project facilitate its adoption in
various contexts.

Several VPN solutions are built on top of WireGuard. For instance, Tailscale is based
on WireGuard-go (Further details on section 5.2.5). Similarly, Netbird and MullVad, which
are other VPN solutions, also rely on WireGuard.

4.2 Internal Architecture
Wireguard[12] operates by creating a virtual network device. The device can handle
multiple tunnels, each one towards a different peer. The routing table on the host is in
charge of forwarding packets that need encapsulation on the Wireguard interface, which
then encrypts the packets, locates the proper peer and adds the external headers of the
tunnel. When a wireguard-encapsulated packet is received it is decapsulated, decrypted,
and the inner, original packet is reinjected into the network stack by the WireGuard
interface.

The next two sections provide more details on the processing involved in these two
directions, focusing on parallelization aspects.

4.2.1 Encapsulation
Traffic needing encapsulation can originate from two sources. The first source is an
application running locally within the current network namespace. In this scenario, the
packets will originate from the application socket. The second source is another host, in
case this namespace is performing forwarding. In this scenario, packets will be received
from an interface, either physical, if the traffic comes from another physical host, or
virtual, if traffic comes from a container or VM running on the same host. In both cases
the routing layer of Linux will decide to forward the packet on the Wireguard interface,
based on the destination address or other policies. Once the packet is transmitted on
the Wireguard interface, Wireguard code kicks in. Encapsulation is composed of three
main steps, which operate in different execution contexts and are subject to different
parallelization opportunities:
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Figure 4.1: WireGuard processing on CPU cores on the encapsulation side in the single
tunnel scenario.

1. Peer selection:
This process occurs in the same context in which the original packet was processed.
It might be a softirq if the packet comes from an interface, or a syscall if the packet
originates from an application socket. Once the peer is selected and the packet nonce
is properly set, the packet is tagged as unencrypted and is enqueued in two different
queues. The first queue is a per-device multi-producer multi-consumer (MPMC) ring
buffer. Its purpose is to hold all the packets awaiting encryption directed to all the
peers associated with the wg device. This queue is drained by the encryption workers
running, by default, on all the CPU cores of the machine. The second is a per-peer
queue and is drained in a serial manner by a single CPU core when transmission occurs.
Its purpose is to preserve the order of transmission. After enqueuing, an encryption
worker is woken on a CPU chosen in a round-robin manner. The parallelism level of
this phase is one CPU core per original flow.

2. Encryption:
This step occurs in the CPU core that has been selected to execute the worker. The
worker pulls packets from the ring buffer until the buffer is empty, encrypting them
and marking them accordingly. It optionally wakes the per-peer TX worker if not
already running. This phase is potentially done by all the CPU cores of the node.

3. Transmission:
This step is performed on a dedicated kernel worker thread assigned to each peer.
This worker executes always on the same CPU core, selected during the handshake
phase. The worker’s task is to pull packets from the serial queue until it is empty
or until an unencrypted packet is encountered. These packets are then encapsulated
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and transmitted on the physical NIC, following all necessary routing steps. The
parallelism level of this phase is 1 CPU core per peer.

4.2.2 Encapsulation Code
The function in Listing 4.1 can be regarded as the core of the transmission path. It is also
used in the receive path; on the contrary, it is completely bypassed in the inline version
described in Chapter 7.

Listing 4.1: function wg_queue_enqueue_per_device_and_peer() in file queueing.h
1 s t a t i c i n l i n e i n t wg_queue_enqueue_per_device_and_peer (
2 s t r u c t crypt_queue ∗device_queue , s t r u c t prev_queue ∗peer_queue ,
3 s t r u c t sk_buff ∗skb , s t r u c t workqueue_struct ∗wq)
4 {
5 i n t cpu ;
6

7 atomic_set_re lease (&PACKET_CB( skb )−>state , PACKET_STATE_UNCRYPTED) ;
8 /∗ We f i r s t queue t h i s up f o r the peer i nge s t i on , but the consumer
9 ∗ w i l l wait f o r the s t a t e to change to CRYPTED or DEAD be fo r e .

10 ∗/
11 i f ( u n l i k e l y ( ! wg_prev_queue_enqueue ( peer_queue , skb ) ) )
12 re turn −ENOSPC;
13

14 /∗ Then we queue i t up in the dev i ce queue , which consumes the
15 ∗ packet as soon as i t can .
16 ∗/
17 cpu = wg_cpumask_next_online(&device_queue−>last_cpu ) ;
18 i f ( u n l i k e l y ( ptr_ring_produce_bh(&device_queue−>ring , skb ) ) )
19 re turn −EPIPE ;
20 queue_work_on ( cpu , wq , &per_cpu_ptr ( device_queue−>worker , cpu )−>work ) ;
21 re turn 0 ;
22 }

The first parameter the function receives is a per-device queue (struct crypt_queue)
that is shared among all peers. The Wireguard device is associated with three different
crypt_queues: encrypt_queue, decrypt_queue, and handshake_queue. The first
one is exploited in the transmission path.

Listing 4.2: multicore_worker and crypt_queue from the file device.h
1 s t r u c t multicore_worker {
2 void ∗ ptr ;
3 s t r u c t work_struct work ;
4 } ;
5

6 s t r u c t crypt_queue {
7 s t r u c t ptr_ring r ing ;
8 s t r u c t multicore_worker __percpu ∗worker ;
9 i n t last_cpu ;

10 } ;
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crypt_queue is implemented as a ring buffer because has inside the field ring of type
struct ptr_ring, which is basically a circular buffer that can contain a certain number
of skbs. During Encapsulation its primary purpose is to hold all the packets awaiting
encryption. It is shared among all the online CPUs in the machine, can be filled by all the
peers associated with the specific device, and can be drained by one of the cores of the
machine during encryption. Because of this multi-producer and multi-consumer scenario,
the ptr_ring is protected by two spinlocks. Inside the struct crypt_queue, there is a
field named worker that defines a number of multicore workers equal to the number of
existing CPUs. Each of these workers is basically a function: for the encrypt_queue this
field is initialized with the function wg_packet_encrypt_worker that is responsible to
encrypt the packets during the encryption phase.

The second parameter of the function wg_queue_enqueue_per_device_and_peer() is
a queue specific for each peer of type prev_queue that is basically an skbs list. In the
transmission path, its purpose is to hold each packet that the peer has to transmit. Packets
in the list can have different states; in fact, each skb has a field called cb->state which
can be UNCRYPTED, CRYPTED, or DEAD.

The third parameter is the linked list of skbs the device should put in the two previous
queues.

The fourth parameter is a work queue. Its primary purpose is to allocate a task (e.g., a
function) to a specific CPU.

In particular, the function wg_queue_enqueue_per_device_and_peer():

• Changes the state of the received list of packets to UNCRYPTED.

• Put the list in the per-peer queue. If this operation fails, the error -EINVAL is
returned.

• Thanks to the function wg_cpumask_next_online choose a CPU in round-robin
fashion, and the (list of) packet(s) is put in the per-device queue. If this operation
fails, the error -EPIPE is returned.

• Starts a worker thread that executes the function wg_packet_encrypt_worker, in the
CPU chosen before. Its purpose is to encrypt all the packets in the encrypt_queue
until it is completely empty.

4.2.3 Decapsulation
Three asynchronous steps take part in the decapsulation process:

1. Reception:
The NIC directs traffic to different CPU cores through Receive Side Scaling (RSS) or
another core selection mechanism, such as ntuple filters. These techniques allow for
traffic steering with a maximum granularity of flow level. Given that a single tunnel
between two wg devices corresponds to a single UDP flow, the processing of this step
(Reception) is confined to a single core per tunnel(or peer), even if it encapsulates

29



Wireguard

multiple flows. Traffic is identified as WireGuard-encapsulated and directed to an
in-kernel WireGuard socket. Upon receipt by the socket, the peer is identified and the
appropriate key pair is selected for decryption. Similar to encapsulation, the packet
is enqueued in both a per-device MPMC queue for decryption and a per-peer queue
for serial reception. A decryption worker is selected in round-robin. The parallelism
level for this phase is one CPU core per tunnel/peer.
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Figure 4.2: WireGuard processing distribution on CPU cores on the decapsulation side
in the single tunnel scenario.

2. Decryption:
This step is symmetric to the encapsulation phase, with the selected worker draining
the per-device queue, decrypting each packet and updating its status accordingly.

3. Forwarding (to application or on another interface):
Each peer is associated with a NAPI structure which establishes the appropriate
callback function executed for packets received on the Wireguard interface. If the
NAPI callback of a peer is not already running, the worker schedules it after packet
decryption, by raising a softirq on the current CPU core. The function drains packets
from the per-peer queue until it is empty or an encrypted packet is found, handing
them to the upper layers of the network stack where they can be forwarded to an
application or a different interface. The parallelism of this phase is 1 CPU core per
peer.

4.2.4 Decapsulation Code
The core function is wg_queue_enqueue_per_device_and_peer (Listing 4.1). The
parameters passed to this function differ from the previous analysis done in (Section 4.2.2)
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in the following ways:

• decrypt_queue: The first parameter is now decrypt_queue (of type struct
crypt_queue) associated with the current device. The worker within the queue
is linked to the function wg_packet_decrypt_worker. This function’s role is
to drain the packets from the queue and decrypt them until the queue is empty.
As previously noted, this worker is scheduled on a CPU selected in a round-robin
manner.

• rx_queue: This is a per-peer list of skbs, which prevents out-of-order reception.

• The third parameter is the skb, which should be decrypted.

• The last parameter is a workqueue, which is essentially a list of tasks awaiting
execution.

The behavior of the function remains consistent with the previous description (Section
4.2.2).

4.3 Alternatives
4.3.1 Ipsec
IPsec, which stands for Internet Protocol Security, is more than just a simple VPN
technology. It’s an extension of the IP protocol suite that provides security to IP and
the protocols in the upper layers. IPsec was designed by the Internet Engineering Task
Force (IETF) and it provides security at the network level. It also includes protocols for
managing the key exchange.

One of the most common uses of IPsec is to provide a Virtual Private Network (VPN)
service, which secures communications over public networks.

IPsec operates in two distinct modes:

• Transport Mode:
This mode is mainly used by endpoints and not by gateways. In this mode, IPsec
only protects the payload of the IP packets that come from the upper level, leaving
the Layer 3 (L3) header unprotected. This mode is typically used when there’s a need
to protect data in a host-to-host scenario. All hosts involved in the communication
need to be aware of the IPsec protocol.

• Tunnel Mode:
In this mode, IPsec can protect the entire IP packet. This mode is more commonly
used to implement VPNs because it allows for intercommunication between gateways,
typically between two routers. It’s more complex than Transport Mode, but only the
gateways need to have the IPsec software. In this scenario, a new IP header is added,
resulting in an inner IP header (the original IP header) and an outer IP header (the
new IP header).
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IPsec includes two important protocols:

• Authentication Header (AH):
is a protocol that authenticates the source host and provides integrity to the payload
only. It creates a message digest using a hashing algorithm.

• Encapsulating Security Payload (ESP):
is a protocol used to provide encryption, authentication, and confidentiality. It’s more
commonly used compared to AH. An ESP trailer is added to the payload, and both
the payload and trailer are encrypted. Afterward, the ESP header is added. The
ESP header, payload, and trailer are then used to create the Authentication Data,
which is added at the end of the ESP trailer.

Figure 4.3: AH in transport and tunnel mode

The two figures 4.3 and 4.4 illustrate the different configurations of generic packets
using both AH and ESP in transport and tunnel mode.

Although IPsec, including its multicore versions, is a viable option for encryption,
this thesis steers in a different direction. The decision to concentrate on WireGuard
was influenced by performance tests that revealed WireGuard to be faster than IPsec.
Furthermore, the thesis’s primary aim is to enhance the Liqo use case, which is dependent
on WireGuard.
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Figure 4.4: ESP in transport and tunnel mode

4.3.2 OpenVpn
OpenVPN is an open-source VPN project that creates secure connections over the Internet
using a custom security protocol based on SSL/TLS. It’s not just an open-source project
but also a tunneling protocol, the name of the company behind the site, and the commercial
products that support the open-source work.

Secure Socket Layer (SSL) is an encryption-based Internet security protocol. Netscape
developed it in 1995 to ensure privacy, authentication, and data integrity in Internet
communications. SSL is the predecessor to the modern Transport Layer Security (TLS)
encryption used today.

OpenVPN’s code is available for audits, meaning anyone can find and fix vulnerabili-
ties. This transparency increases the security and allows for continuous inspection and
improvement of the code.

4.4 Perfomance
The rationale behind WireGuard’s parallelism is to enable superior performance, par-
ticularly when a single tunnel is involved, compared to other VPN technologies. The
WireGuard whitepaper [10] presents some performance results, with tests conducted us-
ing a 1Gbps link. Specifically, it states that WireGuard outperformed OpenVPN and
both IPsec modes, with less CPU usage than its competitors. According to the author,
WireGuard is significantly faster than OpenVpn because it is implemented in kernel space.
This eliminates the scheduler’s added latency and overhead, as well as the need to copy
packets between user space and kernel space multiple times. Moreover, it is claimed that
WireGuard’s cipher suite is simpler and incurs less overhead than IPsec. This simplicity
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and efficiency contribute to WireGuard’s overall performance advantage.
An independent study [13] conducted in 2020 by Lukas Osswald, Marco Haeberle,

and Michael Menth compared various VPN protocols to validate the claims made in the
WireGuard whitepaper. The study concluded that IPsec, with AES-based encryption, is
an excellent choice for performance within a virtualized environment, specifically when
CPU pinning is not utilized. In non-virtualised environments, WireGuard outperforms
IPsec by approximately 30 percent. Furthermore, WireGuard surpasses OpenVPN in all
tested scenarios.

Despite parallelism being an excellent choice to enhance the throughput of a single
tunnel, there are other serial stages in computations that do not permit Wireguard to
scale, so the maximum throughput reachable depends on the CPU and is around a few
Gigabits/s. This problem is investigated deeply in Section 6
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Chapter 5

Known WireGuard
Optimization Techniques

There are multiple strategies to increase Wireguard’s performance that stand orthogonal to
the solution this thesis proposes. This chapter specifically introduces two primary methods:
one pertains to the adjustment of the MTU, and the other involves the application of
offloading techniques.

5.1 The role of MTU
The more straightforward way to enhance Wireguard’s performance is to operate on the
MTU by increasing it

5.1.1 What is MTU
The Maximum Transmission Unit (MTU) represents the largest Protocol Data Unit (PDU)
that can be forwarded over a network without fragmentation. In the context of the widely
utilized TCP/IP stack, the MTU refers explicitly to the maximum size of an IP packet,
including headers, that can be dispatched to the lower layers. When Ethernet is utilized
at the L2 layer of the stack, an Ethernet frame can accommodate up to 1500 bytes. So
this is typically the standard value for the MTU, although it can vary depending on the
specific technology implemented at the Link Layer level.

When a packet is encapsulated within an Ethernet frame for transmission, the actual size
of the packet traversing the network is determined by the MTU plus the Ethernet Header.
Each Ethernet frame consists of several fields: destination and source MAC addresses (each
6 bytes), EtherType (2 bytes), and concludes with a Frame Check Sequence (FCS)—a 32-
bit cyclic redundancy check used to detect any data corruption during transit, consequently,
the frame at Level 2 measures 1518 bytes. This size increases to 1522 bytes if IEEE 802.1Q,
a standard used to support VLANs, is implemented, as it adds 4 bytes to the Ethernet
Header.
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Figure 5.1: MTU and MSS

When the packet at the IP level exceeds the MTU, it must be fragmented. The IP
protocol has a feature known as fragmentation, which allows for this behavior, as described
in RFC 791 [14]. Generally speaking, fragmentation should be avoided [15]. The motivation
is primarily because reassembling the fragments can be costly, especially when they arrive
out of order. Additionally, losing a fragment equates to losing all the information of the
packet. Another reason is that fragmentation is not a commonly used feature, making it
more prone to errors and exploitable through various attacks. The source of the traffic
plays a crucial role in preventing packet fragmentation. By setting the IP header’s Don’t
Fragment (DF) flag to a value of 1, the source can ensure that packets that exceed the
MTU in a hop are dropped. The source can also calculate the MTU of a specific path
using the Path MTU Protocol [16], which enables the selection of the minimum MTU of
all the hosts in a network path.

It is important to distinguish between the MTU and the Maximum Segment Size (MSS),
which refers to the maximum size of the payload at the TCP level. The MSS depends
on the MTU value and can be calculated by subtracting the L3 and L4 headers to the
MTU value. For instance, in the case of IPv4, where the standard header is 20 bytes and
the TCP header is 20 bytes, an MTU of 1500 would result in an MSS of 1460 bytes. In
contrast, for IPv6, where the header size is 40 bytes (excluding all extension headers), the
MSS would be 1440 bytes.

5.1.2 The Impact of changing MTU in Wireguard Performance
In Wireguard, the MTU of the device interface is determined by the MTU of the physical
interface to which the packets are forwarded. Precisely, if the MTU of the physical interface
is X, then the MTU of the Wireguard interface can be calculated by subtracting all the
overhead that Wireguard adds from X [10]. The overhead of WireGuard is as follows:

• 20-byte IPv4 header or 40-byte IPv6 header

• 8-byte UDP header

• 4-byte type
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• 4-byte key index

• 8-byte nonce

• N-byte encrypted data = MTU of Wireguard Interface

• 16-byte authentication tag

So, assuming X=1500 because the technology adopted at L2 is Ethernet, the worst-case
scenario (IPv6) results in 1500-(40+8+4+4+8+16), leading to an MTU of the Wireguard
interface of 1420 bytes. In the case of IPv4, this value is 1440 bytes.

Increasing the MTU of physical interfaces, and consequently, of the Wireguard interface,
leads to an increase in throughput. This increase in throughput is possible because the
CPU’s overhead in computation is per single packet and is not affected by its size. As
a result, it is possible to transmit more data with the same CPU usage. So, the same
amount of data is transmitted encapsulated in fewer packets, reducing the CPU overhead
per byte sent. This reduction is particularly evident in the number of times the stack is
traversed, the number of interrupts used, and the number of data structures allocated
(e.g., skbuffs). Additionally, the header’s overhead is reduced, as the identical quantity of
header bytes can encapsulate a larger PDU.

Figure 5.2 is derived from a simple setup involving two physical machines, Machine A
and Machine B, directly interconnected with a link operating at a speed of 40Gbps. An
iperf3 client is instantiated on one machine, while the other hosts an iperf3 server. The
throughput between the two machines is measured by varying the MTU of the physical
interface, with a granularity of 500 bytes, and repeating the iperf3 test. Since IPv4 is used
for each test, the MTU of the Wireguard interface is obtained by subtracting 60 bytes
from the physical value.

Figure 5.2: Performance of Wireguard increasing MTU

The figure vividly demonstrates the direct correlation between MTU and throughput.
As the MTU increases, the throughput also rises, eventually surpassing the initial value
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by more than double. However, this upward trend is not indefinite. Once the MTU value
hits 3500 bytes on the x-axis, a saturation point becomes apparent. This saturation is a
direct result of the characteristics of the Network Interface Cards (NICs) involved in the
measurement. The unique two-peak profile of the throughput is a clear indication of the
influence of the buffer size of the NIC driver on the measured throughput.

However, increasing the MTU is unsuitable for most use cases. For instance, when
interconnecting geographically distant data centers over a network controlled by different
ISPs, the MTU must be kept to the standard value to avoid packet fragmentation. This
situation is typical because data centers are often in different regions or states, with
no dedicated connection between them,and the ISPs’ networks use a standard MTU. In
addition, increasing MTU can generally also affect latency, especially for applications with
real-time requirements.

This approach remains valid and usable when the network is entirely under the control
of the entity managing the data centers, as well as on virtual links. For example, Amazon
AWS allows Jumbo frames with an MTU of 9001 bytes. The challenge with these scenarios
is that a VPN technology such as Wireguard can become redundant when complete network
control exists.

For these reasons, even though increasing the MTU can lead to a throughput increase
and remains valid in some use cases, the approach is not feasible in all the complex
situations that may arise. A different approach is necessary, one that can also be combined
with varying the MTU when this is permitted

5.2 Offloading Techniques

5.2.1 Introduction and Main Purpose
An alternative method to obtain the same advantages garnered by augmenting the MTU
value is rooted in offloading techniques. Generally speaking, within the context of network-
ing, offloading a specific function onto the NIC implies that the function is not carried out
by the stack but rather executed by the driver or the hardware of the NIC. This approach
allows for the postponement of specific operations that may be costly, and if enabled in
hardware, it can save CPU cycles. The upcoming sections provides a general overview of
offloading techniques, with a particular focus on their implementation within the Linux
kernel.

5.2.2 TSO,GSO and LSO
When a system needs to send large chunks of data out over a computer network, the
chunks first need to be broken down into smaller segments, with dimensions equal to MSS,
and sent over the stack. This process is called segmentation.

TSO stands for TCP Segmentation Offload and is a technique that delegates the task
of TCP data segmentation to the NIC rather than handling it in the operating system
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(specifically, in the kernel network stack). This feature is enabled by default on most
modern NICs.

The NIC is responsible for dividing large data chunks into TCP segments and adding
TCP and IP headers. This way, large data chunks traverse unaltered all the stack layers,
and they are divided into packets just at the NIC level, reaching the dimension of the
egress interface’s MTU. In Linux, the activation of TSO is contingent on the support for
partial checksum offload and scatter/gather. If the Tx checksum offload for a given device
is disabled, TSO is also disabled.

Checksum offload is another technique in which the NIC calculates the checksums for
IP, UDP, and TCP prior to transmission over the network, saving CPU cycles. Checksums
are bit sequences that play a crucial role in maintaining data integrity. Scatter/Gather
is a technique that enables the transmission or reception of multiple memory buffers via
DMA, which may not be contiguous.

Figure 5.3: TSO

TSO offers several advantages, notably a reduction in CPU usage and overhead. This
reduction is achieved by sending the same amount of data to the NIC using fewer interrupts,
which is particularly beneficial when transmitting large volumes of data. Fewer packets
traverse the stack (due to packet aggregation into large bursts), and the overhead associated
with individual packets is reduced. All these factors lead to an increase in throughput.
There are also some drawbacks: TSO can pose challenges for interactive applications that
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often use small packets and require low latency (a packet may have to wait for other
packets before being sent to the NIC). In addition, programs like tcpdump cannot see
each packet when TSO is enabled because they capture packets before that segmentation
happens and only see large, aggregated packets.

TSO is sometimes indicated also as LSO (Large Send Offload). Specifically, LSO is
more generic and not only related to TCP.

GSO [17] stands for Generic Segmentation Offload. It is similar to TSO and is used
when the driver or the NIC cannot offload. The segmentation phase is delayed as much
as possible. Ideally, it happens in the driver, but more frequently, it is performed in
the lower part of the stack. It supports not only TCP but also UDP. This technique
proves beneficial when dealing with older NICs or when the hardware is virtual, such
as when interconnecting virtual machines (i.e., veth). It is easy to manage because it is
implemented in software, and software is more straightforward to extend than hardware.

Figure 5.4: GSO

The two figures 5.4 and 5.3 illustrate that the various headers at different stack levels
are created only once for the large payload. When the payload is segmented into chunks,
the header is replicated (almost identically, except for the last chunk produced and for
specific fields) and attached to each chunk. After replication, minor modifications are
necessary to adapt the header to the various chunks. Specifically, the length field must be
set in each header that needs it, and the TCP sequence number for each packet must be
correctly set. The final operation involves recomputing all checksums. Segmentation is
performed as late as possible to maintain the benefits of traversing the network stack a
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minimal number of times. If neither GSO nor TSO is used, TCP fragments the data, and
each packet created at the TCP level must traverse the stack.

5.2.3 GRO and LRO
Generic Receive Offload[18] (GRO) is the counterpart of Generic Segmentation Offload
(GSO) on the receive-side. GRO coalesces packets before the upper layers of the stack
process them, and it is invoked as early as possible to maximize its benefits. Coalescing is
done using flows (e.g., the TCP 5-tuple). For each network device, a list of flows being
coalesced is maintained. The GRO function attempts to match an incoming packet with
one of the existing flows. A new flow can be created if there is no match. Alternatively,
the packet goes to the upper layers as if no GRO is enabled. Specifically, if there is a
match with an existing flow and the received packet is the next in sequence, the packet is
coalesced.

Large Receive Offload (LRO) [19] is a feature that can only be used in TCP, not when
IP forwarding is enabled due to checksum errors. Since LRO tries to coalesce all the
incoming packets, it can aggregate packets that belong to different flows, making it less
efficient compared to GRO.

On the other hand, GRO, which supports both UDP and TCP, is more rigorous than
LRO; in fact, it compares the various fields of a packet. The MAC headers must be
identical; only a few TCP or IP headers can differ.

GRO and LRO’s advantages are similar to those of GSO/TSO (fewer packets traverse
the stack, less CPU usage).

Figure 5.5: GRO
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5.2.4 Offloading Techniques in UDP
Since Wireguard is encapsulated in UDP, the offloading techniques related to this protocol
are crucial as they allow more data to be sent and received by the physical interface.

UDP Generic Segmentation Offload (GSO) is an offloading technique introduced by
Willem de Bruijn in the Linux Kernel v4.18 [20]. It is based on the socket options
SOL_UDP/UDP_SEGMENT and aims to replicate what TCP Segmentation Offload
(TSO) does in the context of UDP. This technique was introduced due to the increasing
adoption of the QUIC protocol.

UDP Fragmentation Offload (UFO) is a feature of the Linux kernel in which the network
stack offloads the IP fragmentation functionality of large UDP datagrams to hardware.
The requirements for UFO are similar to those for TSO.

UFO is currently deprecated and no longer used, having been replaced by UDP
Segmentation. In UFO, an application configures a socket to bypass the MTU limit
explicitly, builds large packets, and relies on IP for fragmentation. The fragments can take
different paths over the network, which could pose a problem, especially at the receiver
end, as highlighted in paragraph 5.1.1.

In UDP GSO, the application transmits multiple payloads concatenated. The splitting
occurs at some point (in the NIC or in the driver). Each packet receives the same network
layer header, UDP source, and destination ports. All but the last segment have the same
UDP header, but the last may differ in length and checksum. Segmentation constructs
packets identically to multiple MTU-sized calls, making it transparent to both the network
and the receiver.

Paolo Abeni introduced UDP GRO in the Linux kernel in v5.0. It performs a socket
lookup for each incoming packet and aggregates datagrams directed to UDP GRO-enabled
sockets with a constant L4 tuple.

5.2.5 Improving Wireguard with offloading
From its inception, WireGuard incorporated GSO and GRO in its interface.

WireGuard’s net_device is flagged as supporting hardware-based generic segmentation
offload. This implies that instead of transmitting MTU-sized packets to the driver, it
receives a considerably large "super-packet," typically around 65 kilobytes. Thanks to the
function skb_gso_segment(), it’s possible to divide this "super-packet" into MTU-sized
chunks and assemble these packets into a linked list. Each distinct linked list of packet
groups is then placed in the per-device queue (ring buffer), resulting in a ring of linked
lists.

Listing 5.1: skb_gso_segment() usage example
1 s t a t i c netdev_tx_t wg_xmit ( s t r u c t sk_buff ∗skb , s t r u c t net_device ∗dev )
2 {
3 // omitted code
4

5 i f ( ! skb_is_gso ( skb ) ) {

42



Known WireGuard Optimization Techniques

6 skb_mark_not_on_list ( skb ) ;
7 } e l s e {
8 s t r u c t sk_buff ∗ s eg s = skb_gso_segment ( skb , 0) ;
9

10 i f (IS_ERR( seg s ) ) {
11 r e t = PTR_ERR( seg s ) ;
12 goto err_peer ;
13 }
14 dev_kfree_skb ( skb ) ;
15 skb = seg s ;
16 }
17

18 // omitted code
19 }

Listing 5.1 presents a small snippet of code associated with the wg_xmit() function. This
function is a callback registered in the WireGuard device and represents the initial function
triggered in the transmission path when the interface receives a new packet to encapsulate
and transmit. Among the various operations performed by this function, one notable
operation is segmenting the received skb. This process results in a linked list of skbs that
can be collectively processed in the subsequent steps of the path. This efficient handling
of packets contributes to the overall performance and speed of the WireGuard protocol.

On the receiving end, Generic Receive Offload (GRO) integrates seamlessly into this
model, with clusters of packets from GRO being decrypted in bundles. This allows
WireGuard to leverage the generally high single-threaded performance of modern processors
while still benefiting from the overall speed increase provided by parallelism[12].

The case of Tailscale and Wireguard-go

In 2022 and 2023, the Tailscale team dedicated significant effort to optimizing Wireguard-
go.

Tailscale is basically a VPN service that establishes encrypted point-to-point connections
using the open-source WireGuard protocol in particular the version written in Go, allowing
only devices on a private network to communicate with each other [21].

Wireguard-go internally employs a TUN device to simulate a physical device. In Linux
TUN/TAP [22] facilitates packet reception and transmission for user-space programs. It
can be viewed as a simple Point-to-Point or Ethernet device that, instead of receiving
packets from physical media, gets them from a user-space program and, rather than
sending packets via physical media, writes them to the user-space program. Specifically, in
Wireguard-go, a packet destined for tunneling is transmitted to the TUN interface. The
packet is then brought into user-space, encrypted, and reinjected into the kernel stack
via a UDP socket. The receive path operates similarly: packets are received by the UDP
socket, brought into user-space, decrypted, and then written to the TUN, allowing them
to be received by the TUN as if it were a physical device.

In the initial implementation of Wireguard-go, no offloading techniques were exploited
in either the TUN device or the physical interface. The first improvement made by the
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Figure 5.6: WireGuard-Go’s Transmission Path Architecture including the improvement
introduced by the Tailscale team

Tailscale team [23] was to enable TSO/GSO and GRO techniques on the TUN device.
This allowed segmentation and coalescing to be handled directly by the interface code
rather than by TCP, resulting in fewer packets traversing the stack. Thanks to this
improvement, a vector of packets produced by the GSO (in the transmission path) arrives
in user-space. The second optimization made by Tailscale was to leverage sendmmsg()
instead of sendmsg() when transmitting out of the UDP socket. Consequently, the reverse
direction begins with recvmmsg() instead of recvmsg() at the UDP socket, potentially
returning multiple packets, which are candidates for coalescing just before writing to the
TUN driver. Coupled with TSO and GRO, this can reduce I/O system calls on both ends
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of the pipeline.
The sendmmsg() system call is an extension of sendmsg() that allows the caller to

transmit multiple messages on a socket using a single system call.
Tailscale asserts that with TCP segmentation offload, generic receive offload, and the

mmsg() system calls, significant throughput performance improvements can be achieved
in wireguard-go, and consequently in the Tailscale client (up to a 2.2x improvement in
wireguard-go in the best case). They also claim to have surpassed Wireguard’s kernel
implementation.

Following these changes, Tailscale’s team continued the journey to improve Wireguard-
go [24]. They identified the bottleneck as the time spent, in terms of CPU usage, sending
UDP-encapsulated packets. This time was more significant than the time spent encrypting
the same packets, which also held true in the reception phase.

The issue was that despite using sendmmsg(), the batch of packets was not transmitted
through the stack as a single entity but was divided into single chunks by the UDP layer.
In other words, UDP segmentation was still performed in the UDP layer, leading to the
cost of traversing the stack being paid for each chunk. The Tailscale team recognized that
the solution was to implement UDP GSO and UDP GRO, described in section 5.2.4 in
the physical device to address this problem and further improve throughput.

In addition, they also enhanced the function used to calculate the checksum during GSO
in the TUN interface. With all these modifications, they claimed to achieve a throughput
of 10Gbps for Wireguard-go.

UDP GSO and GRO in Wireguard

One potential approach could be to enhance the kernel version of Wireguard with the
improvements discovered by the Tailscale team. Specifically, throughput is expected to
increase also in the kernel version when UDP GSO and GRO are implemented in the
physical interface.

However, over the past year, not much effort has been made to incorporate this
enhancement into the kernel version. The creator of Wireguard is aware of the modifications
made by the Tailscale team but has not found a solution to integrate them into the main
version of Wireguard. Wireguard still sends each UDP-encapsulated packet into the stack
without grouping it, and it is still not capable of receiving a large packet from the physical
interface.

Although this improvement could be orthogonal to the new Wireguard architecture
proposed in this thesis and could potentially combine the benefits with that version, the
decision made in this thesis is not to focus in this direction due to the high difficulty
involved. A small attempt was made in 2018 during a Google Summer of Code, but it did
not lead to any significant progress [25]
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Wireguard Evaluation

6.1 Testbed

Figure 6.1: Testbed

The testbed involves four machines, as depicted in Figure 6.1. One machine acts as the
traffic source, while another serves as the drain or final receiver. Between them, two other
machines, gw1 and gw2 , are solely involved in forwarding the traffic and operate as VPN
gateways. These machines are interconnected with 32 different Wireguard tunnels.

This setup is implemented as an experiment on CloudLab involving sm220u machines
[26]. Each link operates at a speed of 100Gbit/s and utilizes the Mellanox ConnectX-6
DX as the Network Interface Card (NIC). Every machine is equipped with two Intel Xeon
Silver 4314 16-core processors, each running at 2.40 GHz.

iperf3 is used to exchange TCP data between the source and drain. Multiple iperf3
client-server pairs are used to generate different flows to test multiple tunnels. gw1 and
gw2 are configured so that each flow belongs to a different tunnel. Since the iperf3 test
is unbalanced in a single direction, with the bulk of data moving from source to drain
and only a few ACKs flowing in the opposite direction, this allows for a focus solely on
the impact of the encapsulation procedure on GW1 and decapsulation on GW2, as the
processing of ACKs is negligible. Hyperthreading and idle states on all nodes are disabled
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to avoid inconsistent measurements. All tests are repeated ten times, and the average is
presented.

The actual setup differs from the logical setup described here but does not affect the
results obtained. Employing two machines for the source and the drain was challenging
due to logistical reasons. Therefore, they were consolidated into a single node with two
distinct namespaces, N1 and N2 . N1 is connected to gw1 through a physical interface,
and the same applies to N2 and gw2 .

6.2 Single Tunnel Evaluation
The analysis begins by examining the maximum performance achievable in the single
tunnel scenario, typically used to interconnect two clusters as in the Liqo[2] use case. For
this purpose, an increasing number of TCP flows between the source and the drain machine
are generated in each test, and all flows are encapsulated in a single tunnel established
between gw1 and gw2 .

To evaluate the maximum throughput achievable, steering rules are configured on gw1 ’s
NIC so that the reception of different flows coming from the source occurs on different
cores and doesn’t overlap with the tunnel’s TX worker (i.e., when n_flows <= n_cores -
1).
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Figure 6.2: Aggregate throughput and CPU usage for an increasing number of TCP
flows in a single tunnel setup.

Figure 6.2 provides a visual representation of the analysis. The x-axis shows the number
of flows encapsulated in the same tunnel, while the y-axis represents the throughput. The
blue line depicts the achieved throughput as the number of sessions varies. Conversely,
the bars represent the CPU consumption in both machines, gw1 and gw2 . . Figure 6.2
also indicates that the global throughput remains consistent, unaffected by the number of
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sessions encapsulated within the same tunnel. This behavior happens because while multi-
ple flows allow leveraging multiple cores in the Peer-Selection stage of Encapsulation,
the per-peer stages (Transmission for Encapsulation, Reception, and Forwarding
for Decapsulation) are still limited to a single core. In this experiment, the bottleneck is
represented by the Reception stage on gw2 , which pushes the core up to 90%, limiting
all other stages.

For the same reasons, the global CPU consumption remains the same, varying the
number of flows.

Figure 6.3 presents the CPU usage per single core when a single tunnel manages 32
flows. The CPU usage in gw1 is depicted in blue, while the CPU usage in gw2 is shown in
green.Note that a similar behavior is detected when other flow counts are involved.

For gw1 , core 1 is the most utilized core. It is responsible for transmitting the packets
because it instantiates the tx_worker. The other cores receive packets from the source and
encrypt them in a distributed manner. They also decrypt ACKs from the drain received
by core 20. As previously mentioned, the impact of ACKs is negligible compared to the
direct flow.

In gw2 , core 0 represents the real bottleneck, as its occupation is 100%. It is involved
in receiving packets from the source. Like in gw1 , the other cores are responsible for
decrypting packets and encrypting ACKs from the drain. Core 1 is involved in transmitting
the ACKs. The fact that core 0 of gw2 is fully occupied limits the maximum throughput
achievable in the single tunnel setup to the values seen in Figure 6.2.
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Figure 6.3: Per-core CPU usage on GW1 and GW2 in the single tunnel setup when
handling 32 flows.

6.3 Multiple Tunnels Evaluation
Multiple tunnels can be used to parallelize the per-peer stages in Wireguard, and traffic
can be distributed uniformly across these tunnels. This result can be achieved by creating
multiple Wireguard interfaces in gw1 and gw2 and coupling them.

The previous tests are repeated, assigning each iperf3 flow to a different tunnel to assess
the maximum throughput achievable with this solution. As in the previous test, steering
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rules are configured on the NICs of gw1 and gw2 so that each distinct flow is processed
on a different core, and there is no overlapping between flows related to the reception of
packets and Wireguard tx_workers. With this configuration, it is possible to scale up to
16 tunnels, after which our servers equipped with 32 cores require overlapping (with 16
tunnels, on gw1, 16 cores perform flow reception and 16 cores tunnel transmission).

6.3.1 Results and the problem of the Napi
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Figure 6.4: Aggregate throughput and CPU usage for an increasing number of TCP
flows and corresponding WireGuard tunnels.

Figure 6.4 illustrates the throughput achieved when multiple tunnels are utilized simul-
taneously. Specifically, the y-axis depicts the throughput(on the left) and the percentage
of cpu usage(on the right), while the x-axis represents the number of evaluated tunnels.
The blue and green bars correspond to the CPU usage in gw1 and gw2 , respectively.

The data clearly show that this scenario offers limited scalability. As the number of
tunnels increases to 3, a linear trend in throughput can be observed. However, beyond
this point, the throughput stabilizes at approximately 12/14 Gbit/s, regardless of the
increasing number of tunnels, with minor observable fluctuations.

Upon further analysis, it was possible to trace the root of this behavior to the manner
in which the NAPI(detailed better in section 3.1.5) processes packets received by the
Wireguard interface.

Each peer (tunnel) is associated with a single NAPI context and a matching NAPI
poll() callback in charge of draining its queue. Each peer, in particular, contains a
field of type napi_struct named napi. This field is initialized in the wg_peer_create()
function. This struct napi defines a callback, wg_packet_rx_poll(), which is invoked
when receiving packets from the driver is necessary. The primary purpose of this callback
is to poll the packets that are already in the queue associated with the peer and have been
decrypted by the encryption worker.
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As per NAPI design, each NAPI context can only be scheduled on a single core at a
time.

By default, the NAPI callback is executed inside a softirq, an execution context bound
to a specific core (cannot be migrated), which doesn’t terminate until there’s work to do
(i.e., until the napi_poll() has processed all the packets in the peer queue).

If not already running, a decryption worker schedules the napi_poll() on the softirq
of the current core, otherwise, processing proceeds in the running context. This implies
that the napi_poll() is bound to a specific core until it drains its peer’s queue.

Listing 6.1: wg_queue_enqueue_per_peer_rx function
1 s t a t i c i n l i n e void wg_queue_enqueue_per_peer_rx ( s t r u c t sk_buff ∗skb , enum

packet_state s t a t e )
2 {
3 /∗ We take a r e f e r enc e , because as soon as we c a l l atomic_set , the
4 ∗ peer can be f r e e d from below us .
5 ∗/
6 s t r u c t wg_peer ∗ peer = wg_peer_get (PACKET_PEER( skb ) ) ;
7

8 atomic_set_re lease (&PACKET_CB( skb )−>state , s t a t e ) ;
9 napi_schedule(&peer−>napi ) ;

10 wg_peer_put ( peer ) ;
11 }

To better explain,the function wg_queue_enqueue_per_peer_rx() is invoked after the
packet is encrypted. This function is responsible for changing the state of the current
packet. The state, which is passed as a parameter, can be either CRYPTED or DEAD.
In the first case, the packet was correctly encrypted, while in the second case, there was
an issue during encryption. Following this, the function napi_schedule() is called. This
function kicks the NAPI of the specific peer receiving the traffic.

Since napi_poll()s of different tunnels move to different cores over time, it is likely to
have multiple functions scheduled on the same core. This, however, reduces the amount of
CPU available to each function to drain its queue, making it more likely not to complete
and be stuck on the core. As more napi_poll()s are randomly scheduled on the core
the problem worsens, reducing the likelihood of recovery unless the traffic rate is reduced.
This behavior can turn the core into a “black hole”.

Figure 6.5 depicts this behavior with 8 tunnels by showing the CPU usage for each core
on the gw2 machine.

All cores are involved in decryption operations, which produces a base 10-20% CPU
usage, and cores 1 to 8 are involved in receiving traffic of the 8 tunnels pushing usage to
around 40%.

However, the bottleneck is represented by core 30 where all NAPI contexts are concen-
trated, saturating the capacity of the core. It is important to notice how the bottleneck core
can change among different tests, being the result of the overlapping of probabilistically
moving napi_poll() functions, however, every test consistently ended up in the “black
hole” condition after some seconds.

50



Wireguard Evaluation

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
CPU core

0

25

50

75

100
C

PU
 %

CPU gw2

Figure 6.5: Per-core CPU usage on gw2 when handling 8 flows spread over 8 tunnels.

6.3.2 Results with Threaded Napi

A simple solution is to switch to threaded NAPI by changing a flag associated with the
WireGuard interface.

With threaded NAPI, the poll functions run in the context of preemptible threads,
which can be moved among cores by the scheduler, dynamically avoiding overlapping.This
also means that packets are not always drained in the same core where encryption occurs,
but in our experiments this didn’t have a detectable impact on performance.

Figure 6.6 presents Wireguard’s performance in terms of throughput and CPU usage
when multiple tunnels are used in parallel. It compares two scenarios: one using the
standard NAPI (also depicted in Figure 6.4) and another adopting the threaded NAPI.

With the adoption of threaded NAPI, the aggregate throughput approaches a value near
50Gbps, and the CPU usage is nearly maximized. In this scenario, performance scales
with the number of tunnels, and Wireguard can exploit almost all resources available on
the two gateways. However, the scaling is still far from linear, and this version cannot
saturate the 100 Gbps links.

The red line represents the linear case derived from the throughput that Wireguard
with threaded NAPI achieves with one tunnel. As can be seen, the blue line, representing
Wireguard with threaded NAPI, deviates significantly from the red one, and this deviation
increases with the number of tunnels tested.
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Figure 6.6: Aggregated Throughput and CPU usage on gw1 and gw2 comparing Standard
NAPI and Threaded NAPI

6.3.3 Final Considerations
Using threaded NAPI combined with parallelism (multiple instances of Wireguard operating
simultaneously) can achieve high aggregated throughput. This result can be obtained by
simply creating a specific number of linked interfaces on the two machines and changing
a flag in each interface. However, there is potential for further improvement. The next
chapter suggests practical changes to the internal architecture of Wireguard to exceed the
results outlined in this section.

Nevertheless, using threaded NAPI with parallelism is a practical compromise. It allows
for achieving high, although not optimal, throughput without requiring any modifications
to the inner architecture of the module. The only requirement is to set an appropriate flag
on each involved interface. Importantly, there is no need for additional code or installing
additional modules, providing a straightforward solution.
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Simply adding tunnels in parallel does not result in linear scaling. To overcome the limita-
tions identified in section 6, the overheads stemming from Wireguard’s split architecture
are entirely eliminated.

7.1 Limitations and Overhead of Wireguard
In Wireguard to allow scaling parallelizable stages (en/decryption) while keeping other
stages serial, the processing is performed in a pipeline of different contexts (i.e., syscall-
s/softirqs and workers), potentially executed on different cores. This behavior, however,
entails synchronization overheads needed to exchange packets among contexts through
rings. Additionally, contexts running on different cores lead to cache misses when accessing
the same packet, while contexts on the same core require additional context switches.

Handling core-context mapping is currently not possible, since WireGuard does not
provide a mechanism to set the affinity of TX and en/decryption workers, nor to set the
number of the latter, which defaults to the number of machine cores. This limitation, for
example, leads to en/decryption workers overlapping with all other tasks running on the
gateway.

On the other hand, leveraging multiple tunnels already provides a way to achieve
multi-core scalability, allowing a simpler processing model for individual tunnels.

As a result, a new version of the WireGuard module, called WireGuard Inline, has
been developed.

7.2 Idea and Main Changes
The main idea behind WireGuard Inline is to handle a packet’s whole lifecycle, including
encryption and decryption, in a single context on a single core, relying solely on multiple
tunnels to scale on multiple cores.

This objective is achieved by eliminating the per-device ring buffer queue, which is used
in packet encryption and decryption, and removing all the workers associated with these
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two phases. This change is made in both Encapsulation and Decapsulation.
Additionally, in the encapsulation path, both the per-peer queue and the worker

associated with transmission are removed. This is feasible because the main purpose of
the per-peer queue is to maintain the order of transmission. However, within the same
flows, this order is necessarily maintained when encryption is performed inline, which is a
consequence of the removal of encryption workers.

As a result, packets are encrypted and transmitted over the tunnel in the same softirq
or syscall context in which they are received. In the decapsulation path, the per-peer
queue is retained to comply with the NAPI mechanism, which requires a list of packets to
poll. Still, the NAPI is scheduled on the same softirq that receives UDP traffic from the
tunnel.

It’s evident that these modifications can lead to a decrease in performance, in terms
of throughput, for a single tunnel, as parallelism in decryption/encryption is no longer
exploited. In fact, a single flow exchanging a lot of traffic will not be able to scale on multiple
cores. However, at the same time, it is advantageous with many parallel tunnels, because
the operations of one tunnel do not affect the others. Furthermore, it’s unnecessary to
change cores in the various phases of packet processing. This implementation is associated
with reduced CPU usage because only one core is exploited for all operations.

Moreover it is possible to move all computation by setting where softirqs are handled
(i.e., changing RSS rules) or, during encapsulation, controlling where the syscall is executed.
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Figure 7.1: WireGuard Inline processing distribution on CPU cores in a 2 tunnels setup
(note that, even if not represented here, a single core might encapsulate multiple tunnels).

7.3 Wireguard Inline Code

7.3.1 Transmission Path
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Listing 7.1: Implementation of the wg_packet_create_data() function in the send.c file
incorporating modifications for inline WireGuard

1 s t a t i c void wg_packet_create_data ( s t r u c t wg_peer ∗ peer , s t r u c t sk_buff ∗
f i r s t )

2 {
3 s t r u c t no i se_keypair ∗ keypa i r ;
4 enum packet_state s t a t e ;
5 s t r u c t sk_buff ∗skb , ∗ next ;
6 rcu_read_lock_bh ( ) ;
7 i f ( u n l i k e l y (READ_ONCE( peer−>is_dead ) ) )
8 goto e r r ;
9 keypa i r = PACKET_CB( f i r s t )−>keypa i r ;

10 skb_list_walk_safe ( f i r s t , skb , next ) {
11 i f ( l i k e l y ( encrypt_packet ( skb , keypa i r ) ) ) {
12 wg_reset_packet ( skb , t rue ) ;
13 s t a t e= PACKET_STATE_CRYPTED;
14 }
15 e l s e {
16 s t a t e = PACKET_STATE_DEAD;
17 break ;
18 }
19 }
20 i f ( l i k e l y ( s t a t e == PACKET_STATE_CRYPTED) )
21 wg_packet_create_data_done ( peer , f i r s t ) ;
22 e l s e
23 k f r e e_skb_l i s t ( f i r s t ) ;
24

25 wg_noise_keypair_put ( keypair , f a l s e ) ;
26 wg_peer_put ( peer ) ;
27 i f ( need_resched ( ) )
28 cond_resched ( ) ;
29

30 rcu_read_unlock_bh ( ) ;
31 re turn ;
32 e r r :
33 /∗ Error handl ing code ∗/
34 }

The code remains unchanged from the original version until the function
wg_packet_create_data() is reached. The original purpose of this function is to call the
function wg_queue_enqueue_per_device_and_peer(), already seen in Listing 4.1, with
the appropriate parameters to enqueue the packets in the per-device ring and the per-peer
queue.

In the updated version of the function, depicted in Listing 7.1, two variables are
declared at the outset: a keypair variable of type noise_keypair, which is populated
with the keypair of the first skb in the received list, and a state variable of type enum
packet_state.

The received linked list of skbs is then traversed, and each element is encrypted by
calling the encrypt_packet function. In the standard version, this function was originally
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invoked by the encrypt worker.
If the encryption of at least one element in the list fails, the state variable is updated

to PACKET_STATE_DEAD. However, if no errors occur by the end of the loop,
this variable is set to PACKET_STATE_CRYPTED. Note that a list of skbs is
involved. This is because, as previously explained, the Wireguard interface implements
GSO. Consequently, the list is composed of various chunks, each obtained by segmenting
a large packet.

Upon successful completion, the function wg_packet_create_data_done() is called.
This function is responsible for transmitting the packets toward the physical interface; this
operation is done in the same core. From this point onward, the remainder of the path
mirrors the original version.

7.3.2 Receive Path

Listing 7.2: Implementation of the wg_packet_consume_data() function in the receive.c
file incorporating modifications for inline WireGuard

1 s t a t i c void wg_packet_consume_data ( s t r u c t wg_device ∗wg , s t r u c t sk_buff ∗
skb )

2 {
3 __le32 idx = ( ( s t r u c t message_data ∗) skb−>data )−>key_idx ;
4 s t r u c t wg_peer ∗ peer = NULL;
5 enum packet_state s t a t e ;
6

7 rcu_read_lock_bh ( ) ;
8 PACKET_CB( skb )−>keypa i r =
9 ( s t r u c t no i se_keypair ∗) wg_index_hashtable_lookup (

10 wg−>index_hashtable , INDEX_HASHTABLE_KEYPAIR, idx ,
11 &peer ) ;
12 i f ( u n l i k e l y ( ! wg_noise_keypair_get (PACKET_CB( skb )−>keypa i r ) ) )
13 goto err_keypair ;
14

15 i f ( u n l i k e l y (READ_ONCE( peer−>is_dead ) ) )
16 goto e r r ;
17 s t a t e=l i k e l y ( decrypt_packet ( skb , PACKET_CB( skb )−>keypa i r ) ) ?
18 PACKET_STATE_CRYPTED : PACKET_STATE_DEAD;
19

20 i f ( u n l i k e l y ( ! wg_prev_queue_enqueue(&peer−>rx_queue , skb ) ) )
21 { goto e r r ; }
22 rcu_read_unlock_bh ( ) ;
23 atomic_set_re lease (&PACKET_CB( skb )−>state , s t a t e ) ;
24 napi_schedule(&peer−>napi ) ;
25

26 re turn ;
27

28 e r r :
29 /∗ e r r o r handl ing code ∗/
30 }
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The primary modifications take place in the wg_packet_consume_data() function. The
original purpose of this function is to call the wg_queue_enqueue_per_device_and_peer()
function, previously seen in Listing 4.1, with the appropriate parameters to enqueue the
packets in both the per-device ring and the per-peer queue.

In the inline version of the function, a variable named state is used to indicate the
state of the packet. In this scenario, only one packet is received by the interface because,
as previously observed in section 5.2.5 Wireguard does not implement UDP GSO. The
function calls the decrypt_packet() function on the skb received as a parameter. In the
standard version, this function is executed by the decryption worker on a CPU that is
selected in a round-robin manner.

If the decryption is successful, the state variable is set to
PACKET_STATE_CRYPTED; otherwise, it is set to PACKET_STATE_DEAD.

The packet is then placed in the rx_queue, and its state is altered based on the value
of the state variable. No additional modifications are made in the receive path. With the
call to napi_schedule(), a napi poll function is instantiated, if not already active, on the
same core where this computation has occurred.

7.4 Peformance Evaluation
The tests for the inline version are conducted using the same setup as described in Section
6.1. Specifically, during these tests, how the interrupts from source or drain machines are
distributed among the various cores of gw1 and gw2 is controlled.

For WireGuard Inline, each gateway has two softirqs for each tunnel: one receives
non-tunneled traffic from the source/drain, and the other receives tunneled traffic. Both are
scheduled on the same core, ensuring each tunnel occupies just one core and distributing
the tunnels across the available cores.

In contrast, for WireGuard Vanilla, interrupts are managed as outlined in Section
6.1. Each flow is associated with a unique core, and we try to avoid overlap with the
TX Workers. However, when the number of tunnels reaches 16, some degree of overlap
becomes inevitable. It is important to note that in the Vanilla version, the process of
encryption/decryption remains distributed among all cores. Therefore, the NAPI instances
can also be scheduled on all available cores.

WireGuard Inline, on the other hand, can utilize all 32 cores of the machines, instanti-
ating 32 tunnels without any overlap between them.

Figure 7.2 depicts the test results. It is possible to observe a trend in the throughput
for WireGuard Inline, represented in green, that, while not strictly linear, is not far from
linearity. The throughput reaches approximately 90 Gigabit/s when 32 tunnels are utilized,
and all available cores are engaged.

The data regarding WireGuard Vanilla, previously presented in blue in Figure 6.6 using
only 16 parallel tunnels, are expanded in this Figure to include tests with 32 tunnels.
In particular, the throughput, depicted in blue, ceases to increase when more than 16
tunnels are in use. This behavior is attributed to CPU utilization. In fact, with 16 tunnels,
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Figure 7.2: Comparison of CPU Usage and Throughput for WireGuard Inline and
WireGuard Vanilla

WireGuard Inline uses less than half of the total available CPU (on both machines GW1
and GW2), whereas WireGuard Vanilla nearly exhausts all the available resources.

When fewer than 12 tunnels are leveraged, the Vanilla version of WireGuard achieves
a higher throughput, albeit at a much higher CPU cost (more than 2x). This behavior
highlights how the modifications introduced in Wireguard inline decrease the throughput
for a single tunnel, as parallelism in encryption/decryption is no longer exploited.

Figure 7.3 illustrates the core occupancy of gw1 when 16 tunnels are exploited for both
WireGuard Vanilla (depicted in green) and WireGuard Inline (depicted in blue). As can
be observed, WireGuard Vanilla tends to occupy all the machine cores, leading to resource
exhaustion. In contrast, WireGuard Inline, which performs encryption and decryption on
the same cores where the packets are received, only occupies the core associated with the
tunnel. This results in an occupation of half of the machine’s resources. In other words,
WireGuard Inline has sufficient CPU to scale beyond 16 tunnels.

The same pattern is observed in gw2 in figure 7.4. Since transmission is the bottleneck
for the Inline version, WireGuard Inline’s occupancy is further reduced. In fact, each core
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Figure 7.3: CPU Usage per Core in GW1 with 16 Tunnels in Use

Figure 7.4: CPU Usage per Core in GW2 with 16 Tunnels in Use

associated with a tunnel is 80% occupied.

7.4.1 Efficiency Measure
Throughput and CPU usage can be compared using a single metric that encapsulates
both components and measures efficiency. This metric, termed “throughput per core,” is
defined as the throughput associated with a single core when a certain number of tunnels
are exploited. It is expressed in Gigabit/s (per core).

The calculation of this metric is done according to the formula

Throughput per core = Throughput1
%CPU

%CPU1core

2 = Throughput
Number of cores occupied

in wich the measured global throughput associated to a certain number of tunnels is
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Figure 7.5

divided by the number of cores occupied by those tunnels.
Specifically, the number of occupied cores is determined by dividing the globally

measured CPU percentage by a constant, 3.125%. This constant is specific to the setup
and represents the CPU percentage equivalent to one core. Given that our machine has 32
cores, a single core occupies a CPU percentage equal to 1

32 = 3.125%.
A higher value for this metric is preferable, as it indicates either high throughput or

low CPU usage. This metric was calculated on both machines, GW1 and GW2, while
exploiting an increasing number of parallel tunnels.

Figure 7.5 illustrates the metric’s results. Specifically, the metric was evaluated on
both gw1 and gw2 for both the Vanilla and Inline versions of WireGuard. Even though
WireGuard Vanilla’s absolute throughput is higher for a small number of tunnels, its
efficiency is approximately half that of WireGuard Inline. However, as the number of
tunnels increases, the values for WireGuard Inline show a slight decrease, suggesting that
the throughput is not perfectly linear.
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Chapter 8

Conclusions and Future Work

This work was inspired by the challenge faced by various technologies, such as Liqo and
Submariner, which were used to interconnect remote clusters. These technologies struggled
to achieve substantial throughput, often peaking at just a few Gigabits per second. The
underlying architecture, which relied on Wireguard, was identified as the root of the
problem. Consequently, Wireguard was selected as the technology to optimize in order to
improve the performance observed in the cases mentioned above.

The thesis initially analyzed Wireguard’s performance and the issues that prevented
scalability with its current architecture despite its inherent parallelism. This lack of
scalability was attributed to the presence of several serial stages that acted as bottlenecks.
Specifically, the thesis demonstrated that it was impossible to increase throughput in a
single tunnel scenario by only increasing the number of encapsulated flows because the
bandwidth was divided among the various flows.

Then, the thesis examined the established methods to enhance Wireguard’s throughput,
highlighting their orthogonality to the approach adopted in the subsequent work. It
concluded that increasing the MTU is beneficial as it allows for throughput enhancement,
but its applicability is limited to a few specific use cases. Techniques such as Generic
Segmentation Offload (GSO) and Generic Receive Offload (GRO) (with their associated
variants) that enabled the offloading of packet segmentation and coalescing to the NIC were
deemed interesting. However, their full integration into the kernel version of Wireguard
posed significant challenges.

Parallelism, or the instantiation of multiple tunnels, was recognized as the preferred
method for scaling. However, it was demonstrated that merely parallelizing Wireguard
Vanilla did not enhance performance. This poor performance was caused by another issue
related to the superimposition of different napi_poll() functions on the same core. A
preliminary mitigation was proposed to address this issue: enabling threaded napi on
all Wireguard interfaces. While suboptimal, this initial solution did not require code
modification; only a flag needed to be set. It is immediately available and allows for
significant performance improvement, achieving around 50Gbps in the testbed used. It
represents a good compromise, offering high throughput with slightly reduced efficiency.
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Subsequently, a novel Wireguard architecture optimized to exploit parallelism was
proposed. This architecture was designed to eliminate all overhead associated with
having multiple instances of Wireguard in parallel. In particular, all queues that allowed
parallelism in the context of a single tunnel were removed, resulting in a version that could
process each packet in the context of a single softirq. This version demonstrated impressive
throughput, surpassing Wireguard Vanilla when several tunnels (>12) were utilized. In
the chosen setup, it was able to achieve a throughput close to 90 Gbps, nearly doubling
the performance of the vanilla version. It also exhibited improved efficiency compared to
Wireguard Vanilla.

As stated in the introduction, this is merely a starting point. There are some limitations
associated with this architecture and several open points that could be considered future
opportunities.

8.1 Current Limitation
There are some limitations to the proposed architecture.

• The current version was implemented in kernel space by modifying the kernel module
and reinstalling the kernel on gw1 and gw2 . If the goal is to distribute this version,
there are two ways:
The first is to distribute a custom kernel that will be installed on the machine. This
approach is not within the reach of an average user. In addition, recompiling the
kernel is a slow procedure that takes time. Furthermore, companies often rely on
managed versions of the kernel and are not willing to change that version because
they would lose all the support.
The second is to push the modifications to the current kernel version. This means a
public version requires 2-3 years to be usable. This is because patches need to be
accepted and merged into the kernel, and then the kernel should be adopted by the
main Linux distributions. Both of these strategies are inefficient. An alternative
could be to develop a userspace implementation, as will be explained in the following
section.

• The current modifications decrease the throughput for a single tunnel, as parallelism
in encryption/decryption is no longer exploited. While this does not represent a
problem when a high number of flows can be spread across multiple tunnels, it could
be a limitation if we have few large flows since each flow is limited to a single tunnel
and hence cannot be parallelized. This problem can be solved with a hybrid approach.

8.2 Future Work
• Splitting Sessions Across Various Tunnels:

In all the tests conducted in Chapter 7, sessions were manually limited to specific
tunnels. To better leverage WireGuard Inline, a fair distribution mechanism among
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the various tunnels is essential. There are already several potential starting points
integrated into the Linux Kernel.
One such starting point is ECMP (Equal-Cost Multi-Path routing), a standard
method for network load balancing. Essentially, a router connected to multiple
gateways (for instance, multiple ISPs) can balance outgoing connections to enhance
the total available bandwidth. This solution is applicable when multiple WireGuard
interfaces to the same destination exist, and all the routes towards these interfaces
have the same cost. Consequently, traffic is distributed among the various interfaces
according to configurable rules, the simplest of which is to use the hashing of the
5-tuple (hashing can be configured at Level 3 or Level 2). To prevent out-of-order
packets, ECMP hashing is performed on a per-flow basis; all packets with identical
header fields always hash to the same next hop. If applied to WireGuard, this solution
is simple (a single command is sufficient to enable it) and resilient (if one tunnel fails,
the route remains valid as long as at least one tunnel is operational).
Another solution is BONDING[27]. This solution achieves the same result as ECMP
but is more complex. The Linux bonding driver provides a method for aggregating
multiple network interfaces into a single logical “bonded” interface. This method is
more complex than ECMP because bonding allows for aggregating interfaces at the
L2 level, but the WireGuard interface is an L3 interface. In other words, WireGuard
interfaces are associated only with an IP address but do not have a MAC address,
preventing them from being aggregated at the L2 level. To solve this issue, it is
necessary to build a GRETAP interface (or an equivalent variant) on top of the
WireGuard one. GRETAP operates at OSI Layer 2, encapsulating an L2 packet (for
example, Ethernet) inside an L3 packet (for example, IP).
The use of a GRETAP interface introduces additional challenges. For instance,
there is a reduction in the MTU and an associated decrease in performance for two
reasons: the overhead is increased, and it is necessary to pass through two levels of
encapsulation. Specifically, the resulting MTU for a GRETAP interface built over a
WireGuard interface using IPv4 is:

1500 B − 20 B(IPv4) − 8 B(UDP) − 32 B(WireGuard)
− 20 B(IP Gretap) − 4 B(GRE) − 18 B(Ethernet) = 1398 Byte

Figure 8.1: Overhead and MTU size when using GRETAP interface over Wireguard
interface
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Another challenge is that in this scenario, it is more difficult to perform GSO in the
WireGuard interface, leading to a further decrease in performance. This is because
the GRETAP interface cannot send a large packet over the WireGuard interface but
is limited to sending only one packet at a time.
The overarching idea is to develop a method for splitting sessions in the various
tunnels based on one of these two techniques.

• Dynamic Tunnel Management:
A mechanism to manage the creation of tunnels and their distribution across different
cores could boost efficiency. This mechanism should have the ability to relocate a
tunnel if its assigned core is engaged by another resource-intensive process, prevent
tunnel overlap (i.e., multiple tunnels on the same core), and allocate the ideal number
of tunnels to match the current number of sessions.

• Hybrid Mechanism that Integrates Wireguard Vanilla and Wireguard
Inline:
WireGuard Vanilla continues to be the ideal solution for managing elephant flows. To
boost performance and adaptability, a mechanism capable of determining the optimal
moment to switch from Vanilla to Inline could ensure peak performance across all
traffic patterns

• Userspace Implementation:
Given the time needed for the kernel version to become available and distributed,
one approach could be to incorporate the modifications introduced in WireGuard
Inline into one of the userspace versions discussed in Section 4.1.3. The feasibility of
applying the Inline version to the userspace variant of WireGuard should be evaluated.
If viable, due to the complexity of the task and the architectural differences between
userspace and kernel space, it’s estimated that a minimum of six months would be
required to implement these changes in one of these versions.
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