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Abstract

This research aims to optimize ascent trajectories for satellite launches into Sun-
Synchronous Orbits (SSO) while minimizing propellant usage during launch to
maximize payload capacity. The study evaluates various launch sites and directions,
incorporating the multi-stage dynamics of the launch vehicle to accurately model
the ascent trajectories and different mission launch times to evaluate performance in
regard to the final Local Time of Ascending Node (LTAN) that the insertion orbit
should have.

The optimization technique employs an indirect method rooted in optimal control
principles and Pontryagin’s Maximum Principle, aiming to identify a trajectory that
maximizes the Hamiltonian, thereby minimizing propellant use. Considering the
vehicle’s proximity to Earth during launch and orbital insertion, the dynamical model
incorporates Earth’s gravitational effects and uses the Harris-Priester Atmospheric
Density Model to accurately account for atmospheric drag under aerothermodynamic
constraints.

A tailored scenario was created to simulate the ascent of a launch vehicle aimed
for insertion into a Low Earth SSO. This simulation was structured to determine
the necessary co-states for deriving optimal control solutions. Results indicate that
variations in launch site significantly influence propellant use, thereby impacting
the payload capacity deliverable to orbit. Furthermore, although the optimal ascent
trajectory exhibits consistent characteristics, it is significantly affected by the chosen
atmospheric drag model and the specific local time of ascending node (LTAN)
settings.
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Chapter 1

Introduction

The observation of the heavens has evoked in humans a profound sense of wonder,
which has manifested itself as an undying curiosity throughout the ages, driving
them toward the pursuit of knowledge and the exploration of the mysteries hidden
within the universe. This impulse was particularly felt by Galileo Galilei, who, in
the 17th century, gave way to some of the most revolutionary discoveries in the field.
He was the first to observe the moons of Jupiter and one of the first to take a detailed
look at the surface of the moon, anticipating and expanding on the fascination felt
by us all for our dreary satellite. Later, Johannes Kepler laid the foundations for
future space exploration with his laws of planetary motion, which were essential
for understanding the orbits of the planets. In the early 20th century, Konstantin
Tsiolkovsky revolutionized astronautics with his theory of liquid-fuelled rockets [1].
He anticipated key concepts essential for space access and developed fundamental
relationships which are still used today.

These incredible breakthroughs, which can be said to constitute the pillars of the
field, paved the way for rocket propulsion and for future advances in exploration
beyond the Earth’s atmosphere. Tsiolkovsky’s innovative work inspired Robert H.
Goddard, who built and successfully launched the first liquid propellant rocket in
1926. This marked the beginning of the modern era of space exploration. These
developments charted a course from astronomical observation to humanity’s conquest
of space exploration.

Access to space marked a revolutionary chapter in the history of mankind. It
encouraged ambitious initiatives to explore beyond frontiers that had previously
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only been imagined. In addition to the ideological and military struggle between the
United States and the Soviet Union during the cold war, a deep interest in science
and technology also fuelled these ambitions. Once tensions had died down after the
election of president Gorbačëv the once opposing nations used advanced missile
technologies that had been extensively probed during the war to develop vehicles
capable of carrying payloads into space. This geopolitical rivalry acted as a catalyst
for the development of space exploration, which accelerated technological progress
and pushed human ambitions beyond the simple placement of satellites in orbit to
missions involving the launch of living beings into space.

This period witnessed significant historical events, starting with the launch
of Sputnik 1 by the USSR in 1957, which marked the beginning of the artificial
satellite era. This was followed by a historic milestone in 1961 with Yuri Gagarin
aboard Vostok 1, becoming the first human in orbit. Another defining moment was
NASA’s Apollo 11 mission in 1969 [2], which fulfilled humanity’s age-old dream
of landing the first men on the Moon. Other relevant achievements include the
launch of Skylab in 1973, the first American space station, and the Voyager 1 and
Voyager 2 probes in 1977, sent to explore the planets at the edge of the solar system.
Lastly, the deployment of the Hubble Space Telescope in 1990 opened new horizons
in astronomical observation, providing unprecedented high-quality images of the
universe [3]. Since then, these missions have been the subject of considerable media
interest and the catalyst for unprecedented advances in scientific knowledge.

The exploration of space in the 20th century was made possible by the significant
contributions of eminent engineers who were involved in the development of the first
ballistic missiles. During this period, only the United States and the Soviet Union had
the technological capabilities for undertaking space launches. Werner von Braun’s
1944 V-2 rocket made history being the first rocket to achieve suborbital flight. In
1957, in the Soviet Union, Sergei Korolev developed the R-7 Semyorka, used to put
Sputnik into orbit. In the United States, von Braun led the development of the Saturn
V in 1967, crucial for the Apollo missions. In 1981, the Space Shuttle programme
was launched and marked a further step forward with the introduction of reusable
space vehicles [4]. Over time, several other countries, such as Europe, China, India,
Israel, Japan, and Korea, have expanded their capabilities by developing autonomous
launchers. The space exploration landscape has been enriched by private companies
such as SpaceX with its Falcon 9 [5] and Blue Origin with its New Glenn [6]. Their
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significant innovations, including reusable rockets, have transformed space access
into a more affordable and sustainable endeavour.

Aerospace research and development has resulted in the creation of advanced
launch vehicles capable of carrying large and heavy payloads. The designs of these
launchers have evolved over time, adopting new shapes, sizes, and particularly a
multi-stage structure. This approach, featuring multiple stages with independent
engines, activated at different stages of flight, has been able to optimise fuel con-
sumption and increase overall launch efficiency to previously unattained levels.

Fig. 1.1 Sketch of some launch vehicles

These changes, characterised by a wider and more diverse approach to space
exploration, have ushered in a new era of commercial and private research endeavours.
The ongoing technological advances in the space sector have made it possible to
develop bold projects, ranging from space tourism to the prospect of colonising Mars.
These initiatives have managed to capture the interest of the public and motivate
numerous generations to explore the limitless possibilities of space exploration.
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1.1 Motivations and Objectives

Nevertheless, despite the existence of many innovative projects, challenges and
constraints must be addressed. A critical issue is the relationship between the
capacity of the payload and the amount of propellant needed to reach orbit, which
are interdependent factors having a direct impact on the scope of the missions.

These dynamics prompt the question of the feasibility of space exploration and
highlight the need for targeted research to investigate all aspects of missions, with a
particular focus on the launch phases, which are critical for the mission success.

1.1 Motivations and Objectives

This thesis explores the design and optimization of ascent trajectories with the aim
of maximizing the payload that can be transported into orbit through the integration
of optimization techniques.

The objective of the current study is to analyse the ascent trajectory of a launcher
from defined geographic coordinates - latitude (LAT) and longitude (LONG) - in
relation to its launch base. This analysis then proceeds to the positioning of the
spacecraft (SC) in a predefined orbit, specifically, Sun-Synchronous Orbits (SSOs),
which were chosen from various Low Earth Orbits (LEOs) due to their distinctive
characteristics. The advantageous possibility offered by SSOs is that they permit
the SC to fly over specific areas of the planet at the same local time with each pass.
The international scientific community has evaluated this capability with particular
reference to its potential applications in Earth observation missions. The stability of
lighting conditions in the observed areas allows SSOs to be employed efficiently for
global coverage, enabling extensive mapping of the Earth’s surface. Furthermore,
their nature allows repeated observation of specific regions, making them invaluable
tools for monitoring environmental changes over time.

The undeniable advantages offered by SSOs have permitted the launch of a wide
variety of space missions with diverse objectives. These include the monitoring of
ocean dynamics, climate variables, terrestrial ecosystems, and global security. The
deployment of numerous satellites with the capacity to maintain constant vigilance
over the planet has been prompted by the desire of prominent space agencies such
as ESA, NASA, JAXA, CSA and CNES to meticulously record every change on
the earth’s surface. In this context, these agencies, in addition to undertaking
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1.1 Motivations and Objectives

extensive collaborative initiatives with various private entities, including SpaceX,
have successfully executed numerous missions that have made space more accessible.
The growing interest in SSOs can be evidenced by a number of emblematic examples
of mission programs, including the Copernicus Sentinel Program, the EOS AM &
PM missions, JPSS, Calypso, Sentinel-6, SAOCOM, RADARSAT, ICEYE, and
many others.

The principal challenge of this study is the modelling of an ascent trajectory.
The dynamic model employed analyses the gravitational effect of the Earth on
the launcher, narrowing down on a simplified version of the problem regarding
the interaction of many celestial bodies. Furthermore, the model incorporates the
most influential effect, namely drag perturbation due to Earth’s atmosphere. By
adopting the Harris-Priester atmospheric model, density can be more effectively
taken into account for the drag computation. This in turn permits a better description
of the launcher performance and allows the study to reflect the reality of the case
more faithfully. Launch vehicle utilizes chemical propulsion, in light of that all the
manoeuvres will be treated as impulsive. This approach facilitates the simulation of
the launcher’s stage , a crucial aspect for ensuring efficient access to space. Efficiency
gains are achieved through the progressive reduction of the launcher’s total mass,
which optimizes the use of propellant. Furthermore, the modularity of each of the
stages allows for greater flexibility in the configuration of the engines, thus enabling
them to be adapted to the mission-specific requirements. In addition, the stage
separation enhances safety and reliability, as it reduces the associated risks with the
residual propellant.

In this complex context, the primary objective is to identify the optimal trajectory
among the various possible options, distinguishing the best solution from suboptimal
ones. To this end, it is crucial to employ advanced numerical methods for the
analysis of continuous-time optimization problems, which provide guidance on how
to enhance suboptimal solutions. In this thesis, the optimization of a trajectory is
performed with indirect methods (IM) based on Optimal Control Theory (OCT).
These methods, which will be explored in greater detail in subsequent chapters, aim
to efficiently identify local optima with robust convergence properties. This approach
allows for the identification of the most relevant local optima, enabling the selection
of the global optimum among them. The problem is treated as a Boundary Value
Problem (BVP) and is resolved through iterative approaches based on Newton’s
method [7].
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1.2 Thesis Overview

The secondary objective of this study is to compare the outcomes produced by a
theoretical model created with actual data obtained from a SpaceX launch, which
took place for the ICEYE mission [8]. This analysis is crucial for evaluating the
precision of the proposed model by comparing aspects such as propulsive expenditure
and timing with those observed during the real mission. The comparison aims to
identify discrepancies between the theoretical model and its practical application, by
analysing the causes of these discrepancies and quantifying the margin of error. This
approach not only validates the model’s reliability but also provides critical insights
for future enhancements and refinements.

1.2 Thesis Overview

A concise overview of the contents of the thesis is provided herein.

• Chapter 2 explores the dynamic model that governs the evolution of the launch
vehicle over time. The chapter opens with a comprehensive examination of
the reference systems utilized, subsequently followed by an exposition on
fundamental astrodynamic concepts. Subsequently, theoretical concepts that
are essential for comprehending the model are addressed, including the n-body
problem and its simplified case, ascent models and sun-synchronous orbits.
Moreover, the chapter introduces the primary perturbative effect considered in
the context of a medium-fidelity model.

• Chapter 3 provides an overview of optimal control theory, including both direct
and indirect methods. It demonstrates the numerical instruments utilised for
solving optimisation problems and examines the theoretical insights offered
by indirect methods, along with specific algorithms and operations designed
to enhance method convergence. Finally, it explores the practical application
of the theory in the case study, focusing on the optimisation domain of a
launcher’s ascent trajectory.

• Chapter 4 provides the essential details on the prescribed initial and final
boundary conditions. Furthermore, it analyses the optimum solutions of
assorted ascent trajectories obtained by varying the launch point in a Two-
Body Problem. The distinct scenarios are presented and discussed with the
objective of identifying the optimal launch strategy.
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1.2 Thesis Overview

• Chapter 5, in conclusion, presents a comprehensive summary of the work
undertaken, highlighting the principal results obtained. In addition, it suggests
avenues for future research with the aim of further enhancing the realism and
accuracy of the model.
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Chapter 2

Dynamic model

Chapter two presents the dynamic model implemented for the analysis of a launch
vehicle’s ascent to a Sun-Synchronous Orbit (SSO). This study is based on a medium-
fidelity model that utilises the two-body motion equations and incorporates one
of the most significant perturbative accelerations in the initial phases of flight,
namely aerodynamic drag. Furthermore, supplementary considerations were made
to implement the staging phase by defining successive thrust arcs and introducing
additional details for a more thorough analysis.

The initial section of the Chapter introduces the reference systems that are
necessary for accurately describing the motion of the launch vehicle. Subsequently,
the following section addresses astrodynamics concepts. It begins with Kepler’s
laws and proceeds to discuss the n-body problem and its simplification into the
two-Body Problem (2BP), along with the resulting closed-form solutions. The third
section introduces the equations of motion that describe the evolution of the launch
vehicle during ascent. It places particular emphasis on propulsive expenditures and
the adopted ascent model, including details related to staging. The fourth section
offers insights on SSO, including an analysis of their advantages and the methods
for defining and modelling such orbits. Finally, the last section presents information
on drag and its incorporation into the dynamic model.

For the sake of clarity, the notation employed throughout this thesis for the
clear and concise expression of formulas and equations is explained in detail, unless
otherwise specified. The vectors will be presented in lowercase bold font (xxx), with
the sole exception of known quantities (e.g., velocity VVV ), which will be presented as
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2.1 Reference Frames and Systems

column vectors. Instead, unit vectors will be identified through the use of bold letters
and a hat (x̂xx). The matrices will be represented using the uppercase bold font (AAA).
Time derivatives, for both scalars and vectors, will be marked with one or multiple
dots depending on the order of derivation (ẋ, ẍ, ẋxx, ẍxx). Moreover, Greek letters are
used to express angles and other quantities. Lastly, to indicate those quantities that
have undergone mathematical manipulation, such as non-dimensionalisation, a tilde
will be used (x̃, ˜̇x, ˜̈x, ...).

2.1 Reference Frames and Systems

A Reference System (RS) is a theoretical concept that establishes the necessary
principles for measuring a physical quantity. A generic RS is uniquely defined by
three elements: the origin, the fundamental plane, and a set of three orthonormal unit
vectors, which form a right-handed positive direction triad, also referred to as the
Reference Frame (RF).

Two further concepts are necessary to introduce with regard to inertial and non-
inertial RF. The principal distinction between these frames is the presence or absence
of additional pseudo-accelerations due to relative observations, such as the Coriolis
or centrifugal effects. In an inertial RF, the motion of a body not subjected to external
forces is either uniform rectilinear or stationary, maintaining its stability over time.
In contrast, within a non-inertial RF, a body experiences accelerations relative to an
inertial frame. This necessitates the introduction of apparent forces to accurately
describe the motion of bodies, whereby the system results susceptible to dynamic
effects. The selection of the most suitable reference frame depends on the nature of
the analysis and can potentially facilitate the resolution of problems.

As an illustration, the motion of a body in space relative to the Earth can be
described using various RF, employing different sets of coordinates. These include
the characteristic quantities of the perifocal RF {a,e, i,Ω,ω,ν}, or in the EME2000
RF using Cartesian coordinates {x,y,z} or polar coordinates {r,ϑ ,ϕ}.
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2.1 Reference Frames and Systems

Three reference systems will be used, as shown in the following image

Fig. 2.1 A schematic illustration of the principal Reference Systems: EME2000
{

ÎII, ĴJJ, K̂KK
}

,
perifocal { p̂pp, q̂qq, ŵww}, and ZEN {ûuu, v̂vv, ŵww} RSs [9]

2.1.1 Geocentric-Equatorial RF

This thesis considers the use of a geocentric-equatorial reference system to accurately
describe the motion of bodies relative to the Earth. The Earth Mean Equator and
Equinox of Epoch J2000 (EME2000) represents a specific type of Earth-Centred
Inertial (ECI) frame. It can be considered inertial because it is in close alignment with
the International Celestial Reference Frame (ICRF) [10], with any rotational offset
between these frames being on the order of hundredths of an arcsecond, which is
negligible. The ICRF is an inertial system based on radio astronomical observations,
which is used to define the position of celestial bodies on a global scale, including
librations and nutations [11].

This RF is centred on the Earth, with the reference plane coinciding with the
equatorial plane. The unit vectors

{
ÎII, ĴJJ, K̂KK

}
are defined as follows: ÎII is aligned with

the direction of the Vernal Equinox, K̂KK is perpendicular to the reference plane, and ĴJJ
completes the right-handed triad.
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2.1 Reference Frames and Systems

In contrast, the Earth-Centred Earth-Fixed (ECEF) frame is a non-inertial frame,
but the origin remains fixed at the centre of the Earth and the reference plane
coinciding with the equatorial plane. The principal distinction between the EME2000
and the ECEF is that the axes in the latter rotate at the same velocity as the surface of
the Earth. The right-handed triad in ECEF RF consists of ÎII′′′, which points towards the
intersection of the equator and the Greenwich meridian, K̂KK′′′, which is perpendicular
to the reference plane, and ĴJJ′′′, which completes the triad.

2.1.2 Perifocal RF

A satellite’s motion is described within the perifocal RF, which means that the
trajectory of the examined body is located within the perifocal plane relative to the
reference body. This RF is centred on the primary gravitational body, namely the
Earth, and uses a triad of unit vectors

{
p̂ppbody, q̂qqbody, ŵwwbody

}
, as shown in Figure 2.2:

Fig. 2.2 Perifocal RF, with e = 0.4, [9]

It is important to specify the direction of these vectors using the Keplerian
parameters mentioned in Section 2.2.2. The unit vector p̂ppbody is parallel to the
eccentricity vector, q̂qqbody is normal to the orbital plane and aligned with the angular
momentum vector ĥhh, while q̂qqbody completes the right-handed triad. As postulated by
Kepler’s first law, an unperturbed body in this RF will indefinitely follow a trajectory
described by a conic section. The geometry and orientation of the orbit are described
through a set of parameters, known as classical Keplerian elements {a,e, i,Ω,ω,ν},
which allow for the identification of the body’s position. However, only a restricted
number of parameters are necessary to define the perifocal RF.
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2.1 Reference Frames and Systems

2.1.3 ZEN RF

The Zenith-East-North (ZEN) RF is a topocentric system associated with the centre
of mass of the body under analysis. This rotating, non-inertial RF is defined by the
unit vectors {ûuu, v̂vv, ŵww}, representing the body’s velocity components in the radial,
tangential, and normal directions, respectively. Specifically, the radial direction is
defined by extending the body’s position vector from the Earth’s centre, while the
tangential and normal directions align with the directions of the celestial sphere’s
parallel and meridian. It is notable that the velocity components are neither parallel
nor coincident with the orbital velocity vector, which is tangent to the orbital plane.

2.1.4 Coordinate Transformation and Rotation Matrices

A fundamental aspect of coordinate transformation is the projection of the compo-
nents of a generic vector from the initial RS to the target system, such as

rI

rJ

rK

=

 ÎII · p̂pp ÎII · q̂qq ÎII · ŵww
ĴJJ · p̂pp ĴJJ · q̂qq ĴJJ · ŵww
K̂KK · p̂pp K̂KK · q̂qq K̂KK · ŵww




rp

rq

rw

 . (2.1)

As illustrated in Equation (2.1), this coordinate transformation is implemented
through the use of a simple rotation matrix, which is composed of a series of
elementary Direction Cosine Matrix (DCM) represented as follows:

RRR1(·) =

1 0 0
0 c· s·
0 −s· c·

 , RRR2(·) =

 c· 0 s·
0 1 0
−s· 0 c·

 , RRR3(·) =

 c· s· 0
−s· c· 0
0 0 1

 . (2.2)

For instance, to perform a coordinate transformation from the EME2000 RF to the
perifocal RF, elementary rotations around each axis are required, as highlighted in
Figure 2.3. Therefore, the first rotation must be executed around the K̂KK axis by an
angle Ω,

rrrI′J′K = RRR(Ω)rrrIJK, (2.3)

which results in a rotation of the ÎII
′

axis, aligning it with the line of nodes n̂nn. Sub-
sequently, a second elementary rotation around the newly formed ÎII

′
axis will be
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2.1 Reference Frames and Systems

performed by an angle i,
rrrI′′J′′K′ = RRR(i)rrrI′J′K, (2.4)

which aligns the K̂KK axis with the ŵww unit vector. The final rotation, by an angle ω

around the new K̂KK
′
axis,

rrrpqw = RRR(ω)rrrI′′J′′K′, (2.5)

will complete the right-handed triad, aligning ÎII
′′

with p̂pp and ĴJJ
′′′

with q̂qq. In practice,
the 3-1-3 elementary rotation sequences are not applied individually, but rather the
complete rotation matrix following the Euler sequence is utilised. This results in

rrrpqw = RRR313(Ω, i,ω)rrrIJK. (2.6)

As previously described, it is possible to transpose from the EME2000 RF to the
ZEN RF. The difference lies in the sequence of elementary rotations, which are 2-3,
resulting in

rrrZEN = RRR23(ϕ,ϑ)rrrIJK. (2.7)

Fig. 2.3 Elementary Rotations around the axes of the EME2000 RF
{

ÎII, ĴJJ, K̂KK
}

to transform to
the perifocal RF

{
p̂ppbody, q̂qqbody, ŵwwbody

}
, [9]

Inverse rotations can be easily computed using the transposed DCMs, due to
their orthonormality.
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2.2 General Principles of Orbital Mechanics

Space mechanics is an area within the broader field of science concerned with the
movement of objects in space under the influence of gravity. This field may be
divided into two categories: astrodynamics, which concerns the study of SC motion,
and celestial mechanics, which deals with the motion of celestial bodies such as
planets and asteroids.

The theoretical foundations of orbital mechanics are primarily based on Kepler’s
laws, which are briefly stated below.

• The first law defines the geometric shape of an orbit as an ellipse. Consequently,
planets move in elliptical orbits with the Sun located at one of the two focal
points, as illustrated in Figure 2.4. This observation is derived from the fact
that the distance between the Sun and the planet is not constant throughout
their orbit. Specifically, there is a point in the orbit where the Sun and the
planet are closest together, called the perihelion, and another point where they
are furthest apart, called the aphelion.

Fig. 2.4 Earth’s motion in an elliptical orbit with the Sun at one focus

• The second law states that the same areas within an ellipse are swept by the
line connecting the Sun and the planet in equal times. This observation is
predicated on a mathematical conjecture stipulating that angular velocity of
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2.2 General Principles of Orbital Mechanics

the planet is greater when it is at perihelion and lesser when it is at aphelion.
The orbital period is defined as the requisite time required to sweep out the
total surface area of the ellipse.

• The third law defines the relationship between the motions of different planets
in the solar system. It states that there is no variation in the ratio between the
squares of planetary orbital periods and the cubes of planetary mean distances
from the sun, which is constant for all planets in our solar system.

Although Kepler’s laws provide insight into the behaviour of planetary orbits,
they do not explain why planets move as they do. This is because the concept
of the gravitational force, introduced by Newton in the XVII century, was absent
from Kepler’s work. Newton’s laws not only explain Kepler’s observations but also
provide a unified theoretical basis for understanding all gravitational interactions.
Consequently, the dynamic model of the motion of bodies in space is described
using a combination of Newton’s laws, which form the basis of modern physics. In
particular, the second law of motion,

FFF =
d
dt
(mvvv), (2.8)

highlights the interrelationship between the external forces acting upon a body and
the time variation of its momentum, as observed from an inertial reference frame.
Furthermore, Newton’s law of universal gravitation,

FFF =−G
m1m2

r2
rrr
r
, (2.9)

states that two material points with masses m1 and m2 exert an attractive force on
each other along the line connecting them. The magnitude of this force is directly
proportional to the product of the two masses and inversely proportional to the square
of their distance. The parameter G is the universal gravitational constant, which has
a value of 6.67259 ·10−11m3 kg−1 s−2.

The integration of Kepler’s laws with Newton’s second law of motion and the law
of universal gravitation offers a thorough understanding of orbital dynamics. This
combination forms the basis of orbital mechanics, providing a robust foundation for
space navigation. For a more in-depth explanation, refer to Conway’s book [12].

15



2.2 General Principles of Orbital Mechanics

2.2.1 The n-Body Problem

The n-Body Problem (nBP) is one of the most challenging problems in astrodynamics.
This problem is of particular interest because, in order to study a dynamical system
as close to reality as possible and to obtain accurate results, it is essential to take into
account all perturbative effects from other bodies in the solar system that interact
with the body under study. Consequently, in order to conduct a comprehensive and
precise trajectory analysis, it is essential to integrate these effects into the model
utilising the JPL DExxx planetary ephemerides, which are provided by NASA’s
Navigation and Ancillary Information Facility [11]. These ephemerides enable the
prediction of the positions of various celestial bodies over time with high precision.

The problem can thus be stated as follows: given the initial positions and ve-
locities of bodies with known masses, the objective is to determine these quantities
at any other point in time. Accurately defining these quantities enables a clearer
understanding of celestial dynamics, thereby facilitating the analysis of gravitational
effects on satellites during space manoeuvrers.

In the context of an nBP, a non-rotating reference system is employed, al-
lowing for a more straightforward and useful definition of the problem. In this
dynamic model, the n bodies evolve into their successive states, mutually influencing
each other. Here, the Earth is considered the primary body relative to which the
ephemerides are calculated, utilising as a RS the EME2000. Within this framework,
the Earth is designated as the k-th body among the j-th bodies, while the body under
examination, namely the SC, is denoted by i.

Fig. 2.5 Schematic representation of n-Body Problem in EME2000 RF, [9]

16



2.2 General Principles of Orbital Mechanics

Figure 2.5 provides a schematic representation of the RF in the nBP. The acceler-
ation of the i-th body relative to the k-th central body of the RF can be expressed as
a second-order ODE, specifically

r̈ki =−(µi +µk)

r3
ki

rki +
n

∑
j=1

j ̸=i,k

µ j

(
ri j

r3
i j
−

rk j

r3
k j

)
. (2.10)

The position of the body rrrki is calculated through integration during the analysis,
whereas the positions of the other bodies rrrk j are known relative to the Earth in the
ICRF and are provided by the DExxx JPL ephemerides in Cartesian coordinates
(xk j,yk j,zk j). Finally, the relative positions rrri j of the vectors used to compute the
perturbative effects due to the gravitational influences of other bodies on the SC are
obtained through vector subtractions

rrri j(t) = rrrk j(t)− rrrki(t). (2.11)

Although the problem can be formulated, closed-form analytical solutions are
not available for n > 2. The system is highly non-linear and sensitive to even
small variations in initial conditions due to the complex gravitational interactions.
This complexity necessitates the use of numerical methods to obtain approximate
solutions to the problem. Various numerical methods can be employed, but they
require significant computational effort and careful error management, especially for
simulations involving a large number of bodies or extended time periods.

2.2.2 2-Body Problem

A specific case of the nBP, obtained by appropriate simplifying assumptions that
reduce the model’s dimensions, is the two-Body Problem (2BP). In the 2BP, the
mutual interaction between the primary body and the target body is considered,
while the gravitational effects of other bodies are neglected. As a consequence, the
dynamical model no longer exhibits intricate interactions between multiple bodies
but instead focuses on two: the primary body M, which is Earth, and the spacecraft m,
with the condition of M ≫ m. Despite the simplicity of the Two-Body Model (2BM),
it leads to particularly interesting solutions due to the existence of an analytical
closed-form solution, which allows the trajectory of the bodies to be determined.
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2.2 General Principles of Orbital Mechanics

In order to derive the equation of motion in a 2BP, an inertial RF (X ′,Y ′,Z′)
is considered. Within this RF, the distances between the origin, the Earth rrrM, and
the SC rrrm are uniquely measurable. Additionally, a non-rotating system centred
on the primary body with axes parallel to (X ′,Y ′,Z′) is taken into account, namely
the EME2000 RF. By applying Newton’s second law to both bodies, the resulting
equations are obtained

mr̈rrm =−G
m M

r2
rrr
r

(2.12a)

Mr̈rrM =+G
m M

r2
rrr
r
, (2.12b)

where the relative distance is

r̈rr = r̈rrm − r̈rrM =−G
m+M

r2
rrr
r
. (2.13)

Equation (2.13) represents the second-order vector ODE that describes the motion of
the secondary body relative to the primary body in the 2BP, where the acceleration
is exclusively radial. Given that m ≪ M, m is considered negligible, and µ = G M
is the gravitational constant, which for Earth is 3.98633 ·105m3 s−2. Consequently,
the previous equation can be reformulated as follows:

r̈rr =− µ

r3 rrr. (2.14)

Before deriving the analytical expression of the trajectory, it is essential to
introduce some constants of motion that are of particular interest. By performing the
vector multiplication of Equation (2.14) with the vector rrr, it can be written

rrr× r̈rr+ rrr× µ

r3 rrr = 0, (2.15)

from which the following is obtained

d
dt
(rrr× ṙrr) = 0. (2.16)

As a consequence of the previous equation, the first important constant of motion
can be stated as

rrr× vvv = hhh = cost. (2.17)
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2.2 General Principles of Orbital Mechanics

The quantity just determined is defined as the angular momentum hhh, and it remains
constant throughout the entire trajectory. Therefore, the entire motion field is con-
tained within the plane of the orbit, specifically the perifocal plane, rendering the
trajectory planar with respect to the primary body.

The second important constant of motion, derived from the 2BP, is the specific
mechanical energy E , which remains constant in each orbit. This quantity can be
expressed as

E =
v2

2
− µ

r
= cost, (2.18)

where the first term represents the specific kinetic energy and the second term
represents the specific potential energy. Further considerations led to the formulation
of the SC’s specific energy in relation to the shape of its orbit:

E =− µ

2a
= cost. (2.19)

The value of E determines the nature of the orbit. In particular, if E < 0, the orbit is
closed, as in the case of an ellipse or a circle. Conversely, if E ≥ 0, the orbit is open,
resulting in a parabola if E = 0 and a hyperbola if E > 0.

The equation of motion can now be integrated in order to determine the trajectory
of the SC. However, this process requires certain mathematical manipulations, and
equation 2.15 is therefore first to be vectorially multiplied by hhh and subsequently
integrated over time. This results in

hhh× ṙrr =
µ

r
rrr+B, (2.20)

where B is a constant of integration. This procedure transforms a second-order ODE
into a first-order ODE. Further manipulations are necessary to derive the analytical
relation of the trajectory in the 2BP. In particular, Equation (2.20) is pre-multiplied
scalar by rrr, which gives rise to the expression:

r =

h2

µ

1+
B
µ

cos(ν)
. (2.21)
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Following the previously established relationships, it is possible to advance
several significant considerations. Given an ellipse, the distance of an arbitrary point
from one of its focal points can be calculated in the following manner:

r =
a(1− e2)

1+ ecos(ν)
. (2.22)

As can be observed, the analogies between Equations (2.21) and (2.22) confirm
Kepler’s first law, implying that the trajectory equation is accurately described by
that of an ellipse. Since the orbits are closed, a series of parameters is required to
describe them. The first parameter is the semi-major axis a, which defines the size of
the orbit, while the second parameter is the eccentricity e, which describes its shape
by measuring the deviation from a circular orbit. These two Keplerian parameters
are related through the semilatus-rectum p, according to the formula p = a(1− e2).
Another parameter of particular interest is the true anomaly ν , which identifies the
angular position of a body relative to the periapsis. The combination of these three
parameters {a,e,ν} allows for a complete identification of the SC’s position within
the orbit of the perifocal RF.

The remaining three Keplerian parameters are now introduced to identify the
orbital plane in a three-dimensional space. Specifically, the orbital plane may be
inclined with respect to the reference equatorial plane by an angle i, known as
inclination. This inclination results in an intersection between the two planes, giving
rise to the line of nodes n̂nn, which marks the transition of the SC from one hemisphere
to the other through the ascending node (AN) and the descending node (DN). The
direction of n̂nn coincides with that of the AN and is measured from the ÎII axis by the
Right-Ascension of the ascending-node (RAAN) Ω. Finally, for a non-circular orbit,
the position of the periapsis is identified by the argument of periapsis ω measured
from the line of nodes, or from the ÎII axis when Ω is undefined, as clearly illustrated
in Figure 2.1.

In conclusion, the 2BM is adopted to simulate the launcher’s ascent due to the
various phases occurring near the Earth, where its gravitational effect is predomi-
nant compared to other celestial bodies. Although this model presents substantial
differences from reality, it is used for its simplicity in modelling.
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2.3 Equations of motion

It is now possible to present the equations of motion which describe the evolution in
terms of the position and velocity of the launch vehicle during ascent. As previously
highlighted, these equations are represented by a set of ODEs, referenced to a RF
centred on the primary celestial body.

In the case of interest, the equations are expressed in the ECEF RF and take the
following form:

drrr
dt

=VVV (2.23a)

dVVV
dt

= ggg+
TTT
m
+

DDD
m
+acor +ac f (2.23b)

dm
dt

=−T
c

(2.23c)

These equations have already been reformulated in order to accommodate the sim-
plifications that have been applied to the model. Given that they are defined with
respect to a non-inertial RF, the effects of apparent forces must be incorporated. As
illustrated in the acceleration equation (2.23b), both accelerations can be expressed
explicitly as follows:

acl =
FFFcl

m
=−2(ωωω⊕× vvv) (2.24a)

acor =
FFFcor

m
=−ωωω⊕× (ωωω⊕× rrr) (2.24b)

In Equation (2.23c), the variation of mass over time is expressed, thereby allowing
the propulsive expenditure to be quantified. In this analysis, the thrust T and exhaust
velocity c values are assumed to be constant, thus resulting in a linear mass variation.
The dynamic model incorporates a staging mechanism for the launch vehicle, with
specific values for these parameters being provided for the operational phases of
each stage.
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2.3.1 ∆V Calculation and Take-Off Model

Subsequent to the definition of the equations of motion, this section provides a
comprehensive examination of the ascent model. The analysis includes an investi-
gation of the associated propulsive expenditure and addresses all aspects related to
the launcher and the target orbit. It is first necessary to introduce the fundamental
relationship developed by Tsiolkovsky for propulsion, which directly correlates
the change in velocity (∆V ) required to reach the desired orbit with the necessary
propulsive expenditure, represented by the amount of propellant mass consumed.
This relationship is commonly known as the Rocket Equation and is expressed as
follows:

∆Vvehicle = c ln
(

m0

m f

)
(2.25)

where ∆V represents the maximum change of speed that can be attained by the
vehicle, c is the effective exhaust velocity, m0 is the initial mass of the rocket
(including the propellant mass), and m f is the final mass.

The equation (2.25) highlights the interdependence of the performance of a
launch vehicle and its capacity to reach the desired orbit on the availability of
propellant, as well as the efficiency of the engine. These variables can impose
limitations on the feasibility of a space mission, thereby rendering some more
complex and challenging to undertake than others. Consequently, the effective
result, represented by ∆V , is influenced by practical constraints such as the amount
of transportable propellant, the reaction capability, and the engine’s performance,
which engineers must address. Tsiolkovsky’s equation can also be rewritten by
explicitly expressing the mass ratio:

m0

m f
= e

∆Vvehicle
c (2.26)

From (2.26), it is evident that the quantity of propellant required is contingent not
only on the performance of the launch vehicle but also on the desired velocity
increment.

During the ascent phase, the launch vehicle’s velocity values are required to
ensure its lift-off from the ground and continued ascent to orbit. The propellant
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expenditure must be considered in light of several contributions:

∆Vmission =Vorbit +∆Vgravity +∆Vdrag +∆Vsteering −∆Vgain (2.27)

In addition to the costs associated with orbit insertion, it is crucial to consider the
impact of gravity and drag losses, which are particularly significant during the
initial minutes of ascent. These losses are closely related to the thrust-to-weight
ratio (T/W ), which must be greater than one for a launch vehicle. A higher T/W
ratio allows the vehicle to escape the denser layers of the atmosphere more quickly,
although this increases drag losses while reducing gravity losses.

∆Vgravity =
∫ t

0
g(t)dt (2.28a)

∆Vdrag =
∫ t

0

D(t)
m(t)

dt (2.28b)

Additionally, launch vehicles experience other losses due to manoeuvrers and pres-
sure variations during ascent. While these losses are less significant than the previous
ones, they contribute to a 5-6 % reduction in the required velocity increment, which
must be compensated by propulsive action. Furthermore, the effect of Earth’s rota-
tion contributes to an initial velocity gain, reducing the required ∆V . However, this
gain varies depending on the latitude (δ ) of the launch site:

∆Vgain = ω⊕ Rcos(δ ) (2.29)

The ascent trajectory is typically divided into several distinct segments, each
characterised by a specific duration and function based on the phase considered.
The ascent profile adopted, illustrated in Figure 2.6, begins with a purely vertical
ascent phase at t = 0. Subsequently, at an altitude of approximately 30 km, a thrust
steering manoeuvre, assumed to be instantaneous and useful for varying the direction
of the launcher’s thrust, is executed to enter the Zero Lift Gravity Turn phase. In
this phase, the rotation executed by the launcher along the trajectory is generated
by the gravitational force. At approximately 90 km, the Main Engine Cut-Off
(MECO) occurs, followed by the separation of the first stage and then the fairing.
Once separation has been confirmed, the immediate ignition of the second stage
takes place. However, in this particular case study, the aforementioned phases are
considered to occur simultaneously, and the reentry of the first stage is not within
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the scope of this study. The ascent manoeuvre will be considered complete once the
target orbit is reached, where the Second Engine Cut-Off (SECO) will occur.

Fig. 2.6 Falcon 9 ascent trajectory and involved phases, [5]

The primary focus of this thesis is to investigate the optimisation of these launch
sequences, which define the entire trajectory. The objective is to enhance the overall
launch performance, thereby increasing the payload capacity that can be transported
into orbit. This improvement in efficiency makes missions more cost-effective and
enhances the feasibility of space operations.

2.3.2 Multistage Launcher Design

The staging of a launch vehicle is a crucial aspect to be considered during the
design process, as this approach enhances the vehicle’s overall efficiency. It involves
dividing the vehicle into multiple stages, each equipped with its own engine and
propellant. The advantage of this approach lies in the ability to discard parts of the
vehicle that are no longer useful for ascent, thereby reducing the mass that needs to
be accelerated during subsequent flight phases. Although this results in increased
complexity, it allows for the maximum velocity increment to be obtained from the
propulsion system and for the maximum payload to be delivered to orbit.
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Two fundamental parameters can be introduced

ε j =
mtank, j

mtank, j +mprop, j
(2.30a)

λ j =
mpl, j

mtank, j +mprop, j
(2.30b)

The first of these is the structural ratio, which measures the amount of structure in the
stage. This parameter includes the mass of the structures, mechanisms, engines, fuel
tanks, control and measurement systems, excluding the propellant and payload. The
second parameter is the payload fraction, which represents the ratio of the payload
to the total mass of the system.

In the analysis of an N-stage launch vehicle, the payload associated with the j-th
stage can be considered as the initial mass of the subsequent stage, namely

m f , j = m0, j+1. (2.31)

This introduces the concept of a sub-rocket, which has significant implications,
demonstrating that each sub-rocket is not only responsible for the weight of its own
payload, but also for that of all subsequent stages, as illustrated in Figure 2.7.

Fig. 2.7 Subdivision in series of a multi-stage launcher
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The velocity increment for each stage is calculated according to the rocket
equation (2.25). In the case of a multistage launcher, the total velocity increment is
obtained through the cumulative effect of each sub-rocket, expressed as

∆Vvehicle =
N

∑
j=1

c j · ln
(

m0

m f

)
j

(2.32)

which can be reformulated using the payload fraction and structural coefficient:

∆Vvehicle =−
N

∑
j=1

c j · ln
[
λ j + ε j (1−λ j)

]
(2.33)

The equation (2.33) indicates that the ∆V of a multistage launch vehicle varies
according to the characteristics of each stage. This diversification allows for the
optimisation of launch phases through the appropriate arrangement of the various
stages.

There are two possible staging design configurations that can be employed: the
series or parallel. In the first case, the stages are stacked one on top of the other, and
ignited sequentially during the entire ascent. In the second case, lateral boosters are
utilised in conjunction with the main stage during the initial phase of the flight. Both
methods are utilised in launch schemes, with the configuration varying in accordance
with the mission requirements, specifically in terms of ∆Vmission, and the properties
of each stage, in terms of c j and λ j. In practical terms, no more than four stages
are used, as the gain in payload would be minimal compared to the increase in
system complexity, as shown in Figure 2.8. Further details on staging can be found
in various studies which also address the optimisation of each stage [13, 14].

In the current study, a strategy similar to that adopted by the Falcon 9 has been
proposed. This involves two stages operating in distinct phases. The first stage fo-
cuses on initial lift-off and atmospheric ascent, while the second stage is responsible
for achieving orbital insertion. The requisite values for the Falcon 9’s performance
parameters, including thrust, specific impulse, and structural characteristics, were
obtained from the official SpaceX website [5].
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2.4 Sun-Synchronous Orbit

Fig. 2.8 Payload fraction dependent upon the number of stages and the requested speed

2.4 Sun-Synchronous Orbit

In the dynamic model, it is crucial to emphasise the fundamental principles underly-
ing the definition of a SSO. As discussed in the Chapter 1 and extensively covered
in the article [15], SSOs are a specific type of orbit that have gained increasing
importance over time due to their characteristics, which can meet key mission re-
quirements. These orbits are nearly polar, with inclinations ranging from 96.5 deg to
102.5 deg. As a result, they are capable of providing global coverage at all latitudes.
Another noteworthy aspect of these orbits is that the line of nodes does not remain
fixed but instead rotates at a rate described by the

Ω̇ =−3
2

J2

(
R2
⊕

a2

)
cos i

(1− e2)2

√
µ⊕
a3 (2.34)
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As demonstrated by equation (2.34), SSOs utilise the J2 effect, which arises due
to the non-sphericity of the Earth. The bulge in the equatorial region induces an
out-of-plain gravitational force, resulting in the gyroscopic precession of the orbit.
Moreover, the equation demonstrates that the precession is dependent upon the
orbital parameters, thereby allowing for the definition of an orbit that maintains a
fixed geometry relative to the Sun. This implies that the passage of the AN can
be precisely selected, allowing the SC to pass over a specific location on Earth at
the same local time. Consequently, SSOs ensure that observation points along the
ground track are viewed under consistent lighting conditions, which vary depending
on the chosen configuration, as illustrated in Figure 2.9. This characteristic facilitates
the comparison of acquired data, rendering SSOs particularly suitable for Earth
observation missions, climate studies, and meteorology.

Fig. 2.9 Evolution of an SSO over time in two specific configurations

The selection of orbital parameters defining a SSO is not straightforward and is
closely tied to the mission’s objectives, which determine the design requirements and
constraints. These orbits are employed for monitoring specific areas and, therefore,
it is essential to understand the relationship between orbital precession and longitude
variation.
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2.4 Sun-Synchronous Orbit

This relationship is expressed by the equation:

∆L = (ω̇⊕− Ω̇) · τNL, (2.35)

where τNL is the nodal period. In order to ensure that the satellite’s coverage is
confined to a particular area, it is necessary to impose that ω̇⊕ = Ω̇ allows the line of
nodes to rotate with the same angular velocity as the Earth’s rotation around the Sun.
Consequently, once Ω is fixed, the orbital parameters must be appropriately selected.
Given their interdependent nature, selecting one parameter will inevitably influence
the others, ensuring that mission objectives are met.

Another parameter worthy of consideration is the Mean Local Time of Ascending
Node (MLTAN), which is the angle between the line of nodes and the Earth-Sun line.
This allows the position of the orbital plane relative to the Greenwich meridian to be
expressed in terms of relative time. If the rate of precession of an orbit matches the
rate of rotation of the Earth, it becomes possible to ensure the previously mentioned
lighting conditions along the entire orbit and determine the exact moment when the
satellite will pass through the AN. This is exemplified by the case of 1.30 a.m. at the
AN, which corresponds to an MLTAN of 22.5 deg, as shown in Figure 2.10.

Fig. 2.10 Graphical representation of the Mean Local Time of Ascending Node
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If a change in latitude is required, resulting in a shift in the observation zone, or
when the timing of the AN passage necessitates adjustment, the orbital parameters
may be modified to adjust the value of Ω̇.For a more detailed examination of the
construction of SSO during the preliminary mission phases, Boain’s article can be
used as a reference, which has provided the foundation for this discussion [16].

2.5 Atmospheric drag

During the entire ascent phase, the launcher operates within the densest layers of
the atmosphere. In light of this, the dynamic model incorporates, in addition to the
perturbations resulting from the two-body interaction, the perturbative effects induced
by aerodynamic drag, thereby providing a more comprehensive representation of the
system’s behaviour. This force, being opposite to the forward motion of the launcher,
causes a deceleration that can be quantified by the following relation:

aaaD =− 1
2

cD ρ
S
m

||vvvrel|| vvvrel, (2.36)

where the velocity is evaluated relative to the Earth’s motion

vvvrel(t) = vvv(t)−ωωωE × rrr(t), (2.37)

The drag equation (2.36) highlights that this force is contingent upon the properties
of the launch vehicle, specifically its aerodynamic reference area, mass, and drag
coefficient. The latter is a function of the shape and size of the launch vehicle and
varies with the Mach number, an important dimensionless aerodynamic parameter
that describes the flow regime of a body relative to the speed of sound, expressed as

M =
vrel√
γ R T

. (2.38)

The drag perturbation is directly proportional to the atmospheric density, which
varies according to the altitude being considered. Given that the ascent is being
modelled, the launch vehicle operates from the lower layers of the atmosphere
up to the upper layers, with the dynamic system in question incorporating two
different density models. The first is the exponential model, which is valid up to the
stratosphere (50 km) while the second is the Harris-Priester model, which is valid
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up to the thermosphere (500 km) [17]. The justification for implementing these two
models lies in the fact that the former better approximates the density profile at low
altitudes, following an exponential trend

ρ(h) = ρsl e−
h
H , (2.39)

within H is a density factor of scale. In contrast, the second model demonstrates
a more accurate representation of density variation at elevated altitudes. While
it exhibits some limitations, such as discontinuities in the solution, it offers more
precise estimates. This model accounts for the influence of latitude and diurnal
variation. In the traditional Harris-Priester model, the complete expression for
density is given by

ρ(h) = ρm(h)+ [ρM(h)−ρm(h)] cosn
(

Ψ

2

)
. (2.40)

The minimum and maximum densities are calculated as

ρm(h) = ρm(hi)exp
(

hi −h
Hm

)
, hi ≤ h ≤ hi+1 (2.41a)

ρM(h) = ρM(hi)exp
(

hi −h
HM

)
, hi ≤ h ≤ hi+1 (2.41b)

where hi, ρm(hi) and ρM(hi) are pre-tabulated values. The exponent n varies from
2 for equatorial orbits to 6 for polar orbits, accounting for latitudinal variations
in density. Scale heights are calculated using exponential interpolation to ensure
continuity when transitioning between different altitudes

Hmi =
hi −hi+1

ln
(

ρm(hi+1)
ρm(hi)

) (2.42a)

HMi =
hi −hi+1

ln
(

ρM(hi+1)
ρM(hi)

) . (2.42b)

The sinusoidal term, which accounts for diurnal density variations and depends on
the position of the Sun, can be rewritten as

cosn
(

ψ

2

)
=

(
1
2
+

rT ub

2r

)n
2
, (2.43)
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where rrr is the position of the SC and uuub is a unit vector describing the relative
position of the Sun, both in an ECI RF. The Sun vector uuub is expressed in terms of
right ascension αS and declination δS, as illustrated in the following formula

ub =

cos(δs)cos(αs +λlag)

cos(δs)sin(αs +λlag)

sin(δs)

 , (2.44)

with λlag assumed to be 30 deg.

Consequently, the implemented atmospheric density model has a considerable
impact on the drag, which is of particular significance at low altitudes but tends to
diminish and become negligible at approximately 1000 km above the Earth’s surface.
Therefore, it might be considered that providing large at higher altitudes where drag
effects are less intense would be beneficial; however, this is in opposition to gravity
losses, which increase with altitude.

This thesis presents two models that have been meticulously implemented to sim-
ulate the ascent trajectory of a launch vehicle. These models incorporate variations
induced by solar activity, thereby enabling a detailed examination of how different
launch dates affect the vehicle’s ascent. This comprehensive approach ensures a
higher fidelity to real-world conditions, thereby providing valuable insights into the
dynamic and complex nature of launch vehicle trajectories. By accounting for the
solar activity’s impact, the models offer a robust framework for optimising launch
schedules and enhancing mission success rates.
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Chapter 3

Optimal Control Theory

The following chapter examines the fundamental mathematical and numerical tools
and concepts for analysing and solving optimisation problems typical of space
missions that employ finite thrusts. The most effective approach to addressing these
challenges involves the application of the Continuous-Time Optimal Control Problem
(OCP).

Optimal Control Theory (OCT) is a pivotal field within engineering and applied
mathematics. OCT employs mathematical methods to enhance the functionality of
dynamic systems while adhering to specific constraints and objectives. Its origins lie
in Calculus of Variations (CoV), a mathematical technique developed by Bernoulli
in the 17th century and further developed by Euler and Lagrange in the 18th century
[18]. This technique has led to the introduction of several key concepts and tools
within the field of OCT, such as the Euler-Lagrange Equation. These concepts remain
essential to numerous approaches in OCT in the present day, providing a framework
for the identification of optimal solutions to control problems. In the early 1950s, Lev
Pontryagin introduced the Maximum Principle [19], an innovative approach based
on Hamilton’s equations to determine the optimal control strategy, outlining the
essential conditions for optimality. At the same time, Bellman developed the concept
of Dynamic Programming [20], a method that involves breaking down the problem
into smaller sub-problems and storing partial solutions. These two approaches laid
the groundwork for the development of versatile methodological principles suited
to a wide range of complexities. In recent years, OCT has expanded its scope
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thanks to the advent of more powerful computing resources, thereby facilitating the
development of increasingly broad and effective applications.

The core principle of OCT is to identify a control law that optimises an objective
function, typically defined in terms of cost or efficiency, over a specified time period.
This optimisation process is based on the analysis of the system dynamics, which are
described using differential equations or finite differences, and their interaction with
adjustable variables. The focus is on finding optimal solutions, selecting them from
many sub-optimal alternatives, even in complex contexts with stringent constraints.
This process employs dynamic programming algorithms and non-linear programming
techniques.

A key illustration of the application of this theory can be observed in the definition
of optimal ascent trajectories, which are designed to enhance the performance of an
aerospace vehicle during the critical launch phase. The primary goal is to minimize
or maximize an objective function, typically associated with variables such as fuel
consumption, flight time, or maximum payload. A fundamental aspect of this process
is the continuous monitoring of specific parameters throughout the entirety of the
trajectory. This allows for the determination of the ideal temporal evolution of
variables that comply with constraints and maximize efficiency. The optimal control
variables are grouped under the term "optimal control laws", which are essential for
distinguishing the optimal solution from other possibilities.

The third chapter is structured as follows. The initial section of the chapter
delineates the distinction between two numerical methodologies applicable to OCP:
Direct Methods and Indirect Methods. This section will also present the rationale
for the preference of Indirect Methods over Direct ones. Subsequently, the sec-
ond paragraph examines a typical OCP as a Two-Point Boundary Value Problem
(TPBVP), discussing the results obtained and the conditions of optimality. In the
third paragraph, the discussion extends to a Multi-Point Boundary Value Problem
(MPBVP), illustrating the resolution process through the single shooting method.
Finally, the chapter will examine how OCT can be employed with a view to optimise
ascent trajectories. In particular, it will investigate the Hamiltonian boundary value
problem (HBVP), utilising a medium-fidelity approach in order to achieve accurate
results.
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3.1 A comparison of Direct and Indirect Methods

3.1 A comparison of Direct and Indirect Methods

A numerical method is a mathematical strategy employed to address problems
that are challenging to resolve with precise analytical techniques, frequently due
to the complexity of the involved equations. The objective of this approach is to
decompose a complex problem into a series of smaller, more manageable problems.
This process, known as problem transcription, is focused on a specific case study. The
main idea is to transform sets of differential equations, which represent phenomena
that are continuous in time or space, into discrete systems composed of a limited
number of points, defined as intervals, based on a reduced number of variables.
The optimization problem of trajectories under examination is continuous over time,
but it can be reconfigured using numerical methods to convert it from an infinite-
dimensional problem into a series of finite-dimensional sub-problems. Numerical
methods are mainly divided into two categories: Direct (DM) and Indirect (IM).

The selection of an appropriate method has historically been a source of dis-
agreement among academics. Traditionally, DMs have been favoured due to their
robustness, ease of implementation, and ability to address complex issues, resulting
in definitive solutions without the need for further iterations. However, they also
present disadvantages, such as potential imprecision and high computational costs
due to the need to manage a dense domain with many critical points, known as nodes.
Currently, challenges related to computational costs have been mitigated by the use
of more advanced computers.

On the other hand, IMs provide highly accurate solutions with a lower com-
putational cost. These methods begin with an approximate solution and, through
subsequent iterations, guide toward the final solution until a predetermined conver-
gence criterion is met. This approach not only aids in understanding the problem but
also offers insights on how to enhance the solution towards optimality. Despite their
advantages, IMs may face challenges with convergence, which is not guaranteed
in all cases and depends on the initial conditions and characteristics of the system.
Moreover, the resolution of an OCP through these methodologies necessitates the
construction of a specific model and the manual calculation of requisite parameters.
Further detailed discussion on these methodologies can be found in Betts’s work
[21].
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3.2 Optimal Control Theory

The present study focuses on the utilisation of IMs for trajectory optimisation.
This approach has garnered significant support from the scientific community over the
years. A multitude of research and publications, including those developed within the
Politecnico di Torino [22, 23], have highlighted the great flexibility and adaptability
of these methods to a wide range of engineering problems, such as the optimization
of space trajectories. A central element of these studies is the strategic management
of intervals to effectively handle constraints and discontinuities, transitioning from
a TPBVP to a MPBVP. The adoption of sophisticated numerical techniques has
substantially improved the robustness of IMs, thereby enhancing their suitability for
resolving more intricate challenges.

For the aforementioned reasons, this thesis implements an algorithm that utilises
indirect methods to optimise ascent trajectories. This approach is chosen for its
versatility and reliability, making it an effective computational tool that is capable of
finding optimal solutions for the problem under study.

3.2 Optimal Control Theory

As already mentioned, a crucial element in OCT is the selection of a suitable control
strategy that facilitates the transition from the initial state to the final state of the
dynamic system under analysis. In this process, it is essential to ensure that all
constraints are respected and that the optimisation criterion is aimed at maximising
(or minimising) the merit index.

For the OCP, it is essential to define a control model that accurately describes
the system dynamics. In this study, the control system is characterized using a set of
Ordinary Differential Equations (ODEs). These ODEs can generally be expressed as
follows

ẋxx(t) = fff (xxx(t),uuu(t), t) (3.1)

Therefore, the OCP consists of a set of first-order ODE (ẋxx) that describe how
the n-state variables evolve over time. These ODEs are function of a state vector,
x(t)∈ Rn , which fully defines the characteristics of the system of interest, and a
control vector, u(t)∈ Rm, which consists of m-control variables. Both vectors are
functions of the time between the initial and final instants. In addition, time is
considered as an independent variable. Consequently, to obtain an optimal solution,
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3.2 Optimal Control Theory

it is necessary to identify an optimal trajectory, x∗(t), managed by an optimal control,
u∗(t), that maximises the merit index.

In general, a trajectory depends on the conditions established at the initial and
final moments, denoted t0 and t f respectively, which serve as Boundary Condition
(BC) for a TPBVP. The optimal trajectory needs to satisfy several constraints. If these
constraints only concern the state and the time at the end points of the trajectory, they
can be formulated as a set of homogeneous, typically non-linear, algebraic equations.
The BCs can be organised into a constraint vector as follows

χχχ
(
xxx0,xxx f , t0, t f

)
= 000 (3.2)

where χχχ : [Rn,Rn,R,R]→ Rq which contains all q different constraints.

The optimality pattern for an OCP can be defined by an objective function, or
merit index, denoted J. In this context, points x within the domain for which the
first derivative f ′(x)= 0 are identified as extremum points of the function f . Thus,
it is necessary to evaluate the extremal values corresponding to the maximum (or
minimum) points. The merit index can then be written as

J= ϕ(xxx000,xxx fff , t0, t f )+
∫ t f

t0
[ΦΦΦ(xxx(t),uuu(t), t)]dt. (3.3)

Two main scalar components arise from the merit index J (3.3). The first function
(ϕ) is dependent on the values assumed by the variables and the times at the extreme
limits, and thus depends on the specific admissible final state obtained among
the various ones sought. Meanwhile, the integral of the second function (Φ) is
determined by the values that the state variables, controls, and time itself take over
the considered interval, thereby quantifying the solution’s evolution from the initial
to the final state. The aforementioned issue, outlined in equations (3.1) to (3.3), is
known as Bolza problem [24], which represents a classic example of the CoV OCP.
The objective of this problem is to optimise a time-continuous set of ODEs, while
satisfying the specified BCs.

With the introduction of auxiliary variables, the functional J can be reformulated
into two different expressions: the first is the Lagrange form, obtained by setting
ϕ = 0, and the second is the Mayer form, achieved with Φ = 0. Among these, the
Mayer formulation is the most commonly used, as it not only simplifies the problem
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3.2 Optimal Control Theory

formulation but also facilitates the derivation of first-order analytical conditions in a
more direct manner.

The principles of IMs are now implemented, and significant manipulations are
carried out. The optimality conditions are determined by the introduction of an
augmented merit function, J∗, which incorporates a measure of how well constraints
and state quantities, in relation to the ODEs of the evolving dynamic model, are
adhered to. For this process, additional variables, also known as co-state variables,
will be introduced. Such variables are collected in the adjoint vector, λ (t)∈ Rn,
which is associated with the state variables of the problem. Concurrently, the
Lagrange multipliers are incorporated into the vector µ∈ Rm, which is linked to the
BCs. Consequently, the augmented merit index assumes a specific form

J∗ = ϕ +µ
T

χχχ +
∫ t f

0

[
ΦΦΦ+λλλ

T ( fff − ẋxx)
]

dt. (3.4)

Both functional in equations (3.3) and (3.4) are closely linked to the state vari-
ables x(t), their derivatives ẋ(t), and the control vector u(t). It should be noted that in
the case of a non-converging solution, where χ ̸= 0, the equation (3.3) is not satisfied,
resulting f ̸= ẋ. However, if both the BCs and state equations are respected, then
χ = 0, f = ẋ, and consequently J= J∗. Therefore, solving the augmented problem
posed by the merit index in equation (3.4) is mathematically equivalent to solving
the problem in equation (3.3), once all constraints have been fulfilled.

In the equation (3.4), the presence of time derivatives of state variables is ob-
served, which are integrated during the trajectory optimisation process. Since these
terms are ideally unknown, it is necessary to eliminate them by integration (−λ T ẋ)
term by parts∫ t f

0

(
−λλλ

T ẋxx
)

dt =−
(

λλλ
T
f xxx f

)
+
(

λλλ
T
0 xxx0

)
+
∫ t f

0

(
λ̇λλ

T
xxx
)

dt (3.5)

Therefore, by combining the equations (3.5) and (3.4), one can write

J∗ = ϕ +µ
T xxx+

(
λλλ

T
0 xxx0 −λλλ

T
f xxx f

)
+
∫ t f

0

(
ΦΦΦ+λλλ

T fff − λ̇λλ
T

xxx
)

dt (3.6)
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3.2 Optimal Control Theory

A term of considerable significance has emerged within the equation (3.6),
namely the system’s Hamiltonian

H ≜ ΦΦΦ+λλλ
T fff (3.7)

The merit index J∗ can be maximised (or minimised) only if the essential condi-
tion of optimality is met. This condition requires that J∗ be stationary at the optimal
point. This means that the first-order variation of J∗ must be zero. The first-order
differentiation, δJ∗, can be derived through several mathematical steps

δJ∗ =

(
∂ϕ

∂ t0
+µµµ

T ∂ χχχ

∂ t0
−H0

)
δ t0+ (3.8a)

+

(
∂ϕ

∂ t f
+µµµ

T ∂ χχχ

∂ t f
+H f

)
δ t f+ (3.8b)

+

(
∂ϕ

∂xxx0
+µµµ

T ∂ χχχ

∂xxx0
+λλλ

T
0

)
δxxx0+ (3.8c)

+

(
∂ϕ

∂xxx f
+µµµ

T ∂ χχχ

∂xxx f
−λλλ

T
f

)
δxxx fff+ (3.8d)

+
∫ t f

t0

[(
∂H

∂xxx
+ λ̇λλ

T
)

δxxx+
∂H

∂uuu
δuuu
]

dt, j = 1, . . . ,np. (3.8e)

A suitable selection of adjoint variables λ and Lagrange multipliers µ can
effectively make δJ∗ equal to zero for any variations δ t0,δ t f ,δxxx0,δxxx f ,δxxx, and
δuuu, by eliminating their corresponding multiplying coefficients. Each specific
part of equation (3.8) leads to different sets of conditions. In particular, when the
coefficient multipliers in equations (3.8a) and (3.8b) are zero, a pair of algebraic
equations known as the transversality conditions is presented at the start and end
times, respectively. In contrast, equations (3.8c) and (3.8d) produce 2n algebraic
equations, corresponding to each state variable at both the initial and final boundaries,
which are known as optimality conditions. Finally, the two farther multiplying
coefficients generate two key outcomes: n Euler-Lagrange ODEs for the adjoint
variables and m algebraic equations for the control.
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3.2 Optimal Control Theory

3.2.1 Boundary Conditions for Optimal Solution

The boundary conditions for achieving optimality consist of a set of ODEs that
regulate the behaviour of times (2 transversality conditions) and states (2n optimality
conditions) at the extremities of the trajectory. By setting the multiplying coefficients
(δ t0,δ t f ,δxxx0,δxxx f ) in equation (3.8) to zero, one can readily derive the following
results

∂ϕ

∂ t0
+µµµ

T ∂ χχχ

∂ t0
−H0 = 0 (3.9a)

∂ϕ

∂ t f
+µµµ

T ∂ χχχ

∂ t f
+H f = 0 (3.9b)

∂ϕ

∂xxx0
+µµµ

T ∂ χχχ

∂xxx0
−λλλ

T
0 = 000 (3.9c)

∂ϕ

∂xxx f
+µµµ

T ∂ χχχ

∂xxx f
+λλλ

T
f = 000 (3.9d)

A series of considerations can be made in relation to the aforementioned equa-
tions. Considering the first two transversality equations, (3.9a) and (3.9b), the
Hamiltonian is identically zero at that point at both initial and final times, if time
is not present in the function ϕ and is unconstrained, and the time values are deter-
mined by the optimisation process. Conversely, the Hamiltonian is unconstrained
and assumes a specific value if time is constrained, i.e., if constraints such as t0 = a
and/or t f = b exist in χ . To illustrate this key concept, consider a space mission with
a fixed duration ∆t, where the initial moment t0 and the final moment t f = t0 +∆t
are known; in this scenario, both H0 and H f are non-null. On the other hand, in a
mission where the value of t f is not fixed, it becomes the subject of the optimization,
resulting in H f = 0 while H0 ̸= 0, since t0 is known.

Similarly, the optimality conditions of equations (3.9c) and (3.9d) dictate that
if a generic i-th state variable (xi) does not appear in either the function ϕ or any
constraint, then the corresponding added variable λxi will be zero at the same point.
Conversely, if the variable state xi is assigned, the corresponding added variable will
be free, thus λxi ̸= 0.
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3.2 Optimal Control Theory

3.2.2 Adjoint and Control variables equations

The last line (3.8e) of Equation (3.8) will result in a set of ODEs by nullifying their
respective multiplicative coefficients. These equations enable the description of how
the augmented variables and controls evolve over time. In expression (3.8e), it is
possible to proceed by setting two terms to zero, namely δxxx and δuuu.

By nullifying the coefficient δxxx, one obtains the Euler-Lagrange equations for
the adjoint variables

dλλλ

dt
=−

(
∂H

∂xxx

)T

. (3.10)

As the adjoint variables are closely related to the state variables, it follows that
λ̇ ∈ Rn. If the coefficient δuuu is nullified, a set of m algebraic equations for control
will be obtained, precisely (

∂H

∂uuu

)T

= 0. (3.11)

In the most basic terms, it can be stated that some elements of the control
vector uuu may be required to adhere to specific limits of admissibility, namely U.
Typically, the control vector uuu is influenced by the state variables and the time,
represented as uuu(xxx(t), t). In the current context, only explicit constraints are taken
into account. For instance, a specific control variable uuu ought to be maintained
within the boundaries Umin ≤ uuu ≤ Umax. Given explicit admissibility constraints,
the optimal control uuu∗ ∈ U for the target trajectory is determined by finding those
values that extremizes the Hamiltonian at each point of the trajectory, as specified in
Equation (3.7). This approach is based on Pontryagin’s Maximum Principle (PMP)
for problems involving maximisation, or Pontryagin’s Minimum Principle (PmP)
for those requiring minimisation [19]. The PMP does not necessarily require that
a control be limited to the extreme values within its allowable range. The optimal
control value is typically determined according to Equation (3.11) provided that
Umin ≤ uuu ≤ Umax, making it unconstrained. If this condition is not met, the control
value is set at the boundaries of U.

Nevertheless, Equation (3.11) is not applicable in the case of a linear or affine
Hamiltonian, as described in Equation (3.7), in terms of the bounded control. In
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3.3 Multi-Point Optimal Control Problem

such a case, two distinct scenarios emerge

∂H

∂ui
=

kui constant, if H affine wrt ui

f (ui) otherwise
(3.12)

In case of the Hamiltonian being affine to the control, it is generally not possible
to satisfy equation (3.12) unless kui = 0, because ui should not explicitly influence
the outcome. In such circumstances, the approach to be taken depends on the value
of the coefficient kui derived from the equation. To maximize the Hamiltonian, the
control ui must be adjusted in accordance with the specific sign of kui , if not null.
If kui > 0 the optimal strategy involves setting ui to its highest permissible value,
specifically ui =Ui,max. On the other hand, when kui < 0, the optimal involves setting
ui to its minimum allowable value, ui = Ui,min.

The phenomenon under discussion is referred to as bang-bang control, which
precisely characterises the situation presented in the OCP being considered. In
this context, the Hamiltonian demonstrates a linear relationship with the control
variable, specifically the angle, based on certain assumptions that will be detailed in
the following chapter. Furthermore, the decision to switch between the two extreme
values, namely the minimum and maximum, is critical in determining the optimal
trajectory. Should the control variable kui equals zero over a specific time period, an
alternative strategy must be explored. This operation, as described in [25], involves
the presence of singular arcs, which will not be addressed in this thesis as they are
not of interest.

A TPBVP is presented, characterised by m-constraint conditions χ = 0, described
by two transversality equations, (3.9a) and (3.9b), 2n optimality equations, (3.9c) and
(3.9d), and m-control equations (3.11). This set of equations implicitly determines
the initial and final times, t0 and t f , the initial state values for the 2n ODEs, for x and
λ , and m-adjoint constants, µ .

3.3 Multi-Point Optimal Control Problem

The concept of MPBVP is introduced when internal conditions are applied along the
trajectory, i.e., varying thrust conditions to execute launcher staging for orbital ascent.
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3.3 Multi-Point Optimal Control Problem

This strategy involves the division of the trajectory into a number of sub-intervals,
np, which are commonly referred to as arcs. This division enhances the robustness
and facilitates convergence of the code. In this implementation, the problem outlined
in Equations (3.1) to (3.3) is transformed into a MPBVP. Each j-th arc begins at
t( j−1)+ and ends at t j− , with extremal state variable vectors denoted as xxx( j−1)+ and
xxx j− , respectively. It is worth noting that each variable is continuous within each arc.
However, it is important to be aware that discontinuities do occur at the internal
boundaries, namely at the points connecting two arcs.

Figure 3.1 provides a schematic representation of a generic MPBVP, where an
abbreviated notation

(
xxx(t j)≜ xxx j

)
is introduced for simplicity.

Fig. 3.1 Multipoint Boundary Value Problem diagram composed by np arcs, [9]

As previously mentioned, BCs are generally non-linear and mixed. In a MPBVP,
the aforementioned conditions can be imposed both internally and externally to the
boundaries, as illustrated in equation (3.2). These may be influenced by both state
variables and the independent time variable. Consequently, they can be reformulated
in the following way

χχχ
(
xxx( j−1)+,xxx j−, t( j−1)+, t j−

)
= 0, j = 1, . . . ,np. (3.13)

The functional J for an OC MPBVP thus becomes

J= ϕ
(
xxx( j−1)+,xxx j−, t( j−1)+, t j−

)
+

np

∑
j=1

∫ t j−

t( j−1)+

Φ(xxx(t),uuu(t), ttt) dt. (3.14)
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3.3 Multi-Point Optimal Control Problem

In the equation (3.14), the function ϕ is determined by the values that variables
and times take at each boundary across the entire trajectory, from j = 0 to j = np,
as well as within each individual arc.The total sum of all integrals of the function
Φ are influenced by the changes over time in state variables, controls, and time
itself, effectively outlining the evolution of the solution on an arc-by-arc basis. The
augmented merit index J∗ for the MPBVP is presented in the form

J∗ = ϕ +µµµ
T

χχχ +
np

∑
j=1

∫ t j−

t( j−1)+

[
Φ+λλλ

T ( fff − ẋxx)
]

dt (3.15)

and, by eliminating the term involving the derivative of the state variables via
integration by parts

J∗ = ϕ +µµµ
T

χχχ +
np

∑
j=1

(
λλλ

T
( j−1)+xxx( j−1)+ −λλλ

T
j−xxx j−

)
+

np

∑
j=1

∫ t j−

t( j−1)+

(
Φ+λλλ

T fff − λ̇λλ
T

xxx
)

dt.

(3.16)

First order derivative of the augmented functional J∗ is rewritten for each arc as

δJ∗ =

(
∂ϕ

∂ t( j−1)+
+µµµ

T ∂ χχχ

∂ t( j−1)+
−H( j−1)+

)
δ t( j−1)++ (3.17a)

+

(
∂ϕ

∂ t j−
+µµµ

T ∂ χχχ

∂ t j−
+H j−

)
δ t j−+ (3.17b)

+

(
∂ϕ

∂xxx( j−1)+
+µµµ

T ∂ χχχ

∂xxx( j−1)+
+λλλ

T
( j−1)+

)
δxxx( j−1)++ (3.17c)

+

(
∂ϕ

∂xxx j−
+µµµ

T ∂ χχχ

∂xxx j−
−λλλ

T
j−

)
δxxx j−+ (3.17d)

+
np

∑
j=1

∫ t j−

t( j−1)+

[(
∂H

∂xxx
+ λ̇λλ

)
δxxx+

∂H

∂uuu
δuuu
]

dt, j = 1, . . . ,np. (3.17e)

In the domain of MPBVP, it is more effective to express optimality and transver-
sality conditions directly in relation to the boundary itself. Consequently, rather than
focusing solely on an individual j-th arc spanning from t( j−1)+ to t j− , emphasis is
placed on the boundary. Values just prior to and following the boundary are then
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considered for analysis.

∂ϕ

∂ t j+
+µµµ

T ∂ χχχ

∂ t j+
−H j+ = 0, j = 1, . . . ,np −1 (3.18a)

∂ϕ

∂ t j−
+µµµ

T ∂ χχχ

∂ t j−
+H j− = 0, j = 1, . . . ,np (3.18b)

∂ϕ

∂xxx j+
+µµµ

T ∂ χχχ

∂xxx j+
+λλλ

T
j+ = 000, j = 1, . . . ,np −1 (3.18c)

∂ϕ

∂xxx j−
+µµµ

T ∂ χχχ

∂xxx j−
−λλλ

T
j− = 000, j = 1, . . . ,np. (3.18d)

It is of interest to highlight that the Euler-Lagrange equations, both for the
adjoints equations and those for the control, maintain their validity within the domain
of MPBVP.

3.4 Comprehensive Implementation of Boundary Value
Problem

This section sets forth the implementation of the Boundary Value Problem (BVP)
in the context of OCT. The principal objective is to optimize the ascent trajectory
of a launcher subject to gravitational effects within a medium-fidelity Two-Body
Problem (2BP). The implementation of BVP requires the application of precise
control and optimisation processes in order to address the potential numerical issues
which may hinder the convergence of solutions, due to the highly non-linear nature
of the problem. In light of the use of IM, particular emphasis must be placed on
the robustness of the code and the high sensitivity of the solution with respect to
variations in initial conditions.

To address this problem, a TPBVP is proposed. This approach is feasible because
OCT extends the size of the problem compared to the original 2BP, as discussed
in the previous sections. In this context, the initial state includes the original state
variables, some of which may be unknown, along with an adjoint vector:

yyy0 =
{
(xxx)T (λλλ )T}T

(3.19)
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The objective of such a BVP investigated here is to determine the optimal initial
conditions of the state variables, yyy∗0, that enable the desired final conditions yyy∗f to be
fulfilled. Throughout this process, it is critical to ensure that all BCs are continually
satisfied, including both the constrained and the optimality conditions. The single-
shooting method is the preferred approach for its straightforward implementation
and computational demands. This methodology allows for the cyclic adjustment and
updating of the initial conditions, thereby facilitating the achievement of the desired
final conditions, as will be more clearly explained in this current work [9]. This
approach is consistent with the goal of developing a practical solution methodology
based on IM, effectively managing the dynamics of the 2BP.

Generally, the method and the full set of ODEs for an IM can be formulated as
follows

ẏyy(t) = fff (yyy(t), t) (3.20)

By introducing a new vector zzz =
{

yyyT cccT}T , which incorporates the constant vector
ccc, the set of ODEs can be reformulated as

żzz =
dzzz
dt

= fff (zzz(t), t) , (3.21)

with
ċcc =

dccc
dt

= 0. (3.22)

The newly formulated set of BCs, which includes both imposed and optimal
conditions, are satisfied when it returns

χχχ(z) = 000, (3.23)

where the vector zzz contains all the values assumed by the variables at the inner and
outer boundary.

The current analysis focuses on identifying the optimal initial values for the
design vector that result in the desired final conditions while maintaining adherence
to all constraints. To achieve this objective, a single-shooting method is utilized to
identify the most optimal initial state, qqq∗0, which fulfils the BCs, so that χχχ(qqq∗) = 0.
The following notation χχχ(qqqr)≜ χχχr is taken into account for the deviation of the BCs
at each r-th iteration. The iterative process starts with the assumption of qqqr = zzz0 as
initial vector for the variables, all of which are considered unknown. In subsequent
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3.4 Comprehensive Implementation of Boundary Value Problem

iterations, the BCs are updated based on the values of the BCs and state vector
from the previous iteration. This relationship is modelled using a first-order Taylor
expansion, where the Jacobian matrix, denoted by J(χχχr)≜ J

(
χχχ(qqqr),qqqr+1

)
, is formed

by the partial derivatives of the constraint vector with respect to the forward-in-time
free-variable vector quantities

χχχ(qqqr+1) = χχχ(qqqr)+
∂ χχχ(qqqr)

∂qqqr+1
(qqqr+1 −qqqr). (3.24)

In the event that a solution exists, then χχχr+1 = 0, and the iterative solution takes the
following form

χχχr +[J(χχχr)]
(
qqqr+1 −qqqr

)
= 0. (3.25)

Consequently, at each iteration, it is possible to calculate the state of the design
vector zzzr and update the value of the constraint vector χχχr

qqqr+1 = qqqr − [J(χχχr)]
−1

χχχr. (3.26)

In this context, the Jacobian matrix is calculated as follows

J(χχχr) =
χχχ

p
r −χχχr

∆
, (3.27)

in which χχχ p represents the constraint vector associated with the perturbed vector
qqqp,with the perturbation magnitude ∆ is set to 1×10−7. For each variable element,

χ
p
r ≜ χ(qp

r ) (3.28a)

qp
r ≜ qr +∆. (3.28b)

In order to compute the Jacobian matrix, a forward finite difference approach is
employed, as outlined in Equation (3.27). It should be noted that this introduces a
certain degree of approximation, nevertheless this methodology enhances the stability
of a system that is subjected to variation in the initial conditions.

Consequently, the OCP formulated within the TPBVP aims to determine the opti-
mal initial state zzz∗0 that steers the trajectory towards the desired final state zzz∗f

(
zzz∗0(t), t

)
,

while complying with all BCs. This is achieved through the simultaneous integra-
tion of both the principal set of ODEs and all the STM equations via the lsoda
integrator [26], which employs variable step sizes and orders in accordance with
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3.5 OCP application for ascent optimization

Adams-Moulton methods [27]. The equations are outlined below for clarity

żzz = fff (zzz(t), t) . (3.29)

The implementation of linear mapping via the STM in the iterative Differential
Corrector (DC) process can introduce errors that may inhibit convergence and lead
to divergences. In order to enhance the robustness of this method, two principal
strategies have been introduced with the purpose of managing the maximum error,
which is denoted as Emax = normi(χi). Firstly, a correction factor is introduced in
Equation (3.30) during the iterative process, which, when properly selected, ensures
the convergence of the solution. This factor is also known as the relaxation parameter
κ1 and varies between 0.1 and 1. Consequently, the equation is given as:

zzzr+1 = zzzr −κ1 · [J(χχχr)]
−1

χχχr. (3.30)

During the preliminary estimation phase, lower values of κ1 should be used for
unknown variables, while higher values are recommended once the solution is in
close proximity to the optimal one. Secondly, the error in the subsequent steps is
controlled by comparison with the errors in the boundary conditions of the previous
step,

Emax,r+1 < κ2 Emax,r. (3.31)

Values of κ2 between 2 and 3 generally promote convergence during the initial
stage of the iterative process. Although these initial steps set the optimal direction,
they may also result in an increase in the maximum error. If equation (3.31) is not
satisfied, a correction process will be implemented on κ1.

3.5 OCP application for ascent optimization

In this section, the dynamics of a launch vehicle subject to optimization are presented
with the aim of identifying the optimal ascent trajectory. Before proceeding, it is
necessary to provide a detailed explanation of the dimensionless parameters of
the problem in order to ensure greater clarity. This procedure, which is employed
both for historical convention in the literature and to achieve numerical precision,
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3.5 OCP application for ascent optimization

involves the use of specific values to non-dimensionalise quantities in the 2BP. The
non-dimensionalizations quantities under consideration are

Physical constant Unit Value

Length unit [km] 6378
Mass unit [kg] 6×105

Time unit [s] 806.785576

Table 3.1 Non-dimensionalizing values

Table 3.1 illustrates the values associated with the reference quantities. The
characteristic length (l∗) is equal to the average radius of the Earth, the characteristic
mass (m∗) is equal to the total weight of the fully loaded launch vehicle, and the
characteristic time (t∗) is not directly imposed but calculated as

t∗ =

√
(l∗)3

µ⊕
. (3.32)

With regard to the notation of the dimensionless quantities, the same notation as that
introduced at the beginning of Chapter 2 is employed.

The EoMs, as presented in (2.23), can now be expressed in the ECEF RF,
whereby the equations are projected along the three Cartesian coordinate axes. This
results in a set of ODE, as follows

dx
dt

= vx (3.33a)

dy
dt

= vy (3.33b)

dz
dt

= vz (3.33c)

dvx

dt
=−µ⊕

r3 x+
Tx

m
+aDx +2ω⊕ vy +ω

2
⊕ x (3.33d)

dvy

dt
=−µ⊕

r3 y+
Ty

m
+aDy −2ω⊕ vx +ω

2
⊕ y (3.33e)

dvz

dt
=−µ⊕

r3 z+
Tz

m
+aDz (3.33f)

dm
dt

=−T
c

(3.33g)
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3.5 OCP application for ascent optimization

The application of OCT to the set of ODEs (3.33) aims to identify the optimal control
law that maximises the final mass. This in turn is equivalent to seeking the optimal
payload during ascent of a launch vehicle. As previously stated in section 3.2, the
preferred approach is Mayer’s formulation, which reduces the problem statement by
imposing Φ = 0.

The state vector xxx(t) ∈ Rn will consist of

xxx =
{

x y z u v w m
}T

. (3.34)

In light of the fact that each state variable is associated with a corresponding adjoint
variable, this leads to the creation of an augmented state vector yyy(t) ∈ R2n

yyy =
{

x y z u v w m λx λy λz λu λv λw λm

}T
. (3.35)

The merit index is then defined as the final mass reached by the vehicle at the end of
the ascent trajectory, namely

J = ϕ = m f . (3.36)

By explicitly defining each term present in the set of ODEs shown in equations
(3.33), the formulation of the Hamiltonian is derived as follows

H = λλλ
T fff =

2n

∑
i=1

λi fi = λru+λϑ

v
r cosφ

+λϕ

w
r
+

+λu

[
− µ

r2 +
v2

r
+

w2

r
+

Tu

m

]
+

+λw

[
−uv

r
+

vw
r

tanϕ +
Tv

m

]
+ (3.37a)

+λw

[
−uw

r
− v2

r
tanϕ +

Tw

m

]
+

−λm
T
c
,

or rewritten in compact form

H = λλλ
T
r VVV +λλλ

T
V

(
TTT
m
−µ

rrr
r3

)
−λm

T
c
. (3.38)
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3.5 OCP application for ascent optimization

Grouping together all the terms that multiply the thrust-to-mass ratio, a new coeffi-
cient, referred to as the Switching Function, can be introduced:

SF = λλλ
T
V

TTT
T
−λm

m
c
. (3.39)

The incorporation of the specified coefficient into Equation (3.38) enables the refor-
mulation of this equation as follows

H = λλλ
T
r VVV +λλλ

T
V

(
−µ

rrr
r3

)
+

T
m
SF . (3.40)

The control vector uuu(t) is a function of the thrust vector TTT , both in terms of
magnitude and direction. According to the PMP, the optimal control uuu∗ that max-
imises the trajectory’s merit index is the same that maximises the Hamiltonian, as
demonstrated in Equation (3.40). It is evident from this equation that the Hamiltonian
is a linear function of the thrust vector TTT , and, as discussed in Section 3.2.2, this
implies the adoption of a bang-bang control strategy. Therefore, the thrust should be
maximised when SF > 0, resulting in T = Tmax, whereas if SF < 0 the thrust shall
be null T = 0. In this context, singular arcs, typically linked with atmospheric flight
and and necessitate the calculation of the time derivatives of the switching function,
are not considered.

With regard to the thrust vector TTT , Lawden’s work has made a significant contri-
bution to the definition of the optimal thrust direction, which must be parallel to the
adjoint velocity vector λλλV , designated primer vector

λλλV =


λu

λv

λw

 , λV = ∥λλλV∥. (3.41)

The optimal thrust direction is that which maximises the SF in Equation (3.39),
thereby maximising the Hamiltonian, as described in Equation (3.40).

In light of the aforementioned considerations, equation (3.39) can be reformu-
lated in scalar form

SF = λ
T
V −λm

m
c
. (3.42)
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3.5 OCP application for ascent optimization

Fig. 3.2 SC ZEN RF and thrust angles [9]

Figure 3.2 presents the thrust vector TTT and its scalar decomposition angles,
namely the elevation αT and azimuth βT angles, within the ZEN RF. Consequently,
the thrust vector expressed in scalar form is

TTT =


Tu

Tv

Tw

= T


sinαT

cosαT cosβT

cosαT sinβT

 , T = ∥TTT∥. (3.43)

The optimal thrust angles are obtained by deriving the Hamiltonian equation
(3.39) with respect to those same angles, resulting

∂H

∂αT
= 0 = λu cosαT − (λv cosβT +λw sinβT )sinαT (3.44a)

∂H

∂βT
= 0 =−λv sinβT +λw cosβT . (3.44b)

Mathematical manipulations of Equation (3.43) lead to the derivation of optimal
directions

sinαT =
λu

λV
(3.45a)

cosαT cosβT =
λv

λV
(3.45b)

cosαT sinβT =
λw

λV
, (3.45c)
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3.5 OCP application for ascent optimization

which are the cosine directors of the primer vector and also correspond to the
components of the thrust vector described in the equation (3.43). Consequently,
the optimal thrust angles are derived by calculating the in-plane and out-of-plane
angles using equations (3.45b) and (3.45c). Adjoint variables are obtained through
the integration of the Euler-Lagrange equations, as indicated by equation (3.10).

Although the nature of the problem appears to be fully defined, the management
of a highly non-linear dynamic system and the employment of a high-fidelity model
introduce significant complexities in the automatic computation of thrust SF > 0
and coast SF < 0 phases. Therefore, small fluctuations in the SF values close to
zero can result in frequent sign changes during the integration process, which may
give rise to numerical issues. Any alterations in the initial conditions during the
correction process, even if minimal, could cause a sudden shift in the SF and may
either eliminate an essential boost phase or introduce an unwanted coast phase.
Such changes might occur during the initial steps of integration, the resultant error
gradient is likely to be computed with poor accuracy, thereby potentially preventing
the solution from converging. One of the primary challenges in indirect optimization
problems is the management of thrust discontinuities, as these can induce numerical
issues in gradient evaluation. Various methods have been employed to address this
issue, including smoothing techniques [28], homotopy and continuation approaches
[29], uniform trigonometry methods [30], and integrated control regularization
methods [31].

In the proposed analysis, an alternative approach is adopted in order to define
the solution. The implementation of a TPBVP, within which an additional thrust
arc is forcibly introduced, results in the formation of a Hybrid MPBVP (HMPBVP)
in which the defined switching structure does not violate the PMP. The trajectories
are idealised as divided into thrust sub-arcs whose duration is initially unknown
and subject to optimisation. Furthermore, additional boundary conditions require
that SF be zero at the switching points where the thruster is activated or deactivated.
Defining the switching structure in precise terms helps to obviate convergence issues
and undesirable oscillations in the solution, thereby enhancing the effectiveness of
the method in identifying an accurate result even when parts of SF do not comply
with the PMP.

this approach offers substantial numerical precision, an adequate rate of conver-
gence for an indirect method - despite its dependence on the problem’s complexity
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3.5 OCP application for ascent optimization

- and greater robustness compared to other methods. Furthermore, the code is pre-
compiled in C++ and employs the lsoda command for the integration phase, thereby
markedly enhancing computational efficiency. This optimisation enables each itera-
tion to be executed in less than a millisecond on a standard 2.60 GHz CPU, ensuring
that solutions converge with an error tolerance of 1×10−8.
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Chapter 4

Ascent Trajectories in 2BP

Chapter 4 presents the results of ascent trajectories as a function of launch latitude.
The existing launch sites have been considered as reference points, while each
trajectory has been calculated using the 2BP, in accordance with the detailed EoMs
outlined in previous Chapters. The approach to the problem has been as a TPBVP,
with the incorporation of internal conditions in order to simulate the staging phase
of the launcher, thereby transforming it into a Hybrid Multi-point Boundary Value
Problem (HMPBVP). The relevant parameters for the launcher, pertaining to each
thrust arc, are outlined below:

Launcher parameters Unit Value

Initial mass m0 [kg] 6e05
Specific Impulse Isp [s] 320
Thrust 1st stage Sea Level [kN] 7605
Thrust 1st stage in Vacuum [kN] 8227
Thrust 2nd stage in Vacuum [kN] 981

Table 4.1 Launcher parameters

The single-shooting method adopted in the dynamic model under study identifies
a solution within the search space, hence suggesting that the launcher should thrust in
preferential directions. Although the implemented IM is capable of computing opti-
mal thrust angles to minimise propellant consumption, it is of the utmost importance
to define appropriate initial assumptions. This requires a thorough understanding of
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4.1 Boundary Conditions

the underlying dynamics of the launcher’s ascent and orbital insertion, in order to
guarantee the generation of suitable initial guesses.

The analysis is conducted for both minimum-time problems, where the influence
of the switching function is not considered, and minimum-consumption problems,
with the objective of comparing the solutions.

Here, the general conditions for the proposed problems are derived from empirical
considerations. The following sections present a series of results pertaining to
different scenarios, with a specific focus on the ascent of a launcher with varying
initial conditions, namely the latitude starting from the equator. For the problem in
question, a number of positions corresponding to different existing launch bases have
been identified. To ensure the comprehensive analysis of all potential scenarios, the
symmetrical positions in the opposite hemisphere have also been included, despite
the absence of actual operational launch bases in those locations.

4.1 Boundary Conditions

4.1.1 Initial Conditions

Each launch is conducted within a time window that allows for the desired orbit
to be achieved via a direct ascent, with an MLTAN of 0 deg, corresponding to a
SSO with the AN at 12:00. The table below presents the various times of launch in
Coordinated Universal Time (UTC) terms

Launch Bases LAT Epoch UTC

Guyana Space Centre, French Guiana 5.236°N 2024/03/21 08:31:52
Satish Dhawan Space Centre, India 13.731°N 2024/03/21 17:20:33
Cape Canaveral Space Station, USA 28.562°N 2024/03/21 06:37:42
Vandenberg Space Force Base, USA 34.742°N 2024/03/21 03:57:58
Jiuquan Satellite Launch Center, China 40.958°N 2024/03/21 18:40:41
Baikonur Cosmodrome, Kazakhstan 45.921°N 2024/03/21 16:12:18

Table 4.2 Times of Passage on the Prime Meridian for Various Launch Bases on 21/03/2024

For each launch base, the latitude data underwent a conversion from spherical to
Cartesian coordinates. Due to the sensitivity of the code, the trajectory is divided
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4.1 Boundary Conditions

into two distinct phases. In the first phase, which simulated a purely vertical ascent,
the integration of EoM was conducted using a simple approach until the launcher
reached an altitude of 15 km. This resulted in a dynamic control of the launcher
model’s attitude being imposed. The resulting conditions are then used as new initial
conditions with a view to determining optimal ascent trajectories.

xxx0 =
{

x, y, z, vx, vy, vz
}T

. (4.1)

In addition to the initial position and velocity values provided, initial guesses
must be assigned to the supplementary variables introduced for the multiple IM,
specifically:

λλλ 0 =
{

λx, λy, λz, λvx , λvy , λvz

}T
. (4.2)

A variety of considerations may be made on the basis of the value assumed by each
added variable. For example, the position co-states, which quantify the impact on the
evolution of the body’s position quantities over time, demonstrate positive increasing
values in the x and z directions, reflecting the trajectory of the launch vehicle ascent.
Instead, considering the velocity co-states, the sign indicates whether the body
is accelerating (for positive values) or decelerating (for negative values) along a
specific direction, while the magnitude defines the relevance of the corresponding
state quantity at that moment. Among the various added velocity variables, the one
with the greatest magnitude identifies the most significant thrust direction. The last
co-state, which is assumed to have a negative sign, defines the evolution of mass
over time, providing insight into the propellant consumption. For the assignment of
initial values, small non-zero values within the range of 10−2 ÷10−3 is used, with
gradual adjustments made to guide the solution towards convergence.

The final piece of information concerns the variation in thrust that occurs at
different phases of ascent. In the initial phase, the thrust is determined by the sea-
level value that is required for lift-off from the Earth’s surface. Subsequently, the
thrust generated by the launcher’s engines increases gradually in accordance with
the decrease in atmospheric pressure. Ultimately, the second stage thrust, operating
in a vacuum, is initiated following a specific mission duration, once the first stage
propellant is depleted. Despite the aforementioned model exhibiting three thrust
phases, resulting in a MBPVB, it has been modelled as a TBPVB by enforcing thrust
variation conditions to simulate the launcher’s adaptation and staging.
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4.1 Boundary Conditions

4.1.2 Final Conditions

Ascent trajectories are considered complete upon the fulfilment of the designated
final conditions, which correspond to the insertion into the target orbit. The final
conditions are defined in terms of Keplerian parameters that describe the orbit.
Accordingly, the provided data include

Orbital Parameters Unit Value

Semi-major axis (a) [km] 6858
Eccentricity (e) 0
Inclination (i) [deg] 97.2
RAAN (Ω) [deg] 0

Table 4.3 Target orbit parameters

The rationale behind the imposition of final conditions in relation to orbital
parameters is closely linked to the implementation of transversality conditions within
the model. The study [32] demonstrated that reduced transversality conditions,
aimed at eliminating unknown multipliers, are derived with regard to the free orbital
parameters. This approach has consequently enhanced the robustness of the code
and the speed of convergence. Consequently, in this analysis, the true anomaly
(ν f ) is selected as the free parameter, thus enabling the insertion point into orbit to
be determined by the optimal solutions, as opposed to being predefined. It should
be noted that the final conditions of the implemented process are converted to
Cartesian coordinates. This conversion in coordinates involves a transition from the
perifocal RF to the ECEF RF, utilising the rotation matrices described in Chapter
2. Although the assignment in Keplerian elements is the preferred option due to the
reduced transversality conditions, the conversion back to Cartesian coordinates is
the favoured approach as it allows for the EoM of the problem to be easily stated.

The set of final boundary conditions can be stated as:

χχχ f = {a, e, i, Ω, λm}T (4.3)

where these conditions remain unchanged across the various mission configurations
examined. Given that the objective was to minimise propellant usage, the parameter
to be optimised is the final mass m f . This condition is imposed by assigning a
value of 1 to the associated co-state λm f , as derived from the optimality conditions
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discussed in Chapter 3. Furthermore, the operating time is not constrained, thereby
allowing the t f to be computed freely.

4.2 Results

The optimal ascension trajectory can now be presented with the accompanying
results. It would be particularly beneficial at this point to examine the magnitude of
velocity experienced throughout the entirety of the ascension phase.

Fig. 4.1 Magnitude of velocity experienced throughout the ascent trajectory

Figure 4.1 illustrates the evolution of the launcher’s relative velocity along its
trajectory. Initially, at the point where the launcher is situated on Earth’s surface,
its velocity is equal to zero. As the launcher ascends, its velocity demonstrates a
progressive increase, initially in radial direction until it reaches the magnitude of the
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orbital velocity

Vorbit =

√
µE

a
= 7.62377

km
s

. (4.4)

Following an analysis of the evolution of the launcher’s velocity, optimal ascent
trajectories for the various launch sites under consideration are presented. The
trajectories have been calculated on the basis of the specific initial conditions of each
site and the constraints imposed by the mission configurations.

Fig. 4.2 Optimal ascent trajectories of each launch sites

Figure 4.2 reveals that the optimal trajectory, in terms of final mass, is achieved
by launching from the Guyana Space Centre, situated at 5.236 deg N. A comparison
of the results reveals that, for this specific type of implementation problem, the cost
in propellant consumption increases as the launch point moves further away from
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the Equator. Consequently, launches closer to the Equator offer greater benefits due
to the maximum intensity of the Earth’s rotational effect, which diminishes with
increasing latitude. This results in a high initial absolute velocity for the launcher,
which is advantageous for computing the optimal solution. It would be beneficial
to give greater attention to the optimal trajectories obtained in the most and least
advantageous cases.

Fig. 4.3 Comparison between the 5.23 deg N and 45.92 deg N solutions

As illustrated in Figure 4.3, while the trajectories display comparable patterns,
they also exhibit notable distinctions. In the most advantageous case, the trajectory
does not reach the orbit immediately after the gravity turn phase, but rather gradually
increases its velocity until the phase of insertion into the orbit. Conversely, the 45.92
degree N trajectory initially reaches the orbit but subsequently loses altitude due
to the force of gravity, which is then regained through an additional increase in
velocity. Another significant distinction pertains to the coasting phase, which occurs
at different points during the ascent and has varying durations.
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It is now possible to analyse the propellant expenditure.

Fig. 4.4 Propellant consumption as LAT varies

Figure 4.4 clearly demonstrates that the enabling of the SF results in a consider-
able reduction in propellant expenditure. Consequently, an increase in the duration
of the mission, which effectively transforms the problem from a minimum time to
a minimum consumption, gives rise to solutions that achieve approximately a 7%
reduction in stored propellant mass. Given the sensitivity of the code, it was not
feasible to analyse the ascent towards the South; instead, the analysis was limited to
that towards the North. This explains why the expected results are not symmetrical,
demonstrating that changing the launch hemisphere is not advantageous, and that, in
some scenarios, launches towards the South are considered.

Now that the propellant consumption required to complete the mission across
different architectures has been quantified, it is essential to examine the influence
of the velocity co-states assigned within each scenario to ascertain their impact on
mission performance. A comprehensive analysis of these co-states will facilitate
a deeper understanding of how velocity adjustments contribute to overall mission
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efficiency, thereby enabling a more informed evaluation of the mission’s dynamic
behaviour.

Fig. 4.5 Initial guesses of co-states of velicity as LAT varies

As illustrated in Figure 4.5, the magnitude of λvy is found to be negligible in
comparison to the other two components. As previously stated, the preferential thrust
directions are along the radial direction and northward, given that the predominant
contributions are λvx and λvz . The graph clearly demonstrates that as one moves away
from the equator, the parameters in question decrease and increase, respectively.
Upon combining the various components, it becomes evident that the cost of con-
ducting a direct launch is significantly higher at higher latitudes, thereby confirming
the initial observations.

In considering the optimal solutions, it is observed that the solution with the low-
est propellant consumption shows a significant predominance of the radial direction
throughout the evolution of the launcher. To provide a clearer understanding of the
thrust direction’s evolution during the ascent phase, the temporal trends of the thrust
angles, αT and βT , for this specific case are analysed and presented. This detailed
analysis offers insights into the dynamic behavior of the thrust vector, highlighting
its influence on the efficiency and performance of the ascent trajectory.
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Fig. 4.6 Evolution of the thrust angles, αT and βT , with respect to non-dimensional time t∗

By considering the launch trajectory originating from French Guiana, it is feasible
to conduct a detailed analysis of the evolution of the orbital parameters over time.
This analysis facilitates a comprehensive comprehension of the launcher behaviour
during its ascent and orbital insertion, offering precise insights into the variations of
each orbital parameter throughout the flight trajectory.
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Fig. 4.7 Evolution of the orbit parameters with respect to non-dimensional time t∗
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As illustrated in Figure 4.7, the launcher successfully reaches the desired final
orbit from a specific initial condition. Furthermore, a constant segment is evident,
indicating a non-propulsive phase during which the orbital parameters remain un-
changed. This phase occurs when SF < 0, as further illustrated in Figure 4.8.

Fig. 4.8 Switching function behaviour over non-dimensional time t∗

Accordingly, the non-propelled phase may be more effectively visualised through
the utilisation of total mass along the trajectory. This trend clearly highlights the
coasting phase, during which there is no consumption of propellant as the thrust is
switched to zero.

Fig. 4.9 Trend of mass in the range where SF < 0
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Moreover, in consideration of the linear relationship between propellant con-
sumption and thrust, as indicated by Equation (2.23c), a notable detail regarding the
behaviour of the total mass becomes evident

Fig. 4.10 Trend of mass behaviour over non-dimensional time t∗

Figure 4.10 reveals a change in the slope of the trend, indicative of a variation in
the imposed thrust conditions. This implies that staging took place at that phase of
the mission, signifying the transition from the first to the second stage.

Finally, it is of paramount importance to analyse the evolution of the heat flux
during the ascent to identify the critical moments of the mission and the corre-
sponding temperatures. This study allows for the evaluation of the launcher’s safety
and reliability, thus ensuring that structural components and ablative materials can
withstand extreme thermal conditions. The behaviour of heat flux is determined by
means of the following relationship, which takes into account density variation and
relative velocity, namely:

Q =
1
2

ρ v3
rel. (4.5)

Equation (4.5) permits the definition of the thermal flux evolution throughout the
entire ascent phase of the launcher, which develops as follows
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Fig. 4.11 Thermal flux evolution during mission operating times

As illustrated in Figure 4.11, the heat flux demonstrates a clear upward trend
during the ascent phase. Initially, this increase occurs at a relatively rapid rate,
driven by the combined effects of velocity and aerodynamic compression. Once
the maximum value is reached, a decline in the heat flux is evident as the launcher
traverses the denser layers of the atmosphere, leading to a reduction in aerodynamic
friction. Two points of interest can be identified: firstly, at the end of the vertical
ascent phase, where the heat flux reaches its initial peak value, and secondly, at
the peak heat flux value itself. By reference to the Stefan–Boltzmann law (4.6), it
is possible to ascertain the temperatures experienced by the launcher during these
specific phases, thus providing a detailed understanding of the thermal conditions
encountered during the flight.

Q = σ ε
(
T 4 −T 4

env
)

(4.6)
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The Stefan-Boltzmann constant (σ ), in conjunction with the emissivity values of the
materials (ε) and the thermal flux values, allows for the determination of temperatures
at specific points of interest, which are found to be 1469.873 K and 3284.687 K.

Given the sensitivity of the case, the analysis focuses on the ascent phase, without
going into detail on thermal analysis, which is beyond the scope of this thesis. In
order to avoid any structural compromise as a result of the high temperatures that are
likely to be experienced during ascent, two potential strategies could be contemplated.
The first approach involves the utilisation of ablative coating materials, whereby
these materials evaporate at specific temperatures, thereby reducing the surface
temperature and protecting the underlying structure. The second approach is the
implementation of thrust throttling, which, although it increases mission duration,
allows for a significant reduction in surface temperature, thus ensuring the structural
integrity of the vehicle. Furthermore, the division of the ascent trajectory into two
segments has no impact on the thermal flux outcomes, demonstrating the consistency
and reliability of the solution. Consequently, the results obtained are considered
representative of real-world conditions, providing a robust basis for further analysis
and optimisation of the ascent phase.
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Chapter 5

Conclusion

In light of the growing interest in Sun-Synchronous Orbits (SSO), there is a need for
more comprehensive investigations into their dynamics, as well as the development
of effective methodologies to optimise trajectories for entering such orbits. In this
context, this thesis presents an in-depth study with the objective of optimising ascent
trajectories for launching satellites into SSOs.

Indirect methods have been identified as the most appropriate approach to resolv-
ing the complex and multifaceted Hamiltonian Boundary Value Problem (HBVP)
inherent to the application of Optimal Control Theory (OCT) to ascent trajectory
optimisation. Pontryagin’s Maximum Principle was instrumental in defining the
optimal control strategies necessary for minimising propellant consumption. This
thesis, therefore, has been structured to identify the optimal solution, with a view to
minimising propellant consumption while maximising payload capacity. In order to
achieve this, various factors must be taken into consideration, including launch bases,
mission architectures and dynamic models. The study commenced with the creation
of a bespoke simulation scenario, designed to model the ascent of a launch vehicle
into a low Earth OCT. A robust dynamic model was developed, incorporating the
primary gravitational influence of the Earth along with perturbative effects such as
atmospheric drag, utilising the Harris-Priester atmospheric density model. The req-
uisite and optimal conditions were thus derived, offering valuable insights that guide
the evolution of the control law toward its optimal configuration. The derivation of
optimality conditions for defining the Two-Point Boundary Value Problem (TPBVP)
and the subsequent analysis of solutions afforded a comprehensive understanding
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of the potential ascent configurations of the model. The sensitivity of the indirect
method was addressed through the implementation of tailored strategies, including
the introduction of two distinct thrust arcs to simulate staging, the a priori definition
of a thrust structure, and the separation of the initial purely vertical ascent phase to
impose dynamic control within the model, thereby mitigating numerical issues.

The indirect approach, which is distinguished by its considerable computational
speed, allows for an expeditious assessment of a multitude of ascent scenarios under
diverse initial conditions. The results demonstrate that the selection of the launch
base has a considerable impact on mission performance, with a direct effect on
propellant consumption. The analyses demonstrated that launch bases situated in
proximity to the equator tend to exhibit enhanced efficiency, predominantly due to
the augmented initial velocity imparted by Earth’s rotational motion. Notwithstand-
ing the simplifications introduced in the model as a result of the implementation of a
two-body problem with a restricted number of perturbations, the theoretical model
demonstrated a satisfactory degree of accuracy. This has resulted in the development
of an effective baseline model for the planning, verification, and optimisation of
future missions. The accuracy of the model was validated by comparing its predic-
tions with actual data from a SpaceX launch, with particular focus on propellant
expenditure and mission timing.

5.1 Future work

The objectives of this thesis have been fulfilled by the identification of appropriate
solutions to the case study. An indirect optimisation approach was employed for
the ascent trajectories, thereby providing effective solutions for the management of
model sensitivity issues. This study has facilitated an understanding of the potential
ascent strategies, which are contingent upon the mission objectives.

Given the extensive scope of the subject matter, it was not feasible to examine all
elements in exhaustive detail. It would thus be beneficial to investigate certain ele-
ments further in order to enhance the fidelity of the model, thereby progressing from
a medium-fidelity model to a high-fidelity one. Firstly, an essential improvement is
the implementation of a more accurate atmospheric density model, in order to more
precisely capture the effects it introduces on the model during both ascent and vary-
ing launch days, with a comprehensive consideration of solar activity. Furthermore,
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5.1 Future work

the incorporation of additional perturbative effects, such as the Earth’s non-spherical
shape (the second most significant perturbation), as well as gravitational interactions
with other celestial bodies and the impact of solar radiation pressure, is of paramount
importance.

Further enhancements to the model and its implementation can be achieved by
transitioning from a TPBVP to a MPBVP for simulating staging. This involves
imposing the values associated with each stage in each thrust arc to identify the
optimal pattern. The configuration of the launch vehicle in multiple stages is of great
consequence for the optimal utilisation of propellant. The progressive reduction of
mass through stage separation enables a more efficient ascent. This highlights the
significance of meticulous staging strategies in trajectory optimisation. Furthermore,
a crucial element is the thermal study, which offers a more comprehensive insight
into operational conditions and thermal stresses on materials. Ultimately, adopting
an ascent model that progressively aligns with real-world dynamics by incorporating
not only direct manoeuvres but also non-propelled stationary phases, plane changes,
and insertions, enabling dynamic trajectory adjustments, can further enhance the
model.

These refinements will not only bring the model closer to reality but also enhance
its stability and robustness, thereby providing a solid foundation for the planning, ver-
ification, and optimisation of future missions. These improvements will significantly
contribute to the increased accuracy and reliability of simulations, thus ensuring that
the model can be confidently used in a wide range of operational scenarios.
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Appendix A

Euler-Lagrange equations for the
adjoint variables

dλx

dt
=

(
µ⊕
r3/2 −

3 µ⊕ x2

r5/2

)
λvx −

3 µ⊕ x
r5/2 (λvyy+λvzz)

dλy

dt
=

(
µ⊕
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3 µ⊕ y2

r5/2
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λvy −

3 µ⊕y
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dλz

dt
=
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dλm
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T
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√
λ 2
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+λ 2
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+λ 2

vz

(A.1)
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