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Summary

In the study of the response of complex engineering systems, especially in the
aerospace field, computer experiments play a crucial role, enabling the simulation
of the behaviour of such systems through the implementation of mathematical
models, that can be extremely complex. For instance, optimization problems
involving aerodynamic surfaces, turbomachinery components, as well as structural
and thermo-fluid dynamic assessments that arise in various phases of aerospace
design, require numerical simulations that are often extremely demanding in terms
of simulation time and computational costs, when a high level of accuracy is sought.
In these cases, the use of High Fidelity models, which aim for the most accurate
representation possible of the phenomenon, often becomes infeasible. On the
other hand, transitioning to Low Fidelity models allows for significant speed-up
and reduction of computational burdens, but results in lower accuracy outputs.
Multi-fidelity techniques enable the combination of the Low Fidelity models’ ability
to provide numerous low-cost insights with the High Fidelity models’ capacity to
ensure high result accuracy, allowing for a reduction in the required simulations.
Moreover, they lead to the creation of surrogate models to use in outer loop appli-
cations, such as optimization tasks. A multi-fidelity modeling technique that has
gained prominence in the aeronautical field in recent years is Co-Kriging. Rooted
in geostatistics, Co-Kriging is a spatial interpolation technique for predicting the
behaviour of a variable or function in untested locations.

This thesis implements a detailed study of the Co-Kriging technique for the devel-
opment of a surrogate model to predict the thrust coefficient of a cold gas thruster,
as the geometry of its exhaust nozzle varies. Cold gas thrusters are small propulsion
system used for attitude control maneuvers of nanosatellites that rely on the simple
expansion of pressurized gas in a nozzle, without combustion. For these systems,
viscosity significantly impacts the performance in terms of achievable thrust and the
boundary layer is found to occupy a significant portion of the exit area. For various
geometrical configurations of the nozzle, the thrust coefficient is calculated using
both a High Fidelity model, which involves solving the Navier-Stokes equations
to study the flow, and a Low Fidelity one, where viscous effects are neglected,
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requiring only the Euler equations. Additionally, the use of a 1D ideal nozzle model
is considered as a potential Low Fidelity approach. Adaptive sampling techniques
for the implementation of the Co-Kriging surrogate models are explored, testing
three different algorithms, namely Maximum Variance, Expected Improvement
and Information Gain, on benchmark single and two-variable functions. The last
two algorithms are applied to the cold gas thruster case and the Information Gain
criterion is found to outperform the other one. Moreover, leveraging the 1D ideal
nozzle model as Low Fidelity, led to a reduction in overall computational cost while
ensuring high global accuracy, despite the potential for minor local inaccuracies
depending on the sampled points’ locations. Once a Co-Kriging surrogate is ob-
tained, a multi-objective optimization is carried on with the aim of maximizing
CF while minimizing the nozzle’s mass. A Pareto front for the optimal points is
obtained, allowing for the selection of the geometry that best meets the mission
objectives during the cold gas thruster’s design phase.
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Chapter 1

Introduction

1.1 Computer-based models and their fidelity

In the framework of the study of complex engineering systems, with particular
regard to fluid dynamics and aerodynamics problems, the challenge of selecting an
experimental approach often arises, mainly due to the fact that testing facilities
and highly expensive sensing equipment are required, not to mention the difficulty
of varying geometry, boundary and initial conditions of the experiment. As a
result, computer-based simulations have assumed a crucial role in the study of
physical systems [1]. In order to simulate the behaviours of theoretical physical
systems, engineers must develop mathematical models, which are deterministic and
may often be highly complex, encompassing various levels of fidelity and a large
number of design variables. These models usually involve sets of equations, that
can be linear and nonlinear algebraic as well as ordinary and partial differential
equations, depending on the considered phenomena [1]. That being said, the
aim of reaching a comparable level of accuracy with respect to physical testing
data entails computationally expensive analysis and simulation processes that are
time-consuming and might be infeasible [2].

As previously mentioned, computer-based models can be distinguished by dif-
ferent levels of fidelity: for clarity, as stated by Fernandez-Godino [3], "fidelity in
modeling refers to the level of detail and accuracy provided by a predictive model
or simulation". High Fidelity models (HFMs), which can be described as complex
high-dimensional systems that are designed to provide highly accurate results in
predictions and simulations, are often impractical to develop and utilize if the
computational resources are limited [3]. Although in recent years the availability
of fast computing platforms have increased, if the evaluation of the High Fidelity
objective function requires the numerical solution of partial differential equations

1



Introduction

Figure 1.1: Connection between high-fidelity and low-fidelity models is commonly
attributed to one or more of the following factors: dimensionality reduction, grid
coarsening, linearization, partial convergence, reduced geometry complexity, and
simplified physics [3]

(PDE), i.e. Navier-Stokes equations, even a single evaluation might take hours
on a powerful computer or even more on a desktop architecture [4]. Moreover,
complex models with higher fidelity tend to be characterized by a large number of
design variables, i.e. the input parameters of the model, therefore one can verify
what Forrester [5] calls the curse of dimensionality: the greater the number of
design variables, the larger the number of samples needed to evaluate the objective
function in order to ensure a certain degree of accuracy in the model prediction.
Thus, an exponential relation exists between the number of samples required and
the number of variables, making High Fidelity simulations too expensive in terms
of computational cost and time [5].
Compared to High Fidelity simulations, which might often be feasible only for
a few measuring locations, Low Fidelity models (LFMs) result in a simpler and
more affordable outcome; obviously, the advantages in terms of computational and
time burden come at the expense of the model’s prediction accuracy. As shown in
Figure 1.1, Low Fidelity models can generally be derived from High Fidelity models
through dimensionality reduction, linearization, use of simplified physical models,
simulations performed on coarser grids or partially converged results [3]. It is easy
to infer that a model can be defined as High or Low Fidelity only in relation to
another: for instance, a three-dimensional simulation holds a higher fidelity than
a mere analytical function evaluation, but can be considered less accurate with
respect to experimental measurements [3].
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In general, it is conceivable that Low Fidelity simulations can be executed within
reasonable time frames and with modest computational overheads, within the
capabilities of a standard desktop architecture.

Figure 1.2: Fidelity of models [6]

For instance, considering a specific objective function that describes the response of
the Low Fidelity model to a set of inputs, it would be feasible to perform a substan-
tial number of evaluations of said function across various locations in the domain
of interest, without significant difficulty. Despite this allows a rapid acquisition of
a broad spectrum of information regarding the model output, the major drawback
of employing a Low Fidelity model is that the results lack accuracy and deviate
from the true behaviour of the objective function or, in any case, that described by
a higher-fidelity model. On the other hand, evaluations of High Fidelity objective
functions are constrained by computational resource availability, typically yielding
precise yet limited information at only a few locations within the domain of interest.
Ideally, one would like to have access to a model capable of retaining the accuracy
that characterizes High Fidelity models while circumventing the issue of unsustain-
able computational burden, thereby combining the merits of HFMs and LFMs and
overcoming their drawbacks. This goal can be achieved by suitably combining data
obtained through simulations of different fidelities, giving rise to a variable-fidelity
model, more commonly known as a multi-fidelity model (MFM) [3]. Several works
and studies since the early 2000s have demonstrated how the combined use of
different fidelities enables the speeding of simulations without limitations in terms
of accuracy loss [3]. The basic idea was already proposed by Toropov et al. in [7],
namely to leverage the utilization of Low Fidelity models as a basis for rapidly
and effectively constructing approximations of High Fidelity models. Indeed, multi-
fidelity models exploit the large number of information provided at low cost by
LFMs in order to capture a global trend of the objective function, thus allowing for
an initial understanding of the general behaviour of the expensive model output [1].
Subsequently, a few pieces of information derived from a small sized sample from
High Fidelity simulations allows a calibration of the cheap objective function, in or-
der to obtain a highly accurate approximation of the expensive model’s response [1].
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An important concept to emphasize is that, typically, the adoption of multi-fidelity
modeling techniques leads to the creation of surrogate models (SMs), often referred
to in the literature as metamodels and introduced in the late 1980s by the works
of Box and Draper [8] and Kleijnen [9]. A surrogate model can be defined as a
mathematical approximation that reproduces the behaviour of a computationally
expensive system or model across the entire domain of interest or regions thereof
[10]. The significant advantage of these models lies in their being "cheap to evaluate"
[11]. In fact, evaluating a surrogate model at a particular point or set of points
requires minimal computational resources and can be practically instantaneous.
Therefore, once constructed and trained, the surrogate model is used to replace the
expensive one, allowing the prediction of the objective function values at points
in the domain that are not part of the sampling plans used for the model’s own
training [11]. By training a surrogate model with data belonging to different levels
of fidelity, a multi-fidelity surrogate model (MFSM) is obtained [3].
In recent years, the use of surrogate models in the context of multi-fidelity modeling
has been the subject of numerous studies and works, given the benefits achievable
from their application. Some remarkable applications in this field are listed below.
Methods for approximating High Fidelity models through a local scaling process
of Low Fidelity data have been proposed by Alexandrov et al. [12] and Gano
et al. ([13],[14]). These methods, known as correction-based methods, employ
a certain correction function, or bridge function, of additive, multiplicative or a
combination of the former types, to merge HF and LF data [1]. Multi-fidelity
surrogate models based on response surface modeling and basis function regression
have been investigated by Vitali et al. [15], Choi et al. [16] and Goldsmith et al.
[17], while artificial neural networks-based SMs are addressed by Liu and Wang
[18] and Minisci and Vasile [19]. As cited by Fernandez-Godino [3], Kriging is one
of the primary and most widely used types of surrogate model for the development
of MFSMs. Kriging is an interpolation technique originally used in geostatistics,
developed by G. Matheron based on the studies of Danie Krige, a South African
mining engineer; it is typically used as a single-fidelity technique, however, the
extension to the multi-fidelity domain of Kriging is known as Co-Kriging, which
involves the use of data from different fidelity levels to construct a more efficient
surrogate model [3]. In the literature, the study of surrogate models based on
Co-Kriging is manifested in the works of Kennedy and O’Hagan [20], LeGratiet
[21], Chung and Alonso [22] and Forrester [23], as well as many more studies,
especially in more recent years. The use of surrogate models constructed with
Kriging or Co-Kriging techniques is particularly beneficial for both optimization
problems and uncertainty quantification applications [3]. In the field of aerospace
engineering, surrogate models are widely used in the context of aerodynamic shape
optimization for airfoils, turbine blades and turbomachinery, as well as in the
design of atmospheric or space vehicles, structural design and the generation of
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aerodynamic databases [24]. Specifically, the use of Co-Kriging surrogate models for
generating aerodynamic data, predicting aerodynamic coefficients and optimizing
aerodynamic surface shapes has been extensively discussed in various works, such
as Han et al. [24], Wang et al. [25], and Peng et al. [26]. For applications related
to turbomachinery and turbine blade optimization, reference can be made to works
like Keane [27].
Further information on surrogate models, such as their implementation in the
context of Co-Kriging, is provided in the following sections, particularly in Chapter
2 and Chapter 4. A detailed theoretical and mathematical description of Kriging
and Co-Kriging techniques is presented below; the latter will be subsequently
employed in a case study to evaluate the performance of a cold gas thruster and
optimize its geometry (Chapter 4).

1.2 Kriging
This section delves into the theory underlying Kriging and provides a derivation
thereof as reported in Jones et al. [28].

Kriging, often referred to as Gaussian Process regression or interpolation, is a tech-
nique rooted in geostatistics, introduced in 1951 by South African geologist Danie
Krige as a statistical interpolation model aimed at locating potential promising
mining areas in a given spatial domain [29]. A rigorous mathematical formulation
was subsequently developed by Georges Matheron [30], again within the framework
of spatial statistics. The introduction of the technique into the engineering field
of computer analysis is attributed to Sacks et al. [31], aiming to approximate the
results of computer experiments.
In general, the Kriging method allows to obtain an estimate of a certain parameter
or objective function in unexplored regions of the domain of interest through the
interpolation of sampled data at a specific surrounding probe positions, where
values are known. Moreover, a spatial correlation exists among the values at the
sampling points, delineating what is commonly termed as the dataset’s covariance
(Equation 1.2) [29]. To clarify this concept, one may consider the implementation of
the technique proposed by Jones et al. in [28]: the objective function to be approx-
imated is not known a priori throughout the entire domain of interest. Therefore,
when one seeks to make a prediction at a certain point x within the domain, there
exists uncertainty regarding the value assumed by the function at that point. In
Kriging formulations, a method is proposed to model such uncertainty by consider-
ing that the value assumed by the function at the sampling point x is equivalent
to the value assumed by a random variable, namely Y (x), which follows a normal
distribution with mean µ and variance σ2 [28]. In other words, the function value
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at point x may vary randomly around the mean value µ within a range of variations
depending on σ. Now, considering two points, xi and xj, there will still be some
uncertainty regarding the values assumed by the function at those points. However,
if the function can be considered continuous, then it is reasonable to assume that
the closer xi and xj are, the closer the values of Y (xj) and Y (xj) will be. Therefore,
if the distance ∥xi − xj∥ is small, the random variables Y (xi) and Y (xj) will be
more highly correlated [28]. At the core of Kriging lies the assumption that the
correlation between random variables follows the form

Corr[Y (xi), Y (xj)] = exp
A

−
dØ

l=1
(θl|xil − xjl|pl

B
(1.1)

It follows from Equation (1.1) that if xi = xj, then the correlation is maximum
and equals 1, while as the distance between the two points tends to infinity, the
correlation will tend to 0.
The parameters θl and pl are called model hyperparameters and influence the spatial
correlation between the sampling points. In particular, the parameter pl determines
the smoothness of the correlation function along the direction of the coordinate l
[23].

Figure 1.3: Correlations with varying pl [5]

Figure 1.3 shows the effect of pl on the points correlation: p = 2 implies a
smoother and continuous correlation function that can be used to model functions
characterized by regular variations in the data. It is important to remember that
the regularity or irregularity of the correlation function plays a fundamental role

6



Introduction

Figure 1.4: Correlations with varying θl [5]

in the effectiveness of the Kriging model in capturing the spatial variation of the
data [5]. The decrease of pl, instead, determines a more rapid initial decay of the
correlation function as the distance between xi and xj increases [5]. For small
values of pj, the correlation function presents a sort of discontinuity for xi = xj
and can be used to model functions characterized by sharp variations in the data.
As far as θl is concerned, this parameter indicates how quickly the spatial correlation
between xi and xj decays as the two points xi and xj move away from each other
[23]. The effect of θl is shown in Figure 1.4.
High values of θl are used to model functions that are highly active in the variable
l, i.e. functions whose values vary greatly over small distances [28]. Low values of
θl are related to functions exhibiting low variability within the domain of interest [5].

Once a sampling plan is chosen and a set of n points in d dimensions x =
{x1, . . . , xn}T is obtained, it is possible to encapsulate the observed values of the
function to be approximated at the points in x in the vector y = {y1, . . . , yn}T . As
mentioned earlier, the function values will be characterized by some uncertainty,
which is represented by the vector Y = {Y (x1), . . . , Y (xn)}T [28]. The latter has
a mean value of 1µ (1 is a Rn×1 vector of ones) and covariance matrix given by:

Cov(Y, Y) = σ2R (1.2)

R is a n × n matrix, which entries are described by Equation 1.1. The covariance
measures the correlation that exists between two or more sets of random variables
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[5]. Given generic X and Y the relation between covariance and correlation is shown
in Equation 1.3

Corr(X, Y ) = Cov(X, Y )
σxσy

(1.3)

where σx and σy are X and Y’s respective standard deviations.

Before constructing the Kriging regressor, optimal values for the hyperparam-
eters pl and θl, as well as µ and σ must be evaluated: the values of these parameters
are chosen in order to maximize the likelihood function of the observed data, i.e.

1
(2π)n

2 (σ2)n
2 |R| 1

2
exp

C
−(y − 1µ)T R−1(y − 1µ)

2σ2

D
(1.4)

By maximizing the likelihood function, one would wish the Kriging approximation
to be as consistent as possible with the observed values of the function in x [28]. In
general, a more practical way of doing this, is by maximizing the natural logarithm
of the likelihood function, disregarding the constant terms that arise; thus, the
problem becomes

−n

2 log(σ2) − 1
2 log(|R|) − (y − 1µ)T R−1(y − 1µ)

2σ2 (1.5)

Now, by differentiating Equation 1.5 with respect to µ and σ2 and setting these
derivatives equal to zero, it is possible to derive optimal values for the mean and
variance in terms of the spatial correlation matrix R. Consequently, denoting those
values with the symbol ,̂ we obtain

µ̂ = 1T R−1y
1T R−11 (1.6)

σ̂2 = (y − 1µ)T R−1(y − 1µ)
n

(1.7)

Introducing Equations 1.6 and 1.7 in Equation 1.5, a "concentrated log-likelihood"
function is obtained:

−n

2 log(σ2) − 1
2 log(|R|) (1.8)

Maximizing Equation 1.8, which only depends on R, and thus pl and θl, estimates
for these parameters are obtained. Then, µ̂ and σ̂2 are derived from Equations 1.6
and 1.7 with the estimated hyperparameters [28].
At this point, Kriging model parameters are found and the interpolation phase
has been completed. A regressor is now needed in order to predict the value of
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the Kriging approximation in unprobed locations. Continuing in line with the
approach proposed by Jones et al. [28], let’s denote by ŷ a new prediction at a
point x̂, which does not belong to the initial set of points used to train the model.
This new prediction must, of course, be consistent with the observed values y at
points x used in the previous phase and, therefore, must also be consistent with
the hyperparameters θl and pl obtained. To ensure this, a new maximum likelihood
estimate (MLE) must be made, this time of the set of sample data y and new
prediction ŷ. Therefore, the y vector is augmented, as well as the correlation matrix
R:

ỹ =
C
y
ŷ

D
(1.9)

R̃ =
C

R r
rT 1

D
(1.10)

where

r =


Corr[Y (x̂), Y (x1)]

...
Corr[Y (x̂), Y (xn)]

 (1.11)

Maximizing the new log-likelihood function given in Equation 1.12

−n

2 ln(2π) − n

2 ln(σ2) − 1
2 ln |R̃| − (ỹ − 1µ)T R̃−1(ỹ − 1µ)

2σ2 (1.12)

the MLE for ỹ, i.e. the Kriging predictor, is found

ỹ(x) = µ̂ + rT R−1(y − 1µ̂) (1.13)

Equation 1.13 can be rewritten as

ỹ(x) = a +
nØ

i=1
(biϕ(x̂ − xi)) (1.14)

Equation 1.14 shows that the prediction provided by the Kriging model can be
viewed as a combination of a linear regression function (the second term), typically
of polynomial type, and a stochastic Gaussian process with zero mean, variance σ2

and correlation matrix given by Equation 1.11 [32]. The regression term consists of
known function, called bases, of the form of Equation 1.1 and unknown coefficients,
called weights, that need to be evaluated.
Finally, as stated by Jones et al. [28], a potential estimate of the error committed
by the predictor in estimating the objective function is given by the curvature of
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the augmented log-likelihood function (Equation 1.12): in particular, an inversely
proportional relationship is identified, thus the flatter the log-likelihood function,
the greater the potential error in the prediction. The curvature of this function
can be computed through the second derivative of the augmented log-likelihood
function with respect to ŷ. The estimate of the potential error is given by

s2(x̂) = σ̂2
C
1 − rT R−1r + (1 − rT R−1r)2

1T R−11

D
(1.15)

1.3 Co-Kriging
In Section 1.2, a comprehensive overview of Kriging was provided as a statistical
interpolation technique aimed at approximating an unknown objective function,
typically available only at a limited number of points, arising from simulations
or describing the output of a computationally expensive model. Kriging finds
widespread application as a surrogate model in aerodynamic and propulsion fields,
particularly in profile shape optimization, approximation of costly CFD simulations,
aerodynamic databases creation and data fusion. Several variations of Kriging
have been proposed in the literature over the years, including Simple Kriging,
Ordinary Kriging, Stochastic Kriging, Blind Kriging and so on, yet these fall
beyond the scope of this thesis. Instead, the key focus is on extending Kriging, a
single-fidelity model approach, to the realm of multi-fidelity modeling, the ben-
efits of which have been introduced in previous sections. Indeed, incorporating
a large amount of rapidly and inexpensively generated data, through the use of
a Low Fidelity model, reduces the number of computationally expensive High
Fidelity evaluations in the process of constructing the surrogate model [11]. In
this context, Co-Kriging leverages prior information about the behaviour of the
objective function provided by LF models and merges it with a limited number
of HF data, yielding a more accurate surrogate model compared to what can be
achieved with standard Kriging, given the same costly observations. One of the
main challenges underlying Co-Kriging is how to properly scale data of different
fidelity, namely by choosing the appropriate scaling factor ρ, one of the model’s
hyperparameters. Furthermore, constructing the Co-Kriging prediction involves
estimating the covariance and cross-variance of the data used for model training [11].

Below is a comprehensive discussion of the Co-Kriging technique, leveraging the
derivations proposed by Forrester et al. [23] and Kennedy and O’Hagan [20]; the
aim is to approximate a function whose evaluation is costly by utilizing data from
rapid and less expensive, albeit less accurate, evaluations of that function. The
discussion is confined to the case of a dual fidelity, as reported in [23].
Let us consider two sets of data, one referred to as cheap, represented by the points
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Xc and the low-accuracy values yc, and one as expensive, consisting of the samples
Xe and the accurate values ye. For simplicity, a nested configuration is assumed
for the points Xe, which will be contained within the Xc vector; this facilitates
the evaluation of the scaling factor ρ between the data of the two fidelities [23].
Concatenating the two vectors yields

X =
C
Xc
Xe

D
=
1
xc

(1), . . . , xc
(nc), xe

(1), . . . , xe
(ne)

2T
(1.16)

Just as in Kriging, in Co-Kriging, the sampled values at generic points X are
regarded as the outcomes of a random variable following a Gaussian distribution
[23]. Specifically, the following random field is obtained

Y =
C
Yc(Xc)
Ye(Xe)

D
=
1
Yc

1
xc

(1)
2

, . . . , Yc

1
xc

(nc)
2

, Ye

1
xe

(1)
2

, . . . , Ye

1
xe

(ne)
22T

(1.17)

As advocated by Kennedy and O’Hagan [20], it is assumed that the values obtained
at points Xe through costly simulations are truthful, hence not subject to error,
and that any error is solely associated with values obtained from less expensive
simulations. More precisely, if the value of the expensive function is known at
a given point x(i), then at that point, the cheap function cannot provide any
relevant information, as the value Ye

1
x(i)

2
is known form an exact simulation (this

assumption is often referred to as the Markov property) [23]. Mathematically, this
translates into

Cov
î
Ye

1
x(i)

2
, Yc(x)|Yc

1
x(i)

2ï
= 0, ∀x /= x(i) (1.18)

Therefore, the values that the High and Low Fidelity functions assume are associ-
ated with Gaussian Processes (GP), which will be referred to as Ze(·) and Zc(·)
respectively. The Co-Kriging will determine an approximation of the expensive
High Fidelity function as the linear combination of the scaled low-cost function
by a certain constant factor ρ and a Gaussian Process denoted by Zd(·), which is
nothing but the difference between Ze(·) and ρZc(·)

Ze(x) = ρZc(x) + Zd(x) (1.19)

As in Kriging, also in this case a covariance matrix must be constructed; the
structure of this matrix will be more complex compared to Equation 1.2 seen in
the case of Kriging. Firstly, below are reported the relations necessary to construct
the covariance matrix of Co-Kriging:
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Cov {Yc (Xc) , Yc (Xc)} = Cov {Zc (Xc) , Zc (Xc)} = σ2
c Rc (Xc, Xc) (1.20)

Cov {Ye (Xe) , Yc (Xc)} = Cov {ρZc (Xc) + Zd (Xc) , Zc (Xe)} = ρσ2
c Rc (Xc, Xe)

(1.21)

Cov {Ye (Xe) , Ye (Xe)} = Cov {ρZc (Xe) Zd (Xe) , ρZc (Xe) + Zd (Xe)} =
= ρ2Cov {Zc (Xe) , Zc (Xe)} + Cov {Zd (Xe) , Zd (Xe)} =
= ρ2σ2

c Rc (Xe, Xe) + σ2
dRd (Xe, Xe)

(1.22)

In Equations 1.20, 1.21 and 1.22, Rc (Xc, Xe) denotes the matrix of spatial correla-
tions between Xc and Xe, as reported in Equation 1.11. These equations give rise
to the covariance matrix C

C =
C

σ2
c Rc (Xc, Xc) ρσ2

c Rc (Xc, Xe)
ρσ2

c Rc (Xe, Xc) ρ2σ2
c Rc (Xe, Xe) + σ2

dRd (Xe, Xe)

D
(1.23)

In this case as well, the correlations follow the form of Equation 1.1, however, in
Co-Kriging there will be two correlations, one for the cheap case and one for the
expensive case. This results in an increase in the model hyperparameters, which
are now θc, θe, pc, pe and the scaling parameter rho.
As stated by Forrester et al. [23], one can consider the cheap Low Fidelity data to
be independent with respect to expensive HF data, thus the maximization of the
log-likelihood for cheap values will lead to an estimate for µc, σ2

c , θc and pc.

−nc

2 log(σ2
c ) − 1

2 log |det (Rc (Xc, Xc)) | − (yc − 1µc)T Rc (Xc, Xc)−1 (yc − 1µc)
2σ2

c
(1.24)

The MLEs µ̂c and σ̂2
c are found deriving Equation 1.23 with respect to µc and σ2

c

and setting them equal to zero:

µ̂c = 1T Rc (Xc, Xc)−1 yc

1T Rc (Xc, Xc)−1 1
(1.25)

σ̂2
c = (yc − 1µ̂c)T Rc (Xc, Xc)−1 (yc − 1µ̂c)

nc

(1.26)
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Similarly to what has been done in Section 1.2, by substituting Equations 1.25 and
1.26 into Equation 1.24, we obtain the concentrated log-likelihood, the maximization
of which enables the determination of θ̂c and p̂c

−nc

2 log(σ̂2
c ) − 1

2 log |det (Rc (Xc, Xc)) | (1.27)

As far as the difference model is concerned, a distance parameter d as follows:

d = ye − ρyc (Xe) (1.28)

If the values of yc are not known at the points Xe, one could use Kriging employing
the hyperparameters θ̂c and p̂c derived earlier, in order to obtain an estimate
of ŷc (Xe) [23]. MLEs µ̂d and σ̂2

d are derived from the maximization of the log-
likelihood function of d:

−ne

2 log(σ2
d) − 1

2 log |det (Rd (Xe, Xe)) | − (d − 1µd)T Rd (Xe, Xe)−1 (d − 1µd)
2σ2

d
(1.29)

Thus we obtain
µ̂d = 1T Rd (Xe, Xe)−1 d

1T Rd (Xe, Xe)−1 1
(1.30)

σ̂2
d = (d − 1µ̂d)T Rd (Xe, Xe)−1 (d − 1µ̂d)

ne

(1.31)

Finally, the MLEs of the hyperparameters θ̂d and p̂d, as well as ρ̂, are found
maximizing the concentrated log-likelihood

−ne

2 log(σ̂2
d) − 1

2 log |det (Rd (Xe, Xe)) | (1.32)

As observed, in order to obtain estimates of the aforementioned parameters, it is
necessary to maximize Equations 1.27 and 1.32, process that involves the use of
numerical algorithms. However, in cases involving a large number of data points and
a significant number of parameters to tune, this process may render the construction
of the Co-Kriging surrogate model overly resource-intensive [23]. The likelihood
maximization, in fact, entails the computation of numerous matrix inversions, a
task that becomes impractical for large-sized matrices, while the number of steps
required in the Maximum Likelihood Estimation process is a function of the number
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of parameters to be evaluated [23]. To mitigate this issue, as stated by Forrester et
al. [23], it is often necessary to impose constraints on certain parameters, albeit at
the cost of reducing the accuracy of the Co-Kriging model.
As far as the Co-Kriging predictor is concerned, one can follow the same logical
steps described in Section 1.2 for Kriging: datasets are augmented with a prediction
in a certain point, an augmented covariance matrix is constructed and a MLE is
performed keeping the model parameters fixed. The Co-Kriging predictor takes
the following form:

ŷe(x) = µ̂ + cT C−1 (y − 1µ̂) (1.33)

where C−1 is the inverse of the covariance matrix and

c =
C

ρσ̂2
c rc (Xc, x)

(ρ2σ̂2
c + σ̂2

d) rd (Xe, x)

D
(1.34)

µ̂ = 1T C−1y
1T C−11 (1.35)

In Equation 1.34, rc (Xc, x) a column vector of correlations between expensive data
Xe and the new point in wich we want to make a prediction [23]. As reported by
Forrester et al. [23], if the new point belongs to one of the expensive sample points,
then Equation 1.33 will interpolate the expensive data, while if the new point is one
of the cheap points, then Co-Kriging predictor will regress yc, if yc /= ye. Moreover,
given that Co-Kriging interpolates the expensive data points ye, one would expect
a zero error at these sample points (Xe). This can be inferred from the formula of
the estimated mean squared error

s2(x) = ρ̂2σ̂2
c + σ̂2

d − cT C−1c (1.36)

1.4 One variable Co-Kriging example
In many publications in the literature, the one-variable toy problem commonly used
to demonstrate the application of Co-Kriging for surrogate model creation is the
one proposed by Forrester et al. [23]. The implementation involves the following
High and Low Fidelity functions, defined over the interval [0,1]:

fe(x) = (6x − 2)2sin(12x − 4) (1.37)

fc(x) = Afe + B(x − 0.5) − C (1.38)

where fe and fc denote respectively the HF and LF functions and A = 0.5, B =
10 and C = 5. As far as sample points are concerned, the Low Fidelity model is
evaluated at the cheap points Xc = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, while
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Figure 1.5: One variable Kriging and Co-Kriging example as reported in Forrester
et al. [23]

only four evaluations of the expensive model are carried out in Xe = {0, 0.4, 0.6, 1}.
The Kriging and Co-Kriging estimates can be seen in Figure 1.5
As evident, an approximation of the High Fidelity function has been generated
through Kriging using four expensive points, indicated with red dots in Figure
1.5. However, the Kriging approximation proves to be less accurate, except at the
sample points, where the error is zero, as the exact values given by fe (Xe) are
known. To achieve a better prediction through Kriging, a larger number of High
Fidelity points would be necessary, which generally entails a very high additional
computational cost.
Conversely, the benefit of using Co-Kriging over Kriging is immediately apparent: by
incorporating information derived from the Low Fidelity function, whose evaluations
are less computationally intensive and thus feasible even in large quantities, it is
possible to obtain a highly satisfactory approximation of the objective function,
with the same number of expensive points.
As previously mentioned in Section 1.2 and stated by Forrester et al. [23], given the
fact that a simple relation exists between HF and LF data, the hyperparameters
θc and pc of the Low Fidelity model only depend on cheap data, thus they can
be derived from Equation 1.27, i.e. maximizing the concentrated log-likelihood
function. The same can be done for the hyperparameters concerning the difference
model given by Equation 1.28, whose MLEs are obtained using Equation 1.32.
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In order to construct the Co-Kriging prediction, a suitable value for the scaling
factor ρ must be found; for the case presented in Figure 1.5, Forrester et al. [23]
demonstrated that the MLE ρ̂, which is a scaling parameter between the Gaussian
Processes Zc(·) and Ze(·), only depends on the value of A that appears in the
Equation 1.38. Precisely, it is shown that ρ̂ ≈ 1/A and a value of ρ̂ = 1.87 is found
based on the available data shown in Figure 1.5.

Figure 1.6: Plot of ρ̂ versus 1/A [23]

The MLE for the scaling parameter is usually found employing genetic algorithms
(GA) for the maximization of the concentrated log-likelihood given in Equation
1.32; however, the derivation of ρ̂ is often anything but a trivial problem and can
sometimes lead to inaccurate results. Finding the best possible estimate for the
scaling factor is therefore one of the key points in implementing the Co-Kriging
technique, as the closer ρ̂ is to the real value, the better the surrogate model’s
ability to approximate the High Fidelity function, thereby reducing the error.

1.5 Thesis outline and objective
The purpose of this thesis is to develop a surrogate model using the multi-fidelity
Co-Kriging technique for predicting the performance of a cold gas microthruster, a
propulsion system typically used for attitude control maneuvers of small satellites
in orbit, in terms of the thrust coefficient CF , varying with the geometry of the
nozzle’s divergent section. To achieve this, it will be necessary to identify two
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models, one High Fidelity and one Low Fidelity, for calculating the thrust coefficient
and to populate two datasets to subsequently create the surrogate model. This
process will involve a series of CFD simulations, evaluating the flow within the
nozzle first by solving the Euler equations, thus obtaining an approximate result
that does not account for viscosity effects, and subsequently solving the Navier-
Stokes equations to obtain very accurate and realistic CF values. To minimize
the computational costs required for generating the surrogate model, an extensive
study on adaptive sampling algorithms for the High Fidelity points is carried out
in Chapter 2, comparing the performance of three different criteria, i.e., Maximum
Variance, Maximum Expected Improvement and Maximum Information Gain, for
various test functions of one and two variables. The most satisfactory algorithm will
then be used to generate the Co-Kriging model related to the thrust coefficient for
the cold gas thruster. Chapter 3 provides a general discussion on such propulsion
systems and introduces an evaluation of the exhaust nozzle performance of a cold gas
thruster through CFD simulations. The application of adaptive sampling techniques
and the practical implementation of the Co-Kriging surrogate for the case study is
carried out in Chapter 4: following an extensive discussion on the exploration of the
surrogate model, the phase of exploiting this model is also addressed. The surrogate
model will be used in place of the High Fidelity model response, which is unknown
except for the few points used for training and validating the Co-Kriging. The
ultimate objective is to set up a multi-objective optimization that identifies a set of
optimal solutions to maximize the thrust coefficient of the cold gas thruster, thereby
enhancing propulsion performance while minimizing the mass of the propulsion
system as much as possible. This will allow for the identification of possible nozzle
geometries to be implemented in the design phase, based on a trade-off of the
obtained optimal values.
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Chapter 2

Building a Co-Kriging
surrogate

In Chapter 1, a theoretical discussion regarding surrogate models was provided,
specifically Kriging and Co-Kriging techniques, primarily employed in the field of
optimization. This chapter presents an implementation of the Co-Kriging technique
to approximate a High Fidelity objective function from two databases: one Low
Fidelity (LF) with numerous points but limited accuracy with respect to the
objective function and one High Fidelity (HF), characterized by a few evaluations
of high accuracy.
First of all, a series of fundamental concepts for creating surrogate models are
introduced, with particular attention given to the selection of sampling points for
model training and to potential algorithms for identifying a subset of High Fidelity
points for Co-Kriging. One of the main benefits that one can achieve through
surrogate models is the possibility to obtain a good approximation of the objective
function while keeping computational costs reasonable and contained.

2.1 Building a multi-fidelity surrogate model
As previously mentioned, the use of surrogate models has achieved significant success
in the aerospace field, particularly in the generation of aerodynamic databases and
related optimization processes [33]. These processes typically require numerous CFD
simulations, which can be critical in terms of simulation time and computational cost.
The implementation of a surrogate model with an effective sampling strategy thus
enables a reduction in the number of required CFD simulations while maintaining a
high level of accuracy in approximating the behaviour of the physical system under
study [34]. For example, the evaluation of forces and moments on an aircraft, as
well as the calculation of the structural loads acting on it, would usually require, in
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the absence of a surrogate model, a full-factorial approach for sampling in a design
space with multiple parameters. This would necessitate an extremely high number
of simulations or wind tunnel measurements, which are typically conducted in a
more advanced phase of the design process [34]. The utility of surrogate models
thus becomes evident and the sampling strategy of the design space points also
becomes vitally important, with the aim of minimizing the computational burdens
while maintaining the desired accuracy compared to the full-factorial approach.
Figure 2.1 outlines the main steps to follow in the implementation of a surrogate
model:

Figure 2.1: Key stages of the surrogate-based modeling approach [33]

The first step involves defining the Design of Experiments (DOE), which is the
sampling strategy for selecting points within the variable space at which the objec-
tive function will be evaluated [33]. When implementing a surrogate model using
Co-Kriging, since two functions are being evaluated (one computationally expensive
and the other cheap) two DOEs must be considered. The selection of High Fidelity
points is subject to more constraints, as the computational resources required to
evaluate the expensive function’s observations are significantly high. In contrast,
for the cheap function, one generally has access to a larger number of samples,
thereby enabling the acquisition of extensive information about the behaviour of
the Low Fidelity model across the entire parameter space or at least large portions
of it. The sampling strategy, in this case, will vary depending on the Low Fidelity
model and the available computational budget. However, it is usually possible to
populate a large LF dataset with relative ease. Starting from the knowledge of
the Low Fidelity model’s response in a substantial number of samples, the ideal
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scenario would be to minimize the number of High Fidelity function evaluations or
simulations required. This is one of the fundamental challenges in implementing
a good Co-Kriging surrogate model and it does not have a general solution in
terms of a minimum threshold of points necessary to ensure a certain accuracy.
The number and selection of High Fidelity points heavily depend on the specific
problem being studied and the choice of one particular sample plan over another
impacts the surrogate model’s approximation accuracy. While there is no universal
criterion that guarantees finding both the minimum threshold of points and their
optimal positions in the variable space, there are many criteria and algorithms
in the literature that provide guidance on choosing these points. These will be
presented later in this chapter.
Once the datasets with the sample points for both the Low Fidelity and High
Fidelity models have been constructed, in the case of Co-Kriging, the required
simulations can be performed to populate the two datasets, thereby enabling the
construction of the surrogate model. To achieve this, one must first derive the
parameters that characterize the model, known as hyperparameters. In the case of
Kriging-based and Co-Kriging-based surrogate models, these values are obtained
by constructing a likelihood function and maximizing it, as discussed in Sections
2.2 and 2.3 of Chapter 1. The resulting trained model allows for the prediction
of the High Fidelity model’s response at positions within the variable space that
have not yet been tested, thus enabling exploration of this model at virtually no
computational cost.
As previously mentioned, the choice of sampling strategy influences the results
obtainable with the surrogate. Therefore, it is necessary to evaluate the accuracy
of the constructed model relative to the expensive objective function it aims to
approximate. This leads to the validation of the model, with the goal of estimating
its ability to predict values at untested locations and assessing what is known as
the generalization error [33].

As shown in Figure 2.1, if the obtained surrogate does not ensure the required
accuracy or is unable to correctly predict the behaviour of the objective function
in a certain region of the study domain, it is possible to modify the initial Design
of Experiment to introduce new points for training the surrogate or to choose
a different strategy. This process, of course, necessitates a careful cost-benefit
analysis, aiming to find a balance between exploration and exploitation of the model
[5]. Specifically, one must assess the feasibility of introducing new sample points
in light of the improvement achievable from such additions and the associated
costs, before proceeding to the actual use of the model, for instance, to perform
optimization or uncertainty quantification.
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2.2 Design of Experiment for multi-fidelity mod-
els

When utilizing Co-Kriging, or generally in the implementation of a multi-fidelity
model, two distinct Design of Experiments (DOE) need to be identified, one for
the Low Fidelity and one for High Fidelity models. This results in obtaining the
necessary points for the evaluations of the respective functions and the population
of the two datasets. Typically, the points that make up the expensive dataset can
either fall in different positions compared to the cheap ones (non-nested design)
or constitute a subset of them (nested design) [1]. In the context of multi-fidelity
modeling, particularly for Co-Kriging, it has been observed that using High Fidelity
points contained within those of the Low Fidelity model facilitates the evaluation of
the scaling factor ρ between the two models [23] and helps reduce the approximation
error, in terms of Mean Squared Error (MSE) across the variable space, compared
to the non-nested configuration [34].

Since the constructed surrogate model will be more accurate near the points
where the High Fidelity objective function value is known, it is typically desirable
to create a sampling plan that is space-filling. This means that the points should
be distributed to avoid leaving unexplored areas in the variable space in terms of
the model’s accurate response behaviour [5]. However, the number of expensive
points will typically be very low due to the associated computational costs, making
it challenging to uniformly explore the parameter space in the High Fidelity case.
Conversely, because Low Fidelity data are usually much quicker and less costly
to obtain, generating a space-filling sampling plan is crucial for obtaining large
amounts of information about the response behaviour of the cheap model. This
allows the enhancement of the few expensive evaluations and reduces the model’s
uncertainty as well as the approximation error. Therefore, for generating LF
samples, classical space-filling techniques, such as the full-factorial approach, the
construction of a Latin Square Sample (LSS) or a Latin Hypercube Sample (LHS),
can be applied [5]. In contrast, for generating the expensive dataset, many studies,
including those by Mackman and Allen [34], have demonstrated that adaptive
sampling strategies (i.e., the progressive addition of points in the HF subset based
on "interim models of the data" [34]) outperform the classical space-filling strategies
mentioned earlier.

Regarding space-filling approaches, the simplest to implement is the so-called
full-factorial method, which involves sampling a rectangular grid of points within
the model’s variable space. An example of full-factorial sampling in three dimen-
sions is shown in Figure 2.2. This type of sampling allows for uniform coverage of
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the variable space. However, as can be seen in Figure 2.2, projecting the points
onto the axes does not guarantee a uniform distribution for all variables. To address
this issue, one can use the approach known as stratified random sampling or its
extension, the Latin Hypercube sampling [5].

Figure 2.2: Example of a three-dimensional full-factorial sampling plan [5]

For approaches that ensure greater stratification of points in the design space,
there are the Latin Square sampling (in two dimensions) and the Latin Hypercube
sampling (in three or more dimensions). For the former, given n as the number of
points to be sampled, an n × n square grid is generated by placing a permutation
of the vector {1,2,...,n} in each row and column. Figure 2.3 shows an example

Figure 2.3: Latin Square sampling example for n = 4 [5]

for n = 4: the n points to be chosen can be those indicated by 1 or by the other
numbers, resulting in a uniformly distributed sampling plan.
The extension to the multidimensional case, namely the use of Latin Hypercube
sampling, allows for the division of the domain of interest into hypercubes of equal
size, also known as bins; within each bin, a sample point is placed such that the
resulting design is uniformly distributed [5]. This ensures that moving from one
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occupied bin parallel to the axes of the various variables does not encounter another
point. An implementation in three dimensions is shown in Figure 2.4:

Figure 2.4: Three-variable, ten-point Latin Hypercube sampling plan shown in
three dimensions (top left), along with its two-dimensional projections [5]

However, there may be cases where the generated Latin Hypercube does not ensure
complete coverage of the design domain, such as when the sampling points align
along the diagonal of the cube. To ensure that the sample plan is truly space-filling,
one can opt for a DOE that adheres to the maximin criterion, introduced by
Johnson et al. [35]. Let d1, d2, ..., dm be the sorted unique distances between all
pairs of points in a sampling plan X and let J1, J2, ..., Jm be defined such that Jj

is the number of pairs of points in X separated by distance dj [5]. Following the
Morris-Mitchel definition [36], the sample plan, among all the possible ones, that
respects the maximin criterion is the one that maximizes d1 and, among those,
minimizes J1 and then, among those, maximizes d2 and minimize J2 and so on
until the minimization of Jm. With the term distance, the p-norm of the design
space is intended:

dp

1
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2
=
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In practice, the definition proposed by Morris and Mitchel [36] can also be inter-
preted as follows: given the quantity Φq(X), defined as

Φq(X) =
 mØ

j=1
Jjd

−q
j

1/q

(2.2)

the Latin Hypercube sample characterized by the best space-filling properties is
the one with the minimum value of Φq(X). For further details on the proposed
criterion and for an implementation in Matlab of the search for a Latin Hypercube
sample that ensures a space-filling distribution within the domain of interest, one
can refer to [36] and Forrester et al. [5].

In summary, the use of a full-factorial strategy or Latin Hypercube sampling
is well suited for generating sampling points for the Low Fidelity model, as it pro-
vides a large amount of information across the entire parameter space, which will
later assist the few computationally expensive observations. The more information
obtained from the cheap model, the better the Co-Kriging surrogate prediction
will be. However, in some cases, finding the set of points with the best space-filling
properties for the Latin Hypercube can be computationally expensive, so this aspect
must be considered.

For selecting points for the High Fidelity model, the main constraint is the com-
putational resources available for performing the necessary CFD simulations or
evaluating the expensive objective function. Consequently, if, for example, the HF
points are chosen as a subset of the LF ones, only a small number can be selected
and a subset with adequate space-filling properties cannot always be guaranteed.
Instead of uniformly exploring the entire parameter space, it is often more effective
to sample expensive points in regions where the objective function’s behaviour
is significant or where the surrogate model’s uncertainty is high. The statistical
aspect thus becomes crucial in predicting which points in the design space are
significant for training an effective surrogate model, minimizing the number of
required observations and, consequently, the samples to be selected.

2.2.1 Adaptive sampling for High Fidelity points
Regarding the sampling strategy for High Fidelity points, adaptive methods have
proven highly successful in the field of Kriging and Co-Kriging surrogate models.
These methods replace one-shot approaches, where sampling points are determined
before evaluating model responses at those points (e.g., factorial, Latin Hypercubes),
with sequential algorithms that identify the most promising point at each iteration
to be added to the High Fidelity database, based on various criteria or statistical
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measures [37]. In practice, starting with a very small number of expensive points,
an iterative algorithm is implemented. At each step, the algorithm leverages the
abundant Low Fidelity data, the limited High Fidelity values available and the
information provided by the surrogate model generated from these datasets. Thus,
this process is used to select the next point to be included in the sampling plan
and once it is sampled, the accurate model response is observed thereof and the
iterations continue, until either the computational budget is exhausted or the
error falls below a certain threshold at validation points used for the surrogate’s
approximation capability evaluation.

Given that Kriging and Co-Kriging techniques have their roots in statistics, it is
evident how statistically-based criteria for implementing an adaptive algorithm,
aimed at progressively identifying points to add to the High Fidelity sample plan,
have found significant application in numerous studies and publications in the
literature [34]. In particular, the entropy of the HF points system can be evaluated,
which measures the amount of information provided by the various points in the
dataset and represents a measure of the model’s level of uncertainty within the
variable space [34]. Thus, maximizing the entropy of the system allows for maxi-
mizing the information gain by positioning a new sample point where the mean
squared error (MSE) s2 of the Kriging or Co-Kriging model (Equation 1.36) is the
highest [34]. At each iteration, the goal is to identify the point in the design space
that can provide the most information, specifically where the model’s predicted
uncertainty is high. This approach mainly results in space-filling sampling plans
that progressively reduce the global uncertainty of the surrogate model, thereby
enhancing its predictive capabilities.
Another application of statistical adaptive methods for selecting High Fidelity
points pertains to the global optimization of the surrogate, specifically the search
for global maximum or minimum points in the variable space. The objective is to
explore the design space to progressively find a value closer to the global maximum
or minimum of the objective function, while ensuring a good approximation across
the entire variable space [5]. In this context, an often considered optimization
criterion is the so-called Expected Improvement (EI), introduced in the late ’70s
and described by Jones et al. [38] and thoroughly described by Forrester in [5].
Other criteria used in sequential sampling techniques and in the generation of
aerodynamic databases include the leave-one-out cross-validation error (LOOCV)
[37] or the study of the gradient or Laplacian of a set of points, inserting a new
evaluation where these values are highest [39].

In the following sections, implementations of adaptive methods for construct-
ing a High Fidelity sampling plan based on an existing Low Fidelity one are
presented. For simplicity, the Low Fidelity plan can be considered equispaced in
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the one-variable case or factorial in the multi-variable case. Firstly, the ooDACE
Matlab toolbox [32], used for implementing Co-Kriging and calculating the model’s
hyperparameters, is introduced.

2.3 Co-Kriging implementation in Matlab: the
ooDACE Toolbox

To achieve a simple, quick, and effective implementation of the Co-Kriging method
introduced in the previous chapter, one can utilize the ooDACE Toolbox for Matlab
[32]. This toolbox provides a series of functions for constructing Gaussian Process
based Kriging and Co-Kriging surrogate models. The toolbox implements all the
steps described in Sections 1.2 and 1.3 and constructs a surrogate model based on
the available data provided by the user in terms of sample points and observations
of the objective function. Specifically, let n denote the number of observations made
and d the number of input parameters. The user needs to create an n x d matrix
named samples, which contains the sample points used for evaluating the objective
function, and an n x 1 matrix named values, which will hold the corresponding
values that the objective function assumes at the specified sample points. The
toolbox then provides a function oodacefit.m that takes the user-generated datasets,
i.e., the two matrices samples and values and optionally an options structure,
and generates a Kriging object. This object contains all the necessary information
for the surrogate implementation, such as the model’s hyperparameters.
For the implementation of a Co-Kriging surrogate, it is required to specify both the
sample points related to the cheap Low Fidelity function and those related to the
expensive High Fidelity function, as well as the values these functions assume at
those points. Therefore, the inputs samples and values must now be cell arrays of
length two: specifically, the first element of samples will contain an nc x d matrix
of cheap sample points, while the second element will specify the expensive ones
(ne x d); similarly, for the observations, values{1} will contain nc x 1 values of
fc and values{2} will contain ne x 1 values of fe. To summarize, using the two
simple calls

Kriging_model = oodacefit(samples, values);

Cokriging_model = oodacefit(samples, values);

with the input data for Kriging and Co-Kriging in the form specified above, it
is possible to generate a Kriging and a Co-Kriging model ready for use, with
hyperparameters directly computed through the call to the oodacefit.m function.
The computational cost for generating the models primarily depends on data fitting
and the calculation of hyperparameters through the maximization of the likelihood
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function, which must be evaluated multiple times [32]. To enhance this process,
the covariance matrix is factorized using Cholesky decomposition, the computation
of which constitutes the main part of the computational cost of the code. In terms
of time cost, this is O(n3), where n is the number of rows of the matrix [32].
Regarding the evaluation of the prediction of the Kriging or Co-Kriging model
at a certain point within the domain of interest, at various points, or directly
across the entire parameter space, this can be easily achieved using the predictor.m
function provided by ooDACE. Specifically, given x as the vector containing the
points at which one wants to calculate the value assumed by the surrogate model,
the following call allows not only to obtain these values but also to compute the
estimated mean squared error s2, which for Co-Kriging refers to Equation 1.36:

[y, s2] = predictor(x, model);

2.4 One-variable adaptive sampling implementa-
tion

2.4.1 Maximum Variance/MSE criterion
Assuming we have a sampling plan for Low Fidelity simulations and have already
evaluated the response of this model at the sampled points, we can initially select
two points in the design space to construct a High Fidelity dataset. This initial
dataset allows us to generate a preliminary surrogate model, which will almost
certainly provide a poor approximation of the costly objective function but will
offer valuable information in terms of the surrogate model’s variance s2. For a
Gaussian Process based prediction, s2 can be defined as [28]

ŝ2(x) = σ̂2
C
1 −ψT Ψ−1ψ + 1 − 1T Ψ−1ψ

1T Ψ−11

D

This parameter, expressed in Equation 1.36 for Co-Kriging, estimates the model’s
prediction uncertainty at various points where the surrogate’s response is evaluated.
Consequently, it identifies points with the highest uncertainty, suggesting the
addition of a High Fidelity sample where the uncertainty is maximum. Specifically,
high variance values occur where s2 is elevated, indicating regions where adding
a sampling point would significantly reduce uncertainty due to the maximum
potential gain in information. As noted in Chapter 1, the model’s variance,
sometimes referred to as the estimated Co-Kriging mean squared error (MSE), is
zero at the High Fidelity points where the expensive function’s value is known;
therefore, by iteratively selecting the point with the highest s2 in the design space,
the predictive uncertainty will be progressively reduced. Thus, the surrogate model
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will increasingly converge to the objective function, thereby progressively reducing
the actual error across the domain at points not used for Co-Kriging training. The
following figure presents an initial application of the algorithm for inserting a new
High Fidelity point at the position of maximum predictive variance of the available
Co-Kriging surrogate model at a given iteration.

Figure 2.5: Algorithm for choosing new High Fidelity points based on the
Maximum Variance/MSE criterion

To achieve this, at least two points for the expensive model must be known. In
subsequent implementations, these points will be positioned at the extremes of
the design space, coinciding with the first and last points of the Low Fidelity
sample vector (following a nested approach for the HF points, the new samples
will be chosen from LF locations). In the first iteration, a Co-Kriging surrogate
is constructed using the LF points and the two HF observations. The predicted
values of this model in the study domain and the estimated prediction error s2 at
the cheap points locations are then evaluated, selecting the point with the highest
variance for addition to the costly dataset.
Regarding the stopping criterion for the iterative algorithm, several approaches can
be followed. If the High Fidelity function and its behaviour are known, the mean
absolute error between this function and the surrogate model can be evaluated,
stopping the process when the approximation error falls below a certain threshold.
This approach is generally feasible when studying algorithms on test functions with
known analytical expressions but becomes inapplicable when the response of the
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expensive model is only known at the few available sampling points. For example,
if the HF dataset is populated through CFD simulations, the response is known
only at a few points and it is not possible to evaluate the distance between the
expensive model and the surrogate, as the information is available only at the HF
points, where the values coincide. Therefore, the search for new values may be
halted if the uncertainty associated with the model falls below a certain threshold,
or if the maximum s2 is less than a specified value.

The described algorithm is applied to three pairs of High and Low Fidelity test
functions, considering a Low Fidelity DOE as a vector of nc = 30 evenly spaced
points within the interval where the different functions are defined. In terms of
the stopping criterion, in this case where known test functions are evaluated, the
addition of High Fidelity points is halted when the mean absolute error between the
expensive function fe and the surrogate prediction falls below a certain tolerance,
such as 5% (thus, mean(|fe(x) − fck(x)|) < 0.05 is the stopping criterion adopted).
The studied functions are as follows:

• Test Function n° 1 in [1,4]:

fe(x) = sin(x2) + cos(2x)
fc(x) = 0.5 sin(x2) + cos(x)

• Forrester function [23] in [0,1]:

fe(x) = (6x − 2)2 · sin(12x − 4)
fc(x) = 0.5fe(x) + 10(x − 0.5) − 5

• Test Function n° 3 [3] in [0,1]:

fe(x) = 2x sin(20x + 2) + 10ex + 20(x − 1)2

fc(x) = 0.7fe(x) + 10(x − 0.5) + 5

Thus, we proceed to leverage the algorithm defined in Figure 2.5 to find the High
Fidelity DOE for the first test function presented:

fe(x) = sin(x2) + cos(2x)
fc(x) = 0.5 sin(x2) + cos(x)

The High and Low Fidelity functions with the respective DOEs (the initial one for
the expensive model) are reported in Figure 2.6.
In order to build the surrogate model and to evaluate its s2 distribution in the
Low Fidelity locations the ooDACE Toolbox for Matlab is employed, as described
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Figure 2.6: High and Low Fidelity functions

in Section 2.3. In Figure 2.8 are reported the results of the progressive iterations
until the threshold for the mean absolute error is reached: in the first iteration, the
Co-Kriging model is generated leveraging only the two HF data points available
and the estimated mean squared error is obtained, then its maximum value is
found and a new point is set in its location. The figure shows the evolution of the
Co-Kriging predictor and the variance at every step; the last image refers to the
absolute error.

Figure 2.7: Converged Co-Kriging Model after 5 iterations, leading to a 6-points
High Fidelity DOE

The High Fidelity sampling plan that leads to the convergence of the Co-Kriging
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surrogate to the expensive objective function is shown in Figure 2.7. The resulted
DOE is also space-filling, uniformly exploring the design space. The number of
required High Fidelity points also depends on the number of samples for the cheap
model: increasing Xc allows to provide more information on the Low Fidelity
response, better supporting the few expensive observations, leading to a better
surrogate. Thus, if we would have chosen nc < 30, probably a higher number of
HF points would have been found, requiring more computational budget.

Figure 2.8: Maximum Variance sampling iterations for the first test function

To further testing the Maximum MSE algorithm, the Forrester Function [23] is
considered:

fe(x) = (6x − 2)2 · sin(12x − 4)
fc(x) = 0.5fe(x) + 10(x − 0.5) − 5

The High and Low Fidelity functions with the respective DOEs (the initial one for
the expensive model) are reported in Figure 2.9.
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Figure 2.9: High and Low Fidelity Forrester functions

Figure 2.10: Converged Co-Kriging Model after 2 iterations, leading to a 3-points
High Fidelity DOE

In this case, the algorithm converges in just two iterations, leading to the results
shown in Figure 2.10. The surrogate model’s estimated uncertainty when con-
vergence is obtained for both the first test function and the Forrester function,
becomes really low (10−4 for the first function and 10−5 for Forrester), with respect
to the previous iterations, thus one might leverage the reduction in estimated un-
certainty as a stopping criterion different than the one proposed, that requires the
analytic expression of the expensive function fe(x). However, it is not guaranteed
that a small value of s2 could imply convergence; in certain cases, in the following
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Figure 2.11: Maximum Variance sampling iterations for the Forrester function

iteration s2 may rise, while the surrogate model gets closer to the objective function,
thus a stopping criterion based on the magnitude of s2 could sometimes lead to a
premature interruption of the iterative cycle. For example, this behaviour will be
seen when studying the last test function below.

Finally, the Maximum Variance criterion can be applied to the last test func-
tion mentioned, i.e.

fe(x) = 2x sin(20x + 2) + 10ex + 20(x − 1)2

fc(x) = 0.7fe(x) + 10(x − 0.5) + 5

The High and Low Fidelity functions with the respective DOEs (the initial one for
the expensive model) are reported in Figure 2.12.

Figure 2.12: High and Low Fidelity functions
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Figure 2.13: Converged Co-Kriging Model after 3 iterations, leading to a 4-points
High Fidelity DOE

The iterations required to achieve a mean absolute approximation error of less
than 5% are now three, as summarized in Figures 2.13 and 2.14. The estimated
mean squared error s2 reached when convergence is obtained is of the order of
10−8. Although for the three test functions studied the variance when the stopping
criterion is satisfied drops to really low values,one still can question the practical
use of the maximum variance value obtained in an iteration as a possible stopping
criterion for the cycle, for certain functions, it might happen that, at a certain
point in the iteration cycle, the variance becomes very small even if the surrogate
model is not accurately approximating the objective function. This could lead
to deceiving results. A possible criterion that could be implemented would be to
compare the surrogate model values between one iteration and the next, stopping
the cycle when the difference between them falls below a threshold. However,
doing so might result in a higher number of High Fidelity points than found in
this section, or the addition of a point even before convergence might change the
Co-Kriging approximation very little, thus prematurely and incorrectly stopping
the cycle.
Upon closer analysis, this criterion proves to be usable and yields the same results
for all three pairs of test functions studied if the iterations are stopped when the
difference between the Co-Kriging surrogate model at step k+1 and that at step k
is less than 0.1 at every point in the design space. In this way, the number of High
Fidelity points will be the same as those calculated in Figures 2.7, 2.10 and 2.13
but the computational cost will be slightly higher, as it will be necessary to know
the values assumed by the Co-Kriging surrogate at the next step as well.
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Figure 2.14: Maximum Variance sampling iterations for the third test function

2.4.2 Maximum Expected Improvement criterion
Another sampling strategy that can be utilized for selecting High Fidelity points is
based on the parameter known as Expected Improvement (E[I(x)]), which balances
the exploration and exploitation of the model, effectively balancing global and
local search [5, 26]. In practice, selecting a point corresponding to the maximum
value of the estimated mean squared error, as discussed in the previous subsection,
improves the surrogate’s approximation from a global perspective. However, in the
case of objective functions with multiple local maxima or minima or with a global
stationary point, this approach may not accurately approximate these values with
a limited number of points. Thus, the aim is to balance global search, based on the
study of s2, with a more local search that strives to approximate the minima or
maxima as accurately as possible. Following the description by Jones et al. [28], if
the goal is to find the absolute minimum of the surrogate, the initial High Fidelity
observations are used to determine the minimum value ymin = min(y(1), ..., y(n))
as the best available value. When adding a new point to the expensive database,
the High Fidelity function value at that point is initially unknown, leading to
uncertainty that can be expressed as the realization of a random variable with
mean ŷ(x) and variance ŝ2(x). The mean is simply the value obtained from the
Co-Kriging predictor, while the variance is the estimated mean squared error. By
leveraging these values, it is possible to construct, at each point x, a density function
indicating where the addition of a new point could lead to the greatest possibility
of improving the minimum value of the objective function ymin [28]. Evaluating the
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possibilities of improvement and their respective densities yields an index called
Expected Improvement (E[I(x)]), which identifies the position to sample a new
point expected to find a value lower than the current ymin, thus searching for the
absolute minimum point. An expression for the Expected Improvement is given
below [5]:

E[I(x)] =

(ymin − ŷ(x))Φ
1

ymin−ŷ(x)
ŝ(x)

2
+ ŝϕ

1
ymin−ŷ(x)

ŝ(x)

2
if s > 0

0 if s = 0
(2.3)

where Φ(.) and ϕ(.) represent respectively the cumulative distribution function and
the probability density function [5]. Clearly, the Expected Improvement at the High
Fidelity sample points is zero, as the value of the expensive function is known at
these points and they are already part of the dataset. Thus, adding a point at these
locations would not provide any additional information or improvement. Starting
from an initial set of observations, at each iteration, the E[I(x)] is calculated, the
point where the maximum value occurs is found and this point is added to the
High Fidelity sample vector. Figure 2.15 illustrates the algorithm based on the
maximization of the Expected Improvement:

It is therefore possible to apply the described algorithm to the three test functions

Figure 2.15: Algorithm for choosing new High Fidelity points based on the
Maximum Expected Improvement criterion

studied in the context of the algorithm based on the maximum variance of the
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surrogate model:
• Test Function n° 1 in [1,4]:

fe(x) = sin(x2) + cos(2x)
fc(x) = 0.5 sin(x2) + cos(x)

• Forrester function [23] in [0,1]:

fe(x) = (6x − 2)2 · sin(12x − 4)
fc(x) = 0.5fe(x) + 10(x − 0.5) − 5

• Test Function n° 3 in [1,4]:

fe(x) = 2x sin(20x + 2) + 10ex + 20(x − 1)2

fc(x) = 0.7fe(x) + 10(x − 0.5) + 5

The results are shown below for the three test cases.

Figure 2.16: Maximum Expected Improvement sampling iterations for the first
test function
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Figure 2.17: Converged Co-Kriging Model after 5 iterations, leading to a 6-points
High Fidelity DOE

Figure 2.18: Maximum Epected Improvement sampling iterations for the Forrester
function

From the results shown in these figures, it is evident that the maximum Expected
Improvement criterion also achieves a convergent Co-Kriging surrogate model for
the High Fidelity objective function. One can thus compare the results obtained
form the Maximum Expected Improvement algorithm with the Maximum Variance
criterion previously tested. For the first test function, convergence is obtained with
the same number of expensive points, but their locations are different; moreover,
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Figure 2.19: Converged Co-Kriging Model after 3 iterations, leading to a 4-points
High Fidelity DOE

Figure 2.20: Maximum Expected Improvement sampling iterations for the third
test function

the mean absolute error between the High Fidelity function and the Co-Kriging
surrogate prediction is slightly higher for the Maximum E[I(x)] case, although both
are below 0.25% (one may say that for the first test function the two criteria yield
practically the same surrogate model). The surrogate model approximating the
Forrester High Fidelity function now requires four points for near-total convergence,
compared to the three points identified by the previous algorithm. Regarding the
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Figure 2.21: Converged Co-Kriging Model after 3 iterations, leading to a 4-points
High Fidelity DOE

third test function, the Maximum Expected Improvement performs as equal as
the Maximum Variance algorithm, finding a slightly higher error. In terms of the
space-filling characteristic of the High Fidelity DOEs, the E[I(x)] algorithm tends
to cluster the new expensive points in regions where the global or local minima of
the objective functions are located; this observation is supported by Figures 2.17
and 2.21. Since the definition provided by Equation 2.3 is aimed at finding the
global minimum of the surrogate, if one wants to apply the algorithm to functions
presenting a global maximum, it is still possible to use Equation 2.3 by simply
placing a negative sign in front of the Low and High Fidelity function values.
In conclusion, the algorithm still demonstrates good performance. As for the
stopping criterion for the iterations, the same considerations reported for the
variance maximization algorithm apply.

2.4.3 Maximum Information Gain criterion
Another possible algorithm for the sequential search of new points to add to the
High Fidelity dataset is based on the concept of Information Gain. This involves
sampling points within the design space where the available information is maximal,
aiming to reduce the uncertainty of the surrogate model or obtain a better estimate
of the optimal point of the expensive function [40], whose values are unknown
outside the few HF points that are sampled. The use of so-called information-based
methods is typical in Bayesian Optimization (BO) problems, where the expensive
function is treated as a black box due to the computational costs required for
various observations; the typical objective is to identify the position and value of the
global optimum point of this function, minimizing the costs required to locate it as
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much as possible [40]. In the context of single-fidelity Bayesian Optimization, some
information-based algorithms that have been proposed include Entropy Search (ES),
introduced by Hennig and Schuler [41], and Predictive Entropy Search, proposed by
Hernandez-Lobato et al. [42]. These algorithms enable the definition of acquisition
functions based on the information gain in terms of the position of the optimal
point of the objective function x* [40]. In practice, a new sample is placed at the
position that maximizes the index indicating the information gain about the global
maximum (or minimum) of the surrogate model resulting from the insertion of a new
point into the design space. A further evolution of Entropy Search was introduced
by Wang and Jegelka [43] with Max-value Entropy Search (MES), which constructs
the acquisition function based on the information gain in terms of the value of the
global maximum of the objective function f (x*), thereby reducing computational
burdens. The extension of information-based methods to the multi-fidelity domain
can be observed in the works of Swerski et al. [44], Zhang et al. [45], and Takeno
et al. [40]. In general, despite the fact that information-based algorithms perform
very well, even in relation to criteria such as Expected Improvement and are of
global utility, the calculation of the Information Gain can be challenging and may
require a series of complex approximations or computations that can slow down
the algorithm [40].

Below, an information-based adaptive sampling criterion will be implemented,
aiming to construct an index for each candidate point in the design space that
evaluates the potential reduction in uncertainty resulting from the addition of a
new High Fidelity point to the respective dataset. In information theory, entropy
measures the uncertainty associated with a random variable [46], thus the greater
the uncertainty it embodies, the greater the information that can be obtained from
it. In the case of a random variable with a normal distribution and variance σ2, a
definition of entropy, or differential entropy, is provided by [46]:

H = 1
2 log

1
2πeσ2

2
(2.4)

In Co-Kriging, the values of the expensive objective function are treated as realiza-
tions of a Gaussian Process, meaning they are essentially realizations of a random
variable characterized by a normal distribution with a certain mean value and
variance. Thus, starting from an initial dataset of High Fidelity points, such as
those considered in the implementation of the two previously discussed criteria, it
is possible to construct an initial Co-Kriging surrogate and evaluate the variance s2

at all candidate points, which constitute the Low Fidelity dataset (a nested design
approach for expensive points is followed). Once this is done, the entropy distri-
bution at various points can be evaluated using Equation 2.4, with σ2 coinciding
with the surrogate’s s2. The greater the uncertainty, the higher the initial entropy
values will be.
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Figure 2.22: Maximum Information Gain algorithm

We now aim to determine the point whose addition would reduce the global un-
certainty associated with the surrogate model. For each candidate point, we want
to evaluate the entropy distribution that would result from adding that point to
the High Fidelity dataset. However, this would require knowing the values of
the expensive function at the various candidate points, rendering this algorithm
impractical. Nonetheless, an approximation can be introduced to estimate a value
for the HF function at the candidate point, using a Bayesian estimation based on
the costly observations available at that iteration (the approximated high fidelity
function value is estimated considering the midpoint of a 95% confidence interval
for its mean value). Once a value is estimated for the candidate point to be added
to the expensive dataset, a new Co-Kriging surrogate is constructed and the new
variance distribution in the design space is obtained, from which the final entropy
distribution can be derived. For each candidate point, the mean of the difference
between the initial (H0) and final (H1) entropy is evaluated and the Information
Gain (IG) is constructed as mean(H0 − H1). If the addition of a certain point
reduces s2, that is, the uncertainty, whose values are typically small (thus resulting
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in negative initial entropy due to the logarithm), the final entropy values will
be more negative, leading to a positive IG index. The maximum IG identifies
the point whose addition to the High Fidelity dataset most significantly reduces
the global average uncertainty of the surrogate, thereby progressively converging
the Co-Kriging model to the objective function. In this sense, the maximum IG
represents an information index about the reduction in surrogate’s uncertainty.
Note that if the candidate point selected is a High Fidelity sample point, the
Information Gain there will be nonexistent, because there the objective function
value is already known and no uncertainty is present there. Figure 2.22 shows a
general concept for the Maximum IG algorithm we want to implement.
The Maximum Information gain will be applied to the test functions previously
described, on which the Maximum Variance and Maximum Expected Improvement
criteria have been performed. The results are shown below:

Figure 2.23: Maximum Information Gain sampling iterations for the first test
function
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Figure 2.24: Converged Co-Kriging Model after 5 iterations, leading to a 6-points
High Fidelity DOE

Figure 2.25: Maximum Information Gain sampling iterations for the Forrester
function

From the figures presented, it is evident that the maximum Information Gain
algorithm results in better performance compared to Expected Improvement,
especially for the Forrester function and the third test function, by reducing the
number of necessary High Fidelity points while keeping the error extremely low.
For the first test function, the final number of points in the expensive dataset is the
same, but the error is higher. In any case, it can be seen that the performance of
the individual algorithms is still dependent on the High and Low Fidelity functions
studied, but all three remain highly effective for implementing the Co-Kriging
surrogate model. Below, several comparison tables of the various algorithms
proposed for the three test functions are presented.
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Figure 2.26: Converged Co-Kriging Model after 2 iteration, leading to a 3-points
High Fidelity DOE

Figure 2.27: Maximum Information Gain sampling iterations for the third test
function

Figure 2.28: Converged Co-Kriging Model after 2 iteration, leading to a 3-points
High Fidelity DOE
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Sampling Criterion LF
Samples

HF Samples
(convergence)

Mean Absolute
Error (%)

Max Variance 30 6 0.162
Max E[I(x)] 30 6 0.212
Max IG(x) 30 6 1.213

Table 2.1: Results comparison between the three different algorithms for the first
test function

Sampling Criterion LF
Samples

HF Samples
(convergence)

Mean Absolute
Error (%)

Max Variance 30 3 0.885
Max E[I(x)] 30 4 3.935
Max IG(x) 30 3 0.962

Table 2.2: Results comparison between the three different algorithms for the
Forrester function

Sampling Criterion LF
Samples

HF Samples
(convergence)

Mean Absolute
Error (%)

Max Variance 30 4 0.581
Max E[I(x)] 30 4 2.916
Max IG(x) 30 3 0.996

Table 2.3: Results comparison between the three different algorithms for the third
test function
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2.5 Two-variable adaptive sampling implementa-
tion

The algorithms demonstrated for the single-variable case are now implemented for
two-variable test functions. Extending this approach to functions with more than
two variables is straightforward, following the same methodology presented below
and utilizing the ooDACE toolbox for Matlab.

2.5.1 Maximum Variance/MSE criterion
As in the case of a single variable, the implementation for two-variable functions
follows the logical framework presented in Figure 2.5. Starting from the Low
Fidelity Design of Experiment, which can be generated using a factorial approach
or by constructing a space-filling Latin Hypercube as explained in Section 2.2,
four initial points are chosen for the High Fidelity dataset. These points typically
represent the extremes of the design space in the x1-x2 plane. Subsequently, an
adaptive algorithm is employed to calculate the model’s variance at the sample
points constituting the Low Fidelity DOE (we want the High Fidelity DOE to be
nested).
For constructing the Low Fidelity dataset, one can implement a space-filling Latin
Hypercube that optimizes the Morris-Mitchell criterion, as described in Section
2.2. To achieve this, the Matlab function bestlh.m provided by Forrester in [5]
can be utilized. For instance, if one aims to obtain a space-filling DOE with 100
points that also includes the design space extremes, the function bestlh.m can be
called to generate a Latin Hypercube with 96 points, followed by adding the four
corner points of the x1-x2 plane. Regarding the High Fidelity DOE, starting with
these four corner points, at each step, the position within the LF points where
the Co-Kriging surrogate, constructed with the data available at that iteration,
exhibits the highest variance s2 is identified and a new HF sample is placed there.
The iterations can be halted by following the guidelines proposed for the single-
variable case; in this case the weighted mean relative percentage error between the
High Fidelity function and the Co-Kriging surrogate at the 100 Low Fidelity points
will define the stopping criterion. Alternatively, the cycle can be interrupted when
the difference between the surrogate values at iteration k+1 and iteration k falls
below a certain threshold, a method useful when the analytical expressions of the
expensive and cheap functions are not available.

For the two-variable implementation, the test functions that will be leveraged
are the following ones:

• Himmelblau Function [47] - x1, x2 ∈ [-4,4]:
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fe(x1, x2) = (x2
1 + x2 − 11)2 + (x2

2 + x1 − 7)2

fc(x1, x2) = fe(0.5x1,0.8x2) + x3
2 − (x1 + 1)2

• Booth Function [47] - x1, x2 ∈ [-10,10]:

fe(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

fc(x) = fe(0.4x1, x2) + 1.7x1x2 − x1 + 2x2

• Adjustable Branin Function [48] - x1 ∈ [-5,10], x2 ∈ [0,15], a ∈ [0,1]:

fe(x) =
1
x2 − (5.1 x2

1
4π2 ) + 5x1

π
− 6

22
+
1
10cos(x1)(1 − 1

8π
)
2

+ 10
fc(x) = fe(x1, x2) − (a + 0.5)

1
x2 − (5.1 x2

1
4π2 ) + 5x1

π
− 6

22

Starting from the Himmelblau Function, a representation of the two fidelities can
be seen in Figure 2.29.

Figure 2.29: High Fidelity (left) and Low Fidelity (right) Himmelblau Function
defined in x1,x2 ∈ [-4,4]

As for the Low Fidelity Design of Experiment, both a space-filling Hypercube and
a factorial approach will be explored. Starting from the first case, a 100 points
DOE is generated using the bestlh.m Matlab function [5], including the four corner
points of the domain. The resulting sampling plan is shown in Figure 2.30.
The initial High Fidelity dataset is then constructed sampling the four corner
points and evaluating the expensive function response thereof, leading to a four-
points Design of Experiment. The iterative part of the algorithm can now begin,
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Figure 2.30: Space-Filling Low Fidelity Latin Hypercube DOE

generating the Co-Kriging surrogate model in order to obtain the variance s2 in the
different Low Fidelity locations (nested approach). The point characterized by the
maximum variance value is then sampled and a new surrogate model is generated;
the iterations can be stopped by analyzing the weighted relative percentage error.
Specifically, the relative percentage error between the High Fidelity function and
the Co-Kriging surrogate at the Low Fidelity points is evaluated using the following
formula:

Err% = 100 · |fe(x1, x2) − fck(x1, x2)|
|fe(x1, x2)| + ϵ

(2.5)

where ϵ is a small constant to avoid division by zero when the High Fidelity function
value is zero at that point. This relative percentage error is then multiplied by
an importance function, which represents the weight associated with the relative
percentage error at various points. In regions where the objective function values
are small, the weight of the error will be lower, thus preventing extremely large
values when both the High Fidelity function and surrogate are near zero. As an
importance function, one can consider the absolute value of the expensive function’s
values. This results in a weighted error and a weighted mean value is calculated
using the formula:

Weighted Mean Relative Error (%) =
qn

i=1

1
100 × |fe−fck|i

|fe|i+ϵ
× |fe|i

2
qn

i=1 |fe|i
(2.6)

This serves as the stopping criterion for the iterations, allowing for a more robust
representation of the error, without excessive overshoots when calculating the error
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associated with target function values that are much smaller than the maximum
value. The stopping criterion can be considered as verified when the weighted mean
relative error is less than 3% and the final High Fidelity dataset is obtained.
For the generation of the Co-Kriging surrogate model using Matlab’s ooDACE
toolbox, it is advisable to scale the data, both in terms of the input variables (x1
and x2) and the function values, to ensure the correct generation of the surrogate
by the oodacefit.m function. Specifically, for the Himmelblau Function, x1 and x2
should be scaled such that x1, x2 are in the range [-1, 1]. The High Fidelity and
Low Fidelity functions will be scaled by dividing by the maximum value that these
functions assume within the defined domain. Consequently, the variance and error
values will also be scaled accordingly, but this does not affect the final result.

Figure 2.31: High Fidelity Function and Co-Kriging prediction for the Himmelblau
Function with 27 HF samples

For the Himmelbalu Function, convergence is obtained after 24 iterations, leading
to a 27 High Fidelity points DOE, shown in Figure 2.31. Figure 2.32 shows the
surrogate’s scaled variance distribution at iteration 12, when the High Fidelity
Design of Experiment is characterized by 15 sample points, the relative percentage
error obtained when the stopping criterion is satisfied and the final High Fidelity
DOE with respect to the Low Fidelity samples. The mean error after 24 iterations
reaches 0.117%, which means that the surrogate model approximates almost per-
fectly the expensive target function. Observing Figure 2.32, one can see that there
is a peak in the relative percentage error, characterized by a really high value (it
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Figure 2.32: Co-Kriging model’s scaled s2 at iteration 12 (Up), final relative
percentage error (Left) and final High Fidelity samples distribution in the design
space (Right)

)belongs to a point where the High Fidelity function is close to zero). It is precisely
for this reason that the weighted mean error was introduced, in order to give less
weight to the errors caused by small function values compared to the expensive
function’s maximum. Moreover, one can see that the Maximum Variance algorithm,
for the Himmelblau Function, leads to a space-filling High Fidelity dataset, thus
exploring uniformly the design space. As a result, it can be observed that even
in the case of functions of two variables, the maximum variance criterion leads
to highly satisfactory results. In this instance, the Low Fidelity sampling plan
involved the implementation of a DOE based on a space-filling Latin Hypercube.
One might then wonder how the results would vary if, instead, a factorial approach
were chosen for the sampling of cheap points. Aiming to maintain the number of
Low Fidelity points at 100, while also including the points at the extremes of the
design space, the factorial DOE represented in Figure 2.33 is obtained:
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Figure 2.33: Low Fidelity factorial Design of Experiment

Applying the same algorithm with the 100 points Low Fidelity factorial sampling
plan for the Himmelblau Function yields a 22 points final High Fidelity Design
of Experiment, thus reducing the number of expensive function observations and
the required computational cost. The mean relative percentage error obtained in
this case is higher, but still under the 3% threshold, implying a highly accurate
approximation with less expensive points; the results are shown in Figure 2.34 and
2.35.

Figure 2.34: 22 points Co-Kriging surrogate model when a 100 points factorial
LF DOE is employed
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Figure 2.35: Co-Kriging model’s scaled s2 at iteration 12 (Up), final relative
percentage error (Left) and final High Fidelity samples distribution in the design
space (Right) when a factorial LF DOE is employed

To avoid overloading the discussion, for the next two test functions, the implemen-
tation of the algorithm will only be examined considering the Low Fidelity Design
of Experiment obtained by constructing a space-filling 100 points Latin Hypercube
using the bestlh.m function [5], as depicted in Figure 2.30.

We now move on to the second test function listed above, the Booth Function [47],
for which the behaviours of the High and Low fidelity functions are represented in
Figure 2.36.
Once again, a 100 points space-filling Latin Hypercube is generated and the
algorithm is applied until the weighted mean relative error falls below the 3%
threshold. The Low Fidelity Design of Experiment will be shown in Figure 2.38
along the High Fidelity selected points when convergence is reached. The Maximum
Variance criterion for the Booth Function gives the results shown in Figure 2.37
and, of course, Figure 2.38.
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Figure 2.36: High Fidelity (left) and Low Fidelity (right) Booth Function defined
in x1,x2 ∈ [-10,10]

Figure 2.37: High Fidelity Function and Co-Kriging prediction for the Booth
Function with 11 HF samples

In this case, the stopping criterion is satisfied with just 11 High Fidelity points,
leading to a weighted mean percentage error of the order of 0.555%, giving a
practically perfect approximation of the target expensive function. Once again, the
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Figure 2.38: Co-Kriging model’s scaled s2 at iteration 4 (Up), final relative
percentage error (Left) and final High Fidelity samples distribution in the design
space (Right)

resulting High Fidelity DOE is space-filling. As previously mentioned, the case
which provides for the implementation of a factorial Low Fidelity DOE is omitted
to streamline the discussion; the steps to follow if one wishes to study the effect
of a factorial sampling plan are the same as those presented for the Himmelblau
Function.
The final function to be analyzed is the Adjustable Branin Function [42], whose
two fidelity levels are depicted in Figure 2.39. For the Low Fidelity function the
parameter a is set to 0.2.
Leveraging the 100 points space-filling Latin Hypercube as the Low Fidelity Design
of Experiment, which will be reported in Figure 2.40, the algorithm is applied and
the obtained results are shown in Figure 2.40 and 2.41.
Particularly, the stopping criterion is satisfied after 20 iterations, obtaining a final
23 points High Fidelity dataset. In this case, the weighted mean relative error is of
the order of 2.553%, higher than the other analyzed functions, but still low, giving
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Figure 2.39: High Fidelity (left) and Low Fidelity (right) Branin Function defined
in x1 ∈ [-5,10],x2 ∈ [0,15]

Figure 2.40: High Fidelity Function and Co-Kriging prediction for the Branin
Function with 23 HF samples

an accurate objective function approximation in the design space. Finally, as well
as in the other previously studied cases, the Maximum Variance algorithm gives a
High Fidelity space-filling DOE.

56



Building a Co-Kriging surrogate

Figure 2.41: Co-Kriging model’s scaled s2 at iteration 12 (Up), final relative
percentage error (Left) and final High Fidelity samples distribution in the design
space (Right)

In the next section, the Maximum Expected Improvement criterion is extended to
the two-variable case, validating it by considering the three test functions analyzed.

2.5.2 Maximum Expected Improvement criterion
The analysis of Expected Improvement, introduced in the context of single-variable
functions, can be extended to multi-variable functions while maintaining the same
logical framework presented in Figure 2.15. Specifically, the initial High Fidelity
sampling plan will consist of the four points defining the extremes of the x1-x2
plane. At each iteration, the variance s2 of the Co-Kriging surrogate model is
utilized to calculate the Expected Improvement for all candidate points (it is worth
noting that a nested approach is adopted for expensive points, hence the candidate
points are those that constitute the Low Fidelity DOE). The point exhibiting
the maximum value of E[I(x1,x2)] will be selected and added to the High Fidelity

57



Building a Co-Kriging surrogate

dataset, thereby allowing the surrogate model to be updated and the iterations
to proceed. Regarding the stopping criterion, which provides a threshold between
the exploration of the design space and the effective exploitation of the surrogate,
all considerations discussed in previous sections apply; in this case as well, the
algorithm is terminated when the weighted mean relative error (Equation 2.5) is
less than 3%. The functions to which the algorithm will be applied are the same
as those reported in the previous section, namely

• Himmelblau Function [47] - x1, x2 ∈ [-4,4]:

fe(x1, x2) = (x2
1 + x2 − 11)2 + (x2

2 + x1 − 7)2

fc(x1, x2) = fe(0.5x1,0.8x2) + x3
2 − (x1 + 1)2

• Booth Function [47] - x1, x2 ∈ [-10,10]:

fe(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

fc(x) = fe(0.4x1, x2) + 1.7x1x2 − x1 + 2x2

• Adjustable Branin Function [48] - x1 ∈ [-5,10], x2 ∈ [0,15], a ∈ [0,1]:

fe(x) =
1
x2 − (5.1 x2

1
4π2 ) + 5x1

π
− 6

22
+
1
10cos(x1)(1 − 1

8π
)
2

+ 10
fc(x) = fe(x1, x2) − (a + 0.5)

1
x2 − (5.1 x2

1
4π2 ) + 5x1

π
− 6
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For the Low Fidelity dataset, both a space-filling Latin Hypercube and a factorial
sampling approach will be taken into consideration for the Himmelblau Function,
allowing for a results comparison for the effect of the two different cheap Design of
Experiments.

Starting from the Himmelblau Function, the maximum Expected Improvement
algorithm is employed to find the new High Fidelity data points; considering the
100 points Latin Hypercube sampling plan shown in Figure 2.30, the stopping
criterion is satisfied after 23 iterations, leading to a 26 points expensive dataset.
The resulting Co-Kriging surrogate model is depicted in Figure 2.42, while Figure
2.43 shows the Expected Improvement distribution in the design space for the
12° iteration, the relative percentage error when convergence is obtained and the
position of the sampled High Fidelity points. It is worth noting that the weighted
mean relative error achieved is about 0.433%. By comparing the results obtained
for the Himmelblau Function using the Maximum Variance and Maximum Ex-
pected Improvement, it is immediately evident that the second algorithm leads to
a reduction of the number of High Fidelity samples from 27 to 26, while keeping
the relative error below 0.5%, thus obtaining a near perfect High Fidelity function
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Figure 2.42: High Fidelity Function and Co-Kriging prediction for the Himmelblau
Function with 26 HF samples

Figure 2.43: Co-Kriging model’s Expected Improvement at iteration 12 (Up),
final relative percentage error (Left) and final High Fidelity samples distribution in
the design space (Right)
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approximation with one point less (the reduction in computational cost is little, but
still an improvement is obtained). Another thing that can be pointed out is the fact
that the Expected Improvement algorithm, in this case, provides a High Fidelity
Design of Experiment that no longer exhibits the space-filling characteristic of the
dataset resulting from the variance maximization algorithm. Instead, it tends to
concentrate the points near the local minima of the Himmelblau Function, as shown
in Figure 2.43. This may be because the Expected Improvement metric measures
the potential for finding a point to add to the High Fidelity dataset that would
enhance the surrogate model’s estimate of the global minimum of the objective
function, striving at each step to estimate a value increasingly closer to it.
Considering instead the Low Fidelity Design of Experiment obtained by following
a factorial approach for sampling the cheap points, as shown in Figure 2.33, the
results obtained from the application of the Maximum Expected Improvement
algorithm are depicted in Figure 2.44 and 2.45.

Figure 2.44: 23 points Co-Kriging surrogate model when a 100 points factorial
LF DOE is employed

In this case, 23 High Fidelity points are required to satisfy the stopping criterion,
however, the weighted mean relative error is higher than the Latin Hypercube case,
although still of the order of 2%. As for the Maximum Variance case, one case
see that the factorial approach leads to a reduction of the High Fidelity samples,
which entails a lower computational cost required to obtain a good surrogate model.
Figure 2.45 reaffirms that the Expected Improvement algorithm tends to sample
new points in the regions where the expensive function’s minima are located.
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Figure 2.45: Co-Kriging model’s Expected Improvement at iteration 12 (Up),
final relative percentage error (Left) and final High Fidelity samples distribution in
the design space (Right) when a factorial LF DOE is employed

We now take into consideration the second test function presented, i.e. the Booth
Function: from now on, only the Latin Hypercube approach will be leveraged for
the Low Fidelity dataset creation, setting aside the comparison with the factorial
sampling plan. Thus, the Maximum Expected Improvement algorithm is performed
on the Booth Function, obtaining the results shown in Figure 2.46 and 2.47. For the
Booth Function, the Expected Improvement algorithm performs exceptionally well,
achieving a High Fidelity Design of Experiment consisting of 10 points, one fewer
than what was obtained using the Maximum Variance criterion. The weighted
mean relative error is around 1%, making the result highly satisfactory, with the
Co-Kriging surrogate model converging almost perfectly to the expensive function.
In this case, it is also noticeable that the points added to the High Fidelity dataset
tend to concentrate near the single minimum point of the function, leaving a large
portion of the space unexplored. However, this does not prevent the surrogate
model from accurately approximating the objective function.
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Figure 2.46: High Fidelity Function and Co-Kriging prediction for the Booth
Function with 10 HF samples

Figure 2.47: Co-Kriging model’s Expected Improvement at iteration 4 (Up), final
relative percentage error (Left) and final High Fidelity samples distribution in the
design space (Right)
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Finally, the algorithm can be applied to the last test function, the Branin Function,
with the results presented in Figures 2.48 and 2.49.

Figure 2.48: High Fidelity Function and Co-Kriging prediction for the Branin
Function with 24 HF samples

For this final case, the High Fidelity points constituting the final dataset are 24,
one more than what was found using the maximum s2 algorithm of the Co-Kriging
surrogate model. Additionally, the dataset obtained with the Expected Improve-
ment criterion results in a weighted mean relative error of approximately 2.497%,
slightly lower than that achieved with the previous criterion. The performances of
the two algorithms applied to the Branin Function are practically comparable, as
is also the case for the other two functions, i.e. Himmelblau and Booth. However,
for these latter two functions, the Expected Improvement algorithm achieves a
slight improvement over the Maximum MSE criterion, identifying a smaller number
of expensive samples in both cases, albeit by just one point. It can therefore
be concluded that the criterion based on E[I(x1,x2)] for two-variable functions is
extremely useful for the progressive addition of points to the initial High Fidelity
dataset, with the aim of constructing a surrogate model that best approximates
the objective function while limiting the computational cost required to achieve
this goal.

In the next section, the performance of the third and final proposed algorithm,
based on the Information Gain, as described in the case of single-variable functions,
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Figure 2.49: Co-Kriging model’s Expected Improvement at iteration 12 (Up),
final relative percentage error (Left) and final High Fidelity samples distribution in
the design space (Right)

will be assessed and implemented for the three two-variable test functions.

2.5.3 Maximum Information Gain criterion
The adaptive sampling criterion based on the Information Gain parameter, as
previously defined for single-variable functions, can now be extended to the case of
two-variable functions. The underlying concept remains the same: starting with
an initial dataset of Low Fidelity points, constructed, for example, by generating
a Latin Hypercube or following a factorial approach, and an initial High Fidelity
dataset with four points located at the extremes of the design space, a preliminary
Co-Kriging surrogate model is built. The variance distribution across the candidate
points, which will obviously belong to the cheap dataset (nested approach), is
then evaluated. By knowing the s2, the initial entropy distribution is calculated as
expressed by Equation 2.4. Subsequently, for each candidate point, the entropy
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resulting from adding that point to the High Fidelity dataset is evaluated. This
involves constructing a new Co-Kriging surrogate model that includes the new
sample in the existing dataset at that iteration. To achieve this, a Bayesian
estimation of the expensive function value at the candidate point is performed, also
calculating a 95% confidence interval for the mean value estimate of the prediction,
allowing the surrogate model to be built without knowing the actual High Fidelity
objective function value. The Information Gain is then obtained by averaging the
difference between the initial and final entropy, bearing in mind that for points
already sampled in the High Fidelity dataset, this parameter loses significance and
can thus be assigned an arbitrary negative value. The point that maximizes this
information index in terms of reducing the model’s uncertainty will be the new
point to add to the expensive data and the algorithm will continue the search until
the stopping criterion is met. This stopping criterion, as previously mentioned for
two-variable functions, requires the weighted mean relative error to be less than
3% to halt the cycle. The test functions studied are the Himmelblau Function, the
Booth Function, and the Branin Function, namely:

• Himmelblau Function [47] - x1, x2 ∈ [-4,4]:

fe(x1, x2) = (x2
1 + x2 − 11)2 + (x2

2 + x1 − 7)2

fc(x1, x2) = fe(0.5x1,0.8x2) + x3
2 − (x1 + 1)2

• Booth Function [47] - x1, x2 ∈ [-10,10]:

fe(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

fc(x) = fe(0.4x1, x2) + 1.7x1x2 − x1 + 2x2

• Adjustable Branin Function [48] - x1 ∈ [-5,10], x2 ∈ [0,15], a ∈ [0,1]:

fe(x) =
1
x2 − (5.1 x2

1
4π2 ) + 5x1

π
− 6

22
+
1
10cos(x1)(1 − 1

8π
)
2

+ 10
fc(x) = fe(x1, x2) − (a + 0.5)

1
x2 − (5.1 x2

1
4π2 ) + 5x1

π
− 6

22

As previously done, for the Himmelblau Function, both a space-filling Latin Hy-
percube and a factorial sampling plan will be considered. Starting from the
Himmelblau Function with the Low Fidelity Design of Experiment shown in Figure
2.30, the Maximum Information Gain criterion is applied and the following results
are obtained. Figure 2.51 shows the scaled Information Gain at iteration 12 as
a heat map on which the candidate points are represented; the black dot is the
location of the maximum IG(x1,x2) value at that iteration and that point will
therefore be added to the High Fidelity dataset.
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Figure 2.50: High Fidelity Function and Co-Kriging prediction for the Himmelblau
Function with 23 HF samples

Figure 2.51: Co-Kriging model’s scaled Information Gain at iteration 12 (Up),
final relative percentage error (Left) and final High Fidelity samples distribution in
the design space (Right)
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In this case, by leveraging the information-based criterion, it is possible to further
reduce the number of High Fidelity points required compared to both the Maximum
Variance criterion (27 expensive points) and the Expected Improvement criterion
(26 HF points), now achieving a Design of Experiment consisting of 23 costly
points. The reduction in computational burden in terms of necessary evaluations
is evident in the case of the Himmelblau Function and the final weighted mean
error obtained is 1.254%, which is extremely low. Since each iteration requires the
construction of multiple surrogate models, each characterized by adding one of
the candidate points to the set available in the given iteration, the time required
by the algorithm to identify the point to be sampled based on the Information
Gain will certainly be greater than that required by the previous two algorithms.
However, it remains extremely manageable and certainly incomparable to the time
required, for example, by a High Fidelity numerical simulation. The potential of
this algorithm is thus highlighted.

Considering instead the Low Fidelity factorial Design of Experiment shown in
Figure 2.33, the results obtained from applying the Information Gain maximization
algorithm are presented below.

Figure 2.52: High Fidelity Function and Co-Kriging prediction for the Himmelblau
Function with 24 HF samples when a 100 points LF factorial sampling plan is
employed

Even when employing a Low Fidelity factorial sampling plan, the Information Gain
algorithm results in a reduction in the number of High Fidelity points required,
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Figure 2.53: Co-Kriging model’s scaled Information Gain at iteration 12 (Up),
final relative percentage error (Left) and final High Fidelity samples distribution in
the design space (Right)

in this case, 24. The final approximation error obtained is extremely low, around
0.246%. Therefore, it is possible to proceed with studying the remaining two test
functions. Regarding the Booth Function, the application of the algorithm yields
the results shown in Figure 2.54 and 2.55: the Information Gain algorithm leads
to a reduction of the High Fidelity points with respect to the Maximum Variance
criterion, from 11 to 10 points and the final weighted mean error reaches 2.227%.
Compared to the Maximum Expected Improvement algorithm, the High Fidelity
samples number is the same, i.e. 10 points, but the error is slightly higher for the
case presented in this section.
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Figure 2.54: High Fidelity Function and Co-Kriging prediction for the Booth
Function with 10 HF samples when a 100 points LF factorial sampling plan is
employed

Figure 2.55: Co-Kriging model’s scaled Information Gain at iteration 4 (Up),
final relative percentage error (Left) and final High Fidelity samples distribution in
the design space (Right)
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Finally, the application of the Information Gain algorithm to the Branin Function
leads to the results shown in Figures 2.56 and 2.57.

Figure 2.56: High Fidelity Function and Co-Kriging prediction for the Branin
Function with 24 HF samples when a 100 points LF factorial sampling plan is
employed

In this case, the High Fidelity dataset will consist of 24 points, as determined by
the application of the Maximum Expected Improvement algorithm, now yielding
a slightly higher error of approximately 2.974%. For the Branin Function, both
the Maximum Information Gain and Maximum E[I(x1, x2)] algorithms perform
almost equally, each identifying exactly one more point compared to the Maximum
Variance criterion. The latter found instead the maximum number of points for
both the Himmelblau and Booth Functions.
After conducting various tests on the three presented functions and validating the
adaptive sampling algorithms, it is possible to summarize the main results obtained
by reporting in tables the number of High Fidelity sampling points and the weighted
mean relative error achieved when the stopping criterion is satisfied. It is important
to note that the Maximum Variance and Expected Improvement algorithms provide
the final result in less time compared to the Information Gain-based algorithm,
which, as previously mentioned, requires the construction of multiple surrogate
models at each iteration. Although this generation is practically instantaneous
thanks to the use of the ooDACE toolbox, it is evident that the time required to
identify the point to be added to the High Fidelity dataset will indeed be greater.
For example, considering the Himmelblau Function, the time required to reach
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Figure 2.57: Co-Kriging model’s scaled Information Gain at iteration 12 (Up),
final relative percentage error (Left) and final High Fidelity samples distribution in
the design space (Right)

convergence with the Maximum Variance algorithm is approximately 30.8 seconds,
23 seconds for the Expected Improvement and 426.3 seconds for the Information
Gain (times evaluated on a simple desktop architecture). The computational cost
in terms of time is significantly higher in the latter case, but for the Himmelblau
Function, this algorithm allows reducing the High Fidelity objective function evalu-
ations from 27 (Variance) and 26 (EI) to 23, a considerable computational saving.
Regarding the other functions, namely Booth and Branin, it has been observed
that the advantage of the Information Gain-based algorithm in terms of reducing
the number of High Fidelity points is similar to that obtainable from the Expected
Improvement algorithm, which is also much faster. In these cases, the final choice
of the algorithm may favor the one that achieves the result with fewer operations,
given the same number of entries in the expensive dataset. However, another
parameter to consider is the final approximation error, which can tip the balance
in favor of one algorithm over another.
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By examining Tables 2.4, 2.6 and 2.7, it can be concluded that it is not pos-
sible to precisely predict which algorithm will require the fewest High Fidelity
points; in other words, the results depend on the specific problem being analyzed
and on the Low and High Fidelity functions. For the Himmelblau Function, the
Information Gain criterion outperforms the other two algorithms, but this is not
the case for the Branin Function, where the Maximum Variance algorithm actually
requires fewer evaluations, despite being the least performant for the other two test
functions.

Himmelblau Function - Latin Hypercube

Sampling Criterion LF
Samples HF Samples

Mean Weighted
Relative Error

(%)
Max Variance 100 27 0.11682

Max E[I(x1,x2)] 100 26 0.4332
Max IG(x1,x2) 100 23 1.2544

Table 2.4: Results comparison between the three different algorithms for the
Himmelblau Function (Low Fidelity Latin Hypercube sampling plan)

Himmelblau Function - Factorial

Sampling Criterion LF
Samples HF Samples

Mean Weighted
Relative Error

(%)
Max Variance 100 22 2.811

Max E[I(x1,x2)] 100 23 2.0122
Max IG(x1,x2) 100 24 0.24586

Table 2.5: Results comparison between the three different algorithms for the
Himmelblau Function (Low Fidelity factorial sampling plan)
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Booth Function - Latin Hypercube

Sampling Criterion LF
Samples HF Samples

Mean Weighted
Relative Error

(%)
Max Variance 100 11 0.5552

Max E[I(x1,x2)] 100 10 1.0909
Max IG(x1,x2) 100 10 2.2277

Table 2.6: Results comparison between the three different algorithms for the
Booth Function

Branin Function - Latin Hypercube

Sampling Criterion LF
Samples HF Samples

Mean Weighted
Relative Error

(%)
Max Variance 100 23 2.5528

Max E[I(x1,x2)] 100 24 2.4972
Max IG(x1,x2) 100 24 2.9742

Table 2.7: Results comparison between the three different algorithms for the
Branin Function
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Chapter 3

Cold Gas Micropropulsion

3.1 Introduction

Cold gas systems represent one of the simplest architectures for space propulsion
and have been employed since the early spacecrafts of the 1960s as attitude control
systems [49]. In modern times, such propulsion systems are still widely utilized,
particularly in the field of nanosatellites, commonly referred to as "CubeSats".
Indeed, the use of such satellites, whose dimensions are typically on the order of
cm3 and mass usually in the range of a few tens of kilograms, necessitates, first
and foremost, the employment of a lightweight propulsion system characterized by
low power requirements, and must be simple, reliable and cost-effective. In these
regards, cold gas systems have always been preferred over other types of propulsion
systems for missions requiring limited total impulses, for which they represent
the lightest and most straightforward implementation solution [50]. Therefore, in
addition to their small dry masses and the few Watts of electrical power required to
ensure operability, a further advantage of such systems lies in the use of non-toxic
inert substances and the fact that the propellant exiting from the thruster nozzle
does not produce residues that could interfere with mechanical actuators or sensors
inherent to the spacecraft [50].
As previously mentioned, the primary application of these cold gas systems is in the
attitude and trajectory control of satellites, being used for orbit maintenance and
to perform small maneuvers, which typically require low thrust values and limited
total impulses (∆V < 50m/s) [51]. Generally, cold gas thrusters are designed to
provide thrust ranging from tens of milliNewtons (mN) to a few Newtons (N),
depending on the total temperature and pressure conditions at the exhaust nozzle
inlet [51]. Despite these systems being characterized by small impulse bits (I-bit),
hence great readiness and response time, their specific impulses (Isp) are typically
low compared to other types of propulsion systems, such as chemical or electric,
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reaching values between 10 and 100 s depending on the propellant used (generally
gaseous nitrogen, xenon or krypton) [52].

In cold gas systems, thrust is generated by accelerating the propellant (pressurized
gas or compressed liquid) through a nozzle, thereby converting the energy contained
within the propellant into kinetic energy, without undergoing a combustion process
or heating the gas. The higher the velocity of the exhaust at the exit section of
the nozzle, the greater the thrust produced. The absence of propellant combustion
makes cold gas systems extremely simple and safe, but it also limits the achievable
thrust levels, as only a small portion of the energy inherent in the chemical bonds
of the propellant is utilized.
From an architectural standpoint, the simplicity of these propulsion systems is
illustrated in Figure 3.1.

Figure 3.1: Layout of cold gas system [51]

In general, the propellant, typically in the gaseous state, is contained within a
pressurized tank and flows towards the exhaust nozzle through a pipeline, propelled
by the pressure differential between the two aforementioned components. The gas
then passes through a series of valves along the supply line, such as a pressure
regulator valve, tasked with reducing the pressure from the high tank value to the
desired value at the inlet section of the nozzle, which determines the achievable
thrust. Subsequently, there is a thruster valve, also referred to as solenoid valve,
which allows for the regulation of propellant flow towards the nozzle through
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opening and closing actions. The component responsible for thrust generation,
defined as the cold gas thruster, consists of the combination of the solenoid valve
and the nozzle, through which the gas expands into the outer space. Usually, a
cold gas system includes several thrusters in order to achieve the desired thrust to
perform the required maneuvers, granting stability and attitude control.
As far as propellants for cold gas systems are concerned, both gaseous and liquid
propellants can be stored inside the tank, the only constraints are that the propellant
must be in gas phase when it expands within the nozzle and no combustion must
take place [53]. Focusing on gas propellants, Table 3.1 displays some of the possible
candidates and their performances in terms of molecular mass, density, specific
heat ratio and theoretically achievable specific impulse in vacuum.

Propellant Molecular Mass
(g/mol)

Density
(lb/ft3) γ

Isp

(s)

Hydrogen 2.0 1.77 1.40 284
Helium 4.0 3.54 1.67 179

Methane 16.0 14.1 1.30 114
Nitrogen 28.0 24.7 1.40 76

Air 28.9 25.5 1.40 74
Argon 39.9 35.3 1.67 57

Krypton 83.8 74.1 1.63 50

Table 3.1: Properties of cold gas propellants. Density is measured at 5000 psia and
20°C, Isp measured in vacuum with nozzle area ratio 50:1 and initial temperature
20°C [49].

The choice of propellant is highly significant as it impacts the sizing of the tank in
terms of mass and volume. Generally, one would want a gas with low boiling and
low melting temperature, with a view to achieve an efficient storage of the propellant
[53]. In the case of cold gas micropropulsion, mission constraints may render the
use of gasses such as high-pressure hydrogen and helium unfeasible: as evidenced
in Table 3.1, these gasses exhibit much higher specific impulses compared to the
rest of proposed alternatives, however, their density is extremely low, resulting in
large gas storage volumes and thus in heavier tanks. Most significant leakage issues
may affect cold gas systems employing hydrogen and helium [49]. Among all of the
proposed gasses, nitrogen is certainly the most commonly used in various missions.
It is an inert and non-toxic gas, characterized by a favourable density compared to
helium and hydrogen, allowing for a significant reduction in volumes and overall
system weight. Furthermore, its relatively low molecular mass enables specific
impulses on the order of 70 seconds, still low but better than other propellants, such
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as argon and krypton. As mentioned earlier, another strength of gaseous nitrogen
as a propellant lies in its non-contaminating properties for spacecraft sensors and
mechanical surfaces. Other propellants used for cold gas propulsion include freon
and xenon or liquid-state propellants in the tank, such as carbon dioxide, propane,
butane and ammonia [54]. However, resorting to liquid propellants introduces
various complexities in the system that may not lead to a better solution than
gaseous nitrogen [53]. To address the issue of the low density of the gasses listed in
Table 3.1, one may consider storing the propellant in solid-form within the tank,
subsequently igniting and vaporizing the solid, in order to provide the nozzle with
gaseous propellant [55].

3.2 Nozzle design

The design of the thruster, comprising the solenoid valve and the nozzle assem-
bly, stands as one of the most pivotal aspects, as the performance of the cold
gas propulsion system hinges upon these components. Particularly, the required
thrust level for executing maneuvers and attitude control necessitates a thorough
examination of the type and geometry of the exhaust nozzle: in the case of cold
gas microthrusters, this typically entails a convergent-divergent (De Laval) nozzle,
which accelerates the gas from a subsonic velocity at the converging section to a
supersonic velocity in the divergent portion. At the throat section, the velocity
reaches sonic conditions, thus maximizing the mass flow rate through the nozzle
and consequently the thrust performance. Regarding the divergent portion of the
nozzle, it typically comes in a conical or bell-shaped form; however, given the highly
compact dimensions characteristics of these types of thrusters and manufacturing
constraints, there is a tendency to favor the use of conical nozzles [56]. Nevertheless,
bell-shaped nozzles are still employed in various microthrusters.

As previously mentioned, the performance of cold gas propulsion systems is heavily
dependent on the nozzle. Therefore, aiming to maximize the achievable perfor-
mance entails selecting the optimal geometry of the nozzle, i.e. in terms of the ratio
between the exit area and the throat area, as well as the angles that characterize
the divergent section.
In Chapter 4, a Co-Kriging based optimization will be conducted to determine the
optimal values for the angles θ1 and θ2 that define the bell-shaped geometry of the
divergent part of the nozzle, taking into account the thrust coefficient CF and the
thruster weight, which we aim respectively to maximize and minimize.
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3.2.1 Ideal nozzle performance
In order to obtain a preliminary indication of the performance provided by a cold
gas thruster, it is possible to calculate the main parameters of interest such as
thrust, mass flow rate, Mach number and outlet pressure using a set of fundamental
thermodynamic equations, derived under the assumption of ideal flow. These equa-
tions, which describe the flow behaviour inside the nozzle as quasi-one-dimensional,
neglect the sources of irreversibility and losses, as well as real phenomena and
initially provide reasonably accurate results, which can be further refined by setting
aside the hypothesis of ideal flow [49]. The main assumptions underlying the ideal
thruster model are as follows [32,35]:

1. Throughout the nozzle, propellant gasses are homogeneous and their composi-
tion is invariant (frozen flow)

2. Only gasses flow through the nozzle, any liquid or solid condensed phases are
neglected

3. The gasses follow the perfect gas law

4. The flow inside the nozzle is adiabatic and heat transfer across the walls is
neglected

5. No friction at the walls is present, thus boundary layer effects are neglected

6. Throughout the nozzle, the flow is steady and constant, gas expansion is
uniform and no transient effects, shock waves or discontinuity are present

7. The gas velocity at the outlet section of the nozzle is axially directed

8. Gas velocity, pressure, temperature and density are uniform across any section
normal to the nozzle axis

As a result, the expansion in the nozzle can be studied relying on isentropic relations,
since the flow can be considered both adiabatic and reversible (this implies that
total temperature and total pressure are conserved in the nozzle).
The geometry of a generic bell-shaped De Laval convergent-divergent nozzle is
shown in Figure 3.2: the nozzle consists of a convergent section where a subsonic
flow is accelerated until it reaches sonic velocity at the throat section, denoted
by At in the figure. The inlet conditions of the gas in terms of temperature and
pressure are denoted by the subscript ’c’; specifically, the pressure value pc depends
on the regulator valve placed along the supply line. The latter reduces the pressure
from the tank value to the required value to generate a certain thrust. The higher
the nozzle inlet pressure, the greater the achievable thrust. It must be remembered
that in cold gas thrusters, combustion does not occur. At the throat section, the
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Figure 3.2: Convergent-Divergent nozzle geometry

flow reaches critical conditions, where the mass flow rate reaches its maximum
value and the Mach number is Mt = 1. Therefore, in the convergent section, the gas
accelerates and its pressure decreases (subsonic flow in a convergent section), while
downstream of the throat section, the flow continues to accelerate (supersonic flow
in divergent section) and the gas expands until it exits into the vacuum. The exit
section of the nozzle and the corresponding pressure and temperature conditions
are denoted by the subscript ’e’. The exit flow velocity actively influences the
achievable thrust value, so higher velocities are desired to optimize the propulsion
system performance. Finally, thrust is also influenced by the exit pressure pe and
area Ae. In summary, the nozzle generates thrust by momentum exchange between
the exhaust gasses and the spacecraft and by the pressure imbalance at the exit
section of the nozzle (in vacuum p0 = 0) [52]:

F = ṁeVe + Aepe (3.1)

Below are the fundamental relations to calculate the performance of a cold gas
thruster, in the case of ideal nozzle and flow. Since the flow is adiabatic, the total
pressure at the nozzle throat will be equal to both the total pressure at the inlet
and exit section, thus

T 0
t = T 0

c = T 0
e (3.2)

Given the Poisson relations (Equation 3.3), critical values for temperature, pressure,
density and sound speed can be obtained at the nozzle throat (Equations 3.4, 3.5,
3.6 and 3.7):
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where a is the speed of sound and γ is the ratio of specific heats of the gas.
Combining Equations 3.2 and 3.4-3.7 and remembering that the Mach numbers
Mt = 1, Mc = 0 and Me = Ve/

√
γ · R · Te, a relation between the exit velocity Ve

and the pressure ratio pe/pc is obtained:

Ve =

öõõõô 2γR

γ − 1 · Tc

1 −
A

pe

pc

B γ.1
γ

 (3.8)

Equation 3.8 shows that the higher the temperature at the inlet section and the
higher the gas constant R, the greater the exhaust velocity, thus the thrust.

As a rule, the inlet conditions are given as a problem data, hence pc and Tc

are known; furthermore, given the gas flowing throughout the nozzle, the values
of γ and R are also known. Therefore, to obtain the value of Ve it is necessary to
know the pressure at the outlet section of the nozzle. Typically, another parameter
assumed as a problem data is the expansion ratio ε, defined as the ratio of the exit
area of the nozzle to the throat area:

ε = Ae

At

(3.9)

As implied by its name, the area ratio ε serves as an indicator of the extent of
expansion that the gas undergoes along the nozzle; consequently, the higher the
expansion ratio, the lower the gas pressure at the exit section (the gas has under-
gone a significant expansion). The optimal value of ε is achieved when the exit
pressure pe reaches the value of the environmental pressure outside the nozzle,

80



Cold Gas Micropropulsion

which is zero in the case of a spacecraft operating in vacuum. However, to have
pe = 0, an infinite Ae/At would be required, so ε is chosen to be as large as possi-
ble, but compliant with the size and weight constraints of the propulsion system [52].

A relation linking the expansion ratio and the pressure ratio pe/pc can be found
starting from the mass flow rate evaluation. This parameter remains constant
throughout the nozzle and can be generally defined as follows:

ṁ = ρ · A · V (3.10)

Using equations 3.3 and 3.8, the following expression is obtained

ṁ = pcAe√
RTc

·

öõõõô 2γ

γ − 1

Ape

pc

B( 2
γ )

−
A

pe

pc

B γ+1
γ

 (3.11)

Now, specifying mass flow rate in the throat section, where Vt = at and substituting
in Equation 3.11, the expansion ratio is found as a function of pe/pc:

Ae

At

=
√

γ
1

2
γ+1

2 γ+1
2(γ−1)

1
pe

pc

2 1
γ

öõõô 2γ
γ−1

C
1 −

1
pe

pc

2 γ−1
γ

D (3.12)

Thus, for example, for a given ε and pc, the value of pe can be derived; subse-
quently, the mass flow rate can be calculated from Equation 3.11, obtaining all the
parameters required in the thrust evaluation. In fact, one can substitute Equations
3.8, 3.11 and 3.12 in 3.1, obtaining the thrust F as a function of pe/pc:

F = pcAt

öõõõô 2γ2

γ − 1

A
2

γ + 1

B γ+1
γ−1

1 −
A

pe

pc

B γ−1
γ

+ peAe (3.13)

Equation 3.13 gives the ideal thrust produced by the cold gas propulsion system in
vacuum. Furthermore, the thrust coefficient CF and the specific impulse Isp can be
estimated. As far as CF is concerned, this parameter is defined as the ratio of the
thrust and the product of throat area and inlet pressure

CF = F

pc · At

(3.14)

Using Equation 3.13, we have that
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CF =

öõõõô 2γ2

γ − 1

A
2

γ + 1

B γ+1
γ−1

1 −
A

pe

pc

B γ−1
γ

+ peAe

pcAt

(3.15)

CF is heavily dependant on the expansion ratio ε and better performance is ob-
tained the greater this parameter. Typical values for CF in vacuum can reach up
to 1.7-1.8 depending on ε.

Regarding specific impulse Isp, it can be defined as the ratio of the generated
thrust F to the product of the mass flow rate passing through the nozzle and
Earth’s gravitational acceleration (g0 = 9.81m/s):

Isp = F

ṁ · g0
(3.16)

Specific impulse highly depends on the propellant used and also provides an es-
timate of the propulsion system’s fuel consumption: high values of Isp require
small propellant flow rates to generate thrust F , while lower Isp results in higher
propellant consumption to achieve the same thrust. As mentioned earlier, in the
case of cold gas microthrusters, such as those based on gaseous nitrogen GN2,
specific impulse values are around 70 s, much lower than those typical of electric or
chemical propulsion systems. This is one of the reasons why cold gas technology
is not used for primary propulsion, as missions requiring significant ∆V would
demand enormous propellant flow rates.

Finally, another useful parameter to evaluate is the Mach number at the exit
section of the nozzle. This parameter can be assessed in various ways, but one of
the simplest methods involves exploiting the isentropic nature of the flow (p0

c = p0
e),

allowing to write:

pc = pe

3
1 + γ − 1

2 M2
e

4 γ
γ−1

−→ Me =

öõõõô 2
γ − 1

Apc

pe

B γ−1
γ

− 1
 (3.17)

The value of pe/pc is known from Equation 3.12 for a certain ε, thus Me is rapidly
obtained. Being the expansion ratio usually very high for cold gas microthrusters
and given the fact that the temperature of the exhaust gasses will be highly low,
we expect great values of the Mach number Me.
The equations presented in this subsection relate to the ideal case, where losses
and the real aerothermodynamic behaviour of the flow are neglected. Below, the
analysis of real nozzle performance is introduced.
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3.2.2 Real nozzle performance
The assumptions made in the case of ideal nozzle and flow, while providing an
excellent starting point for studying the performance of a rocket in general, and a
cold gas thruster in particular, still represent an idealization that does not account
for some important physical and thermodynamic phenomena that impact the
propulsion system’s performance. Hence, the real value of the thrust will obviously
be lower that that calculated with the equations presented in the previous subsection.
In particular, the flow inside the nozzle is two-dimensional and axisymmetric, thus
more complex than previously described; furthermore, the assumption of constant
velocity, pressure, temperature and density on each section perpendicular tho the
axis of the nozzle falls away, resulting in a non-uniform distribution with higher
values in the central region and progressively decreasing values away from the
thruster’s symmetry plane. Regarding the throat Mach number, for instance, in
the ideal case it is considered to be one at the section located exactly at the throat
radius; however, in the real case, the unity value is reached on a more or less curved
surface, slightly downstream of At [49].
Moreover, in the real case, there are several sources of energy loss inside the nozzle
and not all the enthalpy stored inside the gas is effectively converted into kinetic
energy. Typically, losses involve real gas effects, losses due to flow divergence and
losses related to viscous effects. Below are various sources of losses [49]:

1. The flow in the nozzle exit section is not axially oriented, thus the velocity Ve

calculated in Equation 3.8 will be lower due to the presence of a radial velocity
component. The shape of the nozzle influences divergence losses: for conical
nozzles, higher values of the divergence angle determines lower values of Ve,
thus less thrust, because the radial component will be important. Bell-shaped
nozzles help reducing flow divergence losses

2. A slight loss in exhaust velocity and thrust can be caused by small nozzle
contraction ratios, i.e. the ratio between the inlet area of the nozzle and the
throat area Ac/At. Despite these losses being minimal, usually a contraction
ratio of the order of 4 is chosen, to reduce pressure losses in the inlet

3. Viscous effects, above all the formation of a boundary layer on nozzle walls,
where the velocity evolves from the wall value of zero to blend with the velocity
outside the boundary layer itself, determine a loss in terms of Ve

4. Performance can be affected by non-uniform gas composition, for example due
to turbulence

5. Real gas effects and rarefaction may affect nozzle performance, although the
latter effects can be neglected if the thruster produces more than 1mN [57]
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Figure 3.3: Schematic representation of a conical convergent-divergent nozzle,
including boundary layer [58]

The phenomena listed above, therefore, contribute to reducing the achievable
performance in terms of gas exit velocity and generated thrust. Evaluating the
losses due to individual causes is not always straightforward; however, the major
sources of performance reduction are related to viscosity and flow divergence. Thus,
these will be studied more in detail, temporarily setting aside the other mentioned
causes.
Firstly, concerning divergence, the nozzle geometry plays a fundamental role: con-
sidering, for example, a conical geometry, to achieve the most axial oriented exhaust
velocity possible, small divergent angles α would be necessary (see Figure 3.3).
However, this implies a high length of the nozzle that can lead, on one hand, to an
excessive weight of the thruster, which must adhere to specific mission constraints,
and on the other hand, it allows the viscous boundary layer to develop over a
greater wall length, further reducing the velocity Ve (the boundary layer will occupy
a larger portion of the nozzle exit section). Higher α angles, instead, allow for
shorter nozzles, reducing losses due to boundary layer but increasing those due
to velocity misalignment. Typically, divergence angles in the range on 12°-18° are
chosen for conical nozzles, taking into account that divergence losses scale with
the cosine of α [57]. This type of losses can be reduced by opting for a bell-shaped
(parabolic) geometry of the divergent section of the nozzle; all considerations made
in the previous case still hold true.

Regarding viscous effects, in cold gas microthrusters, characterized by extremely
small dimensions, the thickness of the boundary layer becomes a crucial aspect to
consider, especially for thrusters producing a nominal thrust on the order of a few
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millinewtons, the throat radius takes values of a few hundredths of a millimeter
[57]. Consequently, one can expect the boundary layer to occupy a significant
portion of the nozzle exit section and to also affect the throat region. Viscous effects
thus strongly impact the performance of the propulsion system. The fundamental
parameter governing viscous effects is the Reynolds number Re, usually evaluated
at the throat section:

Ret = ρt · Vt · Dt

µt

(3.18)

where Dt is the throat diameter and µt is the dynamic viscosity.
La Torre [57] provides useful values to give an idea of the Reynolds numbers reached
in a GN2 cold gas microthruster for various thrust values: considering an inlet
pressure of 10 bar, a temperature of 300 K and an expansion ratio of 16, a nozzle
generating 1 N of thrust will have a throat radius of approximately 0.43 mm,
resulting in a Reynolds number of Re = 1.3 · 105. A nozzle generating 1 mN of
thrust will be characterized by Rt = 0.014 mm and Ret = 4.1 · 103.
One might then question whether the flow inside the nozzle is turbulent in light of
the reported Reynolds numbers; however, La Torre [57] concludes that even in the
case of throat Reynolds on the order of 105, the results obtained studying the flow
with RANS equations using different turbulence models hardly differ from those
obtained by neglecting such models and considering laminar flow. Further evidence
will be provided in Section 3.3.2. Therefore, within a cold gas microthruster
producing thrust in a range between 1 mN and 1 N, turbulence seems not to have
the space or time necessary to develop [57]; hence, the boundary layer can be
considered laminar. Moreover, for Reynolds numbers around 103 and even 104, one
can expect that the boundary layer will not be limited to the divergent portion of
the nozzle, but will also affect the throat region, reducing the mass flow across the
thruster.
Observing Figure 3.3, it’s noticeable that the boundary layer thickness at the
exit section of the nozzle, which may affect large portions of Ae (up to 20% or
more), tends to reduce the effective expansion ratio ε, i.e. the ratio Ae/At. The
flow indeed perceives an effective exit radius that is smaller than the actual one,
precisely due to the boundary layer displacement thickness δ∗. The reduction of
the effective area ratio will imply less gas expansion in the divergent section, hence
a higher pe/pc ratio and a loss in terms of exit velocity Ve and achievable thrust.
Consequently, the thrust coefficient will be penalized by viscosity and the value
calculated using Equation 3.15 will need to be properly corrected to account for
the presence of the boundary layer. Some useful empirical formulations to predict
the viscosity effect on the performance of cold gas microthrusters are provided by
Spisz et al. [58] and by Massier et al. [59]; in particular, the following corrective
factors are introduced for the thrust coefficient and flow rate:
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CF v = 17.6 · e
0.0032 Ae

At

√
0.773 · Ret

(3.19)

ṁ = Cd
pcAt√
RTc

√
γ

A
2

γ + 1

B γ+1
2(γ−1)

(3.20)

Cd in Equation 3.20 is defined as the discharge coefficient and depends on the
throat Reynolds number as follows

Cd = 0.8825 + 0.0079 · ln(Ret) (3.21)

The thrust coefficient in the real case will be

CF = CF i − CF v (3.22)

where CF i is the one specified in Equation 3.15. From Equation 3.19 can be seen
that the lower the Reynolds number, the higher the correction factor will be,
because boundary layer effects will have a greater impact on the performance, as it
is expected.

3.3 Design and performance evaluation of a cold
gas thruster

In this section, we aim to compute the performance of a cold gas microthruster
by comparing the values obtained using the ideal model equations with the actual
flow behaviour inside the nozzle. Specifically, we seek to determine the value of the
thrust coefficient CF and assess the effect of viscosity. As mentioned earlier, after
computing the Reynolds number at the throat, the objective is to demonstrate that
the flow inside the nozzle is predominantly laminar and that the use of turbulence
models for flow analysis does not result in significant variations in results and
performance. The content presented in this section serves as a foundation for the
case study to be addressed in Chapter 4, where we intend to leverage the creation
of a surrogate model using the multi-fidelity Co-Kriging method to optimize the
thrust coefficient as a function of the geometry of the divergent section of the nozzle,
specifically bell-shaped. In particular, two databases will be created: one Low
Fidelity, allowing for the determination of CF values through flow analysis using
Euler’s equations, and one High Fidelity, involving the resolution of Navier-Stokes
equations. The application of Co-Kriging will enable the development of a surrogate
model for the thrust coefficient as a function of the angles θ1 and θ2 defining the
nozzle bell shape (Figure 3.5), leveraging the extensive information provided by
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the Low Fidelity model and a few expensive simulations, thus reducing the number
of computationally intensive simulations required while maintaining high accuracy
in results.

3.3.1 Nozzle geometry
Having introduced the main features of cold gas microthrusters in the preceding
sections, we can now delve into a possible implementation, focusing particularly
on the exhaust nozzle, which will be of the convergent-divergent type. Among
the two possible shapes for the divergent section, the bell-shaped configuration
will be chosen, despite the conical shape being more common in micropropulsion
applications, given manufacturing requirements. Below, therefore, a design for the
nozzle geometry is proposed; this geometry will be subsequently utilized for the
performance evaluation of the thruster through CFD analysis.

For the construction of the geometry, reference is made to the results obtained
by Rao [60] for the design of an optimum thrust nozzle, which are summarized in
Figure 3.4

Figure 3.4: Design of a parabolic bell-shaped nozzle based on Rao’s research

Rt and Re denote the throat and exit radii of the nozzle, respectively, while ε
represents the area ratio Ae/At introduced in the previous sections. The convergent
section of the nozzle, whose treatment is deferred to a later stage, connects at the
throat radius through a circular arc of radius Rc, identified by Rao as approximately
1.5 times Rt. Subsequently, a further circular fillet connects the nozzle throat to
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the point indicated as ’1’ in Figure 3.4, whose coordinates are obtained through
simple trigonometric steps:

x1 = xt + R1 · sin θ1

y1 = Rt + R1(1 − cos θ1)
(3.23)

The throat dimensions are indicated with the subscript ’t’ and the radius R1 is
considered as 0.382 times Rt. θ1 thus defines the position of the starting point of
the parabolic segment of the divergent and sets the slope of the parabola at point
’1’. This parabolic segment extends to point ’2’, identified by the radius Re and the
slope of the curvature at this point is given by the value of the tangent of angle θ2,
which also characterizes the velocity vector at the exit section of the nozzle. As
the angles θ1 and θ2 vary, the shape of the nozzle bell will consequently change,
resulting in configurations of varying lengths (greater θ1 at constant θ2 will lead to
a shorter divergent, while smaller exit angles at constant θ1 will determine a longer
nozzle).
The equation of the parabolic segment can be written as:

y = ax2 + bx + c (3.24)

where a, b and c are the unknown coefficient that must be obtained. The following
assumptions can be made: the point on the nozzle axis at the throat section is
considered as the origin of the reference frame, the coordinates of point ’1’, x1 and
y1 are know, as well as the y coordinate of the point ’2’, which is Re. Assuming the
values of the angles θ1 and θ2, the first derivatives of the parabolic function at points
’1’ and ’2’ are known. The position x2 of the point on the nozzle outlet section
remains unknown and free, thus varying depending on the chosen combinations
of the angles. Therefore, four equations in four unknowns can be written, but
the system is not directly solvable because of the unknown x2 makes it nonlinear.
These equations are as follows:

y1 = ax2
1 + bx1 + c

y2 = ax2
2 + bx2 + c

tan(θ1) = 2ax1 + b

tan(θ2) = 2ax2 + b

(3.25)

The non-linearity can be seen in the second listed equation. This problem can be
easily solved by considering a local coordinate system for the derivation of the
parabolic equation with its origin in the point ’1’. So now the parabola will start in
point (0,0) and end in point (x∗

2,Re − y1); by doing so, one can resolve the system
presented in Equation 3.25 following the steps below:
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0 = c

tan(θ1) = b

tan(θ2) = 2ax∗
2 + b −→ a = tan(θ2) − tan(θ1)

2x∗
2

Re − y1 = tan(θ2) − tan(θ1)
2x∗

2
x∗2

2 + tan(θ1)x∗
2 −→ x∗

2 =

= 2 · Re − y1

tan(θ2) + tan(θ1)

(3.26)

Thus, the coordinate x∗
2 is found and the coefficients a, b and c are also calculated,

obtaining the equation for the parabola in the new coordinate system centered in
’1’. The equation written in the original reference frame located in the throat can
be easily obtained by translating the curve both in the x and y directions:

y = y1 + a(x − x1)2 + b(x − x1) + c (3.27)
where a, b and c are the values calculated in Equation 3.26. The point ’2’ will be
defined by the coordinates (x2,Re), where x2 = x1 + x∗

2.

As far as the convergent section of the nozzle is concerned, it has minimal impact on
the performance and does not present particular constraints. Therefore, a conical
geometry with a 30° angle will be chosen, ensuring a convergent length sufficient
in order to limit pressure losses, as mentioned in Section 3.2.2. Additionally, a
contraction ratio Ac/At will be selected for the same reasons. The conical part is
connected to the throat by a circular segment of radius Rc = 1.5Rt, as shown in
Figure 3.4.

3.3.2 Performance analysis of the nozzle
After detailing the steps required for designing the nozzle geometry, a case study
can be set up by assigning values to the geometric parameters shown in Figure
3.4, in terms of throat and exit radii, expansion ratio ε and angles θ1 and θ2.
Subsequently, a CFD simulation can be configured to study the flow inside the
nozzle and to compare the performance obtained by simulating the real case with
indicative values provided by the equations of the ideal model. In particular,
as mentioned in Section 3.2.2, the effect of viscosity and Reynolds number will
be assessed, demonstrating that the flow inside the nozzle is predominantly laminar.

Now, let’s consider the implementation of a cold gas microthruster generating
a thrust of about 15-17 mN by accelerating gaseous nitrogen GN2 stored within a
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pressurized tank. Based on typical values found in literature, plausible values for
the throat diameter Dt may be around 0.25 mm, thus this value will be chosen. As
for the expansion ratio, a value of 50 could be suitable for this case (even higher
values are found in the literature, however, ε = 50 represents a good compromise).
To generate a thrust on the order of approximately 15-17 mN, a stagnation pressure
of 2 bar and a temperature of 300 K are considered as inlet conditions for the
nozzle.
Choosing two values for the angles θ1 and θ2, specifically 30° for the former and
10° for the latter, yields the geometry depicted in Figure 3.5.

Figure 3.5: Half nozzle geometry with Rt = 0.125 mm, ε = 50, θ1 = 30°, θ2 = 10°,
θc = 30°

Given the throat radius of the nozzle, the expansion ratio, as well as the total
pressure and temperature at the inlet section, it is possible to utilize the equations
presented in Section 3.2.1 to obtain an initial estimate of the quantities charac-
terizing the flow at the exit section and the thrust generated by the nozzle. It is
worth noting that in the ideal case, the angles θ1 and θ2 have no influence on the
performance, as it depends solely on γ, ε, Tc and pe/pc. For further clarity, the
problem data are provided below:

• Throat diameter: Dt = 0.25 mm

• Exit diameter: De = 1.767 mm

• Expansion ratio: ε = 50

• Inlet total pressure: p0
c = pc = 2 bar

• Inlet total temperature: T 0
c = Tc = 300 K
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• Specific heats ratio: γ = 1.4 (GN2)

The results obtained from the ideal model are as follows:

• Nozzle pressure ratio: pe/pc = 6.9219 · 10−4

• Exit pressure: pe = 138.4382 Pa

• Exit temperature: Te = 37.5257 K

• Exhaust velocity: Ve = 738.4556 m/s

• Exhaust Mach number: Me = 5.9138

• Mass flow rate: ṁ = 2.2528 · 10−5 kg/s

• Thrust: F = 0.0170 N

• Thrust coefficient: CF = 1.7292

As evidenced by the obtained results, the temperature reached by the gaseous
nitrogen at the end of the expansion assumes very low values, in this case around 37
K, which is lower than the liquefaction temperature of GN2. Now, the ideal model
neglects the possibility of a phase change occurring inside the nozzle, however, in
the real case, one may wonder if propellant freezing could indeed occur, leading to
a substantial reduction in nozzle performance. Studies conducted in the literature,
such as Ranjan et al. [61], have observed that, in the case of air as a propellant, the
expected thrust reduction in the event of gas phase change did not occur. Therefore,
it can be assumed that the attained temperatures do not lead to such phenomena.
However, it is important to pay attention to the specific propellant used and the
nozzle exit temperature may represent a critical condition to be evaluated.

We now turn to the study of the real case, introduced in Section 3.2.2. The
geometry of the nozzle will certainly have a certain effect on the performance since
both losses due to divergence and those related to boundary layer will depend
on the angles θ1 and θ2. This is because the longer the thruster, the greater the
length over which the boundary layer will develop, reducing the velocity at the
nozzle outlet and the effective expansion ratio Ae/At. As previously stated, it is
also expected that turbulence will neither have sufficient time nor space to develop
[57], so the flow inside the nozzle will be essentially laminar, which we aim to
demonstrate.
In order to study the real flow behaviour through the thruster, the calculation
of the quantities of interest will be implemented in ANSYS Fluent by solving
Navier-Stokes equations for the 2D axisymmetric nozzle case depicted in Figure 3.5.
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Subsequently, the results obtained for the laminar viscous flow will be compared
to RANS equations with different turbulence models for closure, such as Spalart-
Allmaras, k − ω, k − ε and Reynolds Stresses.

For mesh generation, Fluent Meshing by ANSYS was employed, resulting in
a mesh composed of 72947 elements, of which 72858 are quadrilateral (Quad) and
89 are triangular (Tri), with an element size of 5 µm. Additionally, a smooth
transition inflation was introduced to capture the boundary layer along the nozzle
walls, characterized by a transition ratio of 0.8, growth rate of 1.2 and 30 maximum
layers. The resulting mesh is depicted in Figure 3.6.

Figure 3.6: 2D nozzle computational mesh consisting of 72947 elements of size 5
µm

To solve the Navier-Stokes equations and obtain the flow field inside the nozzle,
the density-based solver Fluent by ANSYS is used, considering the case study as
2D axisymmetric. The pressure value in the operating conditions is set to zero and
the energy equation is included. The working fluid is gaseous nitrogen N2, whose
density is evaluated using the ideal gas equation. Nitrogen’s molecular weight and
specific heat Cp are set to constant values, while the viscosity is evaluated based
on Sutherland’s law, namely

µ

µ0
=
3

T

T0

4 3
2 T0 + S

T + S
(3.28)

where µ0 = 1.663 · 10−5 kg/(m s) is the reference viscosity, T0 = 273.11 K is the
reference temperature and S is a constant, which, for nitrogen, is 106.67 K.
The viscous model is initially set to laminar, as we expect the flow to be non-
turbulent. The control parameter that characterizes the viscous effects is the throat
Reynolds number, which can be found using Equations 3.18 and 3.4-3.7 for the
evaluation of the density and velocity in the throat section. The Reynolds number
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Rt is found to be

Ret = 7396.5 (3.29)
As far as boundary conditions are concerned, a pressure-inlet condition is set for
the Ac section of the nozzle. Specifically, a stagnation pressure of 2 bar and a
total temperature of 300 K are imposed. At the exit section, a pressure-outlet
boundary condition is instead applied, specifying the gauge pressure as 120 Pa,
slightly smaller than the pressure value pe calculated for the ideal case- However,
since the flow is supersonic in the divergent section, the condition imposed on
the outlet is not utilized, as the pressure value there is computed based on the
upstream flow.
Launching the simulation and activating the solution steering option (supersonic
flow) starting from a Courant number of 5 up to a maximum of 200, convergence is
reached after approximately 1500 iterations. The contour plot of the Mach number
inside the nozzle is depicted in Figure 3.7.

Figure 3.7: Mach contour plot for the laminar case

Observing Figure 3.7, one can draw several observations: at first glance, it becomes
apparent that the boundary layer, which develops along the divergent wall but
also present in the throat, occupies a significant portion of the nozzle exit section
(approximately 20-25%). Moreover, this result was anticipated, given the low
Reynolds number, hence a considerable reduction in thrust compared to the
calculated ideal value is expected. Secondly, it can be observed that the unity
value on the Mach number is reached slightly downstream of the throat section, as
described in Section 3.2.2. The mass flow rate through the nozzle is determined by
the throat itself and in this case, the boundary layer present there, albeit small, will
reduce the ṁ value. Furthermore, it is possible to present the trends of temperature,
static pressure and velocity magnitude inside the nozzle.
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Figure 3.8: Velocity magnitude contour plot for the laminar case

Figure 3.9: Static pressure contour plot for the laminar case

As previously mentioned, in the real case, the velocity, Mach number and pressure
values are not constant across the generic section orthogonal to the nozzle axis;
instead, those quantities vary along it, assuming higher values near the central
region of the thruster and lower values as one moves towards the wall. Regarding
static temperature, it is also non-uniform across the generic section. This is quite
evident when looking at the contour plot shown in Figure 3.10: in this case, the
closer one gets to the nozzle axis, the lower the temperature will be (during expan-
sion, the gas cools), whereas towards the wall region, the temperature is higher
due to the presence of the boundary layer, which insulates the all from the cooler
underlying flow. Referring again to Figure 3.10, it can be noted that the minimum
temperature value reached is around 30.5 K; however, the averaged value over the
exit section will be higher due to the different distribution present and the higher
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Figure 3.10: Static temperature contour plot for the laminar case

values near the wall. The same applies to velocity, Mach number and pressure, but
in reverse: that is, higher values of these quantities are found near the axis, while
lower values are observed near the wall.
The main results obtained are summarized below:

ṁe

(kg/s)
Ve (Axial)

(m/s)
pe

(Pa)
Te

(K)
Thrust
(mN) CF Me

Ideal case 2.253 × 10−5 738.456 138.438 37.526 17 1.729 5.914

Real case
(Laminar) 2.167 × 10−5 690.224 269.423 63.135 15.619 1.591 4.739

Table 3.2: Comparison of results between the ideal and real (laminar flow) models.
The pressure and temperature values are averaged over the exit area, while the
Mach number and axial velocity values are mass-averaged

The obtained results reflect what has been discussed so far. Particularly noticeable
is a significant reduction in axial velocity, as the gas velocity at the outlet section
of the nozzle will be directed according to the angle θ2, resulting in the presence of
a radial component and a loss in terms of axial velocity. Moreover, the presence
of the boundary layer impacts both on the value of Ve and the exit pressure pe,
which is higher than that calculated according to the ideal model: the reduction in
effective area ratio ε causes the gas to expand less than theoretically calculated,
also resulting in a higher average exit temperature. The introduction of these
various losses thus leads to a reduction in achievable thrust and thrust coefficient
CF by approximately 8%.
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Further simulations were conducted to observe the effect of different turbulence
model on the results compared to the laminar case previously evaluated. Specifi-
cally, RANS equations were solved using the following turbulence models: Spalart-
Allmaras (1 equation), k-ω (2 equations), k-ϵ (2 equations) and Reynolds Stresses
(5 equations), implemented in ANSYS Fluent. As anticipated by La Torre [57], it
is expected that the reference quantities values reported in Table 3.2 will vary very
little compared to the laminar case for the calculated Reynolds number; this is
confirmed by the results obtained (Table 3.3), where the highest relative percentage
error was obtained in the case of the k-ϵ model, of the order of 1.22%. It can
therefore be concluded that the flow in the nozzle is laminar and the results reported
in Table 3.2 are valid.

Viscosity Model ṁe

(kg/s)
Ve

(m/s)
peAe

(Pa m2)
Thrust
(mN) CF

Percentage Error
(%)

Laminar 2.167 10−5 690.224 6.612 10−4 15.619 1.591
Spalart-Allmaras 2.166 10−5 690.221 6.755 10−4 15.624 1.591 -2.90 10−2

k-ω 2.165 10−5 690.296 6.708 10−4 15.617 1.5908 1.17 10−2

k-ϵ 2.156 10−5 682.932 7.067 10−4 15.428 1.572 1.22
Reynolds Stresses 2.168 10−5 689.931 6.759 10−4 15.637 1.593 -1.14 10−1

Table 3.3: Results comparison between different viscosity models for RANS
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Chapter 4

Co-Kriging based cold gas
thruster geometry
optimization

In the previous chapter, a detailed description of the main features of cold gas
thrusters used for small satellite attitude control was provided, along with a series
of equations useful for predicting their performance. Additionally, a specific case
study was introduced, considering a thruster consisting of a converging-diverging
nozzle whose geometry is depicted in Figure 3.5. The performance in terms of
thrust, mass flow rate and CF were evaluated through a CFD simulation using
ANSYS Fluent and the main results are reported in Table 3.2. The obtained results
are obviously dependent on the geometry of the considered nozzle, particularly on
the area ratio Ae/At, which determines how much the gas can expand as it passes
through the nozzle, increasing its velocity until exhausting into the vacuum at Ae.
The throat diameter Dt also has a strong impact on performance and regulates the
effects of viscosity inside the nozzle, contributing to the definition of the throat
Reynolds number Ret. However, fixing the geometric dimensions that define the
throat area and the exit area of the thruster, the flow energy losses that occur
will vary with the angles θ1 and θ2, which define the geometry of the parabolic
divergent and the overall length of the nozzle. As discussed previously, indeed,
high values of θ1, for the same θ2, will result in a shorter nozzle, thus lower losses
due to boundary layer, but higher losses due to flow divergence. Fixing θ1 instead,
lower values of angle θ2 will result in the outlet flow being slightly inclined relative
to the axial direction, but greater lengths will be required and therefore the effect
of the boundary layer will be higher. As a consequence of all this, it is easy to
notice how the thrust coefficient CF can vary depending on the angles θ1 and θ2,
so it would be ideal to identify the combination of these angles that maximizes
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this parameter. Another fundamental aspect concerns the mass of the thrusters
present on the satellite: to meet the requirements in terms of thrust needed to
perform the required maneuvers, a satellite mounts a certain number of thrusters,
which can even be eight or ten. Now, a nozzle like the one depicted in Figure 3.5,
given its extremely small dimensions, will have a substantially negligible weight,
however, it must be considered that a cold gas thruster is not just the nozzle itself,
but also includes a solenoid valve, a supply line with respective valves and the
pressurized tank for gas storage. It follows that the mass of the nozzle can represent
an important parameter to be taken into consideration in order not to exceed the
constraints imposed by the mission.
Therefore, aiming to select the geometry that allows maximizing the thrust co-
efficient and thus the performance, it will still be necessary to ensure an ideally
minimum value of the nozzle’s mass. Hence arises a multi-objective optimization
problem that involves a trade-off between performance and the weight of the
propulsion system. Regarding the mass of the thruster, this can be easily derived
by calculating the volume of the nozzle envelope and multiplying it by the density
of the material composing it, for each value of θ1 and θ2 (Figure 3.5). Conversely,
knowing the value of the CF for different combinations of these angles requires nu-
merous CFD simulations, which can take a lot of time and computational resources,
often not available for the evaluations necessary to create a sufficient database.
In this context, the approach to generating a surrogate model using multi-fidelity
techniques proves to be of great help: following the construction of a Low Fidelity
database that is computationally inexpensive, the number of high-fidelity evalua-
tions of the nozzle performance is greatly reduced, without sacrificing a high level
of accuracy. Furthermore, the surrogate model allows predicting the performance
even for untested combinations of θ1 and θ2 angles, providing the necessary data
to carry out the aforementioned multi-objective optimization.

In this chapter, the Co-Kriging technique introduced in Chapters 1 and 2 is
employed in order to obtain the nozzle’s thrust and thrust coefficient values as a
function of its geometry, thus enabling the estimation of these values for a large
number of combinations of the angles θ1 and θ2 that characterize the divergent
section. The resulting surrogate model will subsequently be used to optimize the
CF in relation to the mass of the nozzle in the various estimated configurations.

4.1 Selecting the Low Fidelity and High Fidelity
models

First and foremost, the multi-fidelity approach requires the definition of a Low
Fidelity (LF) model and a High Fidelity (HF) one. As discussed in Chapter 1,
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the types of fidelity used to represent a given physical system can be manifold.
However, in the literature, four main categories of fidelity are primarily encountered,
which are described by Fernandez-Godino et al. [3] and outlined below:

1. Firstly, there is the ’physics’ category, where Low and High Fidelity models dif-
fer in terms of the physical model chosen to represent the problem, specifically,
the fundamental assumptions that lay at the base of both models. The LF
model, for example, will often be a simplified version of the HF one, obtained
by neglecting some phenomena and behaviours with the aim reducing the
model complexity and speeding up the simulations

2. The second category concerns the accuracy of the numerical solution considered.
Specifically, what distinguishes the two Low and High Fidelity models may
be a different level of discretization of the equations underlying the physical
model or partially converged solutions are considered in the LF case. In some
instances, the same equations are solved, but the computational mesh varies,
being finer in the HF case

3. Another category involves considering the same physical model, without
introducing simplifications, but using different equations or different solution
calculation methods for the Low and High Fidelity cases

4. Finally, when experimental measurements are performed, these always repre-
sent the highest fidelity level, while the Low Fidelity model may derive from a
computational simulation or other fields

Regarding the application case of calculating the thrust coefficient of the cold gas
microthruster, the choice of Low and High Fidelity models will involve considering
the same physical case, as well as the same computational mesh, but solving
different equations for the two cases. In particular, the Low Fidelity model will
compute the nozzle performance by solving the Euler equations, which are derived
from the Navier-Stokes equations neglecting viscosity and thermal conductivity,
while in the High Fidelity case, Navier-Stokes equations will be solved, considering
laminar flow as the viscous model (as demonstrated in Section 3.3.2, turbulence
can be neglected).
Another possibility would be to leverage Equation 3.15 for computing the thrust
coefficient of the ideal nozzle model, thus obtaining a Low Fidelity database
to combine, for example, with values obtained from solving the Navier-Stokes
equations. The strength of this approach lies in the ability to generate a Low
Fidelity database of any size instantaneously, as Equation 3.15 will always yield
the same CF value regardless of the nozzle geometry, i.e., regardless of the angles
θ1 and θ2, which are the variables of the HF and LF objective functions. Using the
ideal model for Low Fidelity, a higher error can be expected for the same selected
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High Fidelity points; however, the cost savings in computational expense (no longer
requiring CFD simulations of the Low Fidelity model) will provide a greater budget
to include more expensive points in the Co-Kriging model generation.

4.1.1 Low Fidelity Model
As far as the implementation of the Low Fidelity model is concerned, there are
therefore two possibilities: firstly, one may consider the real physical model for the
flow inside the nozzle and evaluate its performance by solving the Euler equations.
Since these equations neglect the effect of viscosity, it is expected that losses
related to the development of the boundary layer on the walls of the nozzle will
no longer be considered, hence the thrust coefficient will be higher compared to
that evaluated in the presence of viscous effects. However, the CF will obviously
be lower compared to that obtainable from Equation 3.15 because the effect of
the geometry of the divergent section of the nozzle persists, i.e. the losses due to
flow divergence, depending on the combination of θ1 and θ2. Secondly, the Low
Fidelity implementation can be realized following the ideal nozzle model presented
in Chapter 3, where neither viscosity nor flow divergence are considered.

Before analyzing the two proposed cases, it is necessary to specify what is usually
called the design of experiment (DOE), i.e., the sampling strategy for selecting
inexpensive points in the space of the parameters θ1 and θ2. As anticipated in
Chapter 2, there can be various types of DOEs, including full-factorial sampling,
Latin-Hypercube sampling, etc. For the case study, given the fact that the thrust
coefficient is a function of just two variables, a full-factorial sampling approach may
be a good strategy in order to generate a space-filling Low Fidelity sample, acquiring
information uniformly distributed in the design space. The latter represents the
space in which the two parameters θ1 and θ2 vary, so it is of primary importance
to first define the range of interest for the two variables by setting lower and upper
limits on the values they assume. In particular, concerning θ1, angles smaller than
(20-25°) result in a particularly reduced inclination of the initial portion of the
divergent parabola, leading to a higher nozzle length and thus greater losses due
to boundary layer effects. Conversely, excessively high values of θ1 (above 40-45°)
entail a significant initial curvature, resulting in shorter nozzles but with a risk of
flow separation and a significant deterioration in performance.
Regarding θ2, which significantly contributes to determining losses due to velocity
divergence, values too small, around 0°, although ideal for maximizing the axial
component Ve, lead to very long nozzles, hence heavy, with significant boundary
layer development. Values greater than 15° are instead less than ideal as they result
in reduced performance.
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For the first case mentioned, in order to thoroughly explore the effect of geometry
on the thrust coefficient, a 5x5 grid of angle values in the ranges [25°, 45°] for θ1
and [0°, 15°] for θ2 is chosen. Particularly, for θ1 we choose 5 equally spaced points
in [25°-45°], while for θ2, selecting equally spaced samples in [0°-15°] would lead
to decimal values for the angle (3.75°, 7.5°, 11.25°), which may not be the best.
To overcome this issue and obtain integer values for the angles θ2, the values are
rounded up, resulting in θ2 = [0° 4° 8° 12° 15°]. As for θ1, we have θ1 = [25° 30° 35°
40° 45°]. The Low Fidelity database will therefore consist of 25 points uniformly
distributed in the parameters space, as depicted in Figure 4.1.

Figure 4.1: Low Fidelity model sample grid (case 1, real nozzle)

Consequently, to construct the Low Fidelity database, it will be necessary to per-
form 25 CFD simulations involving the resolution of the Euler equations to calculate
the quantities of interest for evaluating the thrust coefficient. These simulations will
require a certain computational budget, which, however, will be lower compared
to that required by High Fidelity simulations. Therefore, it is reasonable to be
able to carry out the predetermined number of CFD analysis for the low fidelity case.

Studying the real nozzle model through the resolution of the Euler equations
introduces a certain level of simplification, yielding results in terms of mass flow
rate, pe, Te, Ve and thrust that overestimate the values obtainable, for instance,
through the resolution of the Navier-Stokes equations. The Euler equations, derived
from the Navier-Stokes equations by neglecting the effects of viscosity and thermal
conductivity, in the absence of heat sources, can be written as follows [62]:
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∂ρ

∂t
+ ∇ · (ρV) = 0 (4.1)

ρ

A
∂V
∂t

+ V · ∇V
B

= −∇p + ρf (4.2)

ρ

A
∂E

∂t
+ V · ∇E

B
= −∇ · (pV) + ρV · f (4.3)

The use of such equations, however, is physically acceptable when the flow is
characterized by high Reynolds numbers, where the effects of the boundary layer
and thermal conductivity are confined to regions of negligible size compared to the
study domain [62]. In the case of a cold gas microthruster, as analyzed in Section
3.3.2, the assumption of inviscid flow is quite strong, given the Reynolds number
on the order of 103 and the results obtained in Table 3.2. Nevertheless, it allows
for a rapid and computationally inexpensive estimation of the thrust coefficient’s
behaviour as a function of nozzle geometry. In practice, the study of the real nozzle
model presented in Section 3.2.2 through Euler’s equations eliminates the boundary
layer effects, thus constituting a Low Fidelity model compared to one where such
effects are not neglected. The difference between the High Fidelity and Low Fidelity
models, therefore, lies in considering or disregarding viscous phenomena, which will
be extremely important and significantly impact performance in the introduced
case study.
Equations 4.1, 4.2 and 4.3 can also be written in the conservative integral form as
follows [63]:

∂

∂t

Ú
Ω

W dΩ +
j

∂Ω

Fc · n dS =
Ú
Ω

Q dΩ (4.4)

where W represent the vector of the conservative variables, i.e. W = [ρ, ρV, ρE]T ,
Fc is the convective fluxes vector, i.e. Fc = [ρV, ρVV + pI, ρEV + pV]T and,
finally, Q is the source terms vector, Q = [0, ρf , ρV · f ]T [63]. Written in the
form of Equation 4.4, Euler’s equations, that represent the convection of mass,
momentum and energy in an inviscid fluid, allow for the study and representation of
discontinuity phenomena within the flow, such as shocks or expansion fans, which
can occur within the nozzle [63].

Should one wish to utilize the ideal nozzle model for generating a Low Fidelity
database, i.e., calculating the thrust coefficient using Equation 3.15, which is in-
dependent of the divergent geometry, it would be potentially feasible to choose a
significantly high number of points, given the fact that solving a simple equation
entails virtually zero computational cost. The downside, however, is that it involves
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considering a model whose performance remains unaffected by the geometric pa-
rameters one aims to optimize for maximizing the thrust coefficient, since Equation
3.15 always yields the same CF value for every combination of θ1 and θ2. Opting
consistently for the full-factorial sampling technique for θ1 ∈ [25° 45°] and θ2 ∈ [0°
15°], considering 100 points yields the following Low Fidelity sampling grid:

Figure 4.2: Low Fidelity model sample grid (case 2, ideal nozzle)

For the sake of completeness, Equation 3.15 is given below:

CF =

öõõõô 2γ2

γ − 1

A
2

γ + 1

B γ+1
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1 −
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pe
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B γ−1
γ

+ peAe

pcAt

(3.15)

4.1.2 High Fidelity model
In the previous subsection, two possible implementations of a Low Fidelity model
were introduced, only the first of which requires performing CFD simulations.
Specifically, for the first case, since solving Euler’s equations is not particularly
computationally demanding, 25 sample points were chosen in the parameter space
to evaluate the nozzle’s thrust coefficient. It was also highlighted that the main
difference between the value of CF calculated with the Low Fidelity model and
that evaluated with the High Fidelity one lies in neglecting viscous effects. Now,
to obtain a value as consistent as possible with the real value expected from the
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physics of the problem, it will be crucial to quantify the losses in the flow due to
the boundary layer, that develops on the nozzle walls. The Reynolds number at
the nozzle throat section, Ret, calculated in Chapter 3, is approximately Ret =
7396.5. It has been demonstrated in Section 3.3.2 that the flow within the nozzle
is predominantly laminar. This implies that turbulent fluctuations of the primary
quantities are negligible, therefore, the equations used to study the gas behaviour
inside the nozzle will not be the RANS (Reynolds-Averaged Navier-Stokes equations,
which require the introduction of turbulence models to address the closure problem).
Instead, it will be necessary to solve the Navier-Stokes equations, which describe
the conservation of mass, momentum and energy and can be written as follows for
a compressible viscous flow, in the absence of volumetric heat sources Qv [62]:

∂ρ

∂t
+ ∇ · (ρV) = 0 (4.5)

ρ
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∂V
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+ V · ∇V
B

= −∇p + ∇ ·
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· V
<

+ ρV · f + ∇ · (k∇T ) (4.7)

Equations 4.5, 4.6 and 4.7 can also be written in the conservative integral form as
follows [63]:

∂
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(Fc − Fv) · n dS =
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Ω

Q dΩ (4.8)

where W represent the vector of the conservative variables, i.e. W = [ρ, ρV, ρE]T ,
Fc and Fv are, respectively, the convective fluxes vector and the viscous fluxes
vector, i.e. (Fc − Fc) = [ρV, ρVV + pI − τ , ρEV + pV − τ · V − k∇T ]T and,
finally, Q is the source terms vector, Q = [0, ρf , ρV · f ]T [63].
Solving these equations for the laminar case does not present substantial difficulties;
however, the computational cost is higher compared to solving the Euler equations,
used in the Low Fidelity model. An example of a High Fidelity simulation for
studying the flow in a cold gas microthruster nozzle was already performed in
Section 3.3.2. In that case, for a combination of angles θ1 = 30° and θ2 = 10°, the
fields of Mach number, velocity, pressure, and temperature were obtained and are
shown in Figures 3.7-3.10, where the effect of viscosity is clearly visible. Since the
boundary layer will occupy a significant portion of the exit section and will typically
also be present at the throat, thrust coefficients are expected to be lower than those
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calculated with the Low Fidelity model. Additionally, one can observe the com-
bined effect of divergence losses and boundary layer losses as the nozzle length varies.

As far as the selection of sample points for the High Fidelity model is concerned,
their number is primarily constrained by the available computational resources. Ide-
ally, one would aim to find a minimum threshold of points such that the surrogate
model created with Co-Kriging accurately approximates the expensive objective
function, ensuring a small error. However, finding a general criterion to define this
threshold is quite challenging to identify and implement, as the choice of sample
points for both High and Low Fidelity models heavily depends on the specific
problem at hand. Commonly, for constructing the expensive database, a subset
of points from the Low Fidelity grid is considered to facilitate the calculation of
the scaling factor ρ for the Co-Kriging. Thus, it is often assumed that the High
Fidelity points are nested within the Low Fidelity sample for simplicity. To achieve
a good approximation, the expensive grid is expected to be somewhat space-filling,
meaning that the accurate objective function values should be known at points
distributed in a way that adequately explores the parameter space. In Chapter
2, three different algorithms for adaptive sampling were introduced and validated
using various test functions, both single-variable and two-variable. Since the thrust
coefficient of the cold gas thruster is a function of two variables, namely theta1
and theta2, the results obtained from applying the Maximum Variance, Maximum
Expected Improvement and Maximum Information Gain algorithms to the Himmel-
blau, Booth and Branin functions can be observed to select one for application to
the current case study. Given that CFD simulations are now required to populate
the High Fidelity database, it will be essential to minimize the number of points to
be evaluated and, importantly, to choose an algorithm with a low computational
burden, in addition to the already high cost of the simulations. Consequently,
among the Maximum Expected Improvement and Information Gain algorithms,
which generally tend to identify the minimum number of points to add, the former
might potentially be the most optimal candidate for application to the construction
of the surrogate model for the thruster’s thrust coefficient. Therefore, a Co-Kriging
model will be implemented following the Maximum E[I(x1,x2)] criterion for the
High Fidelity data points. However, considering that from the tests conducted,
E[I(x1,x2)] and IG(x1,x2) generally exhibit comparable performances, but for cer-
tain functions, such as the Himmelblau function, the latter criterion outperforms
the former, it is still worth to investigate the behaviour of the algorithm based on
information gain for this case study. Therefore, the generation of the Co-Kriging
surrogate using this criterion is also included.
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4.1.3 Geometry and computational mesh
As for the nozzle geometry, all the values reported in Section 3.3.2 apply; specifically,
we have

• Throat Diameter: Dt = 0.25 mm

• Exit Diameter: De ≈ 1.7677 mm

• Expansion Ratio: ε = 50

• Convergent Angle: θc = 30°

• Inlet Diameter: Dc = 1 mm

• Convergent Length: Lconv ≈ 0.7 mm

For the simulations necessary to construct the Low Fidelity database, the angles θ1
and θ2 are varied as previously described: θ1 = [25° 30° 35° 40° 45°] and θ2 = [0°
4° 8° 12° 15°], resulting in 25 combinations of these parameters, leading to the LF
grid depicted in Figure 4.1. All considerations regarding the effect of these angles
on the nozzle length and the geometry of the parabola still apply. In particular, it
is noted that the thruster will be longer (with greater mass, increased boundary
layer losses, and reduced divergence losses) for low values of θ1 at a constant θ2 and
for low values of θ2 at a constant θ1. This assertion can be verified by examining
Figures 4.3 and 4.4, which show the impact of the angles on the shape and length
of the divergent section.

Figure 4.3: Nozzle geometry for a fixed value of θ2 = 4° and varying θ1 in [25°,
45°]
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Figure 4.4: Nozzle geometry for a fixed value of θ1 = 30° and varying θ1 in [0°,
15°]

Once the combination of θ1 and θ2 is chosen, the geometry for the specific case is
fixed and one can proceed to generate the computational mesh for the simulations
using ANSYS Meshing. A 2D axisymmetric simulation is then set up. First and
foremost, it is necessary to specify the parts of the geometry on which the boundary
conditions will be applied. Specifically, the following will be defined:

• Inlet: inlet section of the nozzle of area Ac where a pressure-inlet boundary
condition will be imposed

• Outlet: outlet section of the nozzle of area Ae where a pressure-outlet boundary
condition will be imposed

• Axis: symmetry axis for the axisymmetric nozzle geometry

• Walls: nozzle walls, where wall-type boundary condition will be imposed

Regarding the mesh generated by ANSYS, it is unstructured and primarily com-
posed of quadrilateral elements, although a few triangular elements are present in
areas where curvature of the nozzle walls necessitates them. To accurately capture
the boundary layer that forms near the wall, an inflation mesh is applied. This
consists of a series of thin layers that follow the wall’s shape, starting from an
extremely thin initial layer and gradually becoming thicker. These layers allow for
the capture of velocity, temperature, and pressure gradients, which are pronounced
near the nozzle surface, thereby improving the accuracy in evaluating the flow
behaviour in the wall region. Specifically, the inflation layer generation criteria are
set to Smooth Transition, with a Transition Ratio of 0.8, a Growth Rate of 1.2,
and a maximum number of 30 layers. As for the elements’ size, a value of 5 µm is
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set in order to obtain a sufficiently fine grid. The number of elements and nodes
will obviously depend on the nozzle’s geometry and on the θ1 and θ2 combination:
the smaller the thruster, the fewer the mesh elements will be, maintaining fixed
their size. The number of elements and nodes for the different angles combination
is reported in Table 4.1:

θ1 = 25°
θ2 Size [m] Nodes Elements
0° 0.000005 116015 115066
4° 0.000005 99373 98524
8° 0.000005 87202 86391
12° 0.000005 82203 81423
15° 0.000005 72167 71437

θ1 = 30° θ1 = 35°
θ2 Size [m] Nodes Elements θ2 Size [m] Nodes Elements
0° 0.000005 97147 96318 0° 0.000005 83300 82552
4° 0.000005 85931 85155 4° 0.000005 75459 74747
8° 0.000005 77212 76479 8° 0.000005 69027 68343
12° 0.000005 70324 69617 12° 0.000005 63911 63258
15° 0.000005 65983 65305 15° 0.000005 60515 59878

θ1 = 40° θ1 = 45°
θ2 Size [m] Nodes Elements θ2 Size [m] Nodes Elements
0° 0.000005 72555 71870 0° 0.000005 63901 63271
4° 0.000005 66872 66221 4° 0.000005 59824 59210
8° 0.000005 62259 61628 8° 0.000005 56468 55878
12° 0.000005 58396 57790 12° 0.000005 53459 52875
15° 0.000005 55737 55133 15° 0.000005 51378 50803

Table 4.1: Mesh details for different combinations of θ1 and θ2

A representation of the computational mesh for θ1 = 30° and θ2 = 12° is shown in
the figure below:
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Figure 4.5: Computational mesh for θ1 = 30° and θ2 = 12°

4.1.4 Boundary conditions and working fluid
In terms of boundary conditions, the same ones will be imposed for both the Low
and High Fidelity models; specifically we have:

• Pressure-inlet:

Gauge Total Pressure = 2 105 Pa
Total Temperature = 300 K

• Pressure-outlet:

Gauge Pressure = 120 Pa
Total Temperature = 300 K

Supersonic/Initial Gauge Pressure will be unused if hybrid initialization is employed.
As far as the working fluid expanding through the nozzle, gaseous nitrogen (GN2)
is selected; for the Low Fidelity model, viscosity is neglected, so it is only necessary
to specify density, specific heat and molecular weight, while for the High Fidelity
model one has to also specify the viscosity. Thus we have:

• Low Fidelity model GN2:

Density −→ ideal-gas kg/m3

Specific Heat Cp −→ constant = 1040.67 J/(kg K)
Molecular Weight −→ constant = 28.0134 kg/kmol

• High Fidelity model GN2:
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Density −→ ideal-gas kg/m3

Specific Heat Cp −→ constant = 1040.67 J/(kg K)
Molecular Weight −→ constant = 28.0134 kg/kmol
Thermal Conductivity −→ constant = 0.0242 W/(m K)
Viscosity −→ Sutherland’s law kg/(m s)

Sutherland’s law is shown in Equation 3.28.

4.1.5 Solver and results
The reported equations for studying the flow in the nozzle for both the Low Fidelity
and High Fidelity models are essentially partial differential equations. To be solved
numerically, these equations require a discretization method, which approximates
the differential or integral terms present in the equations, resulting in an algebraic
system that is easier to solve. The ANSYS Fluent solver implements the finite
volume method to approximate the volume and surface integrals that appear in
Equations 4.4 and 4.8. The computational domain is discretized into finite volumes,
or cells, each with a computational node at its center, where the integral mean
value of the quantity of interest over the cell volume is concentrated. In addition
to the central node, each cell is characterized by boundary surfaces, or faces, on
which the boundary conditions are imposed. The values at the cell centers allow
for the calculation of fluxes through the cell surfaces and the values of the quantity
of interest on the faces, utilizing methods such as interpolation (upwind methods)
or approximate solutions to the Riemann problem. For solving the equations of
the Low and High Fidelity models, a density-based solver employing finite volumes
is utilized, incorporating an implicit solution formulation. To compute the fluxes
between the cells, the Roe-FDS (Flux Difference Splitting) scheme is employed,
enabling the solution of an approximated Riemann problem. A second-order upwind
scheme is utilized for approximating the convective terms in the momentum and
energy equations. Regarding the stability of the numerical method, since the
adopted scheme is implicit, it is characterized by higher stability than an explicit
one, where the time step ∆t is limited by the Courant-Friedrichs-Lewy (CFL)
condition:

CFL = u∆t

∆x
(4.9)

where u is the flow velocity and ∆x is the cell size. Generally, for explicit schemes,
the Courant number must be less than 1, but can assume slightly higher values
depending on the problem, while for implicit ones can even be higher, due to
the greater numerical stability characterizing the latter schemes. For the nozzle
case study a Full Multi-Grid (FMG) approach is selected, aiming at enhancing
convergence by solving equations on four grid levels, from coarser to finer. Moreover,
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solution steering is applied, modifying the solver’s settings in terms of Courant
number to accelerate convergence and enhance numerical stability: particularly,
the CFL number increases with the number of iterations starting from a value of 5
up to a maximum of 200.

θ1 = 25◦

θ2 ṁ Ve [m/s] Pe [Pa] F [mN] CF Me (mass)
0° 2.227E-05 733.983 148.442 16.713 1.7024 5.771
4° 2.228E-05 733.188 145.161 16.688 1.6999 5.817
8° 2.218E-05 730.576 142.175 16.550 1.6857 5.857
12° 2.230E-05 726.105 142.593 16.521 1.6828 5.863
15° 2.227E-05 722.130 142.600 16.428 1.6734 5.870

θ1 = 30◦

θ2 ṁ Ve [m/s] Pe [Pa] F [mN] CF Me (mass)
0° 2.229E-05 728.151 163.105 16.628 1.6937 5.592
4° 2.230E-05 727.527 157.074 16.606 1.6915 5.672
8° 2.230E-05 724.497 152.953 16.530 1.6837 5.732
12° 2.230E-05 719.688 150.541 16.414 1.6720 5.774
15° 2.230E-05 715.254 149.415 16.317 1.6621 5.798

θ1 = 35◦

θ2 ṁ Ve [m/s] Pe [Pa] F [mN] CF Me (mass)
0° 2.231E-05 718.172 184.214 16.476 1.6782 5.359
4° 2.231E-05 717.698 174.399 16.442 1.6748 5.482
8° 2.231E-05 714.575 166.864 16.348 1.6652 5.581
12° 2.231E-05 709.476 161.842 16.229 1.6531 5.656
15° 2.231E-05 704.698 159.121 16.115 1.6414 5.700

θ1 = 40◦

θ2 ṁ Ve [m/s] Pe [Pa] F [mN] CF Me (mass)
0° 2.233E-05 705.283 208.397 16.257 1.6559 5.146
4° 2.232E-05 705.129 193.987 16.218 1.6519 5.306
8° 2.233E-05 702.051 182.808 16.124 1.6423 5.438
12° 2.234E-05 696.847 174.444 15.995 1.6292 5.542
15° 2.234E-05 691.848 169.928 15.870 1.6165 5.604

θ1 = 45◦

θ2 ṁ Ve [m/s] Pe [Pa] F [mN] CF Me (mass)
0° 2.234E-05 690.695 233.137 16.006 1.6303 4.984
4° 2.235E-05 690.750 215.191 15.965 1.6262 5.148
8° 2.235E-05 687.850 199.933 15.865 1.6160 5.302
12° 2.235E-05 682.059 188.607 15.709 1.6001 5.426
15° 2.235E-05 677.517 182.320 15.592 1.5882 5.501

Table 4.2: Low Fidelity simulations results for different combinations of θ1 and
θ2.
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By performing simulations for the Low Fidelity case, using the grid depicted in
Figure 4.1, the results presented in Table 4.2 are obtained. This table shows
the values of mass flow rate, exit velocity, pressure at the nozzle’s outlet section,
generated thrust, thrust coefficient and the mass-averaged exit Mach number, which
are obtained by solving the Euler equations, thereby omitting viscosity from the
model. Consequently, only the effects of velocity divergence losses can be observed:
as θ2 increases, the angle of inclination of the velocity vector at the exit section
becomes larger, leading to an increase in the radial component and a decrease in
the axial one Ve, on which thrust depends. Consequently, a reduction in the thrust
coefficient is observed for constant θ1 as θ2 increases. Regarding the effect of the
angle θ1, the smaller its value, the smaller the expansion angle, resulting in a more
gradual expansion. This allows for lower exit pressure pe values since the nozzle is
longer and the flow has ample space to expand. Conversely, the larger θ1 is, the
shorter the nozzle will be, giving the flow less space to expand before reaching
the exit section, thus resulting in higher pe values. Furthermore, as θ1 increases,
the expansion angle of the flow also increases, leading to a greater inclination of
the velocity vector and a loss in terms of axial acceleration, leading to a lower
value of thrust coefficient CF . For a fixed θ1, it is noted that the exit pressure
decreases with increasing θ2, indicating that the flow expands more due to the
greater pressure gradient between the nozzle’s inlet and outlet sections.
As for the mass flow rate through the nozzle, it increases with higher θ1 values. A
shorter nozzle results in a higher pressure gradient, drawing more mass flow and
the greater expansion angle tends to accelerate the gas towards the walls, reducing
the axial component but increasing the radial component, thus contributing to
the increased mass flow. For a fixed θ1, as θ2 increases, the mass flow rate also
increases due to the aforementioned pressure gradient.
The thrust coefficient values reported in Table 4.2 are shown in Figure 4.6 for the
different θ1 and θ2 combinations.

A representation of the flow field obtained by solving the Euler equations can
be observed, for example, through the contour plots of Mach number and static
pressure within the nozzle, depicted in Figures 4.7 and 4.8. Notably, the absence
of the boundary layer and any viscous phenomena is evident. Moreover, the use of
a second-order scheme for flow computation reveals an internal shock originating
from the throat region, curving towards the nozzle’s symmetry axis.
In Chapter 3, the flow fields in terms of Mach number, velocity magnitude, tem-
perature and static pressure within the nozzle were provided, obtained by solving
the Navier-Stokes equations under the assumption of laminar flow, constituting
the High Fidelity model introduced in this chapter. Thus, considering Figures 3.7
and 3.9, a comparison can be made with the flow field obtained through Euler’s
equations: even though the contour plot shown in Figure 3.7 corresponds to the
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Figure 4.6: Low Fidelity CF values calculated by solving Euler’s equations

Figure 4.7: Mach number contour plot for θ1 = 30° and θ2 = 12° obtained by
solving Euler’s equations (Low Fidelity model)

combination θ1 = 30° and θ2 = 10°, it is possible to observe the large portion
occupied by the boundary layer, while the internal shock is always present but
significantly less pronounced due to viscosity. Moreover, since the point θ1 = 30°,
θ2 = 10° is not included in the grid of candidate points for addition to the High
Fidelity database, the results obtained in Chapter 3 can serve to validate the
surrogate model, thereby assessing the error between the Co-Kriging prediction
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Figure 4.8: Static pressure contour plot for θ1 = 30° and θ2 = 12° obtained by
solving Euler’s equations (Low Fidelity model)

and the performed simulation.

4.2 Co-Kriging surrogate model
Thus, the implementation of the Co-Kriging surrogate model can be performed: by
choosing firstly the Maximum Expected Improvement algorithm and, subsequently,
the Information Gain algorithm as the criterion for finding new High Fidelity points
to sample, the most promising point can be identified at each iteration and an
expensive simulation can then be launched to evaluate the thrust coefficient given
the θ1 and θ2 values found. For the initial High Fidelity dataset, the four points
at the extremes of the design space are selected and the Navier-Stokes equations
are solved for the flow within the nozzle, with the geometry determined by the
considered angle combinations. The results of the first four expensive simulations
are provided below: Starting from the data presented in Table 4.3, it is possible to

θ1 = 25◦

θ2 ṁ Ve [m/s] Pe [Pa] F [mN] CF Me (mass)
0° 2.180E-05 683.571 311.507 15.665 1.5957 4.419
15° 2.165E-05 693.313 259.781 15.651 1.5942 4.753

θ1 = 45◦

θ2 ṁ Ve [m/s] Pe [Pa] F [mN] CF Me (mass)
0° 2.168-05 655.992 354.438 15.090 1.5371 4.427
15° 2.166-05 654.659 280.503 14.873 1.5149 4.846

Table 4.3: Initial High Fidelity simulations results

construct an initial Co-Kriging surrogate model on which the Maximum Expected
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Improvement algorithm will be applied, as described in Chapter 3. Since the
High Fidelity model’s response is unknown at the various points in the design
space, except for the few that constitute the expensive dataset, it is necessary to
acquire some thrust coefficient values using the High Fidelity model for validating
the surrogate, i.e., for calculating the relative error between the High Fidelity
objective function and the Co-Kriging prediction. A crucial aspect to consider is
the total computational cost, which includes populating the Low Fidelity dataset,
generating the expensive dataset and performing validation. Both stages require
CFD simulations. Specifically, 25 evaluations of the thrust coefficient must be
performed by solving Euler’s equations for the cheap case, which will incur a
non-negligible computational burden. Consequently, a significant portion of the
initial budget will be consumed by the Low Fidelity simulations. For the cold gas
thruster case, solving Euler’s equations in a single simulation requires on average
between 550 and 750 steps (depending on the geometry analyzed) and performing
25 such simulations entails a substantial cost. In contrast, solving the Navier-Stokes
equations requires many more steps, averaging over 2500, so with just 5-6 expensive
simulations, the cost would exceed that needed to fully populate the Low Fidelity
dataset. For the implementation of the model, a computational budget of 9 points
will be considered in total for the High Fidelity CFD simulations, allocated as 6
points for generating the Co-Kriging surrogate and 3 points for its validation.
For the validation of the model, one point is already known, specifically at θ1 =
30° and θ2 = 10°. The other two points can be selected to maximize coverage of
the design space and study the error more comprehensively. For this purpose, the
points θ1 = 35°, θ2 = 8° and θ1 = 40°, θ2 = 4° can be considered. The results
of the High Fidelity simulations for the specified validation points are presented
in Table 4.4. Two iterations of the maximum Expected Improvement algorithm

θ1 = 30◦

θ2 ṁ Ve [m/s] Pe [Pa] F [mN] CF Me (mass)
10° 2.167E-05 690.224 269.423 15.619 1.5909 4.739

θ1 = 35◦

θ2 ṁ Ve [m/s] Pe [Pa] F [mN] CF Me (mass)
8° 2.162-05 683.167 291.605 15.487 1.5775 4.690

θ1 = 40◦

θ2 ṁ Ve [m/s] Pe [Pa] F [mN] CF Me (mass)
4° 2.164-05 671.187 319.427 15.311 1.5596 4.574

Table 4.4: High Fidelity simulations results for validation points

are thus performed, evaluating the relative percentage error at each step in the
validation points. Since the introduction of viscous phenomena is not expected
to significantly alter the overall trend of the thrust coefficient within the design
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space, i.e., it should not cause abrupt changes from one point to another, we can be
confident that an accurate surrogate model can be obtained with only a few points.
The Co-Kriging prediction for the various iterations is shown in Figure 4.9, along
with the distribution of the Expected Improvement parameter for the different
candidate points, belonging to the Low Fidelity dataset. The resulting surrogate
model when the computational budget is exhausted is presented in Figure 4.10,
and the error at the validation points is shown in Table 4.5.

Figure 4.9: Co-Kriging prediction at each step of the Maximum Expected Im-
provement algorithm
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Figure 4.10: Final Co-Kriging surrogate model - Expected Improvement

θ1 = 30◦

θ2 Real CF Surrogate’s CF Relative Error (%)
10° 1.5909 1.5861 0.3017

θ1 = 35◦

θ2 Real CF Surrogate’s CF Relative Error (%)
8° 1.5775 1.5732 0.2726

θ1 = 40◦

θ2 Real CF Surrogate’s CF Relative Error (%)
4° 1.5596 1.5598 0.0128

Table 4.5: Error evaluation at the validation points - First Iteration
θ1 = 30◦

θ2 Real CF Surrogate’s CF Relative Error (%)
10° 1.5909 1.5909 0.0029

θ1 = 35◦

θ2 Real CF Surrogate’s CF Relative Error (%)
8° 1.5775 1.5763 0.0761

θ1 = 40◦

θ2 Real CF Surrogate’s CF Relative Error (%)
4° 1.5596 1.5586 0.0641

Table 4.6: Error evaluation at the validation points - Second Iteration
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As evident from the Tables 4.5 and 4.6, the approximation error of the surrogate
model relative to the objective function, which is unknown except at the nine
points constituting the final High Fidelity Design of Experiment and the validation
set, is extremely small. Thus, a highly satisfactory Co-Kriging model has been
obtained with only a few points, requiring a very limited number of expensive
simulations. It is also noteworthy that the resulting High Fidelity DOE does not
exhibit space-filling properties, as it was observed in Chapter 2 when applying
the maximum Expected Improvement algorithm to two-variable test functions.
Nevertheless, this does not preclude an almost perfect approximation of the High
Fidelity model’s response. With the final surrogate model now available, we can
transition from exploring the design space to exploiting the model itself. In par-
ticular, we can observe the effect of viscosity on the thrust coefficient values: in
the Low Fidelity case, with a fixed angle θ1, the CF exhibits a strictly increasing
trend as θ2 decreases. However, in the High Fidelity model, the thrust coefficient
becomes almost flattened, varying much less with a decrease in θ2. This is because
the effect of viscosity in the High Fidelity model counteracts the beneficial effect of
small exit angles on velocity divergence losses. The greater length characterizing
the nozzle results in more boundary layer development, increasing the losses. The
compensation between the effect of velocity divergence and the effect of viscosity
thus results in a lower rate of CF variation for a fixed θ1.

Now, the second Low Fidelity model is explored. As previously mentioned, the
objective is to investigate the impact of using the ideal 1D nozzle model introduced
in Chapter 3 as the Low Fidelity model. In this case, the thrust coefficient values are
derived from Equation 3.15, eliminating the need for CFD simulations to populate
the cheap dataset. Consequently, the entire computational budget can be allocated
to High Fidelity simulations, allowing for a greater number of points to be sampled
in the design space. Furthermore, the CF predicted by the Low Fidelity model will
be constant, as it is independent of the values of θ1 and θ2. Therefore, a higher
error is expected with the same number of expensive points selected, given that
no sources of losses are considered, significantly deviating from the real case. The
cheap Design of Experiment now refers to Figure 4.2. The goal is to evaluate the
approximation error relative to the previously generated surrogate model, thus, the
two results will be compared.
The Expected Improvement algorithm will thus be applied to this case, using
the Low Fidelity 100 points DOE and the ideal model. Iterations will be halted
when the Co-Kriging surrogate closely approximates the one obtained using the
non-ideal model. To avoid conducting new High Fidelity CFD simulations, since the
candidate points are now much more numerous and different from those previously
selected, we will consider the predictions of the surrogate in Figure 4.10 as the
exact values of the expensive model’s response, given that we have demonstrated
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the approximation error is practically negligible. The new High Fidelity points
will be obtained when the average relative error between the newly constructed
surrogate and the one shown in Figure 4.10 falls below 0.2%.

Figure 4.11: Final Co-Kriging surrogate model leveraging the 1D nozzle model
as Low Fidelity model - Expected Improvement

As one can observe in Figure 4.11, achieving a Co-Kriging surrogate similar to that
obtained from the application of the maximum Expected Improvement algorithm
shown in Figure 4.10 now requires 11 High Fidelity points, meaning 11 costly CFD
simulations must be performed. The potential of the ideal 1D model is thus evident,
as it eliminates the need for the 25 Low Fidelity simulations, which still require
a certain computational cost, by leveraging results derived from solving a simple
equation, which incurs no computational burden. In the first case, 25 cheap CFD
simulations and 6 expensive ones were necessary (not counting the 3 required for
model validation). Now, with a Low Fidelity dataset potentially as large as desired,
since the cost to generate it is zero, only 11 High Fidelity CFD simulations are
needed. As mentioned earlier, if the steps required to solve Euler’s equations are
approximately 550 and those for the Navier-Stokes equations are about 2500, it
becomes clear that using the ideal 1D model for Low Fidelity data significantly
reduces the computational burden compared to the first case. Given the same
total iterations needed to populate the two databases, this approach also allows for
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approximately 3 additional expensive simulations to be used for surrogate validation.

As previously mentioned, it may be useful to evaluate the performance of the
Maximum Information Gain algorithm when applied to the case of the cold gas
thruster. As discussed in Chapter 2, this algorithm tends to deliver the best perfor-
mance for single-variable functions, while for two-variable functions it performs on
par with the Maximum Expected Improvement (EI) algorithm. However, in certain
cases, it has shown exceptional performance, as demonstrated with the first test
function analyzed. Although it is difficult to predict in advance whether IG will
outperform or match EI, it is still prudent to explore its application. One of the
major drawbacks of the IG algorithm is that it constructs as many surrogate models
as there are candidate points for addition to the High Fidelity database in each iter-
ation, resulting in a significant slowdown in operations and a higher computational
cost. In scenarios where there are few Low Fidelity points, such as the 25 for the
cold gas thruster, the computational burden of using the information-based criterion
is not prohibitive. Thus, we proceed with generating the Co-Kriging surrogate
model for the thrust coefficient: starting with the 4 High Fidelity points presented
in Table 4.3, in each iteration the point that maximizes the IG(x1, x2) index will
be identified. Regarding the stopping criterion for the cycle, if a computational
budget of 6 High Fidelity points in total for training the model was established
for Expected Improvement, this maximum threshold can also be applied here to
study the error at validation points. If at the first iteration the average error is
lower than that found at the last step of Expected Improvement, the search can be
halted and the Co-Kriging surrogate can be constructed with only 5 points. In this
case, the IG algorithm would perform better, reducing the required points and the
approximation error.

Figure 4.12: Co-Kriging prediction at each step of the Maximum Information
Gain algorithm
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The first step identifies the new point to be added as the one characterized by θ1
= 40° and θ2 = 4°, which belongs to the set of points previously chosen for the
validation of the surrogate model. To evaluate the approximation error in this
case, one can utilize one of the High Fidelity points identified by the Expected
Improvement for which a High Fidelity CFD simulation was conducted to calculate
CF . For instance, the validation set will consist of the points (θ1,θ2) = [(30°,10°),
(35°,8°), (30°,0°)]. Alternatively, an additional CFD simulation could be performed
to make the validation set more uniform in space, but to limit costs, we consider
a previously evaluated point. The relative percentage error at the three chosen
positions is reported in the following table:

θ1 = 30◦

θ2 Real CF Surrogate’s CF Relative Error (%)
10° 1.5909 1.5909 -6.7e-4

θ1 = 35◦

θ2 Real CF Surrogate’s CF Relative Error (%)
8° 1.5775 1.5770 0.0368

θ1 = 30◦

θ2 Real CF Surrogate’s CF Relative Error (%)
0° 1.5918 1.5902 0.100

Table 4.7: Error evaluation at the validation points - First Iteration - Information
Gain

After the first iteration, an average relative percentage error of 0.0458% is achieved,
compared to the 0.0477% error found in the last iteration of the Maximum Expected
Improvement algorithm. Thus, the cycle can be halted and the surrogate model, in
this case, will be constructed with only 5 High Fidelity points, as shown in Figure
4.13.
It can be concluded that the Maximum Information Gain criterion, in the case of
the thrust coefficient of the cold gas thruster, performs better than the Expected
Improvement criterion. This is evident both in terms of the number of High Fidelity
points required for the construction of the surrogate model and in terms of the
final average approximation error obtained.
If, as previously done, one wishes to evaluate the effect of using the ideal 1D model
as the Low Fidelity dataset, this time applying the information-based algorithm,
it is important to note that the number of candidate points becomes quite high.
Therefore, a potential gain in reducing the number of points needed to populate
the expensive dataset could still entail a significantly higher computational burden
for identifying the point to be sampled. Considering that this cost is much lower
in terms of time compared to solving the Navier-Stokes equations, the process can
proceed without significant limitations. The addition of points is halted when the
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Figure 4.13: Final Co-Kriging surrogate model - Information Gain

approximation error relative to the surrogate model shown in Figure 4.13 falls
below 0.2%. The result is shown in Figure 4.14.

By leveraging the ideal 1D nozzle model as the basis for evaluating the thrust
coefficient for the High Fidelity model, only 7 points are now required to achieve
an approximation similar to that provided by the 25 Low Fidelity CFD simulations.
This results in a significant reduction in computational costs, as only 7 expensive
simulations and the solution of a simple linear equation are now required, making
the generation of the cheap dataset instantaneous. Compared to the Expected
Improvement criterion, far fewer points are now needed, confirming the excellent
performance of the Information Gain criterion for this case. The only drawback is
that the surrogate constructed in this manner, while approximating the objective
function very well across almost the entire design space, exhibits less accuracy
for θ1 values around 25°. The surrogate shown in Figure 4.14 appears practically
flat and fails to capture the valley that characterized the previous models around
θ1 = 25° and θ2 = 8°. This occurs because the sampled points are distant from this
region and the Low Fidelity model, being constant everywhere, does not provide
significant information for that zone, unlike the Low Fidelity model derived from
solving the Euler equations. This issue can lead to less accurate results for angle
combinations near the mentioned values; otherwise, the approximation is excellent.
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Figure 4.14: Final Co-Kriging surrogate model leveraging the 1D nozzle model
as Low Fidelity model - Information Gain

4.3 Co-Kriging based multi-objective optimiza-
tion

Once a surrogate model that accurately approximates the real behaviour of the
thrust coefficient in the design space has been obtained and its accuracy evaluated
for various combinations of θ1 and θ2, the information provided by this model
can be exploited to predict CF values for untested angle combinations. In this
case study, the objective is not to identify the maximum thrust coefficient, but
rather to solve a multi-objective optimization problem. As extensively discussed, a
fundamental aspect concerns not only thrust generation but also the constraints
related to the weight of the propulsion system comprising the cold gas thruster.
If the weights of the propellant tank, feed lines, corresponding valves and the
solenoid valve preceding the nozzle are considered fixed, then the weight of the
nozzle becomes the only free parameter that needs to be minimized. Therefore, the
goal is twofold: to achieve the maximum possible thrust coefficient and to minimize
the nozzle’s mass.
Regarding the nozzle mass, given a fixed material, it will depend exclusively on the
geometry, specifically on θ1 and θ2, which are the sole variables in the geometric
configuration. Given a combination of angles and assuming a constant thickness
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for the nozzle’s shell, the mass calculation is practically instantaneous: essentially,
it involves evaluating the difference between the volume calculated at radius R(x)
plus the constant thickness and the internal volume, evaluated at radius R(x).
Knowing the curve that describes the nozzle’s contour as shown in Figure 3.5 (in
2D), the volume of the solid of rotation around the x-axis can be derived using the
following formula:

V = πρ
Ú b

a

è
(R(x) + t)2 − R(x)2

é
dx (4.10)

where ρ is the material density [kg/m3], t is the thickness and R(x) is the radii
distribution along the nozzle’s length.
Typically, stainless steel is used as the primary material for constructing cold gas
microthrusters, with a density of approximately 7500 kg/m3. For the thickness t, a
constant value of 3 · Rt is chosen, where Rt is the throat radius.

Figure 4.15: Points in the design space (left) used to evaluate CF and nozzle’s
mass (right)

Thus, with the Co-Kriging surrogate model now available (for the optimization, the
one obtained with the Expected Improvement algorithm is leveraged, as represented
in Figure 4.10), it is possible to predict the value of CF at a large number of points
in the design space instantaneously. For instance, the surrogate model can be
evaluated on a 50x50 grid in the θ1-θ2 plane (Figure 4.15), consisting of 2500 points,
thereby obtaining the thrust coefficient for numerous geometric configurations
of the nozzle. Simultaneously, the nozzle’s mass can be evaluated for the same
combinations of θ1 and θ2, a process that is also instantaneous using the numerical
trapezoidal method for the integral calculation in Equation 4.10, given the known
coordinates of the nozzle contour as a function of the angles. This results in two
databases, one for the thrust coefficient and one for the mass, necessary to initiate
the multi-objective optimization. Clearly, higher mass values will characterize
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longer nozzles, i.e., those with smaller values of θ1 and θ2, while higher thrust
coefficients will be observed for θ1 = 25°. Maximizing CF would therefore lead to se-
lecting very long and heavy nozzles, which is obviously impractical and undesirable,
as the aim is to minimize the mass. Therefore, we have two conflicting objectives:
a gain in thrust coefficient corresponds to a drawback in terms of mass, hence,
rather than identifying a single optimal solution, it is preferable to determine a set
of solutions that can subsequently facilitate a trade-off between the two objectives.
Through multi-objective optimization, the aim is to identify the Pareto optimal set,
which comprises solutions that are not dominated by any other solutions in the
design space: these solutions cannot be improved in terms of one objective without
worsening at least one of the others [64]. The goal of multi-objective optimization
is therefore to identify this set of solutions, which translates into the so-called
Pareto front in the objective function space. This allows for the evaluation of the
advantages and disadvantages of each solution on the front and the execution of a
trade-off, as moving from one optimal value to another always involves a gain in
one objective at the expense of one or more others [64].

Therefore, for the analyzed cold gas thruster, the objective is to derive the set of
optimal solutions and the Pareto front in the mass-thrust coefficient plane. To
achieve this, a genetic algorithm (GA) for multi-objective optimization can be
employed, which in this case considers only two objectives. Genetic algorithms are
well-suited for multi-objective optimization problems due to their population-based
nature [64]. Essentially, the algorithm utilizes a set of initial solutions, which
constitute the initial population, and with each iteration, it explores different
regions of the design space, generating new solutions from the existing ones until
the algorithm converges, finding the set of non-dominated solutions that make
up the Pareto optimal set. Various types of evolutionary algorithms can be used
for optimization with GA, such as MOGA, WBGA, NSGA, SPEA, etc [64]. For
the case of the cold gas thruster, the genetic algorithm implemented in Matlab’s
gamultiobj.m function is employed: particularly, it requires specifying the objective
functions and their number, in this case, −CF (since the algorithm minimizes the
objectives while we aim to maximize the thrust coefficient) and the nozzle mass, as
well as the lower and upper bounds for the variables θ1 and θ2 (lb = [25; 0] and ub
= [45; 15]) and the size of the initial population, set to 200.
The algorithms reaches convergence leading to a 77-points optima set and the
resulting Pareto fornt is represented in Figure 4.16.
As can be observed from Figure 4.13, the optimal solutions generate a continuous
and well-distributed Pareto front, providing a broad range of values for trade-offs.
Specifically, the front clusters along the outer contour of the curve representing the
thrust coefficient as a function of mass, spanning uniformly from very low to high
CF values while narrowing the range of solutions in terms of mass. A visualization

125



Co-Kriging based cold gas thruster geometry optimization

Figure 4.16: Pareto Front representing the optima solutions of the multi-objective
optimization

of the positions of the optimal points in the design space of the geometric variables
θ1 and θ2 is provided in Figure 4.17. This representation is highly beneficial in
understanding which combinations of the two angles yield optimal values. As seen
from the Pareto front representation, the optimal points span the entire, or at least
the majority, of the thrust coefficient range, indicating the possibility of having
optimal configurations with either very short and light nozzles (i.e., θ1 close to 45°)
or extremely long and heavy nozzles (i.e., θ1 close to 25°). Indeed, observing Figure
4.17 reveals a uniform and nearly continuous distribution in the θ1 direction, while
θ2 values are confined to a small range above approximately 12°. For a given θ1
angle, having a higher second angle allows for a reduction in the nozzle length,
and thus its weight, without significantly reducing CF , since boundary layer losses
are minimized. Furthermore, it has been observed that divergence and boundary
layer losses exhibit contrasting behaviours with varying nozzle length, therefore,
this trade-off between losses is now compounded by the trade-off related to the
thruster’s mass. The Pareto front and the respective points in the design space
will thus enable the selection of the configuration that best meets the mission
requirements and constraints during the design phase. For instance, if priority
is given to reducing the weight of the propulsion system, one will tend to select
optimal points on the descending segment of the front in Figure 4.16, closer to the
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Figure 4.17: Pareto optima points in the design space

lower extreme, accepting lower thrust performance. Conversely, if the priority is on
maximizing CF , points on the right segment of the front will be chosen, accepting
larger masses. Such an analysis is crucial, as the nozzle geometry introduced by
Rao was studied under conditions of high Reynolds numbers, whereas, in the case
of cold gas microthrusters, one works with much smaller values of this control
parameter. Consequently, the boundary layer thickness within the nozzle becomes
a fundamental and, above all, dimensioning aspect to consider. It will then be up
to the designer to choose the most suitable values for the angles θ1 and θ2 in light
of the obtained results.
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Chapter 5

Conclusions and future
developments

In conclusion, this study investigated the performance and optimization of the
exhaust nozzle of a cold gas thruster using the multi-fidelity Co-Kriging technique,
to develop a surrogate model that predicts the thrust coefficient values for various
combinations of the angles θ1 and θ2, which describe the nozzle’s parabolic section.
First, the study focused on the theory behind surrogate models, particularly on
methodologies to generate an accurate model that minimizes the number of simu-
lations or observations of the High Fidelity model response, identifying adaptive
sampling techniques as an excellent solution to achieve this goal. Specifically,
the effectiveness of these methods was observed by implementing three different
algorithms: two widely used in literature, Maximum Variance and Maximum Ex-
pected Improvement, and an information-based criterion based on the variation
of information entropy, referred to as the Maximum Information Gain algorithm.
From applications on single-variable functions, the Information Gain proved to
be highly promising, delivering excellent performance at the cost of higher com-
putational expense in terms of the algorithm, whereas Maximum Variance and
Expected Improvement consistently provided good performance but might require
a larger number of High Fidelity points. Overall, it is challenging to assert with
certainty which of the three algorithms would yield the best result a priori, as the
outcome depends on the characteristics of the High and Low Fidelity functions.
The same applies to the two-variable functions studied, particularly noting that for
the Himmelblau function, the Maximum Information Gain algorithm performed
significantly better than the other two, while for the subsequent test functions,
the results were practically equivalent to those obtained from the Expected Im-
provement. Many other algorithms have been implemented in the literature, but
an ongoing challenge is finding a criterion that, based on the Low Fidelity model
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response, which can be evaluated over much of the design space at low cost, and
basic knowledge of the physics underlying the High Fidelity model, can provide
an a priori idea of the minimum threshold of expensive points needed for a good
approximation and in which areas of the domain these points should be located. To
date, adaptive sampling strategies have proven to be superior to one-shot strategies.
However, the practicality of the latter, namely knowing in advance the number of
simulations to be performed and for which points, remains a desirable goal.

Regarding cold gas thrusters, a performance study was conducted based on a
fixed nozzle geometry, evaluating the expansion of the cold gas through a CFD
simulation to assess the velocity, Mach number, pressure and temperature fields
within the nozzle. It was demonstrated that viscosity plays a crucial role, given
that the Reynolds number is on the order of 103, implying the development of
the boundary layer not only along the divergent section, but also near the throat
section of the nozzle. Due to the very small size of these propulsion systems, it was
observed that the boundary layer occupies approximately 20% of the thruster’s
exit section, thereby reducing the effective expansion ratio and consequently the
thrust. By comparing the resolution of the Navier-Stokes equations considering
laminar flow with RANS equations using various turbulence models, it was shown
that the flow inside the nozzle is laminar since the results accounting for turbulence
differ by less than 1% from those without it. Furthermore, by varying the nozzle
geometry, it was possible to compare the effects of divergence losses and viscous
losses as a function of the length of the divergent section. Specifically, longer
nozzles, characterized by low θ1 values, reduce misalignment losses but lead to
greater boundary layer development, thus increasing viscous effects. These two
contrasting effects limit the attainable CF values. Another important aspect is the
nozzle’s mass, a crucial parameter in the final multi-objective optimization.

For the generation of the Co-Kriging surrogate model for the cold gas thruster,
High Fidelity and Low Fidelity datasets were created based on the real nozzle
model studied by solving the Navier-Stokes equations and the real but non-viscous
model studied with Euler’s equations, respectively. Subsequently, the ideal 1D
model was used to generate a Low Fidelity database to explore the potential of
using a highly simplified but instantaneously evaluable model. For the thrust
coefficient, the Information Gain-based algorithm yields the best results, requiring
only 5 High Fidelity points compared to a Low Fidelity DOE of 25 points, whereas
the Expected Improvement method requires 6 points for a satisfactory Co-Kriging,
still an excellent outcome. The use of the ideal 1D model increases the number of
expensive CFD simulations needed but eliminates the need for cheap simulations to
populate the Low Fidelity dataset, thus reducing the total computational burden
for both adaptive algorithms. Even with the use of the 1D model, Information
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Gain outperforms Expected Improvement.

Finally, the optimization of the nozzle geometry was performed using a genetic
algorithm to identify the optimal non-dominated points, forming the Pareto front
in the mass-thrust coefficient plane. The result is a set of optimal solutions ranging
from the minimum to the maximum value for the θ1 angle while significantly
narrowing the optimal range of θ2 to angles between 12° and 15°.
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