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Introduction

The thesis compares different methods used to obtain structural dynamic responses: Mode Displacement,
Modal Truncation Augmentation, and Mode Acceleration. There is limited existing literature on these
methods, with only a few recent scientific articles providing further insights into their differences and
capabilities [1].

The thesis conducts detailed analyses of the mentioned methods and also compares the "Inertia Relief-based"
method to the Modal Truncation Augmentation method. Both methods are implemented by default in MSC
Nastran's RESVEC function, which calculates residual vectors to obtain improved structural dynamic
responses.

Chapter 1 discusses the first methods, while Chapter 2 focuses on their implementation, code validation using
reference literature data, and application to the Euler-Bernoulli beam finite element model. This section also
aims to numerically and analytically compare the methods using different defined performance coefficients.
Analyses show that the methods exhibit different behaviours depending on the frequency content, spatial
distribution of the applied loads, and the system's modal shapes and associated natural frequencies.
Therefore, enhancement approaches are designed to optimize the solution at each applied load’s frequency.

Finally, in Chapter 3, it is provided an analytical comparison of the methods already implemented in MSC
Nastran. This is achieved through the definition of other performance coefficients, conceptually similar to
those used in the previous chapter. The effectiveness of the methods is evaluated by their adherence to the
ideal solution and their computational cost, the latter is directly related to the total number of solved 1-DOF
differential equations, which is equal to the combined number of retained and residual modal shapes.

The results obtained in Chapter 2 indicate possible reasons why MSC Nastran's algorithm progressively
adopted the Modal Truncation method over the Mode Acceleration method, whereas results from Chapter 3
suggest on which occasions it is more convenient to use the residual vector methods adopted by MSC
Nastran's RESVEC function. It is anticipated that the Modal Truncation method is more effective than the
Inertia Relief-based method at higher numbers of retained modes, providing the best approximation of the
ideal solution at a reasonable computational cost. However, their simultaneous use could provide the best
solution approximation in cases where the retained modes have frequencies far below the load’s frequencies,
especially in presence of complex spatial components of the considered dynamic loads.



1. Analysis of numerical methodologies based on modal
shapes for determining the dynamic response of N-
DOF systems.

1.1. Theoretical foundations

1.1.1. The Mode-Displacement Method and Modal Shapes

The Mode-Displacement (MD) method is widely used to obtain structural system's complete dynamic
responses. This chapter will study the mentioned method, along with the Modal Truncation Augmentation
and Mode Acceleration methods, in the first section of the next chapter they will be used to analyse an N
Degree of Freedom (NDOF) system extracted from reference [2], then, they will be applied to an Euler-
Bernoulli beam model discretized with the Finite Elements Method.

To obtain the MD equations, let’s start with the differential motion equation for a generic NDOF system, which
is:

[MI{y (O} + [CHy @} + [K]y ()} = {F ()} = {Fo}r (D) (1)

{F(t)} was decomposed in its spatial and temporal components, {F,} and r(t), respectively.

Typically, the physical coordinates are transformed to modal coordinates v(t). This is done using the
associated set of eigenvectors. They represent the way in which a structural system can be deformed under
a generic dynamic set of forces and are obtained by the solution of the general eigenvalue problem, given
by:

(K] — w?[M]){¢}; = 0

The number of existing modal shapes is equal to the number of DOFs. The MD method considers all of them
for the dynamic response calculation, differently from the methods analysed later. Across this and the next
chapters, the eigenvectors matrix will be normalized with respect to the mass matrix. Considering the
eigenvectors’ orthogonality respect to the mass matrix and the normalization chosen, the generalized mass
and stiffness matrices must satisfy the conditions:

[Du] = [¢]"[M][¢] = I; [Dg] = [$]"[K][¢] = 27 (2)
w? 0 0 0 0
0 - 0 0 O
Where: 2? = [ 0 0 wl-z 0 0 |and w; is the modal pulsation associated to the i-th modal shape.
0 0 0o =~ 0
lo o 0 0 w?



This way, the complex N by N differential equation system can be rearranged in a more practical set of N 1-
DOF differential equations, where N is the number of retained modes. Each of the N equations is given by the
general formulation:

Vi (£) + 2§07 (8) + wivi(t) = Fy; 1 (6) (3)

Where v;(t) represents the participation of the i — th modal shape to the total dynamic response as a time-
function. The modal damping term ¢§; is obtained experimentally or rather hypothesized, a model largely in
use today provides [C] (eq. (1)) as a linear combination of mass and stiffness matrices. The force term was
rearranged using the eigenvectors matrix, as follows:

{Fo} = [¢]"{Fo}

{F,} has the same dimension of the DOFs, while {ﬁo} has the dimension of the number of modes considered.
The transformation from physical coordinates to modal coordinates and vice versa is obtained through the
relations:

@} = [¢] {v(©)}

v} = [Dul ] MI{y ()} = [¢]" [M]{y ()} (4)

Because of the eigenvector’s normalization used, the inverse of the matrix [Dy,] is: [D)]~! = I. The relation
(4), used in the next paragraph to determine the modal coordinates relative to the initial conditions, is more
efficient than inverting the eigenvectors matrix, especially if the system is large.

To determine the importance of modal shapes let’s consider a generic NDOF non-labile system in which the
force applied on each DOF has in common the same r(t). Let’s furthermore suppose that each force F;(t)
and so F;(t) are a linear combination of harmonic oscillators. This means that:

M M
(Folr(0) = ) {F1} - 056, (©) = {Fo}r(®) = [$17(Fo}r(®) = [#1"(F1} ) os¢; (©
j=1 j=1

Where {F;} is a generic set of forces applied to the DOFs and osc;(t) represents the j-th harmonic oscillator:
osc;(t) = Aje'®it=%i

Therefore, the components of the modal force can be written as:

F; = Cl.jelet—fpij = Cjpe'®1t=%1 4 .. 4 Cl.jelet—fpj + o+ CetOMt=PM

M
=

This approach can be extended to the generic case in which M — co. Each modal coordinate v; will be the
sum of a general and particular solution for the respective 1-DOF system: v;(t) = vy ;(t)+ vy ;(t).

Considering the realistic case in which &;<1, the general solution for the generic DOF i’ can be written as:

vgi(t) = e Si9Nit(A; cos(wp;t) + A, sin(wp;t))



Where wp = wy /1 - Eiz and fp = (:—7"; is the damped modal frequency. The particular solution, instead, is

for superposition:
M
i) it—en! i —o! iwit—o": i —o!
Vp,i(t) = ZBije“‘)Jt Pij — Bilelwlt Pir 4 ... Bijelw]t Pij + - 4 BiMelet Pim
j=1

Finally, physical displacements are given by:

(@} =[] {v(t)}

}’1.(t)

J/i:(t) =

()
" " " vgi(t) + By, el@1t=911 4 ... 4 Bljeiwjt—wij + oo+ Byyelomt=0in
¢:j ‘l{j q51 Vgi(£) + Biyel @1t~ 4 ... 4 Bi.jei“’it“”ff + - + Bye!Omt=%in

l bum’ 4 bm’ ; bum NJ Vg (6) + BNlei“’lt_‘pllvl 4ot BNjei“’jt_q’I,Vj ot BNMeint-<P1'VM

Each modal shape oscillates both at its damped modal frequency and at the force’s frequencies. Not including
some of the modal shapes, especially when the force has frequencies in the range of the not-included mode,
can determine important displacement mispredictions.

1.1.2. 1-DOF equation and solution

To solve the N equations in the form shown in eq. (3), it can be used the Laplace Transform. The complete
solution includes the Duhamel’s integral and a series of terms relative to the initial conditions. Therefore,
being the eq. (3):

V() + 2&;00;(t) + wfvi(t) = F;1(0)
The solution obtained by applying the Laplace Transform is:

Vi (t) = j F(T)h(t - T) dr + Mi [VO,L' (h(t) + hO) + (1'/0’1' + ZEiwivo_i)h(t)]
0

Where v ; and v ; are the initial conditions expressed in modal coordinates, easily obtainable using eq. (4);
while the response to the unitary impulse h(t) and its derivative h(t) (both obtained considering &; < 1) are

given by:
U ot o 2
h(t):Miwie i@Witsin| w; |1 —¢ft
. 1
h(t) = ————efiwit <a)l- /1 — &7 - cos <wi /1 - fft) — & w; - sin (a)i /1 - Eft))

Mw; |1 —§7




1.1.3. The Mode-Displacement Method: limits and alternatives

Considering modal shapes in an adequate range of frequencies can represent almost completely the solution
searched. Commercial software can determine a priori the number of modal shapes to retain. The decision
of how many modes to keep is based on the relevant frequency content of the applied force. It is also advised
that the highest mode retained should have a frequency well above the applied time history loading
frequency by a certain margin ([2], [3]). However, some problems may require the calculation of many modal
shapes for the solution to converge, this is because some forces cannot be modally represented easily, as a
result, in certain cases, adding each modal shape to the modal eigenvectors matrix may gradually reduce its
overall benefit. In other words, for a linear increase in computational cost, the overall solution enhancements
will experience an increase similar to a logarithmic-like curve with a horizontal asymptote. An example of
different types of convergences is reported in the final section of paragraph 2.2. This is also related to the fact
some spatial forces can in part excite modal shapes having much higher frequencies, leading to the retention
of many modal shapes before the excited one, therefore, increasing the overall computational cost for the
full solution convergence. This will be one of the main topics of this thesis.

There are different alternatives to the Mode-Displacement method which do not need to calculate integrally
all the modal shapes. Instead, these alternatives typically rely on Residual Vectors (Res-Vec) for computation.
Residual Vectors can enhance the solution accuracy in certain scenarios while using fewer modal shapes.
Essentially, they function as pseudo-modes, aiding in the representation of more accurate deformations and
ultimately decreasing the number of retained modes necessary to correctly calculate the system’s
displacements [4].

At first glance, it may seem that the retained modes could adequately represent the full displacements of the
DOFs. However, the criterion mentioned earlier - which only considers modes that accurately span the
frequencies of interest - applies to 7 (t) but fails to consider the spatial component of the load for the reasons
discussed before. By not accounting for modal truncation on the spatial portion of the applied load,
inaccuracies can arise. The force truncation vector R, addresses this issue by representing the portion of the
load that is not accounted for. The rationale behind this approach is that the main dynamic response has
already been enveloped by the retained modes, leaving the neglected modes with a quasi-static response. In
other words, since the frequencies of the non-retained modes should be widely higher than those of the
applied forces, they should perceive the applied forces as quasi-static ([2], [3], [4]).

The physical force represented by each mode is given by:

{Rn(0)} = [Kl{pn}va () = [MI{$n}wiva(t) = [M]{cbn}w%%r(t) = [MI{¢n}Fur ()

- Ry = [M][d)]R{F} - R, =Fy—R;

Where [¢]r addresses to all the modal shapes retained, Ry is the modally represented force and R; the
modally non represented force. {F’} = [p]%{F,}, and the relation E,r(t) = w2v,(t) is valid since the
normalization reported in the eq. (2). The equation Rg = [M][¢]R{ﬁ} determines how well the retained
modal shapes can describe the statical response to the spatial portion of the applied dynamic load, or in other
words, their capability of representing it.

10



1.1.4.  The Modal Truncation Augmentation Method

The main difference between some of the methods that emerged to deal with the problems mentioned in
paragraph 1.1.3 is the way they use the force truncation vector R;.

A key method is the Modal Truncation Augmentation (MT method) which creates a pseudo eigen known as
MT vector for each differentiated dynamic force applied. Each MT vector is orthogonal to the other MT vectors
in relation to the mass and stiffness matrices. Furthermore, the MT vectors are also orthogonal to the retained
eigenvectors since the force truncation vectors do not contain any components of the retained eigenvectors.
However, they do not fulfil the original eigenvalue problem. The method consists of adding the MT vectors
calculated to the real retained eigenvectors, allowing the analysis of modal response to proceed as if the
augmented vector set was the complete set of original eigenvectors, or in other words, the procedure from
this point is analogous to the MD method except for the augmented eigenvectors matrix ([2],[5]), which is:

[¢]TOT,MT = [ [¢]R ’ [¢]MT]-

As stated by the hypothesis cited before, the non-retained modes react quasi-statically to the virtually applied
load, which is the force truncation vector {R;}, therefore, the solution associated to {R; } does not necessitate
the calculation of the non-retained eigenvectors and it is initially set as:

[K1{X} = {R¢} (5)
The next step, to calculate the MT pseudo eigenvectors is to calculate:
[Dk] = [X]"[K][X]; [Dum] = [X]" [M][X]
Where:

[X] = [{x}1 .. {X}i o (X3N]

Where N is the number of the applied differentiated forces and {X}; is associated to the respective {R;};. The
Mode Acceleration method, reviewed hereafter, spatially solves the non-represented loads as reported in eq.

(5) ([2,15D).
[Dk] and [D,,] are scalars if it is applied a single differentiated dynamic force:
[Dk] = X}T[K1{X} = K; [Dy] = (X} [M]{X} =M

Now, the approximation the method makes is to consider the vector {X} as a modal shape, as if the only way
the system could dynamically respond to R; was represented by {X}, which is a static response indeed but it
is considered as the dynamic response of a modal shape excited at frequencies much lower than its frequency.

Therefore, the reduced eigenvalue problem can be solved, and the MT vector P is appended to the retained
eigenvectors matrix [¢]x to construct the augmented eigenvectors matrix [¢]ror m7:

[Dk]Q = [DM]Q@%
For a single MT vector, the equation above becomes:
kKQ = MQ@ZJ - {P} ={X}Q - [¢]ror = [[P]rm P]

Q normalizes the eigenvector {X} respect to mass matrix (the Matlab algorithm for the eigenvalue problem
does that by default), so the normalization is in line with that of the other eigenvectors:

X} MI{X} = 1 - (P} [MI{P} = 1; {P}'[KI{P} = &}

11
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wp

The calculated pseudo-modal shape {P} oscillates at its pseudo-modal frequency fp =

1.1.5. Other alternative methods

As was hinted in the previous paragraph, the Mode Acceleration method (MA) is a particular case of the
Modal Truncation Augmentation method. If the generalized mass and modal damping terms are set to O while
using the MT vectors in the equation:

Vi (8) + &p,vi (8) + wpvi () = Ep; 13 (t)

The MT vectors will be forced to respond quasi-statically and the mode acceleration result will be exactly
reproduced in the time domain, while in the frequency domain would exactly reproduce the “residual
stiffness” method result. If the generalized mass is set to 0 the result will exactly match the missing mass
method result. If no eigenvectors are retained and MT vectors are calculated from vectors of unitary forces
at selected degrees of freedom, a Guyan reduction will be produced ([2], [3]). An algorithm that does not use
eigenvectors but instead uses a series of specially constructed Ritz vectors for the dynamic response
calculation is given by Wilson et al. [6].

1.1.6. The Mode Acceleration Method

The logic of the MA method is that since the modes retained already span the frequency range of interest,
any loading not represented by the retained modes will produce a complete quasi-static response. In other
words, the response due to the non-retained modes will have no dynamic amplification and the modes not
retained will cause no appreciable velocity or acceleration response.

To introduce the MA algorithm, the eq. (1), reported below, is rewritten as follows:
M1 ()} + [CHy (O} + [KHy (D)} = {Fo}r () = {Feiase} = {Fo}r(®) — {Finere} — {Faamp}

r(t)
Ou(Oa = [KI7HFoJr (0) — K1 MI[91 (D)} — (K] [ClIple v (D)} = |[RY ¥ v |3 9(e)
v(t)

Given N as the system size and n as the number of retained modes, for each set of applied loads the dimension
of Folp is Nx1, while ¥¥ and v¥ are Nxn. r(t) is 1x1 and #(t), v(t) are nx1.

Another way to write the total displacement term is:

uO3ma = K17 {Fo}r () — [K]7 [M][$]{H (D)} — [K]7H[CTI$]{v (D)}

= K17 (@R) + R (©) — KT M9l [91ed {5 " ()} - 1 CI8Te Il ;)

= [K]IT'{RDr(®) — [K] M [M][p]r (VR (D)} — [K]7M[Cl[@]r{VR(£)} +
K1Y (R DT (1) — [K] M1 [P]nr{ine (t) = {03} — [K]7C][@]r{vnr(®) = {0}}
The Mode Acceleration method formulation becomes:

12



(OIna = s(OIma + e (©}Ima

Where {y,(t)}p4 is the part of the solution relative to the retained modes and {y;(t)}y 4 refers to the part
of it calculated considering the system’s quasi-statical response to {R;}r(t).

1.1.7. MD, MT, and MA methods comparison

To compare the 3 methods, the global solution can be decomposed into the part relative to the retained
modes (pedicle ‘s’) and the part relative to the modal truncation (pedicle ‘t’), or in other words the common
and the different parts of the solutions offered by the presented methods:

y®} =y} + {y:(O)}
M]{ys (D)} + [CT{ys (O} + [Kl{ys (0O} + M7 ()} + [C1{y: (O} + [KI{y:(£)} = {Rs + R} (D)

Let’s focus on the part relative to the non-represented force; the solutions calculated by MD, MA and MT
methods are shown below.

M]{F: ()} + [Cl{y: (O} + [K]{y:(©)} = Rer (D)
MD method: {y;(t)}yp = [Plnr (v(D)}nr
MA method: [K]{y:(t)}ya = Rer(t)

MT method: {y:(t)}ur = [Pl{vp(1)} -
[PITIMI[PI{Up ()} + [PIT[CIIPI{vp ()} + [PIT[K][PI{vp}(t) = [PI"{R}r(t)

Obviously, the MD method calculates {y;(t)}yp using all the modes not retained ([¢]yr)-

13



2.Code validation and beam finite element model study
case

2.1. Code validation

2.1.1. Problem description

The problem analysed deals with a 4-DOF system taken from [2], the model and the forces applied to its DOF
are reported below. They are split into their spatial and their time/frequency domain components:

|_.) R(t) or R(f)

> 2 >3 — 4

m =10, k =10,000.

R(f) R(t)

A

Rt —— Fo-
t t Frequency 0. — > Time
> . 0. ) 030 033 (se0)

R(f)=Ryr(f) R(#) = Ryr(1)

1 0.000<1<0.030
=l 3srET0 fas {0. 0.033< 151500

Figure 2.1: System representation and temporal/frequency components of the forces analysed.

The spatial components of the forces applied to each DOF are defined, for both cases, as:

(6)

(=N =N w-)

The assembled mass and stiffness matrices of the system considered are shown below, the modal damping is

set to 2% of the critical modal damping coefficient for all the modes and also for the MT vector. The number
of eigenvectors retained is always 1 in this application.

To summarize, the physical properties of the system are:

14



The spatial forces represented by the first mode and the MT vector are:

0.25 ~0.53
_Josol. , . )-042( -
Rs=103s(: P =) 072 (fr =22H7
0.1 0.22

Both time and frequency domain results obtained by the created framework are consistent with those
reported in the reference [2]. Both results are presented in the paragraphs 2.1.2 and 2.1.3.

2.1.2. Frequency domain results

The results for the frequency domain case were obtained by applying the load shown in Figure 2.1 (r(f)) and
in the eq. ((6), Fy). The displacements in the frequency domain can be obtained by:

{U(0)} = [H(w)]{F (w)}

This means that:

N
Ue(@) = ) Hap(@)Fy()
B=1

Where H,z(w) is an element of the matrix [H (w)] containing the Frequency Response Function (FRF), which
associates the dynamic response of the node a to the solicitation applied on the node f and vice versa,
considering all the calculated modes and pseudo-modes. It is given by:

N

Hop(@) = Z Drabrp

k_le(a),Zc + 28 wwyi — w?)

PraPrp is the modal partecipation factor and ¢y, or ¢yp represents the a-th or B-th element of the
eigenvector k. wy, is the modal pulsation associated to the respective modal shape k. In Figure 2.2 and in
Figure 2.3 are reported all the elements of the FRF matrix, it is evident that the number of resonance
frequencies depend on the method chosen and the number of retained eigenvectors. Furthermore, for the
MT method the number of resonance frequencies depends also on the number of separated dynamic forces
applied to the system, because for each of them it is calculated the respective pseudo eigenvector and its

frequency fp ;.
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Figure 2.2: Full FRF matrix representation as a function of frequency.

|H44| for MD, MT & MA methods
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10'
Frequency [Hz]

Figure 2.3: FRF element |H,,| for all the methods presented. The FRF function obtained by the MD method
has 4 peaks, while the MT and MA methods have respectively 2 and 1 peaks. The number of peaks is related
to the number of retained modes and it is equal to the sum of real and residual eigenvectors.

Note: for the Mode Acceleration method were used 2 equations: one for the forces represented by the single
retained mode (R;) and the second for the forces not represented by it (R;).

{Ur(@)}ma = [H(@)[{Rs}r(w);

{Unr(@)}Ima = [K1TH{RIr(w)

The total displacements response is obtained by the sum of {Ugr(w)}4 and {Uyg (@) }pa-
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In the following pages, both my results and the reference's results are reported. Overall, the comparison of
the results is more than acceptable.

—MD
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Figure 2.4: Displacement response in the frequency domain for all the DOFs.
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Figure 2.5: Comparison of the results presented in the paper [2] and those obtained by the created
framework for the DOF 3 response in the frequency domain.
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Any difference may be addressed to the different Fourier Transform algorithms used (in the created
framework it was used the Fast Fourier Transform (FFT) algorithm already implemented in Matlab). Two
comparative tables for the displacements of U;por(w) obtained at 3Hz are presented in Table 2.1.

(107°) DOF1 DOF2 DOF 3 DOF 4

(-107°) DOF1 DOF 2 DOF 3 DOF 4

MD 4.52 8.89 12.90 6.53 MD 4.53 8.91 12.95 6.54
MA 4.58 8.92 12.90 6.49 MA 4.59 8.93 12.90 6.50
MT 4.54 8.89 12.90 6.51 MT 4.55 8.90 12.95 6.52

Table 2.1: Displacements response of U;por(w) at 3Hz. The first table is taken from the reference [2], while
the second reports the results obtained.

2.1.3. Time domain results

Overall, the results were in good agreement for the time domain loading too. Table 2.2 reports the
maximum and minimum displacements obtained by Reference [2] and from the created framework for the
time domain loading at each DOF. While Figure 2.6 refers to the displacements obtained for DOF 1.

1.0x107*
—— Al Modes
------- MA Method
5.0x10° ] '|| h ——= MT Method

| .
|

Uror for all the Methods; DOF n° 1

YrotmMD

Urotmt

UroTMa

TAAAAA A A A=
AN // |\ f AVAVAYAY

L Il Il
14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9
Time [s]

Displacement [m]

Figure 2.6: Comparison of the time domain responses for each method analysed at DOF 1. The first image is
taken from reference [2] while the displacements reported in the second image are those obtained by the
created framework. The two results are in good agreement, minor differences are addressed to MA’s first

peaks.
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(1075 m) DOF1  DOF2 DOF3  DOF4
Max MD 3.84 7.81 9.48 6.72
Max MA 597  9.50 8.16  4.54
Max MT 5.42 8.10 9.83 4.99
Min MD -8.08 -9.52 -7.16  -4.42
Min MA -565 -8.99 -8.68 -4.83
Min MT -7.33  -10.30 -8.21 -4.34

Max MD 383 7.81 948 6.67
Max MA 590 9.41 814 453
Max MT 541 809  9.81 499
Min MD -8.03 -951 -7.18 -4.45
Min MA -5.64 -898  -8.67 -4.82
Min MT 731 -10.26 -8.18 -4.33

Table 2.2: Comparative tables for the maximum and minimum displacements of u; por (t). The first table is
taken from the reference [2], the second reports the results obtained from the created framework. Small
differences are observable for maximum MA displacements at DOF 1 and DOF 2, these are associated with
differences in the first peaks, as highlighted in Figure 2.6.
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Figure 2.7: Comparison of the part of the solution obtained using the retained modes (ug), the part obtained
using the non retained modes (u;) and the total solution (uror = ug + u;) for the Mode Displacement
Method at DOF n° 3.
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Figure 2.8: Comparison of the part of the solution obtained using the retained modes (ug), the part obtained
using the residual vector (u;) and the total solution (uror) for the Modal Truncation Augmentation Method

at DOF n° 3.
15 %10 Mode Acceleration Method; DOF n° 3
. I I I I T T T
u
s
Y ma
1| UroTMA|T]
E
= 051 -
@
£
@
(&)
g |
& O
a
05+ -
-1 | | | | | | | | |
14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 15
Time [s]

Figure 2.9: Comparison of the part of the solution obtained using the retained modes (ug), the part obtained
from the modally non-represented part of the load (u;) and the total solution (uror) for the Mode
Acceleration Method at DOF n° 3.

Itis clear from the comparison of Figures 2.7, 2.8, 2.9, and 2.10 the absence of dynamic amplification of
{u;}pa, differently from the results obtained by MT and MD methods. Are now clear the possible

advantages of the MT method over the MA method. Starting from paragraph 2.3 will be further investigated
the differences between these 2 methodologies.
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u, for MD,MA & MT; DOF n°3
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Figure 2.10: Results obtained from the time domain loading: u; comparison for all the methods.

2.1.4. Observations

In reference [2], from which the analysed system was extracted, some informations regarding the force
inputs and the displacement outputs were not reported. Specifically, at the time t = 0 s in Figure 2.6, the
system already experiences some displacements as if the force was acting on node 3 for an indefinite
amount of time. Therefore, in the created framework, the force applied to DOF 3 was applied for 14.033
seconds as shown in Figure 2.11, instead of 0.033 seconds as reported in Figure 2.1. However, the dynamic
response of the system was collected in the time window of interest: toytpys = 14 — 15 s.

Figure 2.12 demonstrates that at the initial time of observation (14 s), the displacements were steady,
similarly to the results extracted from Reference [2]. Furthermore, in Table 2.2, the maximum
displacements refer not to the absolute maximums but instead to the maximums after the first oscillation,
as reported in Figure 2.13.

Force applied to DOF 3

Force [N]
o
[=2]
T
I

2
'S
T

|

0.2 -

Time [s]
Figure 2.11: Force applied to DOF 3. The solution is extracted at t = 14 — 15 s.
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Figure 2.12: Results obtained in the full time domain. The solution is extracted att = 14 — 15 s.
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2.2. Euler-Bernoulli beam: theoretical foundations

2.2.1. Euler-Bernoulli beam equations

In this paragraph are reported the constitutive equations for the Euler-Bernoulli’s (EB) beam model. The
model hypothesizes that the only deformation occurring is &y, the one relative to the axis of the beam. The
displacement equations can be written as:

u=u® —zw® u 1 0 z u((‘;))
x ,z,t)} = [Z t = w

WO S stn 0y = E@lsn) > [)=[5 ] v
—Wy

Stress and strain, for their definition, are:

(0)
u
(e =uy — 2w - {e(x,2,0) = [Z@DHge(x, 0} > {en} =11 +2] { "‘m)}: o = B e
—Wx
The D’Alembert principle can be expressed as follows:
0E, = 8L, + 8Ly (7)

The equation (7) generalizes the principle of virtual work from static to dynamical systems by

introducing forces of inertia which, when added to the applied forces in a system, result in dynamic
equilibrium. 5Ep, 6L, 6L;y, are respectively the variations of internal or virtual work, variation of external
work due to the applied forces on the system, and the variation of inertial work. They are definable as:

L
SE, = f ( j el o) d5> dx
0 S

SLy, = f 8(s)T (—p®(5})dv
\%4

8L, = f §{s}T - f(x,z)dl
!

For the EB model, the components of the equation (7) become:

L L
58, = | olge)" ( | etz ds>{gg}dx= [ tgey - tkzn - (g2 d
0 S 0

1

Where: [KZI] = [,E® [Z

ZZZ] ds = [g g], It is important to note that: [KZI]-{g.} = {1\1\//1}

L
SLin = f 5(s)7(—p (&) dV = — f 5(g.)" ( f (2] ® (2] ds) (G} dx =
Vv 0 S

L 1 0 =z u 0 my
— [, 8{g}"MZN){G, 3 dx; Mz = [p®]0 1 0]|dS=|0 u O
z 0 2z2 m; 0 m,

To calculate the contribution of §L,, it must be considered all the distributed loads applied on the beam
(integrated on the beam’s depth) as reported in Figure 2.14.
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Figure 2.14: Representation of distributed loads along the elementary beam element

The total equation obtained by using the D’Alembert principle is:

f [N — i 4 m, W(o) +p]5u(0) dx+f [Mxx uw(© — (m u(O)) + (m w )) +q +mx] Sw dx
+ 5u®(0)[N(0) + No] + 6u@(L)[-N(L) + N,]
+ 8w (0)[M,(0) — m,y it (0) + my W (0) + Ty + ]
+8wOL)[-M, (L) + myit @ (L) — mw D (L) + T, — ] + sw> (0)[-M(0) — M,]
+ 5w WIML) - M,] =0

The first member of the equation must be 0 for any given set of displacements {s(x,z,t)} = {3}} The only

logic solution is that each term inside the brackets [ ] must be independently set to 0. In the equation above
are underlined the motion and the boundary conditions equations.

The motion equations can be rewritten in case of constant parameters A, B, D, my, m, and symmetric
lamination. Symmetric lamination also implies that m; = 0, therefore, axial and transversal displacements

are now fully decoupled:
Ny = p()ii® —m; (W — plx) > Au) = —p(x) + p(x)ii®
Max = GO + (my (i), — (ma @) — () (@) =
—DW Gnr = —G(6) — () + pOW© — myi )

Neglecting the rotary inertia term (mzng)) considering u(x) as constant along the beam and considering

only transversal loadings, the last equation can be reformulated as:

—Dw, = —G(x) — M(x) + uEOW® —mw Y

Dw Ec(ic)xx + MW(O) =q(x)
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The modal shapes of the problem can be calculated, starting from the homogeneous equation associated to
eqg. (8), as a function of the beam’s boundary conditions. The modal shapes can then be used to replace
physical coordinates with modal coordinates in the D’Alembert, Hamilton, or Lagrange equations.

The discussion relative to continuous systems is beyond the scope of this thesis, an analogous procedure will
be better detailed for the Finite Element Method (FEM). However, in paragraph 2.2.4 are reported the
modally represented loads as a function of the number of retained modes (n°gy,) of a stuck beam, which will
be treated as a continuous system.

2.2.2. The Beam finite element

In the beam equation (8), it is present up to the fourth derivative (r = 4) of the transversal displacement,
which is the unknown term. The compatibility and compliance condition dictates that the shape functions
must be internally continuous up to the r/2 — 1 derivative of the differential equation's variables, this is
necessary for the solution convergence at the finite elements increase. Furthermore, in the FEM, the single
DOFs must satisfy the geometrical boundary conditions independently, differently from the method
described for continuous systems or the Rayleigh-Ritz approach in which all the modal shapes/shape
functions had to satisfy them independently.

For this reason, for each node of the beam element the DOFs that must be represented are w(t) and w,.(t).
Being that each element is composed of 2 nodes, there are 4 total local DOFs for each beam element: 2
relative to the transversal displacement and 2 for the angular orientation. Typically, the chosen shape
functions for the beam element are based upon the Hermitte cubical polynomials.

The 4 shape functions are reported in the equations below:

WO, ) ~ 1O (:@)giP () + LOHS (:@)giP(0) + HE (x@)gk P (©
+LOHO (x@)gi0 ()

= [N @) |{g )]

The terms Hi(e), are the Hermitte cubical polynomials:

HO(x@) =283 -382+1; HO(x@) =3 -2¢% +¢
Hée)(x(e)) — _253 + 352; Hie)(x(e)) — 53 _ 5;2;

NO)
Ok

Where & = x(®) is the local axial coordinate of the beam element and L(€) is the length of the element.

The shape functions are designed to assume the value ‘1’ on their associated DOF and the value ‘0’ relatively
to their non-associated DOFs, as reported in Figure 2.15.
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The defined transversal displacements of the beam finite element can be replaced in the D’Alembert equation
to find the mass and the stiffness matrices of the element. Since the axial and transversal displacements are
decoupled, the D’Alembert principle can be expressed as:

L
5E, = fo 5(=w ) D) (~wrr) dx

L w T ru(x) 0 w
SLip = — fo B {_W'x} [ o m (x)] {_W,x}dx
L
5L, =J (w)Tg(x) dx
0
The equation obtained by using all the terms of the D’Alembert principle, for the local element (e), is:
(M {an® O} + [k a0} = {R)

Below are separately presented the formulations of the matrices [M‘E,e)], [KV(;’)] and {FM(,E)} for the same

hypothesis stated in paragraph 2.2.1 and in paragraph 2.2.3 will be presented the assembly of the global
matrices.

The mass matrix for the local finite element ‘beam’ is:

7] = [ ([ 0] ) [0 )] [ ] ) [ ()]

(e)

L(e) T L _ T
= [ (] W) ax @ m 2 [ ([N G 0 )t
221 ¢, 131 [ 95y 21LD e, 211
_u@LOf o1 4(L@) 1310 —3(L@)° | mE? [217@28(L@)° _pap@—7(1)’
T 420 54  13L@ 156 —221(& | 210L®|-252 _247® 252 21L&
[~ _3(1@)? 22U g (@)t | AR g (p@)?-21L 55 ()7
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In many commercial codes, the mass matrix is often implemented without accounting for the rotary inertia
term (neglected term in the equation above).

The stiffness matrix for the local finite element ‘beam’ is:

] = f N0 (<] DO NS0 (6 )]

B D(e) .f ([N (e)(e)x("’) (x(e))] [Nvfze;)c(e)x(e) (x(e))]) dx(e)

3L _o 3L
2D |35 2(L@) 3@ (L)
C(L@)3| -6 316 6 3L

Finally, the nodal forces for the local finite element ‘beam’ can be expressed as:

L(E)
(F9y = f (VO )] 7@ (@) dx®
0

JAG) T
= g© f [N ()] dx®
0

6
B ger® L©

12 6
—L@

Where (@ is assumed to be locally constant along the element (e).

2.2.3. Final N-DOF system

To effectively solve the discrete system as a whole, the global matrices must be accurately assembled. Each
local DOF has a designated position within the global DOFs vector. To properly expand and sum the local mass
and stiffness matrices, we must refer to their corresponding DOF indexes within the global vector. For the

purposes of this thesis, elements with a different orientation from the system’s global orientation will not be
considered (no ramified structures).

The expansion and sum of each local matrix, for the defined hypothesis, can be summarized as follows:

qL(L)

ki1 k12 k13 ki ‘2’(11)

@]. (L0 _ k21 koo ka3 ks dp1
[ A O} = (it o e ks | { b0 [

Qw2
ar ka kas kaad g | 1
q<p2
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( qG
wi
_0 — .
q6
w(2i-1
kai-12i-1 K2i-1,2i K2i-1,2i+1 K2i-1,2i+2 é )
Kc(i) G _ kaizic1 kaizi Kaizier  Kaiziez Qp(2i)
2i+1,2i—-1 K2i+1,2i ©2i+1,2i+1 ©2i+1,2i+2 Aw(2i+1)
Koinooin Koiso i Koioxoies Koiso o G
20+2,2i—1 "2i+2,2i "2i+1,2i+1 "2i+2,2i+2 q(p(2i+2)
| ol| ¢
\dp(2N+2)
Where:
ki1 k12 k13 k14 [kzi—l,zi—l kai-12i K2i-1,2i+1 kzi—1,2i+2'|
ka1 kap ka3 kos | kzizicr kaizi k2igivr k2izive |
k31 k3z k3z k3 |K2i+1,2i-1 Kziv1,2i Kziv1,2i41 Koiv1,2i42 ]

kai kaz Kag kaad gy Uiz o1 Kaivapi Kaivazien Kaivzivalg

After their expansion, global force vector, global stiffness and global mass matrices can be assembled:
G(i G(i G(i
(K$) =T |k @] 81 = T M| RS = ZXL {RIV 0}
The final equation, using the global matrices found in precedence, is given by:

[MS] (G5 ()} + [Kg H{as ()} = {FS ()}

The matrices and vectors of the previous equation must be split into the components associated with their
free and constrained DOFs, as follows:

el | Y A
[Mpel{Gr} + [Kprl{qr} = {Fr}

The preceding equation is now suitable for further implementation, mirroring the approach outlined in
chapter 1, given that it represents an NDOF system as well. The methods MD, MT, and MA can be seamlessly
applied to the discretized beam model, exhibiting practically no substantial difference from their first
application shown in paragraph 2.1.

2.2.4. Modal representation of spatial loadings

The convergence of the modally represented load to the effectively applied load is affected by various factors,
such as the complexity of the applied load, the number of retained modes, and the load values near the
constraints. Using a residual vector solution method instead of the Mode-Displacement method is
recommended to determine the transversal displacements accurately. One of the main differences between
the continuous and the discrete systems is that the FEM model can always match the discretized applied
forces using all the existing modal shapes (which exist in finite numbers and are purely calculated considering
the free DOFs), so methods like Modal Truncation Augmentation (MT) and Mode Acceleration (MA) are often
convenient and not strictly necessary. However, for large models, the full MD method could be excessively
expensive in computational terms.
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To find the modally represented and non-represented loads were calculated n modal shapes and then, they
were discretized along the x-axis of the beam. To calculate the modally represented and non-represented
portions of the applied spatial loads were used the formulations reported below:

L
— T
Rs,discr(xdiscr) - ¢discr(xdiscr)f (¢discr(xdiscr) ' Rdiscr(xdiscr)) dxdiscr
0

Rt,discr(xdiscr) = Rdiscr(xdiscr) - Rs,discr(xdiscr)
Where ¢ 7. (xaiser) contains the n modal shapes, numerically discretized along the beam’s axis.

Generally, if Rg can converge to R, then at higher n values it would be almost equal to R and the residual
non-represented load R; would tend to 0, as shown for the first load reported in Figures 2.16-2.19.
Otherwise, if nis kept finite and if the applied load is not a linear combination of any set of loadings associated
to the retained modal shapes, R; will always have at least one value different from 0.

For a system discretized with FEM, unlike the presented case, only the non-constrained DOFs are considered,
and the discretized applied loads can always be fully represented. Therefore, the discretized spatial forces
applied to the free DOFs are always a linear combination of the forces associated to the finite modal shapes,
at most if all of them are included

Dynamic loads applied to the beam
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Figure 2.16: Spatial and temporal components of the dynamic loads applied to the beam.

This section focuses on the spatial components of the loads (boxed in red).
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Represented & non-represented loads, n°RM= 3 —R
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Figure 2.17: Loads (R), modally represented loads (Rs) and residual loads (R;) for 3 retained modes.

Represented & non-represented loads, n°RM= 10 —R
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Figure 2.18: Loads (R), modally represented loads (Rg) and residual loads (R;) for 10 retained modes.



Represented & non-represented loads, n° 32 R
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Figure 2.19: Loads (R), modally represented loads (R) and residual loads (R;) for 32 retained modes. Here
{R.} is well represented by the retained modal shapes and {R;}, tends to {0}.

2.3. MD, MT, and MA methods applied to the beam finite element
model

2.3.1. Problem description

The analysed beam is stuck at its left side; the geometric parameters of the model and its mechanical
properties are:

nodes n° = 11; retained modal shapes = variable; length = 1m; height = 0.01m; base = 0.01m;
E =210-10° Pa; p = 7900 kg/m3; & = 0.2

3 cases of single dynamic loads applied to the beam were considered, in addition, different frequencies
(3/30/100 Hz) were used for the time components of the loads, which consist of a single sinusoidal function
as reported in paragraph 2.3.2.

The used spatial forces are:
- A concentrated force applied at the tip of the beam. (Figure 2.20a)
- Aconstant load distributed along the length of the beam. (Figure 2.20b)

- A ‘triangular’ load distributed along the length of the beam. (Figure 2.20c)
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Figure 2.20: Defined spatial forces/loads: a) Concentrated force; b) Constant distributed load; c) triangular
distributed load.

The number of retained modes varies according to the natural frequencies of the discretized beam system
considered. In the proposed examples, are retained all the modes having a frequency inferior to the load’s
frequency. The natural frequencies obtained for the beam finite element model are approximately:

fN,l = 8. 33HZ, fN,Z = 5220”2, fN,3 = 146. 18HZ,
2.3.2.  Concentrated force results
For the concentrated force, the component of the discretized force is 1 on the last DOF concerning the

transversal displacement:

E, ={0,0,...,1,0} (9)

The temporal components of the applied dynamic force are in order:

0.15 02 0.25 0.3 0.35 0.4

0 0.05 0.1 0.15

0.2 0.25 03 0.35

0.4
ts]
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Figure 2.21: Temporal components of the force oscillating at 3 Hz, 30 Hz, and 100 Hz, respectively.

As said before, for the first two temporal components of the force the number of retained modes (n°gy) is
1, while, for the last one n°gy = 2.

The displacements obtained for the specified frequencies and the concentrated force are reported below:

Transversal displacements obtained by MD, MT & MA methods; freq.=3Hz; concentrated force; n"RM=1
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Figure 2.22: Displacements at different distances from the beam’s constraint (x = 0 m) for the concentrated
force oscillating at 3 Hz.
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Transversal displacements obtained by MD, MT & MA methods; freq.=30Hz; concentrated force; n°RM=1

4 < 10° «10™ )

10 T T T T 4 T T T T

w(t, x=0.2m) [m]
w(t, x=0.5m) [m]

[

0.7m) [m]
1m) [m]

wit, x
wit, x

0 0.05 0.1 0.15 02 0.25 0 0.05 0.1 0.15 02 0.25
t[s] t[s]

Figure 2.23: Displacements at different distances from the beam’s constraint (x = 0 m) for the concentrated
force oscillating at 30 Hz.

Transversal displacements obtained by MD, MT & MA methods; freq.=100Hz; concentrated force; n® 2
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Figure 2.24: Displacements at different distances from the beam’s constraint (x = 0 m) for the concentrated
force oscillating at 100 Hz.
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2.3.3. Constant load results

Similarly to the case presented in the paragraph 2.3.2:

Dynamic load applied to the beam; freq.=3Hz; constant load; n°
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The other analysed temporal components of the force oscillate at 30 and 100 Hz, respectively:
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Figure 2.25: Constant spatial load and temporal components associated.

The results obtained for the constant load oscillating at the specified frequencies are reported below:
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Figure 2.26: Displacements at different distances from the beam’s constraint (x = 0 m) for the constant

load oscillating at 3 Hz.

Transversal displacements obtained by MD, MT & MA methods; freq.=30Hz; constant load; n‘“RM=1
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Figure 2.27: Displacements at different distances from the beam’s constraint (x = 0 m) for the constant

load oscillating at 30 Hz.
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Transversal displacements obtained by MD, MT & MA methods; freq.=100Hz; constant load; n“RM=2

%104

T T T

~

0.2m) [m]
0.5m) [m]
o o

wi(t, x=
wit, x=

)

t[s]

=0.7m) [m]

w(t, x

0 0.05 0.1 0.15 0.2 0.25
tls] tls]

Figure 2.28: Displacements at different distances from the beam’s constraint (x = 0 m) for the constant
load oscillating at 100 Hz.

2.3.4.  Triangular load results

Similarly to the case reported in paragraph 2.3.2:

Dynamic load applied to the beam; freq.=3Hz; triangular load; n"RM=1
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The other analysed temporal components of the load are characterized by frequencies of 30 and 100 Hz, respectively:
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Figure 2.29: Triangular spatial load and temporal components associated.
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The results obtained for the triangular load, at the specified frequencies, are reported below:
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Transversal displacements obtained by MD, MT & MA methods; freq.=3Hz; triangular load; n°RM=1
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Figure 2.30: Displacements at different distances from the beam’s constraint (x = 0 m) for the triangular

load oscillating at 3 Hz.

Transversal displacements obtained by MD, MT & MA methods; freq.=30Hz; triangular load; n°RM=1
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Figure 2.31: Displacements at different distances from the beam’s constraint (x = 0 m) for the triangular
load oscillating at 30 Hz.
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Transversal displacements obtained by MD, MT & MA methods; freq.=100Hz; triangular load; n"R
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Figure 2.32: Displacements at different distances from the beam’s constraint (x = 0 m) for the triangular
load oscillating at 100 Hz.

The results show that the MT method generally outperforms the MA method in almost every scenario,
better converging to the solution obtained using the MD method. The approach of only retaining some
modes without adding any residual vectors (wg) tends to perform the worst.

This could explain why commercial software such as MSC Nastran had started replacing the MA method
with the more accurate MT method [8]. In particular, focusing on the figures relative to the load’s frequency
of 30 Hz, near the constraint (the results in question are boxed), is easy to further compare the MT and MA
methods: the former seems to be closer to the MD solution, except for Figure 2.23 where it cannot be
determined uniquely which method performs better.

2.3.5.  Considering multiple applied forces

In considering multiple applied loads on the system described in paragraph 2.3.1, the MT vectors (matrix [P])
must be calculated as follows:

[KI[{X} X3 X3 = [{Rea} - {Rei} - {Ren}] = [Dk] = [XITIKI[X]; [Dy] = [X]17[M][X]

Therefore:

[Dk1[Q] = [Du][QH@R} —~ [P] = [X1[Q] ~ [¢] = [[¢]r [P]]

However, this approach is less suitable for the direct comparison of the methods, contrarily to applying only
a single load, because it is hard to define which variations are related to which applied loads.

However, the results show again the MT method's superiority over the MA method. For instance, Figure
2.35 shows that the MT displacements obtained near the constraint at n°g, = 1 better represent those
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obtained by the MD solution, differently from the MA solution, which performs worse. However, the MA
method seems capable of improving the solution offered by only considering the retained modes (solution
wg). It is worth noting that the MT method, in this case, is 4 times more expensive than the MA method.
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Figure 2.33: Representation of 3 dynamic forces applied simultaneously to the beam.
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Figure 2.34: Representation of the discretized forces applied to each DOF (R,), the modally represented
forces (Rg) and the residual forces (R;). The force applied on the constrained DOF (x = 0 m) is not
considered in the modal representation of the forces as stated at the end of paragraph 2.2.3.
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Transversal displacements obtained by MD, MT & MA methods
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Figure 2.35: Displacements at different distances from the beam’s constraint for 3 dynamic loads applied to
the beam simultaneously. In the boxed figure the displacements obtained by MD and MT methods
completely overlap.

2.4. Performance coefficients and results enhancement

2.4.1. Performance coefficients

At this point, it was worth finding a way to compare the methods analytically for a single applied load/force.
The solution adopted consists of subtracting from the MD solution the MA and MT solutions to compare the
method’s differences from the complete solution. All the solutions were matrices of 22x1000, where the
former is the number of global DOFs and the latter is the number of time steps.

The comparisons were performed only on the transversal displacements. Once obtained the difference
results, which, were matrices of 11x1000, were calculated:

- The maximum displacement difference, normalized with wyp max (€max)-

- The maximum mean timed value on all the considered DOFs, normalized with wyp max-

- The global mean value, normalized with wyp max (Cpean)-

- Norm 1, not normalized, but the value was averaged on all the load’s oscillations (Cyorm 1)-
- Norm oo, not normalized, but the value was averaged on all the load’s oscillations (€yorm o )-

The overall framework was applied to each single spatial force/load shown in Figure 2.20 at several
frequencies of the forces and loads’ temporal components. The chosen analysis frequency range was: f =
1 — 300 Hz. The coefficients described were applied after considering the absolute value of the overall
transversal displacement differences. In the next paragraph are reported all the obtained results except for
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the second coefficient introduced in the list above (maximum mean timed value), which was not reported as
would not give any additional insight into the methods analysed.

2.4.2.  Analytical results

In this paragraph are presented the performances of the methods analysed. The red vertical lines in each
figure represent the first 4 modal frequencies of the beam in the range 0-300 Hz.

The used approach will be named ‘Approach 0’ in further sections. It consists of retaining 1 mode until the
dynamic load’s frequency reaches the second modal shape, then, the approach retains 2 modes until the
load’s frequency reaches again the third, and so on. In other words, are retained all the modes having a
frequency inferior to the one associated with the temporal component of the load/force.

From Figures 2.36-2.47 it is clear that after adding an ulterior mode the solutions improve instantly in the
frequency domain since the methods have all the modal instruments to correctly represent the solution at
the soliciting frequency, which is close to the just retained mode. However, as the force’s frequency
approaches the next modal frequency, the retained modes are no longer sufficient to well describe the
solution, being necessary to include the next mode to represent it correctly. Different and more efficient
approaches will be characterized in the next paragraphs since the retention of the next mode could be
anticipated just when the error starts to increase with an exponential-like behaviour.
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Figure 2.36: ¢y ax as a function of force’s frequency for the concentrated force.
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Figure 2.42: ¢norm 1 OS a function of load’s frequency for the constant load.
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Figures 2.43: C€norm o 05 a function of load’s frequency for the constant load.
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Figure 2.44: cyax as a function of load’s frequency for the triangular load.
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Figures 2.47: Cnorm « S a function of load’s frequency for the triangular load.

When approaching the next modal frequency from the left side, all the methods behave similarly and
experience a rapid increase in the coefficients. This is because the MD response is mainly governed by the
following mode that is not included in the computations of the MT and MA solutions. In fact, the algorithm
only considers modes with a frequency lower than the applied load's frequency. Thus, in these circumstances,
the primary mode contributing to the overall response is not accounted for, leading to maximum errors as
large as the maximum real displacement of the beam. However, the presence of a pseudo-mode in the MT
method reduces these mispredictions, leading often to less pronounced peaks.

It has been observed that the defined coefficients are always slightly larger for the MA method than for the
MT method, for each frequency considered, indicating the overall better accuracy of the MT method over the
MA method. Anyway, both methods enhance the results obtained by only considering the retained modes
(wg solution)

Furthermore, as more modes are retained (i.e. at higher load’s frequency), the local peaks decrease near the
following modal frequencies. However, the peaks of cyorm 1 ANd Cyorm o decrease more rapidly than for
Cymax and Cpean. Overall, the results obtained by cyorm 1 ANd Cyorm « are in good agreement with those
obtained by ¢y 4x and Cyean-

The next figures provide an example of a load’s frequency that is slightly lower than the frequency of the
second mode, which is not retained by the considered approach. Figures 3.48, 3.49, and 3.50 study in a
practical way the peaks mentioned before. Demonstrating once again the superiority of the MT method over
the MA method since it always better approximates the MD results due to its capacity of considering dynamic
amplifications, neglected in the MA method. However, the MT method has more difficulties for the
concentrated force case.

It is reminded that the second modal frequency is fy , = 52.20 Hz.
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Transversal displacements obtained by MD, MT & MA methods; freq.=51Hz; concentrated force; n°_ =1
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Figure 2.48: Deviations of the MT and MA methods from the MD method for the concentrated force
oscillating at 51 Hz.
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Figure 2.49: Deviations of the MT and MA methods from the MD method for the constant load oscillating at

51 Hz.
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Transversal displacements obtained by MD, MT & MA methods; freq.=51Hz; triangular load; n"R =1
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Figure 2.50: Deviations of the MT and MA methods from the MD method for the triangular load oscillating
at51 Hz.

2.4.3. Result enhancement approaches

In this and in the next paragraphs, the approach used in paragraph 2.4.1 will be referred to as approach ‘zero’.
To enhance the accuracy of the approach 0, two defined techniques are employed:

-The first approach involves averaging two contiguous modal frequencies to introduce an additional mode as
the load’s frequency exceeds the averaged frequency. The green lines in the images of the next paragraph
indicate where the extra mode is introduced. This approach significantly reduces the errors and prevents
them from reaching extreme peaks. The results obtained are reported in paragraph 2.4.4.

-The second approach, whose results are reported in the relative paragraph 2.4.5, involves categorically
considering an additional mode compared to approach 0. If only one mode was retained for a given frequency
in approach 0, the current approach now considers two frequencies. If before was nguy approacho = 2, Now
NrM,approachz = 3, and so on. Implementing this strategy further improves the results and reduces errors
but requires a higher computational cost compared to approaches 0 and 1.
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2.4.4.  Approach 1 results

Approach 1: Cax for concentrated force
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Figure 2.51: Approach 1: cp4x as a function of force’s frequency for the concentrated force.
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Figure 2.52: Approach 1: cy.qn 0S a function of force’s frequency for the concentrated force.
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Figure 2.55: Approach 1: cyax as a function of load’s frequency for the constant load.
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Figure 2.56: Approach 1: cyeqn 0S a function of load’s frequency for the constant load.
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Figure 2.57: Approach 1: cy.rm 1 s a function of load’s frequency for the constant load.
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Figures 2.58: Approach 1: ¢yor-m a5 a function of load’s frequency for the constant load.
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Approach 1: Cax for triangular load
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Figure 2.59: Approach 1: cy4x as a function of load'’s frequency for the triangular load.
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Figure 2.60: Approach 1: Cy.qn 0S a function of load’s frequency for the triangular load.
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Figure 2.61: Approach 1: cy.-m 1 0 a function of load’s frequency for the triangular load.
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for triangular load
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Figure 2.62: Approach 1: Cyorm « 0S a function of load’s frequency for the triangular load.
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2.4.5.  Approach 2 results

Approach 2: Cotax for concentrated force
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Figure 2.63: Approach 2: ¢y 4x as a function of force’s frequency for the concentrated force.
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Figure 2.64: Approach 2: cy.qn 0s a function of force’s frequency for the concentrated force.
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g 105 Approach 2: CNorm 1 for concentrated force
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Figure 2.65: Approach 2: ¢y ,-m 1 0S a function of force’s frequency for the concentrated force.
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Figure 2.66: Approach 2: cy.rm « 0S a function of force’s frequency for the concentrated force.
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. %1073 Approach 2: Cpax for constant load
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Figure 2.67: Approach 2: cy4x as a function of load’s frequency for the constant load.
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Figure 2.68: Approach 2: cy.qn 0S a function of load’s frequency for the constant load.
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<105 Approach 2: ¢ for constant load
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Figure 2.69: Approach 2: ¢y .rm 1 s 0 function of load’s frequency for the constant load.
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Figure 2.70: Approach 2: ¢yorm « 0S a function of load’s frequency for the constant load.
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Figure 2.71: Approach 2: cy4x as a function of load’s frequency for the triangular load.
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Figure 2.72: Approach 2: cyean 0S a function of load’s frequency for the triangular load.
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5 % 108 Approach 2: Chorm 1 for triangular load
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Figure 2.73: Approach 2: cy.-m 1 0s a function of load’s frequency for the triangular load.
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Figure 2.74: Approach 2: ¢yorm « 0S a function of load’s frequency for the triangular load.
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2.4.6.  Approach 0 and Approach 1 comparison

In this paragraph, the two defined approaches ‘0’ and ‘1’ are compared. In Figures 2.75-2.86 pedicle “1”
indicates the lately defined Approach 1, while pedicle “0” indicates the results obtained using Approach 0.
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Figure 2.75: Comparison of cyax for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the
concentrated force as a function of force’s frequency.

[+

n for concentrated force

018 Mea
MA0
MA
0.16 - =
_— MT0
— MT1
0.14 — Weol |
Ws1
012 —
01 -1
c
3
=
[&]
0.08 -1
0.06 -1
0.04 -1
0.02 -1
. jﬁA L ‘ —
100 150 200 250 300

0 50
freq. [Hz]
Figure 2.76: Comparison of €pean for approach 0 (pedicle ‘0°) and approach 1 (pedicle ‘1°) for the

concentrated force as a function of force’s frequency.
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A 10 Cnorm 1 for concentrated force
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Figure 2.77: Comparison of Cyorm 1 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the

concentrated force as a function of force’s frequency.
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Figure 2.78: Comparison of €y orm « for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the

concentrated force as a function of force’s frequency.
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Figure 2.79: Comparison of ¢y ax for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the constant
load as a function of load'’s frequency.
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Figure 2.80: Comparison of Cyreqn fOr approach 0 (pedicle ‘0°) and approach 1 (pedicle ‘1°) for the constant
load as a function of load’s frequency.
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Figure 2.81: Comparison of Cyorm 1 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the

constant load as a function of load’s frequency.
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Figure 2.82: Comparison of €y orm « for approach 0 (pedicle ‘0°) and approach 1 (pedicle ‘1°) for the

constant load as a function of load'’s frequency.
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1 CmAx for triangular load
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Figure 2.83: Comparison of ¢y ax for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the triangular
load as a function of load'’s frequency.
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Figure 2.84: Comparison of Cyreqn for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the triangular
load as a function of load'’s frequency.
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Figure 2.85: Comparison of Cyorm 1 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the
triangular load as a function of load’s frequency.
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Figure 2.86: Comparison of €yorm « for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the
triangular load as a function of load’s frequency.
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2.4.7. Conclusions

Approach 2 provides the best overall enhancements but is also the most expensive, computationally. On the
other hand, approach 1 yields significant benefits only when the next modal shape is added. Introducing
another mode strategically could offer advantages, as it does not necessarily need to be introduced at the
averaged frequency. For example, it could be introduced at one-third of the distance between two
contiguous modal frequencies, however, this depends on the chosen enhancement criterion.

The enhancement criterion could aim to improve outputs when one or more performance coefficients
reach a certain threshold value, or when the impact of the improvement would be more beneficial
compared to the solution without residual vectors (wy). For instance, approach 0 does not provide strategic
benefits since it introduces another mode where the error of MT or MA is practically the same of the error
obtained with wg. In contrast, approach 1 introduces another mode where the errors of MT and MA
methods are approximately half of the error of w,. Therefore, an enhancement threshold could be
implemented to improve the solution when the error of the residual vector method chosen exceeds a
certain portion of the error obtained without any residual vector, making its use still meaningful.

Clearly, the enhancement criterion could consist of a combination of the criteria mentioned above:
analytical studies on different systems and loading conditions could be made in order to determine how
many modes to retain to offer the best possible solution at the lowest computational cost, however, this
implies also the precise definition of the criterions necessary for the suggested optimization.

The problem arises when the spatial portion of the applied load is no longer simple or linear as in the
presented cases, the approaches discussed may fail due to the excitation of modal shapes having
frequencies well above the maximum frequency content of the load. An example of this is reported in the
next paragraph.

2.5. Considering a particular force

Let’s consider a Global force structured as:

F ={0,0, —700, 0, 00, 00, 140,0, 0,0, —450, —1.70, —8,0, 00, 7.1, 0} [N,N-m,..]

In the equation above are paired the solicitations applied on each DOF (concentrated forces and moments,

respectively). The values of the force FM(,G) were chosen so that the static associated was purposely similar
to one of the beam’s modal shapes, in order to excite it.

The static displacement results and the reference modal shape are reported in Figure 2.87:

69



h =
Beam's Static Displacement for the applied Fa 4™ Modal Shape @ f,=286.6635Hz
25 : T T T
T

w [m]
v

Figure 2.87: Comparison between the beam’s static displacement for the applied FM(,G)and the 4" modal shape.

The performance coefficients defined in paragraph 2.4.1 are reported in Figures 2.88-2.91 for the specified
spatial force at different frequencies for approaches 0 and 1. The chosen frequency span for the analyses is
f=0-600Hz.

Approach 0 & 1 comparison: ClAX (particular force)
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Figure 2.88: Comparison of ¢y ax for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the particular
force as a function of force’s frequency.
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Approach 0 & 1 comparison: c (particular force)
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Figure 2.89: Comparison of Cyreqn fOr approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the particular
force as a function of force’s frequency.
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Figure 2.90: Comparison of Cyorm 1 fOr approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the
particular force as a function of force’s frequency.
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Approach 0 & 1 comparison: ¢ (particular force)
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Figures 2.91: Comparison of €yorm « for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1°) for the
particular force as a function of force’s frequency.

In the reported simulations the errors were analysed before and after the fourth mode retention. It is
important to note that the errors are very large for the MT method when only the first mode is retained and
the frequency is really low. All the coefficients oscillate until the second mode is reached. For ngy < 4, cpax
rapidly increases until its peak level of 1, however, this increment is less evident for the MA and MT methods.
The main difference with the simulations reported in paragraph 2.4 is that ¢y, 4x here increases similarly to a
logarithmic-like function instead of an exponential-like one, however, upon retaining the fourth mode, it
increases linearly. cyqqn also experiences a slight decrease of the slope after the 4™ modal shape retention
and, before its retention, has values higher than those relative to the cases analysed in the previous
paragraphs. Cpreqn is generally higher for the MA method than for the MT method.

It is also observed that at the resonance frequency, the dynamic displacements were relatively well
characterized (for MT and MA methods in particular). Furthermore, it can be hypothesized that when one or
more retained modes vaguely match the static displacement result associated to the spatial force, a general
improvement of the solution can be observed. In the simulations is evident that the MT method gives the
best results at higher frequencies and both methods globally improve the results obtained by not using any
residual vector (w;), however at lower frequencies, the error obtained by the MT method is the largest due
to the incorrect representation of the displacement of the beam in the range x = 0 — 0.4 m.

CNorm 1 ANd Cyorm « Peaks increase until the 4" mode is retained, then they start to decrease. For the latter
this is more evident. However, their trend is similar, indicating a generally better response reconstruction after
the 4™ mode retention from both time and spatial domain perspectives.

Overall, approach 1 provides here a substantial enhancement of the solution for MA and MT methods. While
the effects of approach 1 are less evident on the wy coefficients due to their rapid increase. For instance, for
approach 1 the peaks of cpax and cpyeqn improve by up to 70% relatively to those obtained using approach
0 for MT and MA methods, while the enhancements are still not sufficient to well represent the w solution
at each force’s frequency, giving marginal benefits only on the frequency domain portion where a further
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mode is retained and after the 4" mode retention. Differently from the results obtained in paragraph 2.4
where the effects of approach 1 were always evident on w;.

In conclusion, for each case analysed, approaches 1 and 2 denote the capabilities of the MT and MA methods
of improving the wg solution, with MT being slightly better than the MA method, in every aspect and
circumstance, except for really low numbers of retained modes, where the peaks of cpax and Cpyeqn Can
reach values 4 times higher than for MA and ws.
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3. Study of an aircraft wing section using the Residual
Vectors methods already available in Nastran

3.1. Structural Model

The main goal of this chapter is to study the differences between the methods that use the concept of residual
vectors already implemented in MSC Patran/Nastran. The model used in these analyses is a wing section with
a NACA 2414 airfoil composed of 4 ribs and 3 spars, predominantly made of multilayer composites.

The geometry of the model and composite’s orientation are reported in Figure 3.1, while material properties
and the composite stacking sequences are reported in Tables 3.1 and 3.2, respectively.

Material: Tooray — TCA T700S-12K-50C/#2510 Plain Weave Fabric
E;1 =55GPa
E;, =55 GPa
V12 = 0.04
G, =4.3GPa
Gi3 =1GPa

Ply thickness: t = 0.00021 m
Table 3.1: Material properties.

Airfoil base shell: [0/+30/90 /=30/0](10s)
Stiffening shell, ribs and spars: [0/(45),/90] 105

Table 3.2: ply stacking sequences for the composites. The pedicle ‘s’ implies symmetry.

7.42m 7.02m

L
14.75m
§ Wing Ribs every 3.6875m
(Total 4 spars) Example Mesh Ribs and Spars
0-deg global
" direction
x (742 + 7.02 IH’II'_—

Composite Airfoil Spars at x=0.2, 0.4, 0.6

i
y 14.75) e =
y=(1475) + 3

4 (_7"” 1);l.| NACA 2414
1.85 1

Airfoil Shell \{.-: ‘

Figures 3.1: Wing geometry and features.

Stiffening shell starts at x=0.1 ends at =0.7
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3.2. Model Creation

The model main geometric points were defined in Matlab, distinguishing those belonging to the skin, the
stiffening, and the spars’ cores, then, they were added separately in MSC Patran as a starting point for the
model creation. An impulse lasting 0.1 seconds was applied to the structure, it was deliberately
chosen to only involve the first 4 modal frequencies. The cut-off frequency of the impulse is 28 Hz, defined as
the frequency at which its Fourier Transform absolute value reaches 1/100 of the peak value. The third and
fourth modal frequencies of the model are approximately 15 and 35 Hz indeed. It is important to note that
skin panels near the trailing edge were removed due to their association with local deformation modal
shapes, which were several and pervasive.

It was decided to remove this part instead of adding further reinforcements such as stringers or ribs in the
proximity of the skin panels which constituted the trailing edge. The constraint used in the model is a full-
fixity applied to the first rib at x = 0 m, while, for the first simulation, the impulse was exclusively applied to
node no. 2772, which belongs to the fourth rib. The obtained mesh is composed of 2167 nodes.

Loading, constraints, finite element mesh, and the first 5 modal shapes are shown in the following figures.
The modal frequencies were also compared to the frequencies obtained by the study reported in Reference
[9] to ensure the validity of the current modal shapes, 2 extracts are reported in Figures 3.13 and 3.14.

Matlab Wing Geometry ——Chord Lines
. Leading/Trailing edges
e Skin
Structural Stiffening
— Spars' cores

Figure 3.2: Geometric points reconstruction in Matlab. They are subsequently imported in MSC Patran to
create in order: lines, surfaces, constraints, material properties associated to the geometry and finally the
mesh.
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Figure 3.3: Impulse applied on the structure; fr 1 = 28 Hz.
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Figure 3.4: Fourier Transform and cut frequencies for different impulses, the lime-green and blu impulses
will be used in the first and second simulations, respectively presented in paragraphs 3.5 and 3.6. (extracted
from Ref. [10])

Figure 3.5: Model’s geometry created in MSC Patran.
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Figure 3.6: Constraints (Perfect Joint) and force applied to the model’s geometry [force displayed at t =
0.001 s].

Figure 3.7: Final structure’s finite element mesh with 2167 nodes.

3.3. Modal Analysis

Figures 3.8-3.12 report the first 5 modal shapes used in both simulations, which are presented in
paragraphs 3.5 and 3.6.

Patran (Student Edition) 22-May-24 22:14:32
Fringe: SG1:DEFAULT, A1:Mode 1 : Freq. = 4.0907, Eigenvectors, Translational, Magnitude, (NON-LAYERED)
Deform: DEFAULT, Al:Mode 1: Freg. = igenvectors, Translational,

@Nd 4048

ONd 1

Deformation :
@Nd 4043

Figure 3.8: Model’s first modal shape at f; = 4.091 Hz.
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Patran 2023.1 i fay-24 22:15:42
Fringe: SC1:DEFAULT, A1:Mode 2 : Freq 024, Eigenvectors, Translational, h‘!aﬂgn'rtuda (NON-LAYERED)
Deform: SC1:DEFAULT, Al:Mode 2 : Freq. = 24. Eigenvectors, Translational,

Patran 2| .1 (Student Edition) WMay-24 22:16:43
Fringe: SC1:DEFAULT, A1:Mode 3 : Freq 5, Eigenvectors, Translational, Magnitude, (NON-LAYERED)
DEFAULT, A1:Mad Freg. =1 Eigenvectors, Translaticnal,

Figure 3.10: Model’s third modal shape at f; = 15.375 Hz.
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Figure 3.11: Model’s fourth modal shape at f, = 34.846 Hz.
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Patran 2023.1 (Student Edition) 22:
Fringe: SC1:DEFAULT, A1:Mode 5
Deform: SC1:DEFAULT, A1:Mode & Freq. = 40.854, Eigenvectors, Translational,

1 26500

default_Fringe
Max 1.25+00 @Nd 766

default_Deformation :
Max €

Figure 3.12: Model’s fifth modal shape (torsional) at f5 = 40.954 Hz.

Here are reported 2 extracts from Ref. [9], which define typical modal frequency ranges for aeronautical
wings.

First modal analysis (natural frequencies) of the wing including engine and the
wig-let is carried out using ANSYS ver 15. It is decided to obtain the natural frequen-
cies between 0-300 Hz so that it can be simulated with the engine operating frequen-
cies for resonance analysis. We obtained 60 frequencies (modes) in the range 0-300
Hz. Typically, modal analysis of the fifth mode f=13Hz is shown in the Fig.3. To
indicate all the modal frequencies, a plot of the maximum amplitude vs. modal fre-
quencies is shown in the Fig.4

(a)

Fig.3 Typically (a) modal analysis (b) von Mises stress distribution of the fifth mode f=13Hz
Figure 3.13: Example of typical modal frequencies for an aeronautical wing (extract 1 from Ref. [9]).
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Fig.4. Maximum amplitude vs. modal frequencies

Figure 3.14: Typical modal frequencies for a wing (extract 2 from Ref. [9]). The orange box denotes the

presence of multiple modes in the first 50 Hz, validating the modal frequency values obtained for the current

analysis.
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3.4. RESVEC function configurations

3.4.1. The RESVEC function

Different configurations of the MSC Nastran RESVEC function were evaluated for the defined problem at
different numbers of retained modes. The main goal was to compare the two methods implemented in MSC
Nastran: The Modal Truncation Augmentation method, which was already analysed in previous chapters, and
the 'Inertia Relief-based' method, which is arbitrarily named so by the author of the thesis based on the MSC
Nastran’s manual definitions (Figure 3.15). The method name will be shortened to Inertia Relief (IR) from now
on, not to be confused with homonym method, which is used to study non-constrained structures, however
the 2 methods may share a common logic [77]. It consists in applying 6 accelerations (3 translational and 3
rotational) to the structure and then obtain the associated distributed loadings: for each of them it is
calculated the MT vector associated. In Patran, these methods are used simultaneously by default by the
RESVEC function to optimize the calculation of the dynamic response. The results will show that this approach
is the most effective but requires the highest computational cost.

However, it is difficult to determine which of the two methods mentioned is better because it depends on the
perspective and the dynamic forces applied to the system. The following paragraphs attempt to shed light on
this problem by analyzing and comparing the methods IR, MT, IR+MT (RESVEC = YES configuration), and the
solution without any Residual Vectors implementation (RESVEC = NO configuration). All the Residual Vectors
were allowed to dynamically respond to the defined loading and were calculated based on the user-defined
viscous damping (which was set to 3% of the critical viscous damping coefficient). In the Patran manual, no
further information could be found on the meaning of RVDOFi (Figure 3.15), which could be connected to the
super element definition (not used in the presented simulations). Anyway, as reported in Figure 3.16, it
seems to be irrelevant for the analysis purposes.

3.4.2. RESVEC configurations

The different commands used for the different methods mentioned in paragraph 3.4.1 are reported below
and an extract from the MSC Nastran’s manual, regarding the function RESVEC, is reported in Figure 3.15:

For no residual vector calculation:
RESVEC = NO

For the standard Patran residual vector calculation:
RESVEC = YES

For the calculation of the residual vectors based on inertial relief only:
RESVEC(INRLOD,NOAPPL,NOADJLOD,NORVDOF,DAMPLOD,DYNRSP) = YES

For the calculation of the residual vectors using the Modal Truncation Augmentation method only:
RESVEC(NOINRL,APPLOD,NOADJLOD,NORVDOF,DAMPLOD,DYNRSP) = YES

Table 3.3: RESVEC configurations used in paragraph 3.5 and 3.6.
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RESVEC (Case) | 493

Controls Residual Vectors

RESVEC Controls Residual Vectors

Specifies options for and calculation of residual vectors.

Format:
RESVEC|| | INRLOD| |APPLOD| | ADJLOD || RVDOF | |DAMPLOD| | DYNRSP =
NOINRL| |NOAPPL|" |NOADILOD| [NORVDO| | NODAMP | |NODYNRSP
SYSTEM/NOSYSTEM
COMPONENT/NOCOMPONENT
BOTH or YES
NO
Examples:
RESVEC=SYSTEM
RESVEC (NOINRL) =COMPONENT
RESVEC=NO
Describer Meaning
INRLOD/ Controls calculation of residual vectors based on inertia relief (Default =
NOINRL INRLOD).
APPLOD/ Controls calculation of residual vectors based on applied loads (Default =
NOAPPL APPLOD).

ADIJLOD/ NOADJLOD Controls calculation of residual vectors based on adjoint load vectors
(SOL 200 only; Default = ADJLOD).

RVDOF/ Controls calculation of residual vectors based on RVDOFi entries (Default

NORVDOF =RVDOF).

DAMPLOD/ Controls calculation of residual vectors based on viscous damping (Default

NODAMP =DAMPLOD).

DYNRSP/ Controls whether the residual vectors will be allowed to respond

NODYNRSP dynamically in the modal transient or frequency response solution. See
Remark 5. (Default = DYNRSP).

SYSTEM/ Controls calculation of residual vectors for system (a-set) modes. For

NOSYSTEM NOSYSTEM, describers inside the parentheses are ignored. See Remark
2. for default.

COMPONENT/ Controls calculation of residual vectors for component (superelement or o-

NOCOMPONENT set) modes. For NOCOMPONENT, describers inside the parentheses are

ignored. See Remark 2. for default.

Figure 3.15: MSC Patran/Nastran manual on Residual Vectors function ‘RESVEC’. (Ref. [12]).
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Figure 3.16: RVDOF/NORVDOF subfunction comparison at the same n°gy. The subfunction is the only
change between the 2 RESVEC configurations.

Results denote no difference between the modal frequencies or modal shapes obtained enabling or disabling
the RVDOF subfunction.
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3.5. Analyses (transversal force)

3.5.1. RESVEC configurations applied to the wing model

The RESVEC configurations defined were used to study the wing section model under an impulsive force, the
study was reiterated at different numbers of retained modes. In figures 3.17-3.27 are reported the total
displacement in absolute value and the transversal displacement of the node n° 2772 (node where the
impulse is applied) for different numbers of retained modes (n°gp;).

Displacements indicate that for n°gy = 1 and n°gy = 2 there is not a considerable difference, while at
higher n°gy, the total and transversal displacements start to pack together.

Furthermore, from the mentioned images, it can be observed that the MT method seems to better
approximate the ‘RESVEC = YES’ solution at each number of retained modes for the current study, In fact, it
seems to outperform the IR method for what concerns displacements accuracy. However, the ‘IR’ method
could be more practical for preliminary studies though because it allows the calculation of 6 additional modal
shapes without defining any loading case.

Anyway, these results must be contextualized, subsequent analysis (paragraph 3.6) will show that the MT and
IR methods are both valid depending on the studied case. It is anticipated the IR method performs better
when n°gy, is very low and the spatial loading is complex but it generally necessitates a higher computational
cost, which makes it, in this case, less convenient than directly calculating the solution using more original
eigenvectors and applying the MT method instead.

Furthermore, it will be shown that the MT method aids in a better convergence to the ideal solution, which
is not assured by the IR method and the ‘RESVEC = NO’ configuration. The ‘RESVEC = YES’ solution seems to
be good independently from the n°gy,.

Total displacement in absolute value (Node 2772) at n°_, =1
0.03 T T T

I I
Inertia Relief Method (IR)
Modal Truncation Augmentation Method (MT)
RESVEC=NO
0.025 — RESVEC=YES (IR+MT)
0.02
=
E
—0.015
=1
0.01
0.005
0 : :
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t[s]

Figure 3.17: Total displacement in absolute value for the central node 2772 at 1 retained mode.

82



Total displacement in absolute value (Node 2772) at n° =1

-3
48>~ 10 T T T T I T T
Inertia Relief Method (IR)
Modal Truncation Augmentation Method (MT)
RESVEC=NO
481 —— RESVEC=YES (IR+MT)
4.4 —

[U(B)] [mm]
»

IS

3.8

36—

3.4 | 1 1 1 | | | 1 1 |
0.042 0.0422 0.0424 0.0426 0.0428 0.043 0.0432 0.0434 0.0436 0.0438 0.044
tis]

Figure 3.18: Total displacement in absolute value for the central node 2772 at 1 retained-mode. (Zoomed).
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Figure 3.19: Total displacement in absolute value for the central node 2772 at 2 retained modes. (Zoomed).
No evident differences with the previous case where the number of retained modes n°gy was set to 1.
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Figure 3.20: Total displacement in absolute value for the central node 2772 at 3 retained modes. (Zoomed).
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Figure 3.21: Total displacement in absolute value for the central node 2772 at 4 retained modes. (Zoomed).
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Figure 3.22: Transversal displacement for the central node 2772 at 1 retained mode.
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Figure 3.23: Transversal displacement for the central node 2772 at 2 retained modes.
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Figure 3.24: Transversal displacement for the central node 2772 at 1 retained mode. (Zoomed).
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Figure 3.25: Transversal displacement for the central node 2772 at 2 retained modes. (Zoomed). No evident

differences with the previous case where n°gy; = 1.
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Figure 3.26: Transversal displacement for the central node 2772 at 3 retained modes. (Zoomed)
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Figure 3.27: Transversal displacement for the central node 2772 at 4 retained modes. (Zoomed)
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3.5.2. Performance coefficients definition and results

To globally compare the methods, the solution found consists of subtracting an ideal solution (pedicle
‘Master’) from the specified method’s solutions. The ideal solution is the full dynamic response of the system
obtained using n°gy; = 300 and the “RESVEC = YES” configuration.

The global displacements were imported in Matlab and were 3D Matrices of 2167x3x200 (2167 Nodes x
[T, T, T3] x 200 Time Steps, T here stays for translation), except for the calculation of k;;;,, which was
performed on selected nodes (these are reported in Figure 3.28, and the resultant matrix in this case has
dimensions of 762x3x200). The defined coefficients are:

Global 0Ug maximum value, normalized with Upygster max (Kmax)-

- Global dU; mean value, normalized with Upygster max (Kmean)-

- Global dU; minimum value, normalized with Uygster max (Kmin)-

- Norm 1, defined as the maximum DOF sum of each dUpor; among all the time steps (Kygym 1)-

- Norm o, defined as the maximum of the time sum of each dUpF ; (t) among all the DOFs (Kyorm o )-

Practically, to calculate the norm 1 is necessary to sum at each time step all the differences from the Master
solution of each DOF, then it is chosen the maximum among all the time steps. While to calculate norm oo, it
is necessary to sum for each DOF all the differences across all the time steps, then it is chosen the maximum
value among all the DOFs.

Uy = /u?j+v%j+w%]- and @ refers to the difference between the calculated and the ideal solution
(Umaster)- 0Ug is defined as:

— _ — 2 2 2 _ 2 2 2
aUG,ij - |Umethod,ij UMaster,ij| - |Jumethod,ij + 1Jmethod,ij + Wmethod,ij \/uMuster,ij + vMaster,i]' + WMaster,i]'

In Figures 3.29-3.33 are reported the just defined coefficients for different RESVEC configurations as a
function of n°gy,. Figure 3.34 and Figure 3.35 show the total dynamic displacements in absolute value for a
more peripheral node (node 308). Demonstrating that in some cases, hypothetically when the displacement
variations are sudden, the IR method manages to better represent those variations, since it has more
frequency-wise instruments (6 modal shapes) than the MT method (1 modal shape) for the analysed case.

Figure 3.28: Nodes included in the evaluation of k,iy.
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Figure 3.31: k,,in 0s a function of n°gy,. No evident pattern can be deduced from this coefficient.
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Figure 3.33: Ky orm « 0S @ function of n°gyy.

Overall, in the analysed case, the impulse mainly solicits the first modal shape, letting in conclusion each
method described at each n°gy to represent sufficiently well the solution (kyax < 4.5% of Uygster max for
the “RESVEC = NO” method).

However, at really low n°gp, Kpax and kpyeqn (Figure 3.29 and 3.30) show that while the IR method is
characterized by the largest deviations from the ideal solution, it is closer to it on average. kyorm 1 and
Knorm o (Figures 3.32 and 3.33) are coherent with the results obtained by ky4x and kpseqn, furthermore
indicating that the MT method could have a better spatial representation while the IR method a better
temporal representation of the global solution at a higher computational cost. However, these differences
disappear as the n°gy, increases in favor of the MT method.

Anyway, the comparison between the MT, the IR and the ‘RESVEC = YES’ methods is here unequal because
the number of the pseudo-eigenvectors calculated for the MT method directly depends on the number of
differentiated dynamic loadings applied (which is 1 in this example), while the IR method calculates 6
eigenvectors independently from the applied dynamic loads and the ‘RESVEC = YES’ method calculate the
same eigenvectors calculated by both IR and MT methods (7 for this example). The combination of the two
methods is the more versatile and assures the best representation of the solution at each n°gy,, but for a
higher computational cost indeed.

Furthermore, at n°gy = 3 the MT method consistently outperforms the IR method in every defined
coefficient, which is not insignificant since it gives an overall better solution representation relying only on 4
total modal shapes, instead of the 9 total modal shapes used by the IR method.

This also means that the MT method better converges to the solution solving less than half of the differential
equations solved by the IR method. Furthermore, at n°g;; = 3, it is more convenient to use the MT method
than the ‘RESVEC = NO’ method with n°zy = 4, confirming the best convergence (at parity of total solved
differential equations) around all the presented methods. For higher n°g,, the “RESVEC = YES” solution has
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only marginal benefits over the MT solution, at an expensive computational cost. This will be further
investigated in paragraph 3.6.
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Figure 3.34: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge)
at 1 retained mode.
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Figure 3.35: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge)
at 1 retained mode (zoomed).
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3.6. Analysis (Torsional load)

3.6.1. Loading applied on the wing model and results

In order to excite the fifth modal shape of the model (torsional one) and observe the response of the
described methods at the n°gy, variation, a torsional couple of forces was applied to the system as indicated
in Figure 3.36. The impulse chosen for the time component of the forces has a cut frequency of fr ;=56 Hz,
which is sufficient to excite the mentioned modal shape (Figure 3.12, f5 = 40.954 Hz). The coefficients used
are the same as those introduced in paragraph 3.5.2.

The results indicate that the Modal Truncation Augmentation (MT) method performs the worst at low n°g,,,
while even the solution without residual vectors outperforms it, and the Inertia Relief (IR) method is the
second best, after the 'RESVEC = YES' configuration. This can be explained by observing the displacements at
node 308 (node 308 is reported in Figure 3.36), reported in paragraph 3.6.4: the MT method emulates the
correct solution but is out of phase sync due to the limited eigenvector matrix characterizing the system,
resulting in the largest deviation from the correct solution. Paradoxically, the solution reported by not
including any residual vectors is in a certain way more accurate since it cannot go out of phase as for the MT
method, this is also related to the fact that the MT vectors’ frequencies do not necessarily approximate the
non-retained modes’ frequencies (valid also for the IR method).

Analyzing the videos of the full structural displacements it can be observed that the IR and MT methods seem
to correctly emulate the 'RESVEC = YES' solution at n°;y; = 1, while the no residual vectors method performs
the worst from this perspective since it cannot represent any torsion of the structure as for the other 2
methods, but instead oscillates up and down. The modal shapes obtained using the IR and MT methods at
n°gpy = 1 are shown in paragraph 3.6.3: even though the single MT vector seems to accurately account for
the modally non-represented load, it is not sufficient to reconstruct the full system response. In contrast, the
IR method has a larger pool of residuals, making it more capable of representing the full displacements at
lower n°gy because of its reactivity from the time domain perspective. After n°gy > 3, the MT method
consistently outperforms the IR method. It is also worth noting that after the inclusion of the fifth (torsional)
modal shape, even the solution without any residual vectors tends towards the correct result, but along with
the IR method, as reported in Figures 3.38 and 3.42, it cannot fully converge to the ideal solution.

In conclusion, at lower n°g, the MT method gives a good representation of the solution at a lower
computational cost for simple applied forces which excite only few and transversal modal shapes (as reported
for the first simulation in paragraph 3.5), and outperforms the IR method for what concerns ky4x and
Knorm 1, Which instead is more accurate, at very low n°gyy, for Kyjean and kyorm « for any spatial load and in
every defined coefficient for particular spatial loads. The fact that the MT method consistently outperforms
the IR method at higher n°g,, is due to its capability to calculate the residuals directly from the modally non-
represented portion of the load, trying to solve the dynamic displacements as a function of the applied
loading case and not a priori as for the IR method.

However, the combined use of MT and IR methods generally ensures the best results at each n°g, and for
each applied dynamic force, helping to maintain the error exceptionally low in any presented case. At higher
n°gy it should be better to use only the MT method, while the ‘RESVEC = YES’ solution would be the best at
really low n°gy,, although it would be better to add some modes and again to use the MT method. For
instance, starting from n°g,, = 3 the differences between the MT and the “RESVEC = YES” solution are really
marginal for a big difference in the computational cost.
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Overall, the results do not give a precise indication why the MT and IR methods are both implemented and
used simultaneously. It is hypothesized that the MT method is the best choice when are retained all the
modes which sufficiently span the frequency content of the load, while the combined use of the IR and MT
methods is preferable otherwise. Other studies should be made in order to understand why MSC Nastran’s
algorithm adopts both methods by default and at which point one method is preferable over the other.

Figure 3.36: Forces applied to model’s geometry (displayed at t = 0.001 s). In red is reported the node 308.
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Figure 3.37: Impulse applied on the structure; fr, = 56 Hz.
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3.6.2. Performance coefficients results
k as a function of n°
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Figure 3.38: kp ax as a function of n°gyy.
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Figure 3.39: Kpean 0s a function of n°gy,.
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Figure 3.40: Kpean as a function of n°gy, (on selected nodes, they are reported in Figure 3.28).
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Figure 3.41: k,in 0s a function of n°gy,. No evident pattern can be deduced from this coefficient.
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Figure 3.42: Kyorm 1 OS @ function of n°gp.
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Figure 3.43: Knorm 05 0 function of the n°gy.

97



3.6.3. MT and IR methods’ pseudo-modal shapes

Here are presented the IR and MT method’s pseudo modal shapes which are capable of responding to the
defined torsional load case. They are all calculated at n°gy = 1.

23.1 (Student Edition) 26-May-24 01:27:

DEFAULT, A2:Mode 4 : Freq. = , Eigenvectors, franslational, Magnitude, (NON-LAYERED) 1,14+00

Deform: SC1:DEFAULT, A2:Mode 4 : Freq. = 42.564, Eigenvectors; nslational, 19%?:3?
9.14-01

8.38-01

7.62-01

6.85-01

default_Fringe :
Max 1.14+00 @Nd 454
Min 0. @Nd 1
default_Deformation :
Max 1.14+00 @Nd 454

Patran 2023.1 (Student Edition) 26-May-24

Fringe: SC1:DEFAULT, AZ:Mode 5 : Freq. = 44.25, Eigenvectors, Translational, Magnitude, (NON-LAYERED)

Deform: SC1:DEFAULT, AZ:Mode 5 : Freq. = 4 Eigenvectors, Translational,

default_Fringe
Max 1.57+00 @Nd 3365
Min 0. @Nd 1
default_Deformation :
Max 1.57+00 @Nd 3365

(Student Edition) 26-May-24 02:07:47

ATIC, A1:Mode 2 : Freq. = 25.255, Eigenvectors, Translational, Magnitude, (NOR
Deform: SC1:STATIC, Al:Mode 2 : Freq. =

Eigenvectdrs, Translational,

Figure 3.46: Augmented (second) Modal Shape for Modal Truncation Augmentation method. f, =
25.26 Hz.
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Patran 2023 Student Edition)
Fringe: TIC, Al:Mode 2 : : envectors, Translational, Magnitude, (NON-LAYERED)
Deform: SG1:STATIC, A1:Mode 2 : Freg , Eigenvectors, Translational,

2.64+00

-

default_Fringe :
Max 2.64+00 @Nd 3365
Min 0. @Nd 1
default_Deformation :
Max 2.64+00 @Nd 3365

Figure 3.47: Augmented (second) Modal Shape for Modal Truncation Augmentation method. f, =
25.26 Hz (Different view).

3.6.4. Displacement results

In this last paragraph are reported total displacements in absolute value (|U| = Vu? + v? + w?) and
transversal displacements (w) for the peripheral node 308 (represented in Figure 3.36). Figures 3.48, 3.49,
3.53, and 3.54 give a visual representation of why the coefficients associated to the MT method have such
high values at low n°g,,, which exceed even those obtained for the ‘RESVEC = NO’ configuration. While
Figure 3.50 and 3.55 report the convergence of the MT method to the ‘RESVEC = YES' solution, starting from
n°py = 3.

<103 Total displacement in absolute value (Node 308) at n®, =1
4 T T T T T 1 i i 1
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Figure 3.48: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge)
at 1 retained mode. The light-green arrow indicates the solution difference between the MT method and the
“RESVEC = YES” method.
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. 1073 Total displacement in absolute value (Node 308) at n“RM=2
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Figure 3.49: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge)
at 2 retained modes. Small differences between the cases where n°gp = 1 and n°gp, = 2. The light-green
arrow indicates the solution difference between the MT method and the “RESVEC = YES” method.
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Figure 3.50: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge)
at 3 retained modes.
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<1073 Total displacement in absolute value (Node 308) at n“RM=4
4 T T T T T 1 T i
Inertia Relief Method (IR)
Modal Truncation Augmentation Method (MT)
35 RESVEC=NO
— RESVEC=YES (IR+MT)
3
25+
B
E
= 20
=1
15—
1 =
0.5~
0 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

tis]

Figure 3.51: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge)
at 4 retained modes.
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Figure 3.52: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge)
at 5 retained modes.
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Transversal Displacement (Node 308) at n°,, =1
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Figure 3.53: Transversal displacement for the peripheral node 308 (near the wing’s trailing edge) at 1
retained mode. The light-green arrow indicates the solution difference between the MT method and the
“RESVEC = YES” method.

Transversal Displacement (Node 308) at n®,, =2
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Figure 3.54: Transversal displacement for the peripheral node 308 (near the wing’s trailing edge) at 2
retained modes. Small differences between the cases where n°gy; = 1 and n°gy = 2. The light-green arrow
indicates the solution difference between the MT method and the “RESVEC = YES” method.
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Figure 3.55: Transversal displacement for the peripheral node 308 (near the wing’s trailing edge) at 3
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4

retained modes.
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Figure 3.56: Transversal displacement for the peripheral node 308 (near the wing’s trailing edge) at 4

retained modes.
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Transversal Displacement (Node 308) at n°,, =5
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Figure 3.57: Transversal displacement for the peripheral node 308 (near the wing’s trailing edge) at 5
retained modes.
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4. Conclusions

Table 4.1 presents the advantages and disadvantages deduced from the analyses performed on the studied
methods. All the methods were evaluated based on solution accuracy and their computational cost, except
for the Mode Acceleration (MA) method, which is outdated and not used in modern structural dynamic

response algorithms.

Overall, the Modal Truncation Augmentation (MT) method seem to provide the best balance between
computational cost and solution accuracy. In the MSC Nastran algorithm, it is used simultaneously with the
Inertia Relief-based (IR) method by default for the dynamic response calculation. Its use provides only
marginal benefits at higher numbers of retained modes (n°g,,). However, it can enhance the solution accuracy
at lower n°g), at a relatively high computational cost.

For instance, the results do not give a precise indication why the MT and IR methods are both implemented
and used simultaneously. It is hypothesized that the MT method gives better results if compared to the IR
method when are retained all the modes which sufficiently span the frequency content of the load, while
the combined use of IR and MT methods is preferable otherwise. Other studies are necessary to understand
why MSC Nastran’s algorithm adopts both methods by default and at which point one method is preferable

over the other.

Method

pros

cons

Mode Displacement

Allows to obtain the complete dynamic
response for small systems.

Computationally expensive for large
systems.

No residual vectors

Useful for simple applied loads which
mainly excite the first modal shapes of the
structure. However, the MA, MT and IR
methods can significantly enhance its
solution.

Extremely expensive to ensure the solution
convergence since it does not account for
the modally non-represented loads/forces.
At parity of n°gy there are often better
alternatives.

Mode Acceleration

Can enhance the results obtained by not
including any residual vector.

Outdated, there are better alternatives
since it does not include any dynamic
amplification relatively to the modally non-
represented loads.

Modal Truncation

Best convergence at the n°g,, increase.

Large solution mispredictions when are

Augmentation Best trade-off between computational cost | retained only few modes and are applied
and solution approximation. Calculation of | complex loadings which excite modal shapes
the pseudo-modal shapes based on the with higher frequencies.
applied loads/forces. Its computational cost is directly related to

the number of differentiated applied loads.

Inertia Relief-based Possibility of calculating pseudo modal Worse solution convergence than for the MT

(MSC Nastran shapes without defining any loading case, | method at the n°g,, increase at a higher

algorithm) useful for preliminary structural analyses. computational cost. When is useful (at low

(Possible) better solution approximation
than for the MT method when the
retained modes’ frequencies do not
sufficiently span the frequency content of
the loads/forces.

n°guy) there are probably better options at
parity of computational cost, for example, to
add more modal shapes and use the MT
method instead. However, this might
depend on the load'’s frequency content.

“RESVEC = YES”
(MSC Nastran
algorithm)

It has been observed empirically that this
method assures the best solution
approximation at each n°gy.

(Possible) best choice when the retained
modes’ frequencies do not sufficiently
cover the load’s frequencies.

High cost for marginal benefits respect to
the MT method at the n°g,, increase. For
this reason, it might be better to add more
modal shapes and use the MT method
instead. However, this might depend on the
load’s frequency content.

Table 4.1: Advantages and disadvantages of the analysed methods. (Possible) and ‘might’ refer to the
hypothesis discussed above.
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