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Introduction 
 

The thesis compares different methods used to obtain structural dynamic responses: Mode Displacement, 

Modal Truncation Augmentation, and Mode Acceleration. There is limited existing literature on these 

methods, with only a few recent scientific articles providing further insights into their differences and 

capabilities [1].  

The thesis conducts detailed analyses of the mentioned methods and also compares the "Inertia Relief-based" 

method to the Modal Truncation Augmentation method. Both methods are implemented by default in MSC 

Nastran's RESVEC function, which calculates residual vectors to obtain improved structural dynamic 

responses.  

Chapter 1 discusses the first methods, while Chapter 2 focuses on their implementation, code validation using 

reference literature data, and application to the Euler-Bernoulli beam finite element model. This section also 

aims to numerically and analytically compare the methods using different defined performance coefficients. 

Analyses show that the methods exhibit different behaviours depending on the frequency content, spatial 

distribution of the applied loads, and the system's modal shapes and associated natural frequencies. 

Therefore, enhancement approaches are designed to optimize the solution at each applied load’s frequency.  

Finally, in Chapter 3, it is provided an analytical comparison of the methods already implemented in MSC 

Nastran. This is achieved through the definition of other performance coefficients, conceptually similar to 

those used in the previous chapter. The effectiveness of the methods is evaluated by their adherence to the 

ideal solution and their computational cost, the latter is directly related to the total number of solved 1-DOF 

differential equations, which is equal to the combined number of retained and residual modal shapes. 

The results obtained in Chapter 2 indicate possible reasons why MSC Nastran's algorithm progressively 

adopted the Modal Truncation method over the Mode Acceleration method, whereas results from Chapter 3 

suggest on which occasions it is more convenient to use the residual vector methods adopted by MSC 

Nastran's RESVEC function. It is anticipated that the Modal Truncation method is more effective than the 

Inertia Relief-based method at higher numbers of retained modes, providing the best approximation of the 

ideal solution at a reasonable computational cost. However, their simultaneous use could provide the best 

solution approximation in cases where the retained modes have frequencies far below the load’s frequencies, 

especially in presence of complex spatial components of the considered dynamic loads. 
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1.  Analysis of numerical methodologies based on modal 

shapes for determining the dynamic response of N-

DOF systems. 
 

1.1. Theoretical foundations 

 

1.1.1. The Mode-Displacement Method and Modal Shapes 

 

The Mode-Displacement (MD) method is widely used to obtain structural system's complete dynamic 

responses. This chapter will study the mentioned method, along with the Modal Truncation Augmentation 

and Mode Acceleration methods, in the first section of the next chapter they will be used to analyse an N 

Degree of Freedom (NDOF) system extracted from reference [2], then, they will be applied to an Euler-

Bernoulli beam model discretized with the Finite Elements Method.  

To obtain the MD equations, let’s start with the differential motion equation for a generic NDOF system, which 

is: 

 [𝑀]{𝑦̈(𝑡)} + [𝐶]{𝑦̇(𝑡)} + [𝐾]{𝑦(𝑡)} = {𝐹(𝑡)} = {𝐹0}𝑟(𝑡) (1) 
 

{𝐹(𝑡)} was decomposed in its spatial and temporal components, {𝐹0} and 𝑟(𝑡), respectively. 

Typically, the physical coordinates are transformed to modal coordinates 𝜈(𝑡). This is done using the 

associated set of eigenvectors. They represent the way in which a structural system can be deformed under 

a generic dynamic set of forces and are obtained by the solution of the general eigenvalue problem, given 

by: 

 ([𝐾] − 𝜔𝑖
2[𝑀]){𝜙}𝑖 = 0 

The number of existing modal shapes is equal to the number of DOFs. The MD method considers all of them 

for the dynamic response calculation, differently from the methods analysed later. Across this and the next 

chapters, the eigenvectors matrix will be normalized with respect to the mass matrix. Considering the 

eigenvectors’ orthogonality respect to the mass matrix and the normalization chosen, the generalized mass 

and stiffness matrices must satisfy the conditions: 

 [𝐷𝑀] = [𝜙]
𝑇[𝑀][𝜙] = 𝐼;   [𝐷𝐾] = [𝜙]

𝑇[𝐾][𝜙] = 𝛺2    (2) 

 

Where: 𝛺2 =

[
 
 
 
 
𝜔1
2 0
0 ⋱

0 0 0
0 0 0

0 0
0 0
0 0

𝜔𝑖
2 0 0
0 ⋱ 0
0 0 𝜔𝑁

2 ]
 
 
 
 

 and 𝜔𝑖  is the modal pulsation associated to the i-th modal shape. 
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This way, the complex N by N differential equation system can be rearranged in a more practical set of N 1-

DOF differential equations, where N is the number of retained modes. Each of the N equations is given by the 

general formulation: 

 𝜈̈𝑖(𝑡) + 2𝜉𝑖𝜔𝑖𝜈̇𝑖(𝑡) + 𝜔𝑖
2𝜈𝑖(𝑡) = 𝐹̂0,𝑖  𝑟𝑖(𝑡) (3) 

Where 𝜈𝑖(𝑡) represents the participation of the 𝑖 − 𝑡ℎ modal shape to the total dynamic response as a time-

function. The modal damping term 𝜉𝑖 is obtained experimentally or rather hypothesized, a model largely in 

use today provides [𝐶] (eq. (1)) as a linear combination of mass and stiffness matrices. The force term was 

rearranged using the eigenvectors matrix, as follows: 

{𝐹̂0} = [𝜙]
𝑇{𝐹0} 

{𝐹0} has the same dimension of the DOFs, while {𝐹̂0} has the dimension of the number of modes considered. 

The transformation from physical coordinates to modal coordinates and vice versa is obtained through the 

relations: 

{𝑦(𝑡)} = [𝜙] {𝜈(𝑡)} 

 

 {𝜈(𝑡)} = [𝐷𝑀]
−1[𝜙]𝑇[𝑀]{𝑦(𝑡)} = [𝜙]𝑇[𝑀]{𝑦(𝑡)} (4) 

 

Because of the eigenvector’s normalization used, the inverse of the matrix [𝐷𝑀] is: [𝐷𝑀]
−1 = 𝐼. The relation 

(4), used in the next paragraph to determine the modal coordinates relative to the initial conditions, is more 

efficient than inverting the eigenvectors matrix, especially if the system is large. 

 

To determine the importance of modal shapes let’s consider a generic NDOF non-labile system in which the 

force applied on each DOF has in common the same r(𝑡). Let’s furthermore suppose that each force 𝐹𝑖(𝑡) 

and so 𝐹̂𝑖(𝑡) are a linear combination of harmonic oscillators. This means that: 

{𝐹0}𝑟(𝑡) = ∑{𝐹1} ∙ 𝑜𝑠𝑐𝑗

𝑀

𝑗=1

(𝑡) → {𝐹̂0}𝑟(𝑡) = [𝜙]
𝑇{𝐹0}𝑟(𝑡) = [𝜙]

𝑇{𝐹1}∑𝑜𝑠𝑐𝑗

𝑀

𝑗=1

(𝑡) 

 

Where {𝐹1} is a generic set of forces applied to the DOFs and 𝑜𝑠𝑐𝑗(𝑡) represents the j-th harmonic oscillator:  

𝑜𝑠𝑐𝑗(𝑡) = 𝐴𝑗𝑒
𝑖𝜔𝑗𝑡−𝜑𝑗  

Therefore, the components of the modal force can be written as: 

𝐹̂𝑖 =∑𝐶𝑖𝑗𝑒
𝑖𝜔𝑗𝑡−𝜑𝑖𝑗

𝑀

𝑗=1

= 𝐶𝑖1𝑒
𝑖𝝎𝟏𝑡−𝜑1 +⋯+ 𝐶𝑖𝑗𝑒

𝑖𝝎𝒋𝑡−𝜑𝑗 +⋯+ 𝐶𝑖𝑀𝑒
𝑖𝝎𝑴𝑡−𝜑𝑀  

This approach can be extended to the generic case in which 𝑀 → ∞. Each modal coordinate 𝜈𝑖  will be the 

sum of a general and particular solution for the respective 1-DOF system: 𝜈𝑖(𝑡) = 𝜈𝑔,𝑖(𝑡)+ 𝜈𝑝,𝑖(𝑡). 

Considering the realistic case in which 𝜉𝑖<1, the general solution for the generic DOF ‘i’ can be written as: 

𝜈𝑔,𝑖(𝑡) = 𝑒
−𝜉𝑖𝜔𝑁𝑖𝑡(𝐴1 cos(𝝎𝑫𝒊𝑡) + 𝐴2 sin(𝝎𝑫𝒊𝑡)) 
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Where 𝜔𝐷 = 𝜔𝑁√1 − 𝜉𝑖
2 and 𝑓𝐷 =

𝜔𝐷

2𝜋
 is the damped modal frequency. The particular solution, instead, is 

for superposition: 

𝜈𝑝,𝑖(𝑡) =∑𝐵𝑖𝑗𝑒
𝑖𝜔𝑗𝑡−𝜑𝑖𝑗

′
𝑀

𝑗=1

= 𝐵𝑖1𝑒
𝑖𝝎𝟏𝑡−𝜑𝑖1

′
+⋯+ 𝐵𝑖𝑗𝑒

𝑖𝝎𝒋𝑡−𝜑𝑖𝑗
′

+⋯+ 𝐵𝑖𝑀𝑒
𝑖𝝎𝑴𝑡−𝜑𝑖𝑀

′
 

Finally, physical displacements are given by: 

{𝑦(𝑡)} = [𝜙] {𝜈(𝑡)} 

{
 
 

 
 
𝑦1(𝑡)
⋮

𝑦𝑖(𝑡)
⋮

𝑦𝑁(𝑡)}
 
 

 
 

= 

[
 
 
 
 

{
 
 

 
 
𝜙1
⋮
𝜙𝑗
⋮
𝜙𝑀}

 
 

 
 

1

…

{
 
 

 
 
𝜙1
⋮
𝜙𝑗
⋮
𝜙𝑀}

 
 

 
 

𝑖

…

{
 
 

 
 
𝜙1
⋮
𝜙𝑗
⋮
𝜙𝑀}

 
 

 
 

𝑁]
 
 
 
 

 

{
 
 

 
 𝜈𝑔,1(𝑡) + 𝐵11𝑒

𝑖𝝎𝟏𝑡−𝜑11
′
+⋯+ 𝐵1𝑗𝑒

𝑖𝝎𝒋𝑡−𝜑1𝑗
′

+⋯+ 𝐵1𝑀𝑒
𝑖𝝎𝑴𝑡−𝜑1𝑀

′

⋮

𝜈𝑔,𝑖(𝑡) + 𝐵𝑖1𝑒
𝑖𝝎𝟏𝑡−𝜑𝑖1

′
+⋯+ 𝐵𝑖𝑗𝑒

𝑖𝝎𝒋𝑡−𝜑𝑖𝑗
′

+⋯+ 𝐵𝑖𝑀𝑒
𝑖𝝎𝑴𝑡−𝜑𝑖𝑀

′

⋮

𝜈𝑔,𝑁(𝑡) + 𝐵𝑁1𝑒
𝑖𝝎𝟏𝑡−𝜑𝑁1

′
+⋯+ 𝐵𝑁𝑗𝑒

𝑖𝝎𝒋𝑡−𝜑𝑁𝑗
′

+⋯+ 𝐵𝑁𝑀𝑒
𝑖𝝎𝑴𝑡−𝜑𝑁𝑀

′

}
 
 

 
 

 

Each modal shape oscillates both at its damped modal frequency and at the force’s frequencies. Not including 

some of the modal shapes, especially when the force has frequencies in the range of the not-included mode, 

can determine important displacement mispredictions. 

 

1.1.2. 1-DOF equation and solution 

 

To solve the N equations in the form shown in eq. (3), it can be used the Laplace Transform. The complete 

solution includes the Duhamel’s integral and a series of terms relative to the initial conditions. Therefore, 

being the eq. (3): 

𝜈̈𝑖(𝑡) + 2𝜉𝑖𝜔𝑖𝜈̇𝑖(𝑡) + 𝜔𝑖
2𝜈𝑖(𝑡) = 𝐹̂𝑖 𝑟𝑖(𝑡) 

The solution obtained by applying the Laplace Transform is: 

𝜈𝑖(𝑡) = ∫ 𝐹(𝜏)ℎ(𝑡 − 𝜏)
𝑡

0

𝑑𝜏 +𝑀𝑖[𝜈0,𝑖(ℎ̇(𝑡) + ℎ0) + (𝜈̇0,𝑖 + 2𝜉𝑖𝜔𝑖𝜈0,𝑖)ℎ(𝑡)] 

Where 𝜈0,𝑖 and 𝜈̇0,𝑖 are the initial conditions expressed in modal coordinates, easily obtainable using eq. (4); 

while the response to the unitary impulse ℎ(𝑡) and its derivative ℎ̇(𝑡) (both obtained considering 𝜉𝑖 < 1) are 

given by: 

ℎ(𝑡) =
1

𝑀𝑖𝜔𝑖
𝑒−𝜉𝑖𝜔𝑖𝑡 sin (𝜔𝑖√1 − 𝜉𝑖

2𝑡) 

ℎ̇(𝑡) =
1

𝑀𝑖𝜔𝑖√1 − 𝜉𝑖
2

𝑒−𝜉𝑖𝜔𝑖𝑡 (𝜔𝑖√1 − 𝜉𝑖
2 ∙ cos (𝜔𝑖√1 − 𝜉𝑖

2𝑡) − 𝜉𝑖𝜔𝑖 ∙ sin (𝜔𝑖√1 − 𝜉𝑖
2𝑡)) 



10 
 

1.1.3. The Mode-Displacement Method: limits and alternatives 

 

Considering modal shapes in an adequate range of frequencies can represent almost completely the solution 

searched. Commercial software can determine a priori the number of modal shapes to retain. The decision 

of how many modes to keep is based on the relevant frequency content of the applied force. It is also advised 

that the highest mode retained should have a frequency well above the applied time history loading 

frequency by a certain margin ([2], [3]). However, some problems may require the calculation of many modal 

shapes for the solution to converge, this is because some forces cannot be modally represented easily, as a 

result, in certain cases, adding each modal shape to the modal eigenvectors matrix may gradually reduce its 

overall benefit. In other words, for a linear increase in computational cost, the overall solution enhancements 

will experience an increase similar to a logarithmic-like curve with a horizontal asymptote. An example of 

different types of convergences is reported in the final section of paragraph 2.2. This is also related to the fact 

some spatial forces can in part excite modal shapes having much higher frequencies, leading to the retention 

of many modal shapes before the excited one, therefore, increasing the overall computational cost for the 

full solution convergence. This will be one of the main topics of this thesis. 

There are different alternatives to the Mode-Displacement method which do not need to calculate integrally 

all the modal shapes. Instead, these alternatives typically rely on Residual Vectors (Res-Vec) for computation. 

Residual Vectors can enhance the solution accuracy in certain scenarios while using fewer modal shapes. 

Essentially, they function as pseudo-modes, aiding in the representation of more accurate deformations and 

ultimately decreasing the number of retained modes necessary to correctly calculate the system’s 

displacements [4]. 

At first glance, it may seem that the retained modes could adequately represent the full displacements of the 

DOFs. However, the criterion mentioned earlier - which only considers modes that accurately span the 

frequencies of interest - applies to 𝒓(𝒕) but fails to consider the spatial component of the load for the reasons 

discussed before. By not accounting for modal truncation on the spatial portion of the applied load, 

inaccuracies can arise. The force truncation vector 𝑹𝒕 addresses this issue by representing the portion of the 

load that is not accounted for. The rationale behind this approach is that the main dynamic response has 

already been enveloped by the retained modes, leaving the neglected modes with a quasi-static response. In 

other words, since the frequencies of the non-retained modes should be widely higher than those of the 

applied forces, they should perceive the applied forces as quasi-static ([2], [3], [4]). 

The physical force represented by each mode is given by: 

{𝑅𝑛(𝑡)} = [𝐾]{𝜙𝑛}𝜈𝑛(𝑡) = [𝑀]{𝜙𝑛}𝜔𝑛
2𝜈𝑛(𝑡) = [𝑀]{𝜙𝑛}𝜔𝑛

2
𝐹̂𝑛

𝜔𝑛
2 𝑟(𝑡) = [𝑀]{𝜙𝑛}𝐹̂𝑛𝑟(𝑡) 

→ 𝑅𝑠 = [𝑀][𝜙]𝑅{𝐹̂} → 𝑹𝒕 = 𝐹0 − 𝑅𝑠 

Where [𝜙]𝑅 addresses to all the modal shapes retained, 𝑅𝑠 is the modally represented force and 𝑅𝑡 the 

modally non represented force. {𝐹̂} = [𝜙]𝑅
𝑇{𝐹0}, and the relation 𝐹̂𝑛𝑟(𝑡) = 𝜔𝑛

2𝜈𝑛(𝑡) is valid since the 

normalization reported in the eq. (2). The equation 𝑅𝑠 = [𝑀][𝜙]𝑅{𝐹̂} determines how well the retained 

modal shapes can describe the statical response to the spatial portion of the applied dynamic load, or in other 

words, their capability of representing it. 
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1.1.4. The Modal Truncation Augmentation Method 

 

The main difference between some of the methods that emerged to deal with the problems mentioned in 

paragraph 1.1.3 is the way they use the force truncation vector 𝑅𝑡.  

A key method is the Modal Truncation Augmentation (MT method) which creates a pseudo eigen known as 

MT vector for each differentiated dynamic force applied. Each MT vector is orthogonal to the other MT vectors 

in relation to the mass and stiffness matrices. Furthermore, the MT vectors are also orthogonal to the retained 

eigenvectors since the force truncation vectors do not contain any components of the retained eigenvectors. 

However, they do not fulfil the original eigenvalue problem. The method consists of adding the MT vectors 

calculated to the real retained eigenvectors, allowing the analysis of modal response to proceed as if the 

augmented vector set was the complete set of original eigenvectors, or in other words, the procedure from 

this point is analogous to the MD method except for the augmented eigenvectors matrix ([2],[5]), which is: 

[𝜙]𝑇𝑂𝑇,𝑀𝑇 = [ [𝜙]𝑅  , [𝜙]𝑀𝑇]. 

As stated by the hypothesis cited before, the non-retained modes react quasi-statically to the virtually applied 

load, which is the force truncation vector {𝑅𝑡}, therefore, the solution associated to {𝑅𝑡} does not necessitate 

the calculation of the non-retained eigenvectors and it is initially set as: 

 [𝐾]{𝑋} = {𝑅𝑡} (5) 

The next step, to calculate the MT pseudo eigenvectors is to calculate: 

[𝐷𝐾] = [𝑋]
𝑇[𝐾][𝑋];  [𝐷𝑀] = [𝑋]

𝑇[𝑀][𝑋] 

Where: 

[𝑋] = [{𝑋}1…{𝑋}𝑖 … {𝑋}𝑁] 

Where N is the number of the applied differentiated forces and {𝑋}𝑖  is associated to the respective {𝑅𝑡}𝑖. The 

Mode Acceleration method, reviewed hereafter, spatially solves the non-represented loads as reported in eq. 

(5) ([2],[5]).  

[𝐷𝐾] and [𝐷𝑀] are scalars if it is applied a single differentiated dynamic force: 

[𝐷𝐾] = {𝑋}
𝑇[𝐾]{𝑋} = 𝑲̅;  [𝐷𝑀] = {𝑋}

𝑇[𝑀]{𝑋} = 𝑴̅ 

Now, the approximation the method makes is to consider the vector {𝑋} as a modal shape, as if the only way 

the system could dynamically respond to 𝑅𝑡 was represented by {𝑋}, which is a static response indeed but it 

is considered as the dynamic response of a modal shape excited at frequencies much lower than its frequency. 

Therefore, the reduced eigenvalue problem can be solved, and the MT vector 𝑷 is appended to the retained 

eigenvectors matrix [𝜙]𝑅 to construct the augmented eigenvectors matrix [𝜙]𝑇𝑂𝑇,𝑀𝑇: 

[𝐷𝐾]𝑄 = [𝐷𝑀]𝑄𝜔̅𝑃
2  

For a single MT vector, the equation above becomes: 

𝐾𝑄 = 𝑀̅𝑄𝜔̅𝑃
2 → {𝑃} = {𝑋}𝑄 → [𝜙]𝑇𝑂𝑇 = [[𝜙]𝑅𝑀  𝑃] 

𝑄 normalizes the eigenvector {𝑋} respect to mass matrix (the Matlab algorithm for the eigenvalue problem 

does that by default), so the normalization is in line with that of the other eigenvectors: 

{𝑋}𝑇[𝑀]{𝑋} ≠ 1 → {𝑃}𝑇[𝑀]{𝑃} = 1;   {𝑃}𝑇[𝐾]{𝑃} = 𝜔̅𝑃
2  
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The calculated pseudo-modal shape {𝑃} oscillates at its pseudo-modal frequency 𝑓𝑃̅ =
√𝜔̅𝑃

2

2𝜋
. 

 

1.1.5. Other alternative methods 

 

As was hinted in the previous paragraph, the Mode Acceleration method (MA) is a particular case of the 

Modal Truncation Augmentation method. If the generalized mass and modal damping terms are set to 0 while 

using the MT vectors in the equation: 

𝜈̈𝑖(𝑡) + 𝜉𝑃,𝑖𝜈̇𝑖(𝑡) + 𝜔𝑃,𝑖𝜈𝑖(𝑡) = 𝐹̂𝑃,𝑖  𝑟𝑖(𝑡) 

The MT vectors will be forced to respond quasi-statically and the mode acceleration result will be exactly 

reproduced in the time domain, while in the frequency domain would exactly reproduce the “residual 

stiffness” method result. If the generalized mass is set to 0 the result will exactly match the missing mass 

method result. If no eigenvectors are retained and MT vectors are calculated from vectors of unitary forces 

at selected degrees of freedom, a Guyan reduction will be produced ([2], [3]). An algorithm that does not use 

eigenvectors but instead uses a series of specially constructed Ritz vectors for the dynamic response 

calculation is given by Wilson et al. [6]. 

 

1.1.6. The Mode Acceleration Method 

 

The logic of the MA method is that since the modes retained already span the frequency range of interest, 

any loading not represented by the retained modes will produce a complete quasi-static response. In other 

words, the response due to the non-retained modes will have no dynamic amplification and the modes not 

retained will cause no appreciable velocity or acceleration response. 

To introduce the MA algorithm, the eq. (1), reported below, is rewritten as follows: 

[𝑀]{𝑦̈(𝑡)} + [𝐶]{𝑦̇(𝑡)} + [𝐾]{𝑦(𝑡)} = {𝐹0}𝑟(𝑡) → {𝐹𝑒𝑙𝑎𝑠𝑡} = {𝐹0}𝑟(𝑡) − {𝐹𝑖𝑛𝑒𝑟𝑡} − {𝐹𝑑𝑎𝑚𝑝} 

{𝑦𝑢(𝑡)}𝑀𝐴 = [𝐾]−1{𝐹0}𝑟(𝑡) − [𝐾]
−1[𝑀][𝜙]𝑅{𝜈̈(𝑡)} − [𝐾]

−1[𝐶][𝜙]𝑅{𝜈̇(𝑡)} = [𝐹0
𝜓

  𝜈̈𝜓  𝜈̇𝜓] {
𝑟(𝑡)

𝜈̈(𝑡)

𝜈̇(𝑡)
} 

Given N as the system size and n as the number of retained modes, for each set of applied loads the dimension 

of 𝐹0
𝜓

 is Nx1, while 𝜈̈𝜓 and 𝜈̇𝜓 are Nxn. 𝑟(𝑡) is 1x1 and 𝜈̈(𝑡), 𝜈̇(𝑡) are nx1. 

Another way to write the total displacement term is: 

{𝑦𝑢(𝑡)}𝑀𝐴 = [𝐾]
−1{𝐹0}𝑟(𝑡) − [𝐾]

−1[𝑀][𝜙]{𝜈̈(𝑡)} − [𝐾]−1[𝐶][𝜙]{𝜈̇(𝑡)} 

= [𝐾]−1({𝑅𝑠} + {𝑅𝑡})𝑟(𝑡) − [𝐾]
−1[𝑀][[𝜙]𝑅   [𝜙]𝑁𝑅] {

𝜈̈𝑅(𝑡)

𝜈̈𝑁𝑅(𝑡)
} − [𝐾]−1[𝐶][[𝜙]𝑅   [𝜙]𝑁𝑅] {

𝜈̇𝑅(𝑡)

𝜈̇𝑁𝑅(𝑡)
} 

= [𝐾]−1({𝑅𝑠})𝑟(𝑡) − [𝐾]
−1[𝑀][𝜙]𝑅{𝜈̈𝑅(𝑡)} − [𝐾]

−1[𝐶][𝜙]𝑅{𝜈̇𝑅(𝑡)} + 

[𝐾]−1({𝑅𝑡})𝑟(𝑡) − [𝐾]
−1[𝑀][𝜙]𝑁𝑅{𝜈̈𝑁𝑅(𝑡) = {0}} − [𝐾]

−1[𝐶][𝜙]𝑅{𝜈̇𝑁𝑅(𝑡) = {0}} 

The Mode Acceleration method formulation becomes: 
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{𝑦(𝑡)}𝑀𝐴 = {𝑦𝑠(𝑡)}𝑀𝐴 + {𝑦𝑡(𝑡)}𝑀𝐴 

Where {𝑦𝑠(𝑡)}𝑀𝐴 is the part of the solution relative to the retained modes and {𝑦𝑡(𝑡)}𝑀𝐴 refers to the part 

of it calculated considering the system’s quasi-statical response to {𝑅𝑡}𝑟(𝑡).  

 

1.1.7. MD, MT, and MA methods comparison 

 

To compare the 3 methods, the global solution can be decomposed into the part relative to the retained 

modes (pedicle ‘s’) and the part relative to the modal truncation (pedicle ‘t’), or in other words the common 

and the different parts of the solutions offered by the presented methods: 

 

{𝑦(𝑡)} = {𝑦𝑠(𝑡)} + {𝑦𝑡(𝑡)} 

[𝑀]{𝑦̈𝑠(𝑡)} + [𝐶]{𝑦̇𝑠(𝑡)} + [𝐾]{𝑦𝑠(𝑡)} + [𝑀]{𝑦̈𝑡(𝑡)} + [𝐶]{𝑦̇𝑡(𝑡)} + [𝐾]{𝑦𝑡(𝑡)} = {𝑅𝑠 + 𝑅𝑡}𝑟(𝑡) 

 

Let’s focus on the part relative to the non-represented force; the solutions calculated by MD, MA and MT 

methods are shown below. 

[𝑀]{𝑦̈𝑡(𝑡)} + [𝐶]{𝑦̇𝑡(𝑡)} + [𝐾]{𝑦𝑡(𝑡)} = 𝑅𝑡𝑟(𝑡) 

 

MD method:  {𝑦𝑡(𝑡)}𝑀𝐷 = [𝜙]𝑁𝑅  {𝜈(𝑡)}𝑁𝑅 

MA method:  [𝐾]{𝑦𝑡(𝑡)}𝑀𝐴 = 𝑅𝑡𝑟(𝑡) 

MT method:  {𝑦𝑡(𝑡)}𝑀𝑇 = [𝑃]{𝜈𝑃(𝑡)} → 

[𝑃]𝑇[𝑀][𝑃]{𝜈̈𝑃(𝑡)} + [𝑃]𝑇[𝐶][𝑃]{𝜈̇𝑃(𝑡)} + [𝑃]𝑇[𝐾][𝑃]{𝜈𝑃}(𝑡) = [𝑃]
𝑇{𝑅𝑡}𝑟(𝑡) 

 

Obviously, the MD method calculates {𝑦𝑡(𝑡)}𝑀𝐷 using all the modes not retained ([𝜙]𝑁𝑅). 
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2. Code validation and beam finite element model study 

case 
 

2.1. Code validation 

 

2.1.1. Problem description 

 

The problem analysed deals with a 4-DOF system taken from [2], the model and the forces applied to its DOF 

are reported below. They are split into their spatial and their time/frequency domain components: 

 

 

 

Figure 2.1: System representation and temporal/frequency components of the forces analysed. 

The spatial components of the forces applied to each DOF are defined, for both cases, as: 

 

 

𝐹0 = {

0
0
1
0

} 

(6) 

 

The assembled mass and stiffness matrices of the system considered are shown below, the modal damping is 

set to 2% of the critical modal damping coefficient for all the modes and also for the MT vector. The number 

of eigenvectors retained is always 1 in this application. 

To summarize, the physical properties of the system are: 
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[𝑀] = [

1
    
    
    

    
1
    
    

    
    
1
    

    
    
    
0.5

];   [𝐾] = 104 [

2
−1
    
    

−1
2
−1
    

    
−1
2
−1

    
    
−1
2

];   𝜉𝑖 = 0.02 

The spatial forces represented by the first mode and the MT vector are:  

𝑅𝑠 ≅ {

0.25
0.39
0.38
0.1

} ;  𝑃 ≅ {

−0.53
−0.42
0.72
0.22

}; 𝑓𝑃̅ ≅ 22𝐻𝑧. 

Both time and frequency domain results obtained by the created framework are consistent with those 

reported in the reference [2]. Both results are presented in the paragraphs 2.1.2 and 2.1.3. 

 

2.1.2. Frequency domain results 

 

The results for the frequency domain case were obtained by applying the load shown in Figure 2.1 (𝑟(𝑓)) and 

in the eq. ((6), 𝐹0). The displacements in the frequency domain can be obtained by: 

{𝑈(𝜔)} = [𝐻(𝜔)]{𝐹(𝜔)} 

This means that: 

𝑈𝛼(𝜔) = ∑𝐻𝛼𝛽(𝜔)𝐹𝛽(𝜔)

𝑁

𝛽=1

 

Where 𝐻𝛼𝛽(𝜔) is an element of the matrix [𝐻(𝜔)] containing the Frequency Response Function (FRF), which 

associates the dynamic response of the node 𝛼 to the solicitation applied on the node 𝛽 and vice versa, 

considering all the calculated modes and pseudo-modes. It is given by: 

𝐻𝛼𝛽(𝜔) = ∑
𝜙𝑘𝛼𝜙𝑘𝛽

𝑀𝑘(𝜔𝑘
2 + 2𝜉𝜔𝜔𝑘𝑖 − 𝜔

2)

𝑁

𝑘=1

 

𝜙𝑘𝛼𝜙𝑘𝛽 is the modal partecipation factor and 𝜙𝑘𝛼 or 𝜙𝑘𝛽 represents the 𝛼-th or 𝛽-th element of the 

eigenvector 𝑘. 𝜔𝑘  is the modal pulsation associated to the respective modal shape 𝑘. In Figure 2.2 and in 

Figure 2.3 are reported all the elements of the FRF matrix, it is evident that the number of resonance 

frequencies depend on the method chosen and the number of retained eigenvectors. Furthermore, for the 

MT method the number of resonance frequencies depends also on the number of separated dynamic forces 

applied to the system, because for each of them it is calculated the respective pseudo eigenvector and its 

frequency 𝑓𝑃,𝑖. 
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Figure 2.2: Full FRF matrix representation as a function of frequency. 

 

 

Figure 2.3: FRF element |𝐻44| for all the methods presented. The FRF function obtained by the MD method 
has 4 peaks, while the MT and MA methods have respectively 2 and 1 peaks. The number of peaks is related 

to the number of retained modes and it is equal to the sum of real and residual eigenvectors. 

Note: for the Mode Acceleration method were used 2 equations: one for the forces represented by the single 

retained mode (𝑅𝑠) and the second for the forces not represented by it (𝑅𝑡). 

{𝑈𝑅(𝜔)}𝑀𝐴 = [𝐻(𝜔)]{𝑅𝑠}𝑟(𝜔);  

{𝑈𝑁𝑅(𝜔)}𝑀𝐴 = [𝐾]
−1{𝑅𝑡}𝑟(𝜔) 

The total displacements response is obtained by the sum of {𝑈𝑅(𝜔)}𝑀𝐴 and {𝑈𝑁𝑅(𝜔)}𝑀𝐴. 
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In the following pages, both my results and the reference's results are reported. Overall, the comparison of 

the results is more than acceptable. 

 

Figure 2.4: Displacement response in the frequency domain for all the DOFs. 

 

 

Figure 2.5: Comparison of the results presented in the paper [2] and those obtained by the created 
framework for the DOF 3 response in the frequency domain. 
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Any difference may be addressed to the different Fourier Transform algorithms used (in the created 

framework it was used the Fast Fourier Transform (FFT) algorithm already implemented in Matlab). Two 

comparative tables for the displacements of 𝑈𝑖𝐷𝑂𝐹(𝜔) obtained at 3Hz are presented in Table 2.1.  

 

Table 2.1: Displacements response of 𝑈𝑖𝐷𝑂𝐹(𝜔) at 3Hz. The first table is taken from the reference [2], while 
the second reports the results obtained. 

 

2.1.3. Time domain results 

Overall, the results were in good agreement for the time domain loading too. Table 2.2 reports the 

maximum and minimum displacements obtained by Reference [2] and from the created framework for the 

time domain loading at each DOF. While Figure 2.6 refers to the displacements obtained for DOF 1. 

 

 

Figure 2.6: Comparison of the time domain responses for each method analysed at DOF 1. The first image is 
taken from reference [2] while the displacements reported in the second image are those obtained by the 
created framework. The two results are in good agreement, minor differences are addressed to MA’s first 

peaks. 

(∙ 10−5)  DOF 1 DOF 2 DOF 3 DOF 4 

MD 4.52 8.89 12.90 6.53 

MA 4.58 8.92 12.90 6.49 

MT 4.54 8.89 12.90 6.51 

(∙ 10−5)  DOF 1 DOF 2 DOF 3 DOF 4 

MD 4.53 8.91 12.95 6.54 

MA 4.59 8.93 12.90 6.50 

MT 4.55 8.90 12.95 6.52 
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Table 2.2: Comparative tables for the maximum and minimum displacements of 𝑢𝑖,𝐷𝑂𝐹(𝑡). The first table is 

taken from the reference [2], the second reports the results obtained from the created framework. Small 
differences are observable for maximum MA displacements at DOF 1 and DOF 2, these are associated with 

differences in the first peaks, as highlighted in Figure 2.6. 

 

 

Figure 2.7: Comparison of the part of the solution obtained using the retained modes (𝑢𝑠), the part obtained 
using the non retained modes (𝑢𝑡) and the total solution (𝑢𝑇𝑂𝑇 = 𝑢𝑠 + 𝑢𝑡) for the Mode Displacement 

Method at DOF n° 3. 

 

(∙ 10−5 𝑚) DOF 1 DOF 2 DOF 3 DOF 4 

Max MD 3.83 7.81 9.48 6.67 

Max MA 5.90 9.41 8.14 4.53 

Max MT 5.41 8.09 9.81 4.99 

Min MD -8.03 -9.51 -7.18 -4.45 

Min MA -5.64 -8.98 -8.67 -4.82 

Min MT -7.31 -10.26 -8.18 -4.33 

(∙ 10−5 𝑚)  DOF 1 DOF 2 DOF 3 DOF 4 

Max MD 3.84 7.81 9.48 6.72 

Max MA 5.97 9.50 8.16 4.54 

Max MT 5.42 8.10 9.83 4.99 

Min MD -8.08 -9.52 -7.16 -4.42 

Min MA -5.65 -8.99 -8.68 -4.83 

Min MT -7.33 -10.30 -8.21 -4.34 
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Figure 2.8: Comparison of the part of the solution obtained using the retained modes (𝑢𝑠), the part obtained 
using the residual vector (𝑢𝑡) and the total solution (𝑢𝑇𝑂𝑇) for the Modal Truncation Augmentation Method 

at DOF n° 3. 

 

 

Figure 2.9: Comparison of the part of the solution obtained using the retained modes (𝑢𝑠), the part obtained 
from the modally non-represented part of the load (𝑢𝑡) and the total solution (𝑢𝑇𝑂𝑇) for the Mode 

Acceleration Method at DOF n° 3. 

 

It is clear from the comparison of Figures 2.7, 2.8, 2.9, and 2.10 the absence of dynamic amplification of 

{𝑢𝑡}𝑀𝐴, differently from the results obtained by MT and MD methods. Are now clear the possible 

advantages of the MT method over the MA method. Starting from paragraph 2.3 will be further investigated 

the differences between these 2 methodologies. 
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Figure 2.10: Results obtained from the time domain loading: 𝑢𝑡 comparison for all the methods. 

 

2.1.4. Observations 

 

In reference [2], from which the analysed system was extracted, some informations regarding the force 

inputs and the displacement outputs were not reported. Specifically, at the time 𝑡 = 0 𝑠 in Figure 2.6, the 

system already experiences some displacements as if the force was acting on node 3 for an indefinite 

amount of time. Therefore, in the created framework, the force applied to DOF 3 was applied for 14.033 

seconds as shown in Figure 2.11, instead of 0.033 seconds as reported in Figure 2.1. However, the dynamic 

response of the system was collected in the time window of interest: 𝑡𝑂𝑢𝑡𝑝𝑢𝑡 = 14 − 15 𝑠. 

Figure 2.12 demonstrates that at the initial time of observation (14 𝑠), the displacements were steady, 

similarly to the results extracted from Reference [2]. Furthermore, in Table 2.2, the maximum 

displacements refer not to the absolute maximums but instead to the maximums after the first oscillation, 

as reported in Figure 2.13. 

 

Figure 2.11: Force applied to DOF 3. The solution is extracted at 𝑡 = 14 − 15 𝑠. 
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Figure 2.12: Results obtained in the full time domain. The solution is extracted at 𝑡 = 14 − 15 𝑠. 

 

 

Figure 2.13: In Reference [2], maximum values were extracted after the first oscillation of the solution. 
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2.2. Euler-Bernoulli beam: theoretical foundations 

 

2.2.1. Euler-Bernoulli beam equations 

 

In this paragraph are reported the constitutive equations for the Euler-Bernoulli’s (EB) beam model. The 

model hypothesizes that the only deformation occurring is 𝜀𝑥𝑥, the one relative to the axis of the beam. The 

displacement equations can be written as: 

{
𝑢 = 𝑢(0) − 𝑧𝑤,𝑥

(0)

𝑤 = 𝑤(0)
 →  {𝑠(𝑥, 𝑧, 𝑡)} = [𝑍𝑢(𝑧)]{𝑔𝑢(𝑥, 𝑡)} →  {

𝑢
𝑤
} = [

1 0 𝑧
0 1 0

] {

𝑢(0)

𝑤(0)

−𝑤,𝑥
(0)
} 

Stress and strain, for their definition, are: 

{𝜀𝑥𝑥 = 𝑢,𝑥
(0)
− 𝑧𝑤,𝑥𝑥

(0)
 →  {𝜀(𝑥, 𝑧, 𝑡)} = [𝑍𝜀(𝑧)]{𝑔𝜀(𝑥, 𝑡)} →  {𝜀𝑥𝑥} = [1 +𝑧] {

𝑢,𝑥
(0)

−𝑤,𝑥𝑥
(0)
};  𝜎𝑥𝑥

(𝑘)
= 𝐸𝑥

(𝑘)
∙ 𝜀𝑥𝑥 

The D’Alembert principle can be expressed as follows: 

 𝛿𝐸𝑝 = 𝛿𝐿𝑒 + 𝛿𝐿𝑖𝑛 (7) 

The equation (7) generalizes the principle of virtual work from static to dynamical systems by 

introducing forces of inertia which, when added to the applied forces in a system, result in dynamic 

equilibrium. 𝛿𝐸𝑝, 𝛿𝐿𝑒, 𝛿𝐿𝑖𝑛 are respectively the variations of internal or virtual work, variation of external 

work due to the applied forces on the system, and the variation of inertial work. They are definable as: 

𝛿𝐸𝑝 = ∫ (∫𝛿𝜀𝑥𝑥
𝑇 𝜎𝑥𝑥

(𝑘)
 

𝑆

𝑑𝑆)
𝐿

0

𝑑𝑥 

𝛿𝐿𝑖𝑛 = ∫𝛿{𝑠}
𝑇(−𝜌(𝑘){𝑠̈})𝑑𝑉

 

𝑉

 

𝛿𝐿𝑒 = ∫𝛿{𝑠}
𝑇 ∙ 𝑓(𝑥, 𝑧)

 

𝑙

𝑑𝑙 

For the EB model, the components of the equation (7) become: 

𝛿𝐸𝑝 = ∫ 𝛿{𝑔𝜀}
𝑇 (∫ [𝑧𝜀]

𝑇𝐸𝑥[𝑧𝜀]
 

𝑆

𝑑𝑆) {𝑔𝜀}
𝐿

0

𝑑𝑥 = ∫ 𝛿{𝑔𝜀}
𝑇 ∙ [𝐾𝑍𝐼] ∙ {𝑔𝜀}

𝐿

0

𝑑𝑥 

Where: [𝐾𝑍𝐼] = ∫ 𝐸𝑥
(𝑘)
[
1 𝑧
𝑧 𝑧2

] 𝑑𝑆 = [
𝐴 𝐵
𝐵 𝐷

]
 

𝑆
;   It is important to note that:   [𝐾𝑍𝐼] ∙ {𝑔𝜀} = {

𝑁
𝑀
} 

𝛿𝐿𝑖𝑛 = ∫𝛿{𝑠}
𝑇(−𝜌(𝑘){𝑠̈})𝑑𝑉

 

𝑉

= −∫ 𝛿{𝑔𝑢}
𝑇 (∫ [𝑧𝑢]𝜌

(𝑘)[𝑧𝑢]
 

𝑆

𝑑𝑆) {𝑔̈𝑢}
𝐿

0

𝑑𝑥 = 

−∫ 𝛿{𝑔𝑢}
𝑇[𝑀𝑍𝐼]{𝑔̈𝑢}

𝐿

0
𝑑𝑥;    [𝑀𝑍𝐼] = ∫ 𝜌(𝑘) [

1 0 𝑧
0 1 0
𝑧 0 𝑧2

]
 

𝑆
𝑑𝑆 = [

𝜇 0 𝑚1

0 𝜇 0
𝑚1 0 𝑚2

] 

To calculate the contribution of 𝛿𝐿𝑒, it must be considered all the distributed loads applied on the beam 

(integrated on the beam’s depth) as reported in Figure 2.14. 

https://en.wikipedia.org/wiki/Principle_of_virtual_work
https://en.wikipedia.org/wiki/Statics
https://en.wikipedia.org/wiki/Dynamical_system
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Figure 2.14: Representation of distributed loads along the elementary beam element 

 

The total equation obtained by using the D’Alembert principle is: 

∫ [𝑁,𝑥 − 𝜇𝑢̈
(0) +𝑚1𝑤̈,𝑥

(0)
+ 𝑝̅]𝛿𝑢(0)

𝐿

0

𝑑𝑥 +∫ [𝑀,𝑥𝑥 − 𝜇𝑤̈
(0) − (𝑚1𝑢̈

(0))
,𝑥
+ (𝑚2𝑤̈,𝑥

(0))
,𝑥
+ 𝑞̅ + 𝑚̅,𝑥] 𝛿𝑤

(0)
𝐿

0

𝑑𝑥

+ 𝛿𝑢(0)(0)[𝑁(0) + 𝑁̅0] + 𝛿𝑢
(0)(𝐿)[−𝑁(𝐿) + 𝑁̅𝐿]

+ 𝛿𝑤(0)(0)[𝑀,𝑥(0) − 𝑚1𝑢̈
(0)(0) +𝑚2𝑤̈,𝑥

(0)(0) + 𝑇̅0 + 𝑚̅]

+ 𝛿𝑤(0)(𝐿)[−𝑀,𝑥(𝐿) +𝑚1𝑢̈
(0)(𝐿) −𝑚2𝑤̈,𝑥

(0)(𝐿) + 𝑇̅𝐿 − 𝑚̅] + 𝛿𝑤,𝑥
(0)(0)[−𝑀(0) − 𝑀̅0]

+ 𝛿𝑤,𝑥
(0)(𝐿)[𝑀(𝐿) − 𝑀̅𝐿] = 0 

The first member of the equation must be 0 for any given set of displacements {𝑠(𝑥, 𝑧, 𝑡)} = {
𝑢
𝑤
}. The only 

logic solution is that each term inside the brackets [   ] must be independently set to 0. In the equation above 

are underlined the motion and the boundary conditions equations. 

The motion equations can be rewritten in case of constant parameters A, B, D, 𝑚1, 𝑚2 and symmetric 

lamination. Symmetric lamination also implies that 𝑚1 = 0, therefore, axial and transversal displacements 

are now fully decoupled: 

𝑁,𝑥 = 𝜇(𝑥)𝑢̈
(0) −𝑚1(𝑥)𝑤̈,𝑥

(0)
− 𝑝̅(𝑥) → 𝐴𝑢,𝑥𝑥

(0)
= −𝑝̅(𝑥) + 𝜇(𝑥)𝑢̈(0) 

𝑀,𝑥𝑥 = 𝜇(𝑥)𝑤̈
(0) + (𝑚1(𝑥)𝑢̈

(0))
,𝑥
− (𝑚2(𝑥)𝑤̈,𝑥

(0)
)
,𝑥
− 𝑞̅(𝑥) − 𝑚̅,𝑥(𝑥) → 

−𝐷𝑤,𝑥𝑥𝑥𝑥
(0)

= −𝑞̅(𝑥) − 𝑚̅,𝑥(𝑥) + 𝜇(𝑥)𝑤̈
(0) −𝑚2𝑤̈,𝑥𝑥

(0)
 

Neglecting the rotary inertia term (𝑚2𝑤̈,𝑥𝑥
(0)
), considering 𝜇(𝑥) as constant along the beam and considering 

only transversal loadings, the last equation can be reformulated as: 

 

−𝐷𝑤,𝑥𝑥𝑥𝑥
(0)

= −𝑞̅(𝑥) − 𝑚̅,𝑥(𝑥) + 𝜇(𝑥)𝑤̈
(0) −𝑚2𝑤̈,𝑥𝑥

(0)
→ 

 
𝐷𝑤,𝑥𝑥𝑥𝑥

(0)
+ 𝜇𝑤̈(0) = 𝑞̅(𝑥)  

(8) 
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The modal shapes of the problem can be calculated, starting from the homogeneous equation associated to 
eq. (8), as a function of the beam’s boundary conditions. The modal shapes can then be used to replace 
physical coordinates with modal coordinates in the D’Alembert, Hamilton, or Lagrange equations. 

The discussion relative to continuous systems is beyond the scope of this thesis, an analogous procedure will 
be better detailed for the Finite Element Method (FEM). However, in paragraph 2.2.4 are reported the 
modally represented loads as a function of the number of retained modes (𝑛°𝑅𝑀) of a stuck beam, which will 
be treated as a continuous system. 
 

2.2.2. The Beam finite element 

 

In the beam equation (8), it is present up to the fourth derivative (𝑟 = 4) of the transversal displacement, 
which is the unknown term. The compatibility and compliance condition dictates that the shape functions 
must be internally continuous up to the r/2 − 1 derivative of the differential equation's variables, this is 
necessary for the solution convergence at the finite elements increase. Furthermore, in the FEM, the single 
DOFs must satisfy the geometrical boundary conditions independently, differently from the method 
described for continuous systems or the Rayleigh-Ritz approach in which all the modal shapes/shape 
functions had to satisfy them independently. 

For this reason, for each node of the beam element the DOFs that must be represented are 𝑤(𝑡) and 𝑤𝑥(𝑡). 
Being that each element is composed of 2 nodes, there are 4 total local DOFs for each beam element: 2 
relative to the transversal displacement and 2 for the angular orientation. Typically, the chosen shape 
functions for the beam element are based upon the Hermitte cubical polynomials.  

The 4 shape functions are reported in the equations below: 

𝑤(𝑒)(𝑥(𝑒), 𝑡) ≈ 𝐻1
(𝑒)(𝑥(𝑒))𝑞𝑤1

𝐿(𝑒)(𝑡) + 𝐿(𝑒)𝐻2
(𝑒)(𝑥(𝑒))𝑞𝜑1

𝐿(𝑒)(𝑡) + 𝐻3
(𝑒)(𝑥(𝑒))𝑞𝑤2

𝐿(𝑒)(𝑡)

+ 𝐿(𝑒)𝐻4
(𝑒)(𝑥(𝑒))𝑞𝜑2

𝐿(𝑒)(𝑡) 

= [𝑁𝑤
(𝑒)(𝑥(𝑒))]{𝑞𝑤

𝐿(𝑒)(𝑡)} 

The terms 𝐻𝑖
(𝑒)

,  are the Hermitte cubical polynomials: 

 

𝐻1
(𝑒)
(𝑥(𝑒)) = 2𝜉3 − 3𝜉2 + 1;    𝐻2

(𝑒)
(𝑥(𝑒)) = 𝜉3 − 2𝜉2 + 𝜉;

𝐻3
(𝑒)
(𝑥(𝑒)) = −2𝜉3 + 3𝜉2;      𝐻4

(𝑒)
(𝑥(𝑒)) = 𝜉3 − 𝜉2;

   } 

Where  𝜉 =
𝑥(𝑒)

𝐿(𝑒)
, 𝑥(𝑒) is the local axial coordinate of the beam element and 𝐿(𝑒) is the length of the element. 

The shape functions are designed to assume the value ‘1’ on their associated DOF and the value ‘0’ relatively 
to their non-associated DOFs, as reported in Figure 2.15. 
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Figure 2.15: Shape functions for the beam element (Ref. [7]). 

The defined transversal displacements of the beam finite element can be replaced in the D’Alembert equation 

to find the mass and the stiffness matrices of the element. Since the axial and transversal displacements are 

decoupled, the D’Alembert principle can be expressed as: 

𝛿𝐸𝑝 = ∫ 𝛿(−𝑤,𝑥𝑥)
𝑇
𝐷(𝑥)(−𝑤,𝑥𝑥)

𝐿

0

𝑑𝑥 

𝛿𝐿𝑖𝑛 = −∫ 𝛿 {
𝑤
−𝑤,𝑥

}
𝑇

[
𝜇(𝑥) 0

0 𝑚2(𝑥)
] {

𝑤̈
−𝑤̈,𝑥

} 𝑑𝑥
𝐿

0

 

𝛿𝐿𝑒 = ∫ (𝛿𝑤)𝑇𝑞̅(𝑥)
𝐿

0

𝑑𝑥 

The equation obtained by using all the terms of the D’Alembert principle, for the local element (𝑒), is: 

[𝑀𝑤
(𝑒)
] {𝑞̈𝑤

𝐿(𝑒)(𝑡)} + [𝐾𝑤
(𝑒)
] {𝑞𝑤

𝐿(𝑒)(𝑡)} =  {𝐹𝑤
(𝑒)
} 

Below are separately presented the formulations of the matrices [𝑀𝑤
(𝑒)
], [𝐾𝑤

(𝑒)
] and {𝐹𝑤

(𝑒)
} for the same 

hypothesis stated in paragraph 2.2.1 and in paragraph 2.2.3 will be presented the assembly of the global 

matrices. 

The mass matrix for the local finite element ‘beam’ is: 

[𝑀𝑤
(𝑒)
] = ∫ ([𝑁𝑤

(𝑒)
(𝑥(𝑒))]

𝑇
𝜇(𝑒)(𝑥(𝑒)) [𝑁𝑤

(𝑒)
(𝑥(𝑒))] + [𝑁

𝑤,𝑥(𝑒)
(𝑒)

(𝑥(𝑒))]
𝑇
𝑚2
(𝑒)
(𝑥(𝑒)) [𝑁

𝑤,𝑥(𝑒)
(𝑒)

(𝑥(𝑒))])
𝐿(𝑒)

0

𝑑𝑥(𝑒) 

= 𝜇(𝑒)∫ ([𝑁𝑤
(𝑒)
(𝑥(𝑒))]

𝑇
[𝑁𝑤

(𝑒)
(𝑥(𝑒))])

𝐿(𝑒)

0

𝑑𝑥(𝑒) +𝑚2
(𝑒)
∫ ([𝑁

𝑤,𝑥(𝑒)
(𝑒)

(𝑥(𝑒))]
𝑇
[𝑁

𝑤,𝑥(𝑒)
(𝑒)

(𝑥(𝑒))])
𝐿(𝑒)

0

𝑑𝑥(𝑒) 

=
𝜇(𝑒)𝐿(𝑒)

420

[
 
 
 
 156
22𝐿(𝑒)

54
−13𝐿(𝑒)

22𝐿(𝑒)

4(𝐿(𝑒))
2

13𝐿(𝑒)

−3(𝐿(𝑒))
2

54
13𝐿(𝑒)

156
−22𝐿(𝑒)

−13𝐿(𝑒)

−3(𝐿(𝑒))
2

−22𝐿(𝑒)

4(𝐿(𝑒))
2
]
 
 
 
 

+
𝑚2
(𝑒)

210𝐿(𝑒)

[
 
 
 
 252
21𝐿(𝑒)

−252
21𝐿(𝑒)

21𝐿(𝑒)

28(𝐿(𝑒))
2

−21𝐿(𝑒)

−7(𝐿(𝑒))
2

−252
−21𝐿(𝑒)

252
−21𝐿(𝑒)

21𝐿(𝑒)

−7(𝐿(𝑒))
2

−21𝐿(𝑒)

28(𝐿(𝑒))
2
]
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In many commercial codes, the mass matrix is often implemented without accounting for the rotary inertia 

term (neglected term in the equation above). 

The stiffness matrix for the local finite element ‘beam’ is: 

[𝐾𝑤
(𝑒)
] = ∫ [𝑁

𝑤,𝑥(𝑒)𝑥(𝑒)
(𝑒)

(𝑥(𝑒))]
𝑇
𝐷(𝑒)(𝑥(𝑒)) [𝑁

𝑤,𝑥(𝑒)𝑥(𝑒)
(𝑒)

(𝑥(𝑒))]
𝐿(𝑒)

0

𝑑𝑥(𝑒) 

= 𝐷(𝑒)∫ ([𝑁
𝑤,𝑥(𝑒)𝑥(𝑒)
(𝑒)

(𝑥(𝑒))]
𝑇
[𝑁

𝑤,𝑥(𝑒)𝑥(𝑒)
(𝑒)

(𝑥(𝑒))])
𝐿(𝑒)

0

𝑑𝑥(𝑒) 

=
2𝐷(𝑒)

(𝐿(𝑒))3

[
 
 
 
 6
3𝐿(𝑒)

−6
3𝐿(𝑒)

3𝐿(𝑒)

 2(𝐿(𝑒))
2

−3𝐿(𝑒)

(𝐿(𝑒))
2

−6
−3𝐿(𝑒)

6
−3𝐿(𝑒)

3𝐿(𝑒)

(𝐿(𝑒))
2

−3𝐿(𝑒)

2(𝐿(𝑒))
2
]
 
 
 
 

 

Finally, the nodal forces for the local finite element ‘beam’ can be expressed as: 

{𝐹𝑤
(𝑒)
} = ∫ [𝑁𝑤 

(𝑒)
(𝑥(𝑒))]

𝑇
𝑞̅(𝑒)(𝑥(𝑒))

𝐿(𝑒)

0

𝑑𝑥(𝑒) 

= 𝑞̅(𝑒)∫ [𝑁𝑤 
(𝑒)
(𝑥(𝑒))]

𝑇𝐿(𝑒)

0

𝑑𝑥(𝑒) 

=
𝑞̅(𝑒)𝐿(𝑒)

12
{

6
𝐿(𝑒)

6
−𝐿(𝑒)

} 

Where 𝑞̅(𝑒) is assumed to be locally constant along the element (𝑒). 

 

2.2.3. Final N-DOF system 

 

To effectively solve the discrete system as a whole, the global matrices must be accurately assembled. Each 

local DOF has a designated position within the global DOFs vector. To properly expand and sum the local mass 

and stiffness matrices, we must refer to their corresponding DOF indexes within the global vector. For the 

purposes of this thesis, elements with a different orientation from the system’s global orientation will not be 

considered (no ramified structures).  

The expansion and sum of each local matrix, for the defined hypothesis, can be summarized as follows: 

[𝐾𝑤
(𝑖)
] ∙ {𝑞𝑤

𝐿(𝑖)(𝑡)} = [

𝑘11
𝑘21
𝑘31
𝑘41

 

𝑘12
𝑘22
𝑘32
𝑘42

 

𝑘13
𝑘23
𝑘33
𝑘43

 

𝑘14
𝑘24
𝑘34
𝑘44

]

𝐿(𝑖)
{
 
 

 
 𝑞𝑤1

𝐿(𝑖)

𝑞𝜑1
𝐿(𝑖)

𝑞𝑤2
𝐿(𝑖)

𝑞𝜑2
𝐿(𝑖)
}
 
 

 
 

→ 
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→ [𝐾𝑤
𝐺(𝑖)

] {𝑞𝑤
𝐺(𝑡)} =

[
 
 
 
 
 
 
 
0     
    ⋱

    
        
        

        

𝑘2𝑖−1,2𝑖−1
𝑘2𝑖,2𝑖−1
𝑘2𝑖+1,2𝑖−1
𝑘2𝑖+2,2𝑖−1

 

𝑘2𝑖−1,2𝑖
𝑘2𝑖,2𝑖
𝑘2𝑖+1,2𝑖
𝑘2𝑖+2,2𝑖

 

𝑘2𝑖−1,2𝑖+1
𝑘2𝑖,2𝑖+1
𝑘2𝑖+1,2𝑖+1
𝑘2𝑖+1,2𝑖+1

 

𝑘2𝑖−1,2𝑖+2
𝑘2𝑖,2𝑖+2
𝑘2𝑖+1,2𝑖+2
𝑘2𝑖+2,2𝑖+2

        

        
            

⋱     
    0 ]

 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 

𝑞𝑤1
𝐺

⋮
𝑞𝑤(2𝑖−1)
𝐺

𝑞𝜑(2𝑖)
𝐺

𝑞𝑤(2𝑖+1)
𝐺

𝑞𝜑(2𝑖+2)
𝐺

⋮
𝑞𝜑(2𝑁+2)
𝐺

}
 
 
 
 

 
 
 
 

 

Where:     

[

𝑘11
𝑘21
𝑘31
𝑘41

 

𝑘12
𝑘22
𝑘32
𝑘42

 

𝑘13
𝑘23
𝑘33
𝑘43

 

𝑘14
𝑘24
𝑘34
𝑘44

]

𝐿(𝑖)

=

[
 
 
 
𝑘2𝑖−1,2𝑖−1
𝑘2𝑖,2𝑖−1
𝑘2𝑖+1,2𝑖−1
𝑘2𝑖+2,2𝑖−1

 

𝑘2𝑖−1,2𝑖
𝑘2𝑖,2𝑖
𝑘2𝑖+1,2𝑖
𝑘2𝑖+2,2𝑖

 

𝑘2𝑖−1,2𝑖+1
𝑘2𝑖,2𝑖+1
𝑘2𝑖+1,2𝑖+1
𝑘2𝑖+1,2𝑖+1

 

𝑘2𝑖−1,2𝑖+2
𝑘2𝑖,2𝑖+2
𝑘2𝑖+1,2𝑖+2
𝑘2𝑖+2,2𝑖+2]

 
 
 

𝐺(𝑖)

 

 

After their expansion, global force vector, global stiffness and global mass matrices can be assembled:  

[𝐾𝑤
𝐺] = ∑ [𝐾𝑤

𝐺(𝑖)
]𝑁

𝑖=1 ;    [𝑀𝑤
𝐺 ] = ∑ [𝑀𝑤

𝐺(𝑖)
]𝑁

𝑖=1 ;    {𝐹𝑤
𝐺(𝑡)} = ∑ {𝐹𝑤

𝐺(𝑖)(𝑡)}𝑁
𝑖=1  

The final equation, using the global matrices found in precedence, is given by: 

[𝑀𝑤
𝐺 ] {𝑞̈𝑤

𝐺(𝑡)} + [𝐾𝑤
𝐺]{𝑞𝑤

𝐺(𝑡)} = {𝐹𝑤
𝐺(𝑡)} 

The matrices and vectors of the previous equation must be split into the components associated with their 

free and constrained DOFs, as follows: 

[
𝑀𝐹𝐹 𝑀𝐹𝑉

𝑀𝑉𝐹 𝑀𝑉𝑉
] {
𝑞̈𝐹        
𝑞̈𝑉 = 0

} + [
𝐾𝐹𝐹 𝐾𝐹𝑉
𝐾𝑉𝐹 𝐾𝑉𝑉

] {
𝑞𝐹         
𝑞𝑉 = 0

} = {
𝐹𝐹
𝐹𝑉
} → 

[𝑴𝑭𝑭]{𝒒̈𝑭} + [𝑲𝑭𝑭]{𝒒𝑭} = {𝑭𝑭} 

The preceding equation is now suitable for further implementation, mirroring the approach outlined in 

chapter 1, given that it represents an NDOF system as well. The methods MD, MT, and MA can be seamlessly 

applied to the discretized beam model, exhibiting practically no substantial difference from their first 

application shown in paragraph 2.1. 

 

2.2.4. Modal representation of spatial loadings 

 

The convergence of the modally represented load to the effectively applied load is affected by various factors, 
such as the complexity of the applied load, the number of retained modes, and the load values near the 
constraints. Using a residual vector solution method instead of the Mode-Displacement method is 
recommended to determine the transversal displacements accurately. One of the main differences between 
the continuous and the discrete systems is that the FEM model can always match the discretized applied 
forces using all the existing modal shapes (which exist in finite numbers and are purely calculated considering 
the free DOFs), so methods like Modal Truncation Augmentation (MT) and Mode Acceleration (MA) are often 
convenient and not strictly necessary. However, for large models, the full MD method could be excessively 
expensive in computational terms.  
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To find the modally represented and non-represented loads were calculated 𝑛 modal shapes and then, they 
were discretized along the x-axis of the beam. To calculate the modally represented and non-represented 
portions of the applied spatial loads were used the formulations reported below: 

𝑅𝒔,𝑑𝑖𝑠𝑐𝑟(𝑥𝑑𝑖𝑠𝑐𝑟) = 𝜙𝑑𝑖𝑠𝑐𝑟(𝑥𝑑𝑖𝑠𝑐𝑟)∫ (𝜙𝑑𝑖𝑠𝑐𝑟
𝑇 (𝑥𝑑𝑖𝑠𝑐𝑟) ∙ 𝑅𝑑𝑖𝑠𝑐𝑟(𝑥𝑑𝑖𝑠𝑐𝑟))

𝐿

0

𝑑𝑥𝑑𝑖𝑠𝑐𝑟 

𝑅𝒕,𝑑𝑖𝑠𝑐𝑟(𝑥𝑑𝑖𝑠𝑐𝑟) = 𝑅𝑑𝑖𝑠𝑐𝑟(𝑥𝑑𝑖𝑠𝑐𝑟) − 𝑅𝒔,𝑑𝑖𝑠𝑐𝑟(𝑥𝑑𝑖𝑠𝑐𝑟) 

Where 𝜙𝑑𝑖𝑠𝑐𝑟
𝑇 (𝑥𝑑𝑖𝑠𝑐𝑟) contains the 𝑛 modal shapes, numerically discretized along the beam’s axis. 

Generally, if 𝑅𝑠 can converge to 𝑅, then at higher n values it would be almost equal to 𝑅 and the residual 
non-represented load 𝑅𝑡 would tend to 0, as shown for the first load reported in Figures 2.16-2.19. 
Otherwise, if n is kept finite and if the applied load is not a linear combination of any set of loadings associated 
to the retained modal shapes, 𝑅𝑡 will always have at least one value different from 0.  
For a system discretized with FEM, unlike the presented case, only the non-constrained DOFs are considered, 

and the discretized applied loads can always be fully represented. Therefore, the discretized spatial forces 

applied to the free DOFs are always a linear combination of the forces associated to the finite modal shapes, 

at most if all of them are included 

 
Figure 2.16: Spatial and temporal components of the dynamic loads applied to the beam. 

This section focuses on the spatial components of the loads (boxed in red). 
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Figure 2.17: Loads (𝑅), modally represented loads (𝑅𝑠) and residual loads (𝑅𝑡) for 3 retained modes. 

 

 

Figure 2.18: Loads (𝑅), modally represented loads (𝑅𝑠) and residual loads (𝑅𝑡) for 10 retained modes. 
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Figure 2.19: Loads (𝑅), modally represented loads (𝑅𝑠) and residual loads (𝑅𝑡) for 32 retained modes. Here 
{𝑅1} is well represented by the retained modal shapes and {𝑅𝑡}1 tends to {0}. 

 

2.3. MD, MT, and MA methods applied to the beam finite element 

model 

 

2.3.1. Problem description 

 

The analysed beam is stuck at its left side; the geometric parameters of the model and its mechanical 

properties are: 

𝑛𝑜𝑑𝑒𝑠 𝑛° = 11;  𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝑚𝑜𝑑𝑎𝑙 𝑠ℎ𝑎𝑝𝑒𝑠 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒;  𝑙𝑒𝑛𝑔𝑡ℎ = 1𝑚;  ℎ𝑒𝑖𝑔ℎ𝑡 = 0.01𝑚;  𝑏𝑎𝑠𝑒 = 0.01𝑚; 

𝐸 = 210 ∙ 109 𝑃𝑎;  𝜌 = 7900 𝑘𝑔/𝑚3;  𝜉𝑖 = 0.2  

3 cases of single dynamic loads applied to the beam were considered, in addition, different frequencies 

(3/30/100 Hz) were used for the time components of the loads, which consist of a single sinusoidal function 

as reported in paragraph 2.3.2. 

The used spatial forces are:  

- A concentrated force applied at the tip of the beam. (Figure 2.20a) 

- A constant load distributed along the length of the beam. (Figure 2.20b) 

- A ‘triangular’ load distributed along the length of the beam. (Figure 2.20c) 
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Figure 2.20: Defined spatial forces/loads: a) Concentrated force; b) Constant distributed load; c) triangular 
distributed load. 

The number of retained modes varies according to the natural frequencies of the discretized beam system 

considered. In the proposed examples, are retained all the modes having a frequency inferior to the load’s 

frequency. The natural frequencies obtained for the beam finite element model are approximately: 

𝒇𝑵,𝟏 = 𝟖. 𝟑𝟑𝑯𝒛; 𝒇𝑵,𝟐 = 𝟓𝟐. 𝟐𝟎𝑯𝒛;  𝒇𝑵,𝟑 = 𝟏𝟒𝟔. 𝟏𝟖𝑯𝒛; 

 

2.3.2. Concentrated force results 

 

For the concentrated force, the component of the discretized force is 1 on the last DOF concerning the 

transversal displacement: 

 𝐹𝑥 = {0,0, … ,1,0} 
 

(9) 

The temporal components of the applied dynamic force are in order: 
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Figure 2.21: Temporal components of the force oscillating at 3 Hz, 30 Hz, and 100 Hz, respectively. 

As said before, for the first two temporal components of the force the number of retained modes (𝑛°𝑅𝑀) is 

1, while, for the last one 𝑛°𝑅𝑀 = 2. 

The displacements obtained for the specified frequencies and the concentrated force are reported below: 

 

 

Figure 2.22: Displacements at different distances from the beam’s constraint (𝑥 = 0 𝑚) for the concentrated 
force oscillating at 3 Hz. 
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Figure 2.23: Displacements at different distances from the beam’s constraint (𝑥 = 0 𝑚) for the concentrated 
force oscillating at 30 Hz. 

 

 

Figure 2.24: Displacements at different distances from the beam’s constraint (𝑥 = 0 𝑚) for the concentrated 
force oscillating at 100 Hz. 
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2.3.3. Constant load results 

 

Similarly to the case presented in the paragraph 2.3.2: 

 

 

The other analysed temporal components of the force oscillate at 30 and 100 Hz, respectively: 

 

Figure 2.25: Constant spatial load and temporal components associated.  

The results obtained for the constant load oscillating at the specified frequencies are reported below: 
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Figure 2.26: Displacements at different distances from the beam’s constraint (𝑥 = 0 𝑚) for the constant 
load oscillating at 3 Hz. 

 

 

Figure 2.27: Displacements at different distances from the beam’s constraint (𝑥 = 0 𝑚) for the constant 
load oscillating at 30 Hz. 
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Figure 2.28: Displacements at different distances from the beam’s constraint (𝑥 = 0 𝑚) for the constant 
load oscillating at 100 Hz. 

 

2.3.4. Triangular load results 

 

Similarly to the case reported in paragraph 2.3.2: 

 

The other analysed temporal components of the load are characterized by frequencies of 30 and 100 Hz, respectively: 

 

 

Figure 2.29: Triangular spatial load and temporal components associated. 
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The results obtained for the triangular load, at the specified frequencies, are reported below: 

 

Figure 2.30: Displacements at different distances from the beam’s constraint (𝑥 = 0 𝑚) for the triangular 
load oscillating at 3 Hz. 

 

 

Figure 2.31: Displacements at different distances from the beam’s constraint (𝑥 = 0 𝑚) for the triangular 
load oscillating at 30 Hz. 
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Figure 2.32: Displacements at different distances from the beam’s constraint (𝑥 = 0 𝑚) for the triangular 
load oscillating at 100 Hz. 

 

The results show that the MT method generally outperforms the MA method in almost every scenario, 

better converging to the solution obtained using the MD method. The approach of only retaining some 

modes without adding any residual vectors (𝑤𝑠) tends to perform the worst.  

This could explain why commercial software such as MSC Nastran had started replacing the MA method 

with the more accurate MT method [8]. In particular, focusing on the figures relative to the load’s frequency 

of 30 Hz, near the constraint (the results in question are boxed), is easy to further compare the MT and MA 

methods: the former seems to be closer to the MD solution, except for Figure 2.23 where it cannot be 

determined uniquely which method performs better. 

 

2.3.5. Considering multiple applied forces 

 

In considering multiple applied loads on the system described in paragraph 2.3.1, the MT vectors (matrix [𝑃]) 

must be calculated as follows: 

[𝐾][{𝑋1}… {𝑋𝑖} … {𝑋𝑁}] = [{𝑅𝑡,1} … {𝑅𝑡,𝑖} … {𝑅𝑡,𝑁}] → [𝐷𝐾] = [𝑋]
𝑇[𝐾][𝑋];  [𝐷𝑀] = [𝑋]

𝑇[𝑀][𝑋] 

Therefore: 

[𝐷𝐾][𝑄] = [𝐷𝑀][𝑄]{𝜔̅𝑃
2} → [𝑃] = [𝑋][𝑄] → [𝜙̃] = [[𝜙]𝑅  [𝑃]] 

 

However, this approach is less suitable for the direct comparison of the methods, contrarily to applying only 

a single load, because it is hard to define which variations are related to which applied loads. 

However, the results show again the MT method's superiority over the MA method. For instance, Figure 

2.35 shows that the MT displacements obtained near the constraint at 𝑛°𝑅𝑀 = 1 better represent those 
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obtained by the MD solution, differently from the MA solution, which performs worse. However, the MA 

method seems capable of improving the solution offered by only considering the retained modes (solution 

𝑤𝑠). It is worth noting that the MT method, in this case, is 4 times more expensive than the MA method. 

 

Figure 2.33: Representation of 3 dynamic forces applied simultaneously to the beam. 

 

 

Figure 2.34: Representation of the discretized forces applied to each DOF (𝑅0), the modally represented 
forces (𝑅𝑠) and the residual forces (𝑅𝑡). The force applied on the constrained DOF (𝑥 = 0 𝑚) is not 

considered in the modal representation of the forces as stated at the end of paragraph 2.2.3. 
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Figure 2.35: Displacements at different distances from the beam’s constraint for 3 dynamic loads applied to 
the beam simultaneously. In the boxed figure the displacements obtained by MD and MT methods 

completely overlap. 

 

2.4. Performance coefficients and results enhancement 

 

2.4.1. Performance coefficients 

 

At this point, it was worth finding a way to compare the methods analytically for a single applied load/force. 

The solution adopted consists of subtracting from the MD solution the MA and MT solutions to compare the 

method’s differences from the complete solution. All the solutions were matrices of 22x1000, where the 

former is the number of global DOFs and the latter is the number of time steps. 

The comparisons were performed only on the transversal displacements. Once obtained the difference 

results, which, were matrices of 11x1000, were calculated: 

- The maximum displacement difference, normalized with 𝑤𝑀𝐷,𝑚𝑎𝑥  (𝒄𝑴𝑨𝑿). 

- The maximum mean timed value on all the considered DOFs, normalized with 𝑤𝑀𝐷,𝑚𝑎𝑥. 

- The global mean value, normalized with 𝑤𝑀𝐷,𝑚𝑎𝑥 (𝒄𝑴𝒆𝒂𝒏). 

- Norm 1, not normalized, but the value was averaged on all the load’s oscillations (𝒄𝑵𝒐𝒓𝒎 𝟏). 

- Norm ∞, not normalized, but the value was averaged on all the load’s oscillations (𝒄𝑵𝒐𝒓𝒎 ∞). 

The overall framework was applied to each single spatial force/load shown in Figure 2.20 at several 

frequencies of the forces and loads’ temporal components. The chosen analysis frequency range was: 𝑓 =

1 − 300 𝐻𝑧. The coefficients described were applied after considering the absolute value of the overall 

transversal displacement differences. In the next paragraph are reported all the obtained results except for 
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the second coefficient introduced in the list above (maximum mean timed value), which was not reported as 

would not give any additional insight into the methods analysed. 

 

2.4.2. Analytical results 

 

In this paragraph are presented the performances of the methods analysed. The red vertical lines in each 

figure represent the first 4 modal frequencies of the beam in the range 0-300 Hz. 

The used approach will be named ‘Approach 0’ in further sections. It consists of retaining 1 mode until the 

dynamic load’s frequency reaches the second modal shape, then, the approach retains 2 modes until the 

load’s frequency reaches again the third, and so on. In other words, are retained all the modes having a 

frequency inferior to the one associated with the temporal component of the load/force. 

From Figures 2.36-2.47 it is clear that after adding an ulterior mode the solutions improve instantly in the 

frequency domain since the methods have all the modal instruments to correctly represent the solution at 

the soliciting frequency, which is close to the just retained mode. However, as the force’s frequency 

approaches the next modal frequency, the retained modes are no longer sufficient to well describe the  

solution, being necessary to include the next mode to represent it correctly. Different and more efficient 

approaches will be characterized in the next paragraphs since the retention of the next mode could be 

anticipated just when the error starts to increase with an exponential-like behaviour. 

 

 

Figure 2.36: 𝒄𝑴𝑨𝑿 as a function of force’s frequency for the concentrated force. 

 



43 
 

 

Figure 2.37: 𝒄𝑴𝒆𝒂𝒏 as a function of force’s frequency for the concentrated force. 

 

 

Figure 2.38: 𝒄𝑵𝒐𝒓𝒎 𝟏 as a function of force’s frequency for the concentrated force. 
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Figures 2.39: 𝒄𝑵𝒐𝒓𝒎 ∞ as a function of force’s frequency for the concentrated force. 

 

 

 

Figure 2.40: 𝒄𝑴𝑨𝑿 as a function of load’s frequency for the constant load. 
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Figure 2.41: 𝒄𝑴𝒆𝒂𝒏 as a function of load’s frequency for the constant load. 

 

 

Figure 2.42: 𝒄𝑵𝒐𝒓𝒎 𝟏 as a function of load’s frequency for the constant load. 
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Figures  2.43: 𝒄𝑵𝒐𝒓𝒎 ∞ as a function of load’s frequency for the constant load. 

 

 

 

Figure 2.44: 𝒄𝑴𝑨𝑿 as a function of load’s frequency for the triangular load. 
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Figure 2.45: 𝒄𝑴𝒆𝒂𝒏 as a function of load’s frequency for the triangular load. 

 

 

Figure 2.46: 𝒄𝑵𝒐𝒓𝒎 𝟏 as a function of load’s frequency for the triangular load. 
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Figures 2.47: 𝒄𝑵𝒐𝒓𝒎 ∞ as a function of load’s frequency for the triangular load. 

 

When approaching the next modal frequency from the left side, all the methods behave similarly and 

experience a rapid increase in the coefficients. This is because the MD response is mainly governed by the 

following mode that is not included in the computations of the MT and MA solutions. In fact, the algorithm 

only considers modes with a frequency lower than the applied load's frequency. Thus, in these circumstances, 

the primary mode contributing to the overall response is not accounted for, leading to maximum errors as 

large as the maximum real displacement of the beam. However, the presence of a pseudo-mode in the MT 

method reduces these mispredictions, leading often to less pronounced peaks.  

It has been observed that the defined coefficients are always slightly larger for the MA method than for the 

MT method, for each frequency considered, indicating the overall better accuracy of the MT method over the 

MA method. Anyway, both methods enhance the results obtained by only considering the retained modes 

(𝑤𝑠 solution)  

Furthermore, as more modes are retained (i.e. at higher load’s frequency), the local peaks decrease near the 

following modal frequencies. However, the peaks of 𝑐𝑁𝑜𝑟𝑚 1 And 𝑐𝑁𝑜𝑟𝑚 ∞ decrease more rapidly than for 

𝑐𝑀𝐴𝑋 and 𝑐𝑀𝑒𝑎𝑛. Overall, the results obtained by 𝑐𝑁𝑜𝑟𝑚 1 And 𝑐𝑁𝑜𝑟𝑚 ∞ are in good agreement with those 

obtained by 𝑐𝑀𝐴𝑋 and 𝑐𝑀𝑒𝑎𝑛. 

The next figures provide an example of a load’s frequency that is slightly lower than the frequency of the 

second mode, which is not retained by the considered approach. Figures 3.48, 3.49, and 3.50 study in a 

practical way the peaks mentioned before. Demonstrating once again the superiority of the MT method over 

the MA method since it always better approximates the MD results due to its capacity of considering dynamic 

amplifications, neglected in the MA method. However, the MT method has more difficulties for the 

concentrated force case. 

 It is reminded that the second modal frequency is 𝑓𝑁,2 = 52.20 𝐻𝑧. 
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Figure 2.48: Deviations of the MT and MA methods from the MD method for the concentrated force 
oscillating at 51 Hz. 

 

 

Figure 2.49: Deviations of the MT and MA methods from the MD method for the constant load oscillating at 
51 Hz. 
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Figure 2.50: Deviations of the MT and MA methods from the MD method for the triangular load oscillating 
at 51 Hz. 

 

2.4.3. Result enhancement approaches 

 

In this and in the next paragraphs, the approach used in paragraph 2.4.1 will be referred to as approach ‘zero’. 

To enhance the accuracy of the approach 0, two defined techniques are employed: 

-The first approach involves averaging two contiguous modal frequencies to introduce an additional mode as 

the load’s frequency exceeds the averaged frequency. The green lines in the images of the next paragraph 

indicate where the extra mode is introduced. This approach significantly reduces the errors and prevents 

them from reaching extreme peaks. The results obtained are reported in paragraph 2.4.4. 

-The second approach, whose results are reported in the relative paragraph 2.4.5, involves categorically 

considering an additional mode compared to approach 0. If only one mode was retained for a given frequency 

in approach 0, the current approach now considers two frequencies. If before was 𝑛𝑅𝑀,𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ0 = 2 , now 

𝑛𝑅𝑀,𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ2 = 3, and so on. Implementing this strategy further improves the results and reduces errors 

but requires a higher computational cost compared to approaches 0 and 1. 
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2.4.4. Approach 1 results 

 

 

Figure 2.51: Approach 1: 𝒄𝑴𝑨𝑿 as a function of force’s frequency for the concentrated force. 

 

 

Figure 2.52: Approach 1: 𝒄𝑴𝒆𝒂𝒏 as a function of force’s frequency for the concentrated force. 
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Figure 2.53: Approach 1: 𝒄𝑵𝒐𝒓𝒎 𝟏 as a function of force’s frequency for the concentrated force. 

 

 

Figures 2.54: Approach 1: 𝒄𝑵𝒐𝒓𝒎 ∞ as a function of force’s frequency for the concentrated force. 
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Figure 2.55: Approach 1: 𝒄𝑴𝑨𝑿 as a function of load’s frequency for the constant load. 

 

 

Figure 2.56: Approach 1: 𝒄𝑴𝒆𝒂𝒏 as a function of load’s frequency for the constant load. 
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Figure 2.57: Approach 1: 𝒄𝑵𝒐𝒓𝒎 𝟏 as a function of load’s frequency for the constant load. 

 

 

Figures 2.58: Approach 1: 𝒄𝑵𝒐𝒓𝒎 ∞ as a function of load’s frequency for the constant load. 
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Figure 2.59: Approach 1: 𝒄𝑴𝑨𝑿 as a function of load’s frequency for the triangular load. 

 

 

Figure 2.60: Approach 1: 𝒄𝑴𝒆𝒂𝒏 as a function of load’s frequency for the triangular load. 
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Figure 2.61: Approach 1: 𝒄𝑵𝒐𝒓𝒎 𝟏 as a function of load’s frequency for the triangular load. 

 

 

Figure 2.62: Approach 1: 𝒄𝑵𝒐𝒓𝒎 ∞ as a function of load’s frequency for the triangular load. 
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2.4.5. Approach 2 results 

 

 

Figure 2.63: Approach 2: 𝒄𝑴𝑨𝑿 as a function of force’s frequency for the concentrated force. 

 

 

Figure 2.64: Approach 2: 𝒄𝑴𝒆𝒂𝒏 as a function of force’s frequency for the concentrated force. 
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Figure 2.65: Approach 2: 𝒄𝑵𝒐𝒓𝒎 𝟏 as a function of force’s frequency for the concentrated force. 

 

 

Figure 2.66: Approach 2: 𝒄𝑵𝒐𝒓𝒎 ∞ as a function of force’s frequency for the concentrated force. 
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Figure 2.67: Approach 2: 𝒄𝑴𝑨𝑿 as a function of load’s frequency for the constant load. 

 

 

Figure 2.68: Approach 2: 𝒄𝑴𝒆𝒂𝒏 as a function of load’s frequency for the constant load. 
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Figure 2.69: Approach 2: 𝒄𝑵𝒐𝒓𝒎 𝟏 as a function of load’s frequency for the constant load. 

 

 

Figure 2.70: Approach 2: 𝒄𝑵𝒐𝒓𝒎 ∞ as a function of load’s frequency for the constant load. 
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Figure 2.71: Approach 2: 𝒄𝑴𝑨𝑿 as a function of load’s frequency for the triangular load. 

 

 

Figure 2.72: Approach 2: 𝒄𝑴𝒆𝒂𝒏 as a function of load’s frequency for the triangular load. 
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Figure 2.73: Approach 2: 𝒄𝑵𝒐𝒓𝒎 𝟏 as a function of load’s frequency for the triangular load. 

 

 

Figure 2.74: Approach 2: 𝒄𝑵𝒐𝒓𝒎 ∞ as a function of load’s frequency for the triangular load. 
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2.4.6. Approach 0 and Approach 1 comparison 

 

In this paragraph, the two defined approaches ‘0’ and ‘1’ are compared. In Figures 2.75-2.86 pedicle “1” 

indicates the lately defined Approach 1, while pedicle “0” indicates the results obtained using Approach 0. 

 

Figure 2.75: Comparison of 𝒄𝑴𝑨𝑿 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the 

concentrated force as a function of force’s frequency. 

 

 

Figure 2.76: Comparison of 𝒄𝑴𝒆𝒂𝒏 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the 

concentrated force as a function of force’s frequency. 
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Figure 2.77: Comparison of 𝒄𝑵𝒐𝒓𝒎 𝟏 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the 
concentrated force as a function of force’s frequency. 

 

 

Figure 2.78: Comparison of 𝒄𝑵𝒐𝒓𝒎 ∞ for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the 
concentrated force as a function of force’s frequency. 
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Figure 2.79: Comparison of 𝒄𝑴𝑨𝑿 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the constant 

load as a function of load’s frequency. 

 

 

Figure 2.80: Comparison of 𝒄𝑴𝒆𝒂𝒏 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the constant 

load as a function of load’s frequency. 
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Figure 2.81: Comparison of 𝒄𝑵𝒐𝒓𝒎 𝟏 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the 

constant load as a function of load’s frequency. 

 

 

Figure 2.82: Comparison of 𝒄𝑵𝒐𝒓𝒎 ∞ for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the 
constant load as a function of load’s frequency. 
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Figure 2.83: Comparison of 𝒄𝑴𝑨𝑿 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the triangular 

load as a function of load’s frequency. 

 

 

Figure 2.84: Comparison of 𝒄𝑴𝒆𝒂𝒏 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the triangular 

load as a function of load’s frequency. 
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Figure 2.85: Comparison of 𝒄𝑵𝒐𝒓𝒎 𝟏 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the 

triangular load as a function of load’s frequency. 

 

 

Figure 2.86: Comparison of 𝒄𝑵𝒐𝒓𝒎 ∞ for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the 
triangular load as a function of load’s frequency. 
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2.4.7. Conclusions 

 

Approach 2 provides the best overall enhancements but is also the most expensive, computationally. On the 

other hand, approach 1 yields significant benefits only when the next modal shape is added. Introducing 

another mode strategically could offer advantages, as it does not necessarily need to be introduced at the 

averaged frequency. For example, it could be introduced at one-third of the distance between two 

contiguous modal frequencies, however, this depends on the chosen enhancement criterion.  

The enhancement criterion could aim to improve outputs when one or more performance coefficients 

reach a certain threshold value, or when the impact of the improvement would be more beneficial 

compared to the solution without residual vectors (𝑤𝑠). For instance, approach 0 does not provide strategic 

benefits since it introduces another mode where the error of MT or MA is practically the same of the error 

obtained with 𝑤𝑠. In contrast, approach 1 introduces another mode where the errors of MT and MA 

methods are approximately half of the error of 𝑤𝑠. Therefore, an enhancement threshold could be 

implemented to improve the solution when the error of the residual vector method chosen exceeds a 

certain portion of the error obtained without any residual vector, making its use still meaningful. 

Clearly, the enhancement criterion could consist of a combination of the criteria mentioned above: 

analytical studies on different systems and loading conditions could be made in order to determine how 

many modes to retain to offer the best possible solution at the lowest computational cost, however, this 

implies also the precise definition of the criterions necessary for the suggested optimization. 

The problem arises when the spatial portion of the applied load is no longer simple or linear as in the 

presented cases, the approaches discussed may fail due to the excitation of modal shapes having 

frequencies well above the maximum frequency content of the load. An example of this is reported in the 

next paragraph. 

 

2.5. Considering a particular force 

 

Let’s consider a Global force structured as: 

𝐹𝑤
(𝐺) = { 0,0,   − 𝟕𝟎𝟎,  0,    0,0,    0,0,    𝟏𝟒𝟎, 0,    0,0,   − 𝟒𝟓, 0,   − 1.7,0,   − 𝟖,  0,    0,0,    𝟕. 𝟏,  0 }𝑇  [𝑁, 𝑁 ∙ 𝑚, … ] 

 

In the equation above are paired the solicitations applied on each DOF (concentrated forces and moments, 

respectively). The values of the force 𝐹𝑤
(𝐺)

 were chosen so that the static associated was purposely similar 

to one of the beam’s modal shapes, in order to excite it.  

The static displacement results and the reference modal shape are reported in Figure 2.87:  
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Figure 2.87: Comparison between the beam’s static displacement for the applied 𝐹𝑤
(𝐺)and the 4𝑡ℎ modal shape. 

The performance coefficients defined in paragraph 2.4.1 are reported in Figures 2.88-2.91 for the specified 

spatial force at different frequencies for approaches 0 and 1. The chosen frequency span for the analyses is 

𝑓 = 0 − 600 𝐻𝑧. 

 

Figure 2.88: Comparison of 𝒄𝑴𝑨𝑿 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the particular 

force as a function of force’s frequency. 
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Figure 2.89: Comparison of 𝒄𝑴𝒆𝒂𝒏 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the particular 

force as a function of force’s frequency. 

 

 

Figure 2.90: Comparison of 𝒄𝑵𝒐𝒓𝒎 𝟏 for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the 

particular force as a function of force’s frequency. 
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Figures 2.91: Comparison of 𝒄𝑵𝒐𝒓𝒎 ∞ for approach 0 (pedicle ‘0’) and approach 1 (pedicle ‘1’) for the 
particular force as a function of force’s frequency. 

 

In the reported simulations the errors were analysed before and after the fourth mode retention. It is 

important to note that the errors are very large for the MT method when only the first mode is retained and 

the frequency is really low. All the coefficients oscillate until the second mode is reached. For 𝑛𝑅𝑀 < 4, 𝑐𝑀𝐴𝑋 

rapidly increases until its peak level of 1, however, this increment is less evident for the MA and MT methods. 

The main difference with the simulations reported in paragraph 2.4 is that 𝑐𝑀𝐴𝑋 here increases similarly to a 

logarithmic-like function instead of an exponential-like one, however, upon retaining the fourth mode, it 

increases linearly. 𝑐𝑀𝑒𝑎𝑛 also experiences a slight decrease of the slope after the 4th modal shape retention 

and, before its retention, has values higher than those relative to the cases analysed in the previous 

paragraphs. 𝑐𝑀𝑒𝑎𝑛 is generally higher for the MA method than for the MT method. 

It is also observed that at the resonance frequency, the dynamic displacements were relatively well 

characterized (for MT and MA methods in particular). Furthermore, it can be hypothesized that when one or 

more retained modes vaguely match the static displacement result associated to the spatial force, a general 

improvement of the solution can be observed. In the simulations is evident that the MT method gives the 

best results at higher frequencies and both methods globally improve the results obtained by not using any 

residual vector (𝑤𝑠), however at lower frequencies, the error obtained by the MT method is the largest due 

to the incorrect representation of the displacement of the beam in the range 𝑥 = 0 − 0.4 𝑚. 

𝑐𝑁𝑜𝑟𝑚 1 And 𝑐𝑁𝑜𝑟𝑚 ∞ peaks increase until the 4𝑡ℎ mode is retained, then they start to decrease. For the latter 

this is more evident. However, their trend is similar, indicating a generally better response reconstruction after 

the 4th mode retention from both time and spatial domain perspectives. 

Overall, approach 1 provides here a substantial enhancement of the solution for MA and MT methods. While 

the effects of approach 1 are less evident on the 𝑤𝑠 coefficients due to their rapid increase. For instance, for 

approach 1 the peaks of 𝑐𝑀𝐴𝑋 and 𝑐𝑀𝑒𝑎𝑛 improve by up to 70% relatively to those obtained using approach 

0 for MT and MA methods, while the enhancements are still not sufficient to well represent the 𝑤𝑠 solution 

at each force’s frequency, giving marginal benefits only on the frequency domain portion where a further 
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mode is retained and after the 4th mode retention. Differently from the results obtained in paragraph 2.4 

where the effects of approach 1 were always evident on 𝑤𝑠. 

In conclusion, for each case analysed, approaches 1 and 2 denote the capabilities of the MT and MA methods 

of improving the 𝑤𝑠 solution, with MT being slightly better than the MA method, in every aspect and 

circumstance, except for really low numbers of retained modes, where the peaks of 𝑐𝑀𝐴𝑋 and 𝑐𝑀𝑒𝑎𝑛 can 

reach values 4 times higher than for MA and 𝑤𝑠. 
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3. Study of an aircraft wing section using the Residual 

Vectors methods already available in Nastran 
 

3.1. Structural Model 

 

The main goal of this chapter is to study the differences between the methods that use the concept of residual 

vectors already implemented in MSC Patran/Nastran. The model used in these analyses is a wing section with 

a NACA 2414 airfoil composed of 4 ribs and 3 spars, predominantly made of multilayer composites.  

The geometry of the model and composite’s orientation are reported in Figure 3.1, while material properties 

and the composite stacking sequences are reported in Tables 3.1 and 3.2, respectively. 

 

Material: Tooray – TCA T700S-12K-50C/#2510 Plain Weave Fabric 
 𝐸11 = 55 𝐺𝑃𝑎 
 𝐸22 = 55 𝐺𝑃𝑎 
 𝜈12 = 0.04 
 𝐺12 = 4.3 𝐺𝑃𝑎 
 𝐺13 = 1 𝐺𝑃𝑎 
 Ply thickness: 𝑡 = 0.00021 𝑚 

Table 3.1: Material properties. 

 

Airfoil base shell: [0/+30/90 /−30/0](10𝑠) 

Stiffening shell, ribs and spars: [0/(45)2/90](10𝑠) 

Table 3.2: ply stacking sequences for the composites. The pedicle ‘s’ implies symmetry. 

 

 

Figures 3.1: Wing geometry and features. 
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3.2. Model Creation 

 

The model main geometric points were defined in Matlab, distinguishing those belonging to the skin, the 

stiffening, and the spars’ cores, then, they were added separately in MSC Patran as a starting point for the 

model creation. An impulse lasting 0.1 seconds was applied to the structure, it was deliberately 

chosen to only involve the first 4 modal frequencies. The cut-off frequency of the impulse is 28 Hz, defined as 

the frequency at which its Fourier Transform absolute value reaches 1/100 of the peak value. The third and 

fourth modal frequencies of the model are approximately 15 and 35 Hz indeed. It is important to note that 

skin panels near the trailing edge were removed due to their association with local deformation modal 

shapes, which were several and pervasive.  

It was decided to remove this part instead of adding further reinforcements such as stringers or ribs in the 

proximity of the skin panels which constituted the trailing edge. The constraint used in the model is a full-

fixity applied to the first rib at 𝑥 = 0 𝑚, while, for the first simulation, the impulse was exclusively applied to 

node no. 2772, which belongs to the fourth rib. The obtained mesh is composed of 2167 nodes.  

Loading, constraints, finite element mesh, and the first 5 modal shapes are shown in the following figures. 

The modal frequencies were also compared to the frequencies obtained by the study reported in Reference 

[9] to ensure the validity of the current modal shapes, 2 extracts are reported in Figures 3.13 and 3.14. 

 

 

Figure 3.2: Geometric points reconstruction in Matlab. They are subsequently imported in MSC Patran to 
create in order: lines, surfaces, constraints, material properties associated to the geometry and finally the 

mesh. 
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Figure 3.3: Impulse applied on the structure; 𝑓𝑇,1 = 28 𝐻𝑧. 

 

Figure 3.4: Fourier Transform and cut frequencies for different impulses, the lime-green and blu impulses 
will be used in the first and second simulations, respectively presented in paragraphs 3.5 and 3.6. (extracted 

from Ref. [10]) 

 

Figure 3.5: Model’s geometry created in MSC Patran. 
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Figure 3.6: Constraints (Perfect Joint) and force applied to the model’s geometry [force displayed at 𝑡 =
0.001 𝑠]. 

 

 

Figure 3.7: Final structure’s finite element mesh with 2167 nodes. 

 

3.3. Modal Analysis 

 

Figures 3.8-3.12 report the first 5 modal shapes used in both simulations, which are presented in 

paragraphs 3.5 and 3.6. 

 

Figure 3.8: Model’s first modal shape at 𝑓1 = 4.091 𝐻𝑧. 
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Figure 3.9: Model’s second modal shape at 𝑓2 = 13.024 𝐻𝑧. 

 

 

Figure 3.10: Model’s third modal shape at 𝑓3 = 15.375 𝐻𝑧. 

 

 

Figure 3.11: Model’s fourth modal shape at 𝑓4 = 34.846 𝐻𝑧. 
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Figure 3.12: Model’s fifth modal shape (torsional) at 𝑓5 = 40.954 𝐻𝑧. 

 

Here are reported 2 extracts from Ref. [9], which define typical modal frequency ranges for aeronautical 
wings. 

 

Figure 3.13: Example of typical modal frequencies for an aeronautical wing (extract 1 from Ref. [9]). 

 

Figure 3.14: Typical modal frequencies for a wing (extract 2 from Ref. [9]). The orange box denotes the 
presence of multiple modes in the first 50 Hz, validating the modal frequency values obtained for the current 

analysis. 
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3.4. RESVEC function configurations 

 

3.4.1. The RESVEC function  

 

Different configurations of the MSC Nastran RESVEC function were evaluated for the defined problem at 

different numbers of retained modes. The main goal was to compare the two methods implemented in MSC 

Nastran: The Modal Truncation Augmentation method, which was already analysed in previous chapters, and 

the 'Inertia Relief-based' method, which is arbitrarily named so by the author of the thesis based on the MSC 

Nastran’s manual definitions (Figure 3.15). The method name will be shortened to Inertia Relief (IR) from now 

on, not to be confused with homonym method, which is used to study non-constrained structures, however 

the 2 methods may share a common logic [11]. It consists in applying 6 accelerations (3 translational and 3 

rotational) to the structure and then obtain the associated distributed loadings: for each of them it is 

calculated the MT vector associated. In Patran, these methods are used simultaneously by default by the 

RESVEC function to optimize the calculation of the dynamic response. The results will show that this approach 

is the most effective but requires the highest computational cost.  

However, it is difficult to determine which of the two methods mentioned is better because it depends on the 

perspective and the dynamic forces applied to the system. The following paragraphs attempt to shed light on 

this problem by analyzing and comparing the methods IR, MT, IR+MT (RESVEC = YES configuration), and the 

solution without any Residual Vectors implementation (RESVEC = NO configuration). All the Residual Vectors 

were allowed to dynamically respond to the defined loading and were calculated based on the user-defined 

viscous damping (which was set to 3% of the critical viscous damping coefficient). In the Patran manual, no 

further information could be found on the meaning of RVDOFi (Figure 3.15), which could be connected to the 

super element definition (not used in the presented simulations). Anyway, as reported in Figure 3.16, it 

seems to be irrelevant for the analysis purposes. 

 

3.4.2. RESVEC configurations 

 

The different commands used for the different methods mentioned in paragraph 3.4.1 are reported below 

and an extract from the MSC Nastran’s manual, regarding the function RESVEC, is reported in Figure 3.15: 

 

For no residual vector calculation: 
RESVEC = NO 
 
For the standard Patran residual vector calculation: 
RESVEC = YES 
 
For the calculation of the residual vectors based on inertial relief only: 
RESVEC(INRLOD,NOAPPL,NOADJLOD,NORVDOF,DAMPLOD,DYNRSP) = YES 
 
For the calculation of the residual vectors using the Modal Truncation Augmentation method only: 
RESVEC(NOINRL,APPLOD,NOADJLOD,NORVDOF,DAMPLOD,DYNRSP) = YES 
 

Table 3.3: RESVEC configurations used in paragraph 3.5 and 3.6. 
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Figure 3.15: MSC Patran/Nastran manual on Residual Vectors function ‘RESVEC’. (Ref. [12]). 

 

Figure 3.16: RVDOF/NORVDOF subfunction comparison at the same 𝑛°𝑅𝑀. The subfunction is the only 
change between the 2 RESVEC configurations. 

Results denote no difference between the modal frequencies or modal shapes obtained enabling or disabling 
the RVDOF subfunction. 
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3.5. Analyses (transversal force) 

 

3.5.1. RESVEC configurations applied to the wing model 

 

The RESVEC configurations defined were used to study the wing section model under an impulsive force, the 

study was reiterated at different numbers of retained modes. In figures 3.17-3.27 are reported the total 

displacement in absolute value and the transversal displacement of the node n° 2772 (node where the 

impulse is applied) for different numbers of retained modes (𝑛°𝑅𝑀). 

Displacements indicate that for 𝑛°𝑅𝑀 = 1 and 𝑛°𝑅𝑀 = 2 there is not a considerable difference, while at 

higher 𝑛°𝑅𝑀 the total and transversal displacements start to pack together. 

Furthermore, from the mentioned images, it can be observed that the MT method seems to better 

approximate the ‘RESVEC = YES’ solution at each number of retained modes for the current study, In fact, it 

seems to outperform the IR method for what concerns displacements accuracy. However, the ‘IR’ method 

could be more practical for preliminary studies though because it allows the calculation of 6 additional modal 

shapes without defining any loading case.  

Anyway, these results must be contextualized, subsequent analysis (paragraph 3.6) will show that the MT and 

IR methods are both valid depending on the studied case. It is anticipated the IR method performs better 

when 𝑛°𝑅𝑀  is very low and the spatial loading is complex but it generally necessitates a higher computational 

cost, which makes it, in this case, less convenient than directly calculating the solution using more original 

eigenvectors and applying the MT method instead.  

Furthermore, it will be shown that the MT method aids in a better convergence to the ideal solution, which 

is not assured by the IR method and the ‘RESVEC = NO’ configuration. The ‘RESVEC = YES’ solution seems to 

be good independently from the 𝑛°𝑅𝑀.  

 

 

Figure 3.17: Total displacement in absolute value for the central node 2772 at 1 retained mode. 



83 
 

 

 

Figure 3.18: Total displacement in absolute value for the central node 2772 at 1 retained-mode. (Zoomed). 

 

 

Figure 3.19: Total displacement in absolute value for the central node 2772 at 2 retained modes. (Zoomed). 
No evident differences with the previous case where the number of retained modes 𝑛°𝑅𝑀  was set to 1. 
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Figure 3.20: Total displacement in absolute value for the central node 2772 at 3 retained modes. (Zoomed). 

 

 

Figure 3.21: Total displacement in absolute value for the central node 2772 at 4 retained modes. (Zoomed). 
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Figure 3.22: Transversal displacement for the central node 2772 at 1 retained mode.  

 

 

Figure 3.23: Transversal displacement for the central node 2772 at 2 retained modes. 



86 
 

 

Figure 3.24: Transversal displacement for the central node 2772 at 1 retained mode. (Zoomed). 

 

 

Figure 3.25: Transversal displacement for the central node 2772 at 2 retained modes. (Zoomed). No evident 
differences with the previous case where 𝑛°𝑅𝑀 = 1. 
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Figure 3.26: Transversal displacement for the central node 2772 at 3 retained modes. (Zoomed). 

 

 

Figure 3.27: Transversal displacement for the central node 2772 at 4 retained modes. (Zoomed). 
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3.5.2. Performance coefficients definition and results 

 

To globally compare the methods, the solution found consists of subtracting an ideal solution (pedicle 

‘Master’) from the specified method’s solutions. The ideal solution is the full dynamic response of the system 

obtained using 𝑛°𝑅𝑀 = 300 and the “RESVEC = YES” configuration. 

The global displacements were imported in Matlab and were 3D Matrices of 2167x3x200 (2167 Nodes x 

[𝑇1  𝑇2  𝑇3] x 200 Time Steps, T here stays for translation), except for the calculation of 𝑘𝑚𝑖𝑛, which was 

performed on selected nodes (these are reported in Figure 3.28, and the resultant matrix in this case has 

dimensions of 762x3x200). The defined coefficients are: 

- Global 𝜕𝑈𝐺  maximum value, normalized with 𝑈𝑀𝑎𝑠𝑡𝑒𝑟,𝑚𝑎𝑥 (𝒌𝑴𝑨𝑿). 

- Global 𝜕𝑈𝐺  mean value, normalized with 𝑈𝑀𝑎𝑠𝑡𝑒𝑟,𝑚𝑎𝑥 (𝒌𝑴𝒆𝒂𝒏). 

- Global 𝜕𝑈𝐺  minimum value, normalized with 𝑈𝑀𝑎𝑠𝑡𝑒𝑟,𝑚𝑎𝑥 (𝒌𝒎𝒊𝒏). 

- Norm 1, defined as the maximum DOF sum of each 𝜕U𝐷𝑂𝐹,𝑖  among all the time steps (𝒌𝑵𝒐𝒓𝒎 𝟏). 

- Norm ∞, defined as the maximum of the time sum of each 𝜕𝑈𝐷𝑂𝐹,𝑖(𝑡) among all the DOFs (𝒌𝑵𝒐𝒓𝒎 ∞). 

Practically, to calculate the norm 1 is necessary to sum at each time step all the differences from the Master 

solution of each DOF, then it is chosen the maximum among all the time steps. While to calculate norm ∞, it 

is necessary to sum for each DOF all the differences across all the time steps, then it is chosen the maximum 

value among all the DOFs. 

𝑼𝒊𝒋 = √𝒖𝒊𝒋
𝟐 + 𝒗𝒊𝒋

𝟐 + 𝒘𝒊𝒋
𝟐  and 𝝏 refers to the difference between the calculated and the ideal solution 

(𝑈𝑀𝑎𝑠𝑡𝑒𝑟). 𝝏𝑼𝑮 is defined as: 

𝝏𝑼𝑮,𝒊𝒋 = |𝑼𝒎𝒆𝒕𝒉𝒐𝒅,𝒊𝒋 − 𝑼𝑴𝒂𝒔𝒕𝒆𝒓,𝒊𝒋| = |√𝒖𝒎𝒆𝒕𝒉𝒐𝒅,𝒊𝒋
𝟐 + 𝒗𝒎𝒆𝒕𝒉𝒐𝒅,𝒊𝒋

𝟐 + 𝒘𝒎𝒆𝒕𝒉𝒐𝒅,𝒊𝒋
𝟐 − √𝒖𝑴𝒂𝒔𝒕𝒆𝒓,𝒊𝒋

𝟐 + 𝒗𝑴𝒂𝒔𝒕𝒆𝒓,𝒊𝒋
𝟐 + 𝒘𝑴𝒂𝒔𝒕𝒆𝒓,𝒊𝒋

𝟐 | 

In Figures 3.29-3.33 are reported the just defined coefficients for different RESVEC configurations as a 

function of 𝑛°𝑅𝑀. Figure 3.34 and Figure 3.35 show the total dynamic displacements in absolute value for a 

more peripheral node (node 308). Demonstrating that in some cases, hypothetically when the displacement 

variations are sudden, the IR method manages to better represent those variations, since it has more 

frequency-wise instruments (6 modal shapes) than the MT method (1 modal shape) for the analysed case. 

 

Figure 3.28: Nodes included in the evaluation of 𝑘𝑚𝑖𝑛. 
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Figure 3.29: 𝒌𝑴𝑨𝑿 as a function of 𝑛°𝑅𝑀. There are minor differences between the cases where 𝑛°𝑅𝑀 = 1 
and 𝑛°𝑅𝑀 = 2, this is valid for each defined coefficient. 

 

 

Figure 3.30: 𝒌𝑴𝒆𝒂𝒏 as a function of 𝑛°𝑅𝑀. 
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Figure 3.31: 𝒌𝒎𝒊𝒏 as a function of 𝑛°𝑅𝑀. No evident pattern can be deduced from this coefficient. 

 

 

Figure 3.32: 𝒌𝑵𝒐𝒓𝒎 𝟏 as a function of 𝑛°𝑅𝑀.  
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Figure 3.33: 𝒌𝑵𝒐𝒓𝒎 ∞ as a function of 𝑛°𝑅𝑀. 

 

Overall, in the analysed case, the impulse mainly solicits the first modal shape, letting in conclusion each 

method described at each 𝑛°𝑅𝑀 to represent sufficiently well the solution (𝑘𝑀𝐴𝑋 ≤ 4.5% of 𝑈𝑀𝑎𝑠𝑡𝑒𝑟,𝑀𝐴𝑋 for 

the “RESVEC = NO” method). 

However, at really low 𝑛°𝑅𝑀, 𝑘𝑀𝐴𝑋  and 𝑘𝑀𝑒𝑎𝑛 (Figure 3.29 and 3.30) show that while the IR method is 

characterized by the largest deviations from the ideal solution, it is closer to it on average. 𝑘𝑁𝑜𝑟𝑚 1 and 

𝑘𝑁𝑜𝑟𝑚 ∞ (Figures 3.32 and 3.33) are coherent with the results obtained by 𝑘𝑀𝐴𝑋  and 𝑘𝑀𝑒𝑎𝑛, furthermore 

indicating that the MT method could have a better spatial representation while the IR method a better 

temporal representation of the global solution at a higher computational cost. However, these differences 

disappear as the 𝑛°𝑅𝑀  increases in favor of the MT method. 

Anyway, the comparison between the MT, the IR and the ‘RESVEC = YES’ methods is here unequal because 

the number of the pseudo-eigenvectors calculated for the MT method directly depends on the number of 

differentiated dynamic loadings applied (which is 1 in this example), while the IR method calculates 6 

eigenvectors independently from the applied dynamic loads and the ‘RESVEC = YES’ method calculate the 

same eigenvectors calculated by both IR and MT methods (7 for this example). The combination of the two 

methods is the more versatile and assures the best representation of the solution at each 𝑛°𝑅𝑀, but for a 

higher computational cost indeed. 

Furthermore, at 𝑛°𝑅𝑀 ≥  3 the MT method consistently outperforms the IR method in every defined 

coefficient, which is not insignificant since it gives an overall better solution representation relying only on 4 

total modal shapes, instead of the 9 total modal shapes used by the IR method. 

This also means that the MT method better converges to the solution solving less than half of the differential 

equations solved by the IR method. Furthermore, at 𝑛°𝑅𝑀 =  3, it is more convenient to use the MT method 

than the ‘RESVEC = NO’ method with 𝑛°𝑅𝑀 = 4, confirming the best convergence (at parity of total solved 

differential equations) around all the presented methods. For higher 𝑛°𝑅𝑀  the “RESVEC = YES” solution has 
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only marginal benefits over the MT solution, at an expensive computational cost. This will be further 

investigated in paragraph 3.6. 

 

 

Figure 3.34: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge) 
at 1 retained mode. 

 

 

Figure 3.35: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge) 
at 1 retained mode (zoomed). 
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3.6. Analysis (Torsional load) 

 

3.6.1. Loading applied on the wing model and results 

 

In order to excite the fifth modal shape of the model (torsional one) and observe the response of the 

described methods at the 𝑛°𝑅𝑀 variation, a torsional couple of forces was applied to the system as indicated 

in Figure 3.36. The impulse chosen for the time component of the forces has a cut frequency of 𝑓𝑇,2=56 Hz, 

which is sufficient to excite the mentioned modal shape (Figure 3.12, 𝑓5 = 40.954 𝐻𝑧). The coefficients used 

are the same as those introduced in paragraph 3.5.2. 

The results indicate that the Modal Truncation Augmentation (MT) method performs the worst at low 𝑛°𝑅𝑀, 

while even the solution without residual vectors outperforms it, and the Inertia Relief (IR) method is the 

second best, after the 'RESVEC = YES' configuration. This can be explained by observing the displacements at 

node 308 (node 308 is reported in Figure 3.36), reported in paragraph 3.6.4: the MT method emulates the 

correct solution but is out of phase sync due to the limited eigenvector matrix characterizing the system, 

resulting in the largest deviation from the correct solution. Paradoxically, the solution reported by not 

including any residual vectors is in a certain way more accurate since it cannot go out of phase as for the MT 

method, this is also related to the fact that the MT vectors’ frequencies do not necessarily approximate the 

non-retained modes’ frequencies (valid also for the IR method). 

Analyzing the videos of the full structural displacements it can be observed that the IR and MT methods seem 

to correctly emulate the 'RESVEC = YES' solution at 𝑛°𝑅𝑀 = 1, while the no residual vectors method performs 

the worst from this perspective since it cannot represent any torsion of the structure as for the other 2 

methods, but instead oscillates up and down. The modal shapes obtained using the IR and MT methods at 

𝑛°𝑅𝑀 = 1 are shown in paragraph 3.6.3: even though the single MT vector seems to accurately account for 

the modally non-represented load, it is not sufficient to reconstruct the full system response. In contrast, the 

IR method has a larger pool of residuals, making it more capable of representing the full displacements at 

lower 𝑛°𝑅𝑀 because of its reactivity from the time domain perspective. After 𝑛°𝑅𝑀 > 3, the MT method 

consistently outperforms the IR method. It is also worth noting that after the inclusion of the fifth (torsional) 

modal shape, even the solution without any residual vectors tends towards the correct result, but along with 

the IR method, as reported in Figures 3.38 and 3.42, it cannot fully converge to the ideal solution. 

In conclusion, at lower 𝑛°𝑅𝑀  the MT method gives a good representation of the solution at a lower 

computational cost for simple applied forces which excite only few and transversal modal shapes (as reported 

for the first simulation in paragraph 3.5), and outperforms the IR method for what concerns 𝑘𝑀𝐴𝑋  and 

𝑘𝑁𝑜𝑟𝑚 1, which instead is more accurate, at very low 𝑛°𝑅𝑀, for 𝑘𝑀𝑒𝑎𝑛 and 𝑘𝑁𝑜𝑟𝑚 ∞ for any spatial load and in 

every defined coefficient for particular spatial loads. The fact that the MT method consistently outperforms 

the IR method at higher 𝑛°𝑅𝑀  is due to its capability to calculate the residuals directly from the modally non-

represented portion of the load, trying to solve the dynamic displacements as a function of the applied 

loading case and not a priori as for the IR method. 

However, the combined use of MT and IR methods generally ensures the best results at each 𝑛°𝑅𝑀  and for 

each applied dynamic force, helping to maintain the error exceptionally low in any presented case. At higher 

𝑛°𝑅𝑀  it should be better to use only the MT method, while the ‘RESVEC = YES’ solution would be the best at 

really low 𝑛°𝑅𝑀, although it would be better to add some modes and again to use the MT method. For 

instance, starting from 𝑛°𝑅𝑀 = 3 the differences between the MT and the “RESVEC = YES” solution are really 

marginal for a big difference in the computational cost. 
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Overall, the results do not give a precise indication why the MT and IR methods are both implemented and 

used simultaneously. It is hypothesized that the MT method is the best choice when are retained all the 

modes which sufficiently span the frequency content of the load, while the combined use of the IR and MT 

methods is preferable otherwise. Other studies should be made in order to understand why MSC Nastran’s 

algorithm adopts both methods by default and at which point one method is preferable over the other. 

 

Figure 3.36: Forces applied to model’s geometry (displayed at 𝑡 = 0.001 𝑠). In red is reported the node 308. 

 

Figure 3.37: Impulse applied on the structure; 𝑓𝑇,2 = 56 𝐻𝑧. 
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3.6.2. Performance coefficients results 

 

 

Figure 3.38: 𝒌𝑴𝑨𝑿 as a function of 𝑛°𝑅𝑀. 

 

 

Figure 3.39: 𝒌𝑴𝒆𝒂𝒏 as a function of 𝑛°𝑅𝑀. 
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Figure 3.40: 𝒌𝑴𝒆𝒂𝒏 as a function of 𝑛°𝑅𝑀 (on selected nodes, they are reported in Figure 3.28).  

 

 

Figure 3.41: 𝒌𝒎𝒊𝒏 as a function of 𝑛°𝑅𝑀. No evident pattern can be deduced from this coefficient. 
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Figure 3.42: 𝒌𝑵𝒐𝒓𝒎 𝟏 as a function of 𝑛°𝑅𝑀.  

 

 

Figure 3.43: 𝒌𝑵𝒐𝒓𝒎 ∞ as a function of the 𝑛°𝑅𝑀.  
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3.6.3. MT and IR methods’ pseudo-modal shapes 

 

Here are presented the IR and MT method’s pseudo modal shapes which are capable of responding to the 

defined torsional load case. They are all calculated at 𝑛°𝑅𝑀 = 1. 

 

 

Figure 3.44: Augmented (fourth) Modal Shape for the Inertia Relief method; 𝑓4 = 42.56 𝐻𝑧. 

 

 

Figure 3.45: Augmented (fifth) Modal Shape for the Inertia Relief method; 𝑓5 = 44.25 𝐻𝑧. 

 

Figure 3.46: Augmented (second) Modal Shape for Modal Truncation Augmentation method. 𝑓2 =
25.26 𝐻𝑧. 
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Figure 3.47: Augmented (second) Modal Shape for Modal Truncation Augmentation method. 𝑓2 =
25.26 𝐻𝑧 (Different view). 

 

3.6.4. Displacement results 

 

In this last paragraph are reported total displacements in absolute value (|𝑈| = √𝑢2 + 𝑣2 +𝑤2) and 

transversal displacements (𝑤) for the peripheral node 308 (represented in Figure 3.36). Figures 3.48, 3.49, 

3.53, and 3.54 give a visual representation of why the coefficients associated to the MT method have such 

high values at low 𝑛°𝑅𝑀, which exceed even those obtained for the ‘RESVEC = NO’ configuration. While 

Figure 3.50 and 3.55 report the convergence of the MT method to the ‘RESVEC = YES’ solution, starting from 

𝑛°𝑅𝑀 = 3. 

 

 

Figure 3.48: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge) 
at 1 retained mode. The light-green arrow indicates the solution difference between the MT method and the 

“RESVEC = YES” method. 
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Figure 3.49: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge) 
at 2 retained modes. Small differences between the cases where 𝑛°𝑅𝑀 = 1 and 𝑛°𝑅𝑀 = 2. The light-green 

arrow indicates the solution difference between the MT method and the “RESVEC = YES” method. 

 

 

Figure 3.50: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge) 
at 3 retained modes. 
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Figure 3.51: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge) 
at 4 retained modes. 

 

 

Figure 3.52: Total displacement in absolute value for the peripheral node 308 (near the wing’s trailing edge) 
at 5 retained modes. 
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Figure 3.53: Transversal displacement for the peripheral node 308 (near the wing’s trailing edge) at 1 
retained mode. The light-green arrow indicates the solution difference between the MT method and the 

“RESVEC = YES” method. 

 

 

Figure 3.54: Transversal displacement for the peripheral node 308 (near the wing’s trailing edge) at 2 
retained modes. Small differences between the cases where 𝑛°𝑅𝑀 = 1 and 𝑛°𝑅𝑀 = 2. The light-green arrow 

indicates the solution difference between the MT method and the “RESVEC = YES” method. 
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Figure 3.55: Transversal displacement for the peripheral node 308 (near the wing’s trailing edge) at 3 
retained modes. 

 

 

Figure 3.56: Transversal displacement for the peripheral node 308 (near the wing’s trailing edge) at 4 
retained modes. 
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Figure 3.57: Transversal displacement for the peripheral node 308 (near the wing’s trailing edge) at 5 
retained modes. 
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4. Conclusions 
Table 4.1 presents the advantages and disadvantages deduced from the analyses performed on the studied 

methods. All the methods were evaluated based on solution accuracy and their computational cost, except 

for the Mode Acceleration (MA) method, which is outdated and not used in modern structural dynamic 

response algorithms.  

Overall, the Modal Truncation Augmentation (MT) method seem to provide the best balance between 

computational cost and solution accuracy.  In the MSC Nastran algorithm, it is used simultaneously with the 

Inertia Relief-based (IR) method by default for the dynamic response calculation. Its use provides only 

marginal benefits at higher numbers of retained modes (𝑛°𝑅𝑀). However, it can enhance the solution accuracy 

at lower 𝑛°𝑅𝑀  at a relatively high computational cost. 

For instance, the results do not give a precise indication why the MT and IR methods are both implemented 

and used simultaneously. It is hypothesized that the MT method gives better results if compared to the IR 

method when are retained all the modes which sufficiently span the frequency content of the load, while 

the combined use of IR and MT methods is preferable otherwise. Other studies are necessary to understand 

why MSC Nastran’s algorithm adopts both methods by default and at which point one method is preferable 

over the other. 

Method pros cons 

Mode Displacement Allows to obtain the complete dynamic 
response for small systems. 

Computationally expensive for large 
systems. 

No residual vectors Useful for simple applied loads which 
mainly excite the first modal shapes of the 
structure. However, the MA, MT and IR 
methods can significantly enhance its 
solution. 

Extremely expensive to ensure the solution 
convergence since it does not account for 
the modally non-represented loads/forces. 
At parity of 𝑛°𝑅𝑀 there are often better 
alternatives. 

Mode Acceleration Can enhance the results obtained by not 
including any residual vector. 

Outdated, there are better alternatives 
since it does not include any dynamic 
amplification relatively to the modally non-
represented loads. 

Modal Truncation 
Augmentation 

Best convergence at the 𝑛°𝑅𝑀 increase. 
Best trade-off between computational cost 
and solution approximation. Calculation of 
the pseudo-modal shapes based on the 
applied loads/forces. 

Large solution mispredictions when are 
retained only few modes and are applied 
complex loadings which excite modal shapes 
with higher frequencies. 
Its computational cost is directly related to 
the number of differentiated applied loads. 

Inertia Relief-based 
(MSC Nastran 
algorithm) 

Possibility of calculating pseudo modal 
shapes without defining any loading case, 
useful for preliminary structural analyses. 
(Possible) better solution approximation 
than for the MT method when the 
retained modes’ frequencies do not 
sufficiently span the frequency content of 
the loads/forces. 

Worse solution convergence than for the MT 
method at the 𝑛°𝑅𝑀 increase at a higher 
computational cost. When is useful (at low 
𝑛°𝑅𝑀) there are probably better options at 
parity of computational cost, for example, to 
add more modal shapes and use the MT 
method instead. However, this might 
depend on the load’s frequency content. 

 “RESVEC = YES” 
(MSC Nastran 
algorithm) 

It has been observed empirically that this 
method assures the best solution 
approximation at each 𝑛°𝑅𝑀.  
(Possible) best choice when the retained 
modes’ frequencies do not sufficiently 
cover the load’s frequencies. 

High cost for marginal benefits respect to 
the MT method at the 𝑛°𝑅𝑀 increase. For 
this reason, it might be better to add more 
modal shapes and use the MT method 
instead. However, this might depend on the 
load’s frequency content. 

Table 4.1: Advantages and disadvantages of the analysed methods. (Possible) and ‘might’ refer to the 

hypothesis discussed above. 
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