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Abstract

The exponential increase in space activities has highlighted a growing demand
for in-orbit services, which are essential to ensure the sustainability of space
operations. In-Orbit Servicing (IOS) represents a true paradigm shift, introducing
unprecedented scalability and system flexibility. It provides opportunities for
in-orbit maintenance, inspection, refueling, and upgrades, and will potentially
change the entire approach to satellite design. However, planning efficient and safe
trajectories for IOS missions poses a complex challenge due to the non-convexity of
trajectory generation problems and the multiple operational constraints involved.

In this thesis, developed at the Mission Analysis & Operations unit of Thales
Alenia Space in Turin, a direct numerical optimization method is presented to
determine the optimal trajectories for IOS missions, with a specific focus on
inspection and docking-type operations involving two spacecraft, a Servicer and
a Target. Based on optimization algorithms for non-linear problems, such as
Sequential Quadratic Programming (SQP) methods, a robust framework has been
developed to generate trajectories that minimize the total ∆V and maximize fuel
efficiency, while satisfying mission constraints.

By including the effect of aerodynamic drag in the Hill-based relative dynamic
model, the optimizer leverages relative drag control by adjusting the Servicer’s
drag area to efficiently approach or retreat from the Target, thereby minimizing
propellant consumption. The optimization framework includes various approaches,
such as the use of control boxes and safety ellipses, to ensure the spacecraft
remains within safe operational limits during its maneuvers. Furthermore, to test
the optimizer’s robustness and adaptability to different operational scenarios, the
Target has been modeled with various shapes and geometries, including a traditional
cubesat, an ellipsoid-shaped object, and a 3D model of the asteroid Didymos, with
the control boxes adapted accordingly.

Finally, a refinement process has been carried out using genetic algorithms,
which help explore a broader solution space, thus enhancing the likelihood of
finding global optima in complex and multi-modal environments typical of orbital
trajectory optimization problems.

Altogether, the methodologies and results demonstrate the effectiveness of the
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proposed optimization tool in providing optimal trajectories for in-orbit inspection,
addressing the increasing demand in the space industry. At the same time, this
thesis lays a solid foundation for future and more in-depth studies that could
further enhance the safety, efficiency, and longevity of space operations, ultimately
contributing to the progress and sustainability of both commercial and scientific
in-orbit activities.
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Chapter 1

Introduction

Figure 1.1: Illustration of an In-Orbit Servicing mission [1]

The term In-Orbit Servicing (IOS) refers to the activities aimed at extending the
lifespan or enhancing the functionality of spacecraft already in orbit. This can
involve various operations such as performing maintenance, adjusting orbital paths,
reorienting the satellite, refueling, or upgrading onboard instruments (Figure 1.1)
[2]. Rather than de-orbiting or replacing the spacecraft, conducting these tasks in
space provides substantial economic and logistical advantages, paving the way for
a new era of space utilization.

Given the complexity of IOS operations, minimizing propellant consumption
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Introduction

plays a critical role. Consequently, this thesis focuses on optimizing in-orbit
trajectories for an active spacecraft, referred to as the Servicer, Chaser, or Inspector,
tasked with inspecting and docking with a passive satellite, referred to as the Target.
The optimization process considers constraints on the Inspector’s position and
the duration of maneuvers to ensure both safety and mission success within a
reasonable timeframe.

In light of this, the primary aim of this thesis is to develop an optimization tool
for the preliminary analysis of typical IOS missions by incorporating a relatively
simple dynamic model to facilitate the optimization process. The optimization
strategy employs a multiple-shooting method for time discretization and state
propagation, combined with black-box optimization techniques to manage the
problem’s complexity and seek global optimal solutions.

Additionally, this thesis introduces various approaches that are worthy of further
investigation through more detailed analyses. Future studies should incorporate
higher-fidelity dynamics, accounting for the effects of several perturbations on
both the Target and the Servicer (such as aerodynamic drag using an atmospheric
database, J2 effect, solar radiation pressure, etc.), to simulate their relative motion
with greater accuracy.

To achieve these goals, the following steps were undertaken:

• Definition of the optimization problem in terms of objective function, control
variables, and constraints, which ultimately dictate the Servicer’s trajectory
around the Target.

• Formulation of the physical model that adequately represents the dynamics of
the problem.

• Development of a viable approach to solve the optimization problem effectively,
and identification of a suitable optimization algorithm to achieve a global
optimum.

• Implementation of the chosen solution method into a tool that guides the user
through the definition of the mission scenario.

• Application of the developed method to different mission scenarios to test its
ability to identify the best solution.

This thesis consists of five chapters covering all aspects of the problem under
investigation as well as potential future developments. Chapter 1 presents the state
of the art of In-Orbit Servicing, from the earliest missions to the most recent ones.
Chapter 2 focuses on the optimization problem and discusses in detail the strategies
employed. Chapter 3 provides an overview of the physical and mathematical
models used. Chapter 4 presents the main results achieved, including comparative

2



Introduction

showcases with different scenarios and models of the Target. Finally, Chapter 5
outlines the steps taken to extend the study to more detailed and physically accurate
analyses, and presents the conclusions.

The concept of IOS dates back to the early days of space exploration. These
early missions demonstrated the feasibility and potential advantages of In-Orbit
Servicing, laying the foundation for more advanced and sustained operations.

The servicing of the Hubble Space Telescope (HST) by NASA’s Space
Shuttle in the 1990s successfully showcased the capability to perform complex
repairs and upgrades in space, exploiting Hubble’s serviceable design and modular
components. These missions significantly extended the telescope’s operational
lifespan and increased its scientific productivity, benefiting from technological
advancements over the years.

In total, five servicing missions were performed on the HST [3]:

1. Servicing Mission 1 (SM1) - December 1993: This was the first scheduled
maintenance on the telescope. Astronauts installed new instruments, including
equipment that addressed the issue with Hubble’s primary mirror.

2. Servicing Mission 2 (SM2) - February 1997: The second servicing
mission expanded the range of wavelengths visible to Hubble by installing
two new instruments, ultimately enhancing the observatory’s efficiency and
performance.

3. Servicing Mission 3A (SM3A) - December 1999: Initially intended as
a preventive maintenance mission, it became more urgent when the fourth
of Hubble’s six gyros failed. Hubble needed at least three gyros to conduct
scientific work at the time, leading to the telescope entering a state of dormancy
called "safe mode" while awaiting repairs. NASA divided the third servicing
mission into two parts to expedite Hubble’s return to operation (Figure 1.2a).

4. Servicing Mission 3B (SM3B) - March 2002: During SM3B, astronauts
replaced Hubble’s solar panels and installed the Advanced Camera for Sur-
veys, replacing Hubble’s Faint Object Camera, the telescope’s last original
instrument (Figure 1.2b).

5. Servicing Mission 4 (SM4) - May 2009: The fifth and final servicing
mission left the telescope at its peak scientific capability, ensuring several
more years of groundbreaking discoveries.

The European Space Agency (ESA) has been heavily involved in research on IOS
as part of its Clean Space initiative for space debris removal and prevention, with
a focus on establishing standardized servicing protocols. There are currently several

3



Introduction

(a) Astronauts Steven L. Smith and John M. Grunsfeld
replace Hubble’s rate sensor units (SM3A) [3]

(b) Columbia’s robotic arm dock Hubble in the shuttle’s
cargo bay (SM3B) [3]

Figure 1.2: Hubble Space Telescope Servicing Missions
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Introduction

ongoing ESA-funded studies on IOS operations for satellites in low Earth orbit
(LEO) and geostationary orbit (GEO). LEO is home to important satellites such as
the Hubble Space Telescope, Copernicus Sentinel Earth observation satellites, and
the International Space Station, while GEO hosts the Meteosat series of European
weather satellites and many of the satellites used for telecommunications [2].

One clear finding from these studies is the strong interest from the telecommu-
nications industry in having life extension services available as soon as possible.
Orbital maintenance is particularly crucial, as operators need to ensure that the
spacecraft remains precisely in its designated position and adjust the orbit or
rotation if it has deviated over time. This process implies fuel costs, so a servicing
spacecraft should be able to dock with satellites that have run out of fuel and
carry out necessary orbit control. The servicing spacecraft can remain attached for
as long as necessary before moving the satellite to a "graveyard orbit" and then
proceeding to the next satellite in need of servicing [2].

ClearSpace-1 is the first mission of the European Space Agency (ESA) aimed
at demonstrating the removal of space debris from Earth’s orbit. Set for launch
in 2026, the mission will rendezvous with, capture, and safely bring down for
reentry the upper section of a Vespa (Vega Secondary Payload Adapter) from
Europe’s Vega launcher, a process commonly known as Active Debris Removal
(ADR). As part of a service contract with an industrial team led by the Swiss
start-up ClearSpace SA (Figure 1.3a), the mission will use ESA-developed robotic
arm technology to capture the defunct rocket part, which was left in a gradual
disposal orbit at an altitude of approximately 800 km by 660 km, in compliance
with space debris mitigation regulations (Figure 1.3b). The mission’s goal is to test
the technologies necessary for debris removal as an initial step towards establishing
a new and sustainable commercial space sector [4].

Not only international space agencies, but also private companies are actively
working on developing servicing satellites. Northrop Grumman’s Mission Ex-
tension Vehicle-1 (MEV-1) and Mission Extension Vehicle-2 (MEV-2),
launched in October 2019 and August 2020 respectively, were designed to service
fully functional but ageing satellites. MEV-1 offers life-extending services by taking
over the propulsion and attitude control functions to steer, point, and relocate the
client spacecraft (Figure 1.4), while MEV-2 acts as a fuel source for functioning
satellites without significant propulsion capabilities. Each vehicle has the capacity
to perform multiple dockings and undockings during its operational lifespan. In-
telsat became the first customer of the satellite life extension service, successfully
docking MEV-1 to Intelsat 901 in February 2020 and MEV-2 to Intelsat 10-02 in
April 2021 [7].

The Italian Space Agency (ASI) is currently working on the In-Orbit Servicing
(IOS) demonstration mission, set to be launched in 2026. The mission will take
place in LEO and is intended to test advanced technologies for future in-orbit
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(a) Illustration of ClearSpace’s ENCORE (Europe’s New Commercial Orbital
Revenue Extension) mission aimed at approaching a satellite to dock with
and provide orbit control [5]

(b) Illustration of ClearSpace-1 capturing the Vespa for a controlled atmo-
spheric reentry [6]

Figure 1.3: ESA’s Space Safety Programme missions

servicing missions, including autonomous robotic operations such as refueling,
component repair or replacement, orbital transfer, and atmospheric reentry.

The mission involves several important contributors [8]:

• Thales Alenia Space will take the lead in the mission, handling overall
system design, development, and spacecraft qualification.

• Leonardo will be responsible for developing the robotic arm to perform
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Figure 1.4: View of Intelsat 901 from MEV-1 during approach [7]

critical servicing operations, in collaboration with SAB Aerospace, the Italian
National Institute for Nuclear Physics (INFN), and the Italian Institute of
Technology (IIT).

• Telespazio and Altec will be in charge of designing, developing, and validating
the ground segment.

• Avio will manage the design and development of the Orbital Support and
Propulsion Module for the orbital stages.

• D-Orbit will oversee all activities related to the target satellite platform,
which is based on the company-owned InOrbit NOW (ION) platform, and the
refueling system, involving the transfer of a fluid from the operator satellite
to the target satellite.

To summarize, the current state of In-Orbit Servicing is characterized by a
convergence of technological innovation, commercial interest, and international
collaboration. According to Ross Findlay, IOS system engineer at ESA [2]:

“In-Orbit Servicing could fundamentally change the way that future satel-
lites are designed and operated. Towards the 2030s, satellites will likely
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need to be designed with interfaces and other features that allow service
and disposal spacecraft to do their work.”

Moreover, the integration of IOS with upcoming space exploration initiatives,
such as lunar and Mars missions, will further expand its potential applications.
In-Orbit Servicing will not only support the maintenance and extension of satellite
operations, but will also play a crucial role in establishing a sustainable human
presence beyond Earth.
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Chapter 2

Trajectory Optimization

This thesis addresses non-convex optimization problems which require global op-
timization strategies. The following chapter begins with a brief introduction to
optimization and its relationship with trajectory generation problems. It then
introduces some concepts about common solution approaches and finally details the
methodology adopted to achieve the main optimization goal of this thesis. For more
detailed information on optimization and its applications, the reader is referred to
the bibliography [9, 10, 11].

2.1 Introduction to optimization
For any given system subject to specific conditions, optimization involves finding a
feasible configuration among all possible ones that cannot be further improved with
respect to a particular criterion. More specifically, the objective of optimization is
to discover the best possible solution, often represented as a maximum or minimum,
for a mathematical model within the bounds of specified constraints.

Different classes of optimization problems can be identified based on their main
characteristics:

1. Dimensionality: Optimization problems can be classified as either finite-
dimensional, if they involve a finite number of real variables, or infinite-
dimensional, if they involve functions defined on functional spaces as problem
variables.

2. Convexity: The main distinction in optimization lies between convex and
non-convex problems. The convex structure makes solving the problem much
easier than solving non-convex problems, as the local solution found is also
the global solution. Therefore, local optimization methods are sufficient, and
global strategies are not required (Figure 2.1).

9



Trajectory Optimization

3. Number of objectives: Optimization problems can be single-objective,
involving the minimization or maximization of one objective function, or multi-
objective, where multiple conflicting objectives are optimized simultaneously.
Multi-objective optimization aims to find a set of solutions known as the
Pareto front, where a solution is Pareto optimal if no other solution can
improve one objective without worsening another.

4. Cost function and constraints: Another distinction can be made based on
the structure of the cost function and constraints. Linear Programming (LP)
problems feature linear objective functions and constraints, whereas Nonlinear
Programming (NLP) problems involve either a nonlinear objective function,
nonlinear constraints, or both. Quadratic Programming (QP) problems involve
a quadratic objective function with linear or quadratic constraints.

5. Type of variables: Optimization problems can also be differentiated based
on the type of decision variables. While many problems involve real-valued
variables, Integer Programming (IP) problems require all variables to be
integers, whereas Mixed-Integer Programming (MIP) problems require a mix
of integer and real variables.

Figure 2.1: Representation of convex and non-convex functions [12]
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2.2 Optimal Control Problems
Solving an Optimal Control Problem (OCP) involves finding a control function for a
dynamical system over a specified period of time to optimize a given criterion. The
state of the system and its control are time-dependent functions that need to be
determined. This system is described by a set of differential equations that relate
the state derivative, the state itself, and the control function. The problem includes
specified initial and final state conditions, as well as possible control and path
constraints. To exemplify this concept, the optimal control problem tackled in this
thesis focuses on determining a trajectory that minimizes propellant consumption
during a visual inspection mission. In this context, the control and trajectory
functions are the unknowns to be solved through optimization.

The performance criterion is defined by an objective function that evaluates the
system’s behavior. This may involve maximizing or minimizing specific outcomes
while considering control inputs, system dynamics, and constraints on system states
and relevant variables.

Trajectory optimization involves computing a dynamically feasible state and
control signal that satisfy a set of constraints while optimizing key mission objectives.
The trajectory generation problem is almost always non-convex, which typically
means that global optimization strategies are required to find a global optimum.

From a mathematical perspective, formulating an optimal control problem
generally includes:

• a mathematical model of the system,

• a performance index specification,

• identification of free variables,

• boundary conditions for control and state variables.

The system model is often represented by a set of ordinary differential equations
(ODEs):

ẋ(t) = f [x(t), u(t), p, t], t ∈ [t0, tf ] (2.1)

where:

• x : [t0, tf ] → Rnx is the state variable vector,

• u : [t0, tf ] → Rnu is the control variable vector,

• p ∈ Rnp is the static parameter vector, which includes elements independent
of t,

11



Trajectory Optimization

• t ∈ [t0, tf ] ∈ R is the independent variable, usually representing time.

The starting and ending conditions can be represented by a series of inequality
constraints, commonly referred to as event constraints:

eL ≤ e[x(t0), u(t0), x(tf ), u(tf ), p, t0, tf ] ≤ eU (2.2)

The problem may include time-dependent constraints on the states and/or control
variables. These constraints can be formulated as time-dependent inequalities and
are typically known as path constraints:

hL ≤ h[x(t), u(t), p, t] ≤ hU, t ∈ [t0, tf ] (2.3)

Bound constraints are imposed on controls, states, and static parameters:

uL ≤ u(t) ≤ uU, t ∈ [t0, tf ] (2.4)
xL ≤ x(t) ≤ xU, t ∈ [t0, tf ] (2.5)
pL ≤ p ≤ pU (2.6)

Additionally, the initial and final times may not necessarily be fixed:

t0L ≤ t0 ≤ t0U (2.7)
tfL ≤ tf ≤ tfU (2.8)
tf − t0 ≥ 0 (2.9)

The performance index that needs to be minimized (or maximized) is known
as the objective function J . While the specific goals may differ depending on the
problem, the typical formulation, often referred to as the Bolza cost function, is
defined as follows:

JB = φ(x+
j−1, x−

j , t+
j−1, t−

j ) +
Ø

j

Ú t−
j

t+
j−1

ϕ[x(t), u(t), t] dt (2.10)

The parameters t0 and tf correspond to the initial and final times, respectively.
The term φ stands for the Mayer term, which represents the cost associated with the
final states. Meanwhile, ϕ is known as the Lagrange term or the running cost, which
monitors the state and control costs across their entire time spans. The general
structure of the Bolza formulation (Equation 2.10) illustrates a comprehensive
cost function in optimal control theory. Depending on the particular optimization
problem, the objective function might comprise solely the Mayer term, solely the
Lagrange term, or both.
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2.2.1 Common Solution Approaches
Different approaches are used to solve optimal control problems:

• Direct Methods: These methods use discretization (transcription) to trans-
form the optimal control problem into a finite-dimensional optimization (NLP)
problem and solve this directly.

• Indirect Methods: These methods use necessary (and sufficient) conditions
for optimality (e.g., Pontryagin’s maximum principle) to solve the optimal
control problem in terms of a Boundary Value Problem (BVP).

• Black-box Approaches: These methods handle functions whose analytical
expressions are not known in advance (e.g., a function that is the solution of
a differential equation obtained numerically by propagation).

• Evolutionary Algorithms: These algorithms exploit large populations of
solutions that evolve according to specific rules towards the global optimum,
mimicking natural selection processes.

• Simulation (e.g., Single/Multiple Shooting): This approach proves to be
beneficial for simple problems or when good guess solutions are available.

2.2.2 Nonlinear Programming and Transcription Methods
Nonlinear Programming (NLP) involves finding solutions to optimization problems
where the objective function or some constraints are nonlinear. The optimization
process involves maximizing or minimizing an objective function while satisfying a
set of constraints. An NLP problem can be represented mathematically as follows:

Minimize J(y)
Subject to hl ≤ h(y) ≤ hu

yl ≤ y ≤ yu

(2.11)

where the decision vector y ∈ Rny is finite-dimensional, consisting of numerical
variables and algebraic equations. By contrast, in an optimal control problem,
which deals with trajectory optimization, the system is described by differential
equations, and the decision variables are continuous functions defined over a time
interval [t0, tf ].

Transforming a continuous optimal control problem into an NLP problem
can be achieved by approximating the infinite-dimensional problem into a finite-
dimensional one through a so-called transcription method, which involves three
fundamental steps:
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• Convert the dynamic system into a problem with a finite number of variables.

• Use a suitable algorithm, such as Sequential Quadratic Programming (SQP),
to solve the resulting finite-dimensional NLP problem.

• Assess the accuracy of the approximation and, if necessary, repeat the afore-
mentioned steps.

In trajectory optimization, a very popular set of transcription methods are the
shooting methods. These are simulation-based techniques used for calculating state
histories given the control histories of the system. They can be categorized into
two main types [11]:

• Direct Single Shooting Methods: These methods transform the optimal
control problem into a parameter optimization problem by parameterizing
the control inputs and integrating the system’s differential equations forward
in time from an initial guess. The resulting optimization problem minimizes
the cost function while satisfying the boundary conditions and any path
constraints. However, this method can be sensitive to initial guesses and may
suffer from numerical instability over long time intervals.

• Multiple Shooting Methods: These methods address some of the limi-
tations of direct shooting by dividing the overall time horizon into smaller
subintervals. In each subinterval, the state values at the beginning of the
subinterval and the control variables are unknowns to be determined in the
optimization. The dynamics are then satisfied by integrating the differential
equations of motion with a time-marching algorithm, propagating the solution
from one time instant to the next.

Methods for solving NLP problems are well established. Often these methods
involve solving a sequence of quadratic programming sub-problems, in which
the constraints are linear and the objective is a quadratic function. Popular
implementations of NLP methods include SNOPT and IPOPT.

In this thesis, the Multiple Shooting Method, combined with black-box opti-
mization techniques, is implemented in the MATLAB environment. Specifically,
the fmincon function with the SQP algorithm, or other alternatives such as the
ga function, which implements a genetic algorithm, were utilized to solve the
associated NLP problem, as detailed in the following sections.

2.2.3 Black-box Optimization
Black-box optimization refers to the process in which there is a complete separation
between the evaluation of the objective function, and possibly other functions used
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to impose constraints (optimization part), and the solution procedure (simulation
part), as illustrated in Figure 2.2. This approach is typically used for numerical
optimization problems in which the form of the objective function and its derivatives
are unknown. This normally occurs when the objective function is determined
through a complex simulation about which the optimization algorithm has no prior
knowledge [13].

During the simulation phase, the cost function and constraints are evaluated for
a given set of data, treating the problem as a black-box. The output generated from
this black-box is then used as input for the optimization phase, where an algorithm
iteratively adjusts the value of the control variables vector u. This iterative process
continues until certain criteria are satisfied, ideally resulting in an optimal solution.

The black-box approach simplifies the problem by reducing the number of input
variables. For example, in the case of a high-thrust trajectory, this can be divided
into a series of ballistic arcs, leading to easier parameterization.

Figure 2.2: Schematic representation of the black-box optimization framework
[13]
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2.3 Adopted Optimization Methods
This section outlines the solution approaches and optimization algorithms utilized
in this thesis. The aim is to develop a flexible tool capable of finding the global
optimum or, at a minimum, a highly effective solution across diverse scenarios with
different operational sequences and constraints. While strict adherence to some
constraints was required, others allowed for greater flexibility.

To achieve this goal, a hybrid approach was adopted, integrating black-box
optimization with the Multiple Shooting Method. The solution algorithm combines
a traditional Multistart method with Sequential Quadratic Programming (SQP).
Additionally, an evolutionary algorithm (Genetic Algorithm) is employed for the
refinement process.

2.3.1 Multiple Shooting Method
As mentioned earlier, Direct Shooting Methods treat the trajectory as a single,
continuous entity. Starting from the initial conditions and optimization variables,
the trajectory is integrated, and the final conditions are fed back to the optimizer to
adjust the variables. This approach can lead to issues with optimization algorithms,
as small variations in initial variables can be amplified throughout the trajectory,
potentially resulting in significant deviations due to the highly nonlinear nature of
dynamic functions [14].

To mitigate these issues, Multiple Shooting Methods were developed. These
methods divide the trajectory into several segments, each integrated separately. By
breaking the trajectory into smaller segments, the amplification of small variations
is reduced. The initial states at the beginning of each segment are included in
the set of initial optimization variables. Multiple Shooting Methods transform
the optimal control problem with boundary conditions (BVP) into several initial
conditions problems. The goal is to estimate the initial conditions for each segment,
ensuring they meet constraints throughout the propagation interval [t0, tf ] and
satisfy final state constraints, while optimizing a specified performance index. The
term "multiple shooting" originates from the division of the trajectory into smaller
segments and solving for the initial conditions of each segment [14].

The implementation of the Multiple Shooting Algorithm involves the following
steps [14]:

• Divide the trajectory into multiple segments, splitting the initial time interval
[t0, tf ] into N − 1 smaller intervals:

t0 < t1 < · · · < ti < · · · < tN = tf (2.12)

The state vector values at the beginning of each segment, x̃2, . . . , x̃N , along
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with the control variables u1, . . . , uN , are unknowns to be determined in the
optimization process.

• Guess the initial conditions for each segment zi = xi(t0).

• Propagate the system state trajectory for each segment using a numerical
propagator, if an analytical solution is unavailable.

• Match the end of one segment with the beginning of the next to ensure
continuity.

• Verify that the cost function f(z) is minimized and that the boundary con-
ditions are satisfied, adjusting the initial conditions as needed by solving an
NLP problem.

Figure 2.3: Single Shooting vs Multiple Shooting methods for a four-section
trajectory: the optimization algorithm aims to minimize the error (or defect h) to
zero [14]

While Single Shooting is effective for simple problems, it often fails in more
complex scenarios. Multiple Shooting is more robust for such cases, as it divides
the problem into smaller sub-problems, solves them individually, and ensures that
each segment connects smoothly to the previous one.

An alternative approach is Direct Collocation, which approximates the trajectory
using a piecewise polynomial. The physical laws are satisfied by ensuring that the
dynamics (state derivatives) match the polynomial derivatives at each collocation
point, which are the points that define the polynomial. Essentially, shooting
methods use explicit integration to satisfy dynamics, whereas collocation methods
use implicit integration [14].
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There are various collocation schemes. Orthogonal collocation, often used for
computing satellite trajectories, employs a few high-order polynomials and is highly
accurate for problems with well-behaved solutions. On the other hand, direct
collocation uses many low-order polynomials, which, while slightly less accurate,
can be more robust. Advanced methods like GPOPS employ adaptive meshing to
iteratively adjust the number of segments and polynomial order.

2.3.2 Multistart and SQP
Multistart combined with Sequential Quadratic Programming (SQP) is an opti-
mization strategy used to find the global minimum of a nonlinear and nonconvex
objective function by leveraging the strengths of a local optimization method. The
nonconvex nature of the function necessitates a global approach, as relying solely
on a local search algorithm is insufficient for identifying the global optimum.

Multistart is a global optimization technique that involves running a local
optimization algorithm multiple times from various initial points in the search
space. This approach aims to explore a broader region of the solution space, thereby
increasing the likelihood of finding a global minimum.

SQP is a local optimization method designed for solving nonlinear-constrained
optimization problems. The algorithm utilizes a local quadratic approximation to
model the nonlinear objective function and constraints.

After executing SQP from multiple starting points, the best solution obtained
from all runs is considered the potential global minimum. The combination of
Multistart and SQP is advantageous due to its simplicity; however, the random
selection of starting points may be insufficient for solving more challenging problems.

Figure 2.4: Principle of the Multistart algorithm [15]
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2.3.3 Genetic Algorithm
Genetic Algorithms (GAs) are optimization techniques inspired by natural selec-
tion, frequently employed to tackle complex optimization and search problems by
emulating biological evolution.

In this thesis, GAs were utilized to refine solutions by iteratively enhancing
the population of potential solutions, guiding its evolution towards an optimal or
near-optimal state. The main steps involved in this process are as follows:

1. Initialization: A diverse population of potential solutions is generated, either
randomly or based on informed guesses.

2. Evaluation: Each solution’s fitness is assessed by computing its cost function.
If constraints are violated, a penalty is added to the cost.

3. Selection: Solutions are chosen for reproduction based on their fitness, with
higher fitness solutions having a greater chance of being selected.

4. Crossover: Selected solutions exchange genetic information to create new
solutions, mimicking biological recombination.

5. Mutation: Random changes are introduced to some solutions to maintain
diversity and explore the search space.

6. Replacement: The new generation consists of offspring and some existing
solutions, replacing the least fit solutions to maintain population size.

7. Termination: The process repeats until a predefined number of generations
is reached or a satisfactory solution is found.

GAs are particularly advantageous for their ability to handle complex, multi-
modal landscapes where traditional optimization methods might struggle. Their
stochastic nature allows them to avoid local minima, increasing the likelihood
of finding a global optimum. However, the effectiveness of GAs can depend on
several factors, including the size of the population, the rates of crossover and
mutation, and the selection method. Careful tuning of these parameters is crucial
for achieving optimal performance.

2.3.4 Global Optimization
The discussed algorithms, Multistart + SQP and GAs, are part of two overall
optimization strategies. An important consideration is that these are not true Global
Optimization Algorithms. True Global Optimization Algorithms, which guarantee
finding the absolute best solution, do not exist. Instead, we use globalization
strategies, such as the Multistart function from MATLAB’s Global Optimization
Toolbox, to handle these specific problems effectively.
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Chapter 3

Mathematical Model

In this chapter, the physical model of the system is examined in detail, with the
derivation of the general equations of relative motion for circular Target orbits.
Then, the problem of in-orbit Target inspection is explained. Since spacecraft are
considered as point masses in this thesis, only forces are examined, while moments
that may affect spacecraft orientation are excluded from this work. For more
detailed information, the reader is referred to the bibliography [16].

3.1 Reference Frame
For the analysis of inspection and docking trajectories, it is best to use a reference
frame that originates at the center of mass (CoM) of the target vehicle, i.e., to
observe the movement of the tracker as an astronaut sitting in the target vehicle
would. This frame is the Spacecraft Local Orbital frame (Flo), often referred to as
the Local-Vertical/Local-Horizontal (LVLH) frame, and is employed in this thesis
to describe the motion of the Servicer with respect to the Target during all phases
of the mission. Operations in the Flo frame require a precise understanding of
relative dynamics and orbital perturbations that can affect the spacecraft.

In Figure 3.1, the LVLH frame is represented in terms of:

• OLVLH: origin coinciding with the CoM of the Target;

• XLVLH (V-bar): in-track axis, tangential to the Target’s orbit, pointing in
the direction of the orbital velocity vector;

• YLVLH (H-bar): cross-track axis, pointing outward in the opposite direction
of the orbit’s angular momentum vector;

• ZLVLH (R-bar): radial axis, pointing from the Target CoM to the center of
the Earth.
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Figure 3.1: LVLH frame definition [17]

3.2 Orbit Dynamics

3.2.1 Orbital Motion around a Central Body
The fundamental force acting on the spacecraft is the gravitational attraction of the
central body, which can be expressed by Newton’s law of universal gravitation. For
the case of an undisturbed spherical gravitational field, Newton’s law of gravitation:

F = −Gmcms

r2 (3.1)

can be combined with his second law, relating force and acceleration:

F = msr̈ (3.2)

The resulting equation describes the orbital motion of a satellite around a central
body:

r̈ = − µ

r2 (3.3)

where:

• G = 6.674 × 10−11 N m2/kg2 is the universal gravitational constant;

• mc is the mass of the central body;

• ms is the mass of the spacecraft;
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• r is the distance between their centers;

• µ = G · mc is the gravitational constant of the central body.

The resulting motion leads to elliptical orbits, with special cases of circular,
parabolic, and hyperbolic trajectories depending on the spacecraft’s energy [16].

3.2.2 Equations of Relative Motion
The equations discussed in Section 3.2.1 are given in the orbital plane frame.
Equations of motion in this frame can be conveniently used for trajectory analysis
until the chaser vehicle is in the close vicinity of the Target. For relative navigation,
it becomes more convenient to keep one of the spacecraft as a fixed point. The
resulting frame is the Spacecraft Local Orbital frame of the Target, Flo, defined in
Section 3.1.

Hill’s equations describe the relative motion of two nearby orbiting objects in a
circular orbit around a central body in the LVLH frame:

ẍ − 2ωż = γx (3.4)
ÿ + ω2y = γy (3.5)

z̈ + 2ωẋ − 3ω2z = γz (3.6)

where:

• x, y, z are the relative position coordinates of the Servicer with respect to the
Target;

• ẋ, ẏ, ż are the relative velocity components;

• ω is the mean motion of the Target orbit;

• mc is the mass of the Servicer;

• γx,y,z = Fx,y,z

mc
are the imposed accelerations acting on the Servicer, whether

resulting from thruster activities or from external disturbances.

A linearized solution to the relative motion problem has been derived from
Hill’s equations by W. H. Clohessy and R. S. Wiltshire. The main assumption
of the Clohessy–Wiltshire (CW) equations is that the relative distances between
the Servicer and Target vehicles are very small compared with the distance to the
center of the Earth. For impulsive thrust maneuvers and constant accelerations
over the time period considered, the resulting equations of motion are:
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x(t) =
34ẋ0

ω
− 6z0
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sin(ωt) − 2ż0
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(3.7)

y(t) = y0 cos(ωt) + ẏ0

ω
sin(ωt) + γy

ω2 (1 − cos(ωt)) (3.8)

z(t) =
32ẋ0

ω
− 3z0

4
cos(ωt) + ż0

ω
sin(ωt) +

3
4z0 − 2ẋ0

ω

4
+ . . .

+ 2
ω2 γx(sin(ωt) − ωt) + γz

ω2 (1 − cos(ωt)) (3.9)

However, because of the linearization, the accuracy of the CW equations de-
creases with the distance from the origin of the reference frame.

3.3 Trajectory Types
In order to meet mission objectives, different types of trajectories may be utilized,
each with specific properties. These trajectories can be categorized into three main
types [16]:

• Free drift motions: These occur when the spacecraft moves without active
propulsion, following a natural trajectory determined by its initial conditions
for position and velocity. During free drift, the spacecraft’s motion is governed
by the laws of orbital mechanics, and its trajectory can be precisely predicted if
the initial state is known. Accurate modeling of free drift trajectories requires
consideration of perturbative forces such as atmospheric drag, solar radiation
pressure, and geopotential anomalies (the J2 effect).

• Impulsive maneuvers: These involve rapid changes in the spacecraft’s
velocity, resulting in an instantaneous ∆V achieved through short bursts of
thrust. Common examples include Hohmann transfer orbits and bi-elliptic
transfers. These maneuvers are efficient in terms of propellant usage and are
executed in a very short time relative to the orbit period. The impulsive
model is the standard procedure used to simulate spacecraft maneuvers with
low specific impulse and high thrust.

• Continuous thrust maneuvers: These are characterized by a prolonged
application of thrust in order to achieve a certain ∆V , resulting in gradual
changes to the spacecraft’s trajectory. This approach is advantageous for
missions requiring fine adjustments or long-duration orbit transfers, and
is often used for low-thrust propulsion systems, such as electric propulsion
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systems, which provide higher efficiency but lower thrust compared to chemical
propulsion.

3.3.1 Impulsive Maneuvers
The mathematical modeling of the problem in this thesis is based on impulsive
maneuvers. Hence, in this subsection, we present an overview of the most common
ideal maneuvers used in rendezvous and proximity operations, along with their
corresponding accelerations and ∆V requirements. This overview is essential for
understanding the relative motion of the Servicer in relation to the Target and
evaluating the performance of different maneuvers. The described trajectories
form the basis for the mission’s maneuver planning and are considered in an ideal
scenario without disturbances (see, e.g., [16]).

3.3.2 Tangential Thrust Maneuvers
A tangential boost initiates the transfer along V-bar (Figure 3.2). If the ∆V is
applied in the direction of the velocity (positive boost), the spacecraft accelerates,
increasing its altitude and moving away from the Target. Conversely, a negative
∆V brings the spacecraft closer to the Target. After one full orbital period T , the
Servicer’s displacement is:

∆x = 6π

ω
∆Vx (3.10)

where ω = 2π
T

is the Target’s angular velocity. The ∆Vx must be applied twice,
at the beginning and end, to complete the maneuver. The total ∆V required is:

∆V = ω
3π∆x

T
(3.11)

Figure 3.2: Transfer along V-bar by tangential impulses [16]
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For a Hohmann transfer (Figure 3.4), which changes the spacecraft’s orbit
altitude, the relationship between the displacement along the x-axis and z-axis is:

∆x = 3π

4 ∆z (3.12)

This relationship helps determine the ∆V cost for each tangential boost. In
CubeSat missions, continuous thrust can replace impulsive boosts (Figure 3.5),
requiring double the time to complete the transfer:

γx = −ω2 4π∆z

T
(3.13)

Figure 3.3: Transfer to orbit of different height (Hohmann transfer) [16]

Figure 3.4: Fly-around by tangential impulse [16]
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Figure 3.5: Continuous x-thrust transfer to different altitude [16]

3.3.3 Radial Thrust Maneuvers
A common maneuver to approach a Target in the same orbit is to apply thrust in
the radial direction (Figure 3.6). This maneuver requires an impulsive boost at the
beginning and end to stop the motion. The cost for each boost is given by:

∆V = ω
4∆x

T
(3.14)

Figure 3.6: Transfer along V-bar by radial impulses [16]

This maneuver can also be executed continuously if thrust limitations are present,
lasting an entire orbital period (Figure 3.8). The required thrust per unit mass is:

γz = ω2 4π∆x

T
(3.15)
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where ∆x is the displacement along the x-axis. The ∆V is then:

∆V = γzT = ω2∆x (3.16)

Figure 3.7: Fly-around by radial impulse [16]

This maneuver is advantageous for safety compared to tangential maneuvers. If
a malfunction occurs, the Servicer remains at a constant distance from the Target,
avoiding collision risks. However, it is more expensive, requiring 3π

2 times the ∆V
of a tangential transfer. Real missions, such as ATV, HTV, and SSO, often prefer
the safer but more costly radial maneuver.

Figure 3.8: Transfer along V-bar by continuous z-thrust [16]

The result of an out-of-plane impulse is a pure sinusoidal motion starting with
y0 = 0 (Figure 3.9). The displacement in the y-direction, for the same impulse,
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is equivalent to the z-displacement resulting from a radial impulse. The out-of-
plane impulse does not cause displacements in other directions, as this motion is
decoupled from the in-plane motions.

Figure 3.9: Out-of-plane impulse resulting in sinusoidal motion [16]

This decoupling simplifies the trajectory planning process, as out-of-plane ma-
neuvers can be independently optimized and added to in-plane maneuvers (such
as tangential and radial thrust maneuvers) discussed earlier. This independent
adjustment enhances the flexibility and precision of orbital corrections, enabling
comprehensive three-dimensional control over the spacecraft’s path. Additionally,
out-of-plane maneuvers are crucial for maintaining or adjusting the spacecraft’s
inclination without affecting its in-plane trajectory, which is particularly beneficial
for certain mission objectives.

3.4 Environmental Disturbances
This section outlines the main trajectory disturbances acting on a spacecraft
orbiting Earth. Of all the disturbances, only atmospheric drag is implemented in
the developed optimization tool. The other disturbances are mentioned for the sake
of completeness and for further development but are not included in the current
implementation (see, e.g., [16]).

3.4.1 Atmospheric Drag
Drag forces from the residual atmosphere act opposite to the velocity vector, causing
deceleration and orbital decay of the spacecraft, and are relevant for low Earth
orbits (Figure 3.10):
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FD = −ρ

2Vx
2CDA (3.17)

where:

• Vx = ωr is the orbital velocity,

• CD is the drag coefficient,

• A is the cross-sectional area of the body.

As both vehicles are affected by drag, and since their absolute velocity difference
is negligible, the differential drag force per unit mass γD = Fd

m
acting on the Servicer

relative to the Target in a circular orbit is given by:

∆γD = γDc − γDt = −ρ

2ω2r2
3

CDcAc

mc

− CDtAt

mt

4
(3.18)

where m is the mass of the vehicles and the indices c and t denote Chaser and
Target, respectively. The ballistic coefficient of the vehicle, denoted as CB = m

CDA
,

simplifies the equation to:

∆γD = −ρ

2ω2r2 1
CBc

3
1 − CBc

CBt

4
(3.19)

The impact of this disturbance on the trajectory can be calculated by substituting
∆γD as γx into Equation 3.4. For a more detailed model, not only the vehicle’s
cross-section but also the individual surfaces and their orientation relative to the
orbital velocity vector must be considered (Figure 3.11).

Figure 3.10: Spacecraft in LEO encounter drag from the residual atmosphere,
causing their orbits to decay [18]
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Figure 3.11: Conceptual explanation of differential drag control: if the Chaser
deploys its drag plates, it experiences a relative deceleration compared to the Target
(left); if the Target deploys its drag plates, it causes a relative acceleration of the
Chaser with respect to the Target (right) [19]

3.4.2 Solar Radiation Pressure
This force results from photons applying pressure on the spacecraft’s exposed
surfaces, such as solar panels. Solar radiation produces a force on a spacecraft in
the Sun–satellite direction:

FSP = −p · A · uS (3.20)
where:

• p is the radiation momentum flux,

• A is the cross-sectional area of the satellite,

• uS is the Sun–satellite direction unit vector.

3.4.3 Magnetic Force
This force is generated by the spacecraft’s interaction with the Earth’s magnetic
field. Because the Earth is not a perfect sphere and its mass is unevenly distributed,
these forces fluctuate throughout an orbital period. The Earth’s gravitational
potential can be approximated by a specific function:
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Figure 3.12: Solar pressure force on the satellite surface [20]

Φ = µ

r

A
1 −

∞Ø
n=2

Jn

3
RE

r

4n

Pn(sin ϕ)
B

(3.21)

where:

• Jn are the harmonic coefficients of the potential,

• RE is the Earth’s radius at the equator,

• r is the distance of the satellite from the center of the Earth,

• Pn are the Legendre polynomials,

• ϕ is the latitude,

• µ is the gravitational constant of the Earth.
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Chapter 4

Simulation Results

With the problem’s physics and optimization strategy now defined, the next step
is to set up the optimization problem, which involves determining the trajectory of
a servicer spacecraft that needs to inspect and then dock with a target satellite.
To achieve this, it is crucial to identify the objective function, control variables,
and constraints that will best address the optimization problem. Subsequently, a
comprehensive overview of the conducted analyses will be presented. The results
demonstrate the effectiveness of the proposed optimization tool and provide insights
into its practical applications.

4.1 Optimization Problem Setup

4.1.1 Objective Function
The objective of the developed optimization tool is to minimize the sum of the
velocity increments to reduce propellant consumption:

J =
NØ

i=1
|∆Vi| (4.1)

where ∆Vi represents the i-th impulse along the three axes (V-bar, H-bar, R-bar),
and N is the total number of impulsive maneuvers executable by the Servicer.
N is assigned at the beginning of each simulation, so it is not a free variable.
Nevertheless, this constraint is effectively addressed by the optimizer, as will be
demonstrated later.

4.1.2 Control Variables
The control variables chosen for this optimization problem include:
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• ∆V : This is the velocity increment associated with each boost. It is a vector
of size N × 3, where N is the total number of impulses (assigned) and 3
represents the thrust components along each axis (V-bar, H-bar, R-bar).

• ∆t: This is the time interval between each boost. It is a vector of size (N − 1),
where N − 1 is the total number of segments into which the trajectory is
divided.

• Ac: This is the drag area of the Servicer. It is a vector of size 1.

All these variables are optimized to minimize the total velocity increment while
ensuring the Servicer follows the intended trajectory around the Target. Two
important points need to be highlighted. Firstly, in the impulsive model, the
satellite’s maneuver is considered as a sudden increase in velocity (∆V > 0) with
zero thrust time (∆t∆V = 0). Each trajectory segment (from ti to ti+1) corresponds
to an impulsive ∆V (Figure 4.1), which can be analyzed using Keplerian propagation
with respect to the primary body. For this reason, if no maneuver is needed at the
beginning of a segment, the optimizer sets the corresponding ∆V to zero. In this
way, the optimization of the number of impulses N is also addressed.

Figure 4.1: Impulsive discretization scheme [11]

Secondly, the drag area of the Servicer, as a control variable, directly affects
the satellite’s ballistic coefficient CBc. As illustrated in Figure 4.2, by adjusting
the drag area, the ballistic coefficient can be optimized. This optimization allows
the Servicer to efficiently approach or retreat from the Target along the V-bar
direction, thereby reducing propellant usage.

4.1.3 Constraints
The data listed in Table 4.1 outline the characteristics and initial orbit parameters
for both the Servicer and the Target, with the latter modeled as a cubic-shaped
satellite.
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Figure 4.2: Illustration of the Servicer in different configurations: minimum
ballistic coefficient or maximum relative drag (left), maximum ballistic coefficient
or minimum relative drag (center), optimal ballistic coefficient or optimal relative
drag (right)

Parameters Target Servicer

Earth’s gravitational constant, µ [m3/s2] 3.986004418 × 1014

Semi-major axis, a [m] 6928.14 × 103 6928.14 × 103

Orbital period, T [s] 5.7390 × 103 5.7390 × 103

Orbital angular frequency, n [rad/s] 0.0011 0.0011

Mean air density, ρ [kg/m3] 10 × 10−12

Mass, m [kg] 200 2000

Drag coefficient, CD 2.2 2.2

Drag area, A [m2] 1 14

Side length, l [m] 5 -

Table 4.1: Initial orbital parameters and spacecraft characteristics

In the initial simulations, various initial states of the Servicer with respect to
the Target in the LVLH frame were considered for testing purposes. After gaining
a comprehensive understanding of the constraints, a specific state was selected for
the inspection and docking phases.

The following lower and upper boundaries were considered for the control
variables, expressed as inequalities:

1 ≤ ∆t ≤ tf [s] (4.2)
−0.1 ≤ ∆V ≤ 0.1 [m/s] (4.3)

4 ≤ Ac ≤ 24 [m2] (4.4)

34



Simulation Results

where tf = N × T is the time of flight, i.e., the total mission time. The extreme
values for ∆V and Ac were chosen considering typical values for this type of missions.
For ∆t, a minimum value of 1 s was considered between consecutive impulses to
avoid overlap. Additionally, a time constraint was imposed on the sum of the ∆t
values, such that:

N−1Ø
i=1

∆ti ≤ tf (4.5)

It’s important to note that restricting the lower and upper boundaries associated
with the control variables can significantly impact the performance of the optimizer
in terms of:

1. Convergence speed: Tighter bounds can lead to faster convergence because
the solution space is smaller, making it easier for the optimizer to find the
optimal solution.

2. Solution quality: While it might speed up convergence, overly restrictive
bounds can prevent the optimizer from finding the true global optimum,
resulting in a sub-optimal solution.

3. Feasibility: Restrictive bounds might lead to infeasible solutions if the true
optimal solution lies outside the specified bounds.

For this reason, it’s important to start with wider bounds to allow the optimizer to
explore the solution space, and then gradually tighten the bounds based on insights
gained from initial runs, focusing the search in promising regions. Knowledge of
the problem helps to set realistic bounds, ensuring they encapsulate all feasible
solutions while excluding unlikely or physically impossible ones.

4.1.4 Implementation in MATLAB®

The development of the optimization tool was an iterative process. Initially, the
code was created with a basic set of constraints to solve a simplified version of
the problem. Over time, additional constraints were incrementally introduced
to increase the complexity of the optimization problem. This gradual approach
allowed for thorough testing and validation at each stage, ensuring that the code
was robust and capable of handling the added constraints, ultimately achieving the
desired performance for the Servicer’s trajectory around the Target.

The constraints for the optimization problem are detailed as follows:

1. Outer and inner control boxes: Throughout the designated mission time,
starting from the given initial conditions, the Servicer must always remain
within the outer control box while staying outside the inner control box.
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2. Inspection points: The Servicer must inspect specific points on the Tar-
get, ensuring that both the Field-of-View and the Line-of-Sight occlusion
constraints are satisfied within the simulation time.

3. Safety Ellipse: During the inspection of the Target, the Servicer must stay
within a cylindrical shell in order to follow the Safety Ellipse trajectory around
the Target.

4. Return to starting position: Upon completing the inspection of the Target,
the Servicer must return to its initial position.

5. Docking: In the final mission phase, the Servicer must dock with the Target
while remaining within a cone-shaped approach corridor.

4.2 Inspection Phase

4.2.1 Control Boxes
The control box method was crucial for inspecting the Target, ensuring that the
Servicer maintained its position and orientation relative to the Target. By defining
specific control zones, namely the outer and inner control boxes, the Servicer’s
movements were restricted to safe regions, preventing it from straying too far or
getting too close to the Target. This approach optimized the inspection phase
and minimized collision risks. By leveraging control boxes, the Servicer could
dynamically adjust its trajectory, staying within safe zones and ensuring a thorough
and safe inspection of the Target. For more detailed information about this method,
the reader can refer to the literature (see, e.g., [21]).

The following figures illustrate the trajectories of the Servicer around the Target,
from an initial time t0 = 0 s to a final time tf = N × T , evaluating different control
box configurations. The constraints on the position of the Servicer are formulated
in terms of inequality constraints as follows:

∥r∥ ≤ dimension of the outer control box (4.6)
∥r∥ ≥ dimension of the inner control box (4.7)

where r = (x, y, z) is the position vector of the Servicer in the LVLH frame,
while the dimension of the control box corresponds to the characteristic length,
which can be either the semi-side length or the radius, depending on the shape of
the box.

Various geometries for the control boxes, including cubic, spherical, and cylin-
drical shapes, were tested to determine the most effective configuration for target
inspection. The following plot figures are accompanied by two tables, which define
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the initial state of the Servicer with respect to the Target and the shapes and
dimensions of the control boxes. For the cases of greatest practical interest, a third
table provides the simulation results from the optimization tool.

In particular, the combination of a cubic outer control box and a spherical inner
control box provided a balanced trade-off between safety and maneuverability, and
is therefore adopted in the subsequent sections.

Figure 4.3: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes (Case 1.1)

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (50, 0, 0)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.2: Initial state of the spacecraft (Case 1.1)

Control boxes Dimensions

Cubic outer control box Side length = 75 m

Spherical inner control box Radius = 30 m

Table 4.3: Shape and dimensions of the control boxes (Case 1.1)
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Parameters Simulation values

Time of flight, tf [s] 22955.986184

Total number of impulses applied, N 6

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [-0.000619, 0.045069, -0.033727]

2nd Optimal burn time [s] 13412.911104

2nd Optimal ∆V [m/s] [-0.000363, -0.000069, -0.000011]

3rd Optimal burn time [s] 22952.986173

3rd Optimal ∆V [m/s] [0.000001, 0.000001, -0.000001]

4th Optimal time [s] 22953.986178

4th Optimal ∆V [m/s] [0.000001, -0.000001, 0.000001]

5th Optimal burn time [s] 22954.986181

5th Optimal ∆V [m/s] [-0.000000, 0.000000, 0.000000]

6th Optimal burn time [s] 22955.986184

6th Optimal ∆V [m/s] [-0.000000, 0.000000, -0.000000]

Total ∆V [m/s] 0.056669

Optimal drag area, Ac [m2] 9.830051

Optimal ballistic coefficient, CBc [kg/m2] 92.480789

Table 4.4: Optimization results (Case 1.1)
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Figure 4.4: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes (Case 1.2)

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (50, 0, 50)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.5: Initial state of the spacecraft (Case 1.2)

Control boxes Dimensions

Cubic outer control box Side length = 75 m

Spherical inner control box Radius = 30 m

Table 4.6: Shape and dimensions of the control boxes (Case 1.2)
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Parameters Simulation values

Time of flight, tf [s] 17216.989628

Total number of impulses applied, N 6

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.078141, -0.000213, -0.064719]

2nd Optimal burn time [s] 234.034156

2nd Optimal ∆V [m/s] [0.000000, -0.000000, -0.000000]

3rd Optimal burn time [s] 734.901643

3rd Optimal ∆V [m/s] [0.031184, -0.000056, 0.001375]

4th Optimal time [s] 7206.695293

4th Optimal ∆V [m/s] [-0.000000, 0.000000, -0.000000]

5th Optimal burn time [s] 16387.753909

5th Optimal ∆V [m/s] [0.000000, -0.000000, 0.000000]

6th Optimal burn time [s] 17216.989628

6th Optimal ∆V [m/s] [0.000000, -0.000000, -0.000000]

Total ∆V [m/s] 0.132678

Optimal drag area, Ac [m2] 9.873360

Optimal ballistic coefficient, CBc [kg/m2] 92.075134

Table 4.7: Optimization results (Case 1.2)

40



Simulation Results

Figure 4.5: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes (Case 1.3)

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (-50, 0, -50)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.8: Initial state of the spacecraft (Case 1.3)

Control boxes Dimensions

Spherical outer control box Radius = 75 m

Spherical inner control box Radius = 30 m

Table 4.9: Shape and dimensions of the control boxes (Case 1.3)

41



Simulation Results

Figure 4.6: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes (Case 1.4)

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (50, 0, 50)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.10: Initial state of the spacecraft (Case 1.4)

Control boxes Dimensions

Cubic outer control box Side length = 150 m

Spherical inner control box Radius = 30 m

Cylindrical control boxes Radius = 30 m

Heigth = 150 m

Table 4.11: Shape and dimensions of the control boxes (case 1.4)
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Figure 4.7: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes (Case 1.5)

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (50, 0, 50)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.12: Initial state of the spacecraft (Case 1.5)

Control boxes Dimensions

Cubic outer control box Side length = 150 m

Spherical inner control box Radius = 30 m

Cylindrical control boxes Radius = 30 m

Heigth = 150 m

Table 4.13: Shape and dimensions of the control boxes (Case 1.5)
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Figure 4.8: Trajectory of the Servicer around the Target with constraints on the
control boxes (Case 1.6)

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (50, 0, 50)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.14: Initial state of the spacecraft (Case 1.6)

Control boxes Dimensions

Cubic outer control box Side length = 150 m

Spherical inner control box Radius = 30 m

Cylindrical control boxes Radius = 30 m

Heigth = 150 m

Table 4.15: Shape and dimensions of the control boxes (Case 1.6)

44



Simulation Results

Parameters Simulation values

Time of flight, tf [s] 17216.989629

Total number of impulses applied, N 4

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.091209, 0.049595, -0.077447]

2nd Optimal burn time [s] 3260.506026

2nd Optimal ∆V [m/s] [-0.043757, -0.033931, -0.108022]

3rd Optimal burn time [s] 3637.770013

3rd Optimal ∆V [m/s] [0.059851, 0.052575, 0.014536]

4th Optimal burn time [s] 17216.989629

4th Optimal ∆V [m/s] [-0.043022, -0.021746, -0.013011]

Total ∆V [m/s] 0.381821

Optimal drag area, Ac [m2] [m2] 9.417880

Optimal ballistic coefficient, CBc [kg/m2] 96.528193

Table 4.16: Optimization results (Case 1.6)
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4.2.2 Field-Of-View and Occlusion
The inspection of the Target involves closely monitoring specific points to ensure,
for example, its structural integrity and operational safety. Two critical factors in
this context are the Field-of-View (FOV) and the Line-of-Sight (LOS) occlusion.

The FOV constraint ensures that the inspection camera mounted on the Servicer
can capture the necessary images of the Target without any distortion and within
the optimal range (Figure 4.9a).

Occlusion occurs when the inspection point is obstructed by another part of the
Target, blocking the LOS of the Servicer’s camera (Figure 4.9b). Evaluating the
occlusion constraints is essential for ensuring comprehensive inspection coverage.
For a more detailed and comprehensive understanding of these concepts and their
mathematical formulations, the reader can refer to related literature (see, e.g., [22]).

(a) Definitions of angles in the in-orbit inspection problem [22]

(b) Occlusion effect of a geometric element [22]

Figure 4.9: Representation of the FOV and occlusion constraints

As depicted in Figure 4.10, the inspection points are selected at the centers of
the faces and the vertices of the cubic Target, resulting in a total of 14 points to
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be inspected. This approach balances the complexity of constraints while ensuring
near-global coverage of the Target.

Figure 4.10: Inspection points of the target surface

The mathematical formulation of the FOV constraints is as follows [22]:

dr ≤ dobserve (4.8)
(4.9)

(Sf − S0) · Sf

dr · df
≥ cos

A
θmax

2

B
(4.10)

where:

• S0 is the position vector of the inspection points.

• Sf is the position vector of the Servicer.

• d0 = ∥S0∥ and df = ∥Sf ∥ are the magnitudes of the position vectors.

• dr = ∥Sf − S0∥ is the magnitude of the vector connecting the Servicer to each
inspection point.

• dobserve = 45 m is the maximum observation distance, i.e., the maximum
distance at which the Servicer’s camera can observe the target point without
significant image distortion.

• θmax = 30 ° is the FOV angle, i.e., the maximum angular width of the camera’s
observation cone, ensuring that the Target remains within the camera’s view.

These constraints ensure that the distance dr remains within the observation
limit and that the angle between the Servicer and the inspection point is within
the camera’s FOV.

To account for occlusion, the following inequality constraint is considered:
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(Sf − S0) · n
dr · dn

≥ cos(θocclusion) (4.11)

where:

• θocclusion is the occlusion angle, ensuring that any intervening structures do
not block the LOS. Specifically, θocclusion, face center = 60 ° for the face centers
and θocclusion, vertex = 105 ° for the vertices. These values were chosen as a
trade-off between literature data and analytical evaluations of the problem
under investigation.

• n is the normal vector to the inspection points.

• dn = ∥n∥ is the magnitude of the normal vector.

This equation ensures that the LOS is free from obstructions by maintaining
the angle between the normal to the inspection point and the vector connecting
the Servicer to the inspection points within an acceptable threshold.

Like in subsection 4.2.1, various geometries for the control boxes were considered
in this optimization step. This approach aimed to validate the inspection constraints
implemented across different scenarios. After defining the initial state of the Servicer
with respect to the Target, all the plots are presented along with two tables, which
specify respectively the shape and dimensions of the control boxes and the simulation
results provided by the optimization tool.

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (50, 0, 0)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.17: Initial state of the spacecraft (Cases 2.1, 2.2, 2.3, 2.4)
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Figure 4.11: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes, FOV, and LOS occlusion (Case 2.1)

Control boxes Dimensions

Cubic outer control box Side length = 150 m

Spherical inner control box Radius = 30 m

Table 4.18: Shape and dimensions of the control boxes (Case 2.1)
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Parameters Simulation values

Time of flight, tf [s] 1232.364396

Total number of impulses applied, N 5

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.006790, 0.007660, -0.009646]

2nd Optimal burn time [s] 449.540699

2nd Optimal ∆V [m/s] [-0.006612, 0.009270, -0.012775]

3rd Optimal burn time [s] 11424.109337

3rd Optimal ∆V [m/s] [0.000102, 0.000044, -0.000099]

4th Optimal burn time [s] 17215.817647

4th Optimal ∆V [m/s] [-0.000030, -0.000010, -0.000107]

5th Optimal burn time [s] 17216.989628

5th Optimal ∆V [m/s] [-0.000031, 0.000033, -0.000052]

Total ∆V [m/s] 0.031508

Optimal drag area, Ac [m2] 10.068240

Optimal ballistic coefficient, CBc [kg/m2] 90.292931

Table 4.19: Optimization results (Case 2.1)
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Figure 4.12: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes, FOV, and LOS occlusion (Case 2.2)

Control boxes Dimensions

Cubic outer control box Side length = 150 m

Spherical inner control box Radius = 30 m

Table 4.20: Shape and dimensions of the control boxes (Case 2.2)

51



Simulation Results

Parameters Simulation values

Time of flight, tf [s] 1232.364396

Total number of impulses applied, N 3

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.005874, -0.016557, 0.011650]

2nd Optimal burn time [s] 3540.325359

2nd Optimal ∆V [m/s] [-0.007074, 0.000524, -0.003945]

3rd Optimal burn time [s] 17216.989628

3rd Optimal ∆V [m/s] [-0.000406, -0.000056, 0.000052]

Total ∆V [m/s] 0.029609

Optimal drag area, Ac [m2] 9.492686

Optimal ballistic coefficient, CBc [kg/m2] 95.767507

Table 4.21: Optimization results (Case 2.2)
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Figure 4.13: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes, FOV, and LOS occlusion (Case 2.3)

Control boxes Dimensions

Cubic outer control box Side length = 150 m

Spherical inner control box Radius = 30 m

Table 4.22: Shape and dimensions of the control boxes (Case 2.3)
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Parameters Simulation values

Time of flight, tf [s] 17216.989628

Total number of impulses applied, N 3

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.006732, 0.016984, 0.010442]

2nd Optimal burn time [s] 4330.692078

2nd Optimal ∆V [m/s] [-0.009316, 0.002218, -0.000583]

3rd Optimal burn time [s] 17216.989628

3rd Optimal ∆V [m/s] [-0.000569, 0.000249, 0.000131]

Total ∆V [m/s] 0.031272

Optimal drag area, Ac [m2] 9.581808

Optimal ballistic coefficient, CBc [kg/m2] 94.876758

Table 4.23: Optimization results (Case 2.3)
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Figure 4.14: Trajectory of the Servicer around the Target with constraints on
the control boxes, FOV, and LOS occlusion (Case 2.4)

Control boxes Dimensions

Cubic outer control box Side length = 150 m

Spherical inner control box Radius = 30 m

Cylindrical control boxes Radius = 30 m

Heigth = 150 m

Table 4.24: Shape and dimensions of the control boxes (Case 2.4)
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Parameters Simulation values

Time of flight, tf [s] 17216.989628

Total number of impulses applied, N 4

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.008748, 0.019623, -0.013623]

2nd Optimal burn time [s] 592.758993

2nd Optimal ∆V [m/s] [-0.008420, 0.015764, -0.010449]

3rd Optimal burn time [s] 8353.326343

3rd Optimal ∆V [m/s] [0.000606, 0.000031, -0.000331]

4th Optimal burn time [s] 17216.989628

4th Optimal ∆V [m/s] [-0.000033, -0.000002, -0.000017]

Total ∆V [m/s] 0.046871

Optimal drag area, Ac [m2] 10.356388

Optimal ballistic coefficient, CBc [kg/m2] 87.780688

Table 4.25: Optimization results (Case 2.4)
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4.2.3 Safety Ellipse
In IOS operations, ensuring the safety of both the Servicer and the Target is critical.
An effective strategy to achieve this is through the use of a Safety Ellipse (SE),
which involves a combination of out-of-plane and in-plane elliptical motions. By
injecting the Servicer into a safety ellipse trajectory, we ensure that the Servicer
never crosses the V-bar axis, i.e., the direction of motion of the Target. In this
way, even in the event of a drift toward the Target, a collision will not occur, as
the Servicer will move around the Target at a distance defined by the extensions
of the ellipse along the in-plane and out-of-plane directions [16]. More detailed
information about this approach can be found in the literature (see, e.g., [23], [24]).

The initial approach was to implement a so-called Walking Safety Ellipse,
centered at a point along the in-track direction and moving along this direction
with a certain drift velocity. Using the SE equations of motion found in the
literature [24], the objective was to make the Servicer acquire and then follow the
SE trajectory. The maximum out-of-plane and radial extensions of the ellipse ymax
and zmax, along with the drift velocity in the in-track direction ẋc, were adjusted to
satisfy the constraints on the control boxes, FOV and LOS occlusion. An example
of this trajectory is given in Figure 4.15. It should be noted that the SE provides
only "short-term safety", as over a larger number of orbits, the uncertainty of the
differential drag must be taken into account [16].

Figure 4.15: Relative motion in the Walking Safety Ellipse [25]

The problem with this approach was that it necessitated the introduction of
a series of equality constraints to ensure that the Servicer’s trajectory coincided
with the SE trajectory, making the optimization problem excessively constrained
and too computationally intensive for the optimizer to find a feasible solution, as
shown in Figure 4.16.
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Figure 4.16: Safety Ellipse acquisition attempt

Due to this, it was necessary to redefine the strategy. It was decided to implement
the safety ellipse by applying its theoretical definition, which involves applying an
out-of-plane impulse (along ±H-bar) at the starting position along the V-bar and
an in-plane impulse (along ±R-bar) a quarter orbit later, or vice versa, as shown
in Figure 4.17. The lower and upper bounds defined in Equations 4.2 and 4.3 were
modified as follows:

0 ≤ ∆t1 ≤ T/4 [s] (4.12)
0 ≤ ∆V 1,x ≤ 0 [m/s] (4.13)

−0.1 ≤ ∆V 1,y ≤ 0.1 [m/s] (4.14)
0 ≤ ∆V 1,z ≤ 0 [m/s] (4.15)

The second impulse is not constrained along the R-bar direction alone, as it
may contain small components along the other two directions to compensate for
any deviations that might have occurred due to the initial impulse. This flexibility
ensures the trajectory remains within the safety ellipse, maintaining the required
relative motion constraints.

To ensure the Servicer’s motion along a spiral trajectory typical of the safety
ellipse, two additional cylindrical control boxes, one inner and one outer, were
introduced. These boxes create a cylindrical shell within which the Servicer is
constrained to move during the inspection of the Target, effectively simulating
a SE. The constraints were formulated using the same mathematical expressions
defined in Equations 4.6 and 4.7.

Finally, to avoid potential collisions due to accidental drift of the Servicer along
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the direction of motion (V-bar) during passes in front of or behind the Target, a
constraint was imposed such that the coordinates along H-bar and R-bar cannot
be zero simultaneously during the inspection phase.

Figure 4.17: Safety Ellipse implementation [16]

The following figures illustrate the optimized trajectories achieved with this
approach, considering all the constraints discussed so far: control boxes, FOV, LOS
occlusion, and SE. This method ensures safe relative motion, minimizes collision
risks, and relaxes constraints, while simultaneously providing favorable conditions
for the visual inspection of the Target.

After defining the initial state of the Servicer with respect to the Target, as well
as the dimensions of the control boxes and the cylindrical shell, all the plots are
presented along with the table collecting the simulation results provided by the
optimization tool.

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (50, 0, 0)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.26: Initial state of the spacecraft (Cases 3.1, 3.2, 3.3)
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Control boxes Dimensions

Cubic outer control box Side length = 150 m

Spherical inner control box Radius = 30 m

Cylindrical shell Inner radius = 30 m

Outer radius = 60 m

Height = 150 m

Table 4.27: Shape and dimensions of the control boxes (Cases 3.1, 3.2, 3.3)

Parameters Simulation values

Time of flight, tf [s] 28694.982712

Total number of impulses applied, N 5

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.000000, -0.042494, 0.000000]

2nd Optimal burn time [s] 1235.370621

2nd Optimal ∆V [m/s] [-0.000490, 0.003597, -0.036057]

3rd Optimal burn time [s] 20519.709640

3rd Optimal ∆V [m/s] [-0.000167, -0.005175, 0.001244]

4th Optimal burn time [s] 28662.318302

4th Optimal ∆V [m/s] [-0.000031, -0.006093, -0.011671]

5th Optimal burn time [s] 28694.982712

5th Optimal ∆V [m/s] [0.000346, 0.012485, 0.002100]

Total ∆V [m/s] 0.109890

Optimal drag area, Ac [m2] 10.001191

Optimal ballistic coefficient, CBc [kg/m2] 90.898262

Table 4.28: Optimization results (Case 3.1)
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(a) Safety Ellipse

(b) Out-of-plane view (x,y) of the motion of the SE

Figure 4.18: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes, FOV, LOS occlusion and SE (Case 3.1)
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(a) Safety Ellipse

(b) Out-of-plane view (x,y) of the motion of the SE

Figure 4.19: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes, FOV, LOS occlusion and SE (Case 3.2)
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Parameters Simulation values

Time of flight, tf [s] 46893.868751

Total number of impulses applied, N 5

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.000000, -0.001112, 0.001184]

2nd Optimal burn time [s] 1524.517456

2nd Optimal ∆V [m/s] [0.000930, 0.040544, -0.033446]

3rd Optimal burn time [s] 16647.129198

3rd Optimal ∆V [m/s] [-0.001147, 0.089348, -0.015673]

4th Optimal burn time [s] 33709.663672

4th Optimal ∆V [m/s] [0.040544, 0.000000, -0.038036]

5th Optimal burn time [s] 46893.868751

5th Optimal ∆V [m/s] [-0.033539, -0.008619, -0.040544]

Total ∆V [m/s] 0.253824

Optimal drag area, Ac [m2] 10.079848

Optimal ballistic coefficient, CBc [kg/m2] 90.188947

Table 4.29: Optimization results (Case 3.2)
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(a) Safety Ellipse

(b) Out-of-plane view (x,y) of the motion of the SE

Figure 4.20: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes, FOV, LOS occlusion and SE (Case 3.3)
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Parameters Simulation values

Time of flight, tf [s] 32179.213612

Total number of impulses applied, N 5

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.000000, 0.005376, -0.005148]

2nd Optimal burn time [s] 1468.477501

2nd Optimal ∆V [m/s] [-0.000538, 0.026069, -0.044660]

3rd Optimal burn time [s] 4394.533927

3rd Optimal ∆V [m/s] [-0.017176, 0.004456, 0.001522]

4th Optimal burn time [s] 30288.892684

4th Optimal ∆V [m/s] [0.008424, 0.000000, -0.022490]

5th Optimal burn time [s] 32179.213612

5th Optimal ∆V [m/s] [0.007647, -0.010232, 0.018555]

Total ∆V [m/s] 0.123510

Optimal drag area, Ac [m2] 10.141530

Optimal ballistic coefficient, CBc [kg/m2] 89.640413

Table 4.30: Optimization results (Case 3.3)
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4.2.4 Return to Starting Position
After completing the Target inspection, as an additional constraint, the Servicer
was required to return to its initial position, with zero final relative velocity:

(x, y, z)tf
= (50, 0, 0) m (4.16)

(Vx, Vy, Vz)tf
= (0, 0, 0) m/s (4.17)

In the initial simulations, the Servicer returned to its starting position by
executing "abrupt" maneuvers. To address this inconvenience, it was decided to
impose an additional constraint: by the penultimate impulse, the Servicer must be
aligned with the starting position in the xy-plane, ensuring minimal misalignment
along the V-bar and R-bar axes. This should help smooth out the transition and
avoid any abrupt changes in the trajectory, resulting in a more controlled and
predictable return to the starting position. After defining the initial state of the
Servicer with respect to the Target, as well as the dimensions of the control boxes
and the cylindrical shell, all the plots are presented along with the table collecting
the simulation results provided by the optimization tool.

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (50, 0, 0)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.31: Initial state of the spacecraft (Cases 4.1, 4.2, 4.3)

Control boxes Dimensions

Cubic outer control box Side length = 150 m

Spherical inner control box Radius = 30 m

Cylindrical shell Inner radius = 30 m

Outer radius = 80 m

Heigth = 150 m

Table 4.32: Shape and dimensions of the control boxes (Cases 4.1, 4.2, 4.3)
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(a) Safety Ellipse

(b) Out-of-plane view (x,y) of the motion of the SE

Figure 4.21: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes, FOV, LOS occlusion, SE, and return (Case 4.1)
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Parameters Simulation values

Time of flight, tf [s] 28694.982713

Total number of impulses applied, N 6

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.000000, 0.034535, 0.000000]

2nd Optimal burn time [s] 1147.799309

2nd Optimal ∆V [m/s] [-0.020353, 0.018810, -0.024940]

3rd Optimal burn time [s] 2993.910902

3rd Optimal ∆V [m/s] [0.021633, -0.009968, -0.051681]

4th Optimal burn time [s] 7791.593330

4th Optimal ∆V [m/s] [-0.000043, -0.000135, 0.000015]

5th Optimal burn time [s] 15732.610724

5th Optimal ∆V [m/s] [-0.001045, 0.018619, 0.037448]

6th Optimal burn time [s] 28694.982713

6th Optimal ∆V [m/s] [-0.000000, 0.000000, 0.000000]

Total ∆V [m/s] 0.170700

Optimal drag area, Ac [m2] 10.031292

Optimal ballistic coefficient, CBc [kg/m2] 90.625505

Table 4.33: Optimization results (Case 4.1)
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(a) Safety Ellipse

(b) Out-of-plane view (x,y) of the motion of the SE

Figure 4.22: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes, FOV, LOS occlusion, SE, and return (Case 4.2)
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Parameters Simulation values

Time of flight, tf [s] 28632.462324

Total number of impulses applied, N 7

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.000000, -0.002039, 0.009477]

2nd Optimal burn time [s] 1147.901596

2nd Optimal ∆V [m/s] [-0.010205, 0.012993, -0.015738]

3rd Optimal burn time [s] 10353.180071

3rd Optimal ∆V [m/s] [0.000104, -0.036424, 0.017506]

4th Optimal burn time [s] 11513.770505

4th Optimal ∆V [m/s] [-0.014062, 0.024328, -0.016755]

5th Optimal burn time [s] 26390.037122

5th Optimal ∆V [m/s] [0.089627, -0.000029, -0.000000]

6th Optimal burn time [s] 28212.959866

6th Optimal ∆V [m/s] [-0.038023, -0.005538, -0.006056]

7th Optimal burn time [s] 28632.462324

7th Optimal ∆V [m/s] [0.002919, 0.048595, 0.000007]

Total ∆V [m/s] 0.282847

Optimal drag area, Ac [m2] 9.710563

Optimal ballistic coefficient, CBc [kg/m2] 93.618763

Table 4.34: Optimization results (Case 4.2)
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(a) Safety Ellipse

(b) Out-of-plane view (x,y) of the motion of the SE

Figure 4.23: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes, FOV, LOS occlusion, SE, and return (Case 4.3)
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Parameters Simulation values

Time of flight, tf [s] 27562.069162

Total number of impulses applied, N 8

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.000000, 0.009366, -0.004801]

2nd Optimal burn time [s] 1154.212816

2nd Optimal ∆V [m/s] [0.000297, -0.008626, -0.008982]

3rd Optimal burn time [s] 1826.503970

3rd Optimal ∆V [m/s] [0.003652, -0.000024, -0.034457]

4th Optimal burn time [s] 3992.151301

4th Optimal ∆V [m/s] [-0.003684, -0.001515, -0.006200]

5th Optimal burn time [s] 4158.481741

5th Optimal ∆V [m/s] [-0.060363, 0.000101, -0.001680]

6rd Optimal burn time [s] 23476.779701

6rd Optimal ∆V [m/s] [-0.000122, 0.000000, -0.011035]

7th Optimal burn time [s] 26485.254293

7th Optimal ∆V [m/s] [-0.002008, -0.000647, -0.010176]

8th Optimal burn time [s] 27562.069162

8th Optimal ∆V [m/s] [0.005277, 0.015180, -0.000007]

Total ∆V [m/s] 0.162885

Optimal drag area, Ac [m2] 9.157002

Optimal ballistic coefficient, CBc [kg/m2] 99.278222

Table 4.35: Optimization results (Case 4.3)
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4.3 Docking Phase
The final step was to optimize the docking maneuver with the Target, starting from
the state acquired by the Servicer after completing the inspection and returning to
the initial position. For this simulation, during the approach phase, the Servicer
was constrained to move within a conical approach corridor originating from the
Target’s mating point, as shown in Figure 4.24.

Figure 4.24: Conic approach corridor aligned with the docking axis and with an
apex half-angle α [26]

In the initial iterations, to assist the optimizer in finding feasible solutions to
be used subsequently as initial guesses with fmincon, a secondary cost function
was defined, in addition to the one defined in Equation 4.1, specifically aimed at
minimizing the duration of the maneuver:

J =
N−1Ø
i=1

∆ti (4.18)

The constraints considered to ensure that the Servicer approaches the Target
while remaining within the conical corridor have been formulated similarly to the
constraints on FOV and LOS occlusion defined in Equations 4.10 and 4.11:

(Sf − D0) · c
dr,app · dc

≥ cos(α) (4.19)

where:

• Sf is the position vector of the Servicer.

• D0 is the position vector of the target docking port.

• c is the cone axis vector.

• dr,app = ∥Sf − D0∥ is the magnitude of the vector connecting the Servicer to
the docking port on the Target.

• dc = ∥c∥ is the magnitude of the cone axis vector.
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• α = 15 ° is the half cone angle.

The preferred approach for docking with a target spacecraft is typically along
the ±V-bar axis, which aligns with the direction of the Target’s orbital velocity.
This approach is favored due to its inherent safety and ease of control. Approaching
along the ±V-bar axis allows for gradual adjustments in speed and trajectory,
reducing the risk of collision and ensuring smoother docking operations ([16]).

Direct approaches along the ±H-bar axis are considered inherently unsafe due
to the potential for uncontrolled drift towards the target in the event of a failure.
This drift can lead to increased relative speeds and potential collisions. Therefore,
±H-bar approaches are generally avoided ([16]).

In some cases, an R-bar approach may be utilized, particularly when transitioning
from a higher to a lower orbit or for specific berthing operations. However, this
method often requires initial maneuvers along the V-bar axis to ensure proper
alignment and safety before transitioning to the R-bar approach ([16]).

To avoid making the optimization problem too computationally intensive, the
inspection phase and the docking phase were optimized separately. Different
locations of the docking port were considered, specifically along the -V-bar and
±R-bar, in order to test the robustness of the code. This choice is not primarily
about selecting the most favorable docking port, but rather about testing the
robustness of the code by challenging the Servicer to execute more challenging
maneuvers.

To facilitate the identification of feasible solutions, it was decided to shift the
starting point of the docking phase along the V-bar. This adjustment allows for
better maneuver planning and reduces the likelihood of violating the operational
constraints of this phase.

After defining the initial state of the Servicer with respect to the Target, as
well as the dimensions of the control boxes, all the plots are presented along with
two tables, which specify respectively the location of the docking port and the
simulation results provided by the optimization tool.

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (80, 0, 0)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.36: Initial state of the spacecraft (Cases 5.1, 5.2, 5.3)
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Control boxes Dimensions

Cubic outer control box Side length = 150 m

Spherical inner control box Radius = 30 m

Table 4.37: Shape and dimensions of the control boxes (Cases 5.1, 5.2, 5.3)

Docking port

Origin (-2.5, 0, 0) m

Axis direction -V-bar

Table 4.38: Conic approach corridor (Case 5.1)

Figure 4.25: Optimized trajectory of the Servicer around the Target for docking
within a conic approach corridor (Case 5.1)
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Parameters Simulation values

Time of flight, tf [s] 17216.989628

Total number of impulses applied, N 10

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [-0.014468, 0.014194, -0.000000]

2nd Optimal burn time [s] 2091.309174

2nd Optimal ∆V [m/s] 0.010196, -0.001141, -0.001253]

3rd Optimal burn time [s] 6375.852591

3rd Optimal ∆V [m/s] [-0.007535, 0.033044, 0.036312]

4th Optimal burn time [s] 10378.181738

4th Optimal ∆V [m/s] [-0.000000, 0.000000, -0.000000]

5th Optimal burn time [s] 10593.777253

5th Optimal ∆V [m/s] [-0.000000, -0.000001, 0.000003]

6st Optimal burn time [s] 11238.570101

6st Optimal ∆V [m/s] [-0.000001, 0.000001, -0.000004]

7nd Optimal burn time [s] 11421.618483

7nd Optimal ∆V [m/s] [0.000007, -0.000000, -0.063039]

8rd Optimal burn time [s] 16650.366573

8rd Optimal ∆V [m/s] [-0.063287, 0.000000, -0.002264]

9th Optimal burn time [s] 16985.400127

9th Optimal ∆V [m/s] [0.013238, 0.007727, 0.001619]

10th Optimal burn time [s] 17216.989628

10th Optimal ∆V [m/s] [0.012315, 0.029763, 0.000000]

Total ∆V [m/s] 0.254273

Optimal drag area, Ac [m2] 9.999990

Optimal ballistic coefficient, CBc [kg/m2] 90.909180

Table 4.39: Optimization results (Case 5.1)
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Docking port

Origin (0, 0, -2.5) m

Axis direction -R-bar

Table 4.40: Conic approach corridor (Case 5.2)

Figure 4.26: Optimized trajectory of the Servicer around the Target for docking
within a conic approach corridor (Case 5.2)
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Parameters Simulation values

Time of flight, tf [s] 3096.243067

Total number of impulses applied, N 10

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.016135, -0.000000, 0.000833]

2nd Optimal burn time [s] 2316.099193

2nd Optimal ∆V [m/s] [0.071815, -0.000011, 0.100000]

3rd Optimal burn time [s] 2317.099193

3rd Optimal ∆V [m/s] [0.017569, 0.000006, 0.025330]

4th Optimal burn time [s] 2517.946752

4th Optimal ∆V [m/s] [-0.032808, 0.000019, 0.015525]

5th Optimal burn time [s] 2517.846757

5th Optimal ∆V [m/s] [-0.004795, -0.000000, 0.001711]

6st Optimal burn time [s] 2686.048456

6st Optimal ∆V [m/s] [-0.008830, -0.000009, 0.002840]

7nd Optimal burn time [s] 2793.833947

7nd Optimal ∆V [m/s] [-0.018909, -0.000004, 0.004940]

8rd Optimal burn time [s] 2913.029980

8rd Optimal ∆V [m/s] [-0.008688, 0.000000, 0.001871]

9th Optimal burn time [s] 3027.944429

9th Optimal ∆V [m/s] [-0.000000, -0.000000, 0.000000]

10th Optimal burn time [s] 3096.243067

10th Optimal ∆V [m/s] [0.000000, -0.000000, 0.000000]

Total ∆V [m/s] 0.249194

Optimal drag area, Ac [m2] 4.000000

Optimal ballistic coefficient, CBc [kg/m2] 227.272727

Table 4.41: Optimization results (Case 5.2)
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Docking port

Origin (0, 0, 2.5) m

Axis direction R-bar

Table 4.42: Conic approach corridor (Case 5.3)

Figure 4.27: Optimized trajectory of the Servicer around the Target for docking
within a conic approach corridor (Case 5.3)
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Parameters Simulation values

Time of flight, tf [s] 17216.989628

Total number of impulses applied, N 10

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [-0.014468, 0.000000, -0.063039]

2nd Optimal burn time [s] 2091.309174

2nd Optimal ∆V [m/s] [0.014194, -0.000000, -0.063287]

3rd Optimal burn time [s] 6375.852951

3rd Optimal ∆V [m/s] [-0.000000, -0.000000, 0.000000]

4th Optimal burn time [s] 10378.181738

4th Optimal ∆V [m/s] [0.010196, -0.000001, -0.002264]

5th Optimal burn time [s] 10593.777253

5th Optimal ∆V [m/s] [-0.001141, 0.000003, 0.013238]

6st Optimal burn time [s] 11238.570101

6st Optimal ∆V [m/s] [-0.001253, -0.000001, 0.007727]

7nd Optimal burn time [s] 11421.618483

7nd Optimal ∆V [m/s] [-0.007535, 0.000001, 0.001619]

8rd Optimal burn time [s] 16650.366573

8rd Optimal ∆V [m/s] [0.033044, -0.000004, 0.012315]

9th Optimal burn time [s] 16985.400127

9th Optimal ∆V [m/s] [0.036312, 0.000007, 0.029763]

10th Optimal burn time [s] 17216.989628

10th Optimal ∆V [m/s] [-0.000000, -0.000000, 0.000000]

Total ∆V [m/s] 0.251019

Optimal drag area, Ac [m2] 9.999999

Optimal ballistic coefficient, CBc [kg/m2] 90.909180

Table 4.43: Optimization results (Case 5.3)
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4.4 Inspection of an Asteroid
To further test the robustness of the optimization tool, we modeled the Target
as an ellipsoid with arbitrary dimensions, listed in Table 4.45. The number of
inspection points was increased from 14 to 32, chosen randomly but in sufficient
quantity to achieve satisfactory coverage of the Target. It is important to note
that this different modeling of the Target affects only its shape and size, while all
other parameters listed in Table 4.1 (orbital parameters, mass, ballistic coefficient)
remain unchanged. In terms of constraints, all previously discussed constraints
(control boxes, FOV, LOS occlusion, SE, and return) were considered.

Figure 4.28 illustrates the Servicer’s trajectory around the ellipsoid-shaped
Target, showcasing the algorithm’s capability to handle varied target shapes.

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (80, 0, 0)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.44: Initial state of the spacecraft (Case 6.1)

Target dimensions

Semi-axes length [m] 5 x 5 x 1.5

Orientation around x, y, z [°] (0, 45, 45)

Table 4.45: Dimensions of the Target (Case 6.1)

Control boxes Dimensions

Cubic outer control box Side length = 150 m

Spherical inner control box Radius = 30 m

Cylindrical shell Inner radius = 30 m

Outer radius = 40 m

Heigth = 150 m

Table 4.46: Shape and dimensions of the control boxes (Case 6.1)
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Figure 4.28: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes, FOV, LOS occlusion, SE, and return (Case 6.1)
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Parameters Simulation values

Time of flight, tf [s] 28688.203720

Total number of impulses applied, N 16

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.000000, 0.034240, 0.000000]

2nd Optimal burn time [s] 1173.081731

2nd Optimal ∆V [m/s] [0.007821, 0.001709, -0.015599]

3rd Optimal burn time [s] 1908.819190

3rd Optimal ∆V [m/s] [-0.006354, -0.000324, -0.004771]

4th Optimal burn time [s] 3150.203717

4th Optimal ∆V [m/s] [-0.001442, -0.000267, 0.000405]

5th Optimal burn time [s] 13876.099504

5th Optimal ∆V [m/s] [0.000000, 0.000000, 0.000000]

6th Optimal burn time [s] 14363.102613

6th Optimal ∆V [m/s] [0.000467, -0.000027, 0.000076]

Table 4.47: Optimization results (Case 6.1) - Part 1
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Parameters Simulation values

7th Optimal burn time [s] 14432.187208

7th Optimal ∆V [m/s] [0.000084, 0.000000, 0.000000]

8th Optimal burn time [s] 14525.441990

8th Optimal ∆V [m/s] [0.002060, -0.000047, 0.000093]

9rd Optimal burn time [s] 16900.863803

9rd Optimal ∆V [m/s] [-0.005752, 0.000783, -0.001453]

10th Optimal burn time [s] 27089.759470

10th Optimal ∆V [m/s] [0.007889, 0.001067, -0.002551]

11th Optimal burn time [s] 27675.231870

11th Optimal ∆V [m/s] [0.000000, 0.000000, 0.000000]

12th Optimal burn time [s] 27845.816668

12th Optimal ∆V [m/s] [0.000000, 0.000000, 0.000000]

13rd Optimal burn time [s] 27985.356908

13rd Optimal ∆V [m/s] [0.000000, 0.000000, 0.000000]

14th Optimal burn time [s] 28188.000783

14th Optimal ∆V [m/s] [0.000000, 0.000000, 0.000000]

15th Optimal burn time [s] 28415.612438

15th Optimal ∆V [m/s] [0.000000, 0.000000, 0.000000]

16th Optimal burn time [s] 28688.203720

16th Optimal ∆V [m/s] [0.000000, 0.000000, 0.000000]

Total ∆V [m/s] 0.078210

Optimal drag area, Ac [m2] 9.983421

Optimal ballistic coefficient, CBc [kg/m2] 91.060056

Table 4.48: Optimization results (Case 6.1) - Part 2

84



Simulation Results

Subsequently, the 3D model of the asteroid Didymos was employed. Didymos, a
near-Earth asteroid belonging to the Apollo group, was chosen due to its significant
scientific interest and the complexity posed by its considerable size and irregular
surface, which present substantial challenges in identifying optimal inspection
trajectories. To facilitate the optimizer’s work, only the constraints related to the
control boxes, FOV, and LOS occlusion were considered. To accommodate the size
of the Target, the limit values for Equations 4.10 and 4.11 were modified as follows:

• dobserve = 500 m,

• θmax = 120 °,

• θocclusion = 120 °.

so that a large area of the asteroid is covered in a single image.
In terms of constraints, only those related to control boxes, FOV, and LOS

occlusion were considered. As stated for the previous case, it is important to note
that this different modeling of the Target affects only its shape and size, while all
other parameters listed in Table 4.1 (orbital parameters, mass, ballistic coefficient)
remain unchanged. The system’s dynamic model, specifically the Hill relative
model for near-circular orbits in LEO, has not been changed. However, this model
may not be sufficiently accurate for simulating the Servicer’s trajectory around
Didymos due to the unique dynamic conditions of asteroids. Therefore, future
implementations should include the gravitational force of the asteroid, potentially
addressing the three-body problem, to provide a more accurate simulation of the
Servicer’s trajectory around Didymos. Additionally, only a very limited number of
inspection points were considered, due to the complexity of the problem.

Parameters Target Servicer

Initial position (x0, y0, z0) [m] (0, 0, 0) (640, 0, 0)

Initial velocity (ẋ0, ẏ0, ż0) [m/s] (0, 0, 0) (0, 0, 0)

Table 4.49: Initial state of the spacecraft

Target dimensions

Semi-axes length [m] 516 x 518 x 488

Table 4.50: Dimensions of the Target (Case 6.2)
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Control boxes Dimensions

Cubic outer control box Side length = 3000 m

Spherical inner control box Radius = 570 m

Table 4.51: Shape and dimensions of the control boxes (Case 6.2)

Parameters Simulation values

Time of flight, tf [s] 21458.882603

Total number of impulses applied, N 5

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.641365, -0.602313, 0.585671]

2nd Optimal burn time [s] 165.934536

2nd Optimal ∆V [m/s] [-0.662803, 0.176192, -0.300884]

3rd Optimal burn time [s] 6850.928934

3rd Optimal ∆V [m/s] [-0.392839, -0.560084, -0.582511]

4th Optimal burn time [s] 7372.481582

4th Optimal ∆V [m/s] [0.414169, 0.620834, -0.551894]

5th Optimal burn time [s] 21458.882603

5th Optimal ∆V [m/s] [0.605800, -0.605800, -0.605800]

Total ∆V [m/s] 4.681865

Optimal drag area, Ac [m2] 10.820987

Optimal ballistic coefficient, CBc [kg/m2] 84.011828

Table 4.52: Optimization results (Case 6.2)

86



Simulation Results

(a) Asteroid inspection trajectory

(b) Out-of-plane view (x,y) of the Servicer’s motion

Figure 4.29: Optimized trajectory of the Servicer around the Target with con-
straints on the control boxes, FOV and LOS occlusion (Case 6.2)
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4.5 Genetic Algorithm Refinement
An additional development involved using genetic algorithms, specifically the
MATLAB function ga, to refine the solutions obtained from fmincon, combined
with multistart, by iteratively improving the population of potential solutions. As
discussed in Chapter 2, genetic algorithms are particularly advantageous for their
ability to handle complex, multi-modal landscapes and find the global minimum in
the presence of multiple local minima.

Initial solutions were obtained from fmincon combined with multistart, ex-
emplifying the scenario shown in Figure 4.21. These solutions were used to form
the initial population for gamultiobj. From a graphical standpoint, the resulting
trajectory appears identical, but as shown in Table 4.53, this method achieves a
lower objective function value, specifically a lower total ∆V . However, it was found
to be slower for our specific case, which limited its applicability.

Parameters Simulation values

Time of flight, tf [s] 28694.559539

Total number of impulses applied, N 6

1st Optimal burn time [s] 0.000000

1st Optimal ∆V [m/s] [0.000000, 0.034546, 0.000000]

2nd Optimal burn time [s] 1147.829666

2nd Optimal ∆V [m/s] [-0.020347, 0.018836, -0.024921]

3rd Optimal burn time [s] 2993.327898

3rd Optimal ∆V [m/s] [0.021634, -0.009584, -0.051412]

4th Optimal burn time [s] 7791.059156

4th Optimal ∆V [m/s] [0.000000, 0.000000, 0.000000]

5th Optimal burn time [s] 15732.227750

5th Optimal ∆V [m/s] [-0.001043, 0.018736, 0.037431]

6th Optimal burn time [s] 28694.559539

6th Optimal ∆V [m/s] [0.000000, 0.000000, 0.000000]

Total ∆V [m/s] 0.170294

Optimal drag area, Ac [m2] 10.031143

Optimal ballistic coefficient, CBc [kg/m2] 90.626855

Table 4.53: Optimization results (Case 7)
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4.6 Pareto Front
The final test conducted focused on the Pareto front, which represents the trade-off
between the total velocity increment ∆V and the number of impulses applied N .
The trend observed in Figure 4.30 validates the effectiveness of the optimization
code.

The Pareto front was generated using the gamultiobj function from MATLAB’s
Global Optimization Toolbox, which employs a genetic algorithm. Initial solutions
were obtained from fmincon, combined with the multistart function, simulating
the simplest scenario where the only constraints are the inner and outer control
boxes. These solutions were used to form the initial population for gamultiobj.
The ballistic coefficient CBc was fixed at 14 to ensure that the Servicer moves to
counterbalance the effect of differential aerodynamic drag.

Figure 4.30: Pareto front showing the trade-off between total ∆V and number of
impulses N

Figure 4.30 shows that as the number of impulses increases, the total ∆V
required decreases, indicating more efficient propellant usage with a higher number
of impulses.
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Chapter 5

Conclusions and Future
Developments

This thesis focused on optimizing in-orbit inspection relative trajectories between
two spacecraft. Through a gradual increase in the complexity of the optimization
problem, the developed tool has demonstrated the ability to effectively employ
direct methods for optimizing IOS trajectories in LEO. The developed tool not only
exhibited robust performance and adaptability to various operational scenarios,
but also showed significant potential for commercial applications.

The whole process involved several stages: defining the optimization prob-
lem, formulating the physical model, developing an optimization approach, and
implementing and testing the method across various mission scenarios.

The key results of this thesis highlight the effectiveness of the proposed opti-
mization techniques for the preliminary design of in-orbit inspection missions.

Based on the findings of this research, several paths for future work have been
identified. Future studies should incorporate higher-fidelity dynamics to account
for perturbations such as aerodynamic drag using an atmospheric database, the J2
effect, and solar radiation pressure. This will allow for more accurate simulation of
the relative motion between the Servicer and the Target. The implementation of a
continuous thrust model would improve the accuracy of the Servicer’s maneuvers,
and consequently, it would yield more realistic optimized trajectories. This approach
was briefly tested by introducing new control variables, i.e., the acceleration along
the three axis (constant in magnitude and equal to thrust/mass and the thrust
duration, as shown in Figure 5.1.

Exploring advanced optimization techniques, such as machine learning-based
approaches, could further enhance the robustness and efficiency of trajectory
planning. These techniques have the potential to provide better initial guesses and
handle more complex optimization landscapes.
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Figure 5.1: Continuous thrust modeling for more realistic simulation: the colored
segments represent the propulsive arcs of the trajectory

Validating the developed algorithms with actual space missions will be crucial
to assess their performance under real-world conditions. This validation will help
identify practical challenges and refine the optimization tool accordingly. Addi-
tionally, applying the optimization framework to more complex mission scenarios,
including multi-target servicing and simultaneous operations of multiple servicers,
can expand its applicability. This will test the tool’s scalability and flexibility in
handling more intricate mission requirements.

In conclusion, this thesis has established a solid foundation for optimizing IOS
trajectories in LEO. The developed tool not only demonstrates the feasibility and
effectiveness of the proposed methods but also opens up numerous possibilities for
future research and practical applications in the field of space mission analysis and
operations.

I would like to conclude this thesis with a quote that deeply resonates with
me, spoken by Lyndon B. Johnson, who later became the President of the United
States, when he was the Senate Majority Leader and Chairman of the Special
Committee on Space and Astronautics [27]:

“There are no blueprints or road maps which clearly mark out the course...
The limits of the job are no less than the limits of the universe. And those
are limits which can be stated but are virtually impossible to describe.”
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