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Abstract

The search for extrasolar planets is a fundamental resource for expanding our understand-
ing of the Universe and investigating the likelihood that other worlds might harbour life.
Among the several approaches employed for this purpose, the astrometric method offers
significant advantages, as it provides an accurate estimate of the mass of the planet under
consideration, which is not required to be necessarily aligned with the line of sight of the
observer as for the transit or radial velocity techniques.

This thesis aims at analysing and simulating the pointing manoeuvres required by a
future spacecraft carrying an optical instrument such as RAFTER (Ring Astrometric
Field Telescope for Exoplanets and Relativity) to properly fulfil the objectives of an exo-
planet astrometric search mission whilst minimizing the associated energy cost. RAFTER
is an annular field telescope conceived and proposed with the goal of achieving consistent
optical response over a wide field of view, which exhibits a compact and scalable design
and enforces circular symmetry for each optical element.

Following an outline of the scientific case under scrutiny and a thorough dissertation of
the theoretical aspects covered, the present work introduces the potential configurations
selected for the satellite and an overview of the mission it shall undertake, with a particular
focus on the field-of-view shift manoeuvres evaluated in this study. Subsequently, the
mathematical model addressing the dynamics of the system and the optimal control
problem implemented to simulate the manoeuvres at stake are detailed. Finally, the
results obtained are provided and discussed.
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Chapter 1

Introduction

Ever since the discovery of the first exoplanet, the search for worlds outside our Solar
System has proved to be one of the most compelling and daring challenges in the field
of astronomy, an essential tool for shedding light on the still numerous mysteries of the
Universe. The by now countless extrasolar planets detected over the last few decades
have opened up new avenues for the study of extraterrestrial life and greatly enriched our
knowledge of the origin and evolution of planetary systems[2], as well as stimulating the
common imagination with renewed concepts of exploration and conquest of the unknown.

One of the earliest and, theoretically, most effective methods for detecting exoplanets
is the astrometric method. It is based on the precise measurement of the path followed
by the star under observation, generated by a combination of the proper motion of the
celestial body along its orbit around the centre of the Galaxy and the apparent parallax
motion resulting from the revolution of the Earth around the Sun. The composition of
these two motions generates a helicoidal trajectory which, if irregular and thus perturbed,
reveals the presence of a ’unseen companion’; a significantly massive planet that, together
with its parent star, orbits a common centre of mass. It is therefore evident how this
method has the advantage, firstly, of providing a substantially exact estimate of the
mass of the planet under scrutiny, and also, unlike the better known and more widely
exploited transit and radial velocity methods, of extending its field of application to all
those planetary systems that do not orbit in a plane aligned with the line of sight of the
observer.[18, 19] In practice, what makes the application of this method exceptionally
complex is the difficulty, at present, of achieving sufficient accuracy to identify the position
displacement of a star caused by the presence of planets in orbit with it. As of 2023, the
astrometric method has led to the discovery of only three Jovian planets, and obtaining
high-accuracy astrometry remains a topic of significant research interest in the field,[2]
primarily with a view to future research and detection of smaller, Earth-like planets.

A number of optical instrument concepts have been developed to address this goal.
Among them, RAFTER (Ring Astrometric Field Telescope for Exoplanets and Relativity)
is an annular field telescope proposed with the aim of achieving accurate astrometric
performance over a wide field of view, preserving circular symmetry at the level of
each optical element down to the focal plane, and thus obtaining a consistent optical
response[11, 10]. The idea behind the observations is to measure the arc of the circle, and
thus the angular distance, between the target star and a suitable reference star in the
field of view[10]. The conceptual design of RAFTER is based on a compact 1 m diameter
telescope, which is suitable for medium-class space observatories, but can be easily scaled
and miniaturized to be implemented on a CubeSat[11].

The purpose of this thesis is to examine and evaluate the pointing manoeuvres that a
spacecraft carrying the RAFTER optical instrument shall execute in order to successfully
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accomplish an astrometric mission for exoplanet detection.
The successive five Chapters are organized as follows:

• Chapter 2 provides an insight into the scientific case study and introduces the
features of the RAFTER optical instrument concept;

• Chapter 3 offers the theoretical fundamentals of satellite attitude dynamics and
optimal control theory;

• Chapter 4 firstly presents the potential configurations selected for the satellite
and an overview of the mission it shall undertake, with a particular focus on the
field-of-view shift manoeuvres that will be simulated in this study, and subsequently
it details the mathematical model and optimal control problem implemented to
simulate the manoeuvres under consideration;

• in Chapter 5, the results obtained are provided and discussed;

• finally, in Chapter 6, the conclusions of the study are drawn.
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Chapter 2

Scientific context of the study

The objective of this Chapter is to present the scientific context within which this thesis
has been carried out. The initial section will provide a comprehensive overview of the
rationale behind the search for exoplanets and introduce the most commonly employed
methodologies in this regard. Thereafter, particular attention will be devoted to the
astrometric method, highlighting its defining characteristics, the principal challenges it
faces, and the current state-of-the-art implementations. Finally, a significant focus will be
given to the RAFTER optical instrument concept and its performances during scientific
operations.

2.1 Exoplanet detection: an overview

2.1.1 Definitions and background

An exoplanet is defined as a planet situated outside the Solar System, namely orbiting a
star other than the Sun.

Following the first discovery of a giant Jovian planet around a main sequence Sun-like
star in 1995, the search for exoplanets has turned out to be an interdisciplinary and
trendsetting challenge, which, in addition to being a crucial means of paving new paths
in the study of planetary systems, has consistently been intertwined with the need to
address the age-old question of whether life exists beyond Earth. Such an ambitious and
unprecedented pursuit has served as a compass for significant progress in this field.[20]

The continuous expansion of our understanding is propelled by the synergistic use of
space-borne and ground-based technologies - such as adaptive optics and high precision
spectrographs - to reveal the diverse array of planetary system structures present in our
Galaxy[20, 2]. A number of space missions have been developed in recent years with
the primary objective of detecting extrasolar planets, such as Kepler, CoRoT and TESS,
which have emerged as fundamental for the advancement of research in the field.

By the end of 2023, the presence of more than 5500 planets had been established[2].

2.1.2 Planetary systems and types of exoplanets

On average, there is typically one planet per star[21], with around 20% of Sun-like stars
harboring an "Earth-sized" planet within the habitable zone[22]. The majority of known
exoplanets revolve around Sun-like stars, such as main-sequence stars falling under spectral
classes F, G, or K[23] (see Figure 2.1 for reference).

A multitude of criteria have been employed to categorize the large number of exoplanet
types, including those based on mass, size, and chemical composition. Table 2.1 provides
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Figure 2.1: Morgan-Keenan spectral classification.[1]

an overview of these classifications, while Figure 2.2 illustrates a proposed division of
exoplanets on the basis of the mass of the planets in the Solar System.[2]

Factor Planet type Parameter

Size
Earth size 1.25R - 2R

Super Earth size 2R - 6R
Jupiter size 6R - 15R

Mass

Earth 0.1M - 2M
Sub Earth 10−8M - 0.1M

Super Earth 2M - 10M
Neptunes 10M - 100M
Jupiters 100M - 103M

Super Jupiters 103M - 13MJ

Brown Dwarfs 13MJ - 0.07MS

Stellar Companions 0.07MS - 1MS

Composition (stellar flux)

Hot super Earths 187 - 1.12
Warm Super Earths 1.12 - 0.30
Cold super Earth 0.30 - 0.0030

Hot Rocky 182 - 1.0
Warm Rocky 1.0 - 0.28
Cold Rocky 0.28 - 0.0035

Hot Sub Neptunes 188 - 1.15
Warm Sub Neptunes 1.15 - 0.32
Cold Sub Neptunes 0.32 - 0.0.0030
Hot Sub Jovians 220 - 1.65

Warm Sub Jovians 1.65 - 0.45
Cold Sub Jovians 0.45 - 0.0030

Hot Jovians 220 - 1.65
Warm Jovians 1.65 - 0.40
Cold Jovians 0.40 - 0.0025

Table 2.1: Classification of exoplanets based on mass, size and chemical compositions of
known gases such as ZnS, H2O, CO2 and CH4.[2] R represents the radius of the Earth,
M the mass of the Earth, MJ the mass of Jupiter and MS the mass of the Sun.
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Figure 2.2: Planet masses categorized based on solar system objects[2].

2.1.3 Exoplanet detection purposes

As previously stated in this section, the study and discovery of planets outside our Solar
System has not only illuminated new insights into the formation and evolution of planetary
systems - often an observed exoplanet system could be at a very different stage than the
Solar System, constituting ’time snapshots’ of the various life stages of a planetary system
- but also provided new and hitherto unimaginable means to understand and potentially
detect traces of life in the remote corners of our Galaxy.

More in detail, planets are believed to come into existence relatively quickly after the
formation of their parent star, typically within a span ranging from a few million to tens
of millions of years.[24, 25] While we can only directly observe the planets within our own
Solar System in their current state, studying diverse planetary systems of various ages
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enables us to witness planets at different developmental phases. This includes observations
of young proto-planetary disks where planets are still in the process of formation[26, 27],
as well as mature planetary systems that have been in existence for over 10 billion years.

Concurrently, the other main objective of exoplanetary science is to detect traces of
extraterrestrial life by unambiguously identifying biogenic gases and molecules in the
air of a Earth-like orbiting a solar-type star.[20] More clearly, it should be emphasised
that, at vast cosmic distances, the presence of life can only be identified if it has evolved
on a planetary scale and significantly altered the planetary environment in a manner
that cannot be attributed to conventional physico-chemical processes (non-equilibrium
processes)[28]. For instance, the occurrence of molecular oxygen (O2) in the Earth
atmosphere is a consequence of photosynthesis carried out by living organisms such as
plants and various types of microorganisms, making it a potential indicator of life on
exoplanets, despite the possibility of non-biological sources producing small quantities of
oxygen as well.[29]

Moreover, a planet that could potentially support life must revolve around a stable
star at a distance that allows planetary-mass objects to maintain sufficient atmospheric
pressure for the presence of liquid water on their surfaces.[30]

Habitable zone

The circumstellar habitable zone is the area surrounding a star where conditions are
suitable for the presence of liquid water on the surface of a planet. This region is
characterized by being located at an optimal distance from the star, preventing water
from either evaporating due to proximity or freezing due to distance. The level of heat
emitted by stars can vary based on factors such as size and age, resulting in different
habitable zone distances for each star. Furthermore, the composition of the atmosphere
of a planet plays a significant role in regulating heat retention, thus influencing the
specific location of the habitable zone. For instance, desert planets, which are low in
water content, exhibit reduced greenhouse effects compared to Earth, allowing for the
possibility of water oases closer to their respective stars.[31] Conversely, rocky planets
with dense hydrogen atmospheres can support surface water at distances exceeding that
of Earth’s orbit around the Sun.[32] Additionally, planets with greater mass possess wider
habitable zones due to the impact of gravity on reducing the greenhouse effect of the
water vapor, consequently shifting the inner boundary of the habitable zone closer to the
star.[30] Figure 2.3 displays the habitable zones of different types of stars.[2]

2.1.4 Exoplanet detection methods

Numerous techniques for the detection of exoplanets have been developed and have made
significant advances in the search for and study of extrasolar planets. This paragraph will
examine the transit method, the radial velocity (or Doppler spectroscopy) method, the
gravitational microlensing and the direct imaging. The following Section (2.2) will
focus on the astrometric method, which forms the basis of the scientific observations
of RAFTER.

Transit photometry

It is one of the most prolific methods of detecting exoplanets. It is based on the decrease
in the brightness of a star that is observed when a planet transits in front of its disk,
whose magnitude depends on the size of the star and the planet itself.[33, 34, 2] Figure
2.4 presents a graphical illustration of the periodic dips in brightness observed on the star
TRAPPIST-1, corresponding to the transit of the planets in its planetary system.[35]
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Figure 2.3: Habitable zones (in green) surrounding different types of stars. The red area
is too hot, while the blue area is too cool to accommodate water in its liquid state.

Figure 2.4: Dips in brightness observed in the star TRAPPIST-1 as its orbiting planets
transit its disk. Larger planets create deeper dips and further planets create longer dips.

For a transit detection to be effective, the orbital plane of the investigated planet must
be aligned with the observer’s line of sight. This is the method employed by the Kepler
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mission, which by 2024 has detected about 2778[2] exoplanets through this method alone.
The probability of the visibility of a transiting planet varies with the radius of the

star and the planet and its orbital separation, a: [36]

Probtransit =
(Rstar +Rplanet)

a
. (2.1)

Numerous ground-based transit surveys are currently engaged in the search for giant
planets with short orbital periods. Achieving higher levels of photometric precision to
detect smaller planets is challenging with ground-based methods due to atmospheric
limitations. On the contrary, space-based observatories have the potential to detect even
the subtle photometric transits of Earth-like planets orbiting solar-type stars at a distance
of 1 astronomical unit. [36]

In some cases, this method is adopted in combination with the radial velocity method,
thereby facilitating the acquisition of more precise measurements.

Figure 2.5: Artistic representation of the planetary system of the red dwarf TRAPPIST-1,
discovered through the transit method, and comparison with the inner planets of the
Solar System. The TRAPPIST-1 system is one of the main candidates for hosting life, as
its planets e, f and g are potentially located within the habitable zone.[3]

Radial velocity or Doppler spectroscopy

This method makes use of variations in the radial velocity of the star with respect to the
observer, detected by displacements in the star’s spectral lines caused by the Doppler
effect, induced by the revolution motion of both star and planet around their common
centre of mass.[37] The spectral lines of a star exhibit a shift towards the blue end of the
spectrum when moving closer to the observer, known as blueshift, and towards the red
end when moving away, known as redshift[2] (see Figure 2.6 for reference).

This is the methodology which enabled the discovery of the first confirmed exoplanet,
51 Pegasi b, in 1995. As of 2024, about 1075 exoplanets have been detected by employing
the radial velocity technique[2]. Since it is based on the gravitational interaction between
two celestial bodies orbiting a shared centre of mass, the radial velocity method has also
enabled the discovery of numerous binary stars.[36]

17



Figure 2.6: Blueshift and redshift caused by the "wobble" in the star motion caused by
the gravitational pull of the planet.[4]

The latest technological developments have enabled the detection of radial velocity
variations as small as 1 m/s.[38]

Gravitational microlensing

The gravitational field of a star acts as a sort of magnifying lens, intensifying the light of
a distant background star (the "source"). When this magnification shows time-varying
distortions or anomalies, this could imply the presence of a planet orbiting the studied
star. The gravitational microlensing method is particularly sensitive to planets situated
at a distance of about 1-10 AU from Sun-like stars.[39]

The magnification factor is influenced by the specific geometric conditions, with the
highest level reached when the lens is positioned at the closest possible distance from the
source. Depending on the properties of the radiation source and the lens, amplification
occurs over various time spans, ranging from hours to years. A more intricate light curve
may be observed from the distant source if the foreground lensing object is gravitationally
complex, such as a star system with planets or a cluster of galaxies. This intricacy arises
due to the time-varying magnification resulting from the evolving alignment geometry[2].

Direct imaging

Planets exhibit significantly low luminosity in comparison to their respective host stars. A
Sun-like star emits light that is roughly a billion times more intense than the reflected light

18



Figure 2.7: Images of a lensed source star. The location of the source is denoted by small
circles, while the filled ovoids represent the lensed images corresponding to each source
position. The Einstein ring is illustrated by the large black circle. The lens star is situated
at the center, identified by the plus symbol. The Einstein ring is the area within which
the source is lensed, if it is nearly aligned with the lens along the line of sight. Its angular
size depends on the mass of the lens star and on the trigonometric parallax between the
source and the lens.[5]

emanating from any exoplanet in its orbit. The task of detecting such feeble luminosity
is challenging due to the overwhelming glare caused by the parent star. Therefore, it
becomes crucial to obstruct the light originating from the star to diminish the glare, while
allowing the planet’s light to be discernible; achieving this goal presents a substantial
technological hurdle that necessitates exceptional optothermal stability[40]. All exoplanets
that have been directly observed are characterized by their substantial size (exceeding
the mass of Jupiter) and considerable distance from their host stars.

Figure 2.8: Direct image of planet Beta Pictoris b.[6]
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2.2 Astrometry for exoplanet detection: state of the art and
challenges

2.2.1 Fundamentals and main challenges of the technique

Astrometry is the discipline that deals with providing the most precise measurements
possible of a star’s position in order to accurately resolve its proper motion, its parallax
displacement and its orbital motion resulting from gravitational interaction with other
bodies in its system[5] (Figure 2.9). In the field of exoplanetary science, it is exploited
to study the perturbations in the motion of the star under observation resulting from
the gravitational influence of a potential planet orbiting with it: if a ’unseen companion’
revolves together with its parent star around a common centre of mass, the latter’s
apparent motion - derived from the combination of its proper motion and heliocentric
parallax displacement - will appear to be irregular (Figure 2.10).

Figure 2.9: Combination of the proper angular motion of a star around the center of the
Milky Way and the periodic parallax displacement observed as Earth orbits the Sun. The
resulting apparent motion is shown as observed over a three-year timespan.[7]

The variation in the motion of the observed star is all the more appreciable the
larger the orbit of its planet, and thus the longer its orbital period, increasing also the
amplitude of the centre of mass displacement. For this reason, the orbital periods of
planets observable through astrometry typically span several years.[5]

It is evident that although this method has clear advantages, such as the potential for
providing an accurate estimate of the mass of the investigated planet and the possibility of
carrying out this type of observation even for systems with orbital planes perpendicular to
the observer’s line of sight, it is also challenging to implement. This is because detecting
the displacement of the star’s centre of mass due to the gravitational influence of a planet
requires an accuracy of an order ranging, depending on the size of the planet itself, from
less than a milli-arcsecond (mas) for Jovian planets to less than a micro-arcsecond (µas)
for Earth-like planets.
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Figure 2.10: Perturbed observed trajectory of a star due to its revolution with the planet
around their shared center of mass.[7]

Furthermore, the necessity to maintain highly precise measurements over extended
periods calls for technologies that have historically proven challenging to develop. Never-
theless, this method has significant potential for not only the detection of exoplanets but
also for confirming the presence of these planets, also providing better mass and orbital
parameter estimates, when used in conjunction with other techniques.[5]

The precision σ of astrometric measurements is primarily constrained by the capacity
to determine the position of the image of a point-like source on a detector. In the diffraction
limit, this precision is linked to the wavelength λ, aperture size D, and signal-to-noise
ratio S/N, which is commonly restricted by, at least, photon noise (S/N ∼

√
Np):

σ ∝ 1

S/N

λ

D
. (2.2)

Consequently, the attainable astrometric accuracy increases with the telescope aperture
size. For ground-based observations, the primary source of error is the turbulence in the
Earth’s atmosphere above the telescope. This can be addressed by converting seeing-
limited into nearly-diffraction-limited observations through adaptive optics, and by off-axis
fringe tracking in dual-field interferometry. Instruments in space circumvent atmospheric
disturbances entirely, enabling access to mostly diffraction-limited observations, making
them well-suited for high-precision astrometry studies. [5]

In order to achieve a reliable solution and reduce the potential for correlations among
proper, parallactic, and orbital motion, it is necessary to have a minimum timespan of
one year and to ensure appropriate sampling of the orbital period.[5]
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2.2.2 Ground based, space-borne, local and global astrometry

A basic technique entails the repetitive imaging of a specific target star and the measure-
ment of its motion in relation to background reference sources. This methodology has been
adopted by numerous medium to large ground-based telescopes, enabling the achievement
of accuracies below 0.1 mas, which represents a level of performance necessary to effec-
tively detect massive exoplanets.[5] Nevertheless, the employment of specific technologies,
such as optical interferometers which enable to achieve a significant effective aperture
size through the integration of light from several telescopes, can result in an attainable
precision of 0.01 mas.[5] At the ESO Very Large Telescope (VLT) Interferometer, the
GRAVITY interferometric instrument, a 4-way beam combiner in K band with astrometric
capabilities, achieves at present an astrometric accuracy of the order of a few tens to a
few hundreds of micro-arcoseconds.[41] It is anticipated that further improvements in
precision will be made once ESO Extremely Large Telescope (ELT) becomes operational
(around 2028). The telescope will be equipped with a primary mirror with a diameter of
39 metres, which is almost five times the diameter of the primary mirror of the VLT’s
Unit Telescope (8.2 metres).[41, 42]

Figure 2.11: The four Unit Telescopes of ESO Very Large Telescope.[8]

It is evident that ground-based astrometry is inherently constrained to a local nature,
given the fixed positioning of the telescope. However, observing only a limited portion of
the celestial sphere typically by employing observatories with large apertures allows for
greater accuracy than a global astrometric survey. The only three planets detected through
the astrometric method have all been discovered through ground-based astrometry.[43]

On the other hand, space astrometry can also be global, enabling the comprehensive
mapping of the Galaxy’s stars and their positions through repeated scanning of the
entire celestial vault, in order to construct a global and absolute reference frame. Notable
examples of this approach include the Hipparcos mission and the more recent Gaia mission.
While the Hipparcos data lacked the requisite precision to discern the astrometric orbits
of known exoplanets, Gaia has been able to achieve a higher level of accuracy, with a
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precision of less than 0.1 mas.[5, 44]

Figure 2.12: Gaia’s all-sky view of the Milky Way Galaxy and neighbouring galaxies,
based on measurements of nearly 1.7 billion stars.[9]

The future frontier of space astrometry will be the application of novel technologies
to attain sub-micro-arcsecond accuracy, thus enabling the detection of Earth-like planets
and the execution of more precise local surveys.

A number of potential missions have been proposed for this objective: two prominent
examples are Theia, a mission designed to detect sub-micro arcsecond position variations
of the ∼50 nearest Solar-type stars, with the aim of determining orbits and true masses of
Earth twins in their habitable zones[20]; and TOLIMAN, a mission devoted to astrometric
observation of the Alpha Centauri system in order to detect the presence of rocky planets
orbiting the closest star system to our own.[45]

It is in this forward-looking and ambitious context that the RAFTER concept is
proposed[11].

2.3 The RAFTER concept

2.3.1 Definition and rationale

The RAFTER (Ring Astrometric Field Telescope for Exoplanets and Relativity) optical
instrument is designed with the aim of attaining high-quality imaging and particularly
accurate astrometric performance across a relatively large field of view. The latter
condition is achieved by ensuring that circular symmetry is maintained at every level of
the optical system, all the way to the focal plane.[10]

The rationale for an annular field telescope is to optimize the telescope’s performance
over an annular region located at a certain radius from the optical axis. This allows the
simultaneous observation of any pair of targets with a separation ranging from zero to its
angular diameter. However, the annular field may not be convenient for some applications,
such as performing a uniform scan of a large area.[11]
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2.3.2 Optical design

The design of RAFTER is based on a traditional Three Mirror Anastigmat (TMA), but
has been optimized to take full advantage of a complete ring within the corrected field.
The TMA telescope concept is a design that uses three mirrors with special shapes to
correct distortions and improve image quality over a large area.[11, 10] RAFTER uses a
combination of three curved mirrors and a flat folding mirror to correct distortions and
improve image quality.[11] The telescope configuration can be observed in Figure 2.13.
An interesting feature is that the secondary (M2) and tertiary (M3) mirrors are nested
within each other, as well as the pair constituted by the primary (M1) and the flat folding
mirror (FM). The input pupil and all mirrors are annular, utilizing only a ring-shaped
circular area. The flat FM serves a dual purpose of directing the optical path from M2
to M3 and from M3 to the focal plane (FP), which consists of a ring of CCD detectors
encircling the main tube of the telescope. This setup is characterized by its high level of
symmetry and compactness, measuring 1.7 m in length and 1.2 m in diameter.[10]

These characteristics contribute to the design’s scalability, enabling a potential imple-
mentation as a payload for spacecrafts with limited envelope, such as CubeSats.[11]

Figure 2.13: The configuration of the RAFTER telescope involves positioning the focal
plane (FP) on a circular structure that encircles the input beam.[10]

2.3.3 Details of the observations

The RAFTER optical instrument features a field of view and associated detection system
arranged in a circular strip centered on the optical axis projection. The optical system
maintains circular symmetry, ensuring the instrument’s response symmetry. The annular
field of RAFTER (with radius θ and width δθ) enables simultaneous observation of source
pairs. Figure 2.15, where θ = 1° and δθ = 0◦.1, illustrate this concept: the target star
T is positioned at the center, with four reference stars (R1, R2, R3, and R4) placed at
extreme positions on both axes. By setting the optical axis of the telescope at suitable
points on the dotted circle, the target and any object within the shaded area (dashed
circle) can be observed simultaneously, effectively pivoting the field of view around the
target.[10]
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Figure 2.14: Telescope 3D view.[11]

Figure 2.15: Field (2° radius, shaded) accessible to the target star T (center) by pointing
the telescope along the dotted circle (1° radius): reference stars R1, R2, R3 and R4 are
shown at ±2° on either coordinate.[10]

This approach allows flexibility in selecting the desired field of view around a specific
target, based on performance optimization criteria. For instance, a region around the
science target may be chosen, including the brightest accessible reference star; other
criteria such as maximizing the number of field stars can also be considered. This
framework proves to be effective for implementing precise narrow angle astrometry by
utilizing available references (such as the Gaia catalog) and potentially enhancing it with
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additional observations to refine individual source parameters.[10]
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Chapter 3

Theoretical background

The goal of this Chapter is to briefly outline the theoretical concepts that are essential for
comprehending the study carried out in this thesis, which will be detailed in subsequent
Chapters. The first section will set out the fundamental principles of the kinematics and
attitude dynamics of a rigid body, to which the spacecraft under examination will be
approximated, which will be exploited to model the manoeuvres simulated in the present
work. In the second part of the Chapter, an overview of some aspects of optimal control
theory and trajectory optimization will be provided, focusing in particular on the direct
methods used in this work.

3.1 Fundamentals of spacecraft attitude kinematics and dy-
namics

In order to describe the attitude of a rigid body and to determine its evolution as a
function of its initial angular velocity and applied torques, it is necessary to detail the
concepts of Euler angles and quaternions and introducing Euler’s equations of motion.[46]

3.1.1 Euler angles

Definition and rotations

Euler angles are a set of three independent quantities that are used to describe the
orientation of a rigid body in a three-dimensional space or, alternatively, to define
the orientation of one reference frame with respect to another. The application of
these angles enables the conversion of vector components from an initial reference frame
F1 = (X1, Y1, Z1) with unit vectors (̂i, ĵ, k̂) into a second reference frame F2 = (X2, Y2, Z2)
with init vectors (l̂, m̂, n̂).[47]

Each Euler angle represents the quantity by which the initial system is rotated around
a specific axis. Typically three rotations are required for the initial system to align
with the target system. It should be noted that the order of these rotations is not
commutative.[46] Indeed, there are multiple orders of rotation that can be employed to
align two reference systems.

One of the most frequently exploited transformation sequences that most clearly
exemplifies the operation of Euler angles is the 3-2-1 (or Bryan angles), which involves
a first rotation of a ψ angle around the Z axis of the starting reference frame, a second
rotation of a θ angle around the Y axis of the reference frame obtained from the previous
rotation, and finally a final rotation of a ϕ angle around the X axis of the reference frame
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derived so far, to finally reach the orientation of the target reference frame.[47, 46] The
aforementioned transformation is illustrated in graphical form in Figure 3.1.

Figure 3.1: 3-2-1 or Bryan angles transformation. In this image, the angles ψ, θ, ϕ are
designated as γ, β, and α, respectively.[12]

Each rotation represents a transformation from one reference frame to another, which
can be expressed in matrix form. With regard to the 3-2-1 transformation, the following
applies[47]:

Ψ =

cosψ −sinψ 0
sinψ cosψ 0
0 0 1

 (3.1)

Θ =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 (3.2)

Φ =

1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ

 (3.3)

The transformation matrices Ψ, Θ and Φ are orthogonal, and thus their inverse is equal
to their transpose. The final transformation matrix from the initial reference frame to the
desired one will then be given by the product of the three transformation matrices[47]:

[L] = [Ψ][Θ][Φ]. (3.4)

One of the most common employed transformations in the field of aerospace engineering
is the 3-1-3 (or proper Euler angles) transformation[47].

Angular velocity and singularity

Considering the reference frame F2 with unit vectors (l̂, m̂, n̂) mentioned at the beginning
of this section as the initial reference frame, F1 with unit vectors (̂i, ĵ, k̂) as the target
reference frame and a 3-2-1 rotation sequence, it is possible to explicate the the angular
velocity of the initial reference frame, expressed in the coordinates of the target reference
frame, as follows[47]:

ωr = ψ̇n̂+ θ̇m̂′ + ϕ̇î = ψ̇1k̂ + θ̇1ĵ + ϕ̇î, (3.5)

with
ψ̇1 = Ψ−1Θ−1ψ̇2′ (3.6)
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and
θ̇1 = Ψ−1θ̇2′′ . (3.7)

Where subscripts 2′ and 2′′ refer to the two intermediate reference frames F2′ and F2′′

obtained through the first ψ rotation and the second θ rotation respectively. Rewriting
the angular velocity by making its components explicit in matrix form yields[47]:

ωr =

ωx1

ωy1

ωz1

 =

1 0 −sinθ
0 cosϕ sinϕcosθ
0 −sinϕ cosϕcosθ

ϕ̇θ̇
ψ̇

 . (3.8)

Inverting Expression 3.8 results in the equations of kinematics with Euler angles,
i.e. their variations over time, for a 3-2-1 rotation sequence. In matrix form, these
equations are expressed as follows[47]:ϕ̇θ̇

ψ̇

 =
1

cosθ

cosθ sinϕsinθ cosθsinθ
0 cosϕcosθ −sinϕcosθ
0 sinϕ cosϕ

ωx1

ωy1

ωz1

 (3.9)

. From this expression, the principal issue in using Euler angles becomes clear: the
presence of the cosine of θ in the denominator leads to a singularity if the value of θ
is π

2 or 3
2π, making it impossible to uniquely distinguish all angles.[47] Because of this

limitation, certain configurations of Euler angles can result in multiple representations of
the same orientation, causing ambiguity in describing the exact position of an object in
space.[46]

In the case of a 3-1-3 rotation sequence the kinematics equations with Euler angles
in matrix form become[47]:ϕ̇θ̇

ψ̇

 =
1

sinθ

 sinψ cosψ 0
sinθcosψ −sinθsinψ 0
−cosθsinψ −cosθcosψ sinθ

ωx1

ωy1

ωz1

 . (3.10)

The singularity in this case is found for θ = 0, π due to the presence of the sine of θ in
the denominator[47].

The singularity is identified for any rotation with Euler angles, occurring at π
2 and 3

2π
for asymmetrical rotation sequences and at 0 and π for symmetrical rotation sequences.[47]
The presence of this singularity represents the primary disadvantage of Euler angles. While
they are simple to represent in three-dimensional space and intuitive to interpret, they
are challenging to compute and can often result in ambiguity when describing a specific
orientation.[46]

3.1.2 Quaternions

Quaternions, also known as Euler parameters, are a mathematical extension of complex
numbers used to represent orientations and rotations in three-dimensional space.[46]
They are often employed for this purpose in place of Euler angles, as they essentially
allow computationally complex trigonometric expressions to be transformed into simpler
to implement algebraic expressions, while also making it possible to circumvent the
disadvantageous singularity inherent in Euler angles. This discussion will not dwell on
the mathematical intricacies of quaternions; instead, it will provide a concise illustration
of the concept and emphasise the practical implications of its utilization.

To introduce these quantities, it is first essential to state Euler’s eigenaxis rotation
theorem, which asserts the feasibility of rotating a fixed frame F1 to align with any
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arbitrary frame F2 by executing a straightforward rotation about an axis a that remains
fixed in both frames. This axis, known as Euler’s rotation axis or eigenaxis, exhibits
identical direction cosines within the two frames under consideration.[46]

The Euler axis is defined in such a way that[47]:√
a21 + a22 + a23 = 1. (3.11)

Its components are identical in both reference frames[47]:

â = ax1 î+ ay1 ĵ + az1 ẑ = ax2 l̂ + ay2m̂+ az2 n̂. (3.12)

A quaternion is defined uniquely in terms of the Euler axis a and the angle of rotation α
around said axis. A rotation of the vector v⃗ by an α angle about the Euler axis, from
frame F1 to F2, results in[47]:

⃗vrot = ⃗v//rot + ⃗v⊥rot = v⃗// + ⃗v⊥rot. (3.13)

The parallel component of v⃗ is conserved both before and after rotation in accordance
with the principles set forth by Euler’s eigenaxis rotation theorem. The perpendicular
component will instead be[47]

⃗v⊥rot = v⃗⊥cosα+ (⃗a× v⃗⊥)sinα. (3.14)

The quaternion vector is constituted of four quantities, one scalar and three vectors,
defined as follows given the Euler axis a and the angle of rotation α[46, 47]:

q0 = cos(α2 ) (scalar)
q1 = a1sin(

α
2 ) (vector)

q2 = a2sin(
α
2 ) (vector)

q3 = a3sin(
α
2 ) (vector)

The attitude of a rigid body, such as the spacecraft here under study, can be expressed
in quaternion form as q = [q0, q1, q2, q3]

T .

Kinematics equations with quaternions

The following Equation represents the kinematics of a rigid body expressed with quaternions[46,
17] (the demonstration of its derivation is omitted):

q̇ =
1

2
Qω⃗ =

1

2
q⃗Ω; (3.15)

where

Q =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


and

Ω =


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 ;

Explaining the scalar and vector part of the quaternion gives[46]:

q̇0 = −1

2
ω⃗q⃗v; (3.16)

q̇v =
1

2
(q0ω⃗ − ω⃗ × q⃗v). (3.17)
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3.1.3 Euler’s equation of motion

Euler’s equation of motion is an important expression in rigid body dynamics that states
the relationship between the time derivative of angular momentum and the total external
torque applied to a body. It is employed to describe the rotational dynamics of a rigid
body when subjected to the application of external moments.[46]

It is formulated from the second fundamental law of rigid body dynamics, which
states that the time derivative of the angular momentum of a rigid body is equivalent to
the overall external torque exerted on body B.[46] In vector form:

dh⃗

dt
= M⃗ ; (3.18)

Expressing the vector quantities in body coordinates results in:

ḣB + ω⃗B × h⃗B = M⃗B; (3.19)

The expression above, if the inertia tensor (a symmetric matrix which captures the
moments of inertia of a body with respect to different axes, providing information about
how mass is distributed and how the body resists rotational motion[46]) is constant, can
be rewritten as:

Iω̇B + ω⃗B × Iω⃗B = M⃗B, (3.20)

bearing in mind that h⃗B = Iω⃗ if the origin of the rotating body reference frame is in the
centre of mass of the rigid body, which rotates solely around said point.

When the body axes are also principal inertia axes, the inertia tensor becomes diagonal
and the Euler’s equation of motion for a rigid body are thus derived:[46]

Iω̇x + ωyωz(Iz − Iy) =Mx

Iω̇y + ωxωz(Ix − Iz) =My

Iω̇z + ωyωx(Iy − Ix) =Mz

(3.21)

The equations above can be integrated as a function of the applied torque, yielding
the variation with time of the angular velocity components, which, in turn, can be used
to assess the temporal evolution of the Euler’s angles (or quanternions), thus defining
how the rigid body attitude changes over time.[46]

3.2 Notions of optimal control theory

The majority of the following discussion is derived from Kelly’s paper "An introduction to
trajectory optimization: how to do your own direct collocation"[13] (2017), which has been
employed extensively as an exemplar to advance the work on which this thesis is based.

3.2.1 The trajectory optimization problem

For the sake of clarity, a trajectory can be defined as the path a system follows to transition
from one state to another. The typical trajectory planning process involves determining
the state variables (such as position and velocity) and control inputs (such as thrust) as
they vary over time. Trajectory optimization is the collective term for a range of methods
employed to identify the optimal trajectory by defining the the inputs to the system,
namely the controls as functions of time.[13]

To illustrate the concept as clearly as possible, a simple example is given: how to
move a block between two points, starting and finishing at rest, in a fixed amount of time.
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The first step is to explicate the dynamics of the system, which describe its motion. In
this case, the block is modelled as a point-mass that travels in one dimension, and the
control input to the system consists of the force applied to the block. Using x to refer to
position, v for velocity and u for control, i.e. the input force, the dynamics of the system
can be written as[13]:

ẋ = v; (3.22)

v̇ = u. (3.23)

The objective is to move the block one unit of distance in one unit of time, ensuring
that the system is stationary at both the beginning and end of the process. These
constraints, displayed in Figure 3.2, are known as boundary constraints or boundary
conditions[13]:

x(0) = 0; (3.24)

x(1) = 1; (3.25)

v(0) = 0; (3.26)

v(1) = 0. (3.27)

Figure 3.2: Boundary conditions for the block-move problem.

A solution to a trajectory optimization problem is feasible if it adheres to all constraints
associated with the problem. In the example at hand, the only types of constraints present
are those dictated by the dynamics of the system and the boundary constraints. However,
in a general problem, there are commonly other types of constraints[13].

Figure 3.3: Feasible (left) vs optimal (right) trajectories.

Admissible controls refer to the collection of controls that generate feasible trajectories.
Trajectory optimization focuses on determining the optimal trajectory among the feasible
options, illustrated in Figure 3.3 and defined as the trajectory that best meets the objective
function’s criteria for optimality.[13] Two common objective functions, which will be
employed in the solution of the problem presented in this thesis (see Chapter 4), are the
minimum integral of the square of the control and the minimum integral of the absolute
value of the control:

min : J =

∫ tf

t0

u2(t) dt (3.28)

min : J =

∫ tf

t0

|u(t)| dt (3.29)

There exist numerous methodologies for formulating trajectory optimization prob-
lems. This study will concentrate primarily on single-phase continuous-time trajectory

32



optimization problems, where the system dynamics remain continuous along the entire
trajectory. Typically, an objective function consists of two term: a boundary objective
denoted as J(·) and a path integral spanning the entire trajectory, with the integrand
represented by w(·). A problem incorporating both components is referred to as being in
Bolza form. Conversely, a problem featuring solely the integral term is classified as being
in Lagrange form, while a problem with only a boundary term is categorized as being in
Mayer form.[13] The examples presented in this work are all expressed in Lagrange form.
In the Equation below, the first term is called the Meyer term, while the second is the
Lagrange term.[13]

min : J(t0, tf , x(t0), x(tf )) + w(τ, x(τ), u(τ) dτ (3.30)

Within the realm of optimization, the term decision variable is adopted to designate
the variables that the optimization solver adjusts to minimize the objective function. Said
decision variables are typically the initial and final time (t0, tf ), in addition to the state
and control trajectories, x(t) and u(t), respectively. The optimization process is governed
by a range of constraints and requirements. Foremost among these constraints is the
system dynamics, typically nonlinear in nature, which describes the temporal evolution
of the system.[13]

ẋ(t) = f(t, x(t), u(t)) (3.31)

The path constraint imposes restrictions along the trajectory.[13] For example, to
use an illustration akin to the work of this thesis, a path constraint could be implemented
to prevent the spacecraft’s optical axis from pointing in the direction of the Sun during
attitude manoeuvres.

h(t, x(t), u(t)) ≤ 0 (3.32)

The non-linear boundary constraint enforces restrictions on the initial and final
states of the system.[13] In the present study, a boundary constraint could be employed
to impose the initial attitude at which the spacecraft begins its manoeuvre and the final
attitude it is required to have reached at the end of the manoeuvre.

g(t0, tf , x(t0), x(tf )) ≤ 0 (3.33)

Frequently, constant path bounds are imposed on the state or control variables.[13]
For instance, one could impose a maximum allowable value of control torque that can be
exertend on the spacecraft, or a maximum attainable angular velocity.

xlow ≤ x(t) ≤ xupp (3.34)

ulow ≤ u(t) ≤ uupp (3.35)

Lastly, it is often crucial to specify particular limits on the initial and final time and
state. These limitations might be necessary to ensure that a solution to a path planning
problem reaches the goal within a specified time frame or attains a specific target region
within the state space.[13]

tlow ≤ t0 < tf ≤ tupp (3.36)

x0,low ≤ x(t0) ≤ u0,upp (3.37)

xf,low ≤ x(tf ) ≤ xf,upp (3.38)
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3.2.2 Direct methods

Most methods utilized in solving trajectory optimization problems can be categorized as
either direct or indirect. A defining characteristic of direct approaches is the process of
discretizing the trajectory optimization problem itself, often transforming the original
problem into a nonlinear program. This transformation is referred to as transcription.
Direct transcription methods generally achieve discretization of a continuous trajectory
optimization problem through the approximation of all continuous functions within the
problem statement as polynomial splines. A spline is essentially a function composed of a
series of polynomial segments. The rationale behind using polynomials lies in their two
crucial properties: they can be described by a limited (finite) number of coefficients, and
their integrals and derivatives can be easily computed based on these coefficients.[13]

A nonlinear program refers to a specific type of constrained parameter optimization
problem with nonlinear terms present in either its objective function or constraint function.
A common formulation for a nonlinear program is outlined below[13]:

min : J(z)

subject to

f(z) = 0,

g(z) ≤ 0,

zlow ≤ z ≤ zupp

In certain instances, the utilization of a direct collocation method may result in the
development of a linear or quadratic program rather than a non-linear program. This
situation emerges when the constraints, which encompass system dynamics, manifest
linearity, and the objective function is of a linear (resulting in a linear program) or
quadratic nature (resulting in a quadratic program).[13]

This thesis employs a number of direct optimization methods. The most commonly
utilized methods in this study are trapezoidal collocation and Hermite-Simpson collocation;
however, there exist other available techniques, such as orthogonal collocation and
multiple shooting methods[13, 48].

Trapezoidal direct collocation

Trapezoidal direct collocation operates under the assumption that an optimal trajectory
could be approximated through a low-order spline. In this scenario, the dynamics,
objective function, and control trajectories are represented by a linear spline, while the
state trajectory is depicted by a quadratic spline, which is derived from the integration of
the linear dynamics spline.[48] To compute the integration of a linear spline, the trapezoid
rule is employed:[13]∫ tF

t0

w(τ,x(τ),u(τ))dτ ≈
N−1∑
k=0

1

2
hk · (wk + wk+1) . (3.39)

Hermite-Simpson direct collocation

The Hermite-Simpson direct collocation method operates under the assumption that the
optimal trajectory can be approximated through a spline of medium-order. This approach
involves approximating the dynamics, objective function, and control trajectories with
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Figure 3.4: Function approximation using a linear spline.[13]

Figure 3.5: Linear and quadratic spline segments adopted to approximate the control and
state trajectories for trapezoidal collocation.[13]

a quadratic spline, while the state trajectory is modeled using a cubic Hermite spline
derived from the integration of the quadratic dynamics spline.[48] The integration of a
quadratic spline is accomplished through Simpson’s rule[13]:∫ tF

t0

w(τ)dτ ≈
N−1∑
k=0

hk
6

(
wk + 4wk+ 1

2
+ wk+1

)
(3.40)

Two variations of this method exist: separated and compressed. In the separated version,
the state at the midpoint of each trajectory segment is treated as a decision variable, and
the Hermite interpolation is enforced through a constraint. On the other hand, in the
compressed version, the state at the midpoint is determined based on the definition of
the Hermite interpolant during the optimization process.[13]

Figure 3.6: Function approximation using a quadratic spline. For the same number of
segments, this approximation is more accurate than linear spline.[13]
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Figure 3.7: Quadratic and cubic spline segments adopted to approximate the control and
state trajectories for Hermite–Simpson collocation.[13]

Other direct methods

Chebyshev-Lobatto orthogonal collocation is based on expressing the complete
trajectory through the utilization of a high-order Chebyshev orthogonal polynomial. The
approach employed in this context could also be referred to as pseudospectral or global
collocation, given that the entire trajectory is depicted using a singular segment as opposed
to multiple segments. Orthogonal collocation techniques are commonly categorized into
three groups: Gauss, Radau, and Lobatto. Within the Gauss method, neither endpoint
of a segment serves as a collocation point; in the Radau method, one endpoint of the
segment functions as a collocation point; and in the Lobatto method, both endpoints are
designated as collocation points.[13]

The process of a multiple shooting method involves dividing the trajectory into
segments and approximating each segment through an explicit simulation. Specifically, a
4th order Runge-Kutta method is on occasion utilized for the study carried out in
this thesis. To guarantee proper alignment between the end of each trajectory segment
and the next one, a defect constraint is implemented. The interpolation of the solution
trajectory, encompassing both control and state, is achieved through the approximation
of a cubic Hermite spline. [13]

3.2.3 Indirect methods

Indirect methods involve the analytical construction of the necessary and sufficient
optimality conditions, followed by their discretization and numerical solution. A key
distinction between direct and indirect methods is that direct methods discretize before
optimizing, while indirect methods optimize prior to discretizing. To illustrate the
workings of an indirect method, let’s consider a simple scalar optimization problem:
minimizing y = f(t). Fundamental calculus dictates that the minimum value y∗ = f(t∗)
is attained when the derivative is zero, y′(t∗) = 0. It is also essential to verify that
the curvature is positive, y′′(t∗) > 0, to ascertain a local minimum rather than a local
maximum (or saddle point). If both conditions are met, then y∗ = f(t∗) represents a
local minimum. Though following a similar principle, an indirect optimization is more
intricate in terms of constructing and solving the conditions. Conversely, a direct method
minimizes y(t) by generating a sequence of guesses where each subsequent guess improves
upon the previous one: y(t0) > y(t1) > ... > y(t∗).[13]

The primary advantage of an indirect method, in comparison to a direct method, lies
in its generally higher accuracy and more dependable error estimation, stemming from
the analytic formulations of the necessary and sufficient conditions developed during the
formulation of the indirect problem.[13]

Numerous challenges are associated with indirect methods when contrasted with direct
methods. Notably, the convergence region tends to be narrower for indirect methods
compared to direct methods, necessitating a more precise initialization for an indirect
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method. Additionally, the initialization process for an indirect method is complicated
by the requirement to initialize the adjoint variables, which are not utilized in a direct
method. Lastly, achieving an accurate solution with an indirect method typically demands
the analytical construction of the necessary and sufficient conditions, a task that can be
quite demanding.[13]
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Chapter 4

Mission requirements and
mathematical model

This Chapter first illustrates the physical properties of the hypothetical spacecraft bus
evaluated to host the RAFTER optical instrument and the mission specifications and
operations that it shall perform. In the second part, the mathematical model taking
into account the dynamic system comprising the spacecraft in its environment and the
manoeuvres studied is described in detail.

4.1 Overview of the RAFTER mission

4.1.1 Possible spacecraft bus configurations

In the present thesis, two possible configurations of the spacecraft intended to fulfil the
RAFTER mission are presented: the first is the one originally conceived for the future
use of the optical instrument, which consists of a 1 m diameter telescope on board a
medium-class spacecraft with an envelope similar to those of the Kepler and Euclid
observatories; the second involves a miniaturization of RAFTER and consequently of the
entire spacecraft, this time in the form of an 18U CubeSat. The table below lists the
inertial properties of each configuration.

x-axis [m] y-axis [m] z-axis [m] Mass [kg]
Nominal 1.5 (base diameter) 1.5 (base diameter) 2 1000
CubeSat 0.3 0.2 0.3 30

Table 4.1: Dimensions and mass of the spacecraft serving RAFTER for the nominal and
CubeSat cases.

The envelope of the solar arrays is negligible, as they are body mounted in both cases.
RAFTER has been envisaged as the only payload on board both spacecraft configurations.

4.1.2 Mission specifications

The main function of RAFTER is to point at specific portions of the celestial sphere and
perform observations with high stability, so that the angular distance between the studied
star and the reference star can be accurately measured. For this reason, it is therefore
more logical to imagine that the spacecraft carrying RAFTER on board would simply
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Figure 4.1: Optical drawing of the RAFTER instrument (top) and the two possible
spacecraft configurations to house it on board: a medium-class space observatory with a
comparable envelope to Euclid[14] or Kepler (bottom left) and a CubeSat[15] (bottom
right).

observe specific targets for extended periods of time, instead of scanning larger portions
of the celestial sphere by devoting less time to observations of each individual source[10].

The selected operational orbit is a halo or Lissajous orbit around the L2 Lagrange
point of the Sun-Earth binary system, a location widely exploited in recent times by other
space observatories such as Gaia, JWST and Euclid. The rationale for this choice lies in
the possibility of maintaining the brightest celestial bodies, such as the Earth and the
Sun, always facing the rear of the satellite, thus preventing them from entering the field
of view of the optical instrument. Furthermore, this configuration enhances the thermal
stability of the payload[10].

It is beyond the purpose of this thesis to provide a comprehensive account of the
entire mission to be accomplished by RAFTER. Instead, an outline of the five phases
into which it is imagined it is going to be divided is provided here:

• an initial launch phase;

• a subsequent transfer and insertion phase to the target orbit around the second
Sun-Earth Lagrange point, L2, with a duration of approximately 30 days;

• a commissioning phase, for both the instrument and the spacecraft bus, beginning
during the transfer phase and lasting about 3-6 months;

• the operational phase, the longest of the mission, which has been estimated to
last 3 or 5 years;

• the decommissioning phase at the end of the operational life of the spacecraft.

An example of the transfer phase to the operational orbit is shown in Figure 4.2. The
RAFTER satellite will perform its observations during the operational phase; they will be
conducted on specific celestial portions through a ’step-and-stare’ criterion similar to that
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Figure 4.2: Example of a possible trajectory to be followed by the RAFTER spacecraft
to reach its operational orbit around the L2 point of the Sun-Earth system and depiction
of a typical observation manoeuvre[16]. In the case study of this thesis, the x-axis of the
spacecraft-based reference frame has the opposite direction with respect to the picture.

of the Euclid mission. [16] In detail, each target will be observed for 20 minutes; then, a
manoeuvre with a 20-minute duration moves the field of view to the next observation
direction. The objective of this study is to model and simulate the aforementioned
manoeuvre within a constrained optimization problem, successively varying its conditions
in order to assess its cost in terms of the torque required to complete it.

4.2 Mathematical model

4.2.1 Details of the manoeuvre and reference frames

In the model, a spacecraft-based reference frame ("body"), centred in its centre of mass,
is employed: the z-body axis of the satellite is considered as its optical axis, its x-body
axis is the opposite direction vector to the one normal to the surface on which the solar
array is placed, and the y-body axis to complete the right-hand triad. Figures 4.2 and 4.3
present a portrayal of this reference frame with respect to the Sun direction vector. The
Sun-Earth synodic system, originating at the common centre of mass of the two bodies,
is here approximated to a quasi-inertial reference frame with respect to the position of
RAFTER. The point L2 around which RAFTER is expected to orbit therefore lies on
the ’quasi-inertial’ x-axis, which corresponds to the Sun-Earth-L2 conjunction.

Since a rotation around the z-body axis would result in RAFTER always observing
the same stars, but rotated across the field of view, the basic manoeuvre that will be
simulated is a 10-degree rotation in 20 minutes around the x-body axis or the y-body
axis. These manoeuvres will then be repeated, alternating the rotation axes, to perform
an entire scan. Additional simulations will vary the conditions in question, namely the
axis of rotation, the angle of rotation, the duration of the manoeuvre and the method of
solution to the optimization problem, which is presented in the next subsection.

4.2.2 Attitude constraints

Kinematics and dynamics constraints

In order to study and model its attitude dynamics and kinematics, in the present work the
spacecraft is approximated by a rigid body. Its attitude dynamics is therefore described
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by Euler’s equation[46], namely:

Iω̇ = u⃗− ω⃗ × Iω⃗ (4.1)

where I = diag(Ix, Iy, Iz) is the inertia tensor, a diagonal matrix featuring the moments
of inertia about the three principal axes of inertia of the spacecraft, u = [ux, uy, uz]

T is
the three-axis control torque and ω = [ωx, ωy, ωz]

T represents the three-axis angular
velocity[17].

In the context of the problem under consideration, it is assumed that the total
torque exerted on the spacecraft, given by the first member of the Euler’s equation, is a
consequence of the control torque imparted to the system as well as a disturbance torque
related to the environment in which it operates. Since RAFTER is orbiting Sun-Earth
L2, at a distance of about 1.5 · 106 km from the Earth and 151.1 · 106 km from the Sun,
the only external disturbance torque that could have a minimally relevant effect on the
spacecraft attitude is the one related to the solar radiation pressure. In the present
study, a simplified formulation is applied to estimate the order of magnitude and thus the
potential effects on attitude variation. This torque is expressed as follows[49]:

T⃗S = r⃗P × F⃗S (4.2)

with rP as the distance vector from the center of mass of the spacecraft to its optical
center of pressure, i.e. the lever arm of the solar radiation pressure force, FS , expressed
in body coordinate frame. Such a force is given as[49]:

FS = (1 +K)PS · S (4.3)

where PS = IS
c is the proper solar radiation pressure, defined by the ratio between the

solar radiation flux (approximately 1300 W/m2 at the considered distance from the
Sun) and the speed of light, S is the spacecraft surface perpendicular to the pressure
force, which has a direction along the Sun-Earth-L2 axis, and K is its reflectivity, here
set equal to 0.2. The solar pressure force is thus essentially constant at the distance
involved, varying only with the area that the spacecraft faces from time to time towards
the Sun.[49] The offset between the centre of mass and the optical centre of pressure of the
spacecraft, rP , is conservatively taken to be half the maximum length of said surface. The
additional torque generated by the solar radiation pressure force and said misalignment
results to have a component mainly around the y body axis of the satellite but, depending
on its orientation, also around the z or x body axes. The direction of action of the solar
pressure and its impact area, as well as a schematic of the body reference frame centred
in the centre of mass of the spacecraft, are depicted in Figure 4.3.

The contribution of the solar radiation pressure torque is thereby added to the Euler
equation of the system dynamics, which becomes

Iω̇ = u⃗− T⃗S − ω⃗ × Iω⃗. (4.4)

In order to circumvent singularities and to reduce the computational cost, the space-
craft’s attitude kinematics are analyzed utilizing quaternion q = [q0, q1, q2, q3]

T , with q0
being the scalar part of the quaternion and q⃗v = [q1, q2, q3]

T representing the vectorial
part.[46, 17] The kinematics equation can be expressed as follows:

q̇ =
1

2
Qω⃗ =

1

2
q⃗Ω; (4.5)

where

Q =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


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Figure 4.3: Direction of action of the solar pressure and impact area depending on the
orientation of the satellite. When it is perpendicular to the y-z body plane it generates a
torque around the y and z body axes, when it impacts on the x-y body plane the resulting
torque has components along x and y body axes.

and

Ω =


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 ;

Rewriting the kinematics equation by making the scalar part and the vector part of
the quaternion explicit yields[46]:

q̇0 = −1

2
ω⃗q⃗v (4.6)

and
q̇v =

1

2
(q0ω⃗ − ω⃗ × q⃗v). (4.7)

The attitude quaternion must comply with the normalization constraint ∥q⃗∥2 = 1[17].

Boundary constraints

Limitations on the maximum modulus of the control torque and angular velocity to be
achieved by the spacecraft are additionally incorporated in the model in the form of
boundary constraints[17], formulated as follows:

|ui| ≤ γT ; (4.8)

|ωi| ≤ ωT ; (4.9)

with
i = 1, 2, 3.

The limitation on control input is contingent upon the fact that, in a real-world
scenario, the applied torque is constrained to a finite value by the capacity of the
actuating system designated to deliver it. In a similar fashion, the sensors on board the
spacecraft detect the angular velocity within a specific range, limiting the maximum
permissible amplitude therein[17].
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Pointing constraints: forbidden and mandatory constraints

Forbidden constraints
One of the most critical pointing requirements is the prevention of the closest and brightest
celestial bodies, such as the Sun, Earth and Moon, from entering the field of view of
the optical instrument of RAFTER: this requirement results in a forbidden constraint.
This constraint and the following mandatory constraint are translated into the model
according to the approach employed by Wu and Han in their paper [17]. Referring to
the Figure 4.4, rB indicates the optical axis in a body reference frame, that is, in the
case being considered, the body z-axis of the spacecraft, while rI represents the direction
vector, expressed in the inertial reference frame, of the celestial objects whose light is
to be avoided by the system. In the problem at hand, this vector coincides with the
Sun-Earth-L2 conjunction, i.e. the ’quasi-inertial’ x-axis with the opposite sign. Although
RAFTER is not located exactly at L2 but orbits it, the dimensions of any halo or Lissajous
orbit would in any case be significantly smaller than the distance along the x-axis between
the spacecraft and the centre of mass of the Sun-Earth system, so it is reasonable to
approximate rI as essentially parallel to the above-mentioned conjunction.

Defining θ as the solid half-angle of the cone within which rB lies, it shall always be
less than the angle between rB and rI for the constraint to be satisfied. Mathematically,
this restriction can be stated as follows:

rTB(CBIrI) ≤ cosθ, (4.10)

with rB = [rB1 , rB2 , rB3 ]
T , rI = [r1, r2, r3]

T and CBI as the attitude cosine matrix of the
spacecraft. The term in brackets can be rewritten by using the quaternion representation:

CBIrI = rI − 2qTv qvrI + 2qvq
T
v rI + 2q0(rI × qv). (4.11)

The equation 4.10 can be rewritten using a quadratic formulation:

qTKfq ≤ 0 (4.12)

with

Kf =

[
rTI rB − cosθ (rB × rTI )

T

rB × rTI rIr
T
B + rBr

T
I − (rTI rB + cosθ)I

]
.

In the problem under study, θ is set equal to 90 degrees, which implies that the
optical axis of the spacecraft is always located within the hemisphere that is opposite the
direction of the Sun-Earth-L2 conjunction.
Mandatory constraints
A further requirement, which is equally pertinent, is the one defined by the mandatory
constraint. In the context of this study, this is the imposition that the solar array of the
spacecraft must face the Sun during the mission, and specifically during the observation
manoeuvres. Going back to the Figure 4.4, vB is defined as the normal direction vector
to the surface on which the solar array is placed, given in a body reference frame. In the
problem under discussion, it coincides with the negative x-axis in the body coordinate
system, i.e. it is assumed that the solar array is placed on the back of the spacecraft. In
a comparable and opposite manner to the case of forbidden constraint, here it is imposed
that the angle between rI and vB shall always be less than a certain quantity, called λ,
which represents the half-amplitude of the solid angle in which vB must always lie, i.e.:

vTB(CBIrI) ≥ cosλ. (4.13)

Rearranging and applying the quadratic formulation, the following is obtained:

qTKmq ≥ 0, (4.14)
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Figure 4.4: Pointing constraints.[17]

where

Km =

[
rTI vB − cosθ (vB × rTI )

T

vB × rTI rIv
T
B + vBr

T
I − (rTI vB + cosθ)I

]
.

In the practical case of this thesis, the selected λ value is 120 degrees, imposing that
the normal direction vector to the solar array is always contained within a solid angle of
240° within which lies the direction of the Sun-Earth-L2 conjunction.

4.2.3 Problem statement

The aim of the study is to generate an energy-optimal attitude manoeuvring path which
shall satisfy the above-mentioned attitude, boundary and pointing constraints. Having
thus assigned the initial and final attitude and angular velocities, the objective of the
analysis is to minimize the integral over time of a certain cost function associated with
the energy of the studied manoeuvre. In this specific instance, the selected cost functions
are the square of the input torque applied to the spacecraft and the absolute value of said
input torque: the former will result in a control torque with a continuous and generally
linear behaviour, whereas the latter will lead to a torque delivered at its maximum value
only at the beginning and (opposite in sign) at the end of the manoeuvre, following a
criterion similar to a bang-bang controller.

The optimal control problem, subject to the constraints outlined above, can be
formulated as follows:

min : J =

∫ tf

t0

u2(t) dt

or

min : J =

∫ tf

t0

|u(t)| dt

s.t.
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

Iω̇ = u⃗− T⃗S − ω⃗ × Iω⃗ (dynamic constraints)
q̇ = 1

2Qω⃗ = 1
2 q⃗Ω (kinematic constraints)

−γT ≤ ui ≤ γT , i = 1, 2, 3 (boundary constraints)
−ωT ≤ ωi ≤ ωT , i = 1, 2, 3 (boundary constraints)
q(t)TKfq(t) ≤ 0 (forbidden constraints)
q(t)TKmq(t) ≥ 0 (mandatory constraints)
q(t)T q(t) = 1 (normalisation constraints)
q(t0) = q0, ω(t0) = ω0 (initial conditions)
q(tf ) = qf , ω(tf ) = ωf (terminal conditions)

(4.15)

What is stated above is a nonlinear programming problem. In order to solve
it, the open-source MATLAB library OptimTraj, developed by Dr. Matthew Peter
Kelly [13], has been exploited. The library is designed to solve continuous-time single-
phase trajectory optimization problems, is based on the MATLAB function fmincon and
allows three direct optimization methods to be selected and applied: the trapezoidal
direct collocation method, the Hermite-Simpson direct collocation method and
the Runge-Kutta 4th order direct multiple shooting method.

Slack variables

In the second formulation of the problem, the discontinuity resulting from the use of the
absolute value of the control torque in the objective function is handled by employing
slack variables, thus moving the discontinuity to a set of constraints, where the nonlinear
programming solver can properly manage it.

The methodology adopted here is the one mentioned in Kelly’s [13] paper. First, the
objective function is rewritten by introducing two (arrays of) slack variables, named s1
and s2:

min : J =

∫ tf

t0

|u(t)| dt −→ min : J =

∫ tf

t0

(s1(t) + s2(t)) dt (4.16)

Further constraints are then imposed:

• the slack variable shall be positive, i.e.

0 ≤ s1(t), 0 ≤ s2(t) (4.17)

• the difference between the slack variables shall be equal to the term inside the abs()
function, i.e.

s1(t)− s2(t) = u(t). (4.18)

The set of constraints presented thus far fundamentally defines s1(t) as the positive
part of the argument of the absolute value function and s2(t) as the magnitude of the
negative part. Said modifications render the problem suitable for input into a nonlinear
programming solver.
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Chapter 5

Simulation results

This Chapter summarizes and discusses the results of the simulations carried out to
solve the constrained optimization problem presented in Chapter 4. The manoeuvre
is simulated for both spacecraft configurations and utilizing both cost functions. The
simulation conditions are shown in Table 5.1.

Initial quaternions q0 [1 0 0 0]’

Final quaternions qf

qf1 = [0.9962 0.0872 0 0]’ (+10° about x body axis)
qf2 = [0.9962 -0.0872 0 0]’ (-10° about x body axis)
qf3 = [0.9962 0 0.0872 0]’ (+10° about y body axis)
qf4 = [0.9962 0 -0.0872 0]’ (-10° about y body axis)
qf5 = [0.9990 0.0436 0 0]’ (+5° about x body axis)
qf6 = [0.9914 0.1305 0 0]’ (+15° about x body axis)
qf7 = [0.9990 0 0.0436 0]’ (+5° about y body axis)
qf8 = [0.9914 0 0.1305 0]’ (+15° about y body axis)

Initial angular velocities ω0 [0 0 0]’
Final angular velocities ωf [0 0 0]’

Initial guess torques u0 [0 0 0]’
Max angular velocity ωT 0.05 rad/s [17]

Max torque γT
γT1 = 1 Nm

γT2 = 5 · 10−4 Nm
γT3 = 5 · 10−6 Nm

Table 5.1: Simulation conditions.

Both rotation around the x-axis and the y-axis, in both positive and negative directions,
have been simulated. The manoeuvre time dictated by the mission requirements is 20
minutes (1200 seconds). Subsequently, each rotation has been repeated in two scenarios:
one in which the solar radiation pressure is normal to the y-z body plane and one in
which it is perpendicular to the x-y body plane. This has been done to account for the
fact that the surface facing the Sun is smaller when the spacecraft is oriented such that
the solar pressure is perpendicular to the x-y body plane, therefore the solar radiation
pressure torque itself has a lower magnitude.

Afterwards, a parametric analysis has been conducted only for the manoeuvre which, of
those listed above, has turned out to be the most expensive in terms of the control torque
obtained. In particular, manoeuvre time and rotation angle have been parameterized,
respectively, as follows: 15 minutes (900 seconds), 20 minutes (1200 seconds), 25 minutes
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(1500 seconds), and 5°, 10° and 15°. From this parametric analysis, it is intuitive to
expect an increment in control torque as the required manoeuvring time decreases and
the imposed angle of rotation increases, although it remains within the same order of
magnitude.

A further study has been carried out to ascertain the impact of the maximum allowable
torque γT , as constrained by boundary conditions, on the system behaviour and overall
results. For the nominal configuration, a value of γT equal to 1 Nm and 10−4 Nm has
been adopted, while for the Cubesat configuration the maximum allowable torque has
been set equal to 1 Nm and 10−6 Nm.

The most significant plots in relation to system behaviour are provided for each case.

5.1 Nominal ("Euclid-like") case

In this case, the z-axis, i.e. the optical axis, is also the axis of minimum inertia: in the
absence of the effects of solar radiation pressure, the torques around the x-axis and around
the y-axis would be identical in each condition. The x-y body plane of the spacecraft
has a smaller surface area than the y-z plane, which results in a greater value for solar
radiation pressure in the latter case. In particular, with reference to Equation 4.2, the
value is 1.5611 · 10−5 Nm when the vector is perpendicular to the x-y body plane and
8.7811 · 10−5 Nm when it is perpendicular to the y-z body plane.

5.1.1 Optimization of u2

The results obtained by optimizing the input torque-squared by using the Hermite-Simpson
direct collocation are presented. For each simulation, the behaviour is identical: a positive
but decreasing linear torque is applied, which causes the spacecraft to accelerate to a
maximum angular velocity of approximately 2.2 · 10−4 rad/s, which is reached when the
torque becomes zero. Subsequently, the torque turns negative and continues to decrease,
while the angular velocity begins to decrease until it returns to zero. The angular velocity
curve is parabolic, as its derivative is proportional to the applied torque, which in this
case is linear. This relationship is expressed by the Euler’s Equation 4.1.

The behaviour outlined above is illustrated in Figure 5.1, which depicts the plots of
angular velocities, quaternions and applied torques for a positive rotation of 10 degrees
around the x-axis, over a 20-minute period, and is observed, with slightly different values,
for all simulations performed in this case. These results indicate that a relatively small
and precisely controlled torque is continuously delivered throughout the duration of the
manoeuvre. The maximum control torque is about ∼ 4.8− 5.0 · 10−4 Nm, the greatest
value being observed at rotations around the y-axis, due to the additional contribution of
the solar radiation pressure. This axis has therefore been selected to simulate parametric
rotations as the manoeuvring time and angle of rotation change. The results of this
analysis are presented in Table 5.2.

It has been noticed that the same order of magnitude for the maximum control torque
is reached whether a value of γT equal to 1 Nm or 5 · 10−4 Nm is imposed.

The results described so far have been obtained by adopting Hermite-Simpson direct
collocation as the optimization method, discretizing the trajectory into 50 segments.
Further simulations have been carried out by employing trapezoidal direct collocation
(50-point grid) and Runge-Kutta multiple shooting (50 segments). In any case, it can be
remarked that the values remain highly consistent, indicating that the local minimum
identified by the code at each simulation may also be a global minimum.

47



Figure 5.1: Plots of angular velocities, quaternions and control torques for a positive
rotation of 10 degrees around the x-axis in 20 minutes, when the solar pressure is acting
in the y-z body plane and therefore gives a non-zero component to the torque about the
y-axis, obtained for the nominal configuration by optimizing u2.

900 s 1200 s 1500 s

5°

Cost function Cost function Cost function
5.5934 · 10−5 2.3797 · 10−5 1.2400 · 10−5

Max torque Max torque Max torque
4.4655 · 10−4 Nm 2.5806 · 10−4 Nm 1.7088 · 10−4 Nm

Min torque Min torque Min torque
−4.1533 · 10−4 Nm −2.2684 · 10−4 Nm −1.3966 · 10−4 Nm

10°

Cost function Cost function Cost function
2.2308 · 10−4 9.4310 · 10−5 4.8503 · 10−5

Max torque Max torque Max torque
8.7750 · 10−4 Nm 5.0047 · 10−4 Nm 3.2602 · 10−4 Nm

Min torque Min torque Min torque
−8.4628 · 10−4 Nm −4.6924 · 10−4 Nm −2.9480 · 10−4 Nm

15°

Cost function Cost function Cost function
5.0165 · 10−4 2.1183 · 10−4 1.0867 · 10−4

Max torque Max torque Max torque
1.3085 · 10−3 Nm 7.4273 · 10−4 Nm 4.8100 · 10−4 Nm

Min torque Min torque Min torque
−1.2773 · 10−3 Nm −7.1154 · 10−4 Nm −4.4997 · 10−4 Nm

Table 5.2: Cost function (i.e. integral of u2) and maximum and minimum applied torque
values for a field-of-view rotation manoeuvre of 5, 10 and 15 degrees about the y-axis in
15, 20 and 25 minutes, considering the nominal configuration.

5.1.2 Optimization of |u|

The manoeuvres described at the outset of this Chapter have also been simulated by
utilizing the integral over time of the absolute value of the control torque as a cost function.
In this instance, the selected optimization method is the trapezoidal direct collocation,
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considering a 100-point discretization grid. Nevertheless, to confirm the consistency
of certain results, several simulations have been repeated using the Hermite-Simpson
collocation, discretizing the trajectory in 50 segments. Simulations have first been carried
out by imposing a maximum allowable torque value γT equal to 1 Nm and then, in order
to compare its behaviour with the u2 optimization case, by employing a limit value of
5 · 10−4 Nm (equivalent to the maximum value obtained for the same configuration but
optimizing the square of the control torque).

In the case where γT in equal to 1 Nm, the behaviour of the quantities involved is
essentially similar for each simulation, as illustrated in Figure 5.2. At the start of the
manoeuvre, a positive ‘quasi-impulsive’ torque is delivered, which rapidly increases the
angular velocity to a constant value of about 15 · 10−5 rad/s reached when the torque
returns to zero. The satellite will rotate with said constant angular velocity until it
reaches the desired attitude, at which point an equal and opposite torque will be applied
to stop the rotation. The magnitude of the applied torques is approximately 10−2 − 10−3

Nm (depending on the number of segments in which the trajectory is discretized), which
is considerably larger than the values obtained by optimizing the square of the input
torque.

Figure 5.3 depicts an exemplar of the system behaviour in the event when the maximum
allowable torque γT is set equal to 5 · 10−4 Nm. When the manoeuvre initiates, a positive
torque is delivered and, for over 200 seconds, is held at its maximum value - of the same
order of magnitude of γT , as expected -, time during which it increases the angular velocity
up to a constant value of about 18 · 10−5 rad/s, reached when the torque returns to zero.
The satellite will reorient itself with the above-mentioned constant angular velocity until
it approaches the desired attitude, when an equal and opposite torque will be applied to
slowly stop the rotation.

Figure 5.2: Plots of angular velocities, quaternions and control torques for a positive
rotation of 10 degrees around the x-axis in 20 minutes, when the solar pressure is acting in
the y-z body plane, obtained for the nominal configuration by optimizing |u| and setting
a γT value of 1 Nm.

When the solar radiation pressure torque acts around the selected axis of rotation,
however, the torque required to initiate the manoeuvre and the final torque to stop the
motion will no longer be equal in magnitude. Rather, one will be slightly greater than
the other, depending on the direction of the solar radiation pressure torque. In the
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Figure 5.3: Plots of angular velocities, quaternions and control torques for a positive
rotation of 10 degrees around the x-axis in 20 minutes, when the solar pressure is acting in
the y-z body plane, obtained for the nominal configuration by optimizing |u| and setting
a γT value of 5 · 10−4 Nm.

event that the direction is negative, indicating a braking effect of the solar pressure, the
angular velocity will slowly decrease during the operation and the initial control torque
will be slightly larger in order to counteract the disturbance and complete the manoeuvre.
Conversely, the final torque will be smaller since the satellite will have already partially
slowed down during its rotation. This behaviour can be observed in Figure 5.4 and in
Figure 5.5 in the case of γT equal to 1 Nm and to 5 · 10−4 Nm respectively. The opposite
behaviour is observed when the solar radiation pressure torque direction is positive.

If the Hermite-Simpson direct collocation method is employed, the achieved control
torque result typically slightly higher than that obtained using the trapezoidal collocation,
as the angular velocity reaches a small peak before settling at its constant manoeuvring
value, as can be seen in Figure 5.6.

Table 5.3 displays the results of the parameterization of rotation angles and manoeuvre
times, considering as the rotation axis the x-axis body in the case of solar radiation
pressure perpendicular to the x-y plane, namely the condition in which the torque is at
its greatest, due to the influence of solar radiation pressure.

On the other hand, Table 5.4 displays the results obtained by parameterising the
manoeuvring time and angle of rotation for the same conditions as above, but in the
case where the maximum allowable torque value γT is set equal to 5 · 10−4 Nm. It is
noteworthy that the maximum torque hovers around similar values across all simulations,
despite variations in the cost function: this is easily understood by imagining that for
each simulation result the only significantly varying quantity is the duration over which
the maximum torque is mantained constant at the beginning and end of the manoeuvre.
The simulations of the 10° and 15° rotations in 900 s (15 minutes), while converging, fail
to satisfy all the imposed constraints: the torque required to execute the manoeuvre
under these conditions is greater than 5 · 10−4 Nm, due to the shorter time required
(and therefore the higher necessary angular velocity) and the greater magnitude of the
manoeuvring angles.
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Figure 5.4: Plots of angular velocities, quaternions and control torques for a positive
rotation of 10 degrees around the x-axis in 20 minutes, when the solar pressure is acting in
the x-y body plane, obtained for the nominal configuration by optimizing |u| and setting
a γT value of 1 Nm.

Figure 5.5: Plots of angular velocities, quaternions and control torques for a positive
rotation of 10 degrees around the x-axis in 20 minutes, when the solar pressure is acting in
the x-y body plane, obtained for the nominal configuration by optimizing |u| and setting
a γT value of 5 · 10−4 Nm.

5.2 CubeSat 18U case

In this instance, the dimensions of the x-axis and y-axis are not identical, therefore the
control torque around y-axis will result to be slightly different from that around x, both
because the latter is the axis of maximum inertia and because the solar radiation pressure
torque is consistently oriented around the y-axis, once more giving a more significant
contribution in that direction. In this case, the x-y plane and the y-z plane have the same
dimensions and the solar radiation pressure torque has a value of 4.6832 · 10−8 Nm.
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Figure 5.6: Plots of angular velocities, quaternions and control torques for a positive
rotation of 10 degrees around the x-axis in 20 minutes, when the solar pressure is acting
in the x-y body plane, obtained for the nominal configuration by optimizing |u| employing
Hermite-Simpson collocation and setting a γT value of 1 Nm.

900 s 1200 s 1500 s

5°

Cost function Cost function Cost function
0.1472 0.1198 0.1055

Max torque Max torque Max torque
0.0151 Nm 0.0089 Nm 0.0060 Nm

Min torque Min torque Min torque
-0.0134 Nm -0.0071 Nm -0.0042 Nm

10°

Cost function Cost function Cost function
0.2781 0.2179 0.1858

Max torque Max torque Max torque
0.0294 Nm 0.0170 Nm 0.0104 Nm

Min torque Min torque Min torque
-0.0278 Nm -0.0151 Nm -0.0088 Nm

15°

Cost function Cost function Cost function
0.4088 0.3288 0.2641

Max torque Max torque Max torque
0.0440 Nm 0.0236 Nm 0.0162 Nm

Min torque Min torque Min torque
-0.0414 Nm -0.0219 Nm -0.0145 Nm

Table 5.3: Cost function (i.e. integral of |u|) and maximum and minimum applied torque
values for a field-of-view rotation manoeuvre of 5, 10 and 15 degrees about the x-axis in
15, 20 and 25 minutes, considering the nominal configuration and a γT value of 1 Nm.

5.2.1 Optimization of u2

The results of simulations undertaken by minimizing the square of the input torque
for the CubeSat configuration are discussed here. The methodologies adopted and the
considerations drawn are essentially analogous to those for the nominal configuration
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900 s 1200 s 1500 s

5°

Cost function Cost function Cost function
0.1732 0.1278 0.1082

Max torque Max torque Max torque
4.9890 · 10−4 Nm 4.9732 · 10−4 Nm 4.9639 · 10−4 Nm

Min torque Min torque Min torque
−4.9890 · 10−4 Nm −4.9732 · 10−4 Nm −4.9640 · 10−4 Nm

10°

Cost function Cost function
0.2649 0.2020

Converges at Max torque Max torque
infeasible point 4.9934 · 10−4 Nm 4.9878 · 10−4 Nm

Min torque Min torque
−4.9934 · 10−4 Nm −4.9878 · 10−4 Nm

15°

Cost function Cost function
0.5179 0.3142

Converges at Max torque Max torque
infeasible point 4.9990 · 10−4 Nm 4.9938 · 10−4 Nm

Min torque Min torque
−4.9990 · 10−4 Nm 4.9938 · 10−4 Nm

Table 5.4: Cost function (i.e. integral of |u|) and maximum and minimum applied torque
values for a field-of-view rotation manoeuvre of 5, 10 and 15 degrees about the x-axis in
15, 20 and 25 minutes, considering the nominal configuration and a γT value of 5 · 10−4

Nm.

reasoned in Subsection5.1.1. In this instance, as with the nominal configuration, simula-
tions have initially been performed by imposing a γT value of 1 Nm and applying the
Hermite-Simpson method with a 50-segment discretization. Subsequently, following the
study of the orders of magnitude obtained for the control torque and the behaviour of the
system, the analysis has then been repeated by setting a torque limit value of 5 · 10−6 Nm
and selecting the trapezoidal direct collocation with a 50-point grid as the optimization
method. The Runge-Kutta method has been applied on occasion to corroborate the
consistency of results, with each application yielding outcomes analogous to those obtained
through the Hermite-Simpson collocation.

For the case when γT is set equal to 1 Nm, the principal distinction from the nominal
configuration case, apart from the smaller order of magnitude of the control torques
(around 10−6 Nm) due to the reduced inertia of this configuration, is observed in the
behaviour of the quantities at stake, as illustrated in Figure 5.7. In this scenario, a small
torque is provided at the start of the manoeuvre, which causes the spacecraft to accelerate
until, following a short transient period, it reaches an almost constant angular velocity of
approximately 15 · 10−5 rad/s, with which it will rotate to orient itself with the desired
attitude. Once this value is reached, the angular velocity will oscillate around it, while
the torque will fluctuate close to zero, then decrease at the end of the manoeuvre to slow
the body down again.

Table 5.5 displays the results of the parameterization of rotation angles and manoeuvre
times, considering as the rotation axis the y body axis, around which the ever-present
contribution of solar radiation pressure intensifies the magnitude of the maximum torque
obtained.

Given the expectation of similar behaviour to the nominal configuration case, which
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Figure 5.7: Plots of angular velocities, quaternions and control torques for a positive
rotation of 10 degrees around the y-axis in 20 minutes, when the solar pressure is acting
in the y-z body plane, obtained for the CubeSat configuration by optimizing u2 and
considering a γT value of 1 Nm.

900 s 1200 s 1500 s

5°

Cost function Cost function Cost function
3.4932 · 10−10 1.9047 · 10−10 1.0774 · 10−10

Max torque Max torque Max torque
4.0514 · 10−6 Nm 2.9153 · 10−6 Nm 1.9523 · 10−6 Nm

Min torque Min torque Min torque
−3.9520 · 10−6 Nm −2.8211 · 10−6 Nm −1.8701 · 10−6 Nm

10°

Cost function Cost function Cost function
8.7215 · 10−10 4.7995 · 10−10 3.2632 · 10−10

Max torque Max torque Max torque
5.1618 · 10−6 Nm 3.7953 · 10−6 Nm 3.1453 · 10−6 Nm

Min torque Min torque Min torque
−5.0822 · 10−6 Nm −3.7413 · 10−6 Nm −3.1232 · 10−6 Nm

15°

Cost function Cost function Cost function
1.7396 · 10−9 9.4135 · 10−10 6.1770 · 10−10

Max torque Max torque Max torque
6.9445 · 10−6 Nm 5.0221 · 10−6 Nm 4.1282 · 10−6 Nm

Min torque Min torque Min torque
−6.8734 · 10−6 Nm −4.9338 · 10−6 Nm −4.0253 · 10−6 Nm

Table 5.5: Cost function (i.e. integral of u2) and maximum and minimum applied torque
values for a field-of-view rotation manoeuvre of 5, 10 and 15 degrees about the y-axis in
15, 20 and 25 minutes, considering the CubeSat configuration and a γT value of 1 Nm.

is however not observed here, a further analysis has been proposed and performed. In
this additional study, the value of the maximum allowable torque, γT , has been reduced
to the same order of magnitude the maximum control torque that has been achieved thus
far, having assigned it a value of 5 · 10−6 Nm. This novel approach results - as expected
- in a smaller order of magnitude of the torques (around 10−7 Nm). In this instance,
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prior to assuming the - previously observed for the nominal configuration case - linear
behaviour, the control torque undergoes a brief increase to a maximum at the beginning
of the manoeuvre, and again at the end of the rotation, as illustrated in Figure 5.8. The
presence of solar radiation pressure (if negative in direction, as discussed here) results
in a shift of the control torque curve to the right, which will no longer change sign at
mid-manoeuvre, but about 100 seconds later: this behaviour can be observed in Figure
5.9.

Figure 5.8: Plots of angular velocities, quaternions and control torques for a positive
rotation of 10 degrees around the x-axis in 20 minutes, when the solar pressure is acting
in the y-z body plane and therefore gives a non-zero component to the torque about the
y-axis, obtained for the CubeSat configuration by optimizing u2 and considering a γT
value of 5 · 10−6 Nm.

Figure 5.9: Plots of angular velocities, quaternions and control torques for a positive
rotation of 10 degrees around the y-axis in 20 minutes, when the solar pressure is acting
in the y-z body plane, obtained for the CubeSat configuration by optimizing u2 and
considering a γT value of 5 · 10−6 Nm.
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Table 5.6 displays the results of the parameterization of rotation angles and manoeuvre
times, selected because of the markedly elevated magnitude of the torque resulting from
the effects of solar radiation pressure, the influence of which can also be appreciated in
Figure 5.9.

900 s 1200 s 1500 s

5°

Cost function Cost function Cost function
2.7773 · 10−11 1.3560 · 10−11 9.0141 · 10−12

Max torque Max torque Max torque
3.4414 · 10−7 Nm 2.2484 · 10−7 Nm 1.7341 · 10−7 Nm

Min torque Min torque Min torque
−2.4675 · 10−7 Nm −1.2655 · 10−7 Nm −7.4731 · 10−8 Nm

10°

Cost function Cost function Cost function
1.0514 · 10−10 4.6303 · 10−11 2.6132 · 10−11

Max torque Max torque Max torque
6.3450 · 10−7 Nm 4.0089 · 10−7 Nm 2.9805 · 10−7 Nm

Min torque Min torque Min torque
−5.3840 · 10−7 Nm −3.0273 · 10−7 Nm −1.9942 · 10−7 Nm

15°

Cost function Cost function Cost function
2.3403 · 10−10 1.0087 · 10−10 5.4202 · 10−11

Max torque Max torque Max torque
9.2562 · 10−7 Nm 5.7077 · 10−7 Nm 4.2232 · 10−7 Nm

Min torque Min torque Min torque
−8.3052 · 10−7 Nm −4.7374 · 10−7 Nm −3.1679 · 10−7 Nm

Table 5.6: Cost function (i.e. integral of u2) and maximum and minimum applied torque
values for a field-of-view rotation manoeuvre of 5, 10 and 15 degrees about the y-axis in
15, 20 and 25 minutes, considering the CubeSat configuration and a γT value of 5 · 10−6

Nm.

5.2.2 Optimization of |u|

The simulated conditions are analogous to those presented for the nominal configuration
in the case discussed in Subsection 5.1.2. The order of magnitude of the torque applied is
10−6 Nm for both the considered γT values, due to the reduced envelope of the CubeSat.
In this instance, the maximum input torque magnitude remains below the maximum
allowable value γT and therefore decreases from the very beginning of the manoeuvre,
i.e. it is not kept constant in the first and last moments of the operation, as depicted in
Figure 5.10. In this scenario, the numerical outcomes achieved are relatively comparable
to those attained for the analogous configuration through the optimization of the square
of the torque. The value of the angular velocity reached is substantially comparable to
that found in the previously discussed cases, namely 15 · 10−5 rad/s.

Utilizing the Hermite-Simpson collocation, the same peak in angular velocity at
the beginning and end of the manoeuvre is found as in the nominal configuration case,
resulting in a marginally greater torque, as can be noted in Figure 5.11. This is the method
implemented to parameterize the basic manoeuvre by varying its duration and angle of
rotation, both because of the higher torques involved, which can provide more dimensioning
values, and because it is the method that has demonstrated the most consistent results.
The results of these simulations are shown in Table 5.7. The parameterised rotation is
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the one around the x body axis in the condition where the solar radiation pressure is
perpendicular to the y-z plane.

Figure 5.10: Plots of angular velocities, quaternions and control torques for a positive
rotation of 10 degrees around the x-axis in 20 minutes, when the solar pressure is acting
in the y-z body plane, obtained for the CubeSat configuration by optimizing |u| with the
trapezoidal collocation method.

Figure 5.11: Plots of angular velocities, quaternions and control torques for a positive
rotation of 10 degrees around the x-axis in 20 minutes, when the solar pressure is acting
in the y-z body plane, obtained for the CubeSat configuration by optimizing |u| with the
Hermite-Simpson collocation method.
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900 s 1200 s 1500 s

5°

Cost function Cost function Cost function
1.1153 · 10−4 1.1561 · 10−4 1.2356 · 10−4

Max torque Max torque Max torque
2.4555 · 10−6 Nm 1.2080 · 10−6 Nm 7.0086 · 10−7 Nm

Min torque Min torque Min torque
−2.4555 · 10−6 Nm −1.2080 · 10−6 Nm −7.0086 · 10−7 Nm

10°

Cost function Cost function Cost function
1.5039 · 10−4 1.4485 · 10−4 1.4705 · 10−4

Max torque Max torque Max torque
6.2295 · 10−6 Nm 3.2725 · 10−6 Nm 1.9906 · 10−6 Nm

Min torque Min torque Min torque
−6.2295 · 10−6 Nm −3.2725 · 10−6 Nm −1.9906 · 10−6 Nm

15°

Cost function Cost function Cost function
1.8906 · 10−4 1.7387 · 10−4 1.7015 · 10−4

Max torque Max torque Max torque
1.0087 · 10−5 Nm 5.4732 · 10−6 Nm 3.4342 · 10−6 Nm

Min torque Min torque Min torque
−1.0087 · 10−5 Nm −5.4732 · 10−6 Nm −3.4342 · 10−6 Nm

Table 5.7: Cost function (i.e. integral of |u|) and maximum and minimum applied torque
values for a field-of-view rotation manoeuvre of 5, 10 and 15 degrees about the x-axis in
15, 20 and 25 minutes, considering the CubeSat configuration.
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Chapter 6

Conclusions

6.1 Discussion

The objective of the present study is to contextualise the utilization of the RAFTER
optical instrument in the setting of a space mission devoted to astrometric exoplanet
detection. In particular, emphasis is placed on the field of view shift manoeuvres that the
spacecraft that would host the instrument on board would have to perform in order to
point it at a new target each time and carry out the next round of observations. The
reason for this choice lies in the fact that these are among the most interesting nominal
attitude manoeuvres from the standpoint of assessing the torques at play during the
mission, which can serve as a preliminary basis for the sizing of the actuating system, as
well as being among the most characterising of the mission profile since they derive from
its specific observation requirements.

The base manoeuvres are modelled and simulated by solving a constrained optimization
problem, which takes into account the dynamics and kinematics of the system in the
presence of the solar radiation pressure, as well as specific constraints related to pointing
requirements and arising from the limits of actuators and sensors. The objective of
the optimization is to minimize a cost function associated with the energy required to
perform the manoeuvre. Two spacecraft configurations with RAFTER on board are
considered, namely a medium-class satellite and a 18U CubeSat. The optimization is
carried out employing two selected cost functions: the integral over time of the square
of the input torque and integral over time of the absolute value of the input torque.
Subsequent simulations vary the manoeuvring conditions, i.e. axis of rotation, angle of
rotation, duration of the manoeuvre, method of solution to the optimization problem
and maximum allowable control torque, to assess the impact of these adjustments on the
outcomes achieved.

The results demonstrate that the control torques necessary for the successful completion
of the manoeuvres are generally within the range of 10−4/10−3 Nm for the nominal
configuration and 10−7/10−6 Nm for the CubeSat configuration. Such values represent a
significant first clue as to the feasibility of the mission on an energetic level, as well as an
additional tool for a preliminary selection of the actuating system of the spacecraft.

For the nominal configuration, optimization of u2 typically yields continuous torques
with a linear behaviour that can approximate those delivered by a reaction wheel system.
Conversely, optimization of |u| often results in torques supplied exclusively at the beginning
and end of the manoeuvre, in a sort of bang-bang fashion, akin to those obtained by
operating a set of thrusters. In the latter case, the order of magnitude of the maximum
allowable torque determines whether the observed torque will exhibit quasi-impulsive
behaviour and a greater magnitude than that attained by optimizing u2, or a lower
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maximum value equal to that of the maximum allowable torque, which is delivered for
a longer time at the beginning and end of the manoeuvre. In the case of the CubeSat
configuration, the general discourse remains essentially unchanged. However, an unusual
behaviour is observed when optimising u2 with a maximum allowable torque greater than
10−6 Nm, which is more similar to what one would expect to achieve when optimising |u|
instead. It also exhibits torque fluctuations around zero during the central phase of the
manoeuvre, during which the satellite orients itself towards the desired attitude. This
behaviour may warrant further investigation.

The work presented in this thesis has resulted in a paper that will be published in the
SPIE proceedings of the Ground-based and Airborne Telescopes X conference, held as
part of the SPIE Astronomical Telescope + Instrumentation 2024.[50]

6.2 Future work

The work presented in this thesis provides a preliminary foundation for a comprehensive
investigation into a potential mission that could satisfy the purpose for which RAFTER
was conceived, namely conducting localized astrometric observations from space with
the aim of detecting the presence of exoplanets. Said mission profile can be further
investigated by, for example, undertaking a more detailed study of mission operations or,
rather, by delineating in greater depth the potential spacecraft employed and its systems,
starting with the actuating one. The values obtained in this study can in fact not only
offer an estimate of the order of magnitude of the input torques required to perform basic
pointing manoeuvres, but also stand as a starting point and a characterizing requirement
for future actuator sizing.

Furthermore, the mathematical model itself adopted in this study could subsequently
be updated to more closely align with a real-world scenario, for instance by taking
into account a more accurate representation of solar radiation pressure contribution. A
parameterisation could be performed by considering a larger number of conditions to be
evaluated, or by adjusting the optimisation method, for example by contemplating the
use of indirect methods to solve the constrained optimization problem.

Finally, there are a multitude of aspects that, remaining purely within the domain of
mission operations and flight mechanics, can be explored in greater depth in the future,
such as the study of maintaining pointing stability throughout each observation, which
is fundamental given the high accuracy required for relatively long periods of time to
achieve an effective performance, or rather focusing on orbit correction manoeuvres, for
instance those carried out during the station-keeping phases.
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