

Politecnico di Torino
Corso di Laurea Magistrale in Ingegneria Aerospaziale

Development of a graphical interface
for aeronautical application

Relatori:

Angelo Lerro
Piero Gili

Candidato:

Matteo Mangoni

Sessione di Laurea Luglio 2024
Anno accademico 2023/2024

Page 2 of 54

Development of a graphical interface for aeronautical application ... 1

1. INTRODUCTION ... 4

2. REFERENCES .. 5

3. SYSTEM OVERVIEW .. 6

3.1 Hardware ... 6

3.1.1 Odroid N2 .. 6

3.1.2 Xenarc 10’ Display - 1029 GNH... 6

3.2 Software .. 7

3.2.1 Development Environment .. 7

3.2.2 Target Environment ... 7

4. AVIONIC DISPLAY DESIGN AND FUNCTIONALITIES ... 8

4.1 PRIMARY FLIGHT DISPLAY (PFD) ... 8

4.1.1 Attitude Indicator ... 9

4.1.1.1 Waterline .. 9

4.1.1.2 Background (Sky, Ground and Horizon) ... 10

4.1.1.3 Pitch Ladder ... 10

4.1.1.4 Roll Indicator .. 11

4.1.1.5 Skid/Slip Indicator ... 12

4.1.2 Compass ... 13

4.1.3 Airspeed + AoA Indicator ... 14

4.1.4 Altitude Indicator ... 16

4.1.4.1 Altitude tape ... 17

4.1.4.2 Vertical Speed Indicator (VSI) ... 18

4.1.5 Digital Map .. 19

4.1.6 Other Readings ... 20

4.2 MAP ... 21

4.3 DATA ... 22

4.4 USER CUSTOMIZATION – settings.ini .. 23

5. CODE IMPLEMENTATION .. 24

5.1 openFrameworks - OVERVIEW AND STRUCTURE .. 24

5.1.1 Folder Structure .. 25

5.1.2 Code structure and main functions .. 26

5.1.3 Graphic functions / classes .. 28

5.1.4 Add-ons ... 31

5.2 Scenes and Indicator Classes .. 33

5.2.1 PfdScene .. 34

5.2.1.1 Attitude Indicator... 35

5.2.1.2 Compass .. 39

5.2.1.3 Airspeed Indicator ... 41

5.2.1.4 Altitude Indicator ... 43

5.2.1.5 Map .. 45

5.2.1.6 Other Readings .. 46

5.2.2 MapScene ... 47

5.2.3 DataScene .. 48

Page 3 of 54

5.3 INPUT DATA INTERFACE... 49

5.4 GLOBAL VARIABLES .. 51

5.5 MAIN LOOP: ofApp and other functionalities ... 52

5.5 PORTING TO LINUX (ODROID, UBUNTU MATE) .. 53

6.CONCLUSION .. 54

Page 4 of 54

1. INTRODUCTION

Figure 1.1 SAIFE Avionic Display tabs (PFD, MAP, DATA)

The objective of this project was the development of the software for an avionic display

to be used as the Human-Machine Interface for the SAIFE demonstrator. From RD 1:

“ [...] the project SAIFE [28]—Synthetic Air Data and Inertial Reference System—where

a demonstrator of the ASSE technology is designed and manufactured to verify the

Technology Readiness Level (TRL) 5. The technological demonstrator is based on “all-

in-one” air data and inertial systems (commonly known as ADAHRS) able to provide

multiple information to pilots or to automatic control systems, partially based on

synthetic sensors that are used for flow angle estimation. The proposed approach for

flow angle estimation does not require dedicated physical sensors but at the same time

guarantees, under recognizable circumstances, the same reliability of flow angle vanes

(or probes) in order to optimize the efficiency of on board avionics for both modern and

future aircraft.”

The software was developed in C++/OpenGL, using the openFrameworks set of

libraries to take advantage of simplified and ready-to-use functions and add-ons to

streamline the process while maintaining the efficiency and optimization of C++ and

OpenGL. More details on the framework and its implementation in the context of this

project are given in the following sections.

Page 5 of 54

The target hardware is composed of a Odroid N2 as the main processing unit, with a 10

inch touch screen display (Xenarc 1029 GNH) as the visual output device. The

touchscreen functionality of the display is utilized by the software to give a certain level

of intractability to the user (e.g. switching between different tabs, adjusting the map

levels…).

2. REFERENCES

RD 1 Verification in Relevant Environment of a Physics-Based
Synthetic Sensor for Flow Angle Estimation

RD 2 SAIFE_IO (SW ICD)

Page 6 of 54

3. SYSTEM OVERVIEW

3.1 Hardware

Hardware wise, the application is developed to be implemented and executed on a

Odroid N2, while the graphical output is provided through the Xenarc 1029 GNH 10’

touch screen display.

3.1.1 Odroid N2

The Odroid N2 is a new generation single board computer. The main CPU is based on

big.Little architecture which integrates a quad-core ARM Cortex-A73 CPU cluster and a

dual core Cortex-A53 cluster with a new generation Mali-G52 GPU. Thanks to the

modern 12nm silicon technology, the A73 cores run at 2.2Ghz without thermal throttling

using the stock metal-housing heatsink allowing a robust and quiet computer.

Figure 3.1 Odroid N2

3.1.2 Xenarc 10’ Display - 1029 GNH

The 1029 GNH offers all of the innovation and inputs as our 1020 series models along

with a capacitive touchscreen panel. Capacitive sensing provides a more responsive

touch interface than resistive touch. It achieves this by using the capacitance of human

skin to detect the proximity or position of the input. Proximity sensing allows the touch

interaction to work even if protective glass or coating is used over the 10.1" industrial

display. The touch panel is optically bonded to the LCD panel, eliminating the air gap

between the two, increasing clarity, contrast, and durability. Further, because the unit is

water tight and air tight, ambient humidity will not affect the clarity or viewability because

of the optical bonding.

Figure 3.2 Xenarc 10’ Display

Page 7 of 54

3.2 Software

The chosen programming language is C++, making use of the OpenGL library for

graphical applications. C++ and OpenGL provide a good compromise between

performance and availability of high level tools and frameworks for development.

openFrameworks is the chosen framework for developing the avionic display, as it’s open

source and provides high level wrapper library and functions around pure OpenGL,

simplifying the development, structure and readability of the code without sacrificing

performance. Several community add-ons for a variety of functionalities are also available

(e.g. ready-to-use stencil masks).

A more detailed overview of how OF is structured and utilized in the context of this project

can be found in section 5.

3.2.1 Development Environment

The code was developed and tested mainly in Windows 10, using the Visual Studio IDE.

openFrameworks provides a framework folder structure that’s fully compatible with Visual

Studio, making it possible to take advantage of functionalities such as code completion,

resources profiling and source compiling + debugging directly from the IDE.

3.2.2 Target Environment

The target environment for running the application is the Linux distribution Ubuntu Mate

installed on the Odroid N2.

Note that the application compiled in the development environment is not directly

compatible with the Linux Operating System, but it had to be compiled directly from the

source files. The code is compiled through the use of makefile(s), which are included in

the Linux ARM x86 openFrameworks distribution. More details on the “porting” of the

application from Windows 10 to Ubuntu Mate can be found in section 5.5.

Page 8 of 54

4. AVIONIC DISPLAY DESIGN AND FUNCTIONALITIES

This section will give an overview of the design and functionalities of the display.

There are 3 selectable tabs: PFD, MAP and DATA, described in detail in the following

subsections.

The type of indicators and displayed data are based on the data available as input from

the mission computer (see RD 2, SW ICD), which is processed as needed before it’s

rendered and shown on screen through the different indicators or through raw text. More

details on the input interfaces can be found in section 5.3 (Data Interfaces).

On the top of the screen and at all time, 3 toggle buttons are present, one for each

selectable tab. The currently selected tab button is highlighted in green.

A set of parameters and options can be customized via a .ini file, located in the bin/data

directory. See section 4.4 for more details.

4.1 PRIMARY FLIGHT DISPLAY (PFD)

Figure 4.1 PFD

Figure 4.1 shows the full display with its main indicators and their layout, which are in line

with a typical Primary Flight Display used in general aviation.

One of the objectives of the PFD is to implement an intuitive interface that should be easy

to read and provide awareness of the aircraft general attitude and flight configuration “at

a glance”. This is achieved via the choice of position, color and size of each graphical

element favoring adequate size and contrast between each distinct indicator.

Page 9 of 54

The following subchapters will focus on each group of indicators, their readings and

functionalities.

4.1.1 Attitude Indicator

Figure 4.2: Attitude Indicator

The Attitude Indicator provides visual information on the attitude of the aircraft with

respect to the horizon, by displaying the rotations around the Y axis (pitch angle) and the

X Axis (roll angle), as well as skid/slip situation.

4.1.1.1 Waterline

Figure 4.3 Waterline

The Waterline is composed of a couple of yellow triangles pointing in the direction of the

nose and two yellow rectangles on each side representing the wings.

The Waterline symbol represents the orientation of the nose of the aircraft with respect

to the horizon. During flight, it remains fixed on the screen, while the background moves

depending on pitch and roll angles as detailed in section 4.1.2.

Page 10 of 54

4.1.1.2 Background (Sky, Ground and Horizon)

Figure 4.4 Sky, Ground and Horizon

The Ground and Sky boxes are monochromatic sections of the displays separated by

the white horizon line in the center, and they fill the entire display at all times. All three of

these objects move in the background both sliding vertically (Pitch angle) and rotating

(Roll angle) around the fixed position of the Waterline.

4.1.1.3 Pitch Ladder

Figure 4.5 Pitch Ladder

The Pitch ladder is a representation of the pitch angle of the nose of the aircraft. It

moves alongside the background (section 4.1.2).

Page 11 of 54

The scale ranges from -90 to 90 degrees, and it only shows in the portion of the screen

between the Skid indicator and the Roll indicator. The sections of the ladder that fall

outside this “window” are masked to avoid visual clutter.

The scale lines are of three types:

● 10s: Widest lines, representing intervals of 10s (degrees). They are the only lines

where the angle is indicated with a numerical text on both sides of the line.

● 5s: Middle width, representing values of 5s at an interval of 10 degrees between one

another (e.g. 5, 15, 25...).

● 2.5s: Shorter lines, representing increments of 2.5s at an interval of 5 degrees

between one another (e.g. 2.5, 7.5, 12.5…).

4.1.1.4 Roll Indicator

Figure 4.6 Roll Indicator

The Roll Indicator provides a scale for the Roll angle of the aircraft. The Roll ticks (white

lines perpendicular to the white arc) provide a range from -60 to + 60 at varying intervals

as follows:

● 0 +/- 30 degrees: one short line every 10 degrees, a longer line at +/- 30.

● +/- 45 degrees: a short line.

● +/-60 degrees: a longer line.

The actual indicator symbol is the white triangle on the lower side of the arc: it remains

fixed on the screen (same approach as the Waterline), and the rest of the Roll indicator

rotates around the Waterline point.

If the Roll exceeds -60 or +60 degrees, the arc is expanded up to the position of the

lower triangle.

The upper white triangle is fixed on the arc and represents the 0 degree roll orientation.

This approach makes it intuitive for the pilot to “fly to” the triangle by aligning them to

reach a 0 roll degree flight attitude.

Figure 4.6 shows an attitude of a -10 degrees roll angle.

Page 12 of 54

4.1.1.5 Skid/Slip Indicator

Figure 4.7 Slip/Skid indicator

The Skid/Slip indicator is located on the lower side of the Attitude indicator group, and it

represents the slip or skid situation of the aircraft.

The actual indicator is the hollow white circle which moves inside the box depending on

the lateral acceleration (y-axis) of the aircraft. The position of the ball can range from -

9.8 to +9.8 m/s^2, or -1g to 1g.

In general, a non-zero position of the ball means that the aircraft nose of the aircraft is

not pointing into the flight path, and it’s particularly crucial to help the pilot correct for any

deviations in a turn. If the ball is centered on the indicator, it means that the turn is

coordinated.

Depending on the direction of the turn, the lateral position of the ball represents either

skid or slipping:

● Left turn: if the ball is moving right, the aircraft is skidding. If it’s moving left, it’s

slipping.

● Right turn: if the ball is moving right, the aircraft is slipping. If it’s moving left, it’s

skidding.

Page 13 of 54

4.1.2 Compass

Figure 4.8 Compass

The compass is situated on the lower portion of the display, and provides information on

the heading of the aircraft.

The white aircraft symbol in the center of the compass remains fixed while the compass

rotates depending on the heading angle.

Above the compass, a reading box provides the heading angle with respect to the North.

The ticks inside the compass represent different intervals of degrees, as follows:

● N,E,S,W: Positioned at 0,90,180 and 270 degrees on the compass, they represent

the North, East, South and West. The white ticks are long, and the text (N,E,S,W)

always stays upright during the rotation.

● 10s: Every 10 degree interval is marked with a white long ticks (same as N,E,S,W),

and every 30 degrees a numeric text represents the angle in 10s. This means that

the 30 degrees is 3, 60 degrees is 6 and so forth.

● 5s: Starting from 5 degrees, at an interval of 10 degrees from each other, shorter

white lines represent rotation of 5s degrees (5, 15, 25….).

The ticks outside the compass are positioned at 45 degree intervals: 0,45,90,135 and so

on. Thicker lines correspond to N, E, S, W.

Page 14 of 54

4.1.3 Airspeed + AoA Indicator

Figure 4.9 Airspeed + AoA Indicator

The airspeed and AoA indicator is positioned on the left side of the display, and it mainly

provides information on the aircraft speed through the air and its trend over time, as well

as the current angle of attack (AoA).

The IAS reading box is positioned at the center of the tape, while the scale translates

vertically behind it depending on the current Indicated Air Speed. It provides an exact

reading in knots.

At the top of the scale, a TAS reading box provides the raw value as text of the True Air

Speed.

Note: the default measurement unit is Knots, however this can be changed via the .ini

file as described in section 5.

The scale is composed of different ticks, as follows:

● 10s: Wider white lines represent the IAS values at intervals of 10s, starting from 0. At

the end of these ticks, a text representing its value is shown.

● 5s: Shorter white lines mark the IAS values at intervals of 10s, starting from 5.

(e.g. 5,15,25…)

Page 15 of 54

The range of the displayable Indicated Airspeed on both the IAS reading box and the

scale is 0 to 460 knots.

The TAS reading box is positioned at the top of the scale. It provides a reading of the

True Air Speed, in a range from 0 to 460 knots.

The Ground Speed reading box is positioned at the bottom of the scale, and it provides

a reading of the ground speed of the aircraft. It is calculated based on North + East GPS

velocities.

The Airspeed trend indicator is represented as a purple tape on the right edge of the

scale. It expands either upwards or downwards depending on the sign of the TAS time

derivative, reaching the calculated airspeed 10 seconds in the future on the tape.

The AoA indicator is composed of regions with different colors depending on the degree

range, as follows:

● -20 to -15: blue

● -15 to +5: green

● +5 to +17: yellow

● +17 to +24: red

A AoA indicator (represented as a black arrow) provides the actual value of the AoA as

it moves vertically along the scale.

Page 16 of 54

4.1.4 Altitude Indicator

Figure 4.10 Altitude Indicator

The Altitude Indicator is positioned on the right side of the display, and provides

information on the altitude and vertical velocity of the aircraft, as well as outside

pressure.

4.1.4.1 Altitude tape

Figure 4.11 Altitude Tape

Page 17 of 54

The Altitude Tape is composed of the Altitude Scale, Altitude reading box, Altitude Trend

Indicator and Outside Pressure Reading.

The Altitude Tape ranges from -980 to 46000 feet.

The scale ticks represent the values in increments of 20 feet (short lines) and 100 feet

with text (wider lines).

At the center of the tape is positioned the Altitude Reading box, which is fixed and

provides an exact reading of the current Indicated Pressure Altitude.

The Altitude Trend Indicator is represented as a purple box on the left edge of the scale.

It expands either upwards or downwards depending on the sign of the Vertical Speed

(climb rate), reaching the calculated altitude 10 seconds in the future on the tape.

The Outside Pressure Reading box is positioned at the bottom of the tape, and it

provides the exact value of the indicated outside pressure in inches of mercury, ranging

from about 6.5 to 32.

Note: the default measurement system is feet for altitude and inches of mercury for

outside pressure. The measurement system can be changed via a .ini file, as described

in section 5.

4.1.4.2 Vertical Speed Indicator (VSI)

Figure 4.12 Vertical Speed Indicator (VSI)

Page 18 of 54

The Vertical Speed Indicator is composed of the Vertical Speed Scale and the Reading

box / indicator, and it is positioned right of the Altitude Tape.

The scale ranges from -2000 to 2000 feet per minute, with ticks spaced at 500

increments. The text is shown on the side of the +/- 1000 and 2000 value, indicated as

thousands.

The Reading box moves along the scale, which is fixed, indicating the current climb rate.

It provides the exact value inside as text. While the scale only ranges up to +/- 2000 feet

per minute, the reading inside the box can reach +/- 4000 feet per minute.

Note: The measurement system can be changed via a .ini file, as described in section 5.

Page 19 of 54

4.1.5 Digital Map

Figure 4.13 Digital Map

In the bottom left of the PFD, a small digital map shows a satellite view of the terrain at

the current position of the aircraft. The Map is circular, and it rotates depending on the

current magnetic heading.

The aircraft symbol is centered on the map and represents the current aircraft position.

It is fixed, similar to the Compass implementation.

On the left side of the map are positioned a “+” button and a “-“ button, which can be

touched on the screen to increase or decrease the zoom level.

This zoom level is shared with the MAP tab (see section 4.2), and the boundaries of the

zoom levels are defined via the .ini file. The default min and max values are 11 and 17.

The map is implemented with raster tiles, which are queried to a map tile provider

(MapBox) the first time they are needed and are then saved locally for subsequent

usage. For more details see section 5.2.2.

Page 20 of 54

4.1.6 Other Readings

Figure 4.13 Other readings

In the bottom right of the PFD, a set of useful parameters and values are shown as raw

text to give the user a quick reference of the following data:

- Time (yyyy-mm-dd hh:mm:ss)

- Outside Temperature

- Latitude

- Longitude

- Static outside pressure

- GPS Height

- Magnetic Pitch

- Magnetic Roll

Page 21 of 54

4.2 MAP

Figure 4.14 MAP tab

The MAP tab is fairly simple in its implementation: at the center of the screen the same

circular map as present in the PFD is shown at full scale. In addition, the N, E, S and W

symbols are drawn to give a general heading indication.

On the right of the screen the “+” and “-“ symbols can be interacted with to increase or

decrease the zoom level, which is shared with the map shown in the PFD. The zoom

level is bounded between a minimum and maximum value which can be changed via .ini

file.

The zoom level is also displayed as text on the top right.

On the top left of the screen the Latitude and Longitude current values are displayed as

raw text.

Page 22 of 54

4.3 DATA

Figure 4.15 DATA tab

In the DATA tab, the full set of input data is displayed as raw text, divided into 3 sections

depending on the set of sensors from which they are derived: Air Data, AHRS, GPS.

A fourth quadrant on the bottom right is reserved for displaying 2 plots:

- Angle of Attack (vane) , Angle of Attack (ASSE) vs time

- Angle of Sideslip (vane), Angle of Sideslip (ASSE) vs time

These graphs are a useful representation of the difference between the data obtained

through the instruments (vane) and the data obtain via the ASSE method (see RD 1).

On top of the graphical representation, on the right side of each graph the raw values of

the angles are displayed with matching colors with respect to the plot.

These values, as well as the delta (as %) between them, are saved at a fixed interval

inside an output text file (in the bin/data directory). The filename is a string representing

the date (ASSE_VS_VANE_yyyy_mm_dd_hh_mm_ss) to avoid overwriting of the output

file between different runs. The rate at which these values are saved can be customized

via the .ini file.

On the bottom right of the quadrant, a FLAG button can be toggled. When the FLAG is

toggled, the button is highlighted in red and a “flag” value in the output file is switched to

a “1” until the FLAG button is toggled off. When the FLAG is toggled off, the “flag” value

in the output file is “0”.

This functionality is useful for the user to easily keep track and highlight the set of data

in a specific time interval, or during a particular maneuver and limit cases.

Page 23 of 54

4.4 USER CUSTOMIZATION – settings.ini

In the bin/data folder, a .ini file “settings.ini” can be modified to customize a set of

parameters and options without the need to modify the source code.

The .ini file is divided into subsections, and each parameters is explained via comments

inside the .ini file. If the program can’t find a “settings.ini” file in the correct directory, a

new one is created with default values. Another .ini file, “settings_defualt.ini” can be

found in the same directory: this file is not used by the program at runtime, serving just

as a reference to the user of the default parameters with which a new “settings.ini” file

would be created.

Page 24 of 54

5. CODE IMPLEMENTATION

This section will provide an overview of code structure, starting from the general

framework and going through each main class, which represent the different scenes and

Indicator groups (as seen in section 4).

It will also provide details on the differences between the development environment

(W10) and the target environment (Linux, Ubuntu), and instructions on how to “port” the

application between the two.

Additional details on the code can be found as comments in the source code files.

5.1 openFrameworks - OVERVIEW AND STRUCTURE

From openFrameworks home page: https://openframeworks.cc/about/

openFrameworks is designed to work as a general purpose glue, and wraps together several

commonly used libraries, including:

 OpenGL, GLEW, GLUT, libtess2 and cairo for graphics

 rtAudio, PortAudio, OpenAL and Kiss FFT or FMOD for audio input, output and analysis

 FreeType for fonts

 FreeImage for image saving and loading

 Quicktime, GStreamer and videoInput for video playback and grabbing

 Poco for a variety of utilities

 OpenCV for computer vision

 Assimp for 3D model loading

The code is written to be massively cross-compatible. Right now we support five operating

systems (Windows, OSX, Linux, iOS, Android) and four IDEs (XCode, Code::Blocks, and

Visual Studio and Eclipse). The API is designed to be minimal and easy to grasp.

openFrameworks is distributed under the MIT License. This gives everyone the freedom to use

openFrameworks in any context: commercial or non-commercial, public or private, open or

closed source. While many openFrameworks users give their work back to the community in a

similarly free way, there is no obligation to contribute.

https://openframeworks.cc/about/
http://www.opengl.org/
http://glew.sourceforge.net/
http://www.opengl.org/resources/libraries/glut/
https://code.google.com/p/libtess2/
http://cairographics.org/
http://www.music.mcgill.ca/~gary/rtaudio/
http://www.portaudio.com/
https://www.openal.org/
http://kissfft.sourceforge.net/
http://www.fmod.org/
http://freetype.sourceforge.net/index2.html
http://freeimage.sourceforge.net/
http://developer.apple.com/quicktime/
http://gstreamer.freedesktop.org/
https://github.com/ofTheo/videoInput
http://pocoproject.org/
http://opencv.org/
http://assimp.sourceforge.net/
https://openframeworks.cc/about/license/

Page 25 of 54

5.1.1 Folder Structure

openFrameworks/

├── addons/

├── apps/

│ ├── myApps/

│ │ └── MyProject/

│ │ ├── addons.make

│ │ ├── bin/

│ │ │ ├── data/

│ │ │ ├── Binaries / executable

│ │ │ └── other necessary binary files

│ │ ├── config.make

│ │ ├── Makefile

│ │ ├── src/

│ │ │ ├── main.cpp

│ │ │ ├── ofApp.cpp

│ │ │ └── ofApp.h

│ │ │ └── Other .h and .cpp files

├── docs/

│ ├── README.md

│ └── (documentation files)

├── examples/

├── libs/

├── scripts/

The folder structure above is the general structure with which openFrameworks is

distributed. Highlighted in green are the main folders that are used in developing an

openFrameworks app:

● add-ons: Any addon downloaded from the openFrameworks website will need to be

moved in this folder. In order for the addon to be included and compiled with the

project, the addons.make file will need to be updated by adding a line containing the

name of the addon.

● apps/MyProjects: The source files (.h and .cpp) will need to be included in the /src

folder, and the binary/executable file will be found in the /bin folder. Inside the

/bin/data folder, supporting files will be included such as .ini, TrueTypeFont (TTF) for

text and so on.

Maintaining this structure is important as the Makefile is implemented to reflect it.

Page 26 of 54

5.1.2 Code structure and main functions

Figure 5.1 General main.cpp

The openFrameworks main loop is composed of a set of functions that are called at

different times: at the start of the program (setup), once every cycle (update and draw)

and when certain events trigger them (e.g. mousePressed, keyPressed…).

The main.cpp sets up the parameters and general settings of the program (figure 5.1),

and then calls the main loop through the “ofApp” class (figure 5.2).

Figure 5.2 General ofApp.h and .cpp

The ofApp class is the main “canvas” inside which the actual code is developed and

implemented. The main functions are the following:

● setup(): The code inside the setup function will be executed only once at the start of

the program. This is the recommended section in which to initialize most of the

objects and define the main parameters. For example, a few graphical objects

Page 27 of 54

(created through the ofPath function) are computationally intensive and therefore

defining them once in the setup function is ideal.

● update(): The update function of the ofApp class will be executed during each loop of

the program runtime, just before the draw function. This section is recommended for

the updating of inputs and other parameters which may change overtime.

● draw(): Like update, the draw function is executed during each loop after the update

function. The main distinction between the two is conceptual, in order to separate the

update code from the drawing functions that actually render the graphical objects on

screen.

● inputs listeners: Under the draw functions, several input listeners functions are

defined depending on the type of input to be read and processed. These functions

provide a direct way to execute certain blocks of codes for example when the mouse

is pressed, dragged or released or when a certain key is pressed.

Page 28 of 54

5.1.3 Graphic functions / classes

This section will give a brief overview of the main graphic functions utilized in the scope

of this project.

For the full documentation, consult the following link:

https://openframeworks.cc///documentation/graphics/ofGraphics/

● ofDraw functions: most of the graphical shapes are defined and rendered through

the ofDraw functions. All draw functions take as input the rendering position in the

current transformation matrix, and the main parameters to define the shape.

Example: ofDrawRectangle(0,0,100,100) will draw a rectangle 100 pixels wide, 100

pixels high, with the top left corner on the top left of the screen.

Note: the default reference system has its origin on the top left pixel of the screen,

with the z-axis going through the screen as shown in Figure 5.3

Figure 5.3 Screen reference system

https://openframeworks.cc/documentation/graphics/ofGraphics/

Page 29 of 54

● ofTranslate and ofRotate: These functions provide a straightforward way for moving

the reference system by translating it and rotating it around vectors, making it

possible to dynamically change the position on the screen of certain graphical objects

based on certain parameters such as input data.

 Example:

ofTranslate(200,200,0);

ofDrawRectangle (0,0,100,100);

The ofTranslate function translates the reference system by 200 pixels right and 200

pixels down, and draws a rectangle in the origin (0,0) of the current transformation

matrix.

This means that the rectangle will be drawn with its upper left corner at the screen

coordinate (200,200).

Note: this is equivalent to calling ofDrawRectangle(200,200,100,100).

● ofPush and ofPop: These functions are called to isolate certain transformations. The

most relevant are ofPushMatrix and ofPushStyle and their ofPop counterparts.

ofPushMatrix() saves the current transformation matrix, and the first call of

ofPopMatrix() restores it.

ofPushStyle() does the same thing, but for style-related parameters (such as color).

Example:

ofPushMatrix();

ofTranslate(200,200,0);

ofDrawRectangle (0,0,100,100);

ofPopMatrix();

[other drawing code]

The code example above saves the current transformation matrix (for example, the

default one as per Figure 5.3). After that, the reference system is moved 200 pixels

right and down and a rectangle is drawn with its upper left corner in the origin of the

current transformation matrix (0,0).

The ofPopMatrix() function then restores the previously saved transformation matrix,

making the drawing code which comes after unaffected by the previous

transformations.

This approach is very useful in making sure that a certain set of graphical objects

“move” together, isolating them from other elements of the scene.

Page 30 of 54

● ofColor class: The ofColor class is a convenient tool to manage colors in the scope

of this project. It can be used to define and store a specific color by using RGB and

Alpha values, as well as hex values. It also provides a ready-to-use list of colors via

keywords.

 Example:

 ofSetColor(ofColor::yellow);

 ofDrawCircle(400,400,100);

 The code above sets the current color via the ofSetColor() function, to which the

ofColor::yellow object is passed as argument. Then, a yellow circle of radius of 100

pixels is rendered with its center at (400,400).

● ofGetWidth() and ofGetHeight(): These functions return the pixel width and height

size of the current window. They are particularly useful to make the application able

to dynamically adapt and fit to different screen and window sizes.

 Example:

 ofDrawCircle(ofGetWidth() / 2, ofGetHeight() / 2, 100);

 This line of code renders a circle centered at the exact center of the window,

regardless of its dimension or position on the screen.

Page 31 of 54

5.1.4 Add-ons

On top of the included libraries in the base distribution of openFrameworks, the following

addons are installed to take advantage of specific implementations and functionalities

useful in the scope of this project.

● ofxLayerMask: This addon provides direct functions and methods to implement

masking effects of certain graphical objects. It makes use of FBOs (Frame Buffer

Objects) and shaders to define a shape or region in the screen (mask) inside which to

“clip” the graphical elements (layers).

 To use the addon, a ofxLayerMask object has to be initialized (in the setup function),

and then the .beginMask(), endMask(), beginLayer() and endLayer() functions are

called to wrap around the drawing code of the mask shape and graphical objects to be

masked.

Example:

ofApp::setup() {

ofxLayerMask mask;

mask.setup(ofGetWidth(), ofGetHeight());

mask.newLayer();

}

ofApp::draw() {

mask.beginMask();

ofDrawCircle(400,400, 200);

 mask.endMask();

 mask.beginLayer();

 ofDrawRectangle(400,400,300,300);

 mask.endLayer();

 mask.draw(0,0);

 }

 The ofLayerMask object is initialized in the setup function, and then in the draw function

the mask and layer are defined separately. The mask in this case is a circle of radius

200 pixels centered at (400,400), while the object to be rendered on the screen is a

square of 300 pixels per side, drawn at (400,400).

The actual rendering happens through the mask.draw(0,0) function, which also takes

a position (0,0) as argument. By changing the position of the mask.draw() function, the

rendering can be moved as a whole on the screen.

Page 32 of 54

● ofxIniSettings: This addon provides functions tailored to the openFrameworks

environment useful in working with .ini files. In the context of this project, a set of

parameters (positions, size, measurement system…) are read and initialized from a .ini

file that can be customized by the user. The main aspect ratio of the indicators is

maintained, but the position and size can be modified as well as the measurement

system of each indicator.

Added details on the implementation of the .ini file reading and writing for this project

can be found in the comments inside the source code.

● ofxHistoryPlot: This addon is used specifically to implement plots in the DATA tab of

the display which shows the evolution over time of the Angle of Attack / Angle of sideslip

from the sensor (vane) and the same angle calculated using ASSE.

Page 33 of 54

5.2 Scenes and Indicator Classes

For each scene, a dedicated class is implemented in order to encapsulate the methods

and variables specific to that scene. The PFD indicators also have dedicated classes.

Instances of these classes (objects) are then initialized in the ofApp class.

Most of these classes follow a generic structure, similar to the main ofApp class structure.

For example, each class will have a setup(), update() and draw() method, which in turn

will be called in the appropriate functions of the scene objects and the main ofApp loop

(more details in section 5.4).

The scene classes (PFD, MAP and DATA) are inherited from a baseScene class, which

acts as a class template in order to allow the handling of the different scenes using a

vector. The baseScene template has a setup, update and draw method , which are

overridden by each scene class.

Every class and global variable is declared and implemented inside the ofApp.h file (see

image…), while the ofApp class itself is implemented inside the ofApp.cpp file.

Each class will be described in the following sections, with notes on the most significant

code implementations. For specific details on each function and method, see the source

files which contain comments to the main parts of the code.

Page 34 of 54

5.2.1 PfdScene

For each indicator group, the PfdScene class implements the respective indicator

subclasses which are defined separately (more details on each PFD subclass in the

following sections).

● setup(): each subclass setup method is called, and the “+” and “-” buttons for the

zoom of the minimap are defined and initialized.

● loadIni(): each subclass loadIni() method is called, initializing the main parameters

depending on the .ini file.

● update(): each subclass update method is called.

● draw(): each subclass draw method is called. In particular, the map is scaled down

and drawn in the bottom left portion of the screen, with respect to the map subclass

implementation which is more general as it’s also used by the MAP scene. The “+”

and “-” buttons are also drawn.

● mousePressed(): this is a listener method which checks if the mouse (or touch in

case of a touchscreen) is pressed inside either the “+” or “-” boxes, in which case it

updates the mapZoom value (shared with the MAP scene).

Page 35 of 54

5.2.1.1 Attitude Indicator

Figure 5.4 Attitude Indicator Class

The Attitude Indicator class encapsulates all the variables and methods relevant to the

Attitude Indicator group as described in section 4.1.1.

The approach in defining separate methods or not for a particular set of code depends

on the complexity and length, with the objective to optimize readability and traceability of

the transformations.

An overview of each class method can be found below:

● variables declaration: this is a block of code inside which every variable and object

used inside the class is defined. More details can be found in the actual code.

● AttitudeIndicator(): This is the constructor of the class, with the initializations to

default values of the class variables. It is executed once when the object is created in

the main ofApp class.

Page 36 of 54

● loadIni(): This method reads from the .ini file to save the values into the appropriate

variables. It’s called inside the main ofApp loadIni() function at the start of the program.

● setupFont(): This method loads the TTF (True Type Font) files, defining the sizes of

the small, medium and large font depending on the ratio between the default

rollIndicatorRadius and the actual one (if it is changed via the .ini file).

It’s called inside the more general setup() function of this class.

● setup(): This method initializes the mask objects (for the Roll indicator and the Pitch

Ladder) and it calls the setupFont() method.

● update(): This method updates the variables used in translating and rotating the

relevant objects depending on the INPUT DATA. The input values are clamped to be

inside the min and max values defined in the ICD.

It also updates the reference dimensions of the Attitude Indicator based on the .ini

parameters and the current window/screen size.

● drawWaterline(): This method draws the Waterline (aircraft symbol) at the center of

the current transformation matrix. It is called in the general drawAll() method.

● drawPitchScale(): This method draws the unmasked Pitch Scale at the center of the

current transformation matrix. It is called in the drawMaskedPitchScale() method;

● drawPitchScaleMask(): This method draws the Pitch Scale Mask, at the center of

the current transformation matrix. It is called in the drawMaskedPitchScale() method.

The Mask is shaped as a portion of a circle with a radius slightly smaller than the Roll

Indicator radius, and it’s then cut off at the base just above the Slip indicator.

● drawMaskedPitchScale(): This method draws the masked Pitch Scale, making use

of the ofxLayerMask addon. It is called inside the general drawAll() method.

Page 37 of 54

The pitch Ladder is drawn in the Layer

section; it’s translated to be positioned in

the center of the Attitude Indicator group,

and further rotated and translated

depending on the INPUT DATA.

The Mask is drawn in the mask section,

positioned in the center of the Attitude

Indicator group.

The full result is then drawn via the .draw()

method at the end, with (0,0) as position as

this draws the full FBO which is initialized

to be the size of the window.

Figure 5.5 drawMaskedPitchScale()

● drawRollIndicator(): This method draws the Roll Indicator centered in the origin of

the current transformation matrix. It is called in the drawMaskedRollIndicator()

method.

● drawMaskedRollIndicator(): This method draws the Roll Indicator masked to be

only visible inside a box defined in the mask section of this method. It is the same

approach used for the masked Pitch Scale, and the method is called in the general

drawAll() method.

● drawSlipIndicator(): This method draws the Slip Indicator positioned to be just

below the Pitch Scale Mask lower edge. It is called in the general drawAll() method.

● drawAll(): This method combines all the previous drawing methods by positioning

them on the screen depending on the center of the Attitude Indicator group and input

data (pitch and roll).

It is called in the main draw() method inside the pfdScene class.

Note: The order of the drawing methods is important, as it determines the “layer” in

which the graphical object is rendered. The last draw method to be called will be

rendered on top of everything else.

Page 38 of 54

Figure 5.6 AttitudeIndicator.drawAll()

Page 39 of 54

5.2.1.2 Compass

Figure 5.7 Compass Class

The Compass class encapsulates all the variables and methods relevant to the Compass

group as described in section 4.1.2.

An overview of each class method can be found below:

● Compass(): This is the constructor of the class, with the initializations to default

values of the class variables. It is executed once when the object is created in the

main ofApp class.

● setup(): This method initializes and defines the ofPath object used to draw the Plane

icon at the center of the compass. It also calls the setupFont() method.

● update(): This method updates the variables used in translating and rotating the

relevant objects depending on the INPUT DATA. The input values are clamped to be

inside the min and max values defined in the ICD.

It also updates the reference dimensions of the Compass based on the .ini parameters

and the current window/screen size.

● drawCompass(): This method draws the compass at the origin of the current

transformation matrix. It includes the compass ticks and text, as well as the heading

Page 40 of 54

text box above the compass. It also takes care of rotating the compass depending on

the INPUT DATA (heading).

It is called in the general drawAll() method.

● drawPlaneIcon(): This method draws the planeIcon (ofPath object defined in the

setup()). It is called in the general drawAll() method.

● drawAll(): This method combines all the previous drawing methods by positioning

them on the screen depending on the center of the Compass group and input data

(Heading). It is called in the main draw() method inside the pfdScene class.

Figure 5.8 Compass.drawAll()

5.2.1.3 Airspeed Indicator

Page 41 of 54

Figure 5.9 Airspeed Indicator class

● AirspeedIndicator(): This is the constructor of the class, with the initializations to

default values of the class variables. It is executed once when the object is created in

the main ofApp class.

● setup(): This method initializes the mask objects and calls the setupFont() method.

● update(): This method updates the variables used in translating and rotating the

relevant objects depending on the INPUT DATA. The input values are clamped to be

inside the min and max values defined in the ICD.

● drawMaskedScale(): This method draws the masked Airspeed Indicator scale inside

the box. It is called by the drawAll() method.

● drawAoAIndicator(): This method draws the Angle of Attack Indicator to the left of the

Airspeed Indicator.

● drawAll(): This method combines all the previous drawing methods by positioning

them on the screen depending on the center of the Airspeed Indicator group and input

data.

It is called in the main draw() method inside the pfdScene class.

Page 42 of 54

Figure 5.10 AirspeedIndicator.drawAll()

5.2.1.4 Altitude Indicator

Page 43 of 54

Figure 5.11 Altitude Indicator class

● AltitudeIndicator(): This is the constructor of the class, with the initializations to

default values of the class variables. It is executed once when the object is created in

the main ofApp class.

● setup(): This method initializes the VSI indicator box (as ofPath objects), sets up the

mask objects for the altitude tape and calls the setupFont() method.

● update(): This method updates the variables used in translating and rotating the

relevant objects depending on the INPUT DATA. The input values are clamped to be

inside the min and max values defined in the ICD.

● drawMaskedScale(): This method draws the masked Altitude Indicator scale inside

the box. It is called by the drawAll() method.

● drawVertBox(): This method draws the VSI box and indicator.

● drawAll(): This method combines all the previous drawing methods by positioning

them on the screen depending on the center of the AltitudeIndicator group and input

data.

It is called in the main draw() method inside the pfdScene class.

Page 44 of 54

Figure 5.12 AltitudeIndicator.drawAll()

Page 45 of 54

5.2.1.5 Map

Figure 5.13 Map class

This class is utilized by both the PfdScene and MapScene, and it’s implemented to

generally display a circular and rotating map depending on the current heading input

value.

● setup(): This method initializes the planeIcon ofPath object, sets up the mask objects

for the map and initializes the font objects.

● update(): This method updates the variables used in translating and rotating the

relevant objects depending on the INPUT DATA. The input values are clamped to be

inside the min and max values defined in the ICD.

● latLonToTile(): This method takes as input lat,lon and zoom values, and transforms

them to the x and y tile coordinates that contain the position passed as input.

● loadTile(): This method constructs the url depending on the x,y and zoom level passed

as input, and checks whether the tile is present in memory or if it needs to be loaded

through a query to the map tile provider (MapBox). In either case, the tile is then stored

in the unordered_map TileCache.

● isTileLoaded(): This method checks whether a tile is already loaded in the TileCache.

Page 46 of 54

● draw(): This method draws the map as a 4x4 grid of tiles that are either loaded from

memory or queried to the tile provider (MapBox), depending on checks performed on

the availability of the tile in the TileCache, local memory or neither.

● drawMaskedMap(): This method draws the masked map. The mask is a circle of

radius = tileSize.

5.2.1.6 Other Readings

Figure 5.14 Other Readings class

● setup(): This method sets up the font for this class

● update(): This method updates the variables used in translating and rotating the

relevant objects depending on the INPUT DATA. The input values are clamped to be

inside the min and max values defined in the ICD. It also converts the GPS time to

the format YYYY-MM-DD HH:MM:SS using the convertGPSTimeToString() function

defined in the global scope (see code implementation for more details).

● drawAll(): This method draws the actual box and text in the bottom right of the

screen.

Page 47 of 54

5.2.2 MapScene

The mapScene class “wraps” the Map class described above, displaying additional

supporting elements and implementing the “+” and “-“ buttons to provide interactivity to

the user on the zoom level.

Figure 5.15 MapScene class

● setup(): The setup method calls the map.setup() method (from the Map class), and

also initializes the font objects and the “+” and “-” buttons.

● update(): This method calls the map.update() method (from the Map class) passing

as input the INPUT_DATA structure.

● draw(): This method draws the MAP tab scene, by calling the

map.drawMaskedMap() method at full scale in the center of the screen, as well as the

“+” and “-” buttons and the LAT, LON and Zoom Level strings.

● mousePressed(): This method is an input listener that checkers whether the mouse

was clicked inside either the “+” or “-” buttons and updates the zoomLevel singleton

accordingly.

Page 48 of 54

5.2.3 DataScene

Figure 5.16 DataScene class

This class handles the DATA tab, and on top of the usual setup, update and draw

methods it makes use of other custom methods. The scene is divided into 4 panels, and

each panel has a dedicated method that makes use of the general drawHeader and

drawTextBox methods to draw each text field.

● setup(): This method sets up the parameters from the .ini file, initializes the font

objects and sets up the plot objets (for the ASSE vs VANE panel).

● update(): This method updates all input data values which are stored in separate

maps (label, value). These maps are then used in the drawing functions for each

panel to loop through the list of inputs in drawing each entry in the panels.

● draw(): This method calls the other draw methods for each panel positioning them

accordingly on the screen. The FLAG button is also drawn in the bottom right of the

ASSE vs VANE panel.

For more details on other methods for this class, refer to the source code and the

comments inside.

Page 49 of 54

5.3 INPUT DATA INTERFACE

The inputs to the avionic display in this project are managed through a structure that

reflects the ICD table as per RD 2 and figure below:

Figure 5.17 SAIFE_IO table

Page 50 of 54

In the code, for testing purposes the structure includes methods for updating the values

using Perlin noise functions to simulate a continuous change inside the minimum and

maximum values for each variable. The next section will give an overview of the code

implementation, more details are available in the comments inside the source files.

5.3.1 INPUT DATA

In order to define an overall structure that holds all input data as per the ICD, a first

structure template is implemented (inputData). This is a general structure that holds a

name, value, min and max as well as member methods to update the values over time

(see Figure 5.X below)

Figure 5.X inputData structure

A second structure (INPUTS) is then implemented, holding instances of the first structure

initialized to reflect the ICD. See figure 5.X below.

Figure 5.X INPUTS structure

The INPUT structure is then initialized in the main ofApp class, which calls its update method

inside the ofApp::update, as well as all other classes update methods by passing the INPUT

structure as input.

Page 51 of 54

5.4 GLOBAL VARIABLES

A few global variables and data structures are defined to be shared between different

classes.

● inputData + INPUTS (C++ structures, see section 5.3 above)

● mapTiles (C++ unordered_map, singleton): This is a singleton, a C++ class that

is designed to provide one and only one instance and a global access to this

instance. This implementation ensures that the vectors inside the map are

correctly handled and freed when the program is exited. This map serves as a

cache to load and store the map tiles as the program runs. It is pre-loaded at the

start of the program with the tiles downloaded locally from previous runs and

inside the min and max lat and lon values as defined in the .ini file. This

implementation makes it so new map tiles are queried and downloaded only the

first time they are needed, across different runs, to avoid “freezing” of the

program every time the tile grid needs to be updated.

● zoomLevel (int, singleton): The zoom level is also implemented as a singleton to

ensure correct initialization and destruction when the program is exited. The

value of the zoomLevel is shared across all instances of the Map class, so that it

stays consistent between the PFD and MAP scenes.

Page 52 of 54

5.5 MAIN LOOP: ofApp and other functionalities

The main loop of the application is run in the ofApp object, implemented in the

ofApp.cpp file. It is structured in 3 main functions, and several listeners functions as

detailed below.

● setup(): The setup method enables and sets up a few parameters for the whole

program (such as antialiasing, vertical sync..). It then creates a vector of scenes

(PFD, MAP, DATA) and calls the setup method from each of them. If enabled via .ini

file, the map tiles are also preloaded inside the zoom range defined in the .ini file.

Other variables are initialized, mainly used in the fakenoise functions to update input

data.

● update(): the INPUT_DATA.update method is called, as well as update methods

from each scene class. The AoA and AoS values (vane vs ASSE) are also written to

a file if the time interval is greater than the one defined via .ini file.

● draw(): This method calls the current scene draw method. The DATA draw method is

also always drawn before the rest to keep updating the plot of ASSE vs Vane even

when the DATA tab is not the selected one. In this method, the 3 toggle buttons for

selecting the scenes are also drawn to the screen.

● mousePressed(): This function “listens'' to mouse interactions with the scene and

passes the screen coordinates to the currently active scene class for further

processing. It also checks whether the mouse is activated inside one of the three

scene toggle buttons at the top of the screen, changing the currentScene enum

(PFD, MAP, DATA) that is used to call the appropriate update and draw functions

from the different scene classes.

Note that in the current implementation and target HW (Odroid + touchscreen display),

the mouse touch event is equivalent to the touch on the screen.

Page 53 of 54

5.5 PORTING TO LINUX (ODROID, UBUNTU MATE)

Refer to the readme file provided with the source code for detailed indications on how to

compile and run this software on the target HW (ODROID, with Ubuntu Mate

distribution).

In general, a specific Ubuntu image has to be installed, as it includes the correct drivers

for the Mali GPU of the Odroid N2, and the OpenGL version to target within the

main.cpp file is OpenGLES (Embedded Systems) version 2.0.

Page 54 of 54

6.CONCLUSION

While this project involved the development of an Avionic display with a specific target

implementation (SAIFE demonstrator), it can also serve as a modular and scalable base

for a more generic implementation of an avionic display, taking advantage of a high level

and open source framework which is a far more accessible and ready-to-use tool to

develop this type of interactive Human-Machine Interfaces programs.

For the specific use case, the following open points/enhancement opportunities are

identified:

- Linking the Avionic Display SW with the actual input data incoming and processed

from the sensor suite.

- Optimizing the SW via the use of dynamic cache and multi-threading, in particular in

regards to the map tiles.

- Expanding the .ini file with more parameters and options to give additional control to

the user on the customization of the program, depending on the use cases and needs.

