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Abstract

The aim of this thesis is to develop and test a reliable one-dimensional physical
model of heat diffusion within the brake system of a car. The ITT company has
been able to develop a brake pad, termed Smart Pad, that is endowed with sensors
installed on the backplate, in particular a temperature sensor. The long-term goal
of the research project developed with the ITT company is to use the data from this
sensor to prevent the brake from overheating by estimating the disk temperature
in real time. Since the backplate and the disk are the two opposite sides of the
friction material it is necessary to model the heat propagation inside the pad. To
this aim we use a one-dimensional model of heat conduction neglecting dissipation
in other directions.
To validate the 1d-model, ITT conducts an experiment in controlled conditions
collecting data that we use to estimate the thermal parameters of the pad. This
approach is initially employed on synthetic data generated using the model, imposing
initial and boundary conditions. Subsequently, experimental data are used. This
study enabled the determination of the minimum conditions for identifiability
and the investigation of datasets and acquisition methodologies (other than those
employed) that are optimal for parameter estimation.
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Chapter 1

Introduction

1.1 Motivation
The temperatures reached during braking inside the brake pad of a car can be
extremely high. Overheating of the disc is a very dangerous phenomenon when
driving a vehicle: the disc temperature can reach such critical values that the pad
slips on the disc, compromising the efficiency of braking.
The causes of this phenomenon can be many:

• Long braking at high speed

• Brake caliper jamming

• A bad braking system

• Incorrect installation of brake pads

• Brake disc deformation.

It can be argued that knowledge of the temperature of the disc and of the pad
while driving would be a vital piece of information, with potential applications
in road safety and motor racing contests. For instance, a truck driver who was
aware of the temperature of their braking system might choose to take a break
and allow the system to cool down, rather than risk using the emergency ramp for
deceleration or even worse causing an incident. To achieve a predictive analysis of
behavior, it is necessary to develop models. These models can vary in complexity.
We have developed a very simple one, focusing on the identifiability of thermal
parameters, considering it a crucial strategy for model validation.
The main problem in trying to predict the temperature of the brake is that we have
records of temperatures only at the backplate, where the sensor is placed, before
we start to see a change in temperature due to braking, some time must pass for
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Introduction

the heat to cross for the heat to cross the friction material. This delay prevents
real-time determination of the brake temperature but allows for it with a short lag.

Figure 1.1: Example of temperature profile

However, while this is a problem that can be solved by knowing the energy spent
during the breaking, which is predictable, a more complex challenge is modeling
the cooling phenomenon of the brake during periods when we are not braking.
Indeed, the moving vehicle dissipates heat through mechanisms such as ventilation,
convection, and conduction where valid models are much more complicated. In the
model, this translates to applying the correct boundary conditions for braking and
moving. Thus, we distinguish between two problems: one simple, because we know
how to impose the boundary conditions, and the other complex, because we do not
know how to model the cooling factors of the brake.

2
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Figure 1.2: Representation of the problems

In this thesis, we will focus on validating the one-dimensional model by consid-
ering the simplest of the two problems. This is because if the model can provide
accurate predictions of the brake temperature during braking, then it will also be
a valid model for cooling when the right boundary conditions are imposed. As
mentioned earlier, this involves sufficiently modeling the rotor-side heat dissipation
and providing the thermal diffusion equation solver with the correct boundary
conditions.

1.2 Basic Concepts and Definitions
A differential equation that contains, in addition to the dependent variable and the
independent variables, one or more partial derivatives of the dependent variable is
referred to as a partial differential equation. In general, it may be written in the
following form:

f(x, y, ..., u, ux, uy, ..., uxx, uxy, ...) = 0) (1.1)
The concept of a function of several independent variables, denoted by x, y, ... is
introduced, along with the partial derivatives of this function, ux, uy, ..., uxx, uxy, ...
which represent the rate of change of the function with respect to each variable.
Subscripts on dependent variables denote differentiations, e.g.,

ux = ∂u

∂x
uxy = ∂2u

∂y∂x

The order of a partial differential equation is defined as the order of the highest-
ordered partial derivative appearing in the equation. For example

uxx + 2xuxy + uyy = ey

is a second-order partial differential equation. and

uxxy + xuyy + 8u = 7y

3



Introduction

is a third-order partial differential equation. A third-order partial differential
equation. A partial differential equation is said to be linear if it is linear in
the unknown function and all its derivatives, with coefficients depending only
on the independent variables. It is said to be quasi-linear if it is linear in the
highest-ordered derivative of the unknown function. For example, the equation

yuxx+ 2xyuyy + u = 1

The equation which is not linear is called a nonlinear equation.

1.3 Model and equations

1.3.1 1D Heat equation
The heat equation 1D is a linear partial differential equation which governs the
temperature distribution in an object. Let us consider a thin metal rod located
at the interval [0, L] on the x-axis. By identifying the bar with its axis, we can
describe all the physical quantities of interest as a function of the x-axis and time.
In particular, we shall see that the temperature u = u(x, t) obeys the equation

cρ
∂u

∂t
− ∂

∂x

A
κ
∂u

∂x

B
= ρq (1.2)

In the stationary case, where all variables are not time-dependent, the equation
reduces to

− d

dx

A
κ
du

dx

B
= ρq (1.3)

where:

• ρ is the mass density per unit length

• c is the specific heat of the bar

• κ is the thermal conductivity coefficient of the bar

• q is the heat input per unit mass and length

It is advisable to make a few comments about these quantities before proceeding.
The specific heat, c(x) > 0, of a material is the amount of heat energy that it
takes to raise one unit of mass of the material by one unit of temperature. As
indicated, we are going to assume, at least initially, that the specific heat may not
be uniform throughout the bar. It should also be noted that in practice the specific
heat depends upon the temperature.
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The mass density, ρ(x), is the mass per unit volume of the material. As with the
specific heat, we will initially assume that the mass density may not be uniform
throughout the bar.
The thermal conductivity of a material, denoted by κ(x), is a measure of its ability
to conduct heat. The greater the ability of a material to conduct heat, the larger the
value of κ(x) will be. The thermal conductivity of a material can vary depending
on its location within the bar. Additionally, as with the specific heat, the thermal
conductivity may vary with temperature. However we will assume that the total
temperature change is not significant, and thus that the thermal conductivity will
not vary with temperature.
The final quantity defined above is q(x, t), which represents any external sources or
sinks of heat energy (i.e. heat energy taken out of the system). If q(x, t) > 0, heat
energy is being added to the system at that location and time, while if q(x, t) < 0,
heat energy is being removed from the system at that location and time.
Having successfully addressed the one-dimensional heat equation, we must now turn
our attention to the initial and boundary conditions. As it is known the number of
condition required in order to solve the problem always match the highest order
of derivative in the equation. So for the heat equation we’ve got a first order
time derivative and so we’ll need one initial condition and a second order spatial
derivative and so we’ll need two boundary conditions. The initial condition that
we’ll use here is,

u(x,0) = f(x)

this equation tell us what the inital temperature distribution in the bar is.
The boundary conditions will inform us as to the temperature and/or heat flow
occurring at the boundaries of the bar. There are four common boundary conditions
that may be employed [1]. The first type of boundary conditions that can be
considered are the prescribed temperature boundary conditions, also known as
Dirichlet conditions. These are defined as follows:

u(0, t) = g1(t) u(L, t) = g2(t) (1.4)

The subsequent type of boundary conditions is prescribed heat flux, also referred
to as Neumann conditions. These can be expressed in accordance with Fourier’s
law as follows:

k
du

dx
(0) = ψ0 k

du

dx
(L) = ψL (1.5)

The third type of boundary conditions employs Newton’s law of cooling and are
sometimes referred to as Robins conditions. These are typically employed when
the bar is situated within a moving fluid, with air being considered a fluid for the
purposes of this discussion. The following equations represent the equations for
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this type of boundary condition.

k
du

dx
(0, t) = −H[u(0, t)− g1(t)] k

du

dx
(L, t) = H[u(L, t)− g1(t)] (1.6)

The quantity H, which is a positive experimental value, is used to determine the
temperature of the surrounding fluid at the respective boundaries, as indicated by
the functions g1(t) and g2(t). It should be noted that the two conditions do vary
slightly depending on which boundary is being considered. At x = 0, a minus sign
is present on the right side, while this is not the case at x = L. The final type
of boundary conditions are periodic boundary conditions. These are defined as
follows:

u(0, t) = u(L, t) du

dx
(0, t) = du

dx
(L, t) (1.7)

1.4 Mathematical Problem
A first problem consist in finding solution of a particular differential heat equation
satisfying appropriate supplementary conditions. Specifically, the model we will
analyze is a one-dimensional thermal diffusion model without boundary dispersion,
involving two materials and assuming mixed boundary conditions. In particular,
for x = 0, we will have a no-flux condition (Neumann condition), and for x = L,
we will have a constant temperature condition.

∂u(0)
∂x

= ψ0 u(L, t) = g2(t)

Figure 1.3: diffusion model

where:
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• κ1 is the thermal conductivity coefficient of the Underlayer (UL)

• w1 is the product of UL mass density for the UL specif heat

• κ2 is the thermal conductivity coefficient of the Friction material (FM)

• w1 is product of FM mass density for the FM specif heat

with two additional condition in between the two material which state the flux
and the temperature in the middle have to be the same in the two material.

The second problem involves determining the thermal parameters of the brake
pad based on experimental data, using the differential equation solver described
earlier. The approach to estimate these parameters relies on minimizing an objective
function defined as the sum of squared distances between the experimental data
recorded by sensors located as shown in Figure 3.1, and the approximation of the
dynamics at grid points corresponding to the actual sensor locations. Therefore, the
objective function is a function of the thermal parameters passed to the differential
equation solver, also we can define the minimization problem as:

min
θ

nØ
i=1

mØ
j=1

(yij − f(xij; θ))2 (1.8)

where θ = [k1, k2, w1, w2] represents the thermal parameters of the pad, yij

denotes the actual temperature readings at the i-th point of the pad at time j, and
f(xij; θ) denotes the approximations at the ij-th grid point of the space-time grid
by the solver using the parameters θ. For convenience, we refer to this function as
the sum squared error (SSE). In our specific case, each dataset includes recordings
from 5 different sensors, of which at most 2 sensors will be utilized per dataset,
hence n ≤ 2. The value of m, on the other hand, depends on the sampling frequency
and duration of the test under consideration.

Since it is defined as the sum of squared deviations between real and approxi-
mated temperature profiles, we have limited insight into the properties or minima
of this function with respect to thermal parameters. To solve the optimization
problem 1.8, an iterative optimization algorithm based on a heuristic approach
called Nelder-Mead will be employed.

However, it is evident that this process is computationally expensive because
each optimization iteration requires solving one or more differential equations
(depending on the number of datasets involved). Therefore, using a pre-existing
solver is impractical due to time constraints, necessitating the development of a
custom solver to expedite the optimization process.
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Chapter 2

Background

2.1 Numerical method
We will begin our exposition on numerical methods for solving differential equations
by first addressing ordinary differential equations (ODEs). This is crucial for our
purpose as these methods play an essential role in the analysis and construction
of methods for partial differential equations (PDEs). In fact, the discretization
methods for the latter reduce the problem to solving ODEs.

Our current aim is thus the approximation of solutions to problems of the type:

y′ = f(t, y), t ≥ t0, y(t0) = y0 (2.1)

Where f is a sufficiently smooth function, in this case we will require it to be
Lipschitz, mapping [t0,∞)×Rd given an initial condition y0 ∈ Rd, which is a state
in the state space Rd. Moreover, being a Lipschitz function means satisfying the
condition

∥f(t, x)− f(t, y)∥ ≤ λ∥x− y∥ ∀x, y ∈ Rd, t ≥ t0 (2.2)

2.1.1 Euler’s method
Reflecting on the meaning of ODEs, we have two pieces of information available: the
value of y at time t = t0, and given any value of the function y ∈ Rd at time t ≥ t0,
we can determine the slope from the differential equation. With this information,
our goal is to predict the value of y at a new point. The most immediate approach
to this problem is to use linear interpolation. That is, we want to estimate y(t) by
assuming that by moving to a sufficiently small time interval, the slope remains
approximately the same. Translated into mathematical terms, the approximation

8
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we are making is the following:

f(t, y(t)) ≈ f(t0, y(t0)) for t ∈ [t0, t0 + h]

where h > 0 is sufficiently small. Integrating 2.1,

y(t) = y(t0) +
Ú t

t0
f(τ, y(τ))dτ ≈ y0 + (t− t0)f(t, y0) (2.3)

Given a sequence t0, t1 = t0 + h, t2 = t0 + 2h, . . ., where h > 0 is the time step, we
denote by yn the numerical estimate of the exact solution y(tn). Motivated by the
formula 2.3, we will say that

y1 = y0 + hf(t0, y0)

we can iterate this process to obtain the general recursive formula.

yn+1 = yn + hf(tn, yn), n = 0,1, ..., (2.4)

The entire procedure just described is known by the famous name of Euler’s method.
As simple as this method is, it forms the basis, in a certain sense, for all multistep
methods and Runge-Kutta methods, which are nothing more than generalizations
of Euler’s method [2]. Before assessing how well Euler’s method approximates the
real solution, we need to examine the convergence of the method.

Theorem 1 Euler’s method is convergent

Proof: We will prove this theorem with an additional hypothesis about the
function f ; specifically, we will assume that this function is also analytic. Given
h > 0 and yn = yn,h, n = 0, 1, . . . ,

ê
t∗

h

ë
, we define en,h = yn,h − y(tn) to denote the

numerical error. We wish to prove that limh→0 maxn ∥en,h∥ = 0. Expanding the
differential equation using Taylor series, 2.1

y(tn+1) = y(tn) + hy′(tn) +O(h2) = y(tn) + hf(tn, y(tn)) +O(h2) (2.5)

because of y is continously differentiable, the term O(h2) can be bounded by a
generic term of the form ch2.Subtructing from 2.4 the 2.5, we obtain

en+1,h = en,h + h[f(tn, y(tn) + en,h)− f(tn, y(tn))] +O(h2) (2.6)

thus it follow by the triangle inequality from Lipschitz condition that

∥en+1,h∥ ≤ ∥en,h∥+ h∥f(tn, y(tn) + en,h)− f(tn, y(tn))∥+ ch2 (2.7)
≤ (1 + hλ)∥en,h∥+ ch2, n = 0,1, ..., ⌊t∗/h⌋ (2.8)

9
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We now claim that

∥en,h∥ ≤
c

λ
h[(1 + hλ)n − 1], n = 0,1, ... (2.9)

the proof of this statement is by induction on n. When n = 0 we need to prove that
∥e0,h∥ ≤ 0 and hence that e0,h = 0 this is true because t0 the numerical solution
matches the initial condition and the error is zero. For n ≥ 0 we assume that is
true up n and try to demonstrate for n+ 1

∥en+1,h∥ ≤ (1 + hλ) c
λ
h[(1 + hλ)n − 1] + ch2 = c

λ
h[(1 + hλ)n+1 − 1] (2.10)

this advances the inductive argument and state that what we have claimed is
true. the constant hλ is positive, therefore 1 + hλ < ehλ hence (1 + hλ)n < enhλ.
The index n is allowed to range in 0,1, ..., ⌊t∗/h⌋, so (1 + hλ)n < e⌊t∗/h⌋hλ ≤ et∗λ.
Substituting into 2.9 we obtain the inequality

∥en,h ≤
c

λ
(et∗λ − 1)h, n = 0,1, ...⌊t∗/h⌋. (2.11)

Since c(et∗λ − 1)/λ is independent of h, it follows that

lim
h→0

0≤nh≤t∗

∥en,h∥ = 0 (2.12)

In other words, Euler’s method is convergent. □
Moreover, Euler’s method can be rewritten in the form yn+1−[yn+hf(tn, y(tn))] = 0.
Replacing yk by the exact solution y(tk), k = n, n+ 1, and expanding the first few
terms of the Taylor series about t = t0 + nh, we obtain

y(tn+1)− [y(tn) + hf(tn, y(tn))]
= [y(tn) + hy′(tn) + ′(h2)]− [y(tn) + hy′(tn)] = ′(h2).

For this reason we say that Euler’s method is of order 1, the order of a numerical
method provides us information about its local behaviour advancing in time from
tn to tn+1, where h > 0 is sufficiently small we incur in an error of O(h2)

2.1.2 Trapezoidal rule
Euler’s method approximates derivatives with a constant over the interval [tn, tn+1]
using the constant at tn. This approximation is not very accurate. An alternative is
to approximate the derivative over the interval with the average of the derivatives
at the endpoints. This leads us to an expression similar to 2.3:

y(t) = y(tn) +
Ú t

tn

f(τ, y(τ))dτ ≈ y(tn) + 1
2(t− tn)[f(tn, y(tn)) + f(t, y(t))] (2.13)

10
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This is the motivation behind the trapezium rule

yn+1 = yn + 1
2h[f(tn, yn) + f(tn+1, yn+1)]. (2.14)

also to obtain the order of 2.14 we substitute the exact solution,

y(tn+1)− y(tn) + 1
2h[f(tn, y(tn)) + f(tn+1, y(tn+1))]

= [y(tn) + hy′(tn) + 1
2h

2y′′(tn) +O(h3)]

− (y(tn) + 1
2hy

′(tn) + [y(tn) + hy′′(tn) +O(h2)]) = O(h3)

Hence the trapezoid methods have order 2, but before we infer that the error decays
globally as O(h2), we will first prove that the method is convergent, this proof can
be done generalizing the results obtained for Euler’s method

Theorem 2 The trapezoidal rule 2.14 is convergent.

Proof: Subtracting

y(tn+1) = y(tn) + 1
2h[f(tn, y(tn)) + f(tn+1, y(tn+1))] +O(h3)

from 2.14, we obtain

en+1,h = en,h + 1
2h[f(tn, yn)− f(tn, y(tn))]

+ f(tn+1, yn+1)− f(tn+1, y(tn+1)) +O(h3)

for any analytic f we may bound the O(h3) term by ch3 for some c > 0, and this
upper bound is valid uniformly throughout [t0, t0 + t∗]. Therefore, it follows from
the Lipschitz condition and triangle inequality that

∥en+1,h∥ ≤ ∥en,h∥+ 1
2hλ∥en,h + en+1,h∥+ ch3.

Since we are ultimately interested in letting h → 0 we can assume that hλ < 2,
and we thus deduce that

∥en+1,h∥ ≤
A

1 + 1
2hλ

1− 1
2hλ

B
∥en,h∥+

A
c

1− 1
2hλ

B
h3

Our next step closely parallels the derivation of inequality 2.9. We thus argue that

∥en,h∥ ≤
c

λ

CA
1 + 1

2hλ

1− 1
2hλ

Bn

− 1
D
h2 (2.15)
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this is follows as before on n as before, and after some calculations this yields to

∥en,h∥ ≤
ch2

λ

A
1 + 1

2hλ

1− 1
2hλ

Bn

≤ ch2

λ
exp

A
nhλ

1− 1
2hλ

B
.

This bound is true for every n such that nh ≤ t∗. Therefore

∥en,h∥ ≤
ch2

λ
exp

A
t∗λ

1− 1
2hλ

B

hence
lim
h→0

0≤nh≤t∗

∥en,h∥ = 0 (2.16)

In other words, the trapezoidal rule converges. □

The error of trapezoidal rule decays globally as O(h2). This is to be expected from
a second-order method if its convergence has been establish.

2.1.3 Euler scheme and Crank-Nicolson
We will now discuss the first numerical method for solving partial differential
equations (PDEs) used to address our two-material heat diffusion problem. Before
delving into the Euler scheme, it is useful to classify PDEs into two categories:
steady-state equations, where all variables are spatial, and evolutionary equations,
which involve differentiation with respect to both space and time. PDEs are
also classified as elliptic, parabolic, or hyperbolic. Elliptic equations are of the
steady-state type, while both parabolic and hyperbolic PDEs are evolutionary. The
distinction among these types lies in the different kinds of characteristic curves
they admit.

Ordinary differential equations (ODEs) can be viewed as evolutionary equations
without spatial variables. This similarity allows us to solve evolutionary PDEs
by approximating them as ODEs. The Euler scheme is essentially a transposition
of the Euler method for ODEs to PDEs. The numerical solution of evolutionary
PDEs requires discretization in both time and space, and these two procedures
cannot be done independently. Considering the simplest version of the diffusion
equation:

∂u

∂t
= ∂2u

∂x2 (2.17)

the function u = u(x, t) is accompained by two kinds of side conditions, an initial
condition and a boundary condition. There are a lot of ways to state this conditions
1.4 1.5 1.6 1.7.
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The first step is to create a grid to apply finite difference, chosen a positive integer
d and inscribe into the strip

{(x, t) : x ∈ [0,1], t > 0}

a rectangular grid

{(ℓ∆x, l∆t), ℓ = 0,1, ..., d+ 1, n ≥ 0}

where ∆x = 1/(d + 1). The approximation of u(ℓ∆x, l∆t) is denoted by un
ℓ .

Replacing the second spatial derivative and the first temporal derivative respectively
by the central difference

∂2u(x, t)
∂x2 ≈ 1

(∆x)2 [u(x−∆x, t)− 2u(x, t) + u(x+ ∆x, t)] +O((∆x)2), ∆x→ 0,

and the forward difference

∂u(x, t)
∂t

≈ 1
∆t [u(x, t+ ∆t)− u(x, t)] +O(∆t), ∆t→ 0,

Replacing into 2.17 and multiply by ∆t results in the Euler method

un+1
ℓ = un

ℓ + µ(un
ℓ−1 − 2un

ℓ + un
ℓ+1), ℓ = 1,2, ..., d, n = 0,1, ..., (2.18)

where µ is the ratio

µ = ∆t
(∆x)2

To start the recursive procedure we begin calculation from the initial condition of
the problem imposing

u0
ℓ = g(ℓ∆x), l = 1,2, ..., d.

Important note the initial condition enters in the method when we need to computer
first and last step, indeed un

0 = φ0(n∆t) and un
d+1 = φ1(n∆t).

As always the concept of the order is important in studying how well a finite
difference scheme models a continuous differential equation but the major concern
is convergence, not order. A method is convergent if, given any t∗ ≥ 0, it is true
that

lim
∆x→0

C
lim

ℓ→x/∆x

A
lim

n→t/∆t
un

ℓ

BD
= u(x, t) ∀x ∈ [0,1], t ∈ [0, t∗].

Theorem 3 If µ ≤ 1
2 then the method is convergent
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Proof: Let t > 0 be an arbitrary constant and define

en
ℓ := un

ℓ − u(ℓ∆x, n∆t), ℓ = 0,1, ..., d+ 1 n = 0,1, ..., n∆t,

where n∆n = ⌊t∗/∆t⌋ = ⌊t∗/(µ(∆x)2)⌋ is the right-hand endpoint of the range of n.
The definition of convergence can be expressed in the terminology of the variables
en

ℓ as
lim

∆x→0

5
max

ℓ=0,1,...,d+1

3
max

n=0,1,...,n∆t

|en
ℓ |
46

= 0

Letting
ηn := max

ℓ=0,1,...,d+1
|en

ℓ |, n = 0,1, ..., n∆t,

rewriting this as
lim

∆x→0

3
max

n=0,1,...,n∆t

|ηn|
4

= 0 (2.19)

Since

un+1
ℓ = un

ℓ + µ(un
ℓ−1 − 2un

ℓ + un
ℓ+1),

ũn+1
ℓ = ũn

ℓ + µ(ũn
ℓ−1 − 2ũn

ℓ + ũn
ℓ+1) +O((∆x)4),

ℓ = 0,1, ..., d+ 1, n = 0,1, ..., n∆t − 1

Where ũn
ℓ = u(ℓ∆x, n∆t) subtraction results in

en+1
ℓ = en

ℓ + µ(en
ℓ−1 − 2en

ℓ + en
ℓ+1) +O((∆x)4), ,

ℓ = 0,1, ..., d+ 1, n = 0,1, ..., n∆t − 1

provided u sufficiently smooth, there exists a constant c > 0, independent of ∆x,
such that, for every ℓ = 0,1, ..., d+ 1,

|en+1
ℓ − en

ℓ − µ(en
ℓ−1 − 2en

ℓ + en
ℓ+1)| ≤ c((∆x)4),

ℓ = 0,1, ..., d+ 1, n = 0,1, ..., n∆t − 1

Therefore, by the triangle inequality and the definition of ηn,

|en+1
ℓ | ≤ |en

ℓ + µ(en
ℓ−1 − 2en

ℓ + en
ℓ+1)|+ c((∆x)4),

≤ µ|eℓ−1|+ |1− 2µ||en
ℓ |+ µ|en

ℓ+1|+ c((∆x)4),
≤ (2µ+ |1− 2µ|)ηn + c((∆x)4), n = 0,1, ..., n∆t − 1

Because of µ ≤ 1
2 is deduct that

ηn+1 = max
ℓ=0,1,...,d+1

|en+1
ℓ | ≤ ηn + c(∆x)4, n = 0,1, ..., n∆t − 1
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by induction

ηn+1 ≤ ηn + c(∆x)4 ≤ ηn−1 + 2c(∆x)4 ≤ ηn−2 + 3c(∆x)4 ≤ ...

is concluded that
ηn ≤ η0 + nc(∆x)4, n = 0,1, ..., n∆t.

Since η0 = 0 because for initial condition the discretization matches exactly the
solution in that point of the grid and n(∆x)2 = n∆t/µ ≤ t∗/µ is deducted that

ηn ≤ ct∗

µ
(∆x)2, n = 0,1, ..., η∆t.

Therefore lim∆x→0 η
n = 0 for all n, and this conclude the proof because 2.19 □

The Euler scheme is a method of the first order in time, we can do better in
this term with a second order method in time by applying the trapezoidal rule 2.14
to the discratization in time resulting in to Crank-Nicolson method.

yn+1 = yn + 1
2∆t[f(n∆t, yn) + f((n+ 1)∆, yn+1)]

Another difference between explicit euler and crank nicolson is that while the former
is asymptotically stable only if the time step fulfils the condition

∆t < 2
maxp |λp|

.

Proof: the explicit Euler method applied to the equation z′ = λz gives:

zk+1 = zk + ∆λzk = (1 + ∆λ)zk, k ≥ 0,

then for the recursion formula taking into account the initial condition, gives:

zk = (1 + ∆λ)kz0,

The condition |zk| → 0 for k → +∞ which is equivalent to

|1 + ∆λ| < 1.

setting α = ∆λ so the inequality |1 + α| < 1 define a into the complex plain the
closed circle of center −1 and radius 1, this region is called of asymptotically stable,
so if every component of zk = (zk

p) have to decay to 0, ∆t has to be chosen such
that the condition

∆λp ∈ int(REE) ∀p = 1, ..., n

15
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this is surely true if and only if

−2 < ∆λp < 0, ∆ <
2
|λp|

, ∆ <
2

maxp |λp|

With an analogous argument it’s possible demonstrate that Crank-Nicolson is
asymptotically stable indeed

zk+1 = zk + ∆λ
31

2z
k + 1

2z
k+1

4
, k ≥ 0,A

1− ∆t
2 λ

B
zk+1 =

A
1− ∆t

2 λ

B
zk, k ≥ 0,

zk =
A

1 + ∆t
2 λ

1− ∆t
2 λ

Bk

z0, k ≥ 0.

setting α = ∆λ, the last equation tends to 0 as k approach to ∞ if and only if

|1 + α

2 | < |1−
α

2 |.

it’s easy verify that if α is any complex number, the last inequality holds every
time Re(α) ≥ 0 and in this case

∆λp ∈ (RCN) ∀p = 1, ..., n and any ∆t > 0

□

2.2 Nelder-Mead
The Nelder-Mead method, also known as the simplex method, is a popular algo-
rithm for multidimensional unconstrained optimization problems. This method is
particularly useful when the objective function is not differentiable, discontinuous,
noisy, or expensive to evaluate[3]. The Nelder-Mead method operates on a simplex,
which is a geometric figure consisting of n+ 1 vertices in n-dimensional space. For
example, in two dimensions, the simplex is a triangle, and in three dimensions, it is
a tetrahedron. The algorithm iteratively modifies the simplex to converge towards
an optimal solution. Following are described the steps for Nelder Mead algorithm:

1. Initialization

• Start with an initial simplex consisting of n+ 1 vertices.
• Evaluate the objective function at each vertex of the simplex.
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2. Iteration

(a) Order

• Sort the vertices based on their objective function values.

(b) Reflection

• Compute the reflection point xr. This point is calculated by reflecting
the worst point through the centroid of the remaining n points.

• If the reflection point has a better objective function value than the
second-worst point but not better than the best, replace the worst
point with the reflection point.

(c) Expansion

• If the reflection point is the best point found so far, compute the
expansion point xe.

• If the expansion point is better than the reflection point, replace the
worst point with the expansion point. Otherwise, replace the worst
point with the reflection point.

(d) Contraction

• If the reflection point is worse than the second-worst point, perform a
contraction. There are two types of contraction:
– Outside Contraction: If the reflection point is better than the

worst point, compute the outside contraction point xoc. If xoc is
better than the reflection point, replace the worst point with xoc.

– Inside Contraction: If the reflection point is worse than the
worst point, compute the inside contraction point xic. If xic is
better than the worst point, replace the worst point with xic.

(e) Shrink

• If neither the reflection nor contraction improves the simplex, perform
a shrink operation. Reduce the size of the simplex towards the best
point found so far.

3. Termination

• The algorithm terminates when the simplex size becomes sufficiently small,
or the objective function values at the vertices converge within a specified
tolerance.
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2.2.1 Mathematical Formulation of Nelder-Mead Method
Let f(x) be the objective function to minimize. The steps of the Nelder-Mead
method can be mathematically described as follows:

• Reflection:
xr = xc + α(xc − xh) (2.20)

where xc is the centroid of the simplex excluding the worst point xh, and α is
the reflection coefficient (typically α = 1).

• Expansion:
xe = xc + γ(xr − xc) (2.21)

where γ is the expansion coefficient (typically γ = 2).

• Outside Contraction:

xoc = xc + β(xr − xc) (2.22)

where β is the contraction coefficient (typically β = 0.5).

• Inside Contraction:
xic = xc − β(xc − xh) (2.23)

• Shrink:
xi = xl + δ(xi − xl) for all i /= l (2.24)

where xl is the best point, and δ is the shrink coefficient (typically δ = 0.5).
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Chapter 3

Results

3.1 Data collection
ITT coducts 24 experiment, recording temperature over time from various sensors
embedded in the pad under multiple different conditions. For these tests, the same
pad was consistently used, a crucial aspect when aiming to identify the thermal
parameters of the pad. These parameters can vary based on the materials used
and the production process. While the materials for the pad remain consistent, the
production process can differ. Since both the material and the production process
are industrial secrets we will not disclose any numerical value that can be reveal
thus, even indirectly

Within the pad, a minimum of four to a maximum of five thermocouples
were inserted, and their distribution was maintained throughout all twenty-four
tests, acquiring temperature recordings at a frequency of 1Hz. The number of
thermocouples depends on the length of the pad used for recording. The length of
the pad in the various tests 10.7 mm at 100% of its total length or 6.42 mm at 60%.
The following figure illustrates the distribution of the sensors. From the figure 3.1,
it is evident that when the pad is reduced to 60% of its length, the sensor labeled
as Aux3, which is the furthest from the backplate, is removed along with the pad.
As previously mentioned, the data were collected under different conditions:

1. Pad thickness with values (100%, 60%)

2. Plate temperature with values (100[C], 250[C])

3. Insulated Back Plate (1,0)

All experiments were repeated three times. This is not coincidental but a
standard practice, as having multiple recordings of the same physical phenomenon
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Figure 3.1: Thermocouples distribution

is crucial for reducing the impact of random errors inherent in any measurement
process.

3.1.1 Data Analysis
In this subsection, a brief analysis of the data will be conducted. Not all datasets
are equally suitable for optimization and parameter estimation. First, all data
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Figure 3.2: Table of data

collected where the pad was not thermally insulated from the backplate were
excluded. This exclusion was necessary because our data would not be consistent
in the model built, as we assumed zero heat flux at the backplate.

Secondly, all acquisition graphs were plotted to identify any physical inconsis-
tencies. Specifically, we focused on determining whether all acquisitions reached
the nominal temperature of the hot plate. It was observed that datasets F_13,
F_14, and F_15 did not reach the nominal temperature of 100[C], and therefore,
the recorded steady-state temperature was adjusted to 90[C]. This is plausible
because all the other observations in the insulated setting reach their nominal
temperatures. Therefore, we can infer that these three experiments fail to reach
their target not due to dissipation but rather due to an incorrect imposition of the
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hot plate temperature.

Figure 3.3: TestF_13

Following this, the time taken for acquisitions of the same type to reach steady-
state was analyzed. This analysis served two purposes:

1. To invalidate tests that significantly differed from others of the same type.

2. To align the temperature knees, ensuring that the time t0 coincided with the
moment when the hot plate comes into contact with the pad.

Following this analysis, TestF_01 was discarded because, in addition to exhibiting
obvious oscillations inconsistent with the type of experiment, it had a transient
time much shorter than the other tests. Such a discrepancy is not compatible with
a delay by the operator in starting sensor acquisition.
Conversely, Tests F_04 and F_19 were shifted forward by 16 seconds and 6 seconds,
respectively, to let them overlap.

22



Results

Figure 3.4: Odd oscillation TestF_01

3.1.2 Design of experiment
With the data that we ultimately deemed suitable for producing an estimate of the
thermal parameters of the pad, a table of experiments was created with the aim of
verifying that, starting from any subset of datasets under appropriate conditions of
identifiability (which will be discussed in the next section), the same parameter
estimates can be obtained.
The following table summarizes the suitable data with a brief description of the
type of dataset.

Test_name Tickness[%] PlateTemp[°C] InitTemp[°C] Delay[s] Transitory[s]
Test_F02 100 100 25,10 0 T1
Test_F03 100 100 24,20 0 T1
Test_F04 100 250 24,20 16 T2
Test_F05 100 250 21,30 0 T2
Test_F06 100 250 20,10 0 T2
Test_F13 60 90 21,70 0 T3
Test_F14 60 90 22,80 0 T3
Test_F15 60 90 22,80 0 T3
Test_F19 60 250 21,00 6 T4
Test_F20 60 250 23,80 0 T4
Test_F21 60 250 24,30 0 T4

Table 3.1: Description of suitable data
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Design of experiment
name n.batch Dataset F_
exp1 5 02-04-05-19-20
exp2 3 02-04-19
exp3 3 03-06-21
exp4 2 03-05
exp5 2 02-21
exp6 2 06-20
exp7 3 03-06-20

Table 3.2: DoE for experimental Data

Next, we will add columns to table 3.2 containing estimated parameter values
that will help us say something about the identifiability of these. Meantime, it can
be seen that the datasets F_13, F_14, and F_15 are never used in the optimization
of the parameters; only later will they be used to validate the goodness of the
estimated parameters. Although the datasets contain good data, we are unsure
of the nominal temperature of the hot plate. In fact, the PlateTemp [°C] values
for these datasets have been modified retrospectively, and the Transitory [s] values
refer to the modified temperatures. The last column represents the transient time,
which is the time it takes for the entire pad to reach at least 90% of the hot plate
temperature at each point. Beyond this time, the steady state begins.
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(a) TestF_03

(b) TestF_06

Figure 3.5: Suitable data example 1: minimal oscillations, recordings from sensors
consistent with the dynamics
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(a) TestF_19

(b) TestF_20

Figure 3.6: Suitable data example 2: minimal oscillations, recordings from sensors
consistent with the dynamics
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3.2 Synthetic dataset and identificability
To ensure there were no errors in the code and to find the minimal conditions for
parameter identifiability, we tested the code in a more "hospitable" environment
compared to the more "hostile" experimental one. We created synthetic datasets
that mimic experimental one. fig: 3.5, 3.6

For the construction of our datasets, we assumed a pad with two materials
having the following characteristics:

• Variable length:

– UL of 2 mm
– FM varying with the following values: [9, 8, 7, 6, 5, 4, 3, 2] mm

• Sensors positioned at:

– 0 mm
– 4 mm
– 8 mm

• Thermal parameters:

– UL thermal conductivity = k1

– product of the UL mass density for the UL specific heat = w1

– FM thermal conductivity = k2

– product of the FM mass density for the FM specific heat = w2

Obviously, in this case, the sensors are fictitious; it’s just a way of indicating the
physical points on the pad where we took the measurements and where we will
make comparisons. When solving the heat equation with the solver, the solution
will be outlined on a much finer grid. To match the experimental data conditions,
we will only take two of the many spatial points at the positions indicated above.
Furthermore, the thermal parameter values are not arbitrary but come from some
ITT estimates for the pad used in the experiments.
At this point, the phenomenon of thermal diffusion under these conditions was
simulated on this pad using the heat equation solver:

Name Set of values Number of values
Right_Boundary_Condition (RBC) {80, 120, 160, 200} 4
Initial_Condition (IC) {25, 40, 55, 70} 4
Friction_Material_Thickness (FMT) {2, 3, 4, 5, 6, 7, 8, 9} 8
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A total of 128 datasets were created in this way. However, since the experimental
datasets contain measurement errors, a small amount of white noise from a random
variable was added to account for this X ∼ N (0, 1.5).

(a) Synthetic data ex 1

(b) Synthetic data ex 2

Figure 3.7: Synthetic data 102 Hz
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This process of creating and optimizing synthetic data was repeated several
times, and the results presented now specifically apply to synthetic data with an
acquisition frequency of 102 Hz and an acquisition time of T seconds.

3.2.1 Synthetic Dataset 102Hz

Experiments were conducted on the following datasets, aiming to change not only
the characteristics among the datasets but also varying the number of sensors used:

experimental condition
name n. batch RBC [°C] IC [°C] FMT [mm] n. sensors
exp1 1 160 40 6 BP
exp2 1 160 40 6 BP+1
exp3 2 160 40 9-6 BP
exp4 2 160 40 9-6 BP+1
exp5 2 160 25 - 70 9 BP
exp6 2 160 25 - 70 9 BP+1
exp7 2 80 -160 40 9 BP
exp8 2 80 -160 40 9 BP+1
exp9 2 160 40 3-7 BP
exp10 2 160 40 3-7 BP – BP+1

Table 3.3: Synthetic data DoE

From this experiment, it is found that with this model, we can estimate at most 3
parameters given the fourth parameter is known. In other words, in an experimental
environment where the parameters generating the dataset are unknown, we can
accurately determine at most the ratios of one parameter to the other three. For
this reason, we will assume to know a particular parameter. From this point onward,
we will assume to know the parameter k1, thus obtaining the following results:
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percentage error
name k2[%] w1[%] w2[%]
exp1 44,9912 61,581 6,4524
exp2 0,2816 0,3605 0,0406
exp3 -0,569 -0,4109 -0,5956
exp4 0,3084 0,3847 0,0932
exp5 51,6664 85,1743 14,0633
exp6 -0,0747 0,334 -0,3642
exp7 63,2225 103,3626 16,3023
exp8 -0,0827 0,3929 -0,4207
exp9 -0,5749 -0,4385 -0,581
exp10 -0,488 -0,3627 -0,5415

Table 3.4: Results of the experiments

It was found that the percentage error varies greatly across experiments: some
experiments show a very satisfactory percentage error, while others exhibit a
significantly large percentage error. Specifically, correct identification was only
observed in cases where multiple sensors were used for each dataset, or in cases
where the single sensor used is located at the Backplate (BP) position for each
dataset, with data containing different pad length. This allows us to formulate the
minimal conditions for identifiability.:

• 1 sensor and 2 dataset with different FMT

• 2 sensor and every number of dataset and any conditions

To support this assertion, we report on the method’s consistency. Indeed, all
experiments were repeated starting from different initial parameters. In cases where
identifiability was achieved, this consistently led to a more or less precise vicinity
of the parameters used in creating the dataset.

Initial guess percentage error exp1 percentage error exp2
w1 k2 w2 w1[%] k2[%] w2[%] w1[%] k2[%] w2[%]
w1 k2 w2 61.6% 44.99% 6.4% 0.47% 0.28% 0.0%

2.33w1 0.25k2 4.0w2 -94.3% 127.90% 17.5% 0.47% 0.28% 0.0%
2.33w1 0.1k2 2.8w2 -75.6% -42.45% -2.0% 0.47% 0.28% 0.0%
0.23w1 4.0k2 0.4w2 181.4% 160.33% 13.2% 0.47% 0.29% 0.0%
0.12w1 0.5k2 0.4w2 -77.3% -50.01% -15.6% 0.47% 0.28% 0.0%
0.023w1 10k2 0.12w2 167.4% 143.74% 17.2% 0.47% 0.28% 0.0%
11.63w1 5.0k2 0.2w2 123.5% 98.44% 10.4% 0.47% 0.29% 0.0%

Table 3.5: Identifiability of thermal parameters
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3.2.2 Syntetich Dataset 1Hz

Subsequently, we created datasets even more similar to the experimental ones. The
main difference between the previously described datasets and the experimental
ones lies in the sensor sampling frequency and the acquisition duration. Specifically,
the previously created datasets had many more data points within a very short
time interval, which even prevented the thermal dynamics from reaching steady
state for some datasets. Therefore, we reduced the sampling frequency to match
that of the experimental data (1 Hz) and extended the acquisition time to Texp

seconds to align it with the experimental data.

Figure 3.8: Synthetic data ex 3
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Figure 3.9: Synthetic data ex 4

Figure 3.10: Synthetic data 1Hz
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By optimizing for the following experiments the same in table 3.3

esperimental condition
name n. batch RBC [°C] IC [°C] FMT [mm] n. sensors
exp1 1 160 40 6 BP
exp2 1 160 40 6 BP+1
exp3 2 160 40 9-6 BP
exp4 2 160 40 9-6 BP+1
exp5 2 160 25 - 70 9 BP
exp6 2 160 25 - 70 9 BP+1
exp7 2 80 -160 40 9 BP
exp8 2 80 -160 40 9 BP+1
exp9 2 160 40 3-7 BP
exp10 2 200-80 25 2-9 BP+1

The following results are obtained:

percentage error
name k2[%] w1[%] w2[%]
exp1 2,6935 -82,6019 147,1959
exp2 3,4926 2,1266 4,9475
exp3 8,4806 5,6726 9,2833
exp4 3,19 1,998 4,187
exp5 108,2471 -79,1629 302,9865
exp6 2,7741 1,4114 3,8403
exp7 743,2642 -79,3822 1,58E+03
exp8 3,2417 1,644 4,4929
exp9 3,167 1,737 4,4105
exp10 -0,4569 -0,0581 0,128

These results, though unexpected, are consistent with previous statements.
Despite the lack of identifiability where expected, significant changes occur in
situations where identifiability should be present. In particular, percentage errors
increase significantly compared to previous conditions. This suggests that reducing
the sampling frequency increases the error in parameter estimation. However, the
results of the last experiment indicate that a careful selection of two datasets for
optimization may be ideal to maintain error levels comparable to those previously
observed. One possible explanation for this phenomenon may lie in the increased
importance of the transient regime compared to the steady state, suggesting that
the transient behavior of the system can significantly influence the accuracy of
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parameter estimates compared to the steady state. To verify this, the data were
segmented to use the transient regime as a baseline, and subsequently adjustments
were made by adding or removing a certain percentage of that regime.

Figure 3.11: The transient is the time it takes for the BP (backplate) to reach
95% of the nominal temperature of RBC (right boundary condition).
err_perc: percentage error

It is noted, therefore, that the percentage error on the parameters tends to
increase when part of the transient regime is removed from the data, while exceeding
in the steady state regime does not improve them much. This observation also
allows us to reduce computational time in experimental environments, as steady-
state recordings are numerous and we have determined that they are not as useful.
This allows us to trim the dataset, reducing computational time without sacrificing
accuracy.

3.2.3 Incorrect positioning of sensors
At this point, we questioned the effect of incorrect placement of thermal sensors.
Here, we felt the need to change the solver used so far, transitioning from an explicit
Euler solver to a Crank-Nicolson solver, to reduce the error in sensor placement due
to approximating the sensor’s position to its nearest point on the grid. To achieve
this, it was necessary to increase the spatial integration step while keeping the
temporal integration step unchanged to avoid significantly increasing computational
time.

Apart from the possible need to densify the spatial grid, what happens if incorrect
information about the positions of the sensors recording temperatures is passed?
The result is a loss of parameter identifiability. To investigate this, experiments were
conducted on the same synthetic datasets. However, during optimization, incorrect
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information about sensor positions was passed. For instance, if the recordings from
points [0, 4] were supposed to be the temperatures recorded, in optimization they
would be assigned to points [0, 6.4] mm, where the second sensor is positioned 2.4
mm further ahead. Initially, experiments were conducted with a batch number of
1.

esperimental condition percentage error
name n.batch RBC[°C] IC[°C] FMT[mm] n.sensors k2[%] w1[%] w2[%]
exp1 1 160 40 6 BP+1 -9,38E+01 -1,00E+02 -8,23E+01
exp2 1 160 40 9 BP+1 5,78E+12 -9,16E+01 1,19E+13
exp3 1 160 25 9 BP+1 3,28E+12 -9,14E+01 6,77E+12
exp4 1 200 70 6 BP+1 -9,77E+01 -1,00E+02 -9,35E+01
exp5 1 80 40 9 BP+1 1,23E+13 -8,81E+01 2,55E+13

Table 3.6: RBC: right boundary condition; IC: initial condition; FMT: friction
material tickhness

On its own, this table is not sufficient to prove non-identifiability but merely
demonstrates that the parameters cannot be accurately estimated. To demonstrate
non-identifiability, it is necessary to examine what happens to the objective function
and the endpoints for each experiment. In fact, each optimization is repeated for
different initial points. This is done to exclude or verify the existence of local
minima or entire flat regions, which would demonstrate the identifiability or non-
identifiability of the parameters. For convenience and stylistic choice, only one will
be reported here, but similar results apply to every other experiment conducted in
this manner.

starting points exp1 percentage error
start_w1 start_k2 start_w2 w1[%] k2[%] w2[%] Fvalues
w1 k2 w2 -1,00E+02 1,85E+02 7,17E+02 7,78E+03
w1 *2 k2/10 w2/3 -1,00E+02 -9,38E+01 -8,23E+01 7,78E+03
w1 *10 k2 *3 w2/2 -1,00E+02 6,56E+03 1,90E+04 7,78E+03
w1 *8 k2/10 w2/3 -1,00E+02 -9,78E+01 -9,36E+01 7,78E+03

Table 3.7: w1, k2 & w2 real parameters of the datasets created.
Every row is a starting point and an end point of the optimization with it’s
corresponding value function

It is observed how the value of the objective function reaches the same value
despite the initial points being widely spaced, varying by orders of magnitude.
At this point, we wonder if considering a combination of datasets still shows this
phenomenon. To investigate this, we will consider a batch number equal to 2 and
vary the plate length, edge temperature, and initial temperature.
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esperimental condition percentage error
name n.batch RBC[°C] IC[°C] FMT[mm] n.sensors k2[%] w1[%] w2[%]
exp1 2 160 40 9-6 BP+1 6,47E+01 -7,55E+01 2,48E+02
exp2 2 160 25-70 9 BP+1 3,95E+12 -9,13E+01 8,16E+12
exp3 2 80-160 40 9 BP+1 3,78E+12 -9,12E+01 7,82E+12

Table 3.8: RBC: right boundary condition; IC: initial condition; FMT: friction
material tickhness

In this case as well, parameter identifiability, with the exception of the first
experiment which, despite yielding incorrect parameters, converges to a different
endpoint for each point. In this instance as well, only two examples will be reported.

starting points exp3 percentage error
start_w1 start_k2 start_w2 w1[%] k2[%] w2[%] Fvalues
w1 k2 w2 -9,12E+01 2,35E+12 4,85E+12 2,03E+03
w1*2 k2/10 w2/3 -1,00E+02 -9,77E+01 -9,52E+01 2,08E+03
w1*10 k2*3 w2/2 -9,12E+01 3,78E+12 7,82E+12 2,03E+03
w1*8 k2/10 w2/3 -1,00E+02 -9,83E+01 -9,65E+01 2,08E+03

Table 3.9: Exp3 same value function very different set of points.
Every row is a starting point and an end point of the optimization with it’s
corresponding value function

starting points exp1 percentage error
start_w1 start_k2 start_w2 w1[%] k2[%] w2[%] Fvalues
w1 k2 w2 -7,55E+01 6,47E+01 2,48E+02 3,23E+04
w1*2 k2/10 w2/3 -7,55E+01 6,47E+01 2,48E+02 3,23E+04
w1*10 k2*3 w2/2 -7,55E+01 6,47E+01 2,48E+02 3,23E+04
w1*8 k2/10 w2/3 -7,55E+01 6,47E+01 2,48E+02 3,23E+04

Table 3.10: Exp1 converges exceptionally to three parameters.
Every row is a starting point and an end point of the optimization with it’s
corresponding value function

The fact that a particular combination of datasets converges indicates that
incorrect sensor placement can have a more or less significant effect depending on
the datasets chosen for optimization.
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3.3 Esperimental data results
In this section, the method’s performance on real data will be analyzed using the
same optimization methodology as for synthetic data. The only difference is that
in this case, the actual values of the pad will not be available for comparison with
the estimated parameters. Therefore, the only measure of parameter estimation
quality will be the value of the objective function, which will depend strictly on the
datasets selected for optimization. Additionally, instead of reporting the optimized
parameters, a percentage error relative to an estimate of the thermal parameters
of the pad from ITT will be reported, although these estimates should not be
considered the real parameters.

An initial attempt on the set of experiments from Table 3.2 was conducted
assuming all nominal conditions of the experiments were correct. These experiments,
conducted both using a single sensor (1s) and two sensors (2s), yielded the following
results:

name 1s percentage error 2s percentage error
w1[%] k2[%] w2[%] Fvalues w1[%] k2[%] w2[%] Fvalues

exp1 -1,42E+01 -92,79 -9,75E+01 1,78E+05 -1,00E+02 -100,00 -1,00E+02 7,64E+05
exp2 -1,49E+01 -93,04 -9,76E+01 1,08E+05 -1,00E+02 -100,00 -1,00E+02 4,29E+05
exp3 -4,88E+01 -95,72 -9,85E+01 1,17E+05 -1,00E+02 -100,00 -1,00E+02 3,92E+05
exp4 -5,62E+01 -95,30 -9,37E+01 4,50E+04 -1,00E+02 -100,00 -1,00E+02 1,16E+05
exp5 -1,00E+02 -100,00 -1,00E+02 1,46E+05
exp6 1,93E+01 -89,70 -9,77E+01 6,35E+04 -1,00E+02 -100,00 -1,00E+02 3,30E+05
exp7 -9,89E+01 -99,91 -1,00E+02 1,07E+05 -1,00E+02 -100,00 -1,00E+02 4,11E+05

The first thing that stands out when looking at the table above is that exp 5,
when attempting to optimize with a single sensor, does not provide any parameter
estimates. This effect is not yet well understood; it is known only that this
particular choice of dataset with the grid used so far leads, during optimization,
to the construction of poorly conditioned matrices that prevent the solver from
correctly solving the differential equations. Furthermore, from experiments on
synthetic datasets, we know that exp4, performed with only one sensor, should not
be identifiable. This is confirmed by examining what happens at each initial point,
in fact as before, each optimization is repeated for different initial points.

starting points exp4 percentage error
start_w1 start_k2 start_w2 w1[%] k2[%] w2[%] Fvalues
w1 k2 w2 -1,00E+02 8,48E-01 3,85E+02 8,41E+04
w1*2 k2/10 w2/3 -5,62E+01 -9,53E+01 -9,37E+01 4,50E+04
w1*10 k2*3 w2/2 1,10E+03 2,88E+01 -8,63E+01 4,50E+04
w1*8 k2/10 w2/3 -5,62E+01 -9,53E+01 -9,37E+01 4,50E+04

It is noticeable how, for each initial point, there exists a vastly different minimum
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output, even with the same objective function value.
For optimization with 2 sensors, however, it is observed that not only do significantly
different values consistently result, but they are also orders of magnitude smaller
compared to those with 1 sensor. Upon examining each experiment, it is discovered
that there is no identifiability. This is quite surprising, as what holds true for
synthetic datasets should remain valid for real ones, barring measurement errors.
However, the nature of the error suggests a serious issue in the positioning of the
second thermal sensor, as observed in synthetic data as well.

starting points exp1 percentage error
start_w1 start_k2 start_w2 w1[%] k2[%] w2[%] Fvalues
w1 k2 w2 -1,00E+02 -1,00E+02 -1,00E+02 7,64E+05
w1*2 k2/10 w2/3 -1,00E+02 -1,00E+02 -1,00E+02 7,64E+05
w1*10 k2*3 w2/2 -1,00E+02 -1,00E+02 -1,00E+02 7,64E+05
w1*8 k2/10 w2/3 -1,00E+02 -1,00E+02 -1,00E+02 7,64E+05

Table 3.11: Optimization over exp1 with 2s is reported in table as example of
non identificability of parameters, we enter in a region of parameters increasingly
smaller due to the non-identifiable nature of 3 parameters

3.3.1 Corrected optimization
By hypothesizing a different position for the second sensor from its nominal position,
it is discovered that the data aligns better when comparing the sensor’s readings to
a point on the grid that is at least 1.4 mm behind the nominal position. This does
not mean that the sensor’s actual physical position changes; instead, we assume
a different sensor position for comparison purposes. In this sense, we "shift the
position" by comparing the data to a point on the grid that is at least 1.4 mm
behind the nominal position. Using this correction the parameters of the pad can
be identified. This results in a range of valid values for each experiment similar to
those obtained in the 1s optimization.

name 2s corrected percentage error
w1[%] k2[%] w2[%] Fvalues

exp1 6,94E+01 -81,19 -7,37E+01 5,25E+05
exp2 8,73E+01 -79,64 -7,14E+01 3,19E+05
exp3 8,42E+01 -79,94 -7,50E+01 3,22E+05
exp4 -3,61E+01 -92,25 -8,74E+01 9,21E+04
exp5 9,34E+01 -81,30 -7,71E+01 2,34E+05
exp6 8,74E+01 -78,69 -7,31E+01 1,96E+05
exp7 4,98E+01 -83,39 -7,76E+01 2,89E+05

38



Results

Obtaining in this case, as well, physically admissible values according to ITT
engineers’ judgment suggesting that the model is reliable. Indeed, the only cases
where convergence cannot be achieved are due to the absence of minimal identifia-
bility conditions or due to poor matrix conditioning. The reason for the divergence
in values between optimization with 1s and 2s can be explained by the poor posi-
tioning of the second sensor, a sensor that we disregard in the 1s setting. This poor
positioning can be understood by examining the images of the tests conducted.
We know, in fact, from Figure 3.1, that it should be located halfway through the
friction material, however

Figure 3.12: Real distribuition of the sensors in the Pad used to collect data.
The 2nd sensor position could not be the one expected

The image shows how this thermocouple penetrates into the pad as it erodes up
to 60% of its friction material (FM). Without knowing the correct position of the
thermocouple, assuming an incorrect positioning of the sensor by at least 1.4 mm
backward could be the real reason for non-identifiability in the 2s setting without
correction.

3.4 Methods and pipeline

3.4.1 PDE solvers
In this section, we refer to the dissemination model described in section 1.4, which
will be presented in detail to illustrate how the numerical method solving it was
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constructed. We begin with the generic thermal diffusion equation 1.2, adopting
an initial simplification where the thermal parameters of the two materials remain
invariant over time and space. By considering the steady-state case of the dynamics,
we obtain

µ
∂2u

∂x
= f (3.1)

where µ = k e f = ρq, at this point we are going to discretize in space, paying
close attention to the notation by distinguishing between points of the for which
we must calculate the solution, i.e. points of discretization located on the pad and
for which the solution must be calculated, and internal points for which we do
not have to calculate a solution, i.e. points on the pad for which we do not have
to calculate the solution and fictitious points, points for which we do not have to
calculate the solution but which are useful for calculating it. it is crucial to obtain

Figure 3.13: Space Pad discretization

a good solution that there is a point where the two materials meet in the image
called uNpt1−1. For this reason, the integration step is decided and maintained
based on the number of points we want in the underlayer Npt1. Therefore, if we
denote h as the integration step, we have that

h = x1

Npt1

At this point, replacing the second spatial derivative with its approximation by
central difference, we obtain

µ

h2 (−uj−1 + 2uj − uj + 1) = f ∀j s.t. 1 ≤ j ≤ N
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This equation is valid only for the interior points. For the boundary points, we need
to consider the boundary conditions. Specifically, we impose a Dirichlet condition
on the right side, hence uN+1 = g(t). As for the left side, with a Neumann condition,
we use a fictitious point to calculate the temperature at u0. We know that

µ
∂u

∂x
(0) = ψ(0)

where ϕ(0) represents the flux at point 0. Therefore, it is possible to derive u0
as

µ

h2 (−u−1 + 2u0 − u1) = f

We know also that

µ
u−1 − u1

2h = ψ(0)

u−1 = u1 + 2h
µ
ψ(0)

Substituting u−1 into the previous equation, we find
µ

h2 (u0 − u1) = 1
2f(0) + 1

h
ψ(0) =: fN+1.

We can then summarise this in matrix form as

Au = f (3.2)

where f is the vector of incoming external heat at each discretization point of
the Pad. In our case, it will be f = [0, ...,0, µ2

ρ2
g(T )], a vector with all entries

zero except the last one, which corresponds to the heat value at the boundary
temperature. A is a matrix that would be A = h−2µ · tridiag[1,−1;−1,2,−1] if our
model consisted of a single material. Since we have two materials, this matrix is the
product of a matrix µ = diag[µ1, ..., µ1, µ2, ..., µ2]h−2 and tridiag[1,−1;−1,2,−1].
It will later be adjusted to account for additional continuity conditions of heat flux
and temperature at the boundary between the two materials.

A = 1
h2



µ1 0 . . . . . . . . . 0
0 . . . . . . ...
... . . . µ1

. . . ...
... . . . µ2

. . . ...
... . . . . . . 0
0 . . . . . . . . . 0 µ2


·



1 −1 0 . . . . . . 0
−1 2 −1 . . . ...
0 . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0
... . . . . . . . . . . . .
0 . . . . . . 0 −1 2


(3.3)
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Overall, the equation Au = f thus becomes

µ1
h2 0 . . . . . . . . . 0

0
. . .

. . .
...

...
. . . µ1

h2

. . .
...

...
. . . µ2

h2

. . .
...

...
. . .

. . . 0
0 . . . . . . . . . 0 µ2

h2


·



1 −1 0 . . . . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

0 . . . . . . 0 −1 2


·



u0
...

uNpt1−1
uNpt1

...
uN

 =



0
...
...
...
...

µ2
ρ2

g2


It is now possible to rewrite the system asBu′ + Au = f,

u(0) = u0,

u′ = B−1Au+B−1f

u(0) = u0,

Where B is called the mass matrix, which in our case is a diagonal matrix containing
at each entry the product cρ = w corresponding to the material at that point, thus
B = diag[w1, . . . , w1, w2, . . . , w2].

The choice of the temporal discretization method also defines the final method.
For example, opting for the Euler scheme results in the Euler method, while
advancing with the trapezoidal rule yields the Crank-Nicolson method.Bu′ + Au = f, ∀0 < t < T

u(0) = u0,

The final method is also defined by the choice of temporal discretization. For
example, opting to proceed with the Euler scheme results in the Euler method,
while advancing with the trapezoidal rule yields the Crank-Nicolson method.

Thus, using Euler, we obtain the following final scheme:

uk+1 = uk −∆tB−1Auk + ∆tf(tk)
With the trapezoid method instead1

B + ∆t
2 A

2
uk+1 =

1
B − ∆t

2 A
2
uk + ∆t

2 (f(tk) + f(tk+1))

Finally, once we have decided which method of temporal discretisation to adopt,
we go on to modify the A matrix so that it contains the conditions of matching
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conductivity and diffusivity at the interface of the two materials [4]:

A(Npt1 + 1, Npt1− 1) = τ((2k1 + 3k2)a1 − a2k1),
A(Npt1 + 1, Npt1) = τ(−2(k1 + 3k2)a1 + 4a2k1),
A(Npt1 + 1, Npt1 + 1) = 1,
A(Npt1 + 1, Npt1 + 2) = τ(4a1k2 − 2(3k1 + k2) ∗ a2),
A(Npt1 + 1, Npt1 + 3) = τ(−a1k2 + (3k1 + 2k2) ∗ a2),

Below is the pseudocode for explicit Euler (EE) and Crank-Nicolson (CN)
respectively

Algorithm 1 Explicit Euler solver (EE).
1: procedure EE(k1, k2, w1, w2, ic, Npt1, time_step_num, dx, T_OA_Int,N,M)
2: ▷ k1 Thermal conductivity UL
3: ▷ k2 Thermal conductivity FM
4: ▷ w1 UL mass density * UL specif heat
5: ▷ w2 FM mass density * FM specif heat
6: ▷ ic vector of initial temperatures
7: ▷ time_step_num Integration step over time
8: ▷ dx Integration step over space
9: ▷ T_OA_Int vector of boundary temperatures

10: ▷ N Number of points in the numeric grid over space
11: ▷ M Number of points in the numeric grid over time
12: ▷ Initialization and construction of matrix A
13: ▷ Execution
14: for j = 1 : M do
15: f ← [zeros(1, N), λ2 ∗ T_OA_Int(j)]′
16: u(:, J + 1)← Au(:, j) + f
17: end for
18: return u ▷ Solution u returned
19: end procedure
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Algorithm 2 Crank-Nicolson solver (CN).
1: procedure CN(k1, k2, w1, w2, ic, Npt1, time_step_num, dx, T_OA_Int,N,M)
2: ▷ k1 Thermal conductivity UL
3: ▷ k2 Thermal conductivity FM
4: ▷ w1 UL mass density * UL specif heat
5: ▷ w2 FM mass density * FM specif heat
6: ▷ ic vector of initial temperatures
7: ▷ time_step_num Integration step over time
8: ▷ dx Integration step over space
9: ▷ T_OA_Int vector of boundary temperatures

10: ▷ N Number of points in the numeric grid over space
11: ▷ M Number of points in the numeric grid over time
12: ▷ Initialization and construction of matrix A
13: B ← (2 ∗ I)− A
14: C ← inv(B)
15: ▷ Execution
16: for j = 1 : M do
17: f ← [zeros(1, N),2 ∗ λ2 ∗ T_OA_Int(j)]′
18: u(:, J + 1)← C ∗ Au(:, j) + C ∗ f
19: end for
20: return u ▷ Solution u returned
21: end procedure

44



Results

3.4.2 Optimizer and objective function
The optimizer function used in this work is fminsearch from Matlab, which imple-
ments the Nelder-Mead method, a well-known optimization algorithm based on
the simplex method. This method does not require the calculation of derivatives,
making it particularly useful for problems where objective functions are nonlinear
and non-differentiable. The role of fminsearch is to optimize the model parameters
by iteratively invoking the objective function, which in turn calls the heat equation
solver to evaluate the proposed solutions.

The objective function is crucial as it determines the quality of the solutions
proposed by the optimizer: a lower value of the objective function indicates a better
solution. In our case, the objective function is defined as the Sum of Squared Errors
(SSE), which measures the discrepancy between observed and predicted values.
Formally, the SSE is expressed as:

SSE =
nØ

i=1
(yi − ŷi)2

where yi are the observed values and ŷi are the predicted values.
Developing an appropriate objective function required numerous attempts and
adjustments, given its central importance in any optimization algorithm. Initially,
the objective function was designed to be a Mean Squared Error (MSE), a normalized
version of SSE:

MSE = 1
n

nØ
i=1

(yi − ŷi)2

This version was intended not only to optimize the thermal parameters of the
system but also to address potential data delays and sensor mispositioning. How-
ever, these additional functionalities proved to be computationally too demanding
and did not lead to significant improvements in the final solutions.

Ultimately, it was decided to simplify the objective function, retaining only
the sum of squared errors. This choice was driven by the need for a balance
between computational complexity and optimization effectiveness. The current
objective function can take any number of datasets as input and build solutions
that are comparable to the input data, providing a robust and practical method
for optimizing the thermal parameters of the system.

In summary, the implemented objective function was designed to effectively
evaluate the quality of the solutions proposed by the optimization algorithm while
ensuring a sustainable computational process. This balance between accuracy and
computational efficiency is crucial for the success of the optimization in the context
of heat differential equations.
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Algorithm 3 f_obj.
1: procedure f_obj(x, ic,Npt1, dt, dx, TempSensors,Nv,Mv, TBpCut, TSacq)
2: ▷ x Parameters proposed from fminsearch
3: ▷ TempSensors Data structure which contain every selected Dataset
4: ▷ ic vector of initial temperatures
5: ▷ dt Integration step over time
6: ▷ TSacq Frequency of data acquisition
7: ▷ dx Integration step over space
8: ▷ TBpCut vector of boundary temperatures
9: ▷ Nv Number of points in the numeric grid over space

10: ▷ MV Number of points in the numeric grid over time
11: ▷ Execution
12: for i = 1 : length(TempSensors) do
13: temp_sim← PDE_solver
14: temp_sim_sel← downsample(temp_sim)
15: sse_v(i)← sum(sum(temp_sim_sel − Temp_sensor)2)
16: end for
17: sse← sum(sse_v)
18: return sse ▷ Return SSE
19: end procedure

46



Results

3.4.3 Optimization pipeline
The optimisation pipeline can be summarised by the following flow charts showing
how the functions are nested starting:

Figure 3.14: Main flowchart

47



Results

Figure 3.15: Optimizer flowchart
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Figure 3.16: Fobj flowchart
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The main is nothing more than the script that starts the optimisation, which
calls the optimiser function, which in turn calls the objective function that calls
the differential equation solver chosen for the optimisation

1 Function Main
2 Cal l INIT
3 Cal l SELECTION_DATA
4 Cal l DATA_LOADING
5 Cal l OPTIMIZER ( Guess , Data )
6 Output : Estimated parameters
7 End
8

9 Function OPTIMIZER ( Real Guess , Real Array Data )
10 Assign i = 1
11 While i< N_iter or Guess_re lat ive_error < t o l
12 Cal l Fobj ( Guess , Data )
13 Cal l SSE
14 Assign i = i+1
15 End
16 Return Real Estimated parameters
17 End
18

19 Function Fobj ( Real Guess , Real Array Data )
20 Cal l PDE_SOLVER( Guess )
21 Output :PDE_SOLUTION
22 Assign SSE = SUM( (PDE_SOLUTION − Data ) .^2 )
23 Return Real SSE
24 End
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Chapter 4

Conclusion

At the end of this thesis, we can assert that we are able to estimate with relative
accuracy three out of the four thermal parameters, provided that minimal identifia-
bility conditions are met, which we have derived based on a thorough analysis of
the data.
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Identifiable Conditions

1 batch, 1 sensor

1 batch, 2 sensors

2 batch, 1 sensor

2 batch, 2 sensors

Non identifiable

identifiable

identifiable

identifiable

Note: Different FMT for the two
tests in the case of 2 batches, 1 sensor

For the acquisition of experimental data, it is essential to consider the following
factors to minimize percentage errors:

• Higher sampling frequency: A higher sampling frequency can provide more
accurate data in the transient regime.

• Lower acquisition time: Similarly, reducing the acquisition time can speed up
the optimization process by providing fewer data points in the steady-state
regime.

Clearly, to achieve a smaller percentage error, it is necessary and sufficient to
increase the sampling frequency, but decreasing the acquisition time is neither
necessary nor sufficient. This consideration implies that if these two quantities
could be adjusted freely to maintain their product constant

Tacq ∗ facq = c c ∈ N
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I should prefer to increase the sampling frequency at the expense of the acquisition
time.

Furthermore, since we have been able to find a range of thermal parameter values
from real data in a reasonable physical region, we can assert that the proposed
two-material one-dimensional model for predicting the backplate temperature of
the brake pad is a valid model and can have practical applications within a vehicle.
Comparing the backplate temperatures from real data with those found by solving
the equation further supports its validity. Additionally, being aware of an error in
the positioning of the second sensor and still being able to identify the parameters
with a single sensor, if I have to rely on parameter estimates, I would lean towards
those obtained from the 1s optimization.

Although the work presented demonstrates the effectiveness of the one-dimensional
model, there is still room for improvement. One promising direction involves ex-
ploring Physically Informed Neural Networks (PINNs) [5] [6] [7]. These neural
networks incorporate not only data but also the governing equations of the system
during the training process. PINNs can be particularly beneficial for estimating
thermal parameters of the brake, as they allow for the training of both network
parameters and the parameters of the differential equations themselves.

In the specific case of brake temperature modeling, PINNs could be utilized to
estimate the thermal parameters more accurately. Moreover, their implementation
on a vehicle would eliminate the need to solve differential equations with a tra-
ditional solver. Instead, we would input the relevant information into the neural
network, which would then output the temperature distribution across the brake
pad.

By employing a sufficiently complex network, it would also be possible to capture
the cooling phenomena of the brake within the wheel well of a moving vehicle,
which is depicted as the "complex problem" in Figure 1.2. This approach would
bypass the need to explicitly model the cooling process, as the neural network
would automatically learn to account for it based on the input variables believed
to influence cooling.
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(a) TestF_13 BP

(b) TestF_13 2s

Figure 4.1: Error over dataset F_13
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(a) TestF_14 BP

(b) TestF_14 2s

Figure 4.2: Error over dataset F_14
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(a) TestF_15 BP

(b) TestF_15 2s

Figure 4.3: Error over dataset F_15
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