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Abstract

The assessment and rehabilitation of upper limb functionality are crucial aspects
to investigate for effectively addressing motor disorders in individuals with neuro-
logical impairments. Traditional methodologies lack effective tools for quantifying
motor disability, making it difficult to distinguish between pathological movements
and normal behaviors.

This Master’s Thesis, conducted in collaboration with the Rehab Tecnologies
Lab at Italian Institute of Technology (IIT) and Associazione Italiana Sclerosi
Multipla (AISM), aims to explore a novel method for evaluating upper limb motor
control using a mixed reality (MR) approach with Microsoft HoloLens2, a head-
mounted display designed for delivering interactive virtual elements in the area
around the user.

The primary goal of this research is to extract, process, and compare data from
pathological subjects with those of healthy individuals to identify personalized
rehabilitative exercises through interaction with physical objects. Leveraging the
hand and eye tracking capabilities of the HoloLens2 device, the study compares
kinematic data from healthy subjects and individuals with Multiple Sclerosis,
collected during a pick-and-place task in the transverse plane. The task consists
of six different movements in the four cardinal directions, delivered in random
order. These data are subsequently analyzed to extract metrics related to hand
kinematics (morphology, smoothness and efficiency) and hand-eye coordination,
to obtain an overall evaluation of movement quality. Comparing metrics from
healthy and pathological subjects provides key insights into the differences in motor
control and coordination between the two groups, playing a fundamental role in
understanding the impact of MS on upper limb functionality.

The secondary goal of the Thesis is to utilize the obtained metrics to identify
motor patterns among all analyzed subjects by investigating different classification
methods. The results obtained from clustering divide the subjects into four classes:
subjects without tremor, subjects with moderate tremor or other cerebellar impair-
ments, subjects with severe tremor, and healthy subjects or those with kinematic
behavior similar to that of healthy individuals.

Despite encountered limitations, the results demonstrated the practical usability
of HoloLens2 in assessing upper limb impairment levels and underscored the
importance of defining personalized rehabilitative protocols to make the recovery of
individuals with MS as effective as possible, thereby improving their quality of life.



Abstract

La valutazione e la riabilitazione della funzionalità degli arti superiori, sono
aspetti fondamentali da investigare per affrontare efficacemente i disturbi motori in
soggetti con disturbi neurologici. Le metodologie tradizionali mancano di strumenti
in grado di quantificare efficacemente la disabilità motoria, rendendo difficile la
distinzione tra movimenti patologici e comportamenti normali.

Questa Tesi Magistrale, condotta in collaborazione con il Rehab Technologies
Lab presso l’Istituto Italiano di Tecnologia (IIT) e l’Associazione Italiana Sclerosi
Multipla (AISM), si pone l’obiettivo di esplorare un nuovo metodo di valutazione
del controllo motorio degli arti superiori mediante l’utilizzo di un approccio di
realtà mista (MR) con Microsoft HoloLens2, un display head-mounted progettato
per offrire elementi interattivi nell’area intorno all’utente.

Lo scopo primario della ricerca è quello di estrarre, processare e comparare i dati
dei soggetti patologici con quelli dei sani al fine di individuare esercizi riabilitativi
personalizzati sfruttando l’interazione con oggetti fisici. Sfruttando le capacità di
tracking di mano ed occhio del dispositivo HoloLens2, lo studio vuole mettere a
confronto dati cinematici provenienti da soggetti sani e soggetti affetti da Sclerosi
Multipla, acquisiti durante un task di pick and place nel piano trasversale. Il task
si compone di 6 differenti movimenti nelle 4 direzioni cardinali, erogati in maniera
randomica. Questi dati vengono successivamente analizzati per estrarre metriche
riguardanti la coordinazione mano-occhio, la morfologia, la fluidità e l’efficienza
dei movimenti necessari per ottenere una valutazione complessiva della qualità
del movimento. La comparazione delle metriche provenienti da soggetti sani e
patologici fornisce degli aspetti chiave riguardanti le differenze nel controllo motorio
e nella coordinazione tra i 2 gruppi svolgendo un ruolo fondamentale nel capire
l’impatto della Sclerosi Multipla sulla funzionalità degli arti superiori.

Lo scopo secondario della Tesi è quello di sfruttare i risultati ottenuti dalle
metriche per identificare dei pattern motori tra tutti i soggetti analizzati indagando
differenti metodi di classificazione. I risultati ottenuti dalla clusterizzazione suddi-
vidono i soggetti in 4 classi: soggetti senza tremore, soggetti con tremore moderato
o altri impairment cerebellari, soggetti con tremore severo e soggetti sani o con
comportamento cinematico simile a quello dei sani.

Nonostante i limiti riscontrati, i risultati ottenuti dimostrano l’effettiva usabilità
di hololens2 nella valutazione del livello di impairment degli arti superiori e sotto-
lineano l’importanza di definire dei protocolli riabilitativi personalizzati al fine di
rendere il recupero dei soggetti affetti da Sclerosi Multipla il più efficace possibile,
migliorando la loro qualità di vita.
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Chapter 1

Introduction

Upper-limb impairments are a common consequence of various neurological dis-
orders, significantly affecting the functional independence and quality of life of
individuals. Accurate assessment of upper-limb function is crucial for diagnosing
these conditions, guiding treatment, and monitoring recovery. The upper limbs play
a vital role in performing daily activities and engaging in social and occupational
tasks. Neurological disorders such as stroke, multiple sclerosis (MS), cerebral palsy,
and traumatic brain injury often result in deficits in motor control, coordination,
strength, and dexterity of the upper limbs. Evaluating these impairments is essen-
tial for developing personalized rehabilitation strategies and optimizing therapeutic
outcomes.

The development of motor skills is essential for enabling individuals to interact
effectively with their environment and perform complex activities that require
comprehensive body coordination. The musculoskeletal system, which includes
bones, joints, and muscles, operates as a kinetic chain, where movement in one
segment influences the entire body [1]. Individuals with neurological disorders
experience significant disruptions in their kinetic and kinematic behaviors, which
affect both fundamental and functional movements, leading to impairments in
upper-limb motor abilities that can profoundly impact a person’s independence and
mental health [2]. Neurological patients typically undergo specialized treatments
administered by physiotherapists, with the intensity of these treatments varying
based on the stage of recovery. For those with upper-limb impairments, initial
treatment often requires full assistance to perform basic movements. As motor
functions improve, patients transition to partial assistance, eventually progressing
to home-based rehabilitation during the chronic stage. To effectively tailor these
treatments and monitor progress, various methodologies for assessing upper-limb
impairment in patients with neurological disorders have been developed.
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1.1 Upper-Limb Assessment in Neurological Dis-
orders

Clinical assessments are among the most widely used tools for evaluating upper-limb
function. These assessments involve standardized tests and observational checklists
that measure various aspects of motor performance. Notable clinical assessments
include:

• The Nine-Hole Peg Test (NHPT): As highlighted by the International
Journal of Rehabilitation Research (1981) [3], the NHPT is a standardized
assessment tool widely used to measure fine motor coordination and dexterity
of the upper limbs. The test involves timing the patients as they place nine pegs
into nine holes on a pegboard and then remove them (Figure 1.1). This process
provides a quantitative measure of hand function, which is particularly useful
for evaluating motor impairment in individuals with neurological disorders. In
clinical practice, the time taken to complete the NHPT is typically measured
in seconds. The results can be interpreted as follows: a shorter completion
time indicates better motor function of the upper limbs, characterized by faster
peg manipulation and removal. Conversely, a longer completion time reflects
greater motor impairment, with reduced speed of execution and potential
difficulties in coordination and motor precision.

Figure 1.1: Nine-Hole Peg Test equipment

• The Manual Muscle Test (MMT): This test evaluates muscle strength
by having patients resist manual force applied by the examiner [4]. It is
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particularly useful for assessing the degree of muscle weakness in patients with
neurological disorders.

• The Expanded Disability Status Scale (EDSS): This method is used
to quantifiy the disability level in people with multiple sclerosis (PwMS). It
assesses a range of neurological functions, including muscle strength, coordi-
nation, speech, swallowing, sensory functions, and bowel and bladder control.
The scale ranges from 0 to 10, with increments of 0.5. Lower scores (0 to 4.5)
reflect minimal to moderate disability with retained ambulatory ability, while
higher scores (5.0 to 9.5) indicate increasing levels of disability and reduced
walking ability (Figure 1.2). EDSS is widely used in clinical trials and by
neurologists to monitor disease progression and evaluate the effectiveness of
treatments [5].

Figure 1.2: Expanded Disability Status Scale

• The Fugl-Meyer Assessment (FMA): This comprehensive assessment
tool is a widely used clinical tool designed to assess motor function, balance,
sensation, and joint functioning in individuals who have experienced a stroke.
It includes subtests for upper-limb motor function, coordination, and reflex
activity, offering a detailed profile of motor impairment. It is particularly
valuable in rehabilitation settings to evaluate the recovery of motor skills and
to track progress over time [3].

• The Box and Block Test (BBT): It is a standardized assessment tool
designed to measure manual dexterity, particularly in the context of upper-
limb function. During the test, the individual is asked to transfer as many
small blocks as possible from one compartment of a box to another within
a set time frame, typically one minute (Figure 1.3). The number of blocks
successfully transferred serves as a quantitative measure of hand dexterity
and motor coordination. A higher score, indicating more blocks transferred,
suggests better manual dexterity and upper-limb function. Conversely, a lower
score reflects greater difficulty in manual tasks, potentially due to impaired
motor skills. The BBT is particularly valued for its sensitivity in detecting

3
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changes in hand function over time, making it a valuable tool for assessing
treatment outcomes and guiding rehabilitation strategies [6].

Figure 1.3: Box and Block Test equipment

Instrumental assessments utilize advanced technologies to provide objective
and quantitative data on upper-limb function, capturing subtle changes in motor
performance that may not be evident through clinical assessments alone. Among
the most widely used methods of instrumental assessment, we can include:

• Motion Capture Systems: Motion capture systems are advanced tech-
nological tools used to accurately capture and analyze human movement.
They employ various sensors, markers, or cameras to track the position and
orientation of body segments or joints in three-dimensional space. These
systems provide precise measurements of joint angles, movement trajectories,
and timing during functional tasks. This data is crucial for understanding mo-
tor impairments, evaluating rehabilitation progress, and guiding personalized
treatment plans for individuals with neurological disorders or other conditions
affecting upper-limb function [7].

• Electromyography (EMG): EMG measures muscle electrical activity during
contraction, providing insights into muscle activation patterns and neuromus-
cular control. This method is valuable for understanding the underlying
mechanisms of motor impairments and guiding targeted interventions [8].

4
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Recent advancements in technology have led to the development of innovative
assessment tools that enhance the accuracy and reliability of upper-limb evaluations.
Virtual Reality (VR) and Augmented Reality (AR) environments offer immersive
and interactive platforms for assessing and rehabilitating upper-limb function.
These technologies can simulate real-life tasks and provide real-time feedback,
making the assessment process engaging and effective. Additionally, wearable
sensors, such as inertial measurement units (IMUs) and accelerometers, enable
continuous monitoring of upper limb movements in naturalistic settings. They offer
valuable data on movement quality and patterns over extended periods, providing
a more comprehensive assessment of motor function [7].

Accurate assessment of upper-limb function is crucial for the effective man-
agement of neurological disorders. A combination of clinical, instrumental, and
patient-reported outcome measures offers a comprehensive evaluation of upper-limb
impairments, guiding personalized rehabilitation strategies. Advances in technol-
ogy continue to enhance the precision and scope of these assessments, promising
improved outcomes for individuals with neurological conditions.

1.2 Multiple Sclerosis
Multiple sclerosis (MS) is a chronic autoimmune disease that primarily affects the
central nervous system (CNS), encompassing the brain and spinal cord. Typically
diagnosed in young adults aged 20 to 50, MS impacts approximately 2.8 million
people worldwide (130.000 in Italy, with an incidence of about 3400 cases per
year), with varying prevalence geographically, indicating potential environmental
influences such as sunlight exposure. Other suspected risk factors include viral
infections like the Epstein-Barr virus, genetic predisposition, and possibly specific
dietary factors and deficiencies, notably vitamin D [9].

The disease is characterized by inflammation, demyelination (the breakdown
of the protective myelin sheath around nerve fibers), and, in some cases, axonal
injury (Figure 1.4). This disruption impairs nerve signal transmission in the CNS,
leading to a diverse range of neurological symptoms.

Common manifestations of MS include optic neuritis causing visual disturbances,
muscle weakness and spasticity, challenges with coordination and balance, sensory
issues such as paresthesias, bladder and bowel dysfunction, chronic fatigue, and
cognitive and mood impairments. Symptoms may follow a relapsing-remitting
pattern of intermittent exacerbations and remissions or a progressive course with
gradual deterioration over time [10].

Diagnosis of MS relies on a combination of clinical criteria, magnetic resonance
imaging (MRI), cerebrospinal fluid (CSF) analysis, and visual evoked potentials
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Figure 1.4: Comparison between a healthy neuron and a damaged neuron.
The healthy neuron on the left shows a normal nerve impulse transmission along
the axon, facilitated by intact myelin sheaths. The damaged neuron on the right
exhibits disrupted nerve impulse transmission due to damaged myelin and exposed
nerve fibers.

(VEP) testing.

MRI remains the cornerstone for diagnosing MS, as it can reveal characteristic
lesions in the CNS that are crucial for accurate diagnosis [11]. Advanced MRI
techniques, such as diffusion tensor imaging and functional MRI, have enhanced our
ability to detect subtle changes in brain tissue, offering valuable insights into disease
progression and the efficacy of therapeutic interventions. In addition to MRI, CSF
analysis can reveal the presence of oligoclonal bands, which are indicative of chronic
inflammation within the CNS and further corroborate the diagnosis of MS. VEP
tests measure the brain’s electrical activity in response to visual stimuli, with
abnormalities often pointing to demyelination of the optic pathways, a common
manifestation in MS. These diagnostic tools, when utilized together, significantly
improve the accuracy of MS diagnosis and enable more effective monitoring of
disease progression and treatment responses.

6
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The McDonald criteria, introduced in 2001 and revised in 2017, are fundamental
in confirming MS diagnosis, emphasizing the dissemination of lesions in both time
and space within the CNS. These criteria require evidence of:

• Dissemination in time, demonstrated by the occurrence of new lesions or
clinical relapses over time.

• Dissemination in space, indicated by lesions observed in different CNS locations,
typically detected through MRI.

In addition to these radiological and clinical markers, the McDonald criteria also
incorporate other diagnostic tests to exclude alternative diagnoses and confirm MS
[12].

Integrating these criteria enables clinicians to effectively classify MS into its
different forms:

• Relapsing-Remitting MS (RRMS): Characterized by episodic acute at-
tacks followed by partial or complete recovery periods.

• Secondary Progressive MS (SPMS): Initially presents as RRMS, transi-
tioning to a more progressive course with accruing disability over time.

• Primary Progressive MS (PPMS): Features a steady decline in neurologi-
cal function from the disease’s onset, without distinct relapse and remission
phases.

• Progressive-Relapsing MS (PRMS): A rare subtype with continuous
disease progression alongside acute exacerbations [10].

Accurate diagnosis and classification of MS are essential for initiating timely
and appropriate treatment strategies tailored to the specific clinical course of the
disease.

1.2.1 Impact of MS on Activities of Daily Living
MS has a substantial impact on an individual’s capacity to perform Activities of
Daily Living (ADLs). These activities encompass essential self-care tasks such as
eating, dressing, and bathing, as well as more complex activities like managing
finances, driving, and household maintenance. The degree of impact varies depend-
ing on the progression of the disease and the specific symptoms experienced by the
individual.

A primary symptom of MS is fatigue, which affects most patients and can be
debilitating. Fatigue in MS is often described as overwhelming and not necessarily
linked to physical exertion [13]. This severe fatigue can significantly restrict an
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individual’s ability to perform daily tasks, thus diminishing their quality of life. For
instance, an individual with MS may find it exhausting to complete simple tasks
such as brushing their teeth or preparing a meal, resulting in increased reliance on
others.

Motor dysfunction is another critical aspect of MS that affects ADLs. MS can
cause muscle weakness, spasticity, and coordination problems, making movements
difficult and often painful. Tasks requiring fine motor skills, such as buttoning a
shirt or writing, can become especially challenging. Moreover, balance and gait
issues common in MS increase the risk of falls, complicating walking, climbing
stairs, and other mobility-related activities.

Cognitive impairments associated with MS also significantly impact ADLs.
Many individuals with MS experience difficulties with memory, attention, and
executive functions [14]. These cognitive challenges can complicate the planning
and execution of daily activities. For example, an individual with MS might struggle
to remember steps in a recipe, manage medications, or keep track of appointments,
necessitating additional support and adaptive strategies.

Sensory disturbances are prevalent in MS and can include numbness, tingling,
and pain. These sensory issues can interfere with the ability to feel and manipulate
objects, further complicating daily tasks [10, 15]. For instance, numbness in the
hands can make it difficult to grasp utensils, turn doorknobs, or use a computer
keyboard, affecting both personal and professional aspects of life.

Visual disturbances, such as double vision, blurred vision, and vision loss, also
impact ADLs [16]. These visual problems can make it challenging to read, drive,
and navigate environments safely. Even with corrective lenses, the fluctuating
nature of MS symptoms can lead to inconsistent visual capabilities, requiring
adaptive strategies and tools to manage daily activities effectively.

Depression and anxiety, often comorbid with MS, further exacerbate difficulties
with ADLs. The emotional burden of living with a chronic illness can reduce
motivation and energy, impacting one’s ability to engage in self-care and maintain
social relationships. Psychological support and interventions are crucial in helping
individuals with MS manage these emotional challenges and improve their overall
functioning.

MS affects ADLs through a complex interplay of physical, cognitive, sensory,
and emotional symptoms. The impact is multifaceted, necessitating comprehensive
management strategies that include medical treatment, rehabilitation, adaptive
devices, and psychological support. Understanding the various ways MS influences
daily life is essential for developing effective interventions that enhance independence
and quality of life for individuals living with this condition.
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1.2.2 Movement disorders in Multiple Sclerosis
Patients with MS could exhibit cerebellar symptoms, including tremor, ataxia,
imbalance, and speech disturbances. Clinical examinations may reveal intention
tremor (dysmetria), head titubation, truncal ataxia, and nystagmus, which suggest
cerebellar or cerebellovestibular dysfunction. Speech can become scanning or
explosive. Distinguishing pure cerebellar dysfunction is challenging due to overlaps
with motor, sensory, and cerebral impairments. Truncal ataxia, frequently resulting
from multiple lesions, is exacerbated by proprioceptive loss from posterior column
involvement. Although cerebellar signs are rare in clinically isolated syndrome
(CIS), they are more prevalent in early-onset MS [17]. A comprehensive analysis of
some of these movement disorders in MS will further elucidate their complexities
and impact on patients.

1. Cerebellar tremor: it is a clinical manifestation characterized by rhythmic,
involuntary oscillations of the limbs, primarily due to cerebellar dysfunc-
tion. This type of tremor is distinct from more common forms, such as
essential tremor or parkinsonian tremor, with unique features and specific
pathophysiological implications. In patients with multiple sclerosis (PwMS),
cerebellar tremor often forms part of a complex motor disorder that also
includes dysmetria and ataxia-related symptoms [18].
Various types of tremor exist, including resting tremor, action tremor, which
can be further categorized as postural (when the limb is held against gravity),
kinetic (during movement), and intentional (at the end of a purposeful move-
ment). In multiple sclerosis (MS), tremor is prevalent, affecting 25% to 58%
of patients [19].
A particularly prevalent subtype of cerebellar tremor in PwMS is intentional
tremor, which significantly impairs upper limb function. This tremor manifests
or worsens during voluntary movements aimed at a target, such as reaching or
pointing. The pathophysiology of intentional tremor in MS involves cerebellar
lesions or disruptions in its pathways, resulting in compromised coordination
and muscle activity timing [20].
The frequency characteristics of cerebellar tremor vary; studies by Hess and
Pullman (2012) [21] and Labiano-Fontcuberta and Benito-Leoen (2018) [22]
report tremor frequencies ranging between 4-12 Hz. Additionally, research
by Wurster et al. (2017) [23] indicates that most frequency components of
cerebellar tremor are concentrated between 3 and 5 Hz. This variability high-
lights the underlying cerebellar dysfunction, which hampers precise movement
control and limb stabilization.
Cerebellar tremor severely impacts ADL, such as writing or eating, creating
substantial challenges to the patient’s quality of life. The inability to maintain
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a stable posture or perform precise movements often results in frustration and
significant functional limitations. Addressing cerebellar tremor, particularly
intentional tremor, is essential for enhancing daily living activities and overall
well-being in PwMS [20].

2. Ataxia: Ataxia is a prevalent and disabling condition in patients with multi-
ple sclerosis (MS), primarily resulting from damage to the cerebellum or its
pathways. This disorder impairs motor coordination and can affect the limbs,
trunk, and speech. Common symptoms include dysmetria, where patients
misjudge the distance or range of movements, dysdiadochokinesia, character-
ized by difficulty in performing rapid alternating movements, and nystagmus,
which involves involuntary eye movements. Patients with ataxia often display
a wide-based, unstable gait, necessitating slower and shorter strides for sta-
bility. Additionally, ataxic speech is marked by altered rate, prosody, and
modulation, leading to clumsy and irregular speech patterns. Coordination of
eye movements is frequently disrupted, resulting in nystagmus and hypometric
or hypermetric saccades. The underlying pathology typically involves lesions
in the cerebellum or cerebellar projections to the brain, brainstem, thalamus,
and spinal cord. Midline cerebellar lesions are associated with truncal ataxia
and gait instability, whereas unilateral limb ataxia is usually due to ipsilateral
cerebellar hemisphere lesions. Posterior cerebellar lesions can cause balance
problems and eye-movement discoordination. Furthermore, ataxia may also
result from demyelinating lesions in the midbrain, thalamus, or pericentral
gyrus [19]. These diverse manifestations underscore the complexity of ataxia
in MS, highlighting the necessity for comprehensive and multidisciplinary man-
agement approaches to address the significant long-term disability it causes in
patients.

3. Dystonia: Dystonia is characterized by abnormal, sustained muscle contrac-
tions that result in twisting or repetitive movements around one or more joints.
In the context of MS, paroxysmal dystonia, also known as tonic spasms, is the
most commonly observed type. Unlike typical dystonia, these spasms involve
involuntary contractions of limbs, causing brief, painful posturing or move-
ments that can occur multiple times a day. Cervical dystonia, or spasmodic
torticollis, is another form of dystonia occasionally observed in MS patients.
It affects the muscles of the neck, resulting in abnormal head movements and
sustained, often painful postures of the head, neck, and shoulders. While
some consider cervical dystonia and MS to be coincidental, recent case reports
suggest a potential causative relationship, supported by lesions in the cervical
spine [19].
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4. Dysarthria: it is a motor speech disorder characterized by difficulty artic-
ulating words due to weakness or incoordination of the muscles involved in
speech production. It typically results from lesions or dysfunction in the
nervous system, affecting areas such as the brainstem, cerebellum, or motor
cortex. Individuals with disartria may experience slurred speech, imprecise
pronunciation, and difficulties controlling the rate, rhythm, and volume of
speech. Treatment approaches often focus on improving speech clarity through
speech therapy techniques tailored to address specific underlying neurological
deficits [17].

1.2.3 Hand-Eye Coordination in PwMS
Eye-hand coordination represents a particularly challenging aspect affected by
cerebellar tremor, crucial for tasks requiring intricate motor control. Cerebellar
tremor detrimentally affects visual tracking and precise targeting of specific spatial
locations.

The compromise in eye-hand coordination among individuals with cerebellar
tremor is evident in their struggles with visual tracking and performance of compli-
cated motor tasks. Quantitative assessment of this impairment involves specific
tests evaluating the patient’s capacity to coordinate eye and hand movements in
response to visual or tactile stimuli.

A study by Brown et al. (1996) [24] elaborates on the disruption of eye-
hand coordination in PwMS, noting significant delays in initiating and executing
coordinated movements. This delay can be attributed to demyelination and axonal
damage in neural pathways connecting the cerebellum and motor cortex, which are
critical for synchronized motor activities.

Feys et al. (2003) [25] further investigated the impact of cerebellar tremor
on upper limb function, highlighting that the severity of tremor correlates with
the degree of impairment in eye-hand coordination. Their findings suggest that
therapeutic interventions aimed at reducing tremor amplitude could potentially
improve coordination and functional independence.

Moreover, the incorporation of cutting-edge technologies like motion capture
systems and virtual reality (VR) platforms presents promising opportunities to
evaluate and rehabilitate eye-hand coordination, as it can simultaneously provide
eye-tracking and hand-tracking data. These advancements offer immediate feedback
and adaptive training environments, potentially improving motor learning and the
development of compensatory techniques [26].

Prompt detection and efficient treatment of cerebellar tremor are crucial to
enhance patients’ quality of life and minimize negative effects on both motor and
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cognitive functions. Customized rehabilitation regimens aimed at improving eye-
hand coordination can significantly contribute to preserving functional autonomy
and overall health in individuals affected by multiple sclerosis.

1.3 Virtual Reality, Augmented Reality and Mixed
Reality in Rehabilitation

Impairments in upper limb function significantly impact an individual’s ability to
perform daily activities, diminishing autonomy and affecting mental well-being.
Effective treatment is crucial for individuals with neurological conditions, such as
stroke survivors and those with multiple sclerosis, to regain or maintain indepen-
dence in daily tasks.

Occupational therapy is designed to optimize functional recovery through spe-
cialized interventions, typically administered in clinical environments. Encouraging
active patient involvement is crucial for fostering neuroplasticity and maintaining
therapeutic gains over time [27]. Personalized feedback, whether visual, auditory,
or tactile, plays a key role in enhancing patient engagement during rehabilitation
sessions. The integration of immersive technologies enhances the therapeutic envi-
ronment, potentially improving treatment outcomes [28, 29]. The following section
outlines various forms of immersive technologies—Virtual Reality (VR), Augmented
Reality (AR), and Mixed Reality (MR)—and their utilization in rehabilitation,
particularly in developing personalized exergames tailored to individual patient
requirements [30].

• Virtual reality (VR) has transformed rehabilitation by offering immersive
environments that simulate real-life scenarios and therapeutic activities. [31]
VR experiences, facilitated through head-mounted displays (HMDs) with
optional haptic feedback, provide a safe environment for patients, such as
stroke survivors, to practice and refine motor skills.

• Augmented reality (AR) enhances the user’s perception of their physical
environment by overlaying digital information onto real-world scenes. This
technology can be accessed through devices such as smartphones, tablets,
or AR glasses. In rehabilitation settings, AR offers real-time guidance and
feedback during exercises. For example, patients can receive virtual prompts
and corrections superimposed on their actual movements, aiding in more
precise and effective exercise performance.

• Mixed reality (MR) integrates elements of both virtual reality (VR) and AR,
enabling interaction between virtual and real objects. Devices like the Microsoft
HoloLens 2 allow users to visualize and interact with holographic images within
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their physical surroundings. In rehabilitation, MR enables interactive therapy
sessions where patients engage with virtual objects during exercises, obtaining
instant feedback on their performance. This hybrid approach combines real-
world elements with virtual elements, enhancing the dynamic and personalized
nature of rehabilitation exercises tailored to individual patient needs.

The incorporation of AR and MR technologies in rehabilitation presents advan-
tages over traditional VR methods, particularly in enhancing hand-eye coordination
through interactive games. VR and AR technologies have been widely implemented
in the field of motor recovery, demonstrating their efficacy in clinical settings. In
contrast, MR applications, as highlighted in recent studies [31], are progressively
gaining recognition and acceptance for their potential to revolutionize rehabilitation
practices. These technologies enable the creation of personalized and interactive
environments tailored to the specific needs of patients, utilizing cameras, sensors,
and additional instruments for biometric measurements such as hand tracking and
eye-tracking. The Microsoft HoloLens 2 exemplifies this capability, particularly
suited for simulating daily living environments.

Patient engagement stands as a crucial determinant in the efficacy of reha-
bilitation programs [32]. Conventional rehabilitation exercises often suffer from
monotony and repetition, which can lead to decreased motivation and adherence.
MR addresses this challenge by offering immersive and stimulating experiences
that make rehabilitation activities more enjoyable. This enhanced engagement en-
courages patients to actively participate consistently in their therapy. In MR-based
rehabilitation, patients interact with virtual objects and projections, engaging in a
wide spectrum of activities ranging from simple exercises to complex, task-oriented
scenarios. These virtual elements are designed to provide immediate feedback,
rewards, and progress tracking, fostering further motivation and involvement. By
transforming therapy sessions into interactive and enjoyable experiences, MR has
the potential to enhance patient compliance and ultimately improve rehabilitation
outcomes.

1.3.1 Head-Mounted Visors using AR and MR for rehabil-
itation programs

Motion capture (mocap) techniques have undergone substantial evolution, enabling
the precise and detailed measurement of limb movements in various applications.
Recent advancements in augmented reality (AR) and mixed reality (MR) tech-
nologies have introduced head-mounted visors as a state-of-the-art tool for motion
capture [7]. Devices like the Microsoft HoloLens 2 seamlessly integrate AR/MR
capabilities with advanced motion tracking functionalities, presenting a range of
significant advantages:
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• Markerless Tracking: Head-mounted visors utilize internal sensors and cam-
eras to monitor upper limb movements without the requirement for reflective
markers, enhancing user comfort and operational ease.

• Enhanced Interaction: AR/MR environments overlay digital data onto the
real-world environment, facilitating interactive and immersive rehabilitation
exercises and training scenarios. This feature enhances patient engagement
and allows for dynamic therapy sessions.

• Portability and Convenience: These devices are compact and simple to
deploy, making them adaptable for diverse settings, including clinical facilities
and patients’ homes.

These technological advancements in AR and MR not only enhance the precision
of motion capture but also broaden the scope of rehabilitative interventions by
integrating digital elements seamlessly into physical therapy environments.

Nevertheless, head-mounted visors encounter several challenges that warrant
consideration. One notable concern is the potential for reduced accuracy in
capturing intricate limb movements, particularly those involving fine motor skills or
performed outside camera tracking area. This limitation could affect the precision
required for detailed rehabilitation assessments and interventions.

Furthermore, the restricted field of view inherent in these devices may hinder
patient engagement during therapy sessions. This limitation could impact the
user’s ability to interact fully with virtual elements or complete tasks that require
a broader visual perspective.

Another critical factor is the limited battery life of head-mounted visors, which
imposes constraints on their practical use in both clinical and research settings. Pro-
longed therapy sessions or extensive data collection periods may necessitate frequent
recharging, potentially disrupting the continuity and efficiency of rehabilitation
practices.

Addressing these challenges through ongoing technological advancements and
ergonomic design improvements remains essential to maximize the effectiveness
and user acceptance of head-mounted visors in rehabilitation applications. Efforts
to enhance motion capture accuracy, expand the field of view, and optimize battery
performance are fundamental in ensuring these devices contribute positively to
therapeutic outcomes and patient experiences.
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1.4 Objectives
This master’s thesis focuses on advancing the rehabilitation of upper-limb function
critical for PwMS. Accurately assessing treatment progress is crucial for tailor-
ing personalized therapy, yet current methods rely largely on subjective clinical
evaluations.

Collaborating with the Italian Institute of Technology, this study explores the
potential of the Microsoft HoloLens 2, a mixed-reality head-mounted display, as an
innovative tool for assessing upper-limb functionality in rehabilitation settings. The
research emphasizes HoloLens2’s capability to offer a portable and cost-effective
solution by utilizing its advanced sensors for quantitative hand and eye-tracking
data collection.

The study employs HoloLens2’s ROCKapp application, which integrates holo-
graphic elements with physical objects to assess pick-and-place task performance
crucial for upper-limb rehabilitation. By analyzing these tasks, the research aims
to derive clinically relevant kinematic data metrics such as movement quality,
coordination and movement accuracy. These metrics promise to provide more
precise assessments of patient progress.

A primary objective of this research is to enable clinicians to make informed
comparisons between healthy individuals and MS patients, thereby strengthening
their understanding of upper-limb impairments and facilitating tailored interven-
tions.The integration of immersive technology through Microsoft HoloLens2 not
only enhances assessment accuracy but also offers potential therapeutic benefits,
such as improving patient engagement, providing real-time feedback to enhance
motor learning, and creating personalized and interactive therapy sessions tailored
to individual patient needs. In this way, this thesis aims to contribute to the
development of more effective and personalized rehabilitation strategies, aiming to
improve the quality of life for individuals living with MS.
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Chapter 2

Materials and methods

This study explores the use of Microsoft HoloLens2, an advanced mixed-reality
head-mounted display, as a cutting-edge alternative to traditional motion capture
systems for assessing upper-limb functionality in rehabilitation. HoloLens2 enables
precise quantitative recordings of hand movements and fosters patient engagement
through its ROCKapp application. This application integrates holographic elements
with physical objects to evaluate essential pick-and-place tasks for upper-limb
rehabilitation, offering a novel approach to interactive therapy sessions. Recent
evaluations have demonstrated that the accuracy of HoloLens2’s hand-tracking
capabilities is comparable to that of traditional motion capture systems, yielding a
cross-correlation exceeding 0.95% and a root-mean-square error percentage below
10%. These promising outcomes underscore HoloLens2’s attributes as a portable,
user-friendly, and cost-effective solution for the precise quantification of hand
movements, potentially paving the way for tailored therapeutic interventions [33].

2.1 Microsoft Hololens 2
Microsoft HoloLens 2 is a cutting-edge MR head-mounted display that combines
advanced hardware and software to provide an immersive user experience. This
device boasts a wide range of specifications and features designed to enhance both
consumer and professional applications, including rehabilitation. [34]

• Design and Ergonomics: The Microsoft HoloLens 2 combines functionality
with user comfort, boasting a sleek, lightweight design that promotes extended
wear without discomfort, making it suitable for long-term use in diverse
applications. It includes an adjustable headband and a balanced center of
gravity, ensuring a comfortable fit for various head sizes and shapes. Moreover,
the visor is designed to flip up, allowing users to effortlessly transition between
mixed reality and their real-world environment. (Figure 2.1)
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Figure 2.1: Hololens2 worn by user in flipped up mode

• Display and Optics: The Microsoft HoloLens 2 incorporates two high-
resolution displays with a combined resolution of 2k per eye, providing a crisp
and detailed visual experience. Its custom-built, high-definition holographic
lenses offer a wide field of view, enhancing depth and presence. Using trans-
parent holographic optics and waveguides, the device projects digital content
directly into the user’s view, seamlessly integrating virtual elements with the
real world. The display supports high contrast and vibrant colors, ensuring
sharp holograms in various lighting conditions. With a sophisticated optical
system and rapid refresh rate, motion blur is minimized, enhancing the realism
and engagement of the mixed reality content.

• Sensors and Tracking: The Microsoft HoloLens 2 incorporates a sophis-
ticated array of sensors for precise tracking and interaction. Head tracking
is enabled by four visible light cameras, ensuring accurate spatial awareness
and positional tracking. For eye tracking, the device utilizes two infrared
cameras (IR), which capture and interpret eye movements to enhance user
interaction and control. Depth sensing is facilitated by a time-of-flight depth
sensor with a resolution of 1 megapixel, allowing for detailed environmental
mapping and object interaction in mixed reality scenarios. Additionally, an
inertial measurement unit (IMU) comprising accelerometer, gyroscope, and
magnetometer components provides real-time data on the device’s orientation
and motion. The integrated 8-megapixel camera supports high-resolution still
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images and 1080p30 video recording, enhancing the device’s capability for
capturing and sharing mixed reality experiences (Figure 2.2).

Figure 2.2: Hololens 2 sensors front view

• Computing Power: The Microsoft HoloLens 2 harnesses the computational
prowess of a custom Qualcomm Snapdragon 850 processor, meticulously engi-
neered to meet the exacting requirements of mixed reality applications. This
powerful processor ensures seamless performance and responsiveness, allowing
the device to process complex holographic images and interactive elements in
real-time. Coupled with 4 GB of RAM and 64 GB of storage, the HoloLens
2 can run multiple applications simultaneously without compromising on
performance. This robust computing architecture enables users to experi-
ence immersive mixed reality environments with minimal latency, enhancing
productivity and interaction in various professional and educational settings.

• Connectivity: The Microsoft HoloLens 2 is equipped with robust connectiv-
ity options, including Wi-Fi 802.11ac and Bluetooth 5.0, ensuring seamless
integration into various network environments. These features enable fast data
transfer, wireless communication, and connectivity to peripherals, enhancing
its versatility in mixed reality applications.

• User Interface and Interaction: The Microsoft HoloLens 2 offers an
intuitive user interface designed for immersive interaction in mixed reality
environments. It supports gaze, gesture, and voice commands, allowing
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natural manipulation of holographic elements. Enhanced by eye-tracking and
hand-tracking technologies, users can interact with virtual objects simply
by looking at them or using hand gestures. The interface is responsive
and customizable, facilitating seamless navigation through applications while
maintaining awareness of the real-world surroundings.

2.1.1 ROCKapp
ROCKapp leverages Microsoft HoloLens 2 to provide a novel approach to functional
MS assessment. This application, designed and implemented by A. Lucaroni at
the Rehab Technologies Lab, integrates holographic elements with physical objects
and markers to create interactive environments where MS patients can perform
specific upper limb tasks, such as pick-and-place exercises. These tasks are crucial
for assessing fine motor skills, coordination, and overall upper limb functionality.

The mixed reality (MR) environment was constructed using Unity 2021.2.16f1,
with integration of both MRTK and PTC Vuforia extensions. This environment
was then projected onto a Microsoft HoloLens2 device.

The MRTK package offers essential components for spatial interactions and
user interface elements. This framework equips developers with the necessary
APIs to utilize the user’s hands as interactive tools. It can accurately compute
the position and orientation of each hand joint, including the fingers (with each
phalanx), knuckles, palm, and wrist.

PTC Vuforia, an augmented reality (AR) software, enabled holographic inter-
action by leveraging different image recognition algorithms. Upon detection of
specific image targets by the HoloLens2 camera, Vuforia anchored holograms to
these targets, enhancing the AR experience [33].

Once started, the user visualizes a holographic target upon which a 500 ml
physical bottle is to be placed. A cylindrical PTC Vuforia marker is attached on
top of the bottle cap (Figure 2.3).

When recognized by the cameras, HoloLens 2 tracks the image from all directions.
The user is expected to move the object based on four different cues positioned
as cardinal points: in front close (S), in front distant (N), on the left (W), and
on the right (E). Virtual target N is placed in front of the user at a distance of
maximum arm extension. S, W, and E coincide with vertices of a square of side
28 cm. Position N serves as a reference upon which the bottle needs to be placed
back once moved to either S, W, or E. The order of appearance of these three cues
is randomized.

During the task, whenever the user places the object on the activated target,
a holographic rocket is launched. Participants are instructed to repeat the task
30 times distributed across 5 trials with 6 movements each. Particularly, Unity
Engine’s colliders (Figure 2.4) are utilized to detect when either the box or the
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Figure 2.3: ROCKapp on HoloLens 2: interactive environment

bottle is picked and when it is placed on the target. The collider, a Unity component
invisible to the user, defines object boundaries and calculates collisions in virtual
worlds, and its shape can be customized as needed.

In ROCKapp the holographic targets are characterized by a collider (C2), while
the bottle is equipped with collider C1. When C1 and C2 intersect, a flag linked
to object placement is activated. Simultaneously, when the hand (equipped with
collider C2) initially collides with the bottle (C1), a flag connected to object picking
is raised.

ROCKapp incorporates several key features that position it as a cutting-edge
tool for functional assessment:

• Holographic Integration: ROCKapp seamlessly overlays digital cues onto
physical objects and markers in the user’s real-world environment, enhancing
the assessment experience with intuitive and immersive interactions.

• Real-time Tracking: Leveraging advanced sensors and tracking capabilities of
HoloLens 2, ROCKapp accurately captures hand and eye movements during
task performance. This real-time data acquisition provides clinicians with
objective metrics to assess movement quality and functional limitations.

• Quantitative Analysis: The application records data with annotations useful
for processing from hand and eye-tracking sensors to generate quantitative
metrics, including movement speed, accuracy, and coordination. These metrics
provide valuable insights into disease progression and the effectiveness of
rehabilitation interventions.
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Figure 2.4: Representation Unity colliders for ROCKapp

In clinical settings, ROCKapp serves as a valuable tool for monitoring the pro-
gression of MS-related motor impairments and evaluating the impact of therapeutic
interventions. By delivering objective and standardized assessments, clinicians can
tailor treatment plans to individual patient needs, thereby optimizing rehabilitation
outcomes and improving patient quality of life.

2.2 Participants
The study aimed to obtain data from healthy subjects for subsequent calculation
and comparison with those of MS patients, in order to obtain a classification
method.

The group of healthy subjects comprised 12 individuals, including 4 males and
8 females, with an average age of 42.15 ± 8.13. The age range within this group
varied from 28 to 60 years.

The MS group consisted of 9 individuals, including 4 males and 5 females, with
an average age of 42.11 ± 12.53 years. The age range within this group varied from
29 to 64 years. PwMS group was characterised by different levels of disability both
in the upper and lower limb. In particular, 3 individuals had been diagnosed with
cerebellar tremor.

The subjects were classified into four distinct classes based on the analysis
of clinical test values from the EDSS, NHPT, and BBT. Class 1 consisted of
individuals with MS but without cerebellar impairments. Class 2 included MS
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subjects with cerebellar impairments or moderate tremor. Class 3 comprised MS
patients experiencing severe tremor. Finally, Class 4 was made up of healthy
subjects without any neurological impairments. (Figure 2.5).

Figure 2.5: Clinical overview of subjects recruited: in green PwMS clinically
classified as Class 1 (without tremor), in red PwMS clinically classified as Class 2
(with moderate tremor or other cerebellar impairments), in white PwMS clinically
classified as Class 3 (with severe tremor), in yellow healthy subjects clinically
classified as Class 4.

All participants performed a specific pick-and-place task on the transversal plane
using Microsoft HoloLens 2 technology and ROCKapp.

Prior to participating, all individuals provided written consent after receiving
information about the research. The study adhered to ethical standards outlined
in the Declaration of Helsinki. The research protocol, labeled as "IIT REHAB
HT01 (363/2022) - DB id 12494", received approval from the Ethical Committee of
Liguria Region in Genoa, Italy.

In essence, the study aimed to obtain metrics from healthy subjects’ dataset,
compute these metrics for MS patients, and then compare their performances to
obtain a classification while maintaining ethical conduct and adhering to established
guidelines.

2.3 Experimental Setup and Protocol
The ROCKapp task was conducted in a seated position to accommodate individ-
uals with significant lower limb impairments. Each experimental session lasted
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approximately 30 minutes, with a minimum 1-hour interval between subjects for
recharging the Hololens 2 battery.

The MR environment of ROCKapp was developed as a tool for assessing upper
limb (UL) functional abilities, focusing on pick-and-place tasks relevant to daily
activities. Visual cues were incorporated to prompt interaction with physical
objects, facilitating their movement between locations and unlocking rewards upon
accurate object placement.

ROCKapp targeted UL movements in the transversal plane, requiring partici-
pants to maneuver physical objects to various holographic targets.

Upon launching the application on the HoloLens 2, users selected their dominant
hand (right or left) using buttons from the MRTK library.

Initiation of the task presented users with a holographic target where a 500 ml
physical bottle was to be positioned. Tracking was facilitated by a cylindrical PTC
Vuforia marker attached to the bottle cap, enabling comprehensive tracking from
all angles (Figure 2.6).

Figure 2.6: ROCKapp setup: user point of view on top, user viewed from outised
on the bottom picture

Participants were instructed to follow four cardinal cues—front close (S), front
distant (N), left (W), and right (E)—to encourage specific arm trajectories. Virtual
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target N was set at maximum arm extension, while S, W, and E formed vertices of
a 28 cm square. Position N served as the reference point for returning the bottle
after movement to S, W, or E, with the order of cue appearances randomized.
Placing the object on an activated target triggered the launch of a holographic
rocket.

Each participant completed the task 30 times across 5 trials, with each trial
comprising 6 movements (Figure 2.7).

Figure 2.7: Position of targets visualized through HoloLens2 and movements
directions.

2.3.1 Experimental Protocol
1. Participants were welcomed into the experimental setting and provided in-

formed consent for participation. They then donned the Hololens 2 device.

2. Ocular calibration was performed because the distance from which the user
visualizes markers during this process can impact their recognition and spatial
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placement, potentially causing a discrepancy between the intended and actual
positions of clues. To mitigate this issue, the application is designed so that
calibration is required only once by the user. This approach ensures that
the user consistently perceives the clues in the same location. Furthermore,
ocular calibration provides accurate visual-motor data essential for analyzing
eye-hand coordination. This personalized calibration process enhances both
the accuracy and reliability of clue placement and the assessment of eye-hand
coordination.

3. Participants were instructed to execute movements in a natural manner to
simulate ADL. Specifically, they were required to grasp a bottle and place
it on an illuminated target positioned in one of the four cardinal directions
on the table. After releasing the bottle, they had to position their hand at
rest on the side corresponding to their dominant hand, either right or left.
They would then retrieve the bottle once more and transfer it to the next
illuminated target. This sequence of actions was repeated to ensure a thorough
simulation of ADL.

4. Participants were instructed to maintain the bottle’s position within the field
of view of the Hololens 2 at all times to ensure continuous data capture.

5. Subsequently, the application was initiated, marking the beginning of the
experimental session.

6. Following the completion of the exergame session, participants were requested
to complete a comprehensive 15-question multiple-choice questionnaire de-
signed to evaluate their engagement levels and the degree of stress induced by
the rehabilitation activity.

2.4 Preprocessing
Hand- and eye-tracking data recorded from HoloLens 2 were gathered into a text
file for subsequent processing. In Unity, a fixed framerate of 50 Hz was applied
to ensure consistency, and data were saved at this frequency. During gameplay,
ROCKapp generated a detailed log file that captured the necessary information.
These log files were then converted into Excel files, which were structured in a
specific format to facilitate further analysis and visualization. The Excel files
were structured as follows, allowing for easy manipulation and examination of the
recorded data:

• Hand-tracking data: Contains information about hand and bottle move-
ments, positions, and interactions with virtual targets, divided into 18 coloumns:
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1. Experiment date in dd/mm/yyyy format
2. Time of frame acquisition in hh:mm:ss format
3. (
4. Start movement point of the bottle: -1 if it’s the first movement and the

subject needs to bring the bottle to the reference position (N), otherwise
indicates 0 for N, 1 for E, 2 for S, or 3 for W

5. -
6. End movement point of the bottle: it indicates 0 for N, 1 for E, 2 for S,

or 3 for W
7. )
8. Instantaneous x-coordinate of the hand
9. Instantaneous y-coordinate of the hand

10. Instantaneous z-coordinate of the hand
11. – "Area": indicates if the position coincides with a hand-bottle collision

with the target,
– otherwise empty.

12. – "Target": indicates if the position coincides with a hand-bottle collision
with the target,

– "Bottle" if the hand and bottle colliders are in collision but not with a
target,

– otherwise empty.
13. – One of the 4 cardinal points (N, S, E, W) if the position coincides

with a hand-bottle collision with the target,
– "Grabbed" if the hand and bottle colliders are in collision but not with

a target,
– otherwise empty.

14. Empty column
15. "Bottle_Position"
16. Target bottle position x-coordinate
17. Target bottle position y-coordinate
18. Target bottle position z-coordinate

The following table shows an example of one possible Excel Hand-tracking
disposition [Table 2.1].
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Table 2.1: Excel Hand-Tracking Disposition - The subject is doing a movement
from S to N and the hand and the bottle are in the N Target Area.

Date 21/11/2023
Time 09:25:45

Parenthesis (
Start Coord 2
Minus sign -
End Coord 0
Parenthesis )

Hand x 0.706674
Hand y -0.7676431
Hand z 0.2886219

Area Area
Collision Target
Cardinal N
Empty
Bottle

Position Bottle_position

Bottle x 0.7290909
Bottle y -0.671493
Bottle z 0.308109

• Eye-tracking data: Includes data on gaze direction and gaze origin during
the tasks, divided into 25 columns:

1. Experiment date in dd/mm/yyyy format
2. Time of frame acquisition in hh:mm:ss format
3. (
4. Start movement point of the bottle: -1 if it’s the first movement and the

subject needs to bring the bottle to the reference position (N), otherwise
indicates 0 for N, 1 for E, 2 for S, or 3 for W

5. -
6. End movement point of the bottle: it indicates 0 for N, 1 for E, 2 for S,

or 3 for W
7. )
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8. "Gaze"
9. "dir"

10. Instantaneous x-coordinate of the gaze direction
11. Instantaneous y-coordinate of the gaze direction
12. Instantaneous z-coordinate of the gaze direction
13. "Gaze"
14. "orig"
15. Instantaneous gaze origin x-coordinate
16. Instantaneous gaze origin y-coordinate
17. Instantaneous gaze origin z-coordinate
18. – "Area_Target": indicates if the position coincides with a hand-bottle

collision with the target,
– otherwise empty.

19. – "Area": indicates if the position coincides with a hand-bottle collision.
– otherwise empty.

20. – "Target": indicates if the position coincides with a hand-bottle collision,
– "Bottle" if the hand and bottle colliders are in collision but not with a

target,
– otherwise empty.

21. – One of the 4 cardinal points (N, S, E, W) if the position coincides
with a hand-bottle collision with the target,

– "Grabbed" if the hand and bottle colliders are in collision but not with
a target,

– otherwise empty.
22. "Bottle_Position"
23. Target bottle position x-coordinate
24. Target bottle position y-coordinate
25. Target bottle position z-coordinate

The following table shows an example of one the corresponding Excel Eye-
tracking disposition to the previous Excel Hand-tracking one [Table 2.2].

This conversion facilitated further data analysis and statistical processing re-
quired for the study.

28



Materials and methods

Table 2.2: Excel Eye-Tracking Disposition - The subject is doing a movement
from S to N and the hand and the bottle are in the N Target Area.

Date 21/11/2023
Time 09:25:45

Parenthesis (
Start Coord 2
Minus sign -
End Coord 0
Parenthesis )

Gaze Gaze
dir dir

Gaze dir x -0.1543665
Gaze dir y -0.5797307
Gaze dir z -0.8000522

Gaze Gaze
origin origin

Gaze origin x 0.743416
Gaze origin y -0.4229481
Gaze origin z 0.6713781
Area_Target Area_Target

Area Area
Collision Target
Cardinal N

Bottle
Position Bottle_Position

Bottle x 0.7290909
Bottle y -0.671493
Bottle z 0.308109

2.4.1 Data Transfer and Struct Creation
The initial step involves transferring these Excel files from the HoloLens 2 to the
MATLAB environment. This transfer guarantees that the data is accessible for
subsequent manipulation and analysis using MATLAB’s advanced data processing
capabilities. Once the data has been imported into MATLAB, it is organized into
a struct, divided by subjects (from S1 to S21). To facilitate data analysis, the first
movement from the random position -1 to the reference point N is removed as it
cannot be standardized.
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2.4.2 Handling Missing Values
HoloLens 2 occasionally fails to detect the hand, resulting in "-100" values in the
x, y, and z coordinates of the hand in the dataset. These erroneous values were
replaced with "NaN" values (Not a Number) to indicate missing data points. To
preserve data integrity, linear interpolation was applied to estimate these missing
values.

2.4.3 Rototranslation of data
As a first step, rototranslation was performed on the data to transform the left-
handed coordinate system of Hololens2 to a standard right-handed coordinate
system.

Subsequently, the centroid positions of Target Areas N and S were computed
from the Hand dataset by averaging all x and y coordinates corresponding to rows
where column 13 of the Hand-Tracking dataset indicated ’S’ or ’N’. To establish
a unified reference system across all subjects, the centroid of Target Area N was
translated to the position (0;0), aligning with the origin of the coordinate system,
and all dataset points were rigidly translated accordingly. Subsequently, considering
the line connecting centroid N to centroid S, the angle of inclination of this segment
relative to the y-axis was calculated, and a rigid rotation of the dataset around the
z-axis was performed to nullify the NS segment’s inclination relative to the y-axis.
This procedure standardized the dataset, ensuring comparability across all data
points.

2.4.4 Filtering Position and Velocity Data
The 3D positional data of the hand and the bottle were processed separately to
compute the absolute position using the formula:

position =
√

X2 + Y 2 + Z2

A 6-Hz cutoff fourth order low-pass Butterworth filter was applied to the
trajectories to reduce noise [35].

Similarly, the velocity of the hand movements was calculated using the formula:

velocity =
ñ

V 2
x + V 2

y + V 2
z

A 2-Hz cutoff fourth order low-pass Butterworth filter was applied to the
trajectories to smooth out the data and remove high-frequency noise components.
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2.4.5 Movements Manual Segmentation
After calculating the absolute positions and velocities for each subject, the actual
collision points with the N, S, E, and W targets were identified by imposing
thresholds on the x and y coordinates. These thresholds reflected the relative
positions and distances between the targets as defined by the experimental setup.
By visually inspecting the absolute positions and velocities over time, in conjunction
with the positions of the markers identified on their respective signals, the most
suitable cut-off points for isolating individual movements performed by the subjects
were determined. During this phase of preprocessing, manual segmentation enabled
a rough separation of the movements, including a portion of the final "reach to
grasp" phase and an initial portion of the "return to resting position" phase.

2.5 Data Processing
Once the individual movements were isolated, they were organized into a structure
that facilitated data organization. Reflecting the initial data segmentation, the
data were divided by subject, encompassing a total of 12 healthy subjects and 9
PwMS. This subject-wise division prepared the data for subsequent comparisons
both between the two participant groups and among subjects within the same group.
Each movement was then further divided into repetitions, with each movement
corresponding to 5 repetitions as outlined by the experimental protocol. This data
segmentation allowed for a subsequent analysis to understand the repeatability
and consistency of each patient’s movements across the repetitions of the same
movement. Position and Velocity values were computed again, but this time
only the 6-Hz cutoff fourth order low-pass Butterworth filter was applied to the
trajectories, to preserve the main components of the velocity profile.

2.5.1 Physiological Interpolation
The dataset described in the previous paragraph then underwent a new phase of
data interpolation at the points where HoloLens 2 had failed to detect the signal.
To allow for a more realistic interpolation of the data, a 5th-degree polynomial was
used [36].

2.5.2 Minimum Velocity Points Identification
In order to segment the actual pick-and-place movement of the object, excluding
the "reach to grasp" and "return to resting position" phases, an algorithm for
automatic movement segmentation was implemented. Specifically, this algorithm
relies on identifying velocity minima to isolate the peak corresponding to the actual
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movement, from the moment the subject grasps the bottle to the moment it is
placed on the target. Specifically, only the first minimum within the first quarter
of the signal and the last minimum within the last quarter of the signal were
considered for segmentation. This approach ensures that essential phases of the
movement are not excluded.

2.5.3 Movements Exclusion Criteria
Before segmenting the movements, the percentage of undetected points (NaN)
by HoloLens 2 was calculated to determine if there were signals unsuitable for
analysis. It was found that subject S2 had an overall NaN percentage exceeding
80%, demonstrating its unusability. Therefore, it was excluded from the analysis.

Once a dataset containing the actual movements was obtained and organized
hierarchically by subjects, movements, and repetitions, the signals underwent
individual analysis. At this stage, the dataset comprised a total of 531 movements.

Initially, signals containing more than 25% undetected points by HoloLens 2
were excluded to ensure they accurately represented the performed movements,
without significant distortions or artifacts introduced by interpolation.

Following this analysis, subject S14 was also excluded from the analysis because
it exhibited a NaN percentage exceeding 25% in the majority of movements (90%
of available movements). Using this method, excluding subject 14, 3.77% of the
available dataset was discarded.

Finally, through visual analysis of individual movements, all movements with
distorted morphology unsuitable for our study purposes were removed. This step
resulted in an additional 24.27% of the available dataset being eliminated to
effectively analyze only undistorted real data.

2.6 Metrics and Statistical Analysis
This master’s thesis focuses on analyzing motor control and coordination during
upper-limb movements in people with multiple sclerosis (PwMS). To achieve a
more precise assessment, the analysis concentrated on a specific movement phase,
excluding irrelevant segments. This approach allowed the extraction of a dataset
that served as the basis for computing various kinematic metrics.

These kinematic metrics were instrumental in quantifying the quality and
efficiency of movement execution, providing valuable insights into the motor perfor-
mance of PwMS during rehabilitation exercises. The use of the selectively extracted
dataset ensured that the computed metrics accurately reflected the characteristics
of the targeted movement phase, thereby enhancing the relevance and validity
of the analysis. Specifically, the study selected several kinematic metrics related
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to hand and eye displacements and velocities, focusing on smoothness, efficiency,
morphology and hand-eye coordination [33, 35].

2.6.1 Smoothness
• Spatial Arc Length (SPARC): SPARC is defined as the Arch Length of

the frequency spectrum derived from the Fourier Transform of the velocity
profile.
This metric is inverted, meaning that more negative values indicate less
smooth movements. SPARC is recognized as a crucial measure of upper-limb
impairments because of its reliability in assessing movement smoothness.

SPARC = −
Ú fmax

fmin

-----F
I

dv(t)
dt

J-----
2

dt

• Number of Velocity Peaks (NVP): NVP denotes the number of submove-
ments required to complete an action. Hand motion patterns showing multiple
peaks in the velocity curve signify impaired smoothness, while a bell-shaped
velocity profile is characteristic of normal, healthy movement.
This metric is employed to quantify neurological recovery, as a reduction in
the number of submovements indicates enhanced motor control [37].

hi ≥ 1
2 · hmax

where hmax is the maximum peak height. Additionally, peaks were required to
be separated from any preceding peak by a distance (di) of at least 5% of the
total path length (L):

di ≥ 0.05 × L

2.6.2 Efficiency
• Movement Time (MT): MT is defined as the duration of the movement

from the moment the object is picked to when it is placed on the target.
It is widely associated with the overall efficiency of the movement.

MT = tend − tstart
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2.6.3 Morphology
• Symmetry: Symmetry measures the similarity between the two halves of a

movement and offers insights into coordination and balance. For patients in
rehabilitation, particularly those recovering from conditions like stroke or MS,
Symmetry is a crucial indicator of recovery progress.
Clinically, high Symmetry in movements indicates effective motor control and
suggests proper functioning of the patient’s neuromuscular system [38]. In con-
trast, movement asymmetry can signify motor impairments or compensatory
strategies, potentially necessitating further therapeutic intervention.

Symmetry = Duration of the Acceleration Phase
Duration of the Deceleration Phase

• Kurtosis: Kurtosis offers insights into the distribution of velocity throughout
a movement. High Kurtosis indicates that the movement features more
frequent extreme values (peaks), while low Kurtosis suggests a more consistent
distribution of velocities.
Clinically, Kurtosis can aid in evaluating the smoothness and control of a
patient’s movements. Higher Kurtosis values may point to abrupt or jerky
motions, which are often associated with motor control issues or neurological
disorders. Conversely, lower Kurtosis values suggest smoother and more
controlled movements.

2.6.4 Hand-Eye Coordination
• Gaze Accuracy Number of Zero Crossing Points (N0C_GA): Gaze

accuracy, calculated as the distance between the eye path and the hand path
instantaneously, refers to the measurement of how closely the gaze trajectory
follows the hand trajectory at each moment in time. It quantifies the spatial
correspondence between where the eyes are looking and where the hand is
moving throughout a movement. This metric is crucial in understanding
the precision and alignment of eye-hand coordination during motor tasks or
behavioral studies.
In this study, we chose to present this metric by calculating the number of zero
crossing points of the first derivative of the distance between the eye path and
the hand path (N0C_GA). This approach provides a quantitative measure of
how often the gaze trajectory intersects or deviates from the hand trajectory
over time. By analyzing the derivative’s zero crossings, we can capture changes
in gaze accuracy dynamically throughout the task or experimental session.
This method enhances our ability to detect subtle fluctuations in eye-hand
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coordination and offers a detailed assessment of the temporal smoothness of
gaze accuracy [35]. Such analysis is valuable for uncovering patterns of motor
control and potentially identifying impairments or variations in sensorimotor
integration across different conditions or populations.

• Pearson’s Coefficient: The Pearson’s Correlation Coefficient, also known
as Pearson’s r, is a measure of the linear correlation between two variables
X and Y. It quantifies the strength and direction of the linear relationship
between the variables. The Pearson’s Correlation Coefficient is defined as
the covariance of the two variables divided by the product of their standard
deviations [26].

r = cov(hand_displacement, eye_displacement)
std(hand_displacement) · std(eye_displacement)

This formula captures the degree to which the two absolute displacements are
linearly related, with values ranging from -1 to 1.

1 ≥ r ≥ −1

From a clinical perspective, the correlation between eye and hand movements
allows for the assessment of coordination between ocular and upper limb move-
ments, which may be impaired in cases of cerebellar dysfunction. Correlation
values approaching 1 indicate that eye movements accurately follow hand move-
ments. Negative correlation values indicate an inverse relationship between
eye and hand movements, while values approaching zero suggest a lack of syn-
chronization between the two pathways, both indicative of non-physiological
behavior.

2.7 Clustering Methods
After calculating the aforementioned metrics individually for each MS-affected
patient and the mean value of all the healthy subjects, the obtained values were
clustered using 4 methods to identify common behavioral patterns across different
disease severities. Subjects were grouped into four classes across all clustering
methods:

• Class 1: MS subjects without cerebellar impairments

• Class 2: MS subjects with moderate tremor and other cerebellar impairments

• Class 3: MS subjects with severe tremor
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• Class 4: Healthy subjects or MS subjects exhibiting behavior similar to that
of healthy individuals

The analyses were conducted in two distinct ways:

• Metric-by-Metric Clustering: Each metric was analyzed separately using
the four clustering methods.

• Normalized Multi-Metric Clustering: All metrics were normalized with
respect to the mean value of healthy subjects for each metric and then
aggregated to cluster the subjects using the four methods.

The following sections briefly outline the clustering methods chosen for the
analysis:

2.7.1 K-means
The K-means algorithm is a widely used partitioning technique in the field of
data clustering. The following steps outline the process executed by the K-means
algorithm:

1. Initialization: Select the number of clusters, K, and initialize K cluster
centroids.

2. Assignment Step: Assign each data point to the nearest cluster centroid.
This is typically achieved by calculating the Euclidean distance between each
data point and each centroid, then assigning the data point to the cluster
associated with the nearest centroid.

3. Update Step: Recalculate the centroids of each cluster. The new centroid is
computed as the arithmetic mean of all data points assigned to that cluster,
thereby updating its position.

4. Iteration: Repeat the assignment and update steps until the centroids
stabilize, meaning they no longer change significantly. Convergence can be
assessed by checking if the changes in centroids are below a predefined threshold
or if a maximum number of iterations is reached [39].

The K-means algorithm offers several key advantages, including simplicity,
computational efficiency, and scalability to large datasets. The algorithm’s time
complexity is O(nkl), where n is the number of data points, k is the number of
clusters, and l is the number of iterations required for convergence.

Nevertheless, K-means has some limitations. It is sensitive to the initial place-
ment of centroids, which can affect the final clustering results. Additionally,
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determining the optimal number of clusters can be challenging. The algorithm also
struggles with clusters of varying sizes and densities. Despite these limitations,
K-means remains a fundamental and widely-used clustering method due to its ease
of implementation and effectiveness in a variety of practical applications.

2.7.2 Affinity Propagation
Affinity Propagation is a clustering algorithm that identifies exemplars within
a dataset by simultaneously considering all data points as potential exemplars.
Unlike traditional clustering methods that require predefining the number of clusters,
Affinity Propagation does not need a priori specification of cluster numbers, making
it particularly useful in scenarios where the optimal number of clusters is unknown
or variable.

The algorithm operates by iteratively exchanging messages between data points
to determine both exemplars and cluster assignments. Each data point evaluates
the suitability of all others as its exemplar based on a similarity measure, typically
defined by a similarity matrix. The message passing process involves two types of
messages: "responsibility" messages, which quantify how well-suited a data point
is to be an exemplar for another, and "availability" messages, which reflect the
attractiveness of a data point to choose another as its exemplar.

Through iterative message exchanges, data points update their preferences for
exemplars and adjust their cluster memberships until a stable set of exemplars and
clusters is achieved. The algorithm converges when the assignments of exemplars
and clusters no longer change significantly between iterations [40].

Affinity Propagation is known for its ability to discover clusters of varying
sizes and densities, as well as its capability to handle large datasets efficiently.
However, its sensitivity to the initial setting of parameters, such as the damping
factor that controls message updates, requires careful tuning to achieve optimal
results. Additionally, while Affinity Propagation can be computationally intensive,
its flexibility and robustness make it suitable for applications in diverse scientific
fields, including biology, computer vision, and social network analysis.

2.7.3 Agglomerative Clustering
Agglomerative clustering is a fundamental bottom-up technique in data analysis
and machine learning used to group similar objects into clusters hierarchically. The
process begins by considering each data point as its own cluster and then iteratively
merging clusters based on a measure of similarity until all data points belong to a
single cluster or a stopping criterion is met.

Initially, each data point is treated as a separate cluster. The algorithm then
proceeds by iteratively merging the two closest clusters based on a specified distance
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metric, such as Euclidean distance or correlation coefficient. This merging process
continues until all the data points are grouped into a single cluster.

Agglomerative clustering operates under the principle of linkage criteria, which
determines how the distance between clusters is measured and how clusters are
merged. Common linkage criteria include:

• Single linkage: Merging clusters based on the minimum distance between
their closest members.

• Complete linkage: Merging clusters based on the maximum distance between
their farthest members.

• Average linkage: Merging clusters based on the average distance between
all pairs of members from different clusters.

Agglomerative clustering is valued for its simplicity and interpretability, as well
as its ability to handle a wide range of data types and cluster shapes. However,
its computational complexity can be a limiting factor for large datasets, especially
when employing distance computations for all pairs of clusters. Despite this
challenge, agglomerative clustering remains widely used in various scientific and
practical applications due to its intuitive nature and ability to reveal hierarchical
relationships within data [41].

2.7.4 Divisive Clustering
Divisive clustering, also known as top-down clustering, represents an alternative
approach to hierarchical clustering compared to agglomerative methods. In divisive
clustering, the process begins with all data points (or documents) in a single cluster
at the top level. The cluster is then recursively split into smaller clusters using a
flat clustering algorithm, such as K-means, until each data point resides in its own
individual cluster [39].

This top-down approach contrasts with the bottom-up nature of agglomerative
clustering, where clusters are progressively merged. Divisive clustering is conceptu-
ally more intricate because it necessitates an additional flat clustering algorithm
as a subroutine to perform the splits. However, it offers advantages in efficiency
when only a limited number of hierarchical levels need to be generated, as it can
be linear in terms of the number of documents and clusters.

One of the distinguishing characteristics of divisive clustering is its hierarchical
rigidity. Once a split is made, it cannot be undone, which simplifies computation
by avoiding the need to explore all possible combinations. This rigidity can lead
to lower computational costs but necessitates careful consideration of clustering
quality enhancement techniques to optimize results.
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Results

In this section, a comprehensive analysis of kinematic profiles is presented, provid-
ing an in-depth examination of specific motor control deficits in patients with MS
and evaluating the potential of targeted rehabilitation strategies to enhance motor
function. This analysis not only quantifies the extent of impairment but also en-
hances the understanding of altered motor control mechanisms in neurodegenerative
diseases.

In this study, the kinematic profiles of hand position and velocity during the
pick-and-place motor task were analyzed for both healthy subjects and MS patients
(Figure 3.1a, 3.1b, 3.2a, 3.2b). The data were analyzed to quantify the impairments
in motor control in MS patients by comparing them with the results obtained from
the analysis of healthy subjects’ movements.

To quantify motor control alterations, various metrics were calculated from
position and velocity profiles to identify specific patterns in hand kinematics and
assess the level of eye-hand coordination. Specifically, the following characteristics
of hand movements were evaluated: homogeneity, efficiency, and morphology
[Table 3.1]. For eye-hand coordination, the assessment was based on the relationship
between hand and gaze positions relative to the subject [Table 3.2].

Performance Metric Abbreviation Reference
Smoothness Spatial Arc Length SPARC [42, 35, 43]
Smoothness Number of Velocity Peaks NVP [42, 43]
Efficiency Movement Time MT [42, 44, 45]

Morphology Symmetry - [46]
Morphology Kurtosis - [46]

Table 3.1: Five kinematic features were selected according to three different
hand movement performance evaluations: smoothness, efficiency and morphology.
Abbreviations are reported, as well as literature references, if present.

39



Results

Performance Metric Abbreviation Reference
Hand-Eye Coordination Gaze Accuracy Number Of Zero Crossing Points N0C_GA -
Hand-Eye Coordination Pearson Coefficient r [26]

Table 3.2: Two different features were selected based on the assessment of hand-
eye coordination. Abbreviations are reported, as well as literature references, if
present.

3.1 Kinematic Analysis

Participants were instructed to perform six consecutive movements, three outward
and three return, during a motion capture analysis (acquisition frequency of 50
Hz). The pick-and-place task involved grasping a bottle from one of the cardinal
points visualized by a blue hologram and moving it to the next blue hologram.
This next hologram was located at another cardinal point. The outward movement
always started from the North cardinal point and ended at a different cardinal
point, distinct from the endpoints of the other outward movements. Each return
movement always concluded at the North cardinal point.

Each sequence was subjected to five repetitions, with no restrictions on timing
or pathways. Participants were asked to perform the task in a relaxed and natural
manner.

Figures 3.1a and 3.1b, show the aligned and superimposed positions of the
subjects for each movement. Each subplot of the movement contains all repetitions
except those deemed unusable.

Specifically, in Figure 3.1a the aligned and superimposed positions of all healthy
subjects are shown. In Figure 3.1b, the positions of subjects with MS without
tremor are shown in blue, while the positions of patients with tremor (S3, S8,
and S9), as well as S5, who, despite not exhibiting tremor, had a high degree of
impairment, are shown in red.

The total number of movements depicted in Figure 3.1a is 223, while the total
movements present in Figure 3.1b is 183.

Figures 3.2a and 3.2b show the corresponding aligned, superimposed, and
normalized velocities of the subjects’ positions under examination.
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(a) Green: Positions of healthy subjects.

(b) Blue: positions of subjects with MS without tremor, red: posi-
tions of subjects with MS with tremor and of S5 who does not have
tremor but has other cerebellar impairments.

Figure 3.1: Positions of all overlapped repetitions for each movement: (a) positions
of the healthy subjects (b) positions of PwMS.
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(a) Green: velocities of healthy subjects.

(b) Blue: velocities of PwMS without tremor, red: velocities of
PwMS with tremor and of S5 who does not have tremor but has
other cerebellar impairments.

Figure 3.2: velocities of all overlapped repetitions for each movement: (a) velocities
of the healthy subjects (b) velocities of PwMS.
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Positions and corresponding velocities are analyzed, and metrics are calculated.
Healthy subjects are considered as a single entity by averaging across all subjects,
repetitions, and movements to obtain a single value for each movement. Subse-
quently, the results of the metrics for patients with MS are presented and compared
with the results for healthy subjects, who are represented as an average of all values
for each individual metric.

In particular, in Figures 3.3, 3.5, 3.7, 3.9 and 3.11, the box chart of the mean
value of the considered metric for healthy subjects is shown in gray along with
its standard deviation, calculated by averaging across all movements, repetitions,
and healthy subjects. Overlaid on the mean values of the healthy subjects are the
metric values for each individual movement and repetition for each patient, with
the patient code on the x-axis and the corresponding values on the y-axis.

In Figures 3.4, 3.6, 3.8, 3.10 and 3.12, the metric values for each patient are
shown differently. Specifically, for each dot plot corresponding to a patient, the
x-axis represents the movement code, and the y-axis represents the corresponding
metric value for that movement, averaged across repetitions (orange). The blue
shows the metric value corresponding to the movement, averaged across repetitions
for all healthy subjects, so the metric values for each dot plot are the same.

3.1.1 Spectral Arc Length

In Figure 3.3, it is observed that most of the SPARC metric values for S1, S4, S6,
and S7, who are patients without tremor, are around the mean value. However,
patient S5 (a patient without tremor) behaves similarly to patients with tremor
such as S3, S8, and S9.

Specifically, most values for S3 and S9 are outside the mean range, while for S8,
there are no values around the mean, but only values outside of it.

In Figure 3.4, the first subplot, corresponding to S1, as well as the subplots
for S4, S6, and S7, show values similar to the metric values for healthy subjects,
except for the NW and WN movements of S1, the NE and EN movements of S4,
and the NS movement of S7. The values for these movements slightly deviate from
the corresponding values of healthy subjects.

Additionally, the values for S8 (patient with tremor) significantly deviate from
the mean values of healthy subjects, being much lower.
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Figure 3.3: Boxchart of SPARC metric: In gray the average and standard
deviation of values for healthy subjects; other color: dots represent the values for
each motion repetition of pathological subjects, with each patient distinguished by
a unique color.

Figure 3.4: Dotplot of SPARC metric: Blue dots represent the mean value across
repetitions for each movement in healthy subjects, while orange dots represent the
mean value across repetitions for each movement in a pathological subject.
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3.1.2 Number of Velocity Peaks

In Figure 3.5, it is observed that patients with MS without tremor, particularly S4
and S6, have a number of velocity peaks ranging between 1 and 5, which is lower
than the range observed in healthy subjects. Subject 1 shows values between 1 and
7, and S7 between 1 and 8. Subject S5, who did not exhibit tremor, has a wider
range of values, similar to patients with tremor such as S8. On the other hand,
S3 also has a wider range of values compared to patients without tremor but still
lower than S8. Additionally, S9 has a range equal to S7 but still lower than S1.

In Figure 3.6, it is noted that S8 deviates significantly from both patients without
tremor, other patients with tremor, and healthy subjects, having a wider range
of values compared to the others. Moreover, for S4 and S6, the range of values is
similar to that of healthy subjects and differs from all other patients, both those
without tremor and those with tremor.

Figure 3.5: Boxchart of NVP metric: In gray the average and standard deviation
of values for healthy subjects; other color: dots represent the values for each motion
repetition of pathological subjects, with each patient distinguished by a unique
color.
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Figure 3.6: Dotplot of NVP metric: Blue dots represent the mean value across
repetitions for each movement in healthy subjects, while orange dots represent the
mean value across repetitions for each movement in a pathological subject.

3.1.3 Movement Time

In Figure 3.7, the MT metric values of patients without tremor, S1 and S4, overlap
with the mean and standard deviation of healthy subjects. Most values of S7
(a patient without tremor) also overlap with the standard deviation of healthy
subjects, with a few values slightly higher. Patients with tremor, particularly S3,
S5, and S9, exhibit some values higher than healthy subjects, while none of the
values for subject S8 overlap with the mean and standard deviation of healthy
subjects. In fact, its values are much higher compared to both healthy subjects
and all other subjects with MS.

Similarly, in Figure 3.8, it is observed that the metric value for individual
movements corresponding to S8 significantly deviates from the mean of healthy
subjects, showing much higher values compared to both healthy subjects and other
subjects with MS. Other patients with tremor, S3 and S9, show values that differ
and do not overlap with healthy subjects except for the NW movement of S3, which
is similar to the mean value across all repetitions for healthy subjects in the same
movement.

Additionally, for patients S4 and S6, the values are similar to those of healthy
subjects and differ from all other patients, both those without tremor and those
with tremor.
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Figure 3.7: Boxchart of MT metric: In gray the average and standard deviation
of values for healthy subjects; other color: dots represent the values for each motion
repetition of pathological subjects, with each patient distinguished by a unique
color.

Figure 3.8: Dotplot of NVP metric: Blue dots represent the mean value across
repetitions for each movement in healthy subjects, while orange dots represent the
mean value across repetitions for each movement in a pathological subject.
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3.1.4 Symmetry
In Figure 3.9, it is observed that for patients without tremor, namely S1, S4, S6,
and S7, most Symmetry metric values fall within the mean and standard deviation
of healthy subjects’ metric values. However, subject S8 (a patient with tremor)
and subject S5 (a patient without tremor) exhibit values outside the mean and
standard deviation of healthy subjects, notably higher in magnitude. Similarly,
subjects S3 and S9 (both patients with tremor) show values outside the mean and
standard deviation of healthy subjects, notably lower in magnitude.

In Figure 3.10, it is noted that the value of the Symmetry metric for individual
movements of patients S4, S6, and S7 (patients without tremor) is similar to the
value of the corresponding movement averaged across all repetitions for healthy
subjects, except for the SN movement of subject S4 and the NS movement of
subject S7, which deviate significantly from the corresponding movement value of
healthy subjects.

The values for subject S8 significantly deviate from those of healthy subjects.
Additionally, the value corresponding to the EN movement for subject S5 (a patient
without tremor) deviates significantly from the corresponding value of the movement
in healthy subjects, being higher.

Figure 3.9: Boxchart of Symmetry metric: In gray the average and standard
deviation of values for healthy subjects; other color: dots represent the values for
each motion repetition of pathological subjects, with each patient distinguished by
a unique color.
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Figure 3.10: Dotplot of Symmetry metric: Blue dots represent the mean value
across repetitions for each movement in healthy subjects, while orange dots represent
the mean value across repetitions for each movement in a pathological subject.

3.1.5 Kurtosis
In the Figure 3.11, it is shown that most Kurtosis metric values for subjects with MS
without tremor, specifically S1, S4, S6, and S7, fall within the mean and standard
deviation of healthy subjects’ metric values, except for patient S5, whose values are
outside the mean and standard deviation of healthy subjects. This pattern is also
observed in patients S3, S8, and S9, who had tremors. Particularly, S8’s values
are entirely outside the mean and standard deviation of healthy subjects’ metric
values, except for one value from a single repetition.

In Figure 3.12, it is noted that the Kurtosis metric value for individual move-
ments of patients without tremor, S1, S6, and S7, is similar to the value of the
corresponding movement averaged across all repetitions for healthy subjects, except
for the NS movement of patient S7, which slightly deviates from the corresponding
movement value of healthy subjects, particularly being higher. Additionally, all
values for S4 (patient without tremor) deviate slightly from the values of healthy
subjects, especially the SN movement.

The values for patients with tremor (S3, S8, S9) deviate more significantly
from the values of healthy subjects, with S8’s values notably higher overall, except
for the NE movement, which is similar to the metric value of the corresponding
movement in healthy subjects. Furthermore, S5, a patient without tremor, also

49



Results

shows significantly different values compared to both healthy subjects and other
patients without tremor.

Figure 3.11: Boxchart of Kurtosis metric: In gray the average and standard
deviation of values for healthy subjects; other color: dots represent the values for
each motion repetition of pathological subjects, with each patient distinguished by
a unique color.

Figure 3.12: Dotplot of Kurtosis metric: Blue dots represent the mean value across
repetitions for each movement in healthy subjects, while orange dots represent the
mean value across repetitions for each movement in a pathological subject.
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3.2 Hand-Eye Coordination
Another important aspect, in addition to the kinematic one, is eye-hand coordina-
tion. To quantify coordination, hand movement positions are compared with eye
positions for each subject using two different metrics: Gaze Accuracy Number Of
Zero Crossing Points (N0_GA) and the Pearson Coefficient.

Subsequently, in Figures 3.13 and 3.15, the results of these 2 metrics are shown
for each multiple sclerosis patient, comparing them with results from healthy
subjects.

Specifically, for the N0C_GA metric, in Figure 3.13, the box plot of the mean
value of the metric for healthy subjects is shown in gray, along with its standard
deviation calculated by averaging across all movements, repetitions, and healthy
subjects. Overlaying this are the values of the metric for each movement of
each repetition for each subject, plotted with patient codes on the x-axis and
corresponding values on the y-axis.

In Figure 3.14, the metric values for each patient are displayed differently.
Particularly, each patient’s dot plot shows the movement code on the x-axis and
the corresponding metric value averaged over repetitions (in orange). The metric
values averaged over all healthy subjects for each movement are shown in blue,
ensuring consistency across all dot plots.

The Pearson coefficient, calculated as the ratio of covariance between hand
and eye positions to the product of their standard deviations, ranges from -1 to 1:
values nearing 1 indicate a linear relationship between hand and corresponding eye
movement, null values indicate independence between the two variables, while values
approaching -1 indicate an inverse linear relationship, indicating poor eye-hand
coordination in some cases.

The Pearson coefficient (Figure 3.15) is calculated individually for each multiple
sclerosis patient for each movement by averaging across repetitions. Conversely, a
single Pearson coefficient is calculated for each movement for all healthy subjects,
averaging across both repetitions and the number of healthy subjects.

Values of -1 are represented in blue, while values of 1 are represented in green;
thus, values between -1 and 1 exhibit varying shades of color from blue to green.

3.2.1 Gaze Accuracy Number of Zero Crossing Point
In Figure 3.13, it is shown that most N0C_GA metric values for multiple sclerosis
patients without tremor, specifically S1, S4, S6, and S7, fall within the mean and
standard deviation of healthy subjects’ metric values, except for patient S5, whose
values are outside the mean of healthy subjects, as well as values from S3 and S8,
patients with tremor. Particularly, S8’s values are entirely outside the mean and

51



Results

standard deviation of healthy subjects’ metric values. Additionally, the metric
values for subject S9, who had tremor, mostly fall within the mean and standard
deviation of healthy subjects.

In Figure 3.14, for the majority of cases, the N0C_GA metric value for individual
movements of subjects S1, S4, S6, and S7 (patients without tremor) appears similar
to the value of the corresponding movement averaged across all repetitions for
healthy subjects, except for the NW movement of subject S6 and the EN movement
of subject S7, both of which slightly deviate from the value of the corresponding
movement of healthy subjects, particularly being higher.

Most values for subjects with tremor (S3, S8, S9) deviate more significantly from
the values of healthy subjects, with S8’s values notably higher overall, indicating
a significant deviation. Furthermore, S5, a patient without tremor, also shows
significantly different values compared to both healthy subjects and other patients
without tremor.

Figure 3.13: Boxchart of N0C_GA metric: In gray the average and standard
deviation of values for healthy subjects; other color: dots represent the values for
each motion repetition of pathological subjects, with each patient distinguished by
a unique color.
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Figure 3.14: Dotplot of N0C_GA metric: Blue dots represent the mean value
across repetitions for each movement in healthy subjects, while orange dots represent
the mean value across repetitions for each movement in a pathological subject.

3.2.2 Pearson’s Coefficient

In Figure 3.15, it is observed that for some MS patients, the Pearson’s coefficient
value is negative, such as for movement SN of S3 and movement WN of S5.
Additionally, for S5, the coefficient value for movement NE is positive but very
close to 0.

However, it is noted that MS patients generally have values above 0.6 and
approaching 1. Specifically, certain values stand out, such as the coefficient for
movement NS of S1, S6, S8, and S9, movement SN of S1, S5, S6, and S7, movement
NE of S1, S8, and S9, movement EN of S7, movement NW of S8 and S9, and the
coefficient for movement WN of S4, S6, and S9.

Moreover, in some cases, pathological subjects’ values are higher compared to
the mean of healthy subjects, particularly notable for the coefficient of movement
NS for S1, S3, S6, S8, and S9, movement SN for S1, S5, S6, and S7, movement NE
for S8 and S9, movement EN for S7, movement NW for all pathological subjects
except S1, S2, and S4, and finally, the Pearson’s coefficient value for movement
WN corresponding to S3, S5, and S9.
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Figure 3.15: Pearson’s coefficient for each movement for each subject with MS
and Pearson’s coefficient for each movement for all healthy subjects.

3.3 Clustering results
Following the calculation of the specified metrics for each patient with MS individu-
ally and the mean values for all healthy subjects, the resulting data were clustered
using four distinct methods to identify common behavioral patterns across various
levels of disease severity. The subjects were categorized into four classes using all
clustering techniques:

• Class 1: MS subjects without cerebellar impairments

• Class 2: MS subjects with moderate tremor and other cerebellar impairments

• Class 3: MS subjects with severe tremor

• Class 4: Healthy subjects or MS subjects exhibiting behavior similar to that
of healthy individuals

The analyses were conducted in two distinct ways:

• Metric-by-Metric Clustering

• Normalized Multi-Metric Clustering

Each cell in each table in Figures 3.16, 3.17, 3.18 and 3.19, shows the classification
class for a specific subject for a specific metric with different colors representing
each class: red for class 1, green for class 2, white for class 3, and yellow for class 4;
While each cell in Figure 3.20 shows the classification class for a specific subject
according to the second method of analysis (Normalized Multi-Metric Clustering).
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3.3.1 Metric-by-Metric Clustering

Each metric was analyzed separately using the four clustering methods.
Figure 3.16 shows the results obtained using K-means Clustering, Figure 3.17

presents the results from Affinity Propagation clustering, Figure 3.18 illustrates the
results from Agglomerative Clustering, and the final figure (Figure 3.19) displays
the results from Divisive clustering.

In all clustering methods, healthy subjects are classified into class 4.
For the K-means clustering (Figure 3.16), using the mean values of each metric as

input, averaged across all movements and repetitions for each subject, the following
classification was obtained:

• For the SPARC metric: Class 1 includes patients S1, S4, and S7, Class
2 includes patients S3, S5, and S9, Class 3 includes patient S8, and Class 4
includes patient S6.

• For the NVP metric: Class 1 includes patients S1, S5, and S7, Class 2
includes patients S3 and S9, Class 3 includes patient S8, and Class 4 includes
patients S4 and S6.

• For the MT metric: Class 1 includes patients S1, S3, and S7, Class 2
includes patients S5 and S9, Class 3 includes patient S8, and Class 4 includes
patients S4 and S6.

• For the SYMMETRY metric: Class 1 includes patients S1 and S5, Class 2
includes patient S3, Class 3 includes patient S8, and Class 4 includes patients
S4, S6, S7, and S9.

• For the KURTOSIS metric: Class 1 includes patients S4 and S7, Class
2 includes patients S3, S5, and S9, Class 3 includes patient S8, and Class 4
includes patients S1 and S6.
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Figure 3.16: Classification accordingly k-means clustering.

Using Affinity Propagation Clustering (Figure 3.17), the following classification
was obtained:

• For the SPARC metric: Class 1 includes patient S3, Class 2 includes
patients S1, S5, and S9, Class 3 includes patient S8, and Class 4 includes
patients S4, S6, and S7.

• For the NVP metric: Class 1 includes patients S1, S5, and S7, Class 2
includes patients S3 and S9, Class 3 includes patient S8, and Class 4 includes
patients S4 and S6.

• For the MT metric: Class 1 includes patients S3, S4, and S6, Class 2
includes patients S5 and S9, Class 3 includes patient S8, and Class 4 includes
patients S1 and S7.

• For the SYMMETRY metric: Class 1 includes patients S1, S6, and S7,
Class 2 includes patients S5 and S9, Class 3 includes patients S3 and S8, and
Class 4 includes patient S4.

• For the KURTOSIS metric: Class 1 includes patients S4 and S5, Class
2 includes patients S3, S7, and S9, Class 3 includes patient S8, and Class 4
includes patients S1 and S6.
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Figure 3.17: Classification accordingly Affinity Propagation clustering.

Using Agglomerative Clustering (Figure 3.18), the following classification was
obtained:

• For the SPARC metric: Class 1 includes patients S1, S4, and S7, Class
2 includes patients S3, S5, and S9, Class 3 includes patient S8, and Class 4
includes patient S6.

• For the NVP metric: Class 1 includes patients S1, S5, and S7, Class 2
includes patients S3 and S9, Class 3 includes patient S8, and Class 4 includes
patients S4 and S6.

• For the MT metric: Class 1 includes patients S1 and S7, Class 2 includes
patients S3, S5, and S9, Class 3 includes patient S8, and Class 4 includes
patients S4 and S6.

• For the SYMMETRY metric: Class 1 includes patients S1 and S5, Class 2
includes patient S3, Class 3 includes patient S8, and Class 4 includes patients
S4, S6, S7, and S9.

• For the KURTOSIS metric: Class 1 includes patients S4 and S7, Class
2 includes patients S3, S5, and S9, Class 3 includes patient S8, and Class 4
includes patients S1 and S6.
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Figure 3.18: Classification accordingly Agglomerative clustering.

Using Divisive Clustering for each subject for each metric (Figure 3.19) was
obtained the same classification obtained by using Agglomerative Clustering.

Figure 3.19: Classification accordingly Divisive clustering.
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3.3.2 Normalized Multi-Metric Clustering
All metrics were normalized with respect to the mean value of healthy subjects for
each metric and then aggregated to cluster the subjects using the four methods.

In Figure 3.20, each cell shows the classification class for a specific subject for a
specific clustering method.

In all clustering methods, healthy subjects are classified into class 4.

• For the K-means clustering: Class 1 includes patients S1, and S7, Class
2 includes patients S3, S5, and S9, Class 3 includes patient S8, and Class 4
includes patients S4 and S6.

• For the Affinity Propagation clustering: Class 1 includes patient S1,
Class 2 includes patients S3, S5 and S9, Class 3 includes patient S8, and Class
4 includes patients S4, S6 and S7.

• For the Agglomerative clustering: the classification is the same of K-
means clustering.

• For the Divisive clustering: the classification is the same of K-means
clustering and of Agglomerative clustering.

Figure 3.20: Classification accordingly specific clustering method considering
Normalized multi-Metric.

59



Chapter 4

Discussion

Microsoft HoloLens 2, a portable head-mounted display designed for mixed-reality
applications, has gained traction in healthcare settings, including surgical robotics
[47, 48], elderly assistance [49, 50], and rehabilitation [34]. This study explores its
potential for upper-limb functional rehabilitation through a pick-and-place task,
offering a promising alternative to expensive and time-consuming motion analysis
solutions, particularly in assessing hand movement patterns during ADL recovery.

The study focuses on extracting kinematic features from hand and eye movement
patterns captured by the HoloLens 2. Five metrics were selected to assess different
aspects of hand trajectories: Symmetry and Kurtosis for morphology, SPARC and
NVP for smoothness, and MT for efficiency. Additionally, eye-hand coordination
was evaluated using the Pearson Coefficient and N0C_GA.

These metrics were then analyzed using clustering methods to classify subjects
into four distinct impairment levels, including healthy individuals for comparative
analysis.

In the following sections, the metrics used to evaluate upper limb functionality
in individuals with MS will be discussed, and these metrics will be compared with
those calculated on the kinematic trajectories of healthy subjects. Additionally,
there will be a section discussing the classification of subjects, comparing it with
their medical records to verify the insights provided by our method and to see if
our classification aligns with the results obtained from clinical tests.

4.1 Smoothness
Analysis of movement smoothness reveals notable distinctions among individuals
with impairments, characterized by less fluid movements with frequent abrupt
changes in speed. This observation emphasizes the inherent challenges these
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individuals encounter in maintaining continuous and controlled movement, crucial
for effective rehabilitation.

In MS patients without cerebellar impairments, movement metrics often mirror
those of healthy individuals, suggesting preserved motor pathways and coordination
mechanisms unaffected by cerebellar lesions. As a result, these individuals typically
exhibit smooth and controlled movements, similar to healthy controls.

Specifically, the SPARC metric, in Figures 3.3 and 3.4, serves as a quantitative
indicator, demonstrating more negative values in subjects with severe impairments.
This signifies increased movement irregularity, indicating difficulties in achieving
smooth and consistent movements. SPARC therefore provides critical insights
into evaluating the effectiveness of rehabilitation interventions aimed at enhancing
movement fluidity.

Conversely, subjects with severe cerebellar impairments display a higher NVP
(Figures 3.5, 3.6). This metric indicates frequent speed variations and disjointed
movements, highlighting impaired motor coordination and control often seen in
patients with cerebellar dysfunction.

When comparing MS patients with and without cerebellar impairments, those
with cerebellar dysfunction exhibit more pronounced irregularities in movement pat-
terns, as evidenced by higher NVP values and more negative SPARC values. These
differences underscore the significant impact of cerebellar function on movement
coordination and control in MS patients.

4.2 Efficiency
The MT metric provides valuable insights into movement efficiency, revealing
significant differences between various subject groups (Figures 3.7, 3.8). In subjects
with cerebellar impairments, prolonged and variable MT indicates challenges in
motor coordination and efficiency during task execution. These individuals often
demonstrate irregular acceleration and deceleration patterns, which further impact
movement efficiency.

An in-depth analysis of MT underscores its critical role in assessing motor
control capabilities and movement precision during daily activities. Optimizing
MT within MS rehabilitation programs is essential for improving exercise efficacy
and enhancing overall quality of life. Tailored interventions aimed at addressing
specific motor challenges in MS patients can promote greater independence and
movement precision.

MS patients without cerebellar impairments typically exhibit MT values similar
to healthy individuals, which increase as disability progresses due to MS. This
progression underscores the deterioration of motor function despite the absence
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of cerebellar involvement. In contrast, MS patients with cerebellar dysfunction
display significantly higher MT values and greater variability, reflecting impaired
motor coordination and control associated with cerebellar lesions.

4.3 Morphology
The results indicate that subjects with impairments exhibit significantly more
irregular hand trajectories compared to healthy individuals, indicative of diminished
fine motor control. Healthy subjects, in contrast, demonstrate trajectories that are
more linear and direct, reflecting precise and coordinated movements.

Analysis of Symmetry (Figures 3.9, 3.10) and Kurtosis (Figures 3.11, 3.12) of
velocity curves further elucidates these findings. Lower symmetry values and higher
Kurtosis values are often observed in subjects with cerebellar impairments. Lower
Symmetry suggests asymmetrical movement patterns, which can be attributed to
motor deficits or compensatory strategies due to cerebellar dysfunction. Higher
Kurtosis values indicate more abrupt or jerky motions, which are commonly associ-
ated with impaired motor control and neurological disorders affecting cerebellar
function.

Conversely, MS patients without cerebellar impairments typically exhibit Sym-
metry and Kurtosis values similar to those of healthy individuals. This similarity
suggests that motor coordination and control mechanisms not directly impacted by
cerebellar lesions remain relatively intact in these individuals.

Comparing the results highlights distinct patterns: subjects with cerebellar
impairments show more irregular hand trajectories, lower Symmetry, and higher
Kurtosis values compared to both healthy individuals and MS patients without
cerebellar impairments. This underscores the significant impact of cerebellar
function on movement patterns and motor control in individuals with impairments,
necessitating tailored rehabilitation approaches to address these specific challenges
effectively.

4.4 Oculomotor coordination
The analysis of eye-hand coordination metrics, specifically N0C_GA and r, provides
insightful findings regarding the relationship between hand and eye movements.

The higher number of zero crossings in MS patients (Figures 3.13, 3.14), par-
ticularly those with cerebellar impairments, is closely linked to the presence of
dysfunction in the cerebellum. The cerebellum plays a crucial role in coordinating
and refining movements by integrating sensory information and fine-tuning motor
commands. When cerebellar function is impaired, as often seen in MS patients
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with cerebellar lesions or atrophy, there is a disruption in the precision and timing
of motor responses. Specifically, N0C_GA indicate changes in the direction of
movement coordination between the hand and eye. In healthy individuals and MS
patients without significant cerebellar involvement, these crossings tend to occur less
frequently and in a smoother manner, reflecting more coordinated and controlled
movements. In contrast, MS patients with cerebellar impairments exhibit a higher
frequency of zero crossings, indicating more abrupt changes and inconsistencies
in the coordination between hand and eye movements. This increased variability
and discontinuity can be attributed to the cerebellum’s role in error detection and
correction during motor tasks. When cerebellar function is compromised, MS pa-
tients may experience challenges in accurately predicting and adjusting movements,
leading to erratic and less synchronized hand-eye coordination patterns. Therefore,
the higher number of zero crossings serves as a quantitative marker of impaired
motor coordination, highlighting the specific impact of cerebellar dysfunction in
MS on the integration of visual information with motor execution.

On the other hand, in MS patients with significant cerebellar impairments, r
may show very low or even negative values (Figure 3.15). This phenomenon can be
attributed to the cerebellum’s role in fine-tuning motor commands and integrating
sensory information. When cerebellar function is compromised, as often occurs in
MS patients with cerebellar lesions or atrophy, there is a disruption in the precise
synchronization between hand and eye movements. This leads to reduced or inverse
correlations between hand and eye positions, reflecting erratic and less coordinated
movements.

Conversely, the correlation coefficient r reveals contrasting outcomes. In MS
patients, particularly those without cerebellar impairments, r tends to be higher
compared to healthy individuals. This higher correlation coefficient suggests that
there is a stronger relationship between hand and eye movements, potentially
indicating a greater variability or uncertainty in movement execution. This phe-
nomenon may reflect compensatory strategies or adjustments made by MS patients
to overcome their neurological challenges while attempting to maintain coordinated
movements between the hand and eye. Thus, the variability in r values among
MS patients with cerebellar impairments underscores the impact of cerebellar
dysfunction on motor coordination. It highlights how neurological deficits affecting
the cerebellum can disrupt the integration of visual information with motor actions,
resulting in less predictable and less synchronized hand-eye movements compared
to both healthy individuals and MS patients without cerebellar involvement.
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4.5 Clustering methods
Clinically, the subjects are classified as follows: S1, S4, S6, and S7 in Class 1; S3,
S5, and S9 in Class 2; S8 in Class 3; and healthy subjects in Class 4.

The clustering results generally aligned with the clinical data, effectively dis-
tinguishing subjects with tremor or cerebellar impairments from both healthy
individuals and MS subjects without these impairments. Notably, S8 was set apart
from other subjects with cerebellar impairments, exhibiting significantly greater
upper limb dysfunction. This distinction underscores the heightened severity of
motor impairment in S8, indicating a more profound level of dysfunction compared
to other MS subjects with similar cerebellar issues (Figure 3.20). However, some
discrepancies were observed:

• S1 and S7: Clinically closer to healthy individuals, as indicated by the best
scores in the BBT and the shortest times in the NHPT. However, the clus-
tering methods classified them in Class 1, suggesting they do not exhibit
cerebellar impairments but are not perfectly aligned with the behavior of
healthy individuals.

• S4 and S6: Clinically classified in Class 1, indicating they do not exhibit cere-
bellar impairments. Their smooth and well-executed movements in kinematic
metrics often led the clustering methods to place them in Class 4, closely
aligning their behavior with healthy individuals based on kinematic analysis
alone. However, the NHPT and BBT scores for these subjects indicated that
their performance differs from that of healthy individuals in clinical assess-
ments. Despite their smooth movements, they may show subtle deficits or
inefficiencies that are captured by these clinical tests, leading to their clinical
classification as Class 1 rather than Class 4.

This discrepancy underscores the challenge of evaluating upper limb function
in MS using only kinematic metrics compared to clinical assessments. While
kinematic metrics can capture aspects of movement quality and resemblance to
healthy individuals, clinical tests such as the NHPT and BBT provide a more
thorough assessment of functional capabilities and specific impairments. Hence,
subjects like S4 and S6 may demonstrate similarities to healthy controls in terms
of movement fluidity and morphology, yet they may manifest distinct differences in
functional performance during clinical evaluations.
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Conclusion

This Master’s Thesis explored the usability of Hololens 2 as a tool for assessing
upper limb motor control in subjects affected by MS, both with and without
cerebellar impairments.

The primary objective of the study was to utilize the hand and eye tracking
capabilities of the HoloLens 2 device to compare kinematic data obtained from
healthy subjects with those from MS subjects, acquired during a pick and place
task in the transverse plane.

The experimental task comprised six different movements delivered in a random
order in the four cardinal directions (Figure 2.7). The collected data were subse-
quently analyzed to extract metrics related to hand-eye coordination, movement
morphology, smoothness, and efficiency, aiming to obtain a comprehensive evalua-
tion of movement quality. These results were used to assess both the differences
between healthy subjects and those with MS, and to distinguish between MS
subjects with and without cerebellar dysfunctions. Comparing metrics from healthy
subjects and those with MS allowed to highlight differences in motor control and
coordination between the two groups, providing key insights into the impact of MS
on upper-limb functionality.

Furthermore, the study aimed to leverage these kinematic metrics to identify
distinct motor patterns among all subjects using various clustering methods. The
results obtained from clustering techniques divided the subjects into four classes:
subjects without tremor, subjects with moderate tremor or other cerebellar impair-
ments, subjects with severe tremor, and healthy subjects or those with a kinematic
behavior similar to healthy individuals.

The analysis of movement smoothness revealed significant differences among
subjects with impairments, characterized by less fluid movements and frequent
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abrupt speed changes. These findings underscored the challenges faced by indi-
viduals in maintaining continuous and controlled movement, which are crucial for
effective rehabilitation efforts.

In MS patients without cerebellar impairments, movement metrics values closely
resembled those of healthy individuals, suggesting preserved motor pathways and
coordination mechanisms unaffected by cerebellar lesions. Consequently, these
individuals typically exhibit smoother and more controlled movements similar to
healthy controls.

The SPARC metric emerged as a valuable quantitative indicator, showing
more negative values in subjects with severe impairments, indicative of increased
movement irregularity (Figures 3.3, 3.4). This metric played a critical role in
evaluating rehabilitation interventions aimed at enhancing movement fluidity.

Conversely, subjects with severe cerebellar impairments exhibited higher NVP
values (Figures 3.5, 3.6), signaling frequent speed variations and disjointed move-
ments that highlighted impaired motor coordination and control associated with
cerebellar dysfunction.

The MT metric provided insights into movement efficiency, revealing significant
differences between subject groups (Figures 3.7, 3.8). In subjects with cerebellar
impairments, prolonged and variable MT indicated challenges in motor coordination
and efficiency during task execution, characterized by irregular acceleration and
deceleration patterns.

An in-depth analysis of MT underscored its critical role in assessing motor
control capabilities and movement precision during daily activities. Optimizing MT
within MS rehabilitation programs proved essential for improving exercise efficacy
and enhancing overall quality of life.

Subjects with impairments demonstrated significantly more irregular hand
trajectories compared to healthy individuals, indicative of diminished fine motor
control. In contrast, healthy subjects exhibited more linear and direct trajectories,
reflecting precise and coordinated movements.

Analysis of Symmetry (Figures 3.9, 3.10) and Kurtosis (Figures 3.11, 3.12) of
velocity curves further elucidated these findings, with lower symmetry and higher
Kurtosis values observed in subjects with cerebellar impairments. These metrics
pointed towards asymmetrical movement patterns and abrupt motions associated
with impaired motor control.

Insights into the relationship between hand and eye movements were derived
from the examination of eye-hand coordination metrics, specifically N0C_GA
(Figures 3.13, 3.14) and r (Figure 3.15). MS patients, particularly those with
cerebellar impairments, exhibit higher zero crossings, indicating disrupted coor-
dination between hand and eye movements attributed to cerebellar dysfunction.
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In MS patients with significant cerebellar impairments, r may show very low or
even negative values, reflecting the compromised cerebellar function that disrupts
the synchronization between hand and eye movements. This disruption leads to
decreased or opposite correlations between hand and eye positions, indicating less
coordinated movements influenced by cerebellar lesions or atrophy.

The clustering results generally aligned with clinical data (Figure 2.5), effec-
tively distinguishing subjects with tremor or cerebellar impairments from healthy
individuals and MS subjects without these impairments, supporting the validity of
using kinematic metrics for assessing upper limb functionality in MS subjects.

S8 stood out among others with cerebellar impairments, showing significantly
greater upper limb dysfunction. However, discrepancies were noted. Subjects S1
and S7, clinically closer to healthy individuals based on BBT and NHPT scores,
were classified in Class 1 by clustering methods, suggesting alignment with healthy
behavior in kinematic metrics but not in clinical assessments. Similarly, S4 and S6,
categorized clinically as Class 1, demonstrated fluid movements resembling those
of healthy individuals but displayed variations in functional performance during
clinical evaluation.

These findings underscored the necessity for comprehensive assessment methods
that integrated both kinematic analysis and clinical testing, providing a more
nuanced understanding of movement impairments in MS crucial for effective clinical
management and intervention strategies.

5.1 Limitations
Overall, while this study underscores the strengths of the HoloLens 2 in analyzing
upper limb motion for rehabilitation purposes, several limitations in the data
acquisition phase warrant careful consideration.

A primary concern is the small sample size of participants, potentially limiting
the generalizability of our findings to a broader population of MS patients. With
a larger and more diverse sample, more robust and representative results could
have been established, encompassing the full spectrum of clinical variability among
MS patients, including differences in disease severity, age, and time since diag-
nosis. Moreover, the variability in clinical conditions among MS patients, which
encompasses factors beyond disease severity such as overall health status, cognitive
function, and specific motor impairments, may not have been fully captured or
controlled in our study. This variability significantly impacts the interpretation of
our results and emphasizes the importance of comprehensive patient assessment in
future research endeavors.

Additionally, the utilization of advanced technologies such as the HoloLens
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2 for measuring upper limb motor control introduces inherent challenges. The
specific characteristics and performance capabilities of hand-eye tracking devices
can influence the outcomes of kinematic metrics, necessitating further validation
and calibration to ensure reliability across different patient profiles. Furthermore,
relying on a single virtual marker placed on the middle finger of participants
may have obscured data due to variations in how patients gripped the bottle
during the exercise. This limitation underscores the importance of enhancing
sensor placement strategies in future studies. One potential solution could involve
incorporating additional virtual markers on the thumb and index finger. This
approach would provide more comprehensive tracking of hand movements and grip
dynamics, offering a more detailed analysis of upper limb motor control in MS
patients.

Lastly, while kinematic metrics offer detailed insights into upper limb movement
patterns, they may not fully capture the broader aspects of daily functional
capacity and quality of life influenced by MS. Integrating the detailed analysis
facilitated by HoloLens 2 with existing clinical tests holds the promise of yielding
a comprehensive understanding of the subject’s disability severity and tailoring
personalized rehabilitative strategies accordingly.

The increasing popularity of exergames in rehabilitation highlights their ability to
engage patients across different age groups more profoundly in their recovery process.
By immersing patients in mixed reality environments with technologies like HoloLens
2, exercises become more interactive and engaging, thereby fostering neuroplasticity.
This not only aids in predicting neurological recovery following clinical relapses
in MS but also plays a crucial role in mitigating the clinical manifestations of
the disease. Therefore, the integration of HoloLens 2 and exergames represents a
promising advancement in the assessment and treatment of MS rehabilitation.

Addressing these limitations is crucial for advancing the reliability and appli-
cability of motion analysis technologies such as HoloLens 2 in clinical research
and practice for MS rehabilitation. This improvement will enhance the capacity
to effectively evaluate and manage motor impairments in MS patients, thereby
improving their overall quality of life and rehabilitation outcomes. This integrated
approach, combining assessment with HoloLens 2 alongside clinical tests, not only
boosts therapeutic engagement but also holds potential for enhancing the well-being
of individuals navigating the complexities of MS.

5.2 Future Works
An interesting future development could involve designing and programming an
Artificial Neural Network that, taking as input the signals related to the positions
and velocities of the subject’s hand, can extrapolate movement metrics and classify
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the subject based on kinematic and oculomotor aspects. This approach could
significantly improve the accuracy and efficiency in analyzing motion data, offering
a powerful tool for evaluation and diagnosis in clinical and rehabilitation settings.

The first challenge lies in collecting a large and representative dataset of hand
position and velocity signals, capable of representing the full spectrum of upper
limb impairments that MS patients, with and without cerebellar dysfunctions,
may exhibit. Preprocessing steps such as normalization and noise reduction are
crucial for providing high-quality input to the Neural Network. Choosing the
appropriate Neural Network architecture is also critical. Exploring Recurrent
Neural Networks (RNNs) adapted for temporal and spatial data could be beneficial,
involving the determination of the number of layers, neurons per layer, and optimal
hyperparameters.

Training the Neural Network requires substantial computational power, especially
with large datasets. Access to adequate hardware, such as powerful GPUs, and
optimization techniques, such as early stopping and regularization, are essential
to prevent overfitting. Rigorous cross-validation is necessary to evaluate model
performance and ensure it does not overfit the training data. Separate validation
and test datasets must be created to measure the model’s generalizability.

Ensuring the interpretability of the Neural Network’s results is another challenge.
In a clinical context, it is crucial that the outcomes can be understood and clearly
explained to healthcare professionals. Additionally, for this tool to be genuinely
useful, it must be integrated with existing clinical systems and workflows.

While designing a Neural Network for the analysis of motion signals is an
ambitious and complex project, it offers significant potential to enhance the efficiency
and accuracy in evaluating motor skills. The investment in resources and time is
justified by the positive impact this technology could have in rehabilitation and
clinical diagnosis.

69





Bibliography

[1] Edward Robert FW Crossman and PJ Goodeve. «Feedback control of hand-
movement and Fitts’ Law». In: The Quarterly Journal of Experimental Psy-
chology 35.2 (1983), pp. 251–278 (cit. on p. 1).

[2] Sonja E Findlater, Erin L Mazerolle, G Bruce Pike, and Sean P Dukelow.
«Proprioception and motor performance after stroke: An examination of diffu-
sion properties in sensory and motor pathways». In: Human Brain Mapping
40.10 (2019), pp. 2995–3009 (cit. on p. 1).

[3] Ilse Lamers and Peter Feys. «Assessing upper limb function in multiple
sclerosis». In: Multiple sclerosis journal 20.7 (2014), pp. 775–784 (cit. on
pp. 2, 3).

[4] Richard Bohannon. «Measuring muscle strength in neurological disorders».
In: Fizyoterapi Rehabilitasyon 16.3 (2005), p. 120 (cit. on p. 2).

[5] John F Kurtzke. «Rating neurologic impairment in multiple sclerosis: an
expanded disability status scale (EDSS)». In: Neurology 33.11 (1983), pp. 1444–
1444 (cit. on p. 3).

[6] Virgil Mathiowetz, Gloria Volland, Nancy Kashman, and Karen Weber. «Adult
norms for the Box and Block Test of manual dexterity». In: The American
journal of occupational therapy 39.6 (1985), pp. 386–391 (cit. on p. 4).

[7] Matteo Menolotto, Dimitrios-Sokratis Komaris, Salvatore Tedesco, Brendan
O’Flynn, and Michael Walsh. «Motion capture technology in industrial ap-
plications: A systematic review». In: Sensors 20.19 (2020), p. 5687 (cit. on
pp. 4, 5, 13).

[8] Yunfen Wu, María Ángeles Martínez Martínez, and Pedro Orizaola Balaguer.
Overview of the Application of EMG Recording in the Diagnosis and Approach
of Neurological Disorders. Vol. 10. IntechOpen London, UK, 2013 (cit. on
p. 4).

71



BIBLIOGRAPHY

[9] Jo Lane, Huah Shin Ng, Carmel Poyser, Robyn M Lucas, and Helen Tremlett.
«Multiple sclerosis incidence: a systematic review of change over time by
geographical region». In: Multiple Sclerosis and Related Disorders 63 (2022),
p. 103932 (cit. on p. 5).

[10] R. Dobson and G. Giovannoni. «Multiple sclerosis – a review». In: European
Journal of Neurology 26 (1 2018), pp. 27–40. doi: 10.1111/ene.13819 (cit. on
pp. 5, 7, 8).

[11] Fred D Lublin. «Clinical features and diagnosis of multiple sclerosis». In:
Neurologic clinics 23.1 (2005), pp. 1–15 (cit. on p. 6).

[12] W Ian McDonald et al. «Recommended diagnostic criteria for multiple scle-
rosis: guidelines from the International Panel on the diagnosis of multiple
sclerosis». In: Annals of Neurology: Official Journal of the American Neuro-
logical Association and the Child Neurology Society 50.1 (2001), pp. 121–127
(cit. on p. 7).

[13] Lauren B Krupp, Luis A Alvarez, Nicholas G LaRocca, and Labe C Scheinberg.
«Fatigue in multiple sclerosis». In: Archives of neurology 45.4 (1988), pp. 435–
437 (cit. on p. 7).

[14] Khaled Mohamed Mohamed Koriem. «Multiple sclerosis: New insights and
trends». In: Asian Pacific Journal of Tropical Biomedicine 6.5 (2016), pp. 429–
440 (cit. on p. 8).

[15] Marvin M Goldenberg. «Multiple sclerosis review». In: Pharmacy and thera-
peutics 37.3 (2012), p. 175 (cit. on p. 8).

[16] Werner Helsen, Peter Feys, Elke Heremans, and Ann Lavrysen. «Eye-hand
coordination in goal-directed action: normal and pathological functioning».
In: (2010) (cit. on p. 8).

[17] Leticia Tornes, Brittani Conway, and William Sheremata. «Multiple sclerosis
and the cerebellum». In: Neurologic clinics 32.4 (2014), pp. 957–977 (cit. on
pp. 9, 11).

[18] SH Alusi, S Glickman, TZ Aziz, and PG Bain. Tremor in multiple sclerosis.
1999 (cit. on p. 9).

[19] Patricia K Oakes, Sindhu R Srivatsal, Marie Y Davis, and Ali Samii. «Move-
ment disorders in multiple sclerosis». In: Physical Medicine and Rehabilitation
Clinics 24.4 (2013), pp. 639–651 (cit. on pp. 9, 10).

[20] J Keiko McCreary, James A Rogers, and Susan J Forwell. «Upper limb
intention tremor in multiple sclerosis: an evidence-based review of assessment
and treatment». In: International journal of MS care 20.5 (2018), pp. 211–223
(cit. on pp. 9, 10).

72

https://doi.org/10.1111/ene.13819


BIBLIOGRAPHY

[21] Christopher W Hess and Seth L Pullman. «Tremor: clinical phenomenology
and assessment techniques». In: Tremor and other hyperkinetic movements 2
(2012) (cit. on p. 9).

[22] Andrés Labiano-Fontcuberta and Julián Benito-León. «Understanding tremor
in multiple sclerosis: prevalence, pathological anatomy, and pharmacological
and surgical approaches to treatment». In: Tremor and other hyperkinetic
movements 2 (2012) (cit. on p. 9).

[23] Günther Deuschl. «Movement disorders in multiple sclerosis and their treat-
ment». In: Neurodegenerative disease management 6.6s (2016), pp. 31–35
(cit. on p. 9).

[24] Maurizio Versino, Orest Hurko, and David S Zee. «Disorders of binocular
control of eye movements in patients with cerebellar dysfunction». In: Brain
119.6 (1996), pp. 1933–1950 (cit. on p. 11).

[25] Peter Feys, WF Helsen, Ann Lavrysen, Bart Nuttin, and P Ketelaer. «Inten-
tion tremor during manual aiming: a study of eye and hand movements». In:
Multiple Sclerosis Journal 9.1 (2003), pp. 44–54 (cit. on p. 11).

[26] Norali Pernalete, Amar Raheja, Manuel Segura, Dimitrios Menychtas, Tyler
Wieczorek, and Stephanie Carey. «Eye-hand coordination assessment metrics
using a multi-platform haptic system with eye-tracking and motion capture
feedback». In: 2018 40th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC). IEEE. 2018, pp. 2150–2153
(cit. on pp. 11, 35, 40).

[27] Mor Nahum, Hyunkyu Lee, and Michael M Merzenich. «Principles of neuroplasticity-
based rehabilitation». In: Progress in brain research 207 (2013), pp. 141–171
(cit. on p. 12).

[28] Patricia Sánchez-Herrera-Baeza et al. «The impact of a novel immersive
virtual reality technology associated with serious games in Parkinson’s disease
patients on upper limb rehabilitation: a mixed methods intervention study».
In: Sensors 20.8 (2020), p. 2168 (cit. on p. 12).

[29] Alicia Cuesta-Gómez, Patricia Sánchez-Herrera-Baeza, Edwin Daniel Oña-
Simbaña, Alicia Martínez-Medina, Carmen Ortiz-Comino, Carlos Balaguer-
Bernaldo-de-Quirós, Alberto Jardón-Huete, and Roberto Cano-de-la-Cuerda.
«Effects of virtual reality associated with serious games for upper limb reha-
bilitation in patients with multiple sclerosis: Randomized controlled trial». In:
Journal of neuroengineering and rehabilitation 17 (2020), pp. 1–10 (cit. on
p. 12).

73



BIBLIOGRAPHY

[30] Vaidehi Patil, Jyotindra Narayan, Kamalpreet Sandhu, and Santosha K
Dwivedy. «Integration of virtual reality and augmented reality in physical
rehabilitation: a state-of-the-art review». In: Revolutions in Product Design
for Healthcare: Advances in Product Design and Design Methods for Healthcare
(2022), pp. 177–205 (cit. on p. 12).

[31] Omar Mubin, Fady Alnajjar, Nalini Jishtu, Belal Alsinglawi, and Abdul-
lah Al Mahmud. «Exoskeletons with virtual reality, augmented reality, and
gamification for stroke patients’ rehabilitation: systematic review». In: JMIR
rehabilitation and assistive technologies 6.2 (2019), e12010 (cit. on pp. 12, 13).

[32] Ali Alawieh, Jing Zhao, and Wuwei Feng. «Factors affecting post-stroke motor
recovery: implications on neurotherapy after brain injury». In: Behavioural
brain research 340 (2018), pp. 94–101 (cit. on p. 13).

[33] Anna Bucchieri, Federico Tessari, Stefano Buccelli, Elena De Momi, Matteo
Laffranchi, and Lorenzo De Michieli. «The impact of gravity on functional
movements: kinematic insights and features selection». In: bioRxiv (2023),
pp. 2023–12 (cit. on pp. 16, 19, 33).

[34] Arrigo Palumbo. «Microsoft HoloLens 2 in medical and healthcare context:
state of the art and future prospects». In: Sensors 22.20 (2022), p. 7709
(cit. on pp. 16, 60).

[35] Nicolas Bayle, Mathieu Lempereur, Emilie Hutin, Damien Motavasseli, Olivier
Remy-Neris, Jean-Michel Gracies, and Gwenaël Cornec. «Comparison of
Various Smoothness Metrics for Upper Limb Movements in Middle-Aged
Healthy Subjects». In: Sensors 23.3 (2023), p. 1158 (cit. on pp. 30, 33, 35,
39).

[36] Clautilde Nguiadem, Maxime Raison, and Sofiane Achiche. «Motion planning
of upper-limb exoskeleton robots: a review». In: Applied Sciences 10.21 (2020),
p. 7626 (cit. on p. 31).

[37] Brandon Rohrer, Susan Fasoli, Hermano Igo Krebs, Richard Hughes, Bruce
Volpe, Walter R Frontera, Joel Stein, and Neville Hogan. «Movement smooth-
ness changes during stroke recovery». In: Journal of neuroscience 22.18 (2002),
pp. 8297–8304 (cit. on p. 33).

[38] Slobodan Jaric. «Changes in movement symmetry associated with strength-
ening and fatigue of agonist and antagonist muscles». In: Journal of motor
behavior 32.1 (2000), pp. 9–15 (cit. on p. 34).

[39] T Soni Madhulatha. «An overview on clustering methods». In: arXiv preprint
arXiv:1205.1117 (2012) (cit. on pp. 36, 38).

[40] Delbert Dueck. Affinity propagation: clustering data by passing messages.
University of Toronto Toronto, ON, Canada, 2009 (cit. on p. 37).

74



BIBLIOGRAPHY

[41] Daniel Müllner. «Modern hierarchical, agglomerative clustering algorithms».
In: arXiv preprint arXiv:1109.2378 (2011) (cit. on p. 38).

[42] Anne Schwarz, Christoph M Kanzler, Olivier Lambercy, Andreas R Luft, and
Janne M Veerbeek. «Systematic review on kinematic assessments of upper
limb movements after stroke». In: Stroke 50.3 (2019), pp. 718–727 (cit. on
p. 39).

[43] Majid Hajihosseinali, Saeed Behzadipour, Ghorban Taghizadeh, and Farzam
Farahmand. «Direction-dependency of the kinematic indices in upper extrem-
ities motor assessment of stroke patients». In: Medical Engineering & Physics
108 (2022), p. 103880 (cit. on p. 39).

[44] Logan Clark and Sara Riggs. «VR-based kinematic assessments: Examining
the effects of task properties on arm movement kinematics». In: CHI Con-
ference on Human Factors in Computing Systems Extended Abstracts. 2022,
pp. 1–8 (cit. on p. 39).

[45] Aıda M Valevicius, Quinn A Boser, Ewen B Lavoie, Glyn S Murgatroyd,
Patrick M Pilarski, Craig S Chapman, Albert H Vette, and Jacqueline S Hebert.
«Characterization of normative hand movements during two functional upper
limb tasks». In: PLoS One 13.6 (2018), e0199549 (cit. on p. 39).

[46] Alfonso Maria Ponsiglione, Carlo Ricciardi, Francesco Amato, Mario Cesarelli,
Giuseppe Cesarelli, and Giovanni D’Addio. «Statistical analysis and kinematic
assessment of upper limb reaching task in Parkinson’s disease». In: Sensors
22.5 (2022), p. 1708 (cit. on p. 39).

[47] Alicia Pose-Díez-de-la-Lastra, Rafael Moreta-Martinez, Mónica García-Sevilla,
David García-Mato, José Antonio Calvo-Haro, Lydia Mediavilla-Santos,
Rubén Pérez-Mañanes, Felix Von Haxthausen, and Javier Pascau. «HoloLens
1 vs. HoloLens 2: improvements in the new model for orthopedic oncological
interventions». In: Sensors 22.13 (2022), p. 4915 (cit. on p. 60).

[48] Sungmin Lee, Hoijoon Jung, Euro Lee, Younhyun Jung, and Seon Tae Kim. «A
preliminary work: mixed reality-integrated computer-aided surgical navigation
system for paranasal sinus surgery using Microsoft HoloLens 2». In: Computer
Graphics International Conference. Springer. 2021, pp. 633–641 (cit. on p. 60).

[49] Mandy Miller Koop, Anson B Rosenfeldt, Kelsey Owen, Amanda L Penko,
Matthew C Streicher, Alec Albright, and Jay L Alberts. «The Microsoft
HoloLens 2 provides accurate measures of gait, turning, and functional mobility
in healthy adults». In: Sensors 22.5 (2022), p. 2009 (cit. on p. 60).

[50] Lorans Alabood and Frank Maurer. «An IoT-based Immersive Smart Home
System for Seniors with Neurocognitive Disorders.» In: EMPATHY@ AVI.
2022, pp. 15–20 (cit. on p. 60).

75


	List of Tables
	List of Figures
	Acronyms
	Introduction
	Upper-Limb Assessment in Neurological Disorders
	Multiple Sclerosis
	Impact of MS on Activities of Daily Living
	Movement disorders in Multiple Sclerosis
	Hand-Eye Coordination in PwMS

	Virtual Reality, Augmented Reality and Mixed Reality in Rehabilitation
	Head-Mounted Visors using AR and MR for rehabilitation programs

	Objectives

	Materials and methods
	Microsoft Hololens 2
	ROCKapp

	Participants
	Experimental Setup and Protocol
	Experimental Protocol

	Preprocessing
	Data Transfer and Struct Creation
	Handling Missing Values
	Rototranslation of data
	Filtering Position and Velocity Data
	Movements Manual Segmentation

	Data Processing
	Physiological Interpolation
	Minimum Velocity Points Identification
	Movements Exclusion Criteria

	Metrics and Statistical Analysis
	Smoothness
	Efficiency
	Morphology
	Hand-Eye Coordination

	Clustering Methods
	K-means
	Affinity Propagation
	Agglomerative Clustering
	Divisive Clustering


	Results
	Kinematic Analysis
	Spectral Arc Length
	Number of Velocity Peaks
	Movement Time
	Symmetry
	Kurtosis

	Hand-Eye Coordination
	Gaze Accuracy Number of Zero Crossing Point
	Pearson's Coefficient

	Clustering results
	Metric-by-Metric Clustering
	Normalized Multi-Metric Clustering


	Discussion
	Smoothness
	Efficiency
	Morphology
	Oculomotor coordination
	Clustering methods

	Conclusion
	Limitations
	Future Works

	Bibliography

