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Summary

The advent of cutting-edge medical technologies and telehealth services has resulted
in an explosion of health-related data, highlighting the urgent need for efficient
data annotation in healthcare research. Manually labeling video footage to identify
specific actions or features in medical imaging is both time-consuming and requires
specialized expertise, causing significant delays in research progress. This thesis
addresses this challenge by focusing on the annotation of upper limb movements
in egocentric video data. It introduces an innovative minimally-supervised deep
learning system designed to streamline this process. The proposed framework
analyzes video recordings from head-mounted cameras capturing individuals per-
forming everyday tasks. Central to the system are two key components: the Hand
Object Detector (HOD) and the Snorkel model. The HOD, based on Faster R-CNN
and CNN architectures, excels in identifying hands and their interactions with
objects. Complementarily, Snorkel generates probabilistic labels for unlabeled
data by applying custom labeling functions tailored to the observed actions. The
pipeline enhances these models with customized modules and crucially integrates a
Large Language Model (LLM) to support the labeling functions in Snorkel, thereby
improving the accuracy of the functions by refining the results based on the output
of HOD. This combination significantly reduces the need for manual annotation,
automating much of the video labeling process. To validate the approach, the
framework was applied to a carefully curated dataset. The results demonstrate its
capability to accurately detect hand-object interactions and classify various hand
activities, proving particularly beneficial for monitoring upper limb function in
stroke survivors. This advancement marks a significant breakthrough in medical
data annotation. By automating the identification and categorization of hand
movements, the method not only reduces the manual workload but also enhances
the precision of healthcare-focused machine learning models. Moreover, it offers a
scalable solution to manage the ever-increasing volume of medical data. This ap-
proach demonstrates the potential of minimally-supervised deep learning and LLM
in medical video annotation, promising to advance medical technology development
and improve patient care in the evolving healthcare landscape.

v





Table of Contents

List of Tables ix

List of Figures x

Acronyms xii

1 The Motion Analysis Lab 1
1.1 REHAB-PAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 DEPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 SYNPHNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Introduction 3
2.1 Previous studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The RingSensors Project . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Background and significance . . . . . . . . . . . . . . . . . . 7
2.2.3 Study design and methodologies . . . . . . . . . . . . . . . . 8
2.2.4 Recording markup . . . . . . . . . . . . . . . . . . . . . . . 13

3 Materials and Methods 15
3.1 RingSensor Study - Video Data . . . . . . . . . . . . . . . . . . . . 16
3.2 First pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Egocentric video . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 First stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Hand Object Detector . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Python scripts . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.5 Characterization . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.6 Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.7 Snorkel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.8 Python Script . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.9 Characterization . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



3.3 Second pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Chest video . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Python scripts . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Large Language Model . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Python Script . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 ELAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Results 39
4.1 First pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Hand Object detection . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Labeling Function - Snorkel . . . . . . . . . . . . . . . . . . 40
4.1.3 Confusion matrix & F1-score . . . . . . . . . . . . . . . . . 41

5 Discussion 47
5.1 First pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Hand Object detection . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Snorkel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.3 Chest camera . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Second pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Chest and head integration . . . . . . . . . . . . . . . . . . 50
5.2.2 Output correction module . . . . . . . . . . . . . . . . . . . 51

6 Conclusion 56

Bibliography 59

viii



List of Tables

2.1 Experimental tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Final Pandas Structure after running the first python script. . . . . 22
3.2 ELAN Annotation Software CSV file. . . . . . . . . . . . . . . . . . 23
3.3 Annotated Frames with Hand Activities . . . . . . . . . . . . . . . 28

4.1 IoU for HOD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 LF Analysis on a small subset. . . . . . . . . . . . . . . . . . . . . . 41
4.3 LF Analysis with GIT on the entire dataset. . . . . . . . . . . . . . 41
4.4 F1 Score by Subject - Head. . . . . . . . . . . . . . . . . . . . . . . 42
4.5 F1 Score by Subject - Chest. . . . . . . . . . . . . . . . . . . . . . . 42
4.6 F1 Score by Subject - Combined. . . . . . . . . . . . . . . . . . . . 43
4.7 F1 Score by Subject - correction module - Head. . . . . . . . . . . . 44

5.1 Precision and Recall - Head. . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Precision and Recall - chest. . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Precision and Recall - head. . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Precision and Recall - correction module - Head. . . . . . . . . . . . 51
5.5 Precision and Recall - correction module - Chest. . . . . . . . . . . 52
5.6 Precision and Recall - GIT - Head Camera. . . . . . . . . . . . . . . 53

ix



List of Figures

2.1 Suggested ring-shaped sensors. . . . . . . . . . . . . . . . . . . . . . 8
2.2 Study protocol pathway . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 GoPros set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Two-stage pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Snapshot of the "100DOH" dataset . . . . . . . . . . . . . . . . . . 20
3.3 HOD workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Workflow of a Faster-RCNN network . . . . . . . . . . . . . . . . . 21
3.5 Bounding boxes for evaluating IoU. . . . . . . . . . . . . . . . . . . 24
3.6 Screenshot of the application’s user interface. . . . . . . . . . . . . . 25
3.7 Workflow of the Snorkel architecture . . . . . . . . . . . . . . . . . 26
3.8 Binary Confusion Matrix. . . . . . . . . . . . . . . . . . . . . . . . 29
3.9 Multi-class Confusion Matrix for a Classifier with Three Labels . . 30
3.10 Integrated new functions . . . . . . . . . . . . . . . . . . . . . . . . 33
3.11 The GIT network architecture. . . . . . . . . . . . . . . . . . . . . 33
3.12 Smoothing module workflow. . . . . . . . . . . . . . . . . . . . . . . 37
3.13 ELAN interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Snapshot of an HOD output frame. . . . . . . . . . . . . . . . . . . 39
4.2 Confusion Matrix - Head. . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Confusion Matrix - Chest. . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Confusion Matrix - Combined. . . . . . . . . . . . . . . . . . . . . . 44
4.5 Confusion Matrix - correction module - Head. . . . . . . . . . . . . 45
4.6 Confusion Matrix - correction module - Chest. . . . . . . . . . . . . 45
4.7 Confusion Matrix - GIT - Head. . . . . . . . . . . . . . . . . . . . . 46

5.1 GIT accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

x





Acronyms

AFO
Ankle Foot Orthoses

AI
Artificial Intelligence

AVG
Active Video Games

DL
Deep Learning

FMA
Fugl-Meyer Assessment

GIT
Generative Image-to-Text

HAR
Human Activity Recognition

HOD
Hand Object Detector

HMM
Hidden Markov Model

HSMM
Hidden Semi-Markov Model

xii



LF
Labeling Function

LLM
Large Language Model

MA
Massachusetts

MAS
Modified Ashworth Scale

MIL
Multi-Instance Learning

ML
Machine Learning

MMSE
Mini-Mental State Examination

SAR
Socially Assistive Robot

SRH
Spaulding Rehabilitation Hospital

UCSD
Brief Assessment of Capacity for Consent

xiii





Chapter 1

The Motion Analysis Lab

During my research tenure, I had the distinguished opportunity to work at the
Motion Analysis Lab at Harvard Medical School, located within Spaulding Reha-
bilitation Hospital in Boston, Massachusetts. This state-of-the-art facility focuses
on the extensive study of human movement biomechanics, leveraging the latest
innovations in robotics and wearable technology. The lab’s primary mission is to
enhance understanding and develop novel therapeutic approaches for conditions
such as stroke, Parkinson’s disease, and cerebral palsy,.

Over the course of my time at the motion analysis laboratory, I was fortunate to
engage in numerous projects. This invaluable opportunity enabled me to delve into
various aspects of research, enhancing my comprehension of how technology and
biomechanics work together to address mobility issues. This period was crucial
for my growth and learning, highlighting the significance of a multidisciplinary
approach in research to improve the lives of individuals with movement disorders.

1.1 REHAB-PAL

The project aims to develop and evaluate a home-based rehabilitation system for
children with cerebral palsy. Using a socially assistive robot (SAR) along with
active video games (AVGs), the system will provide personalized exercises, detect
compensatory movements, and provide interactive feedback during therapy sessions.
The comparative clinical study will test the effectiveness of the SAR-based REHAB-
PAL system compared to a traditional AVG system, with the goal of improving
motor skills and quality of life for children with cerebral palsy.

1



The Motion Analysis Lab

1.2 DEPHY
The project aims to evaluate the effectiveness of the new ExoBoot device developed
by Dephy Inc. in simulating the mechanical characteristics of different AFOs
(Ankle-Foot Orthoses). The objectives include verifying the capability of the
Dephy platform to simulate AFOs on a test bench, assessing its feasibility during
ambulation in stroke survivors to simulate the characteristics and performance of
their habitual AFOs, and exploring the feasibility of using the Dephy platform to
simulate the characteristics and performance of different AFOs and select the most
suitable AFO characteristics on a subject-by-subject basis.

1.3 SYNPHNE
The purpose of the project is to introduce the SynPhNe platform to the market,
which includes a connected wearable solution designed to provide an innovative
approach to neuro-motor rehabilitation. This platform simultaneously trains the
brain and muscles using EEG and EMG signals during activities to create a self-
correcting learning loop. The main goal is to assist stroke survivors and individuals
with disabilities in their rehabilitation journey, enabling them to achieve greater
independence and improved performance in daily activities. The device offers
various care programs tailored to address issues related to the rehabilitation and
recovery of patients with neurological conditions.

2



Chapter 2

Introduction

The swift advancement of machine learning techniques has brought about sub-
stantial progress in numerous fields. Machine learning is increasingly becoming a
fundamental part of everyday life, improving the ease, efficiency, and customization
of people’s interactions and experiences.
In the domain of rehabilitative treatment, ML grants the capability to individualize
therapies, improve the outcome of the clinical path, deliver more streamlined and
impactful care [1].
Examples include:

• Physical Therapy Support[2]: Machine learning systems assess patients’
movement patterns during physiotherapy sessions, delivering immediate feed-
back to both patients and therapists. This ensures exercises are performed
accurately and tracks improvement.

• Gait Evaluation[3]: Machine learning techniques are employed to exam-
ine the walking patterns of individuals convalescing from harm or surgical
interventions. Sensors and cameras gather data from movement, which is
then examined to detect walking pattern alterations and provide guidance for
rehabilitation approaches.

• Fall Prevention[4]: AI models assess mobility data to forecast the risk
of falling in senior individuals, enabling healthcare professionals to adopt
preventive strategies.

• Recovery Monitoring [5]: Body-worn sensors and devices utilizing intel-
ligent systems consistently supervise patients’ motion and essential health
indicators, aiding medical providers in following improvement and fine-tuning
rehabilitative protocols as required.

3



Introduction

The success of such techniques largely depends on having extensive and well-
annotated datasets, which form the basis for AI applications for recovery programs.
These datasets enable frameworks to train, forecast, and direct rehabilitation
procedures with a high degree of accuracy and customization. This type of accuracy
and customization can significantly enhance treatment results and the general
standard of healthcare [6]. The proposed customized method allows rehabilitation
programs to be specifically designed for each individual’s needs, significantly
increasing the probability of successful results.
However, it’s important to acknowledge that the labeling process greatly influences
the deployment time for these models. The labor-intensive nature of data annotation
impacts the overall efficiency of the process. Enhancements made to speed up
the labeling process can lead to a ripple effect, hastening the implementation of
machine learning models.
This script introduces a detailed method aimed at significantly speeding up the The
video annotation procedure. By integrating DL techniques with weakly supervised
machine learning, the system is capable of accurately identify hand movements in
videos and autonomously tag individual frames. These developed annotations will
then be utilized to annotate data collected from worn sensors, particularly those
on the wrist and fingers [7], thus expediting the implementation of algorithmic
systems for processing data coming from the sensors.
In the ensuing portion of this chapter, related studies will be examined to provide
a unabridged overview of current approaches in the field of automatic data labeling
from sensor elements. Next, the RingSensor study, which supplies the data to
develop and test the framework proposed in this thesis, will be described.
Chapter three will provide a detailed account of the procedures and resources
utilized, encompassing Deep neural networks and the weakly guided architecture,
as well as the criteria applied to evaluate the findings.
Subsequently, the outcomes will be reviewed in chapters four and addressed in
chapters five, ending with an overview of the procedure, an analysis of constraints,
and suggestions for future research.

2.1 Previous studies
In prior investigations into human actions and motions identification via body-
mounted devices, hand-operated approaches such as film recordings and direct
monitoring broadly applied to collect captions.
Plotnik et al.[8] developed a body-worn support for Parkinson’s disease individuals
exhibiting freezing of gait. During the study, the patient’s gait is recorded using
cameras and wearable sensors. One annotator labels the videos, while a second
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Introduction

annotator labels the acceleration transmitted from the wearable device to a com-
puter. The team also includes a physiotherapist who identifies the endpoints of
freezing events in the gait analysis video.
Following a similar approach, Anguita et al. [9] incorporated a Samsung Galaxy
S II smartphone into their data collection. The aim was to segment the various
activities performed by patients, based on their movement, integrating environmen-
tal information into the recordings. Simple activities such as standing still, seated,
reclining, strolling, going down stairs, and climbing steps were repeated twice by
each patient, with a 5-second break between repetitions. Afterwards the labeling
process of the data was performed by manual means.
In the study by Banos et al. [10], two IMUs are placed on 10 volunteers, specifically
on the right wrist and left ankle. ECG data from two leads are integrated using
a sensor placed on the chest. The collected data, pertaining to approximately 15
outdoor movements, include acceleration, geomagnetic data, angular velocity, ECG
signals, and video recordings. Manual labeling of the data is also conducted in this
study.
On the internet, there are numerous other publicly available datasets accessible to
everyone for human activity recognition (HAR) [11] based on wearable sensors and
portable devices. These datasets provide data on acceleration, angular velocity, and
geomagnetic field. However, achieving high-precision labeling still relies primarily
on manual annotation, which demands significant effort and lengthy timelines.
The greatest hurdle today is obtaining a fully labeled dataset for extended monitor-
ing of activities of daily living. These datasets are crucial for training algorithms
capable of automating the annotation process, thereby reducing the workload of
human labeling.
One of the new proposals involves the application of weakly supervised methodolo-
gies [12], specifically MIL with experiential sampling. Instead of labeling individual
occurrences, sets of instances known as bags are annotated. This approach increases
the generalization of labeling, resulting in a significant reduction in annotation
burden. A positive bag is classified as so if it contains at the minimum one positive
occurrence, and negative if the instances in one group are non-positive.
The study presented in [13] represents the first application of MIL to time series of
activities performed by subjects. The model effectively segments daily activities,
thereby reducing the workload for annotators. Building upon this work, Guan et al.
[14] develop an integrated MIL approach with an auto-regressive Hidden Markov
Model, operating offline on multivariate time series data, annotating individual
instances as well as bags.
Unsupervised learning methods are used to analyze human activity data to identify
and extract covert patterns within these data, without requiring predetermined
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labels or categories. Mentioning, Wyatt et al. [15] handled activities as sequences of
actions or behaviors described in natural language, where object usage is considered
integral to these linguistic sequences. They applied generic models derived from
everyday activities found on the internet, which represent a form of common knowl-
edge universally recognized in human behavior. This facilitates the segmentation of
activities of daily living through a context or reference base on how people typically
interact with objects during their daily activities.
A further instance is the unsupervised pipeline proposed by Bottcher et al. [16],
which uses clustering methods to identify transitions between different activities.
This approach completely eliminates the need for predefined labels, provided that
the order and number of steps are known in advance.
Comparably, Van Kuppevelt et al.[17] utilize non-supervised machine learning meth-
ods to examine accelerometer readings from everyday activities. They implement
a Hidden Semi-Markov Model (HSMM) to divide the data into segments of five
seconds each, identifying up to ten different activity states based on average accel-
eration data. This strategy uncovers patterns of movement and inactivity without
the need for manual data labeling.
The aforementioned methods address the issue of labeling mainly through human
annotation and machine learning models. However, when the context shifts from a
regulated environment, such as a laboratory, to actual settings, the precision and
accuracy of the data and annotations decrease drastically.
It is evident that the core concept of MIL and unsupervised methods is the
integration of pre-existing knowledge about performed activities with a limited
dataset of labeled data. However, there remains a need to manually label some initial
instances. This initial labeling effort is essential to create a solid foundation upon
which these advanced techniques can develop, thereby improving the effectiveness
and precision in activity detection.
Consequently, this thesis concentrates on an innovative method for labeling manual
tasks using video footage gathered in a controlled laboratory environment. The
videos originate from the RingSensor study, which aims to track upper limb
movements in stroke survivors using sensors placed on the finger and wrist. To
expedite the annotation pipeline, the suggested networks employs DL to detect
hands and objects within frames and weakly supervised learning and LLM to
produce annotations.

2.2 The RingSensors Project
2.2.1 Objectives
The clear targets of this research are:
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• Objective 1: A set of data is collected through the use of sensors applied to
the fingers of a group of participants - 20 people - who have suffered a stroke.
The participants are monitored while performing various activities of daily
living, in order to collect data, which will form the foundation of an automatic
machine learning algorithm (Objective 2).

• Objective 2: Validate the adequacy of sensors in accurately measuring upper
limb performance in daily living activities among participants - up to 60
subjects - through the implementation of machine learning-based algorithms.
It is presumed that the wearable sensors will be able to accurately simulate
measures of upper limb performance in habitual activities.

• Objective 3: Analyze the feedback obtained from the study patients (users)
and the healthcare providers (prescribers) involved, regarding the Performance
and user-friendliness of the planned solution.

Currently, Objective 1 has been effectively accomplished, allowing data and camera
recordings integration into the proposed process; Objective 2 is currently ongoing.

2.2.2 Background and significance

Upper limb paralysis represents the main consequence after a stroke, affecting up
to 75% of subjects who have suffered such an event [18]. This condition severely
compromises the individual’s ability to perform a wide range of essential daily
activities. Despite rehabilitation, almost half (49%) of stroke survivors continue
to experience difficulties in using the impaired arm, even five years post-event.
Consequently, ensuring the best clinical results requires a more individualized
and organized approach to planning rehabilitation pathways. Substantial research
findings demonstrates the effectiveness of rehabilitative therapies in improving
movement abilities [19], mainly derived from motor skill development.
The increasing use of body-worn sensors presents a hopeful method to impartially
monitor mobility ability in everyday contexts. At present, sensors worn on the wrist
hold a prominent position in wearable technology, primarily focusing on measuring
arm use, such as the span and strength of daily arms motions [20]. However, this
presents a weakness: these wrist-worn sensors primarily record large-scale limb
motion, such as natural arm swing while walking. This frequently results in an
overly positive evaluation of motor abilities.
On the other hand, emerging research sheds a promising light on finger-worn
sensors, highlighting their potential to more accurately monitor arm movements
[21]. Initial findings obtained from control subjects, as illustrated in Section 2.1,
show a robust correlation between the acceleration data captured by sensors worn
on the fingers and the actual upper limb activities in real-world settings, both in
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laboratory and outside settings. Based on the literature, RingSensor’s research
seeks to investigate a new method to improve the resolution of upper limb data
in chronic post-stroke individuals during typical daily activities. This approach
involves sensors positioned on both the subjects’ fingers and wrists. Furthermore,
the study intends to investigate sensor data can be used to provide valuable feedback
to both wearers and healthcare providers.

Figure 2.1: Suggested ring-shaped sensors.

2.2.3 Study design and methodologies

In the intended research, 60 subjects were enrolled for Aim 2, out of which 20 were
invited to be involved in Phase 1 and 3. 10 clinicians are required to participate in
Phase 3 of the study.
It’s important to note that this study does not involve any interventions. Prelimi-
nary screening is carried out over the telephone by the investigators, followed by
a conclusive evaluation at the Motion Analysis Laboratory (MAL) of Spaulding
Rehabilitation Hospital. Face-to-face preliminary evaluation is available on demand.

Eligibility requirements for stroke survivors

Inclusion Criteria
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• Individuals who have experienced a stroke (ischemic or hemorrhagic), more
than 6 months post-stroke at the time of consent.

• Mild to moderate remaining impairments in upper limb function, scoring >
35 on the Fugl-Meyer Assessment (FMA) without severe limitations in range
of motion.

• Age between 18 and 80 years.
Exclusion Criteria

• Incapable of raising upper limb against gravity (more than 30 degrees of flexion
and abduction).

• Intense upper-limb spasticity hindering passive finger movement (MAS > 3).

• Incapable to independently wear/remove sensors or needing assistance from a
caregiver.

• Cognitive deficits impacting understanding and following instructions (score
< 23 in the MMSE).

• Possession of implantable medical devices that do not conform to ISO 14117:2012
or ANSI/AAMI PC69 Bluetooth compatibility standards. Subjects will submit
their medical device record card for confirmation.

Criteria for clinician eligibility for Phase 3

Inclusion Criteria
• Practitioners with at least one year of experience in stroke recovery.

• Minimum age of 21.

Research protocol for Phase 1

Out of the designated cohort of 60 subjects, around 20 individuals are chosen to
engage in an initial in-person session before the procedures specified in Phase 2.
The first investigative meeting takes place at the Spaulding Rehabilitation Hospital
(SRH) in Charlestown, MA, and has an estimated maximum duration of three
hours, during which participants sign the consent form and undergo an initial
screening process. Subsequently, they wear sensors on their hands, upper limbs,
and torso; thus equipped, the patients perform the activities listed in Table 1, under
the supervision of the research team. The entire visit is recorded using GoPro
cameras, which allow for subsequent synchronization with the acceleration data
from the sensors. After the session, the research team annotates the recorded video
data, contributing to the completion of Aim 1.
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Research protocol for Phase 2

The investigation carries on at the participant’s domicile, as agreed upon during
the consultation with a clinician, providing sensors and an encrypted device for
the entire duration of the study. The entire research is structured with a duration
limit of one week, during which the patient regularly wears the sensors for eight
hours a day and records the activities performed every one and a half hours. The
annotations provide a crucial tool for associating the collected acceleration data
with the type of movement performed by the participant.

Figure 2.2: Study protocol pathway

First Visit

Subjects who, following their involvement in Aim 1, are willing to proceed, must
consent to the subsequent aims of the study. After passing a second initial screening,
the subjects consult with a researcher to comprehend and conclude the consent pro-
cedure. Their cognitive function and comprehension of instructions are tested using
the Mini-Mental State Examination (MMSE). Consequently, potential participants
who do not meet this criterion are excluded.
The potential patients’ judgment capacity is assessed through the UCSD ques-
tionnaire. It is crucial that the subjects fully understand the research nature of
the study, which does not provide any medical therapy, and are conscious of the
possible risks and benefits. Not understanding these aspects leads to the exclusion.
Upon successfully completing these assessments, participants either endorse the
consent form or give verbal consent if participating remotely.
To assess upper limb functionality, a clinician performs a FMA [22] assessment,
providing a rating from 0 to 66 to evaluate upper limb motor dysfunction; a score
under 35 results in exclusion from the study. Subsequently, the participants’ muscle
stiffness is examined using the MAS [23] and by reviewing patient records. Arm
function is tested by completing tasks aligned with the Wolf Motor Function Test
[24]. The patient is required to self-assess using the Motor Activity Log [25], a
clinical approach to evaluate the use and effectiveness of movement during simple
activities. The assessment period varies between one and two hours, depending on
the subject’s motor abilities.
Participants have the option to consolidate Visit 1 and Visit 2 into a single day.
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Second Visit

After completing the clinical assessment, the research team places a sensor on the
chest of the patient, and on the hands, fingers, and wrists of both limbs. The
sensors are housed in silicone cases for the rings, while wrist and chest sensors are
mounted on Velcro straps, both off-the-shelf. The predicted setup time is roughly
10 minutes 10 minutes.

Once the sensors are set up, the subjects simulate activities of daily living in a
simulated home environment located at the Spaulding Rehabilitation Hospital or in
their own home, in case of virtual sessions. All tasks are recorded through GoPro
cameras or via a webcam in virtual sessions, allowing for subsequent offline analysis.
The cameras, affixed to the participant’s torso and head, grant researchers a
participant’s perspective, which aids in aligning movement with measurements from
body-worn sensors. Likewise, the portable recording devices supply supplementary
perspectives that may fall outside the GoPro’s point of view (Figure 2.3).

Figure 2.3: GoPros set up

Only IRB-authorized personnel are permitted to capture and view video footage,
and participants’ permission for recording is obtained beforehand. The patient
has to perform 14 tasks, each repeated 3 times, allowing for the observation of
individual variability in movement patterns. The execution of tasks is divided into
two sessions to avoid fatigue for the patiens. Detailed descriptions of the activities
are provided in Table 2.1.

The approximate duration of the first laboratory session is 1.5 hours. To complete
the second session, the patient will return after 7 days.
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Home-based surveillance

The provided upper limb sensors must be worn by the patient for 7 days, 8 hours
each day. They are instructed to remove the sensors each night to charge them
using the provided charger. Since the sensors are not waterproof, participants need
to be instructed to remove them before engaging in activities such as showering or
swimming.

Activity Tasks
Sit to Stand transitions Using the phone

Pour and drink a glass of water Brush teeth
Find a recipe Prepare a sandwich

Make and fold the laundry Take the coat off
Mop the floor wipe the countertop

Set the table for eating Eat the meal
Unlock and lock the doorknob Open and close the door

Table 2.1: Experimental tasks.

Participants are provided with a prepaid smartphone, which comes preinstalled
with:

• Google Timeline, for recording movement patterns and types. It is crucial
to obtain this information as it allows for the identification of passive actions
detected by sensors and their respective filtering. Although it is recommended
for patients to have their phone with them to facilitate the annotation pro-
cess, since the application tracks their location everywhere, patients are not
obligated to carry it with them.

• Application for monitoring sensor conditions manages communication
between sensors and the phone, and consequently between researchers and
participants. It allows patients to monitor the charge status of sensors and
alerts any issues in data collection, ensuring the research team stays updated
on patient behavior during the at-home period.

• Application for annotating daily activities. The patient will receive a
notification every 90 minutes within the eight-hour window established during
the first session, reminding them to enter a brief description of the upper limb
activities performed during that interval.

The MGB IT department has conducted a security assessment on these specially
tailored apps.
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Third Visit

At the end of the seven-day monitoring period, participants return to the MAL to
return the equipment and undergo a second laboratory assessment, similar to the
previous visit.

Research protocol for Phase 3

Interview - Patients)

The 20 participants of Phase 2 undergo an interview, either in person or remotely
(via platforms such as UMass, UMD, or MGB Enterprise Zoom), where they are
shown the collected data, aligning sensor accelerations with patient annotations.
This allows researchers to understand any issues or challenges participants may
encounter.
The interviews are recorded for both participation modalities.

Interview - Healthcare providers

Through interviews conducted either in person or via the MGB Enterprise Zoom
platform, the opinions of 10 clinicians are sought to assess the acceptance of using
ring sensors for monitoring patients’ activities of daily living at home. Prior to
starting the recording, the clinician participants are briefed on the protocol and
asked to provide verbal consent.

2.2.4 Recording markup

To label the lab-based assessment videos with clinical relevance, healthcare providers
have defined a grasping ontology, to better understand what types of grasps were
more frequently used by post-stroke subjects. This way, it is possible to provide
information to guide interventions, encouraging subjects to use their fingers more
during grasping activities. The proposed labels are shown below.
Movement

• Arm

• Hands

No Movement

• Ambulatory - arm swing motion.

• Non-Ambulatory - duty-focused.
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– Bilateral
∗ Wide arm
∗ Fine Hand grasping

· Full hand
· Finger
· Lateral pinch
· Uncertainty

– Bilateral - dual control & individual item
∗ Wide arm
∗ Fine hand grasping

· Full hand
· Finger
· Lateral pinch
· Uncertainty

– Bilateral - separate handling & isolated item
∗ Gross Arm
∗ Fine Hand

· Full hand grasp
· Finger grasp
· Lateral pinch
· Flag for uncertainty

This thesis aims to develop a method to quicken the process of annotating grasping
activities by focusing only on a subset of frames, specifically those where hand-
object contact is present, rather than the entire video dataset. This approach
leverages the ELAN [26] annotation platform, which provides predefined labels
for hand-object contact. By using this method, the work of the clinical team
is greatly simplified, allowing them to concentrate solely on the intervals where
contact occurs, thereby improving the efficiency and accuracy of the annotation
process.

14



Chapter 3

Materials and Methods

The proposed pipeline is composed of main blocks, as depicted in Figure 3.1, that
enable automatic annotation of first-person videos, with hands as the primary
subject.

Figure 3.1: Two-stage pipeline.

The videos, which have been cropped and blurred to ensure the privacy of the
subject, are processed by a deep learning model - first stage. This model is
capable of detecting interactions between hands and objects, generating rectangular
bounding boxes around the manipulating hands and the manipulated object. A
significant advantage of this approach is that it does not require ground truth labels
for training. However, to evaluate its performance, a subset of the data has been
manually annotated. The results from this initial hand object detection (hod) are
then passed to an improvement block that enhances the hod results before moving
to the second stage.
Subsequently, all the data was processed in Snorkel - second stage - using labeling
functions to assign the subsequent annotations:

• Movement label: occurrences where the hand is grasping an object.

• No Movement label: occurrences where the hand is not grasping of the
object.
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• Uncertain label: occurrences where hands are out of the GoPros field of
view.

In the end, the labeled dataset is displayed on ELAN to observe the produced
annotations.

3.1 RingSensor Study - Video Data
Understanding the dataset is crucial, before delving into the specifics of each phase.
As defined earlier in section 2.2.3, during the activities planned for aim 1, conducted
in a simulated kitchen, the actions of the subjects are recorded from 4 different
perspectives:

• Head point of view: The subjects wear a GoPro mounted on their heads
with a headband.

• Chest point of view: The subjects wear a GoPro mounted on their chest
with a chestband.

• Room point of view: GoPro camera placed on a tripod to capture a
panoramic view of the simulated kitchen.

• Room Door point of view: GoPro camera placed on a tripod to capture a
panoramic door-view of the simulated kitchen.

A remote device is employed to synchronize the start and stop of recordings across
the 4 GoPro cameras.
Initially, it was chosen to use the videos from the GoPros positioned on the subjects’
heads. As mentioned earlier, these videos were pre-processed before being fed into
the pipeline to remove frames related to the sensor placement.

3.2 First pipeline

3.2.1 Egocentric video
The decision to use egocentric videos in our study stems from their ability to
provide highly detailed and precise information about manual activities, which is
essential for clinical and therapeutic applications. However, this choice comes with
its own set of advantages and challenges.
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Pros

1. Context-independent information

• Detail and Precision: The egocentric perspective captures manual
activities in great detail, reducing distractions from the surrounding
environment. This is particularly useful in contexts like post-stroke
rehabilitation, where it is crucial to observe hand movements accurately.

• Uniformity of Data: Since the focus is on manual movements and
not the environment, the collected data tends to be more consistent,
facilitating analysis and comparison between different sessions or subjects.

2. Comprehensive understanding of manipulation

• Hand-Object Interaction: Egocentric videos provide a clear view
of how hands interact with objects. This is essential for studying and
improving manual dexterity and fine motor skills.

• Clinical and Therapeutic Applications: The detailed view of move-
ments can help therapists better understand patient progress and person-
alize rehabilitation programs.

3. Large availability of datasets

• Accessibility: Numerous public datasets of egocentric videos exist,
reducing the costs and time required for data collection.

• Training Models: The availability of large amounts of data facilitates
the training of deep learning models, improving their performance and
accuracy.

Cons

1. Sensitivity

• Changes in Light and Camera Movements: Egocentric videos are
sensitive to changes in lighting and sudden head or body movements,
which can introduce noise into the data and complicate analysis.

• Obstructions: Objects or body parts blocking the view can interfere
with the quality of the recordings, making automatic data interpretation
difficult.

2. Limited environmental context
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• Restricted Perspective: The egocentric view offers a limited vision of
the surrounding environment, which can be problematic when a broader
context is needed to correctly interpret activities, like in training models.

• Model Generalization: The lack of environmental context can make
it harder to apply models to scenarios different from those they were
specifically trained for.

3. Requirement for adequately labeled datasets

• Manual Effort: Ensuring that the labeled dataset meets the specific
needs of the study is critical. Inadequate or poorly labeled data can lead
to inaccurate model training and less reliable outcomes. Collecting and
labeling large amounts of egocentric video data requires significant manual
effort, which can be time-consuming and resource-intensive.

• Data Management: Managing and processing large datasets necessi-
tates robust infrastructure and advanced data management techniques,
posing additional logistical challenges.

Despite the challenges, the decision to utilize egocentric videos is justified by the
need to obtain high-quality, detailed data on manual movements, which are crucial
for clinical and therapeutic applications. The egocentric perspective provides a
unique and detailed view of hand-object interactions, which is difficult to achieve
with other angles.
Additionally, the accessibility of existing datasets and the potential to develop
robust deep learning models represent significant advantages that can offset the
initial costs of labeling and technical difficulties. The key is to balance these factors
with innovative solutions to address the limitations, such as the use of weak labeling
techniques and automated supervision.
The choice to use egocentric videos is driven by the necessity for precise and
detailed data that can significantly enhance the understanding and treatment of
clinical conditions, while also recognizing and addressing the associated technical
and logistical challenges.

3.2.2 First stage

The videos of six subjects are preprocessed and then passed to the first block of
the pipeline.
Stage one comprises two main steps. Firstly, to detect hand activity and assess the
most effective model, the videos were analyzed using the Hand Object Detector
[27], which employs a FasterRCNN. This model was trained with the dataset
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described in [27] and is detailed in the subsequent sections.Dictionary structures
are employed to manage the model outputs. At the same time, a subset of video
frames underwent manual annotation.
The second phase involves employing two Python scripts to handle the outputs
from the initial phase in readiness for the subsequent stage:

1. Conversion from dictionary to pandas structure.

2. The pandas dataframe is synchronized with the manually annotated labels.

Further specifics about these scripts are provided in section 3.2.4.

3.2.3 Hand Object Detector
The first component of the pipeline is the Hand Object Detector [27], a deep
learning model capable of providing information about the contact status of hands
with objects. It is trained on online videos featuring subjects involved in manual
tasks.

Dataset

You can get a sense of the dataset by observing Figure 3.2, noting the interactions
of daily living activities sourced from YouTube. It includes 100,000 annotated
frames and a significant compilation of unlabeled videos for unsupervised learning.

• Video Collection: Approximately 10 million videos were sourced from
YouTube, which were then filtered using video thumbnails and 15,000 queries
to identify scenes of interaction. The starting point included 11 categories
similar to DIY, from which animated content was excluded.

• Image Collection: Based on the same categories, the data collected in "100
Days of Hands" (100DOH) consists of approximately 30,000 videos, providing
131 days of footage. Frames without hands were excluded, and 100,000 random
frames were selected and annotated. The dataset was divided into training
(80%), validation (10%), and test (10%) sets based on the YouTube uploader’s
ID in order to avoid duplicates and ensure consistency with pre-existing
datasets such as VLOG.

Pipeline

You can observe the model development workflow in Figure 3.3: regardless of the
size of the RGB image, the framework is capable of performing detection seamlessly.
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Figure 3.2: Snapshot of the "100DOH" dataset

The model identifies the bounding box that outlines the hand’s space and can
recognize the hand’s side (right or left) and its state of interaction:

• No contact,

• Self contact,

• Contact with a person,

• Contact with a portable object,

• Contact with a non-portable object.

Thanks to the integration of hand reconstruction models like [28], it delineates the
bounding box solely of the object manipulated by the hand, linking its center with
the center of the bounding box of the interacting hand.

Figure 3.3: HOD workflow.

The framework is based on a Faster-RCNN model [29], a two-module system for
object detection (Figure 3.3):
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• RPN (Region Proposal Network): A deep fully convolutional network that
proposes regions of interest in the image, each with a confidence score.

• Fast R-CNN: An object detection network that processes the regions pro-
posed by the RPN to identify hands and manipulated objects. Similar to
a traditional Fast R-CNN detector [30], it predicts the bounding boxes of
objects, their category, and adjusts the bounding box dimensions as necessary.
Using ROI-pooling, the system also provides additional outputs such as hand
side and interaction state.

Figure 3.4: Workflow of a Faster-RCNN network

3.2.4 Python scripts
Output correction module

The HOD provides output as dictionaries, so the initial script handles the conversion
into a Pandas DataFrame. For each frame, the model provides information on which
hand (right or left) is present, whether there is an object being interacted with,
the coordinates of the respective bounding boxes, the timestamp in milliseconds
of the corresponding frame, and the confidence score. The frame timestamps in
milliseconds were used to perform all the following synchronization steps. The
object identified as being manipulated by the model is determined by calculating
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the distance between the center of the hands and the center of the detected objects,
then choosing the one with the minimum distance. None elements are retained in
the DataFrame to prevent errors in frame counting during the various stages of the
pipeline. To the created structure, the script applies the functions described below:

• correct switch: To address the persistent issue of models confusing left and
right hands across frames, this function divides each frame into a left zone, a
right zone, and a neutral zone, which represents the transition area between
the other two. The hand’s orientation is determined based on the position of
the bounding boxes.

• check side: Once the hand orientation is defined, this function evaluates
the overlap of bounding boxes in successive frames. If the overlap exceeds a
threshold and the assigned zone changes, the hand’s side is adjusted accordingly.
This corrects initial hand side misidentifications.

• extract hand side: This function separates the data into right and left
hand after ensuring accurate organization. Only right-hand data is used for
symmetry and pipeline efficacy evaluation.

• correct duplicate: Based on the confidence scores returned by the HOD,
this function handles multiple detections of the same hand by identifying and
discarding duplicates.

• check missing: The function ensures that the total number of frames matches
the actual number of frames in the video.

An example of the final Pandas structure for the Hand Object Detector is shown
in Table 3.1.

subj object subj_bbox object_bbox label score frame_ms labels
Right_hand None [999, 411, 1249, 662] None 3 0.997141242 1131831 -1
Right_hand Object [1049, 844, 1223, 984] [1061, 470, 1239, 945] 3 0.995938746 1178278 -1
Right_hand None [1019, 788, 1232, 924] None 3 0.588171126 1246011 -1

None None None None -1 -1 1325958 -1
Right_hand Object [1699, 614, 1850, 787] [947, 769, 1063, 928] 3 0.999849458 1433999 -1
Right_hand Object [1120, 955, 1402, 1060] None 3 0.997748196 1603569 -1
Right_hand Object [1056, 862, 1359, 1071] [957, 725, 1395, 1041] 3 0.997645086 1630929 -1

Table 3.1: Final Pandas Structure after running the first python script.

ELAN matching

The second script serves to append the real labels to the Pandas structures. After
manual annotation as discussed at the beginning of chapter 3, a CSV file from the
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ELAN Annotation Software was generated, shown in Figure 3.6. The structure of
the CSV file generated by the ELAN Annotation Software is organized as follows:

• First column: Represents the hand side (e.g., "right" or "left").

• Second column: Indicates the start frame of the annotation, expressed in
milliseconds.

• Third column: Indicates the end frame of the annotation, expressed in
milliseconds.

• Last column: Contains the actual annotation, which describes the observed
action or state (e.g., "contact," "no contact," "out of frame").

Hand Start Time (ms) End Time (ms) Label
Right_Hand 364678 371657 Contact
Right_Hand 371659 377397 Contact
Right_Hand 377397 379335 No_Contact
Right_Hand 379335 380811 No_Contact
Right_Hand 380811 381278 No_Frame
Right_Hand 381278 383114 Contact

Table 3.2: ELAN Annotation Software CSV file.

The script performs 2 steps:

• Label encoding: Labels are converted into numerical format: ’No Contact’
is 0, ’Contact’ is 1, and ’out-of-frame’ is 2.

• Label extraction: To assign labels, the timestamp in milliseconds of each
frame in the DataFrame is compared with the time intervals defined in the
CSV file. Matches add the corresponding label to the set, with row identifiers
stored in a list.

3.2.5 Characterization
To evaluate the performance of the Hand Object Detector model, the Intersection
over Union (IoU) metric was used by comparing a manually annotated dataset. A
custom-built application developed in the MAL was used for manual annotation
with bounding boxes. The ground truth dataset was created by segmenting 5-minute
videos of 5 randomly selected patients, while performing different tasks.
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Intersection over Union (IoU)

Intersection over Union (IoU) is a metric used to evaluate object detection perfor-
mance by comparing the predicted bounding box to the ground truth bounding
box (Figure 3.5). The IoU is calculated using the following equation:

IoU = Area of Overlap
Area of Union

In this proportion, the numerator denotes the intersection surface between the
predicted bounding boxes and the actual ground truth, while the denominator
represents the aggregate surface encompassed by the union of each box.

Figure 3.5: Bounding boxes for evaluating IoU.

Bounding Box Labeling Application

Figure 3.8 shows the interface of the custom-developed labeling application. Users
can annotate frames by tracing and releasing the cursor around the elements of
interest. The process is made efficient by the presence of IDs for hand orientation
and objects.
The interface also includes a "draw previous bounding boxes" button, allowing
users to replicate bounding boxes from previous frames when the action remains
stationary in subsequent frames. Bounding box categories are differentiated by IDs,
which are also used for the correction button. The tool’s efficiency is enhanced
by keyboard shortcuts and the ability to save and load annotations to and from a
CSV file.
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Figure 3.6: Screenshot of the application’s user interface.

3.2.6 Stage 2

After preparing the dataset, the processing moves to the second module of the
workflow using Snorkel, initially for model training and subsequently for label
validation. The main steps of Snorkel are:

1. Uploading the dataset using its built-in functions. This involves data
manipulation to ensure proper formatting for subsequent processing.

2. Labeling Functions are created to identify relationships among bounding
box sets by incorporating particular insights. The functions, of Categorical
type and Spatial type, enable the detection of existing relationships within
the data. In this step, five labeling functions are applied to the dataset to
detect Movement, No Movement, and Uncertain scenarios.

3. Training the Label Model: The performance of the labeling functions
is initially evaluated and then improved to more correctly represent the
underlying relationships in the collected data. The revised functions are
implemented into the dataset to assign preliminary labels. Subsequently, a
generative model is used to further enhance the quality of the labels.

Once the label model is trained, the annotations are integrated into the dataset.An
additional script was added to the pipeline to streamline the visualization of outputs
in ELAN. The model’s performance was evaluated in section [4.1.3] using specific
metrics such as F1-score and confusion matrices.
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3.2.7 Snorkel
Snorkel [31] is an innovative system that enables users to train advanced models
without hand-labeled data. LFs are created by the users, in order to underly patterns
in an unlabeled dataset. The noise is effectively discarded from the outputs by
Snorkel without the presence of ground truth, utilizing the data programming, a
novel ML approach. Figure 3.7 succinctly shows the design of the system. The
system operates as follows:

1. Subject matter experts (SMEs) design labeling functions that capture weak
supervision sources, incorporating methods like distant supervision, patterns,
and heuristics.

2. Snorkel applies these LFs to unlabeled data, generating a probabilistic model
that combines the outputs of the LFs into probabilistic labels.

3. These probabilistic labels are then used to train a discriminative classification
model, such as a deep neural network.

Figure 3.7: Workflow of the Snorkel architecture

Labeling Functions

Users do not manually label training data; instead, they create labeling functions.
These functions are divided into two main types: Categorical and Spatial intuitions.
For the RingSensor study, five labeling functions were developed, three categorical
and two spatial, specifically for the Movement label.

• Categorical LFs: The categorical intuitions involve knowledge of typical
categories of subjects and objects in relationships (e.g., ’person’ as the subject
for actions like ’ride’ and ’carry’).

– If both hands and objects are detected by the deep learning models, it is
labeled as ’Movement’.
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– The ’No Movement’ label is used if no object is detected, but the hand.
– The ’Uncertain’ label is applied if no hands are in the frame.

• Spatial LFs: The Spatial intuitions involve understanding the relative posi-
tions of subjects and objects (e.g., the subject is usually above the object in
’ride’ actions).

– The ’Movement’ label is determined by the overlap between bounding
boxes of hands and objects, assigned if the overlap percentage surpasses a
pre-established breakpoint.

– To address scenarios where contact could persist despite minimal overlap,
a function verifies if the centroid of the hand falls inside the bounding
box of the object.

Once the labeling functions are applied, Snorkel produces a table displaying the
effectiveness of the LFs. The table can be examined in section [4.1.2].

Model training

Using the probabilistic labels produced by the generative model, Snorkel trains a
discriminative classification model, such as a deep neural network. The training
process for this model spanned 100 epochs, utilizing a learning rate set at 0.01.

3.2.8 Python Script
Following the labeling process, the performance of the entire pipeline was evaluated
using metrics on the data, as detailed in the next chapter. Additionally, the
annotated data can be visualized on ELAN. The results from Snorkel consisted of a
vector of numeric labels corresponding to each frame in the video. These elements
were synchronized using frame timestamps in milliseconds, aligning the row IDs
with the newly generated labels. The labels are matched to the rows of the original
dataset and transformed from numerical to textual in the final part of the script.
Subsequently, the training set was labeled.
One of the challenges to address is the presence of brief label variations: Snorkel
labels frame by frame, so there are instances where a label temporarily changes
before reverting to its previous value. Therefore, the script checks for consecutive
frames labeled with different labels in blocks of fewer than 7 frames (approximately
0.23 seconds) and stabilizes the values by assigning them the label of the preceding
frame. This enhancement improves performance accuracy, ensuring that sequences
of consecutive frames with the same label consist of at least 7 elements.
We established a new pandas structure to organize consecutive sequences of frames
with the same label, recording start and end timestamps in milliseconds along with
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their corresponding annotations to ensure proper display in ELAN. Sequences were
sorted by their start timestamps. The outcome was saved in a structured table
within a CSV file, an example of which is shown in Table 3.3. Applying the same
process to Snorkel’s results enabled a visual comparison between predictions and
ground truth labels using ELAN.

Hand Start Time (ms) End Time (ms) Label
Right_hand 371671 377344 Contact
Right_hand 377344 377544 No_Contact
Right_hand 377544 377711 Contact
Right_hand 377711 377978 No_Contact
Right_hand 377978 378311 No_Frame

Table 3.3: Annotated Frames with Hand Activities

3.2.9 Characterization
The effectiveness of the proposed method was evaluated using the weighted F1-
score metric, typically employed in multi-label machine learning frameworks and
derived from confusion matrices. Confusion matrices are essential tools for assessing
classification model capability.

F1-score

The F1 score assesses the accuracy of a test set by evaluating both precision
and recall. Precision denotes the proportion of true positives among all positive
predictions, whereas recall represents the proportion of true positives among all
positive instances (true positives plus false negatives). The F1 score is computed
as the harmonic mean of precision and recall, reflecting the frequency of accurate
predictions. In cases involving multiple classes, the metric employed is the micro
F1-score, while when the dataset is imbalanced, the weighted F1-score is preferred.
The formula for the weighted F1-score is:

F1 weighted-score =
kØ

i=1
wi · Scorei (3.1)

where wi is defined as:

wi = Number of samples in class i

Total number of samples (3.2)
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Confusion Matrix

The confusion matrix, also known as a misclassification matrix, provides a visual
representation of the accuracy of a statistical classification. Each column of
the matrix represents predicted outcomes, while each row corresponds to actual
outcomes. The entry at row i and column j shows the number of instances where
the classifier predicted class j when the true class was i. This matrix allows for the
observation of any discrepancies in the classification across different classes. Figure
3.8 illustrates the structure of a misclassifications matrix in a binary classification
scenario:

Figure 3.8: Binary Confusion Matrix.

In multi-class classification scenarios, the misclassifications matrix expands to
accommodate multiple classes. Rows correspond to the actual (ground truth)
classes, while columns represent the predicted classes. Each cell indicates the
count of predictions for each class combination. Diagonal entries denote accurate
predictions for every class, while off-diagonal entries indicate errors in classification.

• TP - True Positive: Correctly predicted positive instances.

• FP - False Positive: Incorrectly predicted positive instances.

• TN - True Negative: Correctly predicted negative instances.

• FN - False Negative: Incorrectly predicted negative instances.
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Analyzing the misclassifications matrix allows for a quick assessment of not only
the number of correct predictions but also the types and frequencies of errors made
by the model. Figure 3.9 presents an example of a multi-class confusion matrix.

Figure 3.9: Multi-class Confusion Matrix for a Classifier with Three Labels

3.3 Second pipeline
In light of the results obtained from the evaluation of the initial pipeline, it was
observed that while the results for movements were promising, those related to
No Movement were lacking. These results, which will be discussed in detail in
the appropriate section, highlighted significant limitations, such as data imbalance
with minimal coverage for the No Movement label and relatively low accuracy of
labeling functions for this category.
The main limitations included data imbalance, unsatisfactory accuracy of labeling
functions for the No Movement label, the need for continuous fine-tuning specific
to the data, and training data constraints that limited the model’s generalization
to real-world scenarios.
As a result, significant modifications were made to the existing pipeline to address
these issues. One of the main innovations introduced was the integration of a
Large Language Model (LLM). This change was motivated by the need to improve
the accuracy of automatic labeling and to enhance the system’s robustness in
recognizing various activities, including No Movement cases.
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The new pipeline was designed to include modified blocks from the base pipeline,
described up to this point, along with the addition of advanced components for data
processing and analysis. However, the Hand Object Detector (HOD) block was
retained, as the characterization results, discussed later, were satisfactory. These
modifications aim to optimize the entire process of automatic upper limb activity
labeling, ensuring greater accuracy and better adaptability to real-world data.

3.3.1 Chest video
Including chest-mounted videos along with head-mounted ones in our analysis
was a strategic decision aimed at enhancing the robustness and accuracy of our
activity recognition framework. The visual data from both perspectives provide
complementary information, which is crucial for a comprehensive understanding of
upper limb activities.

• Complementary Perspectives: Head-mounted cameras offer a direct view
of the subject’s hands and the objects they interact with, but they might not
capture the full range of movements, especially those involving the lower body
or interactions outside the direct line of sight. Chest-mounted cameras, on the
other hand, provide a broader view, capturing movements that head-mounted
cameras might miss. This dual perspective ensures that all relevant actions
are recorded, enhancing the completeness of the data.

• Improved Recall Rates: Comparing the recall rates for head and chest
videos highlights the importance of considering multiple viewpoints. While
head-mounted video analysis offers valuable insights, chest-mounted video
analysis can capture movements and static periods with higher precision on
the No Movement label, as will be shown in Chapter 4.

• check consistency: handles and corrects missing bounding boxes by interpo-
lating positions between consecutive frames. This ensures that the dataset
is complete and free from gaps, enhancing the overall quality of activity
detection.

• Enhanced Algorithm Performance: Including chest videos allows our
algorithms to access a richer, more diverse dataset, which improves their ability
to generalize. Training the models on data from both head and chest videos
results in greater accuracy and reliability in detecting and classifying upper
limb activities.

• Improved Recall Rates: Comparing the recall rates for head and chest
videos highlights the importance of considering multiple viewpoints. While
head-mounted video analysis offers valuable insights, chest-mounted video
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analysis can capture movements and static periods with higher precision on
the No Movement label, as will be shown in Chapter 4.

3.3.2 Python scripts
Output correction module

To streamline the process, the Python scripts from the initial pipeline were con-
solidated into a unified module. The goal of this integration was to improve the
efficiency and consistency of the data processing pipeline. Figure 3.10 illustrates
the workflow of these newly integrated functions. Additionally, new functions were
defined to improve the output of the Hand Object Detector (HOD). These improve-
ments focused on addressing key areas such as correcting hand side detection based
on positional data within the frame, filling gaps by identifying and interpolating
missing frames and bounding boxes, and ensuring label consistency.

• assign hand side: created to ensure that detected hands are correctly labeled
as left or right. This is essential for maintaining the consistency of labels
with the actual position of the hands within the video, not only checking the
position with respect to the center of the frame, improving the accuracy of
activity detection.

• process missing bbox: ensures the consistency of hand labels across frames.
It verifies and corrects any discrepancies, ensuring that the timeline of hand
activities is accurate and free from labeling errors.

• check consistency: handles and corrects missing bounding boxes by interpo-
lating positions between consecutive frames. This ensures that the dataset
is complete and free from gaps, enhancing the overall quality of activity
detection.

• process elan data: responsible for integrating and aligning external annota-
tion data with the detected hand activities. Specifically, it reads the ELAN
annotation file, processes and normalizes the labels, and then aligns these
labels with the corresponding frames in the dataset. This function ensures that
the ground truth labels from the ELAN annotations are accurately matched
with the detected hand activities, providing a reliable basis for evaluating the
performance of the detection and labeling process.
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Figure 3.10: Integrated new functions

3.3.3 Large Language Model
The Generative Image-to-Text (GIT) model [32] is an advanced LLM designed to
bridge the gap between visual and textual data. It employs a Transformer decoder
architecture, which has proven to be highly effective in natural language processing
tasks. The GIT model is trained using a method known as "teacher forcing" on pairs
of images and their corresponding text descriptions. This training methodology
ensures that the model can accurately generate descriptive text based on visual
input.

Model Architecture

The model structure is illustrated in Figure 3.11 and defined as described below:

Figure 3.11: The GIT network architecture.
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• Image Encoder

The first component, the Image Encoder, is based on a pre-trained model
using contrastive tasks. This encoder receives raw images as input and
transforms them into a compact 2D feature map. This map is then
flattened into a list of features projected into dimension D through a
linear layer and a normalization layer. The Image Encoder was selected
for its superior performance in object recognition tasks, ensuring a robust
visual representation that feeds into the subsequent Text Decoder.

• Text Decoder

The second component, the Text Decoder, is a transformer module de-
signed to predict the textual description of images. It is composed of
multiple transformer blocks, each including a self-attention layer and a
feed-forward layer. The text is tokenized and embedded into dimension
D, with positional encoding and a normalization layer added to main-
tain sequential coherence. The image features, generated by the Image
Encoder, are concatenated with the textual embeddings as input for the
transformer module. The text decoding process begins with the [BOS]
token and proceeds auto-regressively until reaching the [EOS] token or
the maximum number of allowed steps, ensuring smooth and coherent
text generation.

• Capabilities and Performance

The GIT model is capable of performing various tasks such as image
captioning, visual question answering (VQA), and image classification.

– Image Captioning: In this task, the model generates a descriptive
sentence for a given image, as shown in part (a) of the figure. The
image encoder processes the visual data, while the text decoder, equipped
with feed-forward and multi-head self-attention layers, generates the
corresponding textual description.

– Visual Question Answering (VQA): As illustrated in part (b), the
model can understand and answer questions related to the visual content.
This involves encoding both the image and the question text, allowing
the decoder to produce a relevant answer.

– Video Analysis: In the context of video analysis, shown in part (c), the
GIT model handles sequences of frames, applying temporal embeddings to
capture the dynamic information across frames. This enables the model
to perform tasks like video captioning and activity recognition.
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• Pre-training and Fine-tuning

The GIT model undergoes two main training phases: pre-training and
fine-tuning.

– Pre-training: During pre-training, the model is trained to map the input
image to the associated text description using the language modeling (LM)
objective. In this phase, a cross-entropy loss with label smoothing of 0.1
is applied, enhancing the model’s ability to generalize from the training
data.

– Fine-tuning: Fine-tuning varies depending on the specific task. For the
image captioning task, the training data format remains the same as in
pre-training, applying the same LM objective. For the visual question an-
swering (VQA) task, the question and the correct answer are concatenated
as a new special caption during fine-tuning, but the LM loss is applied
only to the answer and [EOS] tokens. During inference, the question is
interpreted as the caption prefix, and the completed part is the prediction,
allowing the model to generate relevant answers based on the provided
visual context.

Snorkel integration

We utilized the LLM to analyze images and generate textual descriptions or
responses that provide crucial information about the visual data. These results were
then integrated into our DataFrames as an additional column called ’GIT_Result’.
The results generated by the LLM were used as input for Snorkel’s labeling functions,
enhancing the accuracy of the produced labels.
We created several labeling functions in Snorkel, each designed to leverage specific
characteristics of the data and the information provided by the LLM. Here is an
overview of the labeling functions used:

• LF_no_contact: This function uses the result generated by the LLM (GIT
_Result). If the result is "no", indicating no contact, the function returns the
NO MOVEMENTlabel. Otherwise, it returns ABSTAIN.

• LF_area: This function calculates the overlap area between the bounding
boxes of the hand and the object. If the overlap area exceeds a predefined
threshold (10%), the function returns the MOVEMENT label, indicating
contact. Otherwise, it returns ABSTAIN.
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• LF_centroid: This function calculates the distance between the centers of the
bounding boxes of the hand and the object. If the distance exceeds a predefined
threshold (1000 units), the function returns the NO_MOVEMENTlabel,
indicating no contact. Otherwise, it returns ABSTAIN.

• LF_dist: This function checks the relative position of the bounding boxes of
the hand and the object. If the hand is within the bounds of the object, the
function returns the MOVEMENT label. Otherwise, it returns ABSTAIN.

Model training

Leveraging the probabilistic labels generated by the generative model, Snorkel trains
a discriminative classification model, trained for 10,000 epochs with a learning rate
of 0.01.

3.3.4 Python Script
Smoothing module

This module addresses the issue of fluctuating labels, which can occur due to
inherent noise and variability in video data: for each frame, the smoothing module
identifies and counts label changes within a 21-frame window. The workflow of the
smoothing module is illustrated in Figure 3.12, maintaining data integrity, which in
turn improves the accuracy and reliability of the analysis performed on the labeled
video data.

1. Extract Label: The module starts by extracting the label for each frame.

2. Identify and Count Label Switches: It then identifies any label switches within
the specified window and counts their occurrences.

3. Apply Corrections: If the number of label switches within the window is less
than 21, the module uses the previous label to maintain consistency. If the
count is 21 or more, it applies the current label.

3.4 ELAN
This annotations tool is used as a final step to provide visual feedback and better
interpretation of the results from confusion matrices, highlighting any shortcomings
in the model. ELAN allows users to annotate multimedia files with unlimited
written notes, such as characterization of attributes and comments, and also
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Figure 3.12: Smoothing module workflow.

enables these notes to be organized into tiers that can be hierarchically linked.
Additionally, annotations can be made to correspond to specific moments in the
media or can be linked to pre-existing annotations. For the RingSensor video data,
this synchronization was particularly advantageous, as demonstrated in Figure
3.13. ELAN is a strong but complex tool due to its sequential method of operation.
Users must select each label layer within a specific time window and choose the
suitable annotation. Additionally, annotations need to be tailored for both limbs,
as detailed in section 2.2.4., a detailed step that slows down the labeling process
unless more annotations are used.
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Figure 3.13: ELAN interface
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Chapter 4

Results

4.1 First pipeline

4.1.1 Hand Object detection
To assess the stage 1 model, we began by observing how the Hand Object Detector
(HOD) processes our video data. This involved reviewing the videos after processing
by the HOD model. The outcome, shown in Figure 4.1, demonstrate that the
HOD model accurately pinpoints hand bounding boxes and recognizes only the
objects they are interacting with, ignoring other items in the frame and focusing
exclusively on the book the subject is holding.

Figure 4.1: Snapshot of an HOD output frame.
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We evaluated how well the model performs by comparing manually annotated
bounding boxes around hands and objects in contact in casually chosen five-minute
video segments from different patients. Specifically, we computed the Intersection
over Union (IoU) to measure the overlap between these annotations and the
predictions of the HOD model.
Table 4.1 presents the precision of the right-hand bounding boxes identified by
the HOD model. The "Hand" column lists the number of accurately identified
right-hand frames out of the total frames showing that hand. The "IoU" column
provides the mean IoU score for the accurately recognized frames depicting the
right limb, demonstrating the model’s predictive accuracy and reliability.

Subjects Hand det. IoU
002 901/1284 0.87
004 951/1063 0.86
005 965/1033 0.87
014 1285/1377 0.93
019 798/842 0.91

Avg. 4732/5598 0.90

Table 4.1: IoU for HOD.

4.1.2 Labeling Function - Snorkel
In stage 2, the Snorkel labeling function (LF) evaluation tool gave a comprehensive
overview of how effectively the crafted LFs aligned with the validation dataset. This
analysis yielded valuable insights into the performance of the LFs and identified if
modifications were needed. The evaluation encompassed the succeeding indicators:

• Polarity: The group of exclusive labels generated by this LF.

• Coverage: The ratio of the dataset annotated by the LF.

• Overlaps: The ratio of the dataset where this LF and at least one other LF
have provided labels.

• Conflicts: The ratio of the dataset annotated by both this LF and another
LF where their labels differ.

• Correct: The count of data points correctly labeled by this LF (if ground
truth labels are available).

• Incorrect: The count of data points incorrectly labeled by this LF (if ground
truth labels are available).
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• Empirical Accuracy: The observed accuracy of this LF (given ground truth
labels).

Labeling Function j Polarity Coverage Overlaps Conflicts Correct Incorrect Emp. Acc.
lf_obj 0 [1] 0.51 0.50 0.0 19154 2761 0.87
lf_overlap 1 [1] 0.50 0.50 0.0 18894 2574 0.88
lf_distance 2 [1] 0.31 0.31 0.0 11409 1948 0.85
lf_no_obj 3 [0] 0.10 0.0 0.0 1454 3041 0.32
lf_out_frame 4 [2] 0.39 0.0 0.0 11593 5097 0.69

Table 4.2: LF Analysis on a small subset.

Labeling Function j Polarity Coverage Overlaps Conflicts Correct Incorrect Emp. Acc.
lf_area 0 [1] 0.66 0.51 0.20 55707 25073 0.69
lf_no 1 [0] 0.03 0.03 0.03 2319 1377 0.63
lf_centroid 2 [0] 0.0055 0.0055 0.0055 355 313 0.53
lf_no_contact 3 [0] 0.18 0.18 0.18 6905 15027 0.31
lf_dist 4 [1] 0.42 0.42 0.11 36038 15518 0.70

Table 4.3: LF Analysis with GIT on the entire dataset.

4.1.3 Confusion matrix & F1-score
When evaluating the pipeline results, we used a confusion matrix for visualization,
created by combining the data from all present subjects. Each column of the
confusion matrix represents the predicted values, while each row represents the
actual values.
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Figure 4.2: Confusion Matrix - Head.

Subject F1 Score
004 0.69
005 0.42
011 0.66
013 0.57
014 0.75
019 0.56

combined 0.49

Table 4.4: F1 Score by Subject - Head.

Subject F1 Score
004 0.44
005 0.46
011 0.57
013 0.36
014 0.52
019 0.37

combined 0.45

Table 4.5: F1 Score by Subject - Chest.
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Figure 4.3: Confusion Matrix - Chest.

Subject F1 Score
004 0.68
005 0.41
011 0.65
013 0.60
014 0.75
019 0.62

combined 0.60

Table 4.6: F1 Score by Subject - Combined.
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Figure 4.4: Confusion Matrix - Combined.

Subject F1 Score
004 0.71
005 0.47
011 0.71
013 0.58
014 0.75
019 0.63

combined 0.64

Table 4.7: F1 Score by Subject - correction module - Head.
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Figure 4.5: Confusion Matrix - correction module - Head.

Figure 4.6: Confusion Matrix - correction module - Chest.
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Figure 4.7: Confusion Matrix - GIT - Head.
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Chapter 5

Discussion

5.1 First pipeline

5.1.1 Hand Object detection
Hand Object Detector model was trained to evaluate its ability to recognize hands
in RingSensor videos, a crucial step to determine the feasibility of the project.
Figure 4.1 illustrates how the HOD identifies hands in the videos. Although these
images alone are not sufficient for a comprehensive assessment of the model’s
performance, they helped us confirm that the model was functioning correctly on
our video data. We observed that, despite the presence of other objects in the
video, the model exclusively highlighted the objects in contact with the hands.
To obtain a more detailed evaluation of the model’s performance, we manually
annotated bounding boxes for hands and objects in contact in casually chosen
five-minute video segments from 5 different patients, performing the simulated
activities described in Chapter 2. The results are shown in Table 4.1, where the
Hand column indicates the number of correctly detected right-hand frames out of
the total frames containing the right hand. The IoU column provides the mean
IoU score for the accurately recognized frames depicting the right hands. Overall,
the HOD model proved to be highly effective, with an average IoU of 90% across
subjects, confirming its high performance for our purpose.

5.1.2 Snorkel
Following the creation of the labeling functions (LFs), the results are compiled into
a DataFrame, impacting phase 2 of the pipeline. The LFs must be evaluated to
ensure accurate and consistent labels, considering coverage, precision, and conflicts.
The results are used to train a supervised labeling model. The quality of the labels
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is essential for the effectiveness of the final model, making the correct writing and
evaluation of LFs crucial.
In Table 3.3, which presents the performance of the LFs on the model, a high
coverage of the Movement label (Polarity 1) is highlighted. The Overlaps column
indicates that the three LFs for the Movement label are highly consistent and
possess superior accuracy compared to the others, demonstrating the greater focus
of the pipeline on detecting hand/object contact, while the coverage for the No
Movement label is very low.
We prefer having a broader coverage because it simplifies the creation of time
intervals for the Movement. This approach provides clinicians with predefined
time intervals, significantly speeding up the grasping labeling process. Initially,
having greater coverage for the Movement label is advantageous as it ensures that
most significant interactions are captured, providing a solid starting point for
further analysis. It is crucial to avoid false positives for both Movement and No
Movement. False positives for Movement can lead to misinterpretations of irrelevant
actions as significant contacts, while false positives for No Movement can overlook
important events, reducing the model’s overall accuracy. Although prioritizing
broader coverage initially is beneficial, refining the model to minimize these errors is
essential for accurate and reliable classification. Misclassification between Movement
andNo Movement results in more time spent manually correcting these inaccuracies.
This concept can be better understood by analyzing the frames in the validation
set. Approximately 59% of the frames are labeled as Movement, and the Hand
Object Detector aligns closely with this figure, indicating comprehensive coverage
of Movement labels. The Uncertain label represents about 30% of the dataset,
but the model might mistakenly label instances as Out of frame even when hands
are present, due to its excessive coverage. Additionally, the No Movement label
accounts for roughly 25% of the frames, but it has a high error rate of approximately
89.90%, indicating frequent misclassifications. These issues suggest that while the
model has strong coverage in some areas, significant refinements are needed to
improve overall accuracy and reduce mislabeling.
Figure 4.2 shows the combined confusion matrix for all subjects, based on the
head-mounted video recordings. This confusion matrix, together with the F1
scores reported in Table 4.3, provides a detailed picture of the model’s detection
performance. The combined confusion matrix highlights that while the model is
generally effective at detecting Movement, there is significant confusion between
No Movement and Movement. Additionally, the individual F1 scores suggest that
the model’s performance varies considerably across subjects, indicating the need
for further optimization to improve the model’s consistency.
After training the labeling model and calculating the weights, the observed perfor-
mance showed a significant relationship between the analysis of labeling functions
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and the patterns in the confusion matrices. The No Movement label demonstrated
lower precision and recall compared to the other labels, while the Uncertain label
achieved moderate precision and high recall. As expected, the Movement label
emerged as the most effective, showing high precision and recall.

Label Precision Recall
No_Movement 0.367 0.101

Movement 0.858 0.763
Uncertain 0.459 0.739

Table 5.1: Precision and Recall - Head.

Analyzing the metrics reveals that the:

• No Movement label falls short of expectations, showing both low precision and
recall. This indicates that the model is not effective in accurately detecting
No Movement instances.

• Uncertain label, it exhibits moderate precision and high recall, suggesting
that the model often assigns this label even in uncertain situations. Despite
this, the ’Uncertain’ label is useful in the annotation software as it establishes
a time interval that aids clinicians in the labeling process. However, it is clear
that this label requires further refinement to improve its accuracy.

• Movement label demonstrates high performance with both high precision
and medium-high recall, indicating that the model is generally accurate in
identifying movement. This reliability makes the annotation process much
more efficient, with time intervals determined more accurately, increasing the
likelihood of correct annotation and speeding up the workflow.

5.1.3 Chest camera
A significant support for the decision to integrate the chest camera is provided by
the results of the confusion matrix for the chest (Figure 4.3) and the F1 scores
per subject reported in Table 4.4. The F1 scores range from 0.36 to 0.57, with
a combined score of 0.49, indicating overall better performance compared to the
results obtained with the head camera alone. This suggests that the integration of
the chest camera can indeed contribute to improving the accuracy and consistency
of the model’s detections.
The integration of the chest camera was considered based on a deeper analysis
of the confusion matrix results. The precision for the No Movement label in the
chest set was found to be about 70%, indicating that when the model predicts No
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Label Precision Recall
No_Movement 0.700 0.277

Movement 0.521 0.635
Uncertain 0.112 0.483

Table 5.2: Precision and Recall - chest.

Movement, it is correct 70% of the time. However, the recall for the same label was
only 28%, showing that the model misses a significant number of No Movement
instances.
Given these observations, the decision to integrate the chest camera aims to address
this discrepancy. By incorporating additional data from a different perspective,
it is anticipated that the model’s ability to detect No Movement instances will
improve, both in terms of identifying true positives and reducing false negatives.
Additionally, the F1 scores among the various subjects in the head set, ranging from
0.36 to 0.57, highlight the variability in the model’s performance. The combined
F1 score of 0.45 further underscores the need for improvement. By integrating the
chest camera, we expect more consistent and reliable detections across different
subjects, thereby enhancing the overall robustness of the model.

5.2 Second pipeline

5.2.1 Chest and head integration
The results of combining the chest camera and head camera show a significant
improvement in the overall performance of the Hand Object Detector (HOD) model.
Analyzing the combined confusion matrix (Figure 4.3) and the F1 scores per subject
reported in Table 4.4, we can observe a clear enhancement in the model’s detection
capabilities.

Label Precision Recall
No_Movement 0.109 0.422

Movement 0.763 0.670
Uncertain 0.702 0.443

Table 5.3: Precision and Recall - head.

Analyzing the metrics reveals that:

• No Movement
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The combination of the two perspectives has led to a reduction in false
positives and negatives, as evidenced by the values in the confusion matrix.
The precision for No Movement was calculated to be approximately 0.109,
while the recall was 0.422. This shows that the model has improved its
ability to correctly identify instances ofNo Movement.

• Uncertain

The precision for Uncertain was calculated to be approximately 0.702,
while the recall was 0.443.

• Movement

The precision and recall for Movement show improvement over the separate
sets. The number of true positives has increased, while false positives and
negatives have decreased. The precision for Movement was calculated to
be approximately 0.763, while the recall was 0.670.

The integration of the chest camera with the head camera has provided a more
complete and accurate view of the activities performed. This has led to a reduction
in classification errors and an improvement in precision and recall for all labels.
The combined F1 scores show a significant increase compared to the scores obtained
using the individual perspectives. The combined F1 score of 0.60 represents a
substantial improvement, suggesting that using both perspectives allows the model
to better detect different activities and movements.

5.2.2 Output correction module
Head

The application of the output correction module to the HOD model for the head
camera data has yielded significant improvements. As illustrated in Figure 4.5, the
confusion matrix shows notable enhancements in the model’s detection capabilities.

Label Precision Recall
No_Movement 0.272 0.475

Movement 0.738 0.607
Uncertain 0.624 0.521

Table 5.4: Precision and Recall - correction module - Head.

Analyzing the metrics reveals that:

• No Movement
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Precision and recall have seen improvements due to better labeling con-
sistency and interpolation of missing frames. The true positive rate has
increased, reducing false positives and negatives. The precision for No
Movement is now approximately 0.272, and the recall is around 0.475.

• Uncertain

The Uncertain label benefits from the module’s consistency checks and
ELAN data integration, resulting in better alignment of detected activities
with ground truth labels. The precision for Uncertain is now approximately
0.624, and the recall is around 0.521.

• Movement

The precision and recall for Movement have also improved. The module’s
ability to correctly assign hand sides and process missing bounding boxes
has contributed to more accurate detections. The precision for Movement
is now approximately 0.738, and the recall is around 0.607.

The integration of the output correction module has effectively enhanced the
performance of the HOD model for the head camera data. The improvements in
precision, recall, and F1 scores demonstrate the module’s effectiveness in addressing
key issues such as hand side detection, missing frame interpolation, and label
consistency.

Chest

The application of the output correction module to the HOD model for the chest
camera data has shown notable improvements, as illustrated in the confusion matrix
in Figure 4.6. These enhancements are further reflected in the recall rates for No
Movement across different subjects and conditions.

Label Precision Recall
No_Movement 0.280 0.370

Movement 0.617 0.556
Uncertain 0.315 0.341

Table 5.5: Precision and Recall - correction module - Chest.

Analyzing the metrics reveals that:

• No Movement
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Precision and recall have seen improvements due to better labeling con-
sistency and interpolation of missing frames. The true positive rate has
increased, reducing false positives and negatives. The precision for No
Movement is now approximately 0.280, and the recall is around 0.370.

• Uncertain

The Uncertain label benefits from the module’s consistency checks and
ELAN data integration, resulting in better alignment of detected activities
with ground truth labels. The precision for Uncertain is now approximately
0.315, and the recall is around 0.341.

• Movement

The precision and recall for Movement have also improved. The module’s
ability to correctly assign hand sides and process missing bounding boxes
has contributed to more accurate detections. The precision for Movement
is now approximately 0.617, and the recall is around 0.556.

The integration of the output correction module has effectively enhanced the
performance of the HOD model for the chest camera data. The improvements in
precision, recall, and F1 scores, as indicated by the confusion matrix in Figure 4.6,
demonstrate the module’s effectiveness in addressing key issues such as hand side
detection, missing frame interpolation, and label consistency. These enhancements
provide a more reliable and accurate detection process, ultimately leading to better
performance in practical applications. The recall rates for No Movement across
subjects, reflect this enhanced performance, indicating a more consistent and
accurate detection of hand activities.

GIT

The application of the Large Language Model (LLM) GIT to the HOD model for the
head camera data has shown notable improvements, as illustrated in the confusion
matrix and labeling function accuracy chart in Figure 4.7. These enhancements
are particularly significant in improving the accuracy of the No Movement label.

Label Precision Recall
No_Movement 0.38 0.35

Movement 0.69 0.70
Uncertain 0.37 0.46

Table 5.6: Precision and Recall - GIT - Head Camera.

Analyzing the metrics reveals that:
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• No Movement

Precision and recall have seen improvements due to better labeling con-
sistency and interpolation of missing frames. The true positive rate has
increased, reducing false positives and negatives. According to the confu-
sion matrix for the head camera, the precision for No Movement is now
approximately 0.376, and the recall is around 0.354.

• Uncertain

The Uncertain label benefits from the module’s consistency checks and
ELAN data integration, resulting in better alignment of detected activities
with ground truth labels. The precision for Uncertain is now approximately
0.367, and the recall is around 0.460.

• Movement

The precision and recall for Movement have also improved. The module’s
ability to correctly assign hand sides and process missing bounding boxes
has contributed to more accurate detections. The precision for Movement
is now approximately 0.694, and the recall is around 0.701.

Figure 5.1: GIT accuracy

The bar chart on the right in Figure 5.1 shows the empirical accuracy of various
labeling functions, with a significant focus on the No Movement label. The
accuracy of the No Movement labeling has improved from 0.32 to 0.69, indicating a
substantial enhancement in the model’s ability to accurately label these instances.
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This improvement can be attributed to the refined functions that better handle
positional data and consistency checks.
The application of the Large Language Model (LLM) GIT has significantly improved
Snorkel’s performance in detecting No Movement instances. The comparison
between the Hand Object Detector (HOD) and GIT results, as shown in Tables 4.2
and 4.3, highlights these improvements.

• Coverage and Empirical Accuracy: The No Movement label’s coverage
improved from 0.10 to 0.18, and empirical accuracy increased from 0.32 to 0.69.
This enhancement indicates that GIT has more than doubled the model’s
ability to correctly identify No Movement instances while significantly reducing
incorrect predictions.

• Overall Performance Enhancements: The GIT model handles overlaps,
conflicts, and incorrect labels better than the HOD. Although the number of
incorrect labels for No Movement increased from 3041 (HOD) to 15207 (GIT),
the overall empirical accuracy improved significantly.

Table 4.2 shows that the HOD had low coverage (0.10) and poor empirical accuracy
(0.32) for No Movement, identifying 1454 correct labels and 3041 incorrect labels.
While, Table 4.3 demonstrates that the GIT improved coverage to 0.18 and empirical
accuracy to 0.69 for No Movement, identifying 6905 correct labels and 15207
incorrect labels. Despite the higher number of incorrect labels, the overall accuracy
and reliability of the labeling process have markedly improved.
The integration of LLM GIT has effectively enhanced Snorkel’s performance in
detecting No Movement instances. The improvements in coverage and empirical
accuracy demonstrate the model’s enhanced ability to handle labeling functions
with greater precision and consistency. These enhancements provide a more reliable
and accurate detection process, ultimately leading to better performance in practical
applications. The significant improvement in the accuracy of the No Movement
labeling function validates the effectiveness of the LLM GIT in improving the
model’s performance.
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Chapter 6

Conclusion

This project comprehensively explored the effectiveness of manual object detection
models, with a particular focus on the Hand Object Detector (HOD), in identifying
hands and objects within RingSensor video data. The investigation involved
meticulous frame analysis, detailed manual annotation, and the integration of
various enhancement tools designed to optimize performance. Among these tools
were the output correction module and the sophisticated Large Language Model
(LLM) GIT, both of which were employed to significantly improve the precision
and accuracy in detecting manual activities. The study delved deeply into the
capabilities of the HOD model, examining its performance across multiple scenarios
and use cases. The analysis was structured into distinct sections, each illustrating
critical aspects of the model’s effectiveness. One key area of focus was the creation
and analysis of labeling functions (LFs) using the Snorkel framework. This process
involved generating and refining LFs to enhance the model’s ability to accurately
label and detect hand-object interactions. Furthermore, the project highlighted
the substantial improvements achieved through the integration of video data from
head and chest-mounted cameras. This dual-camera approach provided a more
comprehensive and multi-angled view of the activities, enabling the detection
models to capture a wider range of movements and interactions. The enhanced
data from these perspectives contributed to the overall robustness and reliability
of the detection process. Overall, the project demonstrated that by combining
advanced machine learning techniques with meticulous manual processes and
sophisticated enhancement tools, significant strides can be made in improving the
accuracy and reliability of manual activity detection in RingSensor videos. The
findings underscore the importance of continuous refinement and the integration
of diverse data sources to achieve superior performance in object detection and
activity recognition tasks.
The integration of the Large Language Model (LLM) GIT has led to a substantial
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enhancement in Snorkel’s performance when it comes to detecting No Movement
instances. This significant improvement is particularly evident when we compare
the results obtained from the Hand Object Detector (HOD) with those from the
GIT model. The application of the LLM GIT not only increased coverage but
also significantly improved empirical accuracy, showcasing the model’s enhanced
capability to handle labeling functions with much greater precision and consistency.
Specifically, the coverage for the No Movement label saw a notable increase, rising
from 0.10 with the HOD model to 0.18 with the GIT model. Additionally, the
empirical accuracy experienced a substantial improvement, increasing from 0.32
to 0.69. This remarkable enhancement indicates that the application of the GIT
model more than doubled the model’s capability to correctly identify No Movement
instances while significantly reducing the number of incorrect predictions. The
GIT model demonstrates superior performance in managing overlaps, conflicts, and
incorrect labels compared to the HOD model. Although the number of incorrect
labels for No Movement increased from 3041 with the HOD model to 15207 with
the GIT model, the overall empirical accuracy saw a significant boost, highlighting
the model’s improved reliability. These advancements are crucial as they contribute
to a more reliable and accurate detection process, which is essential for practical
applications. The considerable improvement in the accuracy of the No Movement
labeling function further validates the effectiveness of the LLM GIT in improving
the model’s overall performance. This increased reliability and accuracy underscore
the potential of the LLM GIT to refine and optimize the labeling process, making
it a valuable tool in enhancing the robustness and efficiency of activity detection
systems.

The detailed analysis of the frames within the validation set revealed that approxi-
mately 59% of the total frames are labeled as Movement. This indicates that the
Hand Object Detector (HOD) model closely aligns with this figure, suggesting that
it provides comprehensive coverage for the Movement labels. This consistency with
the ground truth labels demonstrates the model’s ability to accurately detect and
classify movement-related activities. However, when it comes to the No Movement
label, the performance of the HOD model is less satisfactory. The model has an
error rate of about 72.78% for this particular label, indicating a high frequency
of misclassifications. This significant error rate suggests that the model often
struggles to correctly identify frames where no movement occurs, leading to fre-
quent inaccuracies in labeling these frames as Movement instead. This discrepancy
highlights the need for further refinement and optimization of the model to improve
its accuracy in detecting No Movement instances, thereby enhancing the overall
reliability of the detection system.

The results of combining the footage from the chest-mounted camera and the head-
mounted camera demonstrated a significant improvement in the overall performance
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of the Hand Object Detector (HOD) model. The analysis of the combined confusion
matrix and the F1 scores for each subject revealed a clear enhancement in the
model’s detection capabilities. Specifically, there was a notable reduction in
classification errors, along with an increase in precision and recall for all labels.
The combined F1 score of 0.60 represents a substantial improvement over previous
values, suggesting that the simultaneous use of both perspectives allows the model
to more accurately detect a wide range of activities and movements. This combined
approach enables a better capture of the nuances of the actions performed by
participants, thereby enhancing the quality and consistency of the detections.
The integration of the output correction module further improved the performance
of the HOD model for head camera data. The improvements in precision, recall,
and F1 scores demonstrate the module’s effectiveness in addressing key issues such
as hand side detection, missing frame interpolation, and label consistency. These
enhancements provide a more reliable and accurate detection process, ultimately
leading to better performance in practical applications.
It is essential to proceed with further refinement and optimization of the GIT
model to enhance the accuracy and consistency of the generated labels. Evaluating
and integrating new large language models could significantly boost the overall
performance of the system. Additionally, it is crucial to integrate the refined
models with video data from the chest-mounted camera. This integration would
provide a more comprehensive and detailed view of the performed activities, further
improving the precision and reliability of the automatic detection and annotation
system.
Manually annotating 100,000 frames could take approximately 278 hours. If an
annotator works 8 hours a day, it would require about 35 working days. This
underscores the importance of improving and automating the detection and la-
beling process to reduce the time and effort needed for manual annotation while
simultaneously increasing the model’s accuracy and consistency. By automating
the annotation process, the time required per frame is significantly reduced from
10 seconds to just 1 second. This means that annotating the same 100,000 frames
would take only about 27.8 hours, which equates to roughly 3.5 working days.
Consequently, this automation saves approximately 31.5 working days, dramatically
enhancing efficiency. Moreover, this streamlined approach not only saves time but
also improves the accuracy and consistency of the annotations, making the detection
and labeling process more reliable and effective. This considerable reduction in
time and effort highlights the critical role of automation in modern data annotation
workflows, ultimately benefiting both researchers and practitioners.
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