
POLITECNICO DI TORINO

Master’s Degree in Biomedical Engineering

Master’s Degree Thesis

Development of a controller for robotic
manipulation through learning from

demonstration

Supervisors

Prof. ALESSANDRO RIZZO

Prof. DOMENICO PRATTICHIZZO

Ing. ENRICO TURCO

Candidate

GABRIELE GIANNINO

JULY 2024



Abstract

This thesis proposes a Learning from Demonstration (LfD) approach designed
to generalize and extract relevant features of desired motion trajectories for robotic
manipulation tasks, with the specific objective of learning a sliding and picking
task exploiting environmental constraints and force sensor data. Learning from
Demonstration is a powerful approach in robotics, since robots can acquire new
skills by observing, modeling and imitating human demonstrations of a task. This
method leverages human expertise to teach robots complex movements, reducing
the need for explicit programming. Research in the field of Lfd is facilitating,
even for non-expert users, to teach new tasks to robots with few demonstrations,
enabling robotics and skills learning to be used in a variety of fields of applications
and dynamic environments.

The developed method is based on probabilistic modeling, specifically a mixture
of Hidden Markov Model(HMM) and Gaussian Mixture Model(GMM). Pose data
and force data are processed,cleaned and aligned in time through Dinamic Time
Warping. A crucial role in the method is represented by forces and torques data
sensed by the force sensor during the contact with the environment, through which
the movement is divided in three primitives. After this division, a continuous HMM
model is trained to be able to switch between primitives and enabling a high level
control of the trajectory. At a lower level a GMM for each primitive is trained to
model the pose of the end effector and predicting it, giving time as input, with
Gaussian Mixture Regression.Both HMM and GMM models are tested on training
and test set in order to fine tune parameters, such as the number of Gaussian
distributions.

The proposed approach, combining these two models, is implemented and vali-
dated through simulations and real-world experiments, showing good performances
in predicting the primitives and generalizing the trajectory. The main advantage
of this algorithm is its ability to generalize from few demonstrations, resulting in
high-quality motion reproduction. The probabilistic approach enables modeling
of complex trajectories with a limited number of demonstrations, leveraging force
sensor data and environmental constraints to enhance robustness.





Table of Contents

List of Figures v

List of Tables vii

Acronyms viii

1 Introduction 1
1.1 Thesis context and motivation . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the art 4
2.1 Learning from demonstrations . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Methods for Acquiring Demonstrations . . . . . . . . . . . . 5
2.1.2 Classification of Learning Methods in Lfd . . . . . . . . . . . 6

2.2 Detailed Techniques in LfD . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Probabilistic Approaches . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Deep Learning Techniques . . . . . . . . . . . . . . . . . . . 9

2.3 Environmental Constraints and Force Data . . . . . . . . . . . . . . 10
2.3.1 Role of Environmental Constraints in LfD . . . . . . . . . . 10
2.3.2 Incorporating Force Data into Learning . . . . . . . . . . . . 11

3 Materials 13
3.1 Hardware Components . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Franka Emika Panda Robot . . . . . . . . . . . . . . . . . . 13
3.1.2 Soft Scoop Gripper . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Gamma F/T Sensor from Schunk . . . . . . . . . . . . . . . 16
3.1.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Software Components . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Robot Operating System (ROS) . . . . . . . . . . . . . . . . 18
3.2.2 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ii



3.2.3 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 CoppeliaSim . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.5 Data Processing and Storage . . . . . . . . . . . . . . . . . . 21
3.2.6 Provided MATLAB Code . . . . . . . . . . . . . . . . . . . 21

4 Methods 22
4.1 Set-up and Demonstrations . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Environmental Setup . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Robotic System Configuration . . . . . . . . . . . . . . . . . 23
4.1.3 Demonstration Procedure . . . . . . . . . . . . . . . . . . . 24

4.2 Data Collection and Preprocessing . . . . . . . . . . . . . . . . . . 26
4.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Data Transformation . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Data Cleaning and Filtering . . . . . . . . . . . . . . . . . . 27
4.2.4 Data Alignment and Normalization . . . . . . . . . . . . . . 30
4.2.5 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Probabilistic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 High-Level Control with HMM . . . . . . . . . . . . . . . . 36
4.3.2 Low-Level Control with GMM/GMR . . . . . . . . . . . . 43
4.3.3 Models Integration . . . . . . . . . . . . . . . . . . . . . . . 52

5 Results 54
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Hidden Markov Model (HMM) Results . . . . . . . . . . . . . . . . 54

5.2.1 Training Set Results . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Test Set Results . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 GMM/GMR Results . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.1 Training Set Results . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 Test Set Results . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Integrated HMM-GMM System Results . . . . . . . . . . . . . . . . 60
5.4.1 Training Set Results . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Test Set Results . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Discussions, applications and future works 66
6.1 Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 Implementing Vision-Based Systems . . . . . . . . . . . . . 66
6.1.2 Extending to Different Real-World Settings . . . . . . . . . . 67
6.1.3 Developing Time-Independent Models . . . . . . . . . . . . . 67
6.1.4 Reducing Supervision and automate the process . . . . . . . 67

6.2 Possible Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 67

iii



6.2.1 General Applications . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Biomedical Applications . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.1 Surgical Robotics . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.2 Robotic Assistants in Operating Rooms . . . . . . . . . . . . 71
6.3.3 Automating Pharmacies . . . . . . . . . . . . . . . . . . . . 71
6.3.4 Ethical and Legal Considerations . . . . . . . . . . . . . . . 71

7 Conclusions 73

A Support Code 74
A.1 GMM/GMR Training and Evaluation Code . . . . . . . . . . . . . 74
A.2 HMM Training and Evaluation Code . . . . . . . . . . . . . . . . . 81

Bibliography 91

iv



List of Figures

2.1 Evolution of the research in Lfd [1] . . . . . . . . . . . . . . . . . . 5
2.2 Demonstration’s acquiring methods [1] . . . . . . . . . . . . . . . . 6
2.3 Classification of learning methods [1] . . . . . . . . . . . . . . . . . 7
2.4 GMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Environmental constraints with Soft Scoop Gripper [4] . . . . . . . 12

3.1 Franka Emika Panda 7 degrees of freedom from [5] . . . . . . . . . 14
3.2 Soft Scoop Gripper from [6] . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Gamma Force/Torque (F/T) sensor from [7] . . . . . . . . . . . . . 17
3.4 Objects used in the experiment. . . . . . . . . . . . . . . . . . . . . 19

4.1 Environmental set up in Coppelia Sim . . . . . . . . . . . . . . . . 23
4.2 Robot set up and reference frames . . . . . . . . . . . . . . . . . . . 24
4.3 Example of Kinesthetic Teaching from [10] . . . . . . . . . . . . . . 25
4.4 Comparison of force data before and after applying the low pass

filter. Force along x . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Box plots for each feature . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Box plots for each demonstration . . . . . . . . . . . . . . . . . . . 29
4.7 First peak Tx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8 Example of DTW alignment between two time series. The optimal

path minimizes the total alignment cost. . . . . . . . . . . . . . . . 33
4.9 Signals before and after DTW and interpolation . . . . . . . . . . . 34
4.10 Example of Probabilistic modeling in Lfd from [19] . . . . . . . . . 36
4.11 Force y and Torque x . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.12 3 states HMM example . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.13 3 states HMM continuous Gaussian example . . . . . . . . . . . . . 39
4.14 Example of BIC evolution . . . . . . . . . . . . . . . . . . . . . . . 47
4.15 GMMs plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.16 state 1 positions example . . . . . . . . . . . . . . . . . . . . . . . . 49
4.17 state 2 positions example . . . . . . . . . . . . . . . . . . . . . . . . 49

v



4.18 state 3 trajectories example . . . . . . . . . . . . . . . . . . . . . . 49
4.19 Euler angles plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.20 Predicted Euler angles combined . . . . . . . . . . . . . . . . . . . 51
4.21 Predicted positions combined . . . . . . . . . . . . . . . . . . . . . 51

5.1 HMM - Training Set State Predictions . . . . . . . . . . . . . . . . 56
5.2 HMM - Test Set State Predictions . . . . . . . . . . . . . . . . . . . 57
5.3 GMR - Training Set Trajectory Generalization . . . . . . . . . . . . 59
5.4 GMR - Test Set Trajectory Generalization . . . . . . . . . . . . . . 60
5.5 Integrated HMM-GMM - Test Set Positions Predictions . . . . . . . 63
5.6 Integrated HMM-GMM - Test Set Orientation Predictions . . . . . 64

6.1 Figure 5 from [44] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Lfd process from [44] . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



List of Tables

3.1 Gamma F/T Sensor from Schunk Specifications [7] . . . . . . . . . 17
3.2 Object Dimensions and Weight 3.4 . . . . . . . . . . . . . . . . . . 18

4.1 Dataset Information for Training and Test Sets . . . . . . . . . . . 35

5.1 Metrics for Different HMM Configurations in training set . . . . . . 55
5.2 Metrics for Different HMM Configurations in Test set . . . . . . . . 56
5.3 Training Set Metrics for Different Number of Gaussians . . . . . . . 58
5.4 Test Set Metrics for Different Number of Gaussians . . . . . . . . . 59

vii



Acronyms

Lfd
Learning from demonstrations

AI
artificial intelligence

GMM
Gaussian Mixture Model

GMR
Gaussian Mixture Regression

HMM
Hidden Markov Model

EC
Environmental constraints

IIT
Istituto Italiano di tecnologia

IRL
Inverse Reinforcement Learning

DMP
Dinamic Movement Primitives

CNN
Convolutional Neural Networks

viii



DTW
Dinamic Time Warping

LSTM
Long Short Term Memory

SVM
Support Vector Machines

PDF
Probability Density Function

BIC
Baesian information criterion

MSE
Mean Squared Error

RMSE
Root Mean Squared Error

SSG
Soft Scoop Gripper

ix



Chapter 1

Introduction

1.1 Thesis context and motivation
Learning from demonstration (LfD) has emerged as a pivotal paradigm in the
field of robotics, enabling robots to acquire complex skills through the imitation
of an expert’s demonstrations. Unlike traditional robot programming methods,
which need detailed coding of every action and sequence, LfD allows for the
implicit learning of tasks from demonstrated behaviors. This makes it particularly
advantageous in scenarios where ideal behavior cannot be easily scripted or defined
as an optimization problem but can be shown through demonstrations. The ability
of LfD to generalize from a few examples and adapt to new and unstructured
environments underscores its potential to revolutionize robotic programming and
automation.

The adoption of LfD is especially promising in domains such as manufacturing,
healthcare, and domestic robotics, where the need for adaptive and intelligent
robotic systems is paramount. By reducing the requirement for extensive program-
ming expertise, LfD facilitates the involvement of non-expert robot programming,
thereby democratizing the use of robots across various fields. This paradigm shift
not only enhances the versatility and applicability of robotic systems but also
accelerates the deployment of robots in real-world applications.

1.2 Thesis objective
The primary objective of this thesis is to develop a controller for robotic manipula-
tion tasks using learning from demonstrations. Specifically, the goal is to reproduce
a task of picking objects from a stack using environmental constraints (EC) and
force sensor’s data. The research is based on the Franka Emika Panda robot,
equipped with the Soft Scoop gripper as the end effector, developed at Italian

1



Introduction

Institute of Technology (IIT) and a force sensor.
To achieve this, 15 demonstrations were conducted with different objects, where

the robot was manually guided to perform the task. Data on the robot’s pose
and force during each demonstration were recorded and subsequently preprocessed
using MATLAB. The core of the thesis revolves around the development and
implementation of an algorithm based on Hidden Markov Models (HMM) and
Gaussian Mixture Models (GMM). This algorithm is designed to segment the
demonstrated task into three movement primitives, with transitions determined by
the HMM based on force sensor data. At a lower level, the GMM/GMR (Gaussian
Mixture Regression) models each primitive’s trajectory from time to end-effector
pose.

1.3 Thesis structure
• Chapter 2: State of the Art This chapter provides an extensive review

of the existing literature on learning from demonstration, covering recent
advancements, various methodologies, and their applications in robotic ma-
nipulation. It includes an updated taxonomy and characterization of existing
methods, emphasizing their strengths and limitations.

• Chapter 3: Materials This chapter details the experimental setup, including
the hardware and software used. It describes Franka Emika Panda robot,
the Soft Scoop gripper, and the force sensor, as well as the data acquisition
systems and preprocessing tools employed in the study, such as Matlab,Python,
Coppelia Sim and related libraries.

• Chapter 4: Methods This chapter outlines the process of data collection
and preprocessing, focuses on the design and implementation of the HM-
M/GMM algorithm, and explains how the algorithm segments the task into
movement primitives, switches between them and models the trajectories for
each primitive.

• Chapter 5: Results This chapter presents the results of the developed
controller. It includes the description of the simulations set-up and an analysis
of the robot’s performance, using plots of calculated metrics and obtained
trajectories. This is done on the two models alone and integrated, in order to
highlight the differences.

• Chapter 6: Discussions,applications and future works This chapter
discusses potential improvements and extensions to the current work. It
suggests future research directions, including the integration of additional
sensory inputs, improvements in the algorithmic framework, and applications

2



Introduction

to more complex tasks and environments in different fields.It discusses the
application of this approach to various fields with a deeper view into the
biomedical field.

• Chapter 7: Conclusions This chapter summarizes the key findings of the
thesis, highlighting the contributions to the field of learning from demonstration
and robotic manipulation. It reflects on the challenges encountered and the
solutions proposed, emphasizing the broader implications of this work for the
development of adaptive and intelligent robotic systems.

3



Chapter 2

State of the art

Learning from Demonstration (LfD) is a paradigm in robotics where robots ac-
quire new skills by observing human demonstrations rather than being explicitly
programmed. This approach leverages human intuition and expertise to create
adaptable and efficient robotic systems . LfD is significant in robotics as it simpli-
fies the programming process, making it accessible to non-experts and enabling
robots to learn complex tasks quickly. This approach is particularly beneficial in
dynamic environments where traditional programming is impractical . This chapter
aims to provide a comprehensive overview of LfD, detailing various methods for
acquiring demonstrations, classifying different learning methods, and exploring
advanced techniques. Additionally, it will highlight the integration of environmental
constraints and force data into LfD.

2.1 Learning from demonstrations

LfD involves teaching robots by example, allowing them to replicate demonstrated
behaviors. Key principles include generalization from limited demonstrations,
handling variability in human demonstrations, and ensuring robust performance
in diverse scenarios . Traditional robot programming involves manual coding of
every action, which is time-consuming and inflexible. In contrast, LfD allows
robots to learn from human examples, significantly reducing development time
and increasing adaptability . LfD has broad applications, including industrial
automation, healthcare, and service robotics. It enables rapid deployment of
robotic systems in tasks such as assembly, surgery, and household chores, enhancing
productivity and safety. For all of these reasons Lfd has gone through an increase
in research in last years, as this chart shows[1].(see Fig 2.1)

4



State of the art

Figure 2.1: Evolution of the research in Lfd [1]

2.1.1 Methods for Acquiring Demonstrations
As described in Fig. 2.2, from Figure 3 in [1], the methods used to acquire
demonstrations are listed below:

• Kinesthetic Teaching: it involves physically guiding the robot through the
desired motions. This method provides precise control over the demonstration
but can be physically demanding for the demonstrator .

• Teleoperation: the human controls the robot remotely, providing demonstra-
tions through a user interface. This method allows for demonstrations in
hazardous environments but may suffer from latency and precision issues .

• Passive Observation: it involves the robot watching the human perform a task
without interaction. This method is less intrusive but may require sophisticated
perception systems to accurately interpret the demonstrations .

• Active and Interactive Demonstrations: it involves the robot engaging with the
human during the demonstration, asking questions, or requesting repetitions
to clarify ambiguities. This interactive approach can enhance the quality of
learning but requires advanced communication capabilities .

In our case, due to the level of difficulty of the task in exam we decided to use
kinesthetic teaching, guiding our robot through 15 demonstration with different
objects.

5



State of the art

Figure 2.2: Demonstration’s acquiring methods [1]

2.1.2 Classification of Learning Methods in Lfd
Policy Learning

Policy learning focuses on mapping states to actions, allowing the robot to determine
the appropriate action in any given state.

• Time-based Policies Time-based policies rely on a fixed sequence of actions,
often used in tasks with strict temporal requirements .

• State-based Policies State-based policies adapt actions based on the current
state, providing flexibility and robustness in dynamic environments .

• Raw Observation-based Policies These policies use raw sensory data to make
decisions, often employing deep learning techniques to process complex inputs
.

Cost or Reward Function Learning

This approach involves learning a cost or reward function that the robot uses to
evaluate the desirability of different actions.

• Trajectory Optimization Trajectory optimization seeks to find the most efficient
path to achieve a task, balancing speed, safety, and energy consumption .

• Inverse Reinforcement Learning (IRL) IRL infers the underlying reward struc-
ture from observed behavior, allowing robots to understand the demonstrator’s
goals and preferences .

Plan Learning

Plan learning involves learning high-level plans or strategies that consist of sequences
or hierarchies of actions.

6



State of the art

• Primitive Sequences This method focuses on learning sequences of basic actions
or primitives to complete tasks .

• Primitive Hierarchies Primitive hierarchies organize these actions into struc-
tured layers, enabling more complex behavior synthesis .

• Multilevel Learning Outcomes Multilevel learning integrates both high-level
plans and low-level actions, providing a comprehensive approach to task
execution.

This classification is taken from Table 2 in the review [1].

Figure 2.3: Classification of learning methods [1]

Following this classification each specific method or algorithm can be considered
to be part of one of the said groups or more than one. In the next paragraph
the most used methods will be briefly discussed, knowing that sometimes in the
literature can be find mixtures of these methods or combinations of them.

2.2 Detailed Techniques in LfD

2.2.1 Probabilistic Approaches
•

• Higher-level Probabilistic Models Higher-level probabilistic models capture
abstract representations of tasks and behaviors, facilitating planning and
decision-making under uncertainty .

• Lower-level Probabilistic Models Lower-level probabilistic models focus on
the fine-grained aspects of task execution, such as motion control and sen-
sory processing, providing robustness to variations in the environment and
execution.

Both GMM and HMM can be considered part of probabilistic models, HMM at
a higher level, GMM at a lower level. Following the classification highlighted in
[2] HMM can be classified as symbolic learning, while GMM as encoding skills at
trajectory level. Both can be considered as statistical learning.

7



State of the art

Gaussian Mixture Models (GMM)

GMMs are probabilistic models that represent the distribution of data points in the
demonstration space. They are useful for capturing the variability in demonstrations
and are widely used in gesture recognition and trajectory modeling. They are used
as clustering methods when a more deterministic method such as k-menans would
be inaccurate in the modeling of a distributed dataset(see Fig.2.4) . Gaussian
mixture regression allows to obtain multivariate values given one of the variables,
so it can be used to predict or generalize a trajectory knowing time, for example.
Pros and cons of this method are here highlighted:

• Pros:

1. Ability to model complex, multivariate data distributions
2. Flexibility in representing different types of demonstrations

• Cons:

1. Computational complexity can be high
2. May require a large amount of data to accurately model distributions.

Hidden Markov Models (HMM)

HMMs are statistical models that represent sequences of observations with hidden
states (see Fig 2.5). They are particularly effective for tasks that involve temporal
dependencies, such as speech recognition and sequential decision-making .

• Pros:

1. Good at handling time series data and temporal patterns
2. Robust to variations in demonstration speed and execution

• Cons:

1. Requires careful tuning of model parameters
2. Can be computationally intensive for long sequences

Dynamic Movement Primitives (DMP)

DMPs provide a framework for representing and generating complex movements
through a combination of learned attractor dynamics and external inputs. They
are widely used for motor skill learning and adaptation in robotics .

8



State of the art

Figure 2.4: GMM

• Pros:

1. Flexibility in encoding various types of movements
2. Ease of generalization and adaptation to new situations

• Cons:

1. Limited expressiveness for highly complex tasks
2. Requires careful design of attractor dynamics

2.2.2 Deep Learning Techniques
Deep learning techniques leverage neural networks to model complex relationships
in data. In LfD, they are used for tasks such as visual recognition, policy learning,

9



State of the art

Figure 2.5: HMM

and end-to-end skill acquisition . Deep learning techniques, such as Convolutional
Neural Networks(CNN), probably represent the future in everything where vision
is included, in Lfd without vision is still not the gold standard.

• Pros:

1. High capability for learning from raw sensory data
2. Potential in discovering intricate patterns and representations

• Cons:

1. Requires large amounts of data and computational resources
2. Can be difficult to interpret and debug learned models
3. It is widely used in computer vision

2.3 Environmental Constraints and Force Data

2.3.1 Role of Environmental Constraints in LfD
Environmental constraints are critical in ensuring that learned behaviors are feasible
and safe in real-world scenarios. They guide the robot to operate within acceptable
limits and avoid hazards. Moreover can act as a guidance in specific tasks where

10



State of the art

they are used to model the trajectory. In literature the implementation of EC is
often based on force sensor’s data.

2.3.2 Incorporating Force Data into Learning
Force data provides essential information about the interaction between the robot
and its environment. Incorporating force data into LfD enables the robot to perform
tasks that require delicate manipulation and adaptation to varying resistance. It
can be crucial in fine tuning the control in particular tasks

Case Studies and Applications

Case studies demonstrate the practical applications of integrating environmental
constraints and force data in LfD. Examples include robotic assembly, surgical
assistance, and household chores, where precise and adaptive behaviors are cru-
cial.By focusing on the constraints imposed by the environment, robots can adapt
learned tasks to new situations with similar constraints, as shown in[3]. Force data
further aids in refining the robot’s actions, ensuring robust execution in contact-rich
tasks.(see Fig 2.6)

11



State of the art

Figure 2.6: Environmental constraints with Soft Scoop Gripper [4]

12



Chapter 3

Materials

This chapter provides a comprehensive overview of the hardware and software
components used in this research. The Franka Emika Panda robot, equipped
with the Soft Scoop Gripper and Gamma F/T sensor, formed the core of the
robotic setup.The experimental set-up was made of a stack of boxes and objects on
top. The software stack, primarily based on ROS, C++, MATLAB, Python and
CoppeliaSim facilitated data acquisition, processing, and model implementation,
enabling the successful execution and learning of complex robotic manipulation
tasks

3.1 Hardware Components

3.1.1 Franka Emika Panda Robot
The robotic arm used in this research is the Franka Emika Panda. This advanced
robotic arm features 7 degrees of freedom, allowing for precise and flexible movement.
It has a payload capacity of up to 3 kg and is equipped with integrated torque
sensors in all joints, which enhance its sensitivity and safety in human-robot
interactions. The Panda robot is known for its high precision making it ideal for
complex manipulation tasks.

Specifications:

• Degrees of Freedom: The Panda robot has 7 degrees of freedom, allowing
for complex and flexible movements.

• Payload Capacity: The robot can handle payloads of up to 3 kg, making it
suitable for a variety of tasks.

• Precision: It offers a repeatability of ±0.1±0.1 mm, ensuring high accuracy
in manipulation tasks.

13



Materials

Figure 3.1: Franka Emika Panda 7 degrees of freedom from [5]

• Joint Range: The range of each joint varies, but collectively they provide a
wide operational workspace.

• Joint Velocity: Maximum joint velocities range from 2.175 rad/s to 2.610
rad/s, depending on the joint.

• Joint Torque: Maximum joint torques range from 87 Nm to 176 Nm,
depending on the joint.

• Weight: The robot arm itself weighs approximately 18 kg, allowing for easy
installation and relocation.

• Interface: The robot supports Ethernet, USB, and other communication
interfaces for integration and control.

Control Mechanisms: The control system of the Franka Emika Panda robot
is sophisticated and designed to ensure precise, smooth, and safe operation.

1. Control Unit: The control unit houses the central processing unit (CPU)
and other electronics that manage the robot’s operations. Key functionalities
include:

• CPU: Acts as the brain of the robot, executing control algorithms and
processing sensor data. It performs calculations, manages tasks, and ensures

14



Materials

real-time responsiveness.

• Communication Interfaces: Includes Ethernet and USB ports for connec-
tivity with external devices and networks.

• Safety Features: Integrated safety protocols ensure safe operation around
humans and in various environments.

2. Torque Sensors: The Panda robot is equipped with torque sensors in all
joints, providing real-time feedback on the forces and torques experienced during
operations. This feedback is crucial for:

• Collision Detection: Ensures the robot can detect and respond to unex-
pected obstacles, enhancing safety.

• Force Control: Allows the robot to perform delicate tasks that require
precise force application.

• Adaptive Control: Enables the robot to adapt its movements based on the
forces it encounters, improving interaction with objects and environments.

3. Control Software: The control software for the Franka Emika Panda robot
is built on the Robot Operating System (ROS), providing a flexible and powerful
platform for developing and executing control algorithms.

• Franka Control Interface (FCI): The FCI is a real-time interface that
allows users to control the robot at a high level of precision. It provides access
to the robot’s state, including joint positions, velocities, torques, and external
forces.

• Motion Generation: The software includes built-in motion generation
capabilities, allowing for smooth and precise trajectory execution.

• Programming: Users can program the robot using various programming
languages supported by ROS, including C++ and Python.

• Integration: The control software can be integrated with external systems
and sensors, enabling complex applications and research experiments.

Role in Experiments: The Franka Emika Panda robot was utilized to perform
demonstrations and collect data for the learning from demonstration (LfD) approach.
It was responsible for executing the sliding and picking tasks, interacting with
various objects, and providing the necessary force and position data through its
sensors.

15



Materials

3.1.2 Soft Scoop Gripper
Description: As outlined in [4], the Soft Scoop Gripper (SSG) is an innovative,
non-anthropomorphic, underactuated robotic gripper. It features two soft-rigid
fingers and a flat surface (referred to as the "scoop") connected to the hand palm via
a flexible hinge. The fingers are driven by a single motor through a tendon-driven
differential system, allowing them to flex simultaneously. The scoop can be actuated
separately by another motor, enabling it to close towards the fingers. This design,
which incorporates the scoop as an integral constraint, is optimized for leveraging
environmental constraints and ensuring secure grasping of objects placed on it.
From a control perspective, the SSG allows for simple commands to open and close
the fingers[6]. The gripper is made from flexible materials that allow it to conform
to the shape of the objects it handles. It has been designed at University of Siena
and developed in collaboration with Istituto Italiano di Tecnologia in Genova.

Figure 3.2: Soft Scoop Gripper from [6]

Integration: The Soft Scoop Gripper was integrated with the Franka Emika
Panda robot to enhance its manipulation capabilities. This integration involved
attaching the gripper to the robot’s end effector and calibrating the system to
ensure precise control over the gripping actions.

3.1.3 Gamma F/T Sensor from Schunk
Description: The Gamma Force/Torque (F/T) sensor from Schunk is a high-
precision sensor that measures the forces and torques exerted during manipulation

16



Materials

Figure 3.3: Gamma Force/Torque (F/T) sensor from [7]

tasks. The technical specifications of the sensor are given below in 3.1

Table 3.1: Gamma F/T Sensor from Schunk Specifications [7]

Specification Value

Measurement Ranges Fx, Fy: ±200 N
Fz: ±250 N
Tx, Ty: ±10 Nm
Tz: ±12 Nm

Resolution Fx, Fy: 0.01 N
Fz: 0.02 N
Tx, Ty: 0.001 Nm
Tz: 0.001 Nm

Overload Capacity Fx, Fy: 300%
Fz: 300%
Tx, Ty: 300%
Tz: 300%

Nonlinearity 0.2% of full scale
Hysteresis 0.2% of full scale
Crosstalk <2%
Sampling Rate Up to 7000 Hz
Operating Temperature Range -10°C to 45°C
Communication Interface Ethernet, EtherCAT
Weight 370 g

Data Acquisition: Sensor data was collected during the demonstrations,
capturing the forces and torques experienced by the gripper. This data was

17



Materials

essential for training the probabilistic models and understanding the interaction
between the gripper and the objects.

3.1.4 Experimental Setup
Environment: The experimental setup consisted of the Franka Emika Panda robot
mounted on a wooden table. At a distance of approximately half a meter, a stack
of objects was placed, composed of three boxes made of plastic or paper. These
boxes acted as environmental constraints. On top of the last box, five different
objects were placed: a book, a clamp, a calculator, a plate, and a wooden block.
These objects were used for performing three demonstrations each, involving sliding
and picking actions. Here below an image of the objects used in demonstrations
and experiments is given. see Fig. 3.4 Objects specifications are summarized in
table 3.2

Table 3.2: Object Dimensions and Weight 3.4

Object Dimensions (cm) Weight (g)

1. Book 19 x 12 x 3 395
2. Notebook 14 x 9 x 2 140
3. Clamp 12 x 9 x 2 52
4. Plate 18 (diameter) 46
5. Wooden Block 14 x 5 x 6 225

Calibration: The calibration process for the robot and sensors involved ensuring
accurate data collection. This included transforming the end effector to the scoop
configuration, rebalancing the robot to handle kinesthetic teaching, and setting up
ROS nodes for data acquisition. In order to handle kinesthetic teaching mode, the
robot has to compensate the gravity to mantain the balance during the movement.

3.2 Software Components

3.2.1 Robot Operating System (ROS)
Description: ROS, an open-source meta-operating system designed specifically for
robots, offers a comprehensive suite of services akin to those found in conventional
operating systems. These services encompass essential functionalities such as hard-
ware abstraction, precise low-level device control, integration of commonly-used
features, efficient inter-process communication through message-passing mecha-
nisms, and streamlined package management capabilities.

18



Materials

1

2

3

4

5

Figure 3.4: Objects used in the experiment.

Additionally, ROS provides a rich ecosystem of tools and libraries tailored for
tasks such as code acquisition, building, writing, and execution across multiple
computing platforms. In terms of communication, ROS supports multiple styles
including synchronous Remote Procedure Call (RPC)-style communication via
services, asynchronous data streaming over topics, and centralized data storage
facilitated by a Parameter Server.[8] Although not inherently designed as a real-time
framework, ROS presents the flexibility to integrate with real-time code, ensuring
synchronization with time-sensitive operations.

The architectural foundation of ROS relies on a decentralized Peer-to-Peer (P2P)

19



Materials

communication model, fostering seamless interaction between distinct nodes. In the
context of ROS, nodes represent individual software entities tasked with specific
functionalities, capable of execution on single or multiple computing platforms
interconnected within a network. This distributed architecture inherently promotes
modularity, scalability, and fault tolerance, critical for the development of complex
robotic systems.

Implementation: ROS was used to control the Franka Emika Panda robot
and manage data flow during the experiments. It facilitated the communication
between the robot, sensors, and control algorithms, ensuring smooth operation and
data acquisition.

3.2.2 MATLAB
MATLAB played a crucial role in data processing and analysis. Its built-in functions
and toolboxes were used extensively for filtering, visualizing data, and implementing
probabilistic models like HMM and GMM.

Key Functions and Toolboxes:

• Signal Processing Toolbox: Used for filtering and preprocessing force data.

• Statistics and Machine Learning Toolbox: Utilized for implementing
GMM and HMM.

• Custom Scripts: Developed for data normalization, transformation, and
trajectory analysis.

Some functions related to HMM and GMM were modified from Calinon’s code [9]

3.2.3 Python
Python was initially used for implementing some of the probabilistic models and
data manipulation due to its extensive libraries and ease of use. However, MATLAB
was preferred for its comprehensive toolboxes and ease of integration with the rest
of the experimental setup.

Key Libraries:

• NumPy: For numerical computations and array manipulations.

• Pandas: For data manipulation and analysis.

• SciPy: For advanced mathematical functions and optimization.

• scikit-learn: Used for preliminary implementations of GMM and HMM.

• Matplotlib: For creating visualizations and plotting data.

20



Materials

3.2.4 CoppeliaSim
CoppeliaSim, formerly known as V-REP, is a versatile robot simulation software
used for developing, testing, and validating the robot’s control algorithms in a
simulated environment. Its powerful simulation capabilities allowed for precise
modeling of the physical interactions and validation of the control strategies before
deploying them on the actual hardware.

Features:

• Customizable Simulation Environment: Allows for precise modeling of
physical properties such as friction, mass, and inertia.

• Scripting Functionality: Embedded Lua scripts for controlling simulations,
implementing control algorithms, and simulating sensor feedback.

• Integration with ROS: Enables seamless control of simulated robots within
CoppeliaSim through ROS.

The software was used in the experimental part, building a reproduction of the real
world environment and deploying simulations of the obtained model to different
objects to evaluate performances before applying it in real world.(See Fig. 4.1)

3.2.5 Data Processing and Storage
Data acquired during the experiments were stored in ROS bag files, which are a
convenient format for recording and replaying ROS message data. The data from
these bag files were then converted to a format suitable for MATLAB and Python
analysis.

Key Processes:

• Data Recording: ROS bag files were used to record demonstration data,
including robot joint states, force/torque sensor readings, and gripper states.

• Data Conversion: Scripts were developed to convert ROS bag files into
MATLAB and Python-friendly formats for further analysis.

3.2.6 Provided MATLAB Code
For various preprocessing steps, data normalization, and probabilistic modeling,
MATLAB code from Calinon and custom implementations were utilized. This
included functions for dynamic time warping (DTW), GMM, HMM, and Gaussian
Mixture Regression (GMR). The main code for training the two models is given in
A.2 and A.1.

21



Chapter 4

Methods

This chapter describes the complete process implemented to develop a robotic
manipulation controller with learning from demonstrations and exploiting environ-
mental constraints. It details the demonstrations acquisition, the preprocessing
of pose and force data, the training of the HMM/GMM model and the testing on
acquired data.

4.1 Setup and Demonstrations

4.1.1 Environmental Setup
The experimental setup for the Learning from Demonstration (LfD) approach was
designed to facilitate the demonstration and data acquisition process. The setup
consisted of the Franka Emika Panda robotic arm, which was securely attached to
a sturdy wooden table to ensure stability during the demonstrations. The robot
was positioned at a fixed location on the table, with its base at a distance of
approximately half a meter from the stack of objects used for the demonstrations.

The stack of objects served as environmental constraints, providing a structured
and consistent context for the robot’s task execution. This stack was composed of
three boxes made of either plastic or paper, each of varying dimensions. The boxes
were carefully selected and arranged to create a stable and repeatable environment
for the demonstrations. The height of the stack was approximately 40 cm from
the surface of the table, ensuring that the objects placed on top were within the
robot’s reach.

On top of the stacked boxes, five different objects were positioned sequentially
for the demonstrations. These objects were chosen to represent a variety of shapes
and sizes, adding complexity and diversity to the task. The objects included a
book, a clamp, a calculator, a plate, and a wooden block. Each object was placed

22



Methods

on the stack one at a time, and three demonstrations were performed for each
object, resulting in a total of 15 demonstrations.

The image below provides a visual representation of the demonstration setup,
reproduced in CoppeliaSim software, highlighting the arrangement of the Franka
Emika Panda robot, the stack of boxes, and the objects used for the demonstrations.
(see Fig 4.1) By maintaining a consistent and controlled environment, this setup

Figure 4.1: Environmental set up in Coppelia Sim

allowed for precise data acquisition, crucial for the subsequent processing and
modeling steps in the LfD approach.

4.1.2 Robotic System Configuration
As shown in Fig. 4.1 the Franka Emika Panda robotic arm is used to perform
demonstrations with the Gamma F/T Schunk sensor attached and the Soft Scoop
Gripper as end effector. After setting the hardware up, the software configuration is
changed using the integrated Franka API’s to handle the different balance and the
new end effector position. The ROS nodes are created to control the robot, acquire
data from it and from the force sensor. Finally the robotic arm is put in Kinesthetic
teaching mode to perform demonstrations with the robot only supporting its own
weight throughout the trajectory imposed by the teacher. As can be seen in Fig.4.2
the robot is set up with the force sensor and the new end effector, but the reference
frames are not aligned, so there is the need to apply some transformations as
described in subsection 4.2.2 .

23



Methods

Figure 4.2: Robot set up and reference frames

4.1.3 Demonstration Procedure
The demonstrations were performed using a method known as kinesthetic teaching.
This technique involves a human operator physically guiding the robot’s arm to
execute the desired task, allowing for precise recording of the motion trajectories
and force data. The Franka Emika Panda robotic arm, equipped with a force
sensor and a Soft Scoop Gripper, was utilized to perform these demonstrations.
(see Fig 4.3) During each demonstration, the following sequence of motions was
performed:

1. Approach: The human operator moved the robot’s arm towards the stack of
objects. The arm was positioned so that the Soft Scoop Gripper was aligned
with the topmost object on the stack.

2. Positioning: The operator carefully positioned the gripper under the object

24



Methods

Figure 4.3: Example of Kinesthetic Teaching from [10]

intended for picking. This involved moving the arm downwards to slide the
scoop underneath the object, ensuring that the scoop was correctly oriented
to support the object from below.

3. Sliding Motion: The operator guided the robot to execute a sliding motion.
This involved moving the scoop horizontally while maintaining contact with
the bottom of the object. The purpose of this motion was to exploit the
environmental constraints provided by the stack and facilitate the picking
action.

4. Gripping: Once the object was securely supported by the scoop, the operator
closed the fingers of the Soft Scoop Gripper. This action secured the object,
making it ready for lifting.

5. Lifting: The operator then moved the robot’s arm upwards, lifting the object
from the stack. This final motion completed the demonstration, and the robot
held the object above the stack

6. Stopping the Demonstration: After lifting the object, the demonstration was
stopped. The data collection system recorded the entire sequence of motions,
capturing the necessary information for each phase of the task.

A total of 15 demonstrations were performed, with three demonstrations conducted
for each of the five objects (a book, a clamp, a calculator, a plate, and a wooden
block). By utilizing kinesthetic teaching, the demonstrations captured the intricate
details of the task execution, providing a rich dataset for the Learning from
Demonstration (LfD) approach.

25



Methods

4.2 Data Collection and Preprocessing
During these demonstrations, data is collected at a different frequency for end
effector pose and forces from the sensor. The collected data was stored in bag
files, a format commonly used in robotic systems for recording time-stamped data
streams. These files were subsequently processed to make the data accessible in
MATLAB for further analysis and modeling.

4.2.1 Data Acquisition
The data collected can be divided in:

• Pose Data: The position and orientation of the end effector (the Soft Scoop
Gripper) were recorded throughout the demonstration. This included both
Cartesian coordinates and quaternions, later converted to Euler angles for
better interpretability.

• Force Data: Forces and torques experienced by the gripper were recorded
using the attached force sensor. This data was crucial for understanding the
interaction between the gripper and the objects, especially during the sliding
and lifting motions.

• Joints data: the joint angles during the trajectory is collected, but not used in
the following process.

As said before, pose data and force sensor data are sampled at difference frequencies,
in order to put them on a common frequency, a synchronization function is applied
before saving files in Matlab. After applying the synchronization we obtain a
file .BAG for each of the three types of data, uniting positions and quaternions,
representing orientation, in a single file. In this files data are structured the
following way:

• Pose is composed of 8 values, the first being the time instant, the following
are positions in x,y,z and the quaternion.

• Force is composed of 7 values, the first being the time instant, and the
following are forces along x,y,z and torques around x,y,z.

4.2.2 Data Transformation
The data collected is referenced to different reference frames. The pose is referenced
to the world reference frame, but it is the one of the old end effector of the robot.
The forces and torques are referenced to the sensor’s reference frame. (see Fig. 4.2)
In order to put all the data to the same reference frame, the world in this case, we

26



Methods

need to apply some transformation to our data. The decision is to bring the poses
and the forces to the scoop of the gripper, in the world reference frame, in this
first processing part. The transformation applied to the poses is shown here using
Rotation matrices, the same thing could be done using quaternions for the rotation
part avoiding transformation from quaternions to rotation matrix and vice versa.
In this case the transformation matrix, composed by 4*4 elements, is made by the
rotation 3*3 matrix from the end effector to the scoop, the translation along x,y,z
of the world and the last row is [0,0,0,1].

Transformation =


Rep11 Rep12 Rep13 xt
Rep21 Rep22 Rep23 yt
Rep31 Rep32 Rep33 zt

0 0 0 1

 (4.1)

The transformation matrix is applied to the pose of the end effector matrix,
structured in the same way. The product is show below, the result is the transformed
matrix pose in the scoop gripper, then the rotation matrix is brought back to
quaternions and stored in each row composing the 7 values of the pose

P′ = P ∗ Transformation (4.2)

In the given equation ’*’ represents matrix product. The forces and torques data
were referenced to the sensor’s reference frame. They are transformed to the scoop
gripper to simulate the feeling of the forces and torques on the real end effector.

RotationEP =

Rep11 Rep12 Rep13
Rep21 Rep22 Rep23
Rep31 Rep32 Rep33

 (4.3)

In this case we only need the rotation matrix coming from quaternion and applying
it to forces and torques in the following way:

f ′ = RotationEP ∗ f (4.4)

t′ = RotationEP ∗ t (4.5)

4.2.3 Data Cleaning and Filtering
After acquiring the data from the 15 demonstrations and transforming them, the
first step was to load the data in a structure of 15 cells and visualize it to understand
its behavior. The dataset consisted of position and force data recorded during each
demonstration. Below, I describe the detailed process of data cleaning and filtering.

27



Methods

• Initial Data Visualization: after loading the data, the positions and forces
were plotted to inspect their behavior. This initial visualization revealed
significant noise in the force data, as shown in Fig. 4.4, which necessitated
further processing to ensure the quality of the dataset.

• Noise Reduction with Low Pass Filter: given the noisy nature of the force
data, a low pass filter was applied to smooth the signals. The low pass filter
was chosen to retain the essential features of the force data while eliminating
high-frequency noise. The filtering process was performed using the following
parameters: cutoff frequency of 50 Hz, determined based on the frequency
content of the force data, filter type Butterworth of order 4 was used for its
smooth frequency response.
The effect of the low pass filter is illustrated in Fig.4.4, where both the original
and filtered force data are shown.

Figure 4.4: Comparison of force data before and after applying the low pass filter.
Force along x

• Outlier Detection and Handling:
to ensure the dataset’s integrity, outlier detection was performed using box
plots with five-number statistics (minimum, first quartile, median, third
quartile, maximum), plotting them for each feature and obtaining a composite
score for each demonstration. This analysis helped identify anomalies in the
data, such as unusually high or low values that could skew the results. Box
plots were used to visualize the distribution of the force and position data,
highlighting any potential outliers. (see Fig.4.5 During this analysis, one

28



Methods

Figure 4.5: Box plots for each feature

demonstration (the 10th demonstration) was found to be excessively noisy,
maybe some mistake was done during the teaching phase, and was removed
from the dataset. Additionally, three other demonstrations were identified as
outliers, analysing box plots for each feature and a global composite score for
each demonstration as shown in Fig.4.6. Evaluating box plots for each feature

Figure 4.6: Box plots for each demonstration

and the composite for each demonstration the decision was to consider outliers

29



Methods

the following demonstrations: 1, the first on the Book object, 4, the first on
the Calculator object, 7, the first on the Clamp object and 15 the last on
the Wooden Block object. This was predictable, since the first demonstration
performed on each object was the one where the teacher was inexperienced.
To balance the dataset, two of these outliers were included in the training set,
while the third was placed in the test set.

• Data Splitting: Training and Test Sets:

As anticipated before, the cleaned dataset is split into a training set and a test
set. The training set comprised 11 demonstrations, while the test set contained
the remaining 3 demonstrations. This division ensured that the model could be
trained effectively and then tested on a separate subset of the data to evaluate its
performance and adjust model’s parameters. The choice of where to put outliers
was randomic, but proportionate to the size of the two sets, which was decided to
be around 70/30 between training set and test set The result was the following:

• Training Set composed by 11 demonstrations (including 3 outliers, demonstra-
tion 1,7 and 15)

• Test Set composed by 3 demonstrations (including 1 outlier, demonstration 4)

This approach of splitting the data allowed for robust training and testing of the
model, ensuring that it could generalize well to new, unseen data.

In summary, the data cleaning and filtering process involved loading and visual-
izing the data, applying a low pass filter to reduce noise, detecting and handling
outliers, and splitting the dataset into training and test sets. These steps were
crucial in preparing a high-quality dataset for the subsequent modeling and analysis.

4.2.4 Data Alignment and Normalization
• Quaternion to Euler Angle Conversion: In robotic applications, quater-

nions are often used to represent orientations due to their robustness against
gimbal lock and instability. However, for interpretability and visualization,
converting quaternions to Euler angles is advantageous. Euler angles provide
a more intuitive understanding of rotational movements around the axes.
Quaternions consist of four components: qw, qx, qy, and qz representing the
imaginary part and the three real components of the axes around which the
rotation happens. The conversion from quaternions to Euler angles (roll, pitch,
and yaw) involves several mathematical operations. In order to perform the
transformation in matlab the built in function quat2eul and its inverse eul2quat
are used. Euler angles can be represented both as radians and degrees without
significant changes in interpretation. In general Euler angles can suffer from

30



Methods

instability in training and in particular movements, but are widely used, as is
shown in [9].

• Relativization Respect to Contact Time for poses: To ensure that train-
ing is done relatively to the contact time, in order to improve generalization of
the model, demonstrations are relativized based on the first peak in the torque
around x (Tx).Tx is the most representative component of the contact moment
during the trajectory. The process involves identifying Contact time through
the matlab function findpeaks, saving the indexes and then subtracting the
relative value to each demonstration for positions, while applying the inverse
quaternion for orientation.(see Fig.4.7) This way the results is that we have a
new relative reference frame corresponding to the one of first contact with the
stack.

Figure 4.7: First peak Tx

• Normalization:
Normalization is a crucial preprocessing step to ensure that different features
contribute equally to the learning process. The normalization technique choice
could be different depending on what the main requirements are. In this case
the priorities are to maintain signs of poses and forces, to keep the range
between demonstrations, to have a better generalization differentiating objects
and to retain the different variances in poses and forces features. To satisfy
these requirements, the decision was the following:

31



Methods

– Force sensor data: a Max-Abs scaling technique was used,to scale values
in [-1,1] range, considering all the components of forces and torques and
all the demonstrations data.

Fscaled = F
max(|F|) (4.6)

– Pose data: a Max-abs scaling in [-1,1] range was used, separately for
positions and euler angles in order to maintain reasonable values and
considering all components and demonstrations.

Xscaled = X
max(|X|) (4.7)

• Dynamic Time Warping (DTW): The Dynamic Time Warping (DTW)
algorithm is highly regarded for its efficiency as a time-series similarity measure.
It mitigates the impacts of temporal shifting and distortion by enabling
"elastic" alignment of time series, as described in [11]. It is used as a metric to
understand the distortion between signals, but can also be applied with some
modifications in order to align time series signals. In robotics field, especially
in Lfd, it is used to realign similar signals of trajectories and create a common
time vector. This is what is used in [12], before training the GMM/HMM
model and in [13] to align demonstrations. In the studied case DTW is used
to align demonstrations, with different lengths and time vectors, and create a
common time vector based on a reference trajectory. The goal is to obtain
demonstrations that have the main events around the same time, and obtaining
the same length for all trials. A similar approach has been used in [12] where
the reference trajectory is chosen based on the highest log-likelihood: the log
likelihood L for a set of observations X = {x1, x2, . . . , xT } given a model with
parameters θ is calculated as:

L(θ) =
TØ

t=1
logP (xt|θ)

where P (xt|θ) is the probability of observing xt given the model parameters θ.

In our case the reference trajectory was chosen based on the experience of the teacher
viewing the plotted data understanding the most representative demonstration,
which was acknowledged to be the 8 of the training set. Its length is of 440 elements
and its time vector is taken as the common one. An example of DTW algorithm is
presented below:

32



Methods

Figure 4.8: Example of DTW alignment between two time series. The optimal
path minimizes the total alignment cost.

1. Initialization: Given two time seriesQ = {q1, q2, . . . , qn} and C = {c1, c2, . . . , cm},
create an n×m cost matrix D where D(i, j) represents the distance between
qi and cj.

2. Cost Calculation: Compute the cumulative cost D(i, j) using the following
recursive formula:

D(i, j) = d(qi, cj) + min{D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)}

where d(qi, cj) is the distance between the points qi and cj.

3. Boundary Conditions: Initialize the first row and first column of the cost
matrix:

D(1, 1) = d(q1, c1)

D(i, 1) = d(qi, c1) +D(i− 1, 1) for i = 2, 3, . . . , n

D(1, j) = d(q1, cj) +D(1, j − 1) for j = 2, 3, . . . ,m

4. Optimal Path: The optimal warping path is found by tracing back from
D(n,m) to D(1, 1), following the minimum cost at each step:

path = {(n,m)}∪{(i, j) | (i, j) = arg min{D(i−1, j), D(i, j−1), D(i−1, j−1)}}

33



Methods

5. Output: The total cost of the optimal alignment is given by D(n,m). The
aligned sequences can be derived by following the optimal path.

In Fig.4.8 an example of the results of DTW alignment on two time series is
presented.

In our case the DTW is applied using both poses and forces data, considering
components along y,z for forces, torques around x and the whole pose.The DTW
produces warping paths that align key events, but doesn’t necessarily fit all tra-
jectories on a common length. For this reason, along with the alignment of the
demonstrations based on the reference, a cubic interpolation is implemented to get
all trials on the same time vector of 440 elements. A comparison between signals
before DTW and interpolation and after is shown below. (see Fig.4.9)

Figure 4.9: Signals before and after DTW and interpolation

As we can see, all the demonstrations are now equally long and aligned to the
reference one, represented by the black signal.(see Fig.4.9)

4.2.5 Data Structure
After all the preprocessing phase the data is structured in a convenient way to be
used in the following training. Since forces data and poses are used separately, the
two datasets are split. Moreover the dataset is divided in Training Set and Test
Set following the previously described outlier management, obtaining this way four
matlab (.mat) files containing 3D matrices: Training Set Poses, Training Set Forces,
Test Set Poses, Test Set Forces and the common time vector. The dimensions are
presented below in Table 4.1.

34



Methods

Samples Features Demonstrations
Training Set Poses 440 6 11
Training Set Forces 440 6 11
Test Set Poses 440 6 3
Test Set Forces 440 6 3

Table 4.1: Dataset Information for Training and Test Sets

4.3 Probabilistic Modeling

Probabilistic modeling describes a group of algorithms and techniques based on
probability and statistics, used in a lot of different fields. As explained in [14]prob-
abilistic robotics is a new and growing area in robotics, concerned with perception
and control in the face of uncertainty. Reality is not deterministic in the majority
of cases, this means that if we want to model real world problems it is a good
idea to treat them in a stochastic way, using probability. In [15] Thrun says:"The
ultimate goal of robotics is to build robots that do the right thing. I conjecture
that a robot that takes its own uncertainty into account when selecting actions
will be superior to one that does not". So this is why the choice in this study
is to apply probabilistic modeling to our learning from demonstration approach.
Analysing literature a lot of research has been done in the field of Lfd, trying
new approaches like Deep Learning techniques, but still in order to guarantee
high robustness to environmental changes, adaptation to real world and a good
interpretability, models like GMM/GMR, DMP (Dinamic Movement Primitives)
and HMM are still the gold standard as shown in [16] which is pretty recent study.
Moreover Deep Learning techniques such as Convolutional Neural Networks (CNN)
and Long Short Term Memory (LSTM) are starting to be used a lot, but
in situations where robotics vision is implemented, which is not our case.(See[17]
and [18]) In order to implement probabilistic modeling and exploit environmental
constraint, the decision was to use two different models, one for an high level
control and one for a low level control. A similar approach has been used in [19],in
[12] and in [20].(see Fig.4.10) Specifically the idea is to implement an HMM to
divide trajectories in 3 primitives (approach,sliding,lifting up) based on the force
sensor data, exploiting environmental constraints. After implementing the HMM,
three different GMMs are trained, one for each primitive, modeling poses based
on time.The three GMMs models are concatenated to smooth transitions between
them following the approach used by Calinon in [21]. In the end the trajectory
is predicted through GMR giving time as input, switching primitives based on
the forces felt by the scoop and controlled by HMM. A detailed description of the
process and models is given below.

35



Methods

Figure 4.10: Example of Probabilistic modeling in Lfd from [19]

4.3.1 High-Level Control with HMM
Primitive Division

Before training models, trajectories are divided in three main primitives based
on forces and torques data. Since the movement can be symbolically modeled
as a sequence of primitive movements, the used approach is similar to the one
implemented in [22] and [23]. In our case based on experience and plots of data,
the primitives chosen are three:

1. approach It represents the first part of the trajectory where the robots
approaches the stack of objects and forces are near zero in this phase

2. contact and sliding this is the crucial phase when the scoop gets in contact
with the stack and starts feeling forces and torques from the environment. The
sliding phase under the object happens after contact and should be repeated if
the scoop doesn’t fit the gap between the objects which is a pretty challenging
task to perform.

3. lifting up This is the final part where the robot picks up the object, closes
the grip and lifts up the object

Symbolically this sequence of primitives can be described as a graph, and the
transitions can be modeled with an HMM. In [23] this transitions were modeled
with a GMM or Support Vector Machines(SVM). Our approach is using an HMM as
a classifier to predict primitives based on forces exploiting environmental constraints.
This means that from a symbolic modeling we have to translate the transitions into
a technical and measurable form. The reason to use forces to classify the primitive
is that our sensor is really sensitive, robust and interpretable in showing transitions
between states. As can be understood by the Fig. 4.11,representing force along y

36



Methods

and torque around x, the end of the first primitive can be approximated as the first
high peak in force or negative peak in torque and it is reasonable because when
the scoop touches the stack there is a sudden impulse of vertical force and torque
around x.(see Fig.4.11)

Figure 4.11: Force y and Torque x

For this reason the approach is to find the indices of that peak and label the
elements before that as primitive 1. Since poses have been already relativized to
the contact moment we can also take the element with pose’s components equal to
zero.

In order to find the moment of detachment from the stack and identify the end
of primitive 2 a zero crossing technique is used, following the approach presented
in [24]. The component used to find the zero crossing can be either force along y
or torque around x, which represent almost the same events. In this case the zero
crossing from negative to positive values of torque around x is taken as reference of
the end of primitive 2. From the next element to the end of each demonstration is
considered primitive 3. (see Fig.4.11)

At the end of this process we have a matrix of integer 1,2 or 3 for each demon-
stration representing the three different primitives, which then will become the
HMM states. The length of each primitive is different for each demonstration so
this has to be addressed in the following steps.

HMM Training

A Hidden Markov Model (HMM) is a statistical framework used to describe a system
that progresses through a series of hidden states over time. It is commonly applied

37



Methods

in sequence analysis, where the system is presumed to follow a Markov process
with states that are not directly observable. As explained in [25], considering a
sequence of state variables q1, q2, ..., qi, a Markov model embodies the Markov
assumption on the probabilities of this sequence: that when predicting the future,
the past doesn’t matter, only the present. Mathematically speaking, the Markov
Assumption can be written this way:

P (qi = a | q1 . . . qi−1) = P (qi = a | qi−1)

So each following state is only based on the present state and not on the history of
the whole process, which can be applied to model different fields.

An HMM is characterized by the following components:

• States (S): The set of hidden states the model can be in. These states are
not directly observable.

• Observations (O): The set of observable symbols that can be emitted from
the states.

• Transition Probabilities (T): The probabilities of transitioning from one
state to another.

• Emission Probabilities (E): The probabilities of observing a particular
symbol from a state.

• Initial State Probabilities (pi): The probabilities of starting in each state.

Figure 4.12: 3 states HMM example

38



Methods

In Fig. 4.12 an example of a 3 states HMM graph is shown. It is really similar to the
model used in this study, but the observation in our case are not discrete, they are
continuous, so they have to be modeled with a Probability Density Function(PDF),
such as Gaussian distributions. A continuous Hidden Markov Model is an HMM
where there is no discrete observation emitted, but continuous values. This kind of
model is used in [26] and in [27] where if the observations are modeled as Gaussian
distributions, given that data fit this distribution, is called Gaussian HMM. An
example of the model is given below in Fig. 4.13. In our case the states are the

Figure 4.13: 3 states HMM continuous Gaussian example

primitives, while observations are forces, the emission probabilities represent the
probability of that primitive to produce that value of force. When a Gaussian
HMM has to be modeled the parameters to be set are the number of Gaussians used
to code data,priors probabilities,transition probability matrix, emission probability
matrix, means and covariances of gaussians. There are different way to set these
parameters as can be seen in [28]:

• random

• uniform

39



Methods

• left-right

The initialization of matrices affects relatively the model since with Expectation
Maximization algorithm it is possible that convergence happens to the same values.
On the other hand the number of Gaussians and the stopping criteria can change
the results in a significant way. This is why the model was trained with different
combinations of this parameters and tested on both training set and test set to
evaluate performance and fine tune them. After trying different values and testing
them the decision was to use the model with 3 Gaussians per state. The table with
the performances on the different parameters will be shown in the next chapter. In
order to get the HMM model the approach is to train an HMM model with the
Baum-Welch Algorithm, which is an iterative Expectation Maximization algorithm
explained below,for each demonstration and finally choosing the one with the
highest log-likelihood. (See equation 4.8)

40



Methods

Algorithm 1 Baum-Welch Algorithm
1: Initialize the HMM parameters: transition probabilities A, emission probabili-

ties B, and initial state distribution π.
2: repeat
3: E-step:
4: Compute the forward probabilities:

αt(i) = P (O1:t, qt = Si|λ)

5: Compute the backward probabilities:

βt(i) = P (Ot+1:T |qt = Si, λ)

6: M-step:
7: Re-estimate the transition probabilities:

Âij =
qT −1

t=1 ξt(i, j)qT −1
t=1 γt(i)

8: Re-estimate the emission probabilities:

B̂j(k) =
qT

t=1 γt(j) · I(Ot = Vk)qT
t=1 γt(j)

9: Re-estimate the initial state distribution:

π̂i = γ1(i)

10: until Convergence

Here’s the formula for the log-likelihood used in training the HMM:

logP (O|λ) =
TØ

t=1
log

A
NØ

i=1
αt(i)

B
(4.8)

In order:

1. Loading Data: The data, including force and pose data, is loaded.

2. Standardization: Force data is standardized to have zero mean and unit
variance to fit Gaussian distribution.

3. Dimension Reduction: The number of force components used can be
adjusted (1, 2, or 3). Data is reduced accordingly.

41



Methods

4. HMM Initialization: Initial parameters for the HMM are set, including
transition probabilities, prior probabilities, means, covariances, and mixture
matrix.

5. HMM Training: The continuous HMM is trained using the Baum-Welch
algorithm with regularization.

6. Model Selection: The best HMM model is selected based on the highest
log-likelihood.

7. Evaluation: The model is evaluated on both training and test sets. Accuracy
is calculated based on the predicted states compared to actual states.

8. Prediction: The Viterbi algorithm is used to predict the sequence of states
for given observations.

Force and torque data are crucial for identifying the transitions between primitives.
These physical interactions with the environment provided key indicators of state
changes, essential for accurate segmentation and modeling of the movement. More
specifically two components of forces and torques are used: force along y and torque
around x.

In our case the choice was between training the model in a supervised way using
the labels of primitives we calculated before, improving accuracy but losing in
generalization and robustness to perturbations or training with the unsupervised
Baum Welch algorithm losing some accuracy but gaining robustness. In our case
the choice is to train with the Baum Welch algorithm applying boundary and
initial conditions based on the known primitives. In order to classify the primitive
the Viterbi Algorithm is used as shown in [28]. The Viterbi Algorithm is used
to estimate best state sequence from observations. It is widely used in various
fields such as speech recognition, bioinformatics, and natural language processing.
As said in [29]:"The algorithm is based on the calculation of a distance measure
between the received signal at time ti and all paths in the trellis diagram that
arrive in every possible state at that time ti".

The algorithm is given below.
Viterbi Algorithm
Initialization:

δ1(i) = πibi(O1) ∀ 1 ≤ i ≤ N (4.9)

Recursion:

δt(j) = max
i

[δt−1(i)aij] bj(Ot) ∀ 2 ≤ t ≤ T, 1 ≤ j ≤ N (4.10)

ψt(j) = arg max
i

[δt−1(i)aij] ∀ 2 ≤ t ≤ T, 1 ≤ j ≤ N (4.11)

42



Methods

Termination:
P ∗ = max

i
δT (i) (4.12)

q∗
T = arg max

i
δT (i) (4.13)

Path Backtracking:

q∗
t = ψt+1(q∗

t+1), t = T − 1, T − 2, . . . , 1 (4.14)

This first part of probabilistic modeling was evaluated on training and test set data
before training the GMM.

4.3.2 Low-Level Control with GMM/GMR
The low-level control of the robotic system is implemented using Gaussian Mixture
Models (GMM) and Gaussian Mixture Regression (GMR). This approach allows
for the generalization of the end-effector’s pose based on the temporal progression
of the task, as described in different articles such as [30],[9],[12] and a very recent
study [31]. Below is a detailed explanation of the methodology.

Gaussian Mixture Models

Gaussian Mixture Models (GMM) are a powerful probabilistic tool used in various
fields such as statistics, machine learning, and robotics. A GMM is a parametric
probability density function represented as a weighted sum of Gaussian component
densities, as explained in [32]. This model is particularly useful for representing data
that is assumed to be generated from a mixture of several Gaussian distributions
with unknown parameters.A GMM is defined as follows:

p(x|λ) =
KØ

i=1
πiN (x|µi,Σi) (4.15)

where:

• x is a D-dimensional continuous-valued data vector (i.e., measurement or
features).

• K is the number of Gaussian components.

• Pi is the mixing coefficient for the i-th Gaussian component, with

KØ
i=1

πi = 1 and 0 ≤ πi ≤ 1 (4.16)

.

43



Methods

•
N(x | µi,Σi) (4.17)

is the Gaussian density function with mean vectorµi and covariance matrix
Σi.

Expectation-Maximization (EM) Algorithm

The parameters of a GMM, λ = {πi, µi,Σi}, are typically estimated using the
Expectation-Maximization (EM) algorithm. The EM algorithm is an iterative
method to find maximum likelihood estimates of parameters in probabilistic models,
where the model depends on unobserved latent variables.[33]

1. Initialization: Initialize the parameters {πi, µi,Σi}.

2. Expectation Step (E-step): Calculate the responsibility yik which is the
probability that the k-th component generated xi.

γik = πkN(xi | µk,Σk)qK
j=1 πjN(xi | µj,Σj)

(4.18)

3. Maximization Step (M-step): Update the parameters {πi, µi,Σi}.

πk = 1
N

NØ
i=1

γik (4.19)

µk =
qN

i=1 γikxiqN
i=1 γik

(4.20)

Σk =
qN

i=1 γik(xi − µk)(xi − µk)TqN
i=1 γik

(4.21)

These steps are repeated until the parameters converge.

Applications of GMM

GMMs are widely used in:
• Clustering: Identifying subgroups within a dataset.

• Density Estimation: Estimating the probability density function of the
dataset.

• Pattern Recognition: Identifying patterns and classifying data points.
GMMs have proven effective in applications such as speech recognition [34],

image processing [35], and biometrics [36].

44



Methods

Gaussian Mixture Regression (GMR)

Gaussian Mixture Regression (GMR) is an extension of GMM used for regression
tasks. GMR leverages the probabilistic framework of GMM to perform regression,
enabling it to model complex, nonlinear relationships between variables.

Mathematical Formulation

Given a GMM trained on the joint distribution of input and output variables,
GMR estimates the conditional distribution of the output variables given the input
variables.

The conditional mean and covariance are given by:

µy|x =
KØ

k=1
hk(x)

1
µk,y + Σk,yx(Σk,xx)−1(x− µk,x)

2
(4.22)

Σy|x =
KØ

k=1
hk(x)

1
Σk,yy − Σk,yx(Σk,xx)−1Σk,xy

2
(4.23)

hk(x) = πkN(x|µk,x,Σk,xx)qK
j=1 πjN(x|µj,x,Σj,xx)

(4.24)

where:

• µk,x, µk,y are the means of the k-th Gaussian component for the x and y
variables respectively.

• Σk,xx is the covariance matrix of the x variables for the k-th Gaussian compo-
nent.

• Σk,yy is the covariance matrix of the y variables for the k-th Gaussian compo-
nent.

• Σk,xy is the cross-covariance matrix between the x and y variables for the k-th
Gaussian component.

• Σk,yx is the transpose of Σk,xy.

Applications of GMR

GMR is particularly useful in robotics for tasks such as:

• Trajectory Learning and Reproduction: Learning and reproducing tra-
jectories from demonstration [37] [38] [31]

• Adaptive Control: Adapting robot control strategies based on sensory
feedback [39]

45



Methods

Training of GMM/GMR model

In this section, a Gaussian Mixture Model (GMM) is trained for each primitive of
the task to model the pose of the end effector at a low level including time vector.
This means that our approach can be classified as Time Dependent. The GMMs
were trained using the Expectation-Maximization (EM) algorithm(Baum-Welch),
and their performance was evaluated using the Bayesian Information Criterion
(BIC). Based on the BIC, the optimal number of Gaussian components for each
GMM was selected. After training the GMMs, we used Gaussian Mixture Regression
(GMR) to generalize the trajectories through Viterbi algorithm, providing time
as input to predict the end-effector pose. The GMM training process is based on
Calinon’s code with some modifications. [40]

1. Initialization and Training:

• Initialization:The GMM parameters were initialized using K-means clus-
tering as in [40]. For each primitive, we initialized the GMM with a
different number of Gaussian components ranging from 3 to 15, to better
evaluate the distributions of poses data

• Expectation-Maximization (EM) Algorithm: The EM algorithm iteratively
refines the GMM parameters by alternating between the Expectation (E)
step and the Maximization (M) step until convergence.

2. Evaluation and Selection:

• Bayesian Information Criterion (BIC):BIC was used to evaluate the
models and select the optimal number of Gaussian components. BIC
balances model fit and complexity, penalizing the number of parameters
to avoid overfitting.The BIC for a model is defined as:

BIC = −2 log(L) + p log(N) (4.25)

where L is the likelihood of the model, p is the number of parameters
in the model, N is the number of data points. The likelihood LL of the
GMM is given by:

L =
NÙ

i=1

KØ
k=1

πkN (xi | µk,Σk). (4.26)

Where N is the number of data points.
K is the number of Gaussian components.
πk is the weight of the k-th component.
N(xi | µk,Σk) is the Gaussian distribution with mean µk and covariance
matrix Σk. During training a plot of the evolution of BIC is produced to

46



Methods

understand which number of Gaussian gives the lowest value, so it is the
best in modeling data without overfitting. Here we give an example of
the obtained plot in Fig. 4.14:

Figure 4.14: Example of BIC evolution

• Expectation-Maximization (EM) Algorithm:The EM algorithm iteratively
updates the parameters of the GMM until convergence. The Baum-Welch
algorithm is used with a convergence tolerance of 10−12 and different
maximum iterations values. The 3 different GMMs are plotted on top
of the position values to view them following Calinon approach [9]. The
result of the models are shown here for the 10 number of Gaussian’s
case.(see Fig.4.15)

Gaussian Mixture Regression (GMR)

GMR uses the trained GMM to predict the end-effector pose given a time input.
The algorithm used as in [40] is Viterbi algorithm explained before. The input
we give to GMR is the time vector for each state, making all start from zero.
Since each primitive has different lengths and the division is different for each
demonstration, resampling to the length of the reference demonstration is applied.
This means that each state is transformed to make all demonstrations long as the 8
demonstration: 89 elements for the first state, 172 for the second state, 179 for the
third state. This is needed to train the models without errors in matlab functions.
After regression the three predicted trajectory are analysed comparing them to the

47



Methods

Figure 4.15: GMMs plot

actual trajectories for each state and the Mean Squared Error(MSE) is calculated
to understand the performances. An example of positions obtained for each state is
given below in Fig. 4.16. As can be seen the positions are predicted well giving an
average behaviour compared to the actual trajectories for each state. The problem
comes when we concatenate the states to obtain the whole trajectory since the
concatenation creates discontinuities both in positions and Euler angles. Here
the concatenated result for Euler angles is shown, since it is the orientation the
one with higher discontinuity which would have caused difficult movements of the
robot. In order to solve this issue the concatenation between GMMs is implemented
following the Calinon’s approach in [26] and [21]. This way a unique model with
smooth transitions is generated managing to obtain smooth trajectories.

Combination of the GMMs models

This approach ensures smooth transitions between the primitives and provides a
continuous representation of the task. The combination process is composed by
the following passages:

1. Initialization:

• Load the pre-trained GMMs for each primitive.
• Concatenate the GMM parameters (priors, means, and covariances) to

form a single model.

2. Concatenation:

• The combined model’s priors are computed by concatenating the priors
of each individual model and normalizing them.

48



Methods

Figure 4.16: state 1 positions example

Figure 4.17: state 2 positions example

Figure 4.18: state 3 trajectories example

• The means and covariances are concatenated directly since they represent
the mixture components.

3. Generating the Time Vector:A unified time vector is generated to represent
the entire trajectory, from the start of the approach to the end of the picking.

4. Gaussian Mixture Regression (GMR):The combined GMM model is

49



Methods

Figure 4.19: Euler angles plots

used in GMR to predict the end-effector pose given the unified time vector.

The combined GMM model’s priors, means, and covariances are defined as follows:

1. Combined Priors:
π = 1

3(π1, π2, π3) (4.27)

2. Combined Means:
µ = (µ1, µ2, µ3) (4.28)

3. Combined Covariances:

Σ = concat(Σ1,Σ2,Σ3) (4.29)

4. Gaussian Mixture Regression (GMR):

µy|x =
KØ

k=1
hk(x)(µky + ΣkyxΣ−1

kxx(x− µkx)) (4.30)

Σy|x =
KØ

k=1
hk(x)(Σkyy − ΣkyxΣ−1

kxxΣkxy) (4.31)

hk(x) = πkN (x | µkx,Σkxx)qK
j=1 πjN (x | µjx,Σjxx)

(4.32)

50



Methods

Figure 4.20: Predicted Euler angles combined

Figure 4.21: Predicted positions combined

The improvements obtained with concatenation of GMMs models are shown in
plots of the predicted positions and Euler angles.(see Fig.4.20 and Fig. 4.21)

By combining the models, we can generate smooth and continuous trajectories
that generalize well from the demonstrations, ensuring seamless transitions between
different primitives. This approach leverages the strengths of probabilistic mod-
eling to enhance the robustness and adaptability of robotic systems in dynamic
environments.

51



Methods

4.3.3 Models Integration
After training HMM and GMM, there is the need to integrate them to get the final
trajectory, exploiting force data and environmental constraints at a high level and
predicting pose at a low level. The integration process is given below. The HMM
and GMM models are linked to provide a comprehensive control system. The
HMM is used to switch between primitives based on force and torque data, while
the GMM models the detailed trajectories within each primitive. The combined
system is tested using both training and test datasets. Testing is done by giving
forces and torques data we collected, as input to HMM and predicting the pose
with GMR, then taking the new force value and repeat the loop.

Control Loop Implementation for real time manipulation

The control loop takes time as input to obtain the pose and uses force data to
control the model switching. The process involves the following steps:

1. Predict the current primitive using the HMM based on force and torque data.

2. Use the part of the combined GMM corresponding to the predicted primitive
to generate the end effector pose.

3. Update the time index and repeat the process for the next time step.

Predicting Poses and Evaluating Performances

The predictions for both training and test sets are compared to the actual tra-
jectories. The predicted and actual 3D positions and Euler angles are plotted
to visualize the performance of the combined model. The combined HMM and
GMM approach demonstrates the ability to generalize from few demonstrations,
resulting in good motion reproduction. This integration leverages the strengths of
both models to handle complex, multi-stage tasks effectively. For sure the sliding
phase is challenging for the robot to reproduce, since it has to retry if it doesn’t
get the exact spot under the object. The algorithm used to integrate the models is
explained below.

Following this algorithm the effect is that, if the robot end effector doesn’t
manage to slide under the object, it goes back and retries that primitive until it
works. This way it is possible to control the loop and obtain the desired complex
task.

52



Methods

Algorithm 2 Predict Primitives and Poses
Require: Best HMM model, GMM Priors, Mu, Sigma, force data, torque data,

time vector, normalized time segments, lengths reference
Ensure: Predicted positions and Euler angles

1: Initialize current_primitive to 1 and time_index to 1
2: for each time step i do
3: Predict the primitive using HMM based on force and torque
4: if primitive changes then
5: Update current_primitive and reset time_index
6: end if
7: Get the normalized time for the current_primitive
8: Predict pose using GMR
9: Store the predicted pose

10: Update time_index
11: if time_index exceeds range then
12: if primitive remains the same then
13: Revert time_index slightly
14: else
15: Reset time_index
16: end if
17: end if
18: end for

53



Chapter 5

Results

5.1 Introduction
This chapter presents the results of the testing and experiments conducted to
evaluate the performance of the Hidden Markov Model (HMM), Gaussian Mixture
Model (GMM), and their integrated system. The focus is on the accuracy of state
prediction and trajectory generation using these models. The metrics used for
evaluation include Root Mean Squared Error (RMSE), Mean Squared Error (MSE),
explained variance for GMR and accuracy for HMM. Additionally, we present plots
of the trajectories obtained from the training, test datasets and simulations.

5.2 Hidden Markov Model (HMM) Results

5.2.1 Training Set Results

The HMM was trained on the force data collected during the simulated demon-
strations. The performance was evaluated based on accuracy,precision, recall and
F1 score of state predictions and plotting the predicted states on top of the actual
states as suggested in [41]. In the table below 5.1the values of metrics for different
numbers of Gaussian mixtures and for different numbers of force components
selected are shown.

Formulas of the used metrics are listed below:

Accuracy = Number of Correct Predictions
Total Number of Predictions (5.1)

Accuracy measures the overall correctness of the model by dividing the number
of correct predictions by the total number of predictions. High accuracy indicates

54



Results

Table 5.1: Metrics for Different HMM Configurations in training set

Force Components Gaussians Accuracy Precision Recall F1 Score

2
1 0.943 0.95 0.92 0.94
2 0.95 0.96 0.937 0.943
3 0.95 0.96 0.912 0.93

3
1 0.939 0.959 0.919 0.9331
2 0.945 0.96 0.925 0.937
3 0.94 0.945 0.946 0.942

6
1 0.854 0.863 0.84 0.851
2 0.88 0.89 0.885 0.87
3 0.876 0.865 0.832 0.85

that the model is generally making correct predictions.

Precision = True Positives (TP)
True Positives (TP) + False Positives (FP) (5.2)

Precision measures the accuracy of the positive predictions. It is the ratio of true
positive predictions to the total positive predictions made by the model. High
precision indicates that the model is correctly identifying positive instances with
few false positives. [42]

Recall = True Positives (TP)
True Positives (TP) + False Negatives (FN) (5.3)

Recall measures the model’s ability to find all the relevant cases within a dataset.
It is the ratio of true positive predictions to the total actual positives. High recall
indicates that the model is successfully capturing most of the positive instances,
with few false negatives.

F1 Score = 2 × Precision × Recall
Precision + Recall (5.4)

F1 Score is the harmonic mean of precision and recall, providing a single metric
that balances the trade-off between precision and recall. A high F1 score indicates
that the model has both high precision and high recall.[43]

Trajectory Plots: The following figures illustrate the predicted and actual state
sequences for training demonstrations.(see Fig. 5.1)

55



Results

Figure 5.1: HMM - Training Set State Predictions

5.2.2 Test Set Results

The HMM was tested on a separate set of force data composed by 3 demonstrations.
Results are shown in the table 5.2.

Table 5.2: Metrics for Different HMM Configurations in Test set

Force Components Gaussians Accuracy Precision Recall F1 Score

2
1 0.96 0.967 0.94 0.95
2 0.965 0.966 0.97 0.961
3 0.94 0.95 0.96 0.95

3
1 0.952 0.966 0.9345 0.947
2 0.957 0.975 0.935 0.952
3 0.95 0.93 0.97 0.95

6
1 0.854 0.862 0.841 0.856
2 0.915 0.89 0.92 0.89
3 0. 0.88 0.864 0.873

Trajectory Plots: The following figures illustrate the predicted and actual state
sequences for test demonstrations.

56



Results

Figure 5.2: HMM - Test Set State Predictions

As can be highlighted from the tables above, evaluating performances on training
and test set, the best model is the one with 2 components of forces, specifically
force along y and torque around x, and 2 Gaussian mixtures to model emission
probabilities.

5.3 GMM/GMR Results
The GMM was trained to model the detailed trajectories within each primitive.After
visualizing the results of the trajectories for each state, concatenation was applied
in order to create a single model with smooth transitions. The performance of the
combined model was evaluated based on the generalization capability of trajectory
GMR regressions. Metrics used to evaluated performances are MSE, RMSE and
variance. Formulas of these metrics are listed below:

MSE = 1
n

nØ
i=1

(yi − ŷi)2 (5.5)

RMSE =
√

MSE =
öõõô 1
n

nØ
i=1

(yi − ŷi)2 (5.6)

Variance = 1
n

nØ
i=1

(ŷi − ¯̂y)2 (5.7)

57



Results

5.3.1 Training Set Results

To evaluate performances of the regression on training the following table 5.3 is
produced.

Table 5.3: Training Set Metrics for Different Number of Gaussians
Number of Gaussians Position MSE Position RMSE Position Variance Euler MSE Euler RMSE Euler Variance

5 0.0044 0.069 0.47 0.0085 0.095 0.48
10 0.004 0.062 0.53 0.0081 0.089 0.565
15 0.0039 0.059 0.56 0.0072 0.082 0.6
20 0.0042 0.063 0.55 0.0076 0.086 0.58
30 0.0045 0.067 0.52 0.0083 0.091 0.57

Trajectory Plots: The following figures illustrate the predicted and actual
trajectories for training demonstrations (see Fig. 5.3).

58



Results

Figure 5.3: GMR - Training Set Trajectory Generalization

5.3.2 Test Set Results
To evaluate performances of the regression on test set the following table 5.4 is
produced.

Table 5.4: Test Set Metrics for Different Number of Gaussians
Number of Gaussians Position MSE Position RMSE Position Variance Euler MSE Euler RMSE Euler Variance

5 0.0055 0.0074 0.32 0.027 0.17 0.38
10 0.0046 0.068 0.395 0.024 0.16 0.48
15 0.0042 0.065 0.45 0.02 0.15 0.51
20 0.0048 0.071 0.39 0.023 0.158 0.49
30 0.0053 0.072 0.38 0.025 0.16 0.48

Trajectory Plots: The following figures illustrate the predicted and actual

59



Results

trajectories for test demonstrations (see Fig. 5.4).

Figure 5.4: GMR - Test Set Trajectory Generalization

From the tables above can be highlighted the fact that the best performances
for the GMR are obtained with 15 Gaussians to model data.

5.4 Integrated HMM-GMM System Results
From the previous paragraphs describing parameters tuning, can be understood
that the best HMM and GMM/GMR models are respectively, the one with 2 force
components and 2 Gaussians as emission distributions, and the one with 15 as
number of Gaussian mixtures. The other parameters of the model did not have a

60



Results

significant impact on the performances, probably due to the architecture of the
models.

5.4.1 Training Set Results
The integrated HMM-GMM system was evaluated on the training set to assess
the combined performance of state prediction and trajectory generation. The
evaluation was done giving forces data from each demonstration as input to HMM
and obtaining the current primitive, then the pose was predicted from GMR.
The analysis has been done comparing each predicted trajectory to the actual
demonstration’s trajectory. The model’s effectiveness was measured using metrics
such as MSE, RMSE, and variance for both the position and Euler angles. The
following results provide a detailed analysis of the system’s performance on the
training set.

Training Set Metrics:

• Position MSE: 0.00452

• Position RMSE: 0.0673

• Position Variance: 0.47

• Euler Angles MSE: 0.0076

• Euler Angles RMSE: 0.0873

• Euler Angles Variance: 0.6

These metrics indicate that the integrated system was able to accurately predict
the trajectories within the training data, maintaining low error rates and variance.

5.4.2 Test Set Results
The integrated HMM-GMM system was tested on a separate set of data to evaluate
its generalization performance. The model’s ability to accurately predict trajectories
in unseen data was assessed using same metrics as those for the training set.

Test Set Metrics:

• Position MSE: 0.0049

• Position RMSE: 0.07

• Position Variance: 0.42

• Euler Angles MSE: 0.0248

61



Results

• Euler Angles RMSE: 0.157

• Euler Angles Variance: 0.48

These results demonstrate that while the model performs slightly worse on the
test set compared to the training set, it still maintains a reasonable level of accuracy
and consistency in trajectory prediction.

Trajectory Plots: The figures below illustrate the predicted and actual trajec-
tories for test demonstrations using the integrated HMM-GMM system.

62



Results

Figure 5.5: Integrated HMM-GMM - Test Set Positions Predictions
63



Results

Figure 5.6: Integrated HMM-GMM - Test Set Orientation Predictions
64



Results

5.4.3 Summary
The integrated HMM-GMM system demonstrated strong performance on both
training and test sets, with low RMSE and variance values indicating accurate and
consistent trajectory predictions. These results suggest that the combination of
HMM for state prediction and GMM for trajectory generation provides a robust
method for modeling complex robotic movements.

65



Chapter 6

Discussions, applications and
future works

Lfd is a really promising approach to robot learning which can be applied to
a variety of fields. The research has to continue in producing new and better
approaches to guarantee robustness, reliability, safety and versatility. In our study
this problems have been faced and analysed understanding strength and weaknesses
of this approach. More in depth, from results we can see that each model alone
performs with a high level of accuracy, robustness and precision. When we integrate
two models we lose a little bit of accuracy, still not significant, but we gain a high
level control based on Environmental Constraints. This way our robot is able to
understand when he has to repeat a primitive, the approach to the object in our
case. This improves the robustness of the model and its capabilities of adapting to
different scenarios exploiting environmental constraints. Even though the model
performs well there are improvements that can be implemented in future research.

6.1 Possible Improvements
While the current methodology using HMMs and GMMs exploiting EC, has shown
promising results, there are several avenues for potential improvement and future
research. These enhancements can address the limitations identified during the
research and expand the applicability and robustness of the model.

6.1.1 Implementing Vision-Based Systems
One significant improvement is the integration of vision-based systems. By incorpo-
rating visual feedback, robots can gain a better understanding of their environment,

66



Discussions, applications and future works

allowing for more precise manipulation and interaction with objects. Vision systems
can aid in:

• Object Recognition and Localization: Using cameras and computer vision
algorithms, robots can identify and locate objects with higher accuracy.

• Dynamic Adaptation: Vision can enable robots to adapt to changes in the
environment in real-time, improving their ability to handle unforeseen situa-
tions.

• Enhanced Grasping: Visual feedback can help in adjusting the grasping
technique based on the object’s shape, size, and orientation.

6.1.2 Extending to Different Real-World Settings
The current experiments are primarily conducted in controlled environments. Ex-
tending these methods to more varied and unstructured real-world settings can
significantly enhance their robustness and utility. For example changing the posi-
tions of the object or their orientation in space in order to make the approach able
to generalize the motion.

6.1.3 Developing Time-Independent Models
Current models are time-dependent, which can limit their flexibility and robustness.
Future research can focus on developing models that are less dependent on time
or even completely time-independent. This can be achieved by using Trajectory
Optimization, which consists in employing optimization techniques to find the best
path for task execution without being constrained by predefined time sequences.

6.1.4 Reducing Supervision and automate the process
During the preparation of data for HMM training the analysis made by the designer
is been crucial to identify the division in primitives. This can be a point of weakness
if we want to have an approach completely independent from users. During HMM
training, boundary and initial constraints have been applied from knowledge coming
from the designer. An improvement would be to automate all this process and
transform the approach in a totally unsupervised one.

6.2 Possible Applications
The integration of advanced robotics with probabilistic models like HMMs and
GMMs has vast potential across various fields. This section explores some of these

67



Discussions, applications and future works

applications, focusing on general applications and delving into specific biomedical
applications.

6.2.1 General Applications

Industrial Robotics

In industrial settings, robots can be used for tasks such as assembly, welding,
painting, and quality inspection. The ability to learn from demonstrations and adapt
to changes in the environment makes these models ideal for dynamic manufacturing
processes.

Agricultural Robotics

Robots can be employed in agriculture for planting, harvesting, and monitoring
crops. Vision-based systems can help in identifying ripe fruits and vegetables, while
probabilistic models can optimize the picking process.

Service Robots

Service robots can assist in various domains such as hospitality, retail, and customer
service. They can guide customers, manage inventories, and provide information,
improving efficiency and customer experience.

Space Robotics

Robots in space missions perform tasks like satellite servicing, space station main-
tenance, and planetary exploration. The ability to adapt to unpredictable envi-
ronments and execute tasks with high precision is crucial in space robotics. These
applications require robust and reliable models due to the harsh and variable
conditions in space.

6.3 Biomedical Applications

The integration of robotics in biomedical engineering presents unique opportunities
and challenges. This subsection highlights the applications of these methods in the
biomedical field, emphasizing the stringent requirements for precision, robustness,
and ethical considerations.

68



Discussions, applications and future works

Figure 6.1: Figure 5 from [44]

6.3.1 Surgical Robotics
Surgical robots, such as the da Vinci Surgical System, enhance the precision and
control of surgeons during minimally invasive procedures. Probabilistic models
can improve the robots’ ability to predict and adapt to the surgeon’s movements,
ensuring accurate execution of complex surgical tasks. The requirements for surgical
robotics include:

• High Precision: Any deviation from the planned trajectory can have significant
consequences.

• Robustness: The system must be reliable and capable of handling unforeseen
complications.

69



Discussions, applications and future works

Figure 6.2: Lfd process from [44]

• Specificity: The model must be tailored to specific surgical procedures to
ensure optimal performance.

Our approach is similar to the one implemented in recent studies in Surgical
Robotics where Lfd is used to teach and learn surgical tasks such as in [44] and
[45]. (see Fig. 6.1 and Fig. 6.2 from [44])

70



Discussions, applications and future works

6.3.2 Robotic Assistants in Operating Rooms
Robots can assist surgeons by handling instruments, manipulating tissues, and
providing real-time feedback. They can help reduce the physical strain on surgeons
and improve the overall efficiency of surgical procedures. These systems must meet
high standards for:

• Safety: Ensuring the safety of both patients and medical staff is paramount.

• Precision: Accurate manipulation of instruments and tissues is essential.

• Reliability: The system must be dependable and function correctly throughout
the procedure.

Our approach implements a movement that exploits environmental constraints to
slide under an object and picking it up which makes it pretty suitable to this field,
to help nurses in picking and handling surgical instruments in critical moments.

6.3.3 Automating Pharmacies
Automated pharmacy systems can dispense medications, manage inventory, and
ensure that patients receive the correct dosage. These systems can significantly
reduce human errors and improve efficiency in pharmaceutical operations. Key
requirements include:

• Accuracy: Ensuring the correct medication and dosage is dispensed.

• Efficiency: Managing high volumes of prescriptions and inventory.

• Security: Safeguarding against theft and unauthorized access.

In situations in which medications are stacked, our approach would be crucial in
picking boxes.

6.3.4 Ethical and Legal Considerations
The application of robotics in the biomedical field raises important ethical and
legal issues, such as:

• Safety: since tasks performed in this field can put life at risk the level of safety
to guarantee is high.

• Patient Privacy: Ensuring that patient data is protected and used ethically.

• Consent: Obtaining informed consent for the use of robotic systems in medical
procedures.

71



Discussions, applications and future works

• Accountability: Determining responsibility in case of malfunctions or errors.

• Accessibility: Ensuring that advanced robotic systems are accessible to all
patients, regardless of socioeconomic status.

72



Chapter 7

Conclusions

The research presented in this thesis has demonstrated the feasibility and effective-
ness of using HMMs and GMMs for robotic learning and adaptation exploiting
environmental constraints. By combining these probabilistic models, we have devel-
oped a robust framework for enabling robots to learn from demonstrations, adapt
to dynamic environments, and perform complex tasks. The potential applications,
particularly in the biomedical field, highlight the transformative impact these
technologies can have in different fields. Research and development in this area
will lead to more advanced, efficient, and accessible robotic solutions, ultimately
benefiting society as a whole.

73



Appendix A

Support Code

A.1 GMM/GMR Training and Evaluation Code

Listing A.1: GMM/GMR Training and Evaluation Code
1 % Clear workspace and load data senza PCA
2 c l e a r a l l ;
3 c l c ;
4 load ( ’ data_carteu l ’ ) ;
5 load ( ’ pr imit ives_matr ix . mat ’ ) ;
6 load ( ’ pr imit ives_matr ix_test . mat ’ ) ;
7 load ( ’ tra in ing_quat_cart . mat ’ ) ;
8 load ( ’ t ra in ing_eu l_fo rce . mat ’ ) ;
9 load ( ’ t ra in ing_eu l_cart . mat ’ ) ;

10 load ( ’ tes t_eul_cart . mat ’ ) ;
11 load ( ’ t e s t_eu l_force . mat ’ ) ;
12 load ( ’ data_cart_norm2_quat . mat ’ ) ;
13 load ( ’ test_quat_cart . mat ’ ) ;
14 load ( ’ time . mat ’ ) ;
15 a = [1 , 2 , 5 , 6 , 7 , 8 , 9 , 11 , 12 , 13 , 15 ] ;
16

17 % Parameters
18 min_mixtures = 3 ; % Minimum number o f mixtures to ensure complexity
19 max_mixtures = 35 ; % Maximum number o f mixtures to t e s t
20 nbStates = 3 ; % Number o f s t a t e s in the GMM ( number o f p r i m i t i v e s )
21 model . nbVar = 1 + 3 + 3 ; % Number o f v a r i a b l e s [ time , t r a n s l a t i o n (x ,

y , z ) , r o t a t i o n ( r o l l , p itch , yaw) ]
22 nbSamples = 11 ; % Number o f t r a i n i n g demonstrat ions
23 nbTestSamples = 3 ; % Number o f t e s t demonstrat ions
24 resample_lengths = [8 9 , 172 , 1 7 9 ] ; % Lengths f o r resampl ing each

p r i m i t i v e
25 pose_data = tra in ing_eu l_cart ;
26 r e g u l a r i z a t i o n = 1e −8;
27

74



Support Code

28 % Training and t e s t s e t s f o r pose data
29 train_pose_data_euler = pose_data ;
30 test_pose_data = test_eul_cart ( : , : , [ 1 2 4 ] ) ;
31 tes t_pr imit ives_matr ix = pr imit ives_matr ix_test ;
32 t ra in_pr imit ives_matr ix = pr imit ives_matr ix ;
33

34 % Divide and normal ize time vec to r between −1 and 1
35 t ime_vector1 = time ( 1 : resample_lengths (1 ) ) ;
36 t ime_vector2 = time ( resample_lengths (1 ) +1: resample_lengths (1 )+

resample_lengths (2 ) ) ;
37 t ime_vector3 = time ( resample_lengths (1 )+resample_lengths (2 ) +1:end ) ;
38

39 % Resample data f o r each s t a t e
40 Data = c e l l (1 , nbStates ) ;
41 t ime_vectors = { time_vector1 , time_vector2 , t ime_vector3 } ; % Store

time vec to r s s e p a r a t e l y
42 f o r s t a t e = 1 : nbStates
43 Data{ s t a t e } = [ ] ;
44 repeated_time_vector = repmat ( t ime_vectors { s t a t e } ’ , 1 , nbSamples )

;
45 repeated_time_vector = repeated_time_vector ( : ) ’ ; % Convert to row

vecto r
46 f o r n = 1 : nbSamples
47 s t a t e _ i n d i c e s = f i n d ( tra in_pr imit ives_matr ix ( : , n ) == s t a t e ) ;
48 demo_resampled = s p l i n e ( 1 : l ength ( s t a t e _ i n d i c e s ) ,

train_pose_data_euler ( s ta t e_ ind i c e s , : , n ) ’ , l i n s p a c e (1 , l ength (
s t a t e _ i n d i c e s ) , resample_lengths ( s t a t e ) ) ) ;

49 Data{ s t a t e } = [ Data{ s t a t e } , demo_resampled ] ;
50 end
51 Data{ s t a t e } = [ repeated_time_vector ; Data{ s t a t e } ] ;
52 end
53

54 % Train GMM models and p lo t BIC va lues
55 gmmModels_nopca_time7 = c e l l ( nbStates , 1) ;
56 BIC_values = ze ro s ( nbStates , max_mixtures − min_mixtures + 1) ;
57 f i g u r e ;
58 hold on ;
59

60 f o r s t a t e = 1 : nbStates
61 [ gmmModels_nopca_time7{ s t a t e } , BIC_values ( s ta te , : ) ] = train_GMM(

Data{ s t a t e } , min_mixtures , max_mixtures , resample_lengths ( s t a t e ) ,
r e g u l a r i z a t i o n ) ;

62 p lo t ( min_mixtures : max_mixtures , BIC_values ( s ta te , : ) , ’
DisplayName ’ , [ ’ State ’ num2str ( s t a t e ) ] ) ;

63 end
64

65 x l a b e l ( ’Number o f mixtures ’ ) ;
66 y l a b e l ( ’BIC ’ ) ;
67 l egend ;

75



Support Code

68 t i t l e ( ’BIC f o r d i f f e r e n t number o f mixtures ’ ) ;
69

70 % Save GMM models
71 save ( ’ gmmModels_nopca_time7 . mat ’ , ’ gmmModels_nopca_time7 ’ ) ;
72

73 % Plot GMM r e s u l t s
74 f o r s t a t e = 1 : nbStates
75 f i g u r e ( ’ p o s i t i o n ’ , [ 1 0 , 10 , 700 , 500 ] ) ; hold on ; ax i s o f f ;
76 p lo t ( Data{ s t a t e } ( 2 , : ) , Data{ s t a t e } ( 3 , : ) , ’ . ’ , ’ markers i ze ’ , 8 , ’

c o l o r ’ , [ . 5 . 5 . 5 ] ) ;
77 plotGMM( gmmModels_nopca_time7{ s t a t e } .Mu, gmmModels_nopca_time7{

s t a t e } . Sigma , [ . 8 0 0 ] , . 5 ) ;
78 ax i s equal ; s e t ( gca , ’ Xtick ’ , [ ] ) ; s e t ( gca , ’ Ytick ’ , [ ] ) ;
79 end
80

81 % Genera l i z e t r a j e c t o r i e s us ing GMR and c a l c u l a t e metr i c s
82 total_mse_train = 0 ;
83 num_train_points = 0 ;
84 total_mse_test = 0 ;
85 num_test_points = 0 ;
86

87 % Create resampled t e s t data
88 TestData = c e l l (1 , nbStates ) ;
89 f o r s t a t e = 1 : nbStates
90 TestData{ s t a t e } = [ ] ;
91 repeated_time_vector_test = repmat ( t ime_vectors { s t a t e } ’ , 1 ,

nbTestSamples ) ;
92 repeated_time_vector_test = repeated_time_vector_test ( : ) ’ ; %

Convert to row vecto r
93 f o r n = 1 : nbTestSamples
94 s t a t e _ i n d i c e s = f i n d ( tes t_pr imit ives_matr ix ( : , n ) == s t a t e ) ;
95 demo_resampled = s p l i n e ( 1 : l ength ( s t a t e _ i n d i c e s ) ,

test_pose_data ( s ta t e_ ind i c e s , : , n ) ’ , l i n s p a c e (1 , l ength (
s t a t e _ i n d i c e s ) , resample_lengths ( s t a t e ) ) ) ;

96 TestData{ s t a t e } = [ TestData{ s t a t e } , demo_resampled ] ;
97 end
98 TestData{ s t a t e } = [ repeated_time_vector_test ; TestData{ s t a t e } ] ;
99 end

100

101 f o r s t a t e = 1 : nbStates
102 [ pos , e u l e r ] = generalize_GMR ( gmmModels_nopca_time7{ s t a t e } ,

t ime_vectors { s t a t e } ’ , model . nbVar−1) ;
103

104 % Training metr i c s
105 actual_data_train = Data{ s t a t e } ( 2 : end , : ) ;
106 predicted_data_tra in = repmat ( [ pos ; e u l e r ] , 1 , nbSamples ) ;
107 predicted_data_tra in = predicted_data_tra in ( : , 1 : s i z e (

actual_data_train , 2) ) ; % Adjust s i z e to match
108

76



Support Code

109 % Ensure s i z e s match be f o r e c a l c u l a t i n g MSE
110 i f s i z e ( predicted_data_train , 1) == s i z e ( actual_data_train , 1) &&

s i z e ( predicted_data_train , 2) == s i z e ( actual_data_train , 2)
111 mse_train = immse ( predicted_data_train , actual_data_train ) ;
112 total_mse_train = total_mse_train + mse_train ∗ numel (

actual_data_train ) ;
113 num_train_points = num_train_points + numel ( actual_data_train

) ;
114 e l s e
115 di sp ( [ ’ S i z e mismatch in t r a i n i n g data f o r s t a t e ’ , num2str (

s t a t e ) ] ) ;
116 di sp ( [ ’ Pred ic ted s i z e : ’ , num2str ( s i z e ( predicted_data_tra in ) )

, ’ , Actual s i z e : ’ , num2str ( s i z e ( actual_data_train ) ) ] ) ;
117 end
118

119 % Test metr i c s
120 actual_data_test = TestData{ s t a t e } ( 2 : end , : ) ;
121 predicted_data_test = repmat ( [ pos ; e u l e r ] , 1 , nbTestSamples ) ;
122 predicted_data_test = predicted_data_test ( : , 1 : s i z e (

actual_data_test , 2) ) ; % Adjust s i z e to match
123

124 % Ensure s i z e s match be f o r e c a l c u l a t i n g MSE
125 i f s i z e ( predicted_data_test , 1) == s i z e ( actual_data_test , 1) &&

s i z e ( predicted_data_test , 2) == s i z e ( actual_data_test , 2)
126 mse_test = immse ( predicted_data_test , actual_data_test ) ;
127 total_mse_test = total_mse_test + mse_test ∗ numel (

actual_data_test ) ;
128 num_test_points = num_test_points + numel ( actual_data_test ) ;
129 e l s e
130 di sp ( [ ’ S i z e mismatch in t e s t data f o r s t a t e ’ , num2str ( s t a t e )

] ) ;
131 di sp ( [ ’ Pred ic ted s i z e : ’ , num2str ( s i z e ( predicted_data_test ) ) ,

’ , Actual s i z e : ’ , num2str ( s i z e ( actual_data_test ) ) ] ) ;
132 end
133

134 % Display s tate −wise met r i c s
135 di sp ( [ ’ State ’ num2str ( s t a t e ) ’ − MSE ( Train ) : ’ num2str (

mse_train ) ] ) ;
136 i f e x i s t ( ’ mse_test ’ , ’ var ’ )
137 di sp ( [ ’ State ’ num2str ( s t a t e ) ’ − MSE ( Test ) : ’ num2str (

mse_test ) ] ) ;
138 end
139

140 p l o t_t ra j e c t o ry ( pos , eu l e r , Data{ s t a t e } ( 2 : 7 , : ) , t ime_vectors {
s t a t e } ’ ) ;

141 end
142

143 % Overa l l met r i c s
144 overal l_mse_train = total_mse_train / num_train_points ;

77



Support Code

145 overal l_mse_test = total_mse_test / num_test_points ;
146

147 di sp ( [ ’ Overa l l MSE ( Train ) : ’ , num2str ( overal l_mse_train ) ] ) ;
148 di sp ( [ ’ Overa l l MSE ( Test ) : ’ , num2str ( overal l_mse_test ) ] ) ;
149

150 f unc t i on [ gmmModel , BIC_values ] = train_GMM( data , min_mixtures ,
max_mixtures , resample_lengths , r e g u l a r i z a t i o n )

151 nbStatesOptions = min_mixtures : max_mixtures ;
152 minBIC = I n f ;
153 bestModel = [ ] ;
154 BIC_values = ze ro s (1 , l ength ( nbStatesOptions ) ) ;
155

156 f o r idx = 1 : l ength ( nbStatesOptions )
157 nbStates = nbStatesOptions ( idx ) ;
158 model . nbStates = nbStates ;
159 model . nbVar = s i z e ( data , 1) ; % Inc lud ing time
160 model = init_GMM_kmeans( data , model ) ;
161 model = EM_GMM( data , model , r e g u l a r i z a t i o n ) ;
162

163 BIC = calculate_BIC ( data , model ) ;
164 BIC_values ( idx ) = BIC ;
165 i f BIC < minBIC
166 minBIC = BIC ;
167 bestModel = model ;
168 end
169 end
170

171 gmmModel = bestModel ;
172 end
173

174 f unc t i on BIC = calculate_BIC ( data , model )
175 % Calcu la te the Bayesian Informat ion C r i t e r i o n f o r the GMM model
176 logL = c a l c u l a t e _ l o g _ l i k e l i h o o d ( data , model ) ;
177 numParams = model . nbStates ∗ (2 ∗ model . nbVar + 1) ; % Approximate

number o f parameters
178 BIC = −2 ∗ logL + numParams ∗ l og ( s i z e ( data , 2) ) ;
179 end
180

181 f unc t i on logL = c a l c u l a t e _ l o g _ l i k e l i h o o d ( data , model )
182 % Calcu la te the log−l i k e l i h o o d o f the GMM model
183 logL = 0 ;
184 f o r t = 1 : s i z e ( data , 2)
185 prob = 0 ;
186 f o r i = 1 : model . nbStates
187 prob = prob + model . P r i o r s ( i ) ∗ gaussPDF ( data ( : , t ) ,

model .Mu( : , i ) , model . Sigma ( : , : , i ) ) ;
188 end
189 logL = logL + log ( prob ) ;
190 end

78



Support Code

191 end
192

193 f unc t i on [Mu, Sigma ] = GMR( Pr iors , Mu, Sigma , x , in )
194 % Gaussian Mixture Regres s ion (GMR)
195 nbData = s i z e (x , 2) ;
196 nbVar = s i z e (Mu, 1) ;
197 nbStates = s i z e ( Sigma , 3) ;
198 MuTmp = ze ro s ( nbVar , nbData ) ;
199 SigmaTmp = ze ro s ( nbVar , nbVar , nbData ) ;
200

201 f o r t = 1 : nbData
202 f o r i = 1 : nbStates
203 H( i ) = Pr i o r s ( i ) ∗ gaussPDF ( x ( : , t ) , Mu( in , i ) , Sigma ( in ,

in , i ) ) ;
204 end
205 H = H . / sum(H) ;
206 f o r i = 1 : nbStates
207 MuTmp( : , t ) = MuTmp( : , t ) + H( i ) ∗ Mu( : , i ) ;
208 SigmaTmp ( : , : , t ) = SigmaTmp ( : , : , t ) + H( i ) ∗ ( Sigma ( : ,

: , i ) + Mu( : , i ) ∗ Mu( : , i ) ’ ) − MuTmp( : , t ) ∗ MuTmp( : , t ) ’ ;
209 end
210 end
211 Mu = MuTmp;
212 Sigma = SigmaTmp ;
213 end
214

215 f unc t i on prob = gaussPDF ( Data , Mu, Sigma )
216 % Gaussian Probab i l i t y Density Function (PDF)
217 [ nbVar , nbData ] = s i z e ( Data ) ;
218 Data = Data ’ − repmat (Mu’ , nbData , 1) ;
219 prob = sum ( ( Data ∗ inv ( Sigma ) ) . ∗ Data , 2) ;
220 prob = exp ( −0.5 ∗ prob ) / sq r t ( (2 ∗ pi )^nbVar ∗ ( abs ( det ( Sigma ) )

+ rea lmin ) ) ;
221 end
222

223 f unc t i on [ pos , e u l e r ] = generalize_GMR ( model , timeVector , d imensions )
224 % Genera l i z e t r a j e c t o r i e s us ing GMR
225 [Mu, Sigma ] = GMR( model . Pr ior s , model .Mu, model . Sigma , timeVector

, 1) ;
226 pos = Mu( 2 : 4 , : ) ; % Assuming p o s i t i o n s are in dimensions 2 to 4
227 e u l e r = Mu( 5 : 7 , : ) ; % Assuming Euler ang l e s are in dimensions 5

to 7
228 end
229

230 f unc t i on p l o t_t ra j e c t o ry ( pos , eu l e r , actualData , t imeVector )
231 f i g u r e ;
232 subplot (2 , 1 , 1) ;
233 p lo t3 ( pos (1 , : ) , pos (2 , : ) , pos (3 , : ) , ’ r ’ ) ; hold on ;
234 p lo t3 ( actualData (1 , : ) , actualData (2 , : ) , actualData (3 , : ) , ’ b ’ ) ;

79



Support Code

235 t i t l e ( ’ 3D P o s i t i o n s ’ ) ;
236

237 subplot (2 , 1 , 2) ;
238 p lo t ( timeVector , eu l e r , ’ r ’ ) ; hold on ;
239 p lo t ( repmat ( timeVector , 1 , s i z e ( actualData , 2) / s i z e ( timeVector ,

2) ) , actualData ( 4 : 6 , : ) , ’ b ’ ) ;
240 t i t l e ( ’ Euler Angles ’ ) ;
241 end
242

243 f unc t i on normalized_time = normalize_time ( time_vector )
244 % Normalize time vec to r to range from −1 to 1
245 normalized_time = ( time_vector − min( time_vector ) ) ;
246 end
247

248 f unc t i on model = init_GMM_kmeans( Data , model )
249 % K−means i n i t i a l i z a t i o n f o r GMM
250 [ nbVar , nbData ] = s i z e ( Data ) ;
251 [ Data_id , Centers ] = kmeans ( Data ’ , model . nbStates ) ;
252 f o r i = 1 : model . nbStates
253 idtmp = f i n d ( Data_id == i ) ;
254 model . P r i o r s ( i ) = length ( idtmp ) ;
255 model .Mu( : , i ) = mean( Data ( : , idtmp ) , 2) ;
256 model . Sigma ( : , : , i ) = cov ( Data ( : , idtmp ) ’ ) + 1E−8 ∗ diag (

ones ( nbVar , 1) ) ;
257 end
258 model . P r i o r s = model . P r i o r s . / sum( model . P r i o r s ) ;
259 end
260

261 f unc t i on model = EM_GMM( Data , model , r e g u l a r i z a t i o n )
262 % EM algor i thm f o r GMM
263 [ nbVar , nbData ] = s i z e ( Data ) ;
264 l o g l i k _ t h r e s h o l d = 1e −10;
265 max_iter = 10000 ;
266 l o g l i k _ o l d = −realmax ;
267

268 f o r i t e r = 1 : max_iter
269 % E−s tep
270 f o r i = 1 : model . nbStates
271 Pxi ( : , i ) = model . P r i o r s ( i ) ∗ gaussPDF ( Data , model .Mu( : ,

i ) , model . Sigma ( : , : , i ) ) ;
272 end
273 Px = sum( Pxi , 2) ;
274 Pix = Pxi . / repmat (Px , 1 , model . nbStates ) ;
275 E = sum( Pix ) ;
276

277 % M−s tep
278 f o r i = 1 : model . nbStates
279 model . P r i o r s ( i ) = E( i ) / nbData ;
280 model .Mu( : , i ) = Data ∗ Pix ( : , i ) / E( i ) ;

80



Support Code

281 Data_tmp1 = Data − repmat ( model .Mu( : , i ) , 1 , nbData ) ;
282 model . Sigma ( : , : , i ) = (Data_tmp1 ∗ diag ( Pix ( : , i ) ) ∗

Data_tmp1 ’ + r e g u l a r i z a t i o n ∗ diag ( ones ( nbVar , 1) ) ) / E( i ) ;
283 end
284

285 % Compute log−l i k e l i h o o d
286 l o g l i k = sum( log (Px) ) ;
287 i f abs ( ( l o g l i k / l o g l i k _ o l d ) − 1) < l o g l i k _ t h r e s h o l d
288 break ;
289 end
290 l o g l i k _ o l d = l o g l i k ;
291 end
292 end
293

294 f unc t i on plotGMM(Mu, Sigma , co lo r , alpha )
295 % Plot the GMM components
296 nbStates = s i z e (Mu, 2) ;
297 f o r i = 1 : nbStates
298 p l o t_gaus s i an_e l l i p s o i d (Mu( 2 : 3 , i ) , Sigma ( 2 : 3 , 2 : 3 , i ) , 2 ,

co lo r , alpha ) ;
299 end
300 end
301

302 f unc t i on p l o t_gaus s i an_e l l i p s o i d (Mu, Sigma , s ca l e , co lo r , alpha )
303 [V, D] = e i g ( Sigma ) ;
304 t = l i n s p a c e (0 , 2 ∗ pi , 100) ;
305 xy = [ cos ( t ) ; s i n ( t ) ] ;
306 k = s c a l e ∗ (V ∗ s q r t (D) ) ∗ xy ;
307 f i l l (Mu(1) + k (1 , : ) , Mu(2) + k (2 , : ) , co lo r , ’ FaceAlpha ’ , alpha ,

’ EdgeColor ’ , ’ none ’ ) ;
308 end

A.2 HMM Training and Evaluation Code

Listing A.2: HMM Training and Evaluation Code
1 load ( ’ pr imit ives_matr ix . mat ’ ) ;
2 load ( ’ pr imit ives_matr ix_test . mat ’ ) ;
3 load ( ’ tra in ing_quat_cart . mat ’ ) ;
4 load ( ’ t ra in ing_eu l_fo rce . mat ’ ) ;
5 load ( ’ t ra in ing_eu l_cart . mat ’ ) ;
6 load ( ’ tes t_eul_cart . mat ’ ) ;
7 load ( ’ t e s t_eu l_force . mat ’ ) ;
8 load ( ’ data_cart_norm2_quat . mat ’ ) ;
9 load ( ’ test_quat_cart . mat ’ ) ;

10 load ( ’ time . mat ’ )
11

81



Support Code

12 b=[1 2 4 ] ;
13 % Main s c r i p t f o r t r a i n i n g and eva lua t ing Continuous HMM with

Gaussian emi s s i on s
14 force_data = tra in ing_eu l_fo rce ( : , 2 : 4 , : ) ;
15 force_test_data = tes t_eu l_force ( : , 2 : 4 , b ) ;
16 %force_data= force_data ( : , 1 : 2 : 3 , : ) ;
17

18 % Main s c r i p t f o r t r a i n i n g and eva lua t ing Continuous HMM with
Gaussian emi s s i on s

19

20 % Standard ize the f o r c e data
21 f o r i = 1 : s i z e ( force_data , 3)
22 force_data ( : , : , i ) = ( force_data ( : , : , i ) − mean( force_data ( : ,

: , i ) , 1) ) . / std ( force_data ( : , : , i ) , 0 , 1) ;
23 end
24 % Standard ize the f o r c e data
25 f o r i = 1 : s i z e ( force_test_data , 3)
26 force_test_data ( : , : , i ) = ( force_test_data ( : , : , i ) − mean(

force_test_data ( : , : , i ) , 1) ) . / std ( force_test_data ( : , : , i ) , 0 ,
1) ;

27 end
28

29 % S e l e c t the number o f f o r c e components to use (1 , 2 , or 3)
30 num_force_components = 2 ; % Change t h i s va lue to 1 , 2 , or 3 as needed
31

32 % Reduce the dimension o f force_data i f needed
33 i f num_force_components < 3
34 force_data = force_data ( : , 1 : num_force_components : 3 , : ) ;
35 force_test_data = force_test_data ( : , 1 : num_force_components : 3 , : )

;
36 end
37

38 % Training and t e s t s e t s ( a l r eady provided )
39 t r a i n _ i n d i c e s = 1 : 1 1 ;
40 t e s t _ i n d i c e s = 1 2 : 1 4 ;
41 tra in_force_data = force_data ;
42 test_force_data = force_test_data ;
43 t ra in_pr imit ives_matr ix = pr imit ives_matr ix ;
44 tes t_pr imit ives_matr ix = pr imit ives_matr ix_test ;
45

46 % I n i t i a l i z e HMM parameters
47 n_states = 3 ; % Number o f hidden s t a t e s
48 n_mix = 2 ; % Number o f Gaussian mixtures per s t a t e
49 max_iter = 3000000; % Maximum number o f i t e r a t i o n s f o r EM algor i thm
50

51 % I n i t i a l i z e v a r i a b l e s to s t o r e HMM models and t h e i r log−l i k e l i h o o d s
52 hmm_models = c e l l ( l ength ( t r a i n _ i n d i c e s ) , 1) ;
53 l o g _ l i k e l i h o o d s = ze ro s ( l ength ( t r a i n _ i n d i c e s ) , 1) ;
54

82



Support Code

55 % Improved i n i t i a l i z a t i o n
56 f o r demo = 1 : l ength ( t r a i n _ i n d i c e s )
57 % Reshape data f o r cont inuous HMM
58 reshaped_force_data = reshape ( tra in_force_data ( : , : , demo) , [ ] ,

num_force_components ) ; % (440) x num_force_components
59 re shaped_labe l s = tra in_pr imit ives_matr ix ( : , demo) ; % 440 x 1
60

61 % I n i t i a l i z e t r a n s i t i o n matrix and p r i o r p r o b a b i l i t i e s
62 trans_guess = ones ( n_states , n_states ) / n_states ; % Uniform

t r a n s i t i o n p r o b a b i l i t i e s
63 trans_guess = trans_guess . / sum( trans_guess , 2) ; % Normalize

rows to sum to 1
64 pr ior_guess = ones ( n_states , 1) / n_states ; % I n i t i a l i z e p r i o r

p r o b a b i l i t i e s equa l l y
65

66 % I n i t i a l i z e Gaussian mixture components
67 mu_guess = c e l l ( n_states , 1) ;
68 sigma_guess = c e l l ( n_states , 1) ;
69 mixmat_guess = ones ( n_states , n_mix) / n_mix ;
70

71 f o r i = 1 : n_states
72 mu_guess{ i } = randn (n_mix , num_force_components ) ; %

num_force_components i s the dimension o f the obs e rva t i on s
73 sigma_guess{ i } = repmat ( eye ( num_force_components ) , [ 1 , 1 ,

n_mix ] ) ; % I d e n t i t y matr i ce s f o r cova r i ance s
74 % Ensure p o s i t i v e d e f i n i t e n e s s
75 f o r j = 1 : n_mix
76 sigma_guess{ i } ( : , : , j ) = sigma_guess{ i } ( : , : , j ) + 1e−6

∗ eye ( num_force_components ) ;
77 end
78 end
79

80 % Train the cont inuous HMM with r e g u l a r i z a t i o n
81 [ pr ior_est , trans_est , mu_est , sigma_est , mixmat_est , l o g l i k ] =

train_chmm_em( reshaped_force_data , pr ior_guess , trans_guess ,
mu_guess , sigma_guess , mixmat_guess , max_iter ) ;

82

83 % Store the t ra in ed HMM model and i t s log−l i k e l i h o o d
84 hmm_models{demo} = s t r u c t ( ’ p r i o r ’ , pr ior_est , ’ t rans ’ , trans_est ,

’mu ’ , {mu_est} , ’ sigma ’ , { sigma_est } , ’ mixmat ’ , mixmat_est ) ;
85 l o g _ l i k e l i h o o d s (demo) = l o g l i k ;
86 end
87

88 % S e l e c t the bes t HMM model based on the h i ghe s t log−l i k e l i h o o d
89 [ ~ , best_model_idx ] = max( l o g _ l i k e l i h o o d s ) ;
90 best_hmm_model = hmm_models{best_model_idx } ;
91 a l l_states_pred = [ ] ;
92 % Evaluate the best HMM on the t r a i n i n g s e t
93 t r a in_accu rac i e s = ze ro s ( l ength ( t r a i n _ i n d i c e s ) , 1) ;

83



Support Code

94 f o r demo = 1 : l ength ( t r a i n _ i n d i c e s )
95 reshaped_force_data = reshape ( tra in_force_data ( : , : , demo) , [ ] ,

num_force_components ) ; % (440) x num_force_components
96 ac tua l_s ta t e s = tra in_pr imit ives_matr ix ( : , demo) ; % 440 x 1
97

98 % Pred ic t s t a t e s us ing the bes t HMM model with f i x e d c o n s t r a i n t s
99 [ p red i c t ed_state s , ~ ] = predict_hmm_states_with_fixed_constraints

( reshaped_force_data , best_hmm_model . p r io r , best_hmm_model . trans ,
best_hmm_model .mu, best_hmm_model . sigma , best_hmm_model . mixmat ) ;

100 a l l_states_pred = [ a l l_states_pred , p r ed i c t ed_sta t e s ] ;
101 % Calcu la te accuracy f o r the cur rent demonstrat ion
102 t r a in_accu rac i e s (demo) = sum( pred i c t ed_sta t e s == actua l_s ta t e s ) /

l ength ( ac tua l_s ta t e s ) ;
103 end
104

105 % Calcu la te o v e r a l l t r a i n i n g accuracy
106 overa l l_tra in_accuracy = mean( t r a in_accu rac i e s ) ;
107 a l l_state s_pred_tes t = [ ] ;
108 % Evaluate the best HMM on the t e s t s e t
109 t e s t_accu ra c i e s = ze ro s ( l ength ( t e s t _ i n d i c e s ) , 1) ;
110 f o r demo_idx = 1 : l ength ( t e s t _ i n d i c e s )
111 reshaped_force_data = reshape ( test_force_data ( : , : , demo_idx ) ,

[ ] , num_force_components ) ; % (440) x num_force_components
112 ac tua l_s ta t e s = test_pr imit ives_matr ix ( : , demo_idx ) ; % 440 x 1
113

114 % Pred ic t s t a t e s us ing the bes t HMM model with f i x e d c o n s t r a i n t s
115 [ p red i c t ed_state s , ~ ] = predict_hmm_states_with_fixed_constraints

( reshaped_force_data , best_hmm_model . p r io r , best_hmm_model . trans ,
best_hmm_model .mu, best_hmm_model . sigma , best_hmm_model . mixmat ) ;

116 a l l_state s_pred_tes t = [ a l l_states_pred_test , p r ed i c t ed_s ta t e s ] ;
117 % Calcu la te accuracy f o r the cur rent demonstrat ion
118 t e s t_accu ra c i e s ( demo_idx ) = sum( pred i c t ed_sta t e s == actua l_s ta t e s

) / l ength ( ac tua l_s ta t e s ) ;
119 end
120

121 % Calcu la te o v e r a l l t e s t accuracy
122 overa l l_tes t_accuracy = mean( t e s t_accu ra c i e s ) ;
123

124 % Display a c c u r a c i e s
125 di sp ( ’ Train ing a c c u r a c i e s f o r each demonstrat ion : ’ ) ;
126 di sp ( t r a in_accu rac i e s ) ;
127 di sp ( [ ’ Overa l l t r a i n i n g accuracy : ’ , num2str ( overa l l_tra in_accuracy )

] ) ;
128 di sp ( ’ Test a c c u r a c i e s f o r each demonstrat ion : ’ ) ;
129 di sp ( t e s t_accu ra c i e s ) ;
130 di sp ( [ ’ Overa l l t e s t accuracy : ’ , num2str ( overa l l_tes t_accuracy ) ] ) ;
131

132 % Function d e f i n i t i o n s
133

84



Support Code

134 f unc t i on [ nearest_time_idx , re l_time ] = find_nearest_pose_time (
demo_pose_data , current_pose )

135 % Find the nea r e s t pose in the demo_pose_data to the current_pose
136 d i s t a n c e s = sq r t (sum ( ( demo_pose_data − current_pose ) .^2 , 2) ) ;
137 [ ~ , nearest_time_idx ] = min ( d i s t a n c e s ) ;
138 re l_time = nearest_time_idx / s i z e ( demo_pose_data , 1) ; %

Ca lcu la te r e l a t i v e time
139 end
140

141 f unc t i on [ alpha , beta , gamma, x i ] = forward_backward ( obs , pr io r ,
trans , mu, sigma , mixmat )

142 T = s i z e ( obs , 1) ; % Number o f ob s e rva t i on s
143 K = length ( p r i o r ) ; % Number o f s t a t e s
144

145 % I n i t i a l i z e alpha , beta , gamma, x i
146 alpha = ze ro s (T, K) ;
147 beta = ze ro s (T, K) ;
148 gamma = ze ro s (T, K) ;
149 x i = ze ro s (T, K, K) ;
150

151 % Forward pass
152 f o r k = 1 :K
153 alpha (1 , k ) = p r i o r ( k ) ∗ gmm_likelihood ( obs (1 , : ) , mu{k } ,

sigma{k } , mixmat (k , : ) ) ;
154 end
155 alpha (1 , : ) = alpha (1 , : ) / sum( alpha (1 , : ) ) ; % Normalize
156

157 f o r t = 2 :T
158 f o r j = 1 :K
159 sum_alpha = 0 ;
160 f o r i = 1 :K
161 sum_alpha = sum_alpha + alpha ( t −1, i ) ∗ t rans ( i , j ) ;
162 end
163 alpha ( t , j ) = sum_alpha ∗ gmm_likelihood ( obs ( t , : ) , mu{ j

} , sigma{ j } , mixmat ( j , : ) ) ;
164 end
165 alpha ( t , : ) = alpha ( t , : ) / sum( alpha ( t , : ) ) ; % Normalize
166

167 % Apply s t a t e c o n s t r a i n t s based on known i n t e r v a l s
168 i f t <= 60
169 alpha ( t , 2 : 3 ) = 0 ; % Enforce s t a t e 1
170 e l s e i f t > 110 && t <= 250
171 alpha ( t , [ 1 , 3 ] ) = 0 ; % Enforce s t a t e 2
172 e l s e i f t > 360
173 alpha ( t , 1 : 2 ) = 0 ; % Enforce s t a t e 3
174 end
175 alpha ( t , : ) = alpha ( t , : ) / sum( alpha ( t , : ) ) ; % Normalize
176 end
177

85



Support Code

178 % Backward pass
179 beta (T, : ) = 1 ; % I n i t i a l i z e beta at T to 1
180

181 f o r t = T−1:−1:1
182 f o r i = 1 :K
183 sum_beta = 0 ;
184 f o r j = 1 :K
185 sum_beta = sum_beta + trans ( i , j ) ∗ gmm_likelihood (

obs ( t +1, : ) , mu{ j } , sigma{ j } , mixmat ( j , : ) ) ∗ beta ( t +1, j ) ;
186 end
187 beta ( t , i ) = sum_beta ;
188 end
189 beta ( t , : ) = beta ( t , : ) / sum( beta ( t , : ) ) ; % Normalize
190 end
191

192 % Compute gamma and x i
193 f o r t = 1 :T−1
194 gamma( t , : ) = alpha ( t , : ) . ∗ beta ( t , : ) ;
195 gamma( t , : ) = gamma( t , : ) / sum(gamma( t , : ) ) ; % Normalize
196

197 f o r i = 1 :K
198 f o r j = 1 :K
199 x i ( t , i , j ) = alpha ( t , i ) ∗ t rans ( i , j ) ∗

gmm_likelihood ( obs ( t +1, : ) , mu{ j } , sigma{ j } , mixmat ( j , : ) ) ∗ beta (
t +1, j ) ;

200 end
201 end
202 x i ( t , : , : ) = x i ( t , : , : ) / sum( x i ( t , : , : ) , ’ a l l ’ ) ; %

Normalize
203 end
204

205 gamma(T, : ) = alpha (T, : ) . ∗ beta (T, : ) ;
206 gamma(T, : ) = gamma(T, : ) / sum(gamma(T, : ) ) ; % Normalize
207 end
208

209 f unc t i on l i k e l i h o o d = gmm_likelihood (x , mu, sigma , mixmat )
210 % Compute the l i k e l i h o o d o f x g iven the GMM parameters (mu, sigma

, mixmat )
211 n_mix = s i z e (mu, 1) ;
212 l i k e l i h o o d = 0 ;
213

214 f o r j = 1 : n_mix
215 l i k e l i h o o d = l i k e l i h o o d + mixmat ( j ) ∗ mvnpdf (x , mu( j , : ) ,

sigma ( : , : , j ) ) ;
216 end
217 end
218

219 f unc t i on [ pr io r , trans , mu, sigma , mixmat , l o g l i k ] = train_chmm_em(
obs , pr io r , trans , mu, sigma , mixmat , max_iter )

86



Support Code

220 K = length ( p r i o r ) ; % Number o f s t a t e s
221 T = s i z e ( obs , 1) ; % Number o f ob s e rva t i on s
222

223 l o g l i k = − i n f ;
224 f o r i t e r = 1 : max_iter
225 % E−s tep
226 [ alpha , beta , gamma, x i ] = forward_backward ( obs , pr io r , trans

, mu, sigma , mixmat ) ;
227

228 % M−s tep
229 p r i o r = gamma(1 , : ) ’ ;
230 t rans = squeeze (sum( xi , 1) ) ;
231 t rans = trans . / sum( trans , 2) ;
232

233 f o r i = 1 :K
234 gamma_sum = sum(gamma ( : , i ) ) ;
235 mu{ i } = sum(gamma ( : , i ) . ∗ obs ) / gamma_sum;
236 sigma{ i } = ze ro s ( s i z e ( sigma{ i }) ) ;
237 f o r t = 1 :T
238 sigma{ i } = sigma{ i } + gamma( t , i ) ∗ ( obs ( t , : ) − mu{ i

}) ’ ∗ ( obs ( t , : ) − mu{ i }) ;
239 end
240 sigma{ i } = sigma{ i } / gamma_sum;
241 % Ensure p o s i t i v e d e f i n i t e n e s s
242 f o r j = 1 : s i z e ( sigma{ i } , 3)
243 sigma{ i } ( : , : , j ) = sigma{ i } ( : , : , j ) + 1e−6 ∗ eye (

s i z e ( sigma{ i } , 1) ) ;
244 end
245 end
246

247 % Compute log l i k e l i h o o d
248 new_logl ik = sum( log (sum( alpha . ∗ beta , 2) ) ) ;
249

250 i f abs ( new_logl ik − l o g l i k ) < 1e−9
251 break ;
252 end
253 l o g l i k = new_logl ik ;
254 end
255 end
256

257 f unc t i on [ pred i c ted_state s , log_prob ] =
predict_hmm_states_with_fixed_constraints ( obs , pr io r , trans , mu,
sigma , mixmat )

258 T = s i z e ( obs , 1) ;
259 K = length ( p r i o r ) ;
260 alpha = ze ro s (T, K) ;
261 pred i c t ed_sta t e s = ze ro s (T, 1) ;
262

263 % Forward pass

87



Support Code

264 f o r k = 1 :K
265 alpha (1 , k ) = p r i o r ( k ) ∗ gmm_likelihood ( obs (1 , : ) , mu{k } ,

sigma{k } , mixmat (k , : ) ) ;
266 end
267 alpha (1 , : ) = alpha (1 , : ) / sum( alpha (1 , : ) ) ;
268

269 f o r t = 2 :T
270 f o r j = 1 :K
271 sum_alpha = 0 ;
272 f o r i = 1 :K
273 sum_alpha = sum_alpha + alpha ( t −1, i ) ∗ t rans ( i , j ) ;
274 end
275 alpha ( t , j ) = sum_alpha ∗ gmm_likelihood ( obs ( t , : ) , mu{ j

} , sigma{ j } , mixmat ( j , : ) ) ;
276 end
277 alpha ( t , : ) = alpha ( t , : ) / sum( alpha ( t , : ) ) ; % Normalize
278

279 % Apply s t a t e c o n s t r a i n t s based on known i n t e r v a l s
280 i f t <= 60
281 alpha ( t , 2 : 3 ) = 0 ; % Enforce s t a t e 1
282 e l s e i f t > 110 && t <= 210
283 alpha ( t , [ 1 , 3 ] ) = 0 ; % Enforce s t a t e 2
284 e l s e i f t > 350
285 alpha ( t , 1 : 2 ) = 0 ; % Enforce s t a t e 3
286 end
287 alpha ( t , : ) = alpha ( t , : ) / sum( alpha ( t , : ) ) ; % Normalize
288 end
289

290 % Backtrace to f i n d the most probable s t a t e s
291 [ ~ , p r ed i c t ed_sta t e s (T) ] = max( alpha (T, : ) ) ;
292 f o r t = T−1:−1:1
293 [ ~ , p r ed i c t ed_sta t e s ( t ) ] = max( alpha ( t , : ) . ∗ t rans ( : ,

p r ed i c t ed_sta t e s ( t+1) ) ’ ) ;
294 end
295

296 log_prob = sum( log (sum( alpha , 2) ) ) ;
297 end
298

299 f unc t i on current_state =
est imate_state_cont inuous_with_f ixed_constra ints ( force_value ,
rel_time , pr ior_est , trans_est , mu_est , sigma_est , mixmat_est ,
prev ious_states_probs )

300 n_states = length ( pr i o r_es t ) ;
301 l i k e l i h o o d s = ze ro s ( n_states , 1) ;
302

303 f o r i = 1 : n_states
304 l i k e l i h o o d s ( i ) = gmm_likelihood ( force_value , mu_est{ i } ,

sigma_est { i } , mixmat_est ( i , : ) ) ;
305 end

88



Support Code

306

307 i f isempty ( prev ious_states_probs )
308 prev ious_states_probs = pr io r_es t ;
309 end
310

311 current_states_probs = trans_est ’ ∗ ( prev ious_states_probs . ∗
l i k e l i h o o d s ) ;

312 current_states_probs = current_states_probs / sum(
current_states_probs ) ;

313

314 % Enforce s t a t e c o n s t r a i n t s based on known i n t e r v a l s
315 i f re l_time <= 0.11
316 current_states_probs ( 2 : 3 ) = 0 ; % Enforce s t a t e 1
317 e l s e i f re l_time > 0.22 && rel_time <= 0.45
318 current_states_probs ( [ 1 , 3 ] ) = 0 ; % Enforce s t a t e 2
319 e l s e i f re l_time > 0.79
320 current_states_probs ( 1 : 2 ) = 0 ; % Enforce s t a t e 3
321 end
322 current_states_probs = current_states_probs / sum(

current_states_probs ) ; % Normalize
323

324 [ ~ , cur rent_state ] = max( current_states_probs ) ;
325 prev ious_states_probs = current_states_probs ;
326 end
327

328 f unc t i on predicted_pose = estimate_pose ( current_state , current_time ,
gmms)

329 gmm = gmms{ current_state } ;
330 mu = gmm.mu;
331 sigma = gmm. Sigma ;
332

333 mu_t = mu( : , 1) ;
334 sigma_tt = sigma (1 , 1 , : ) ;
335

336 mu_p = mu( : , 2 : end ) ;
337 sigma_pp = sigma ( 2 : end , 2 : end , : ) ;
338

339 sigma_tp = sigma (1 , 2 : end , : ) ;
340

341 % Normalize cur rent time to [ 0 , 1 ]
342 norm_time = ( current_time − 1) / (440 − 1) ;
343

344 predicted_pose = ze ro s (1 , s i z e (mu_p, 2) ) ;
345 f o r k = 1 : s i z e (gmm. ComponentProportion , 2)
346 mu_p_k = mu_p(k , : ) ’ + sigma_tp ( : , : , k ) / sigma_tt ( : , : , k )

∗ ( norm_time − mu_t( k ) ) ;
347 predicted_pose = predicted_pose + gmm. ComponentProportion ( k )

∗ mu_p_k’ ;
348 end

89



Support Code

349 end

90



Bibliography

[1] Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude
Billard. «Recent advances in robot learning from demonstration». In: Annual
review of control, robotics, and autonomous systems 3 (2020), pp. 297–330
(cit. on pp. 4–7).

[2] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. «Survey:
Robot programming by demonstration». In: Springer handbook of robotics
(2008), pp. 1371–1394 (cit. on p. 7).

[3] Xing Li and Oliver Brock. «Learning from demonstration based on environ-
mental constraints». In: IEEE Robotics and Automation Letters 7.4 (2022),
pp. 10938–10945 (cit. on p. 11).

[4] Enrico Turco, Valerio Bo, Mehrdad Tavassoli, Maria Pozzi, and Domenico
Prattichizzo. «Learning Grasping Strategies for a Soft Non-Anthropomorphic
Hand from Human Demonstrations». In: 2022 31st IEEE International Con-
ference on Robot and Human Interactive Communication (RO-MAN). IEEE.
2022, pp. 934–941 (cit. on pp. 12, 16).

[5] Alec Reed, Doncey Albin, Anuh Pasricha, Alessandro Roncone, and Christoffer
Heckman. Transformer-based Learning Models of Dynamical Systems for
Robotic State Prediction. Feb. 2024. doi: 10.21203/rs.3.rs-3919154/v1
(cit. on p. 14).

[6] Gionata Salvietti, Muhammad Zubair Iqbal, Monica Malvezzi, Touraj Eslami,
and Domenico Prattichizzo. «Soft Hands with Embodied Constraints: The
Soft ScoopGripper». In: Mar. 2019. doi: 10.1109/ICRA.2019.8793563
(cit. on p. 16).

[7] SCHUNK. Gamma Force/Torque Sensor. https://schunk.com/it/it/
tecnologia- di- automazione/sensore- di- forza/coppia/ft/c/PGR_
1680. Accessed: 2024-06-25 (cit. on p. 17).

91

https://doi.org/10.21203/rs.3.rs-3919154/v1
https://doi.org/10.1109/ICRA.2019.8793563
https://schunk.com/it/it/tecnologia-di-automazione/sensore-di-forza/coppia/ft/c/PGR_1680
https://schunk.com/it/it/tecnologia-di-automazione/sensore-di-forza/coppia/ft/c/PGR_1680
https://schunk.com/it/it/tecnologia-di-automazione/sensore-di-forza/coppia/ft/c/PGR_1680


BIBLIOGRAPHY

[8] NVIDIA. DRIVE OS Linux SDK Development Guide - Bootloader. https:
//docs.nvidia.com/drive/archive/drive_os_5.1.12.0L/nvvib_docs/
DRIVE_OS_Linux_SDK_Development_Guide/Bootloader/robot_os.html.
Accessed: 2024-06-25 (cit. on p. 19).

[9] Sylvain Calinon. «A tutorial on task-parameterized movement learning and
retrieval». In: Intelligent service robotics 9 (2016), pp. 1–29 (cit. on pp. 20,
31, 43, 47).

[10] Yanlong Huang, Leonel Rozo, João Silvério, and Darwin Caldwell. «Kernelized
Movement Primitives». In: The International Journal of Robotics Research 38
(May 2019), pp. 833–852. doi: 10.1177/0278364919846363 (cit. on p. 25).

[11] Pavel Senin. «Dynamic Time Warping Algorithm Review». In: (Jan. 2009)
(cit. on p. 32).

[12] Najdan Vuković, Marko Mitić, and Zoran Miljković. «Trajectory learning
and reproduction for differential drive mobile robots based on GMM/HMM
and dynamic time warping using learning from demonstration framework».
In: Engineering Applications of Artificial Intelligence 45 (2015), pp. 388–404
(cit. on pp. 32, 35, 43).

[13] Affan Pervez, Arslan Ali, Jee-Hwan Ryu, and Dongheui Lee. «Novel learning
from demonstration approach for repetitive teleoperation tasks». In: 2017
IEEE World Haptics Conference (WHC). IEEE. 2017, pp. 60–65 (cit. on
p. 32).

[14] Sebastian Thrun. «Probabilistic robotics». In: Communications of the ACM
45.3 (2002), pp. 52–57 (cit. on p. 35).

[15] Sebastian Thrun. «Probabilistic algorithms in robotics». In: Ai Magazine 21.4
(2000), pp. 93–93 (cit. on p. 35).

[16] Qiang Cheng, Wei Zhang, Hongshuai Liu, Ying Zhang, and Lina Hao. «Re-
search on the path planning algorithm of a manipulator based on GMM/GMR-
MPRM». In: Applied Sciences 11.16 (2021), p. 7599 (cit. on p. 35).

[17] Simge Nur Aslan, Recep Özalp, Ayşegül Uçar, and Cüneyt Güzeliş. «New
CNN and hybrid CNN-LSTM models for learning object manipulation of
humanoid robots from demonstration». In: Cluster Computing 25.3 (2022),
pp. 1575–1590 (cit. on p. 35).

[18] Rouhollah Rahmatizadeh, Pooya Abolghasemi, and Ladislau Bölöni. «Learn-
ing manipulation trajectories using recurrent neural networks». In: arXiv
preprint arXiv:1603.03833 (2016) (cit. on p. 35).

92

https://docs.nvidia.com/drive/archive/drive_os_5.1.12.0L/nvvib_docs/DRIVE_OS_Linux_SDK_Development_Guide/Bootloader/robot_os.html
https://docs.nvidia.com/drive/archive/drive_os_5.1.12.0L/nvvib_docs/DRIVE_OS_Linux_SDK_Development_Guide/Bootloader/robot_os.html
https://docs.nvidia.com/drive/archive/drive_os_5.1.12.0L/nvvib_docs/DRIVE_OS_Linux_SDK_Development_Guide/Bootloader/robot_os.html
https://doi.org/10.1177/0278364919846363


BIBLIOGRAPHY

[19] Leonel Rozo, Pablo Jiménez, and Carme Torras. «Robot learning from demon-
stration of force-based tasks with multiple solution trajectories». In: 2011
15th International Conference on Advanced Robotics (ICAR). IEEE. 2011,
pp. 124–129 (cit. on pp. 35, 36).

[20] Sylvain Calinon, Florent D’halluin, Eric L Sauser, Darwin G Caldwell, and
Aude G Billard. «Learning and reproduction of gestures by imitation». In:
IEEE Robotics & Automation Magazine 17.2 (2010), pp. 44–54 (cit. on p. 35).

[21] S. Calinon, F. Guenter, and A. Billard. «On Learning, Representing and
Generalizing a Task in a Humanoid Robot». In: IEEE Transactions on
Systems, Man and Cybernetics, Part B 37.2 (2007), pp. 286–298 (cit. on
pp. 35, 48).

[22] George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto.
«Robot learning from demonstration by constructing skill trees». In: The
International Journal of Robotics Research 31.3 (2012), pp. 360–375 (cit. on
p. 36).

[23] Simon Manschitz, Jens Kober, Michael Gienger, and Jan Peters. «Learning
to sequence movement primitives from demonstrations». In: 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2014,
pp. 4414–4421 (cit. on p. 36).

[24] Peter Kazanzides, Joel F Zuhars, Brent D Mittelstadt, and Russell H Taylor.
«Force sensing and control for a surgical robot.» In: ICRA. 1992, pp. 612–617
(cit. on p. 37).

[25] Daniel Jurafsky James H. Martin. «9 Hidden Markov Models». In: (2024).
url: https://web.stanford.edu/~jurafsky/slp3/A.pdf (cit. on p. 38).

[26] S. Calinon. Robot Programming by Demonstration: A Probabilistic Approach.
EPFL Press ISBN 978-2-940222-31-5, CRC Press ISBN 978-1-4398-0867-2.
EPFL/CRC Press, 2009 (cit. on pp. 39, 48).

[27] Michael Seifert, Ali Mohammad Banaei-Moghaddam, Jens Keilwagen, Michael
Mette, Andreas Houben, Francois Roudier, Vincent Colot, Ivo Grosse, and
Marc Strickert. «Array-based Genome Comparison of Arabidopsis Ecotypes
using Hidden Markov Models.» In: Jan. 2009, pp. 3–11 (cit. on p. 39).

[28] S. Calinon and D. Lee. «Learning Control». In: Humanoid Robotics: a Refer-
ence. Ed. by P. Vadakkepat and A. Goswami. Springer, 2019, pp. 1–52. doi:
10.1007/978-94-007-7194-9_68-1 (cit. on pp. 39, 42).

93

https://web.stanford.edu/~jurafsky/slp3/A.pdf
https://doi.org/10.1007/978-94-007-7194-9_68-1


BIBLIOGRAPHY

[29] Patrick Verlinde. «Error Detecting and Correcting Codes». In: Encyclopedia
of Information Systems. Ed. by Hossein Bidgoli. New York: Elsevier, 2003,
pp. 203–228. isbn: 978-0-12-227240-0. doi: https://doi.org/10.1016/B0-
12-227240-4/00062-9. url: https://www.sciencedirect.com/science/
article/pii/B0122272404000629 (cit. on p. 42).

[30] Sonia Chernova and Andrea L. Thomaz. «Learning Low-Level Motion Trajec-
tories». In: Robot Learning from Human Teachers. Cham: Springer Interna-
tional Publishing, 2014, pp. 25–35. isbn: 978-3-031-01570-0. doi: 10.1007/
978-3-031-01570-0_4. url: https://doi.org/10.1007/978-3-031-
01570-0_4 (cit. on p. 43).

[31] Meng Xiao, Xuefei Zhang, Tie Zhang, Shouyan Chen, Yanbiao Zou, and Wen
Wu. «A study on robot force control based on the GMM/GMR algorithm
fusing different compensation strategies». In: Frontiers in Neurorobotics 18
(2024), p. 1290853 (cit. on pp. 43, 45).

[32] S Preethi and B Arivu Selvam. «Automatic speech recognition system for
real time applications». In: International Journal of Engineering Innovations
and Research 2.2 (2013), p. 157 (cit. on p. 43).

[33] Praat. Expectation-Maximization. https://www.fon.hum.uva.nl/praat/
manual/expectation-maximization.html. Accessed: 2024-06-23 (cit. on
p. 44).

[34] Douglas A Reynolds. «Speaker identification and verification using Gaussian
mixture speaker models». In: Speech communication 17.1-2 (1995), pp. 91–108
(cit. on p. 44).

[35] Manan Vyas. «A Gaussian mixture model based speech recognition system
using Matlab». In: Signal & Image Processing 4.4 (2013), p. 109 (cit. on
p. 44).

[36] David KY Chiu. «Book review:" Pattern classification", RO Duda, PE Hart
and DG Stork». In: International Journal of Computational Intelligence and
Applications 1.03 (2001), pp. 335–339 (cit. on p. 44).

[37] Sylvain Calinon, Florent Guenter, and Aude Billard. «On learning, represent-
ing, and generalizing a task in a humanoid robot». In: IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 37.2 (2007), pp. 286–298
(cit. on p. 45).

[38] Noémie Jaquier, David Ginsbourger, and Sylvain Calinon. «Learning from
demonstration with model-based Gaussian process». In: Conference on Robot
Learning. PMLR. 2020, pp. 247–257 (cit. on p. 45).

94

https://doi.org/https://doi.org/10.1016/B0-12-227240-4/00062-9
https://doi.org/https://doi.org/10.1016/B0-12-227240-4/00062-9
https://www.sciencedirect.com/science/article/pii/B0122272404000629
https://www.sciencedirect.com/science/article/pii/B0122272404000629
https://doi.org/10.1007/978-3-031-01570-0_4
https://doi.org/10.1007/978-3-031-01570-0_4
https://doi.org/10.1007/978-3-031-01570-0_4
https://doi.org/10.1007/978-3-031-01570-0_4
https://www.fon.hum.uva.nl/praat/manual/expectation-maximization.html
https://www.fon.hum.uva.nl/praat/manual/expectation-maximization.html


BIBLIOGRAPHY

[39] Luka Peternel, Nikos Tsagarakis, Darwin Caldwell, and Arash Ajoudani.
«Robot adaptation to human physical fatigue in human–robot co-manipulation».
In: Autonomous Robots 42 (2018), pp. 1011–1021 (cit. on p. 45).

[40] S. Calinon. «A Tutorial on Task-Parameterized Movement Learning and
Retrieval». In: Intelligent Service Robotics 9.1 (2016), pp. 1–29. doi: 10.
1007/s11370-015-0187-9 (cit. on pp. 46, 47).

[41] Florence Babatunde, Bolanle Ojokoh, and Samuel Oluwadare. «Automatic
Table Recognition and Extraction from Heterogeneous Documents». In: Jour-
nal of Computer and Communications 03 (Jan. 2015), pp. 100–110. doi:
10.4236/jcc.2015.312009 (cit. on p. 54).

[42] Ovidiu Boitor, Florin Stoica, Romeo Mihăilă, Laura Florentina Stoica, and
Laura Stef. «Automated machine learning to develop predictive models of
metabolic syndrome in patients with periodontal disease». In: Diagnostics
13.24 (2023), p. 3631 (cit. on p. 55).

[43] Joao Batista Rocha Bezerra Junior. «Overcoming Imbalanced Class Distribu-
tion and Overfitting in Financial Fraud Detection: An Investigation Using A
Modified Form of K-Fold Cross Validation Approach to Reach Representa-
tiveness». PhD thesis. 2023 (cit. on p. 55).

[44] Hang Su, Andrea Mariani, Salih Ertug Ovur, Arianna Menciassi, Giancarlo
Ferrigno, and Elena De Momi. «Toward teaching by demonstration for robot-
assisted minimally invasive surgery». In: IEEE Transactions on Automation
Science and Engineering 18.2 (2021), pp. 484–494 (cit. on pp. 69, 70).

[45] Amritpal Singh, Wenqi Shi, and May D Wang. «Autonomous Soft Tissue
Retraction Using Demonstration-Guided Reinforcement Learning». In: arXiv
preprint arXiv:2309.00837 (2023) (cit. on p. 70).

95

https://doi.org/10.1007/s11370-015-0187-9
https://doi.org/10.1007/s11370-015-0187-9
https://doi.org/10.4236/jcc.2015.312009


Acknowledgements

Desidero ringraziare il Professore Alessandro Rizzo e il Professore Domenico Prat-
tichizzo, per avermi dato l’opportunità di misurarmi in un contesto di alto livello.
Ringrazio l’Ing. Enrico Turco per essere stato una guida disponibile e amichevole
in questo percorso di tesi, insieme a tutto il gruppo di ragazzi fantastici con cui
ho avuto modo di confrontarmi. Ringrazio i miei amici da sempre e per sem-
pre:Ciccio,Vicio,Dani,Dami,Giachi,Giando, Edo,che anche se spesso da lontano,
hanno contribuito a spingermi verso questo traguardo.

Ringrazio Lorenzo, Ludovica e Lollo, amici incontrati durante questo lungo
percorso,che lo hanno reso un po’ meno duro di quello che sarebbe stato.

Ringrazio i miei coinquilini di questi anni, diventati una seconda famiglia,
Richi,Ale,Marti,Ori.

Un ringraziamento speciale va al mio, ormai fratello acquisito, Nando. Abbiamo
condiviso ogni momento di questi anni, la sofferenza e le gioie ci hanno unito in un
legame spero indissolubile.

Ringrazio la mia famiglia allargata, Zia Sabina, Zio Mario, Chiara e Robi. Siete
sempre stati al mio fianco nei momenti peggiori e in quelli migliori. Rappresentate
per me famiglia, casa e ristoro e spero lo sarete sempre.

Ringrazio te Nonna, la persona più genuina che conosca, che mi ha cresciuto e a
cui voglio un bene enorme anche se non lo dimostro. Sei l’unico baluardo rimasto
a ricordarci le nostre radici.

Ringrazio la persona che ,anche quando tutto avrebbe indicato la via di fuga, è
rimasta al mio fianco, insegnandomi ad amarmi e ad amare.Spero che continuerai
a essere il mio Faro nel buio e che anche io lo sarò per te, Alessia.

Ringrazio la mia Famiglia, che mi ha sostenuto, rialzato, spinto, ognuno a suo
modo. Questo percorso ha messo alla prova il nostro legame, senza mai distruggerlo.
Spero di diventare l’uomo che sperate io sia, felice, sereno e capace di ridarvi un
po di quello che mi avete donato. Le parole sarebbero troppe da racchiudere in
questo piccolo spazio, ma sappiate che vi Amo tutti.

Infine due ringraziamenti speciali... Uno a chi purtroppo non può vedere e gioire
con me di questo sofferto traguardo. A voi Nonni, ognuno dei quali mi ha trasmesso
un pezzo di sè. In particolare a te Nonno Vittorio, guida, colonna, esempio per

96



Acknowledgements

tutti noi. Con il tempo mi sono reso conto di quanto di te ci sia in me, delle tue
passioni, della tua curiosità, del tuo modo di essere. Mi hai guidato da lontano e
mi sono spesso rivolto al tuo ricordo per rialzarmi. Spero di diventare un decimo
dell’uomo che eri per tutti noi e spero di averti reso orgoglioso.

A me, per avere lottato contro ogni ostacolo, interiore e esteriore per dimostrarmi
di potercela fare. Questo percorso per me rappresenterà un capitolo che mi ha
forgiato, lasciandomi al tappeto per tanto tempo, facendomi capire quanta voglia
ho di vivere e di dare. Non so dove mi porterà il futuro, ma so che mollare non è
un’opzione.

Gabriele

97


	List of Figures
	List of Tables
	Acronyms
	Introduction
	Thesis context and motivation
	Thesis objective
	Thesis structure

	State of the art
	Learning from demonstrations
	Methods for Acquiring Demonstrations
	Classification of Learning Methods in Lfd

	Detailed Techniques in LfD
	Probabilistic Approaches
	Deep Learning Techniques

	Environmental Constraints and Force Data
	Role of Environmental Constraints in LfD
	Incorporating Force Data into Learning


	Materials
	Hardware Components
	Franka Emika Panda Robot
	Soft Scoop Gripper
	Gamma F/T Sensor from Schunk
	Experimental Setup

	Software Components
	Robot Operating System (ROS)
	MATLAB
	Python
	CoppeliaSim
	Data Processing and Storage
	Provided MATLAB Code


	Methods
	Set-up and Demonstrations
	Environmental Setup
	 Robotic System Configuration
	Demonstration Procedure

	Data Collection and Preprocessing
	Data Acquisition
	Data Transformation
	Data Cleaning and Filtering
	Data Alignment and Normalization
	Data Structure

	Probabilistic Modeling
	High-Level Control with HMM
	Low-Level Control with GMM/GMR
	Models Integration


	Results
	Introduction
	Hidden Markov Model (HMM) Results
	Training Set Results
	Test Set Results

	GMM/GMR Results
	Training Set Results
	Test Set Results

	Integrated HMM-GMM System Results
	Training Set Results
	Test Set Results
	Summary


	Discussions, applications and future works
	Possible Improvements
	Implementing Vision-Based Systems
	Extending to Different Real-World Settings
	Developing Time-Independent Models
	Reducing Supervision and automate the process

	Possible Applications
	General Applications

	Biomedical Applications
	Surgical Robotics
	Robotic Assistants in Operating Rooms
	Automating Pharmacies
	Ethical and Legal Considerations


	Conclusions
	Support Code
	GMM/GMR Training and Evaluation Code
	HMM Training and Evaluation Code

	Bibliography

