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Abstract 

 

Monitoring the body's center of mass (BCoM) during real-world activities is vital in biomechanics 

and rehabilitation. It helps identify musculoskeletal disorders, assess energy use, and evaluate 

balance and mobility. An inertial measurement unit (IMU) can measure vertical BCoM movement 

by integrating accelerometer data, but this method can be inaccurate over long periods due to 

accelerometer biases and initial assumptions. To address these issues, this thesis integrates a 

barometer, traditionally used as an altimeter in avionics, into a wearable multi-sensor system that 

includes an IMU. The barometer is incorporated at both the hardware and firmware levels, and its 

readings are fused with the IMU data using sensor fusion techniques. This innovative approach 

aims to develop and validate methods for accurately estimating vertical displacement in 

individuals. Twenty healthy subjects participated in two trials mimicking daily life in a laboratory 

setting. Politecnico di Torino's ethical committee approved the study (Prot. 27213/2024). Tasks 

included Sit to Stand (StS) at normal and slower speeds to simulate mobility issues, lying on a 

mattress, going up and down the stairs, and squatting. Subjects wore the wearable system on their 

lower back. Stereophotogrammetry (SP) was used as a reference. BCoM displacement 

reconstruction involved two steps. First, transitions were identified through the first derivative of 

the barometric signal to locate the start and end of StS, lying, stairs, and squatting. Second, height 

changes during transitions were estimated using four methods: barometer alone (BAR), 

accelerometer alone (ACC), and combined barometer and accelerometer with a linear (LKF) or 

extended Kalman filter (EKF). Transitions are crucial as they mark points where vertical velocity 

is supposed to be null, facilitating the integration of accelerometer data. Height is considered 

constant between transitions, simplifying the process. Transitions detection was evaluated using 

the F1-score, sensitivity, and measuring delay relative to SP for correctly identified transitions. 

Height reconstruction was assessed via Root Mean Square Error (RMSE) over the entire trial and 

absolute deviation during transitions. An average F1-score of 90% was observed for transition 

detection, with a sensitivity of 99% for transitions associated with StS, slow StS, and 100% for 

lying. Transitions were detected with a mean delay of 12 ms. For height reconstruction, the RMSE 

values (average ± standard deviation) were (8±3) cm for BAR, (19±12) cm for LKF, and (33±19) 

cm for both ACC and EKF. To evaluate whether the errors were influenced by transition types, 

techniques, tests, and subjects, reconstructed height error distributions within each group were 

statistically compared. Results indicated significant differences between techniques and transition 

types. However, no significant differences were observed between tests and subjects for each 
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method. The derivative method performed well on StS and lying but poorly on stairs and squats. 

BAR provided the most accurate reconstruction because transitions were identified with the 

barometric signal, making it essential to determine these integration intervals with the 

accelerometer to enhance sensor fusion accuracy. In conclusion, integrating the barometer and 

IMU shows potential for accurately measuring height changes, benefiting biomechanical analysis 

and energy consumption assessment, and enhancing the understanding and evaluation of human 

movement in real-world settings. 
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1. Introduction 
1.1 Aim of the thesis 

 

The ability to move the Body Center of Mass (BCoM) is crucial for daily activities, and its analysis 

is vital in biomechanics and rehabilitation. It plays a key role in identifying musculoskeletal 

disorders, gauging motor energy expenditure, and assessing balance and mobility. For older adults 

or those with impairments, managing the BCoM during tasks like sitting, standing, or stair 

climbing presents significant cognitive and motor challenges. 

The use of miniaturized wearable sensors, combined with advanced mathematical models, allows 

for the precise tracking of mobility variations in real-world settings over extended periods. 

However, robust algorithms that correlate sensor data with human movement biomechanics are 

needed to extract meaningful mobility metrics. 

This study aims to develop and validate methods for accurately estimating the vertical 

displacement of the BCoM in healthy individuals during daily life conditions, simulated in a 

laboratory setting.  

To this purpose, advanced wearable sensors technologies are employed, including barometric 

sensors and magneto-inertial units strategically placed on the feet and pelvis. 

The primary goal is to prove that data from high-resolution barometric sensors, when meticulously 

processed, can reliably predict vertical BCoM movements, using the initial position as a baseline. 

Both single and dual-sensor systems provide valuable insights and the dual setup expected to 

effectively reduce noise in barometric signals. 

The secondary goal is to evaluate the integration of magneto-inertial data with barometric readings 

through advanced sensor fusion algorithms and assess whether it significantly enhances 

estimation accuracy over using barometric data alone. 

 

1.2 Novelty of the study 
 

The present thesis describes a novel approach to the estimation of the BCoM of healthy subjects 

by analyzing signals recorded by wearable barometric and magneto-inertial sensors. The study 

hold two major aspects of innovation. 

The first one involves the original application of barometric sensors for human movement 

analysis. While barometers are typically used as altimeters in avionics, this study utilizes them to 

track slight movements of the subjects' center of mass (CoM). Although these sensors can provide 
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direct altitude measurements, they are significantly affected by environmental and stochastic 

factors such as partial pressure changes, air movements, temperature, and humidity. These factors 

introduce noise and slow pressure drifts in raw barometric traces, resulting in a low signal-to-

noise ratio. Also, converting pressure data to altitude can result in measurement errors that can 

amount to several meters, if the underlying assumptions do not accurately reflect the actual 

conditions. To overcome these limitations and improve the reliability of CoM displacement 

estimations from barometric data—potentially integrated with magneto-inertial data—specific 

methods must be developed to compensate for environmental influences and enhance the signal 

quality related to BCoM height variations. This enhancement is critical for precise movement 

analysis.  

The second aspect of innovation pertains to the advanced application of the sensors beyond 

traditional uses. Wearable sensors typically monitor transitions between different states such as 

sitting, standing, lying down, or moving up and down stairs. This study aims to expand their 

application by continuously tracking BCoM height variations over time, thereby providing more 

comprehensive insights into an individual's motor control and energy expenditure during various 

movements. 

1.3 Outline 

 

The thesis is organized as follows: 
 

Chapter 1 (current chapter) introduces the thesis topic, outlining the objectives and the 

innovative factors it presents. Finally, the general outline of the thesis is described. 

Chapter 2 covers the mathematical and anatomical background related to the CoM, as well as 

exploring the various applications that leverage CoM analysis. Following this, the chapter reviews 

the methods used to evaluate CoM movement, encompassing both laboratory-based techniques 

and those utilizing wearable sensors. Special attention is given to a literature review on the use of 

barometric and inertial sensors for activity classification and the analysis of vertical CoM 

displacement. 

Chapter 3 provides information regarding the preliminary tests conducted for the selection of the 

barometric sensor, its initial configuration at the firmware level, and subsequent characterization. 

Additionally, it includes a comparison of the selected barometer with other two commercially 

available barometers. Finally, the chapter describes both the experimental setup and the 

experimental protocol. The former describes the sensors and instrumentation used in the study, 

while the latter provides details on the subjects involved in the research and the tests performed. 
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It also includes information about the request for the study's evaluation by the ethics committee 

of the Politecnico di Torino (protocol number: 27213). 

Chapter 4 focuses on the description of the developed methods and algorithms. In particular, it 

analyzes the processing of barometric and inertial signals. This is followed by the algorithms 

developed to reconstruct the vertical trajectory of the CoM. The chapter concludes with a 

description of the performance evaluation criteria and the statistical analysis. 

Chapter 5 presents the results obtained from the implemented methods. 

Chapter 6 displays the results obtained with the implemented methods. 

Chapter 7 provides a critical analysis of the results presented in Chapter 6. 

 

2.Background 
 
2.1 Importance of tracking the center of mass 
 
2.1.1 Basic notions 

 

The centre of mass is a fundamental concept in physics and biomechanics that represents the average 

position of mass in an object or system. It is the point at which the total mass of an object or system 

can be considered to be concentrated, for purposes of analysis under external forces [1]. 

For simple rigid objects with uniform density, the centre of mass is located at the centroid. For 

example, the centre of mass of a uniform disc shape would be at its centre. Sometimes the centre of 

mass doesn't fall anywhere on the object: the centre of mass of a ring is again located at its centre, 

where there isn't any material (Fig.1). 

 

 

 

 

 

 

 
Fig. 1: Examples of CoM of a ring and of a disk, marked by a red 
circle, corresponding to their geometric centres. 

https://www.khanacademy.org/math/geometry/triangle-properties/medians-centroids
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The CoM can be defined mathematically as the average mass weighted by position of all the 

elements comprising the object or system. 

 

For a system of discrete particles or objects (Fig.2), it can be calculated using (1): 

 

 

𝐶𝑂𝑀 =  
𝑚1 ∙ 𝑟1̅ + 𝑚2 ∙ 𝑟2̅+. . . + 𝑚𝑛 ∙ 𝑟𝑛̅

𝑚1 + 𝑚2+. . + 𝑚𝑛
                                (1)          

 

where  𝑚1, 𝑚2, … , 𝑚𝑛 are the masses of the individual particles or objects; 

𝑟1̅, 𝑟2̅, . . . , 𝑟𝑛̅ are their respective positions relative to a chosen coordinate system. 

For continuous objects with a mass distribution, such as a solid body or a fluid, the CoM can be 

calculated through integration over the volume or mass distribution.  

The CoM is also the point where the net force acting on the object can be considered to act [1]. In 

physics this assumption is fundamental because it streamlines the way motion is analysed. When 

external forces such as gravity or friction act on an object, the movement of the object can often 

be effectively understood by focusing on the motion of its CoM alone. This approach reduces 

complex systems to simpler models, making it easier to predict and analyse their behaviour under 

different conditions. 

The anatomical definition of CoM in human physiology refers to the hypothetical point within the 

body where the entire mass of the body is considered to be concentrated [2]. In biomechanics and 

𝑚𝑛 

𝑟3̅ 

𝑟1̅ 

0 

𝑚1 
𝑚2 

𝑟2̅ 

Fig. 2: Coordinate system containing 𝑚𝑛 masses, 
whose relative positions in the system are 
indicated by the vectors 𝑟𝑛̅. 
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human movement analysis, the CoM plays a crucial role in understanding posture, balance, and 

movement dynamics. 

In biomechanical terms, the anatomical CoM is typically located around the lower end of the spine 

near the top of the pelvis (Fig.3), because a significant portion of the body's mass is concentrated 

in the trunk and lower body, particularly in the pelvis and hips. However, its precise location can 

vary from person to person and can shift depending on body position, movement, or changes in 

body composition. Understanding the anatomical location of the CoM is essential for various 

applications in sports science, rehabilitation, and ergonomics [3]. It provides valuable insights 

into human movement patterns, stability, and balance, helping researchers, clinicians, and athletes 

to optimize performance and prevent injuries. 

 

 

2.1.2 Applications 
 

The ability to move, specifically to shift the CoM from one point to another, is fundamental for 

performing daily activities. Analyzing CoM is vital in biomechanics and rehabilitation, as it aids 

in detecting musculoskeletal disorders, measuring motor energy expenditure, and assessing an 

individual's balance and mobility. In particular, its dynamic evaluation is crucial across various 

fields, including ergonomics, sports, and clinical practice, due to its role in quantifying risky 

imbalance and postural impairments [3]. In balanced conditions, postural control is maintained 

through both active and passive mechanisms, utilizing somatosensory feedback to ensure an 

upright stance. This allows for effective counteraction of both predictable and unpredictable 

perturbations by making real-time adjustments to CoM dynamics. As balance involves continual 

compensation for gravity and external disturbances, the CoM's acceleration varies constantly in 

Fig. 3: Anatomical position of the center of mass, usually located around the lower end 
of the spine near the top of the pelvis, of a subject performing various activities [1]. 
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three-dimensional space to prevent falls. In static scenarios, falls occur when the CoM extends 

beyond the Base of Support —the area under the points of contact with the supporting surface 

(Fig.4) [4].  

 

 

 

 

 

 

 

 

Thus, the estimation of the displacement of CoM of a subject during the execution of a motor 

exercise is interesting for the analysis of human movement, as it allows characterizing the overall 

trajectory and making comparative evaluations on motor ability.  

Additionally, changes in the CoM displacement offer valuable information on the variations in 

potential (and kinetic, when CoM velocity is measured) energy associated with a task [5]. These 

assessments provide crucial insights also into functional independence and the effectiveness of 

rehabilitation programs for conditions like stroke, Parkinson’s disease, and multiple sclerosis [6] 

[7]. Everyday tasks that normally require little energy (Fig.5) can become challenging for these 

individuals. Studies indicate that a significant portion of stroke patients experience mobility issues 

such as balance instability, walking difficulties, and trouble transitioning between positions like 

lying down, standing, and sitting [8].  

 

 

 

 

 

 

 Fig. 5: Sitting and standing are common everyday tasks 
involving a vertical displacement of the CoM [44]. 

Fig. 4: The image shows a subject in static conditions, highlighting the 
anatomical position of the center of mass and its position within the base of 
support [43] . 
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As the population ages, maintaining a healthy mental and physical lifestyle becomes increasingly 

important for quality of life. People with motor degenerative diseases often face mobility 

limitations, which can exacerbate physical and mental decline associated with aging. Loss of 

mobility manifests in altered gait and a higher risk of falls, making systematic monitoring and 

evaluation of mobility essential for improving life quality for older adults and those with motor 

degenerative diseases [7]. Older adults often face mobility restrictions due to muscle mass loss 

and joint pain, which decrease strength and range of motion, limiting their ability to perform 

various movements. These limitations pose significant risks, as they can lead to falls that cause 

injuries, fractures, and even death. Falls are the leading cause of injury-related limitations in the 

elderly, resulting in personal, social, and economic challenges. Approximately 30% of people 

over 65 who live in the community fall annually, with falls accounting for 40% of injury-related 

deaths and 20-30% of severe injuries leading to fractures [9]. 

Therefore, it is essential to evaluate mobility both in clinical settings and at home to monitor and 

enhance the quality of life for older adults and individuals with motor degenerative diseases. 

Two common tests are used by clinicians to assess motor ability: Timed Up and Go (TUG) test 

and the Sit to Stand (STS) test [9].  

Many physically demanding tasks throughout the day begin with the individual sitting and 

needing to stand up to perform another activity. This lifting movement (Fig.6) is called “sit-to-

stand”. 

To successfully carry out this movement, the individual requires strength and body coordination. 

People with pathologies often struggle with balance and performing the STS movement 

successfully is more challenging. The STS test is commonly used to assess the level of mobility 

of the individual and to estimate the ability to get up from a sitting position to reach the standing 

position. Performing this test helps improve human movement and allows physicians to define 

and indicate therapy movements for each individual. This test is considered a viable method to 

Fig. 6: Sit-to-stand and stand-to-sit movement [45]. 
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determine the loss of balance. 

Another possibility is the five times sit-to-stand test (5STS), which has been associated with 

postural balance disorders and cognitive function. A recent review estimated that the average 

number of daily STS movements ranges from 33 to 71, with a minimum of 45 for most groups 

except those with conditions like congestive heart failure or those in hospital settings [10]. 

Individuals performing fewer than 45 daily STSs may benefit from additional intentional 

repetitions to address potential deficits in their daily activities. 

The Timed Up and Go (TUG) test, developed in 1991 as a modified and timed version of the Get 

Up and Go test, enables professionals to estimate the risk of falling in older adults [9]. This test 

measures the time taken to perform a series of movements: getting up from a chair, walking three 

meters, turning around, walking back, and sitting down again (Fig.7).  

 

 

The test begins when the therapist says "Go" and starts the stopwatch. The time recorded is the 

TUG score. Typically, a practice run is followed by two timed tests, with the average time of the 

two tests serving as the final score. The TUG test is a comprehensive measure of functional 

mobility, encompassing transfer tasks (standing up and sitting down), walking, and turning, while 

incorporating neuromuscular components such as power, balance, and coordination [9]. A cutoff 

level of 13.5 seconds is generally used, with an overall prediction rate of 90% for fall risk. The test 

effectively distinguishes fallers from non-fallers, showing that non-fallers perform the TUG test 

significantly faster [9]. 

 

Fig. 7: Schematic overview of the TUG test, consisting of five main 
phases: i) getting up from a chair, ii) walking three meters, iii) turning 
around, iv) walking back, and v) sitting down again [46]. 
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2.2 Instrumented CoM tracking 
2.2.1 Lab-based equipment 
 

Traditionally, the measurement and analysis of the CoM can be conducted within a controlled 

laboratory setting using sophisticated equipment. Among the most effective tools for this purpose 

are optoelectronic systems, video-based systems and force platforms. 

   Optoelectronic system 

Optoelectronic systems, also known as stereophotogrammetry, are considered the gold standard 

in motion analysis due to their ability to capture detailed movements of the whole body, intricate 

joint kinematics, and relative motions between joints [11]. Typically, optoelectronic systems are 

equipped with eight to twelve cameras that are strategically placed either on laboratory walls—

common in gait analysis laboratory settings—or on mobile stands, to maximize coverage of the 

laboratory space within the cameras' detection range (Fig.8).  

 

 

 

 

 

 

 

 

 

At the core of the stereophotogrammetric setup are markers and cameras. The markers, which can 

vary in shape and size according to the body segment they are attached to, are carefully placed 

following specific protocols [12] depending on the target body segments. Two main types of 

markers are typically employed: active markers, which are equipped with their own light sources 

powered by a device carried in a backpack, and passive markers, which are covered with a 

reflective material to catch the camera's light. The cameras are outfitted with a ring of infrared 

LEDs to consistently illuminate these passive markers, ensuring their visibility across a range of 

lighting conditions. 

The process of motion capture with this system unfolds through several stages. Initially, camera 

Fig. 8: Motion analysis using a stereophotogrammetric system. The cameras 
are positioned to cover the volume of the laboratory [47]. 
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calibration is necessary to ensure the accuracy of the 3D trajectories reconstruction of the markers. 

This involves capturing the positions of markers mounted on a geometrically predefined structure. 

Once the cameras are calibrated, the markers are placed on the subject at protocol-defined 

landmark points, a procedure that can last several minutes to an hour depending on the complexity 

of the setup and the number of markers used. 

During image acquisition, each camera captures images of the markers as clusters of white dots 

within its field of vision, depending on the subject's position within the lab. The system collects 

these 2D images and uses them to reconstruct the 3D positions of the markers. The matching and 

tracking stage follow, where each marker is named and associated to ensure their correct 

positioning in 3D space. This leads to the alignment of all markers within a shared coordinate 

system, which is essential for estimating local reference frames for any desired body segment. 

The output of the acquisition with a stereophotogrammetry system includes the trajectories of 

markers located on the subject, from which further metrics such as joint kinematics, velocities, 

and accelerations are derived. These metrics provide crucial data that can enhance research and 

clinical applications, offering a comprehensive view of motion that is instrumental in advancing 

our understanding of human biomechanics. 

Video based system 

Recent advancements in markerless motion capture (MMC) technology have demonstrated 

significant potential for tracking the CoM in various applications, including sports and 

rehabilitation [13]. Studies have shown that markerless systems, such as the combination of the 

OpenPose software and Microsoft Kinect, can estimate CoM positions and velocities accurately 

when combined with advanced signal processing techniques like Kalman smoothing [14]. These 

systems offer the advantage of capturing natural movements without the constraints and 

complexity of traditional marker-based methods. MMC technology is reliable for measuring joint 

angles and body movements, though its application in clinical settings is still in the early stages 

and requires further validation across diverse patient populations [15].  

In the field of rehabilitation, MMC systems have shown promise as non-invasive and cost-

effective solutions for monitoring motor functions in patients with neurological disorders, post-

surgical oncology patients, and children with cerebral palsy [15]. Additionally, in sports science, 

MMC technology has been applied to monitor athletes' CoM during dynamic activities, such as  
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sprinting [14].  

For example, OpenPose has been used to track CoM positions and velocities during linear 

sprinting, demonstrating that while raw data contains significant errors, these can be mitigated 

with signal processing techniques [14]. A crucial aspect of MMC technology is the reconstruction 

of the body skeleton, which involves identifying and tracking key points on the body to create a 

digital representation of the subject's movement (Fig.9). This digital skeleton allows for precise 

calculation of the CoM and other kinematic parameters.  

In conclusion, markerless motion capture systems have the potential to revolutionize motion 

analysis by providing accurate, non-invasive, and cost-effective data in both clinical and sports 

environments. However, for tracking the CoM, in relation to wearable sensors, they are confined 

to a restricted space and do not permit continuous monitoring. 

 Force platform  

Tracking the CoM using a force platform is a widely used method in balance assessment and 

biomechanics research [13]. A force platform measures the ground reaction forces exerted by the 

body, providing data on the center of pressure (CoP).  

 

 

 

 

 

 
Fig. 10: Subject positioned on a force plate [49]. The CoP 
and CoM are highlighted. 

Fig. 9: Motion analysis using a markerless system. The figure highlights the subject's 
skeleton in blue, to identify and track key points on the body and create a digital 
representation of the subject's movement [48]. 
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The primary methods for CoM estimation with a force platform include integrating horizontal 

acceleration, filtering COP data, and using equations of motion from inverted pendulum models. 

These methods, while useful, vary in accuracy and complexity. For instance, the integration 

method struggles with precision due to difficulties in measuring horizontal forces accurately, and 

the COP filtering method may not fully differentiate between COP and CoM. Inverted pendulum 

models, whether simple or complex, offer varying degrees of accuracy based on the degrees of 

freedom considered and the specific motions being analyzed [13][16]. 

Recent advancements combine force platforms with inertial measurement units (IMUs) to 

enhance the accuracy of COM tracking. This hybrid approach allows for real-time estimation of 

COM displacement and velocity, providing valuable feedback for both clinical and research 

applications. Such methods are particularly beneficial for assessing balance in populations at risk 

of falls, such as the elderly, and for evaluating postural control in conditions like stroke and 

Parkinson’s disease [13]. 

2.2.2 Wearable equipment 
 

In clinical settings, postural impairments associated with aging or neuromuscular disorders are 

evaluated using kinematic and electromyographic analyses employing technologies like stereo-

photogrammetry and electromyography (EMG). Traditional instruments, however, face 

challenges such as high costs, limited working spaces, and the need for expert operation [3]. These 

limitations drive the development of new methods that utilize fewer sensors to ensure high 

accuracy and usability. The use of a single inertial sensor for postural control assessments offers 

quicker setup and application in diverse environments, enhancing the assessment of 

biomechanical risks and improving performance monitoring in sports and health care settings [3]. 

The use of one inertial sensor, particularly at the L5 vertebra, provides sensitive and reliable 

measurements for CoM assessment. Various methods have been explored for measuring CoM 

displacement in three-dimensional space, including the strapdown integration method and inertial 

sensor networks. The inertial sensor networks estimate CoM dynamics through a biomechanical 

model incorporating multiple sensors along the kinematic chain, offering a detailed analysis of 

CoM displacement across different body segments. Despite high interest in wearable sensors for 

dynamic CoM assessments during activities like walking, running, challenges remain in 

measuring CoM trajectories during static or postural tasks due to smaller oscillations and higher 

estimation errors [3]. 
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2.2.2.1 Magneto-Inertial Measurement Units 
 

The advent of miniaturized wearable Magneto-Inertial Measurement Units (MIMUs), which 

integrate 3D accelerometers, gyroscopes, and magnetometers, has revolutionized the functional 

assessment of motor functions in medicine, sports, and ergonomics. These systems, available as 

multisensory platforms (e.g., Dot by Movella) or single Inertial Measurement Units devices, are 

lightweight, compact, and cost-effective. Advances in textile technology have further enhanced 

these systems by enabling the integration of sensors into clothing, creating tensorized garments 

[17]. 

Wearable health systems utilize IMUs to measure, monitor, and evaluate various biomedical 

parameters from the human body. For gait analysis, IMUs can monitor events such as falls and 

track the real-time trajectory of anatomical segments, providing detailed kinematic parameters of 

the gait cycle [17]. These features make IMUs invaluable for patients, caregivers, and clinicians, 

as they offer user-friendly, outdoor-capable, and long-term monitoring solutions without complex 

calibration processes. Such systems can objectively and quantitatively assess gait and mobility, 

supporting clinical decision-making for patients with orthopaedic or neurologic impairments 

making it particularly suitable for home monitoring and rehabilitation scenarios. 

In particular, a single IMU placed on the pelvis allows for the estimation of vertical (VT), medial-

lateral (ML), and anterior-posterior (AP) displacements of the CoM through the double integration 

of linear acceleration derived by the IMU. Additionally, IMUs can determine the orientation of 

the body segment where they are placed, based on angular velocity recorded by a gyroscope [17] 

[18].  

A MIMU includes a triaxial accelerometer, a triaxial gyroscope, and a triaxial magnetometer.  

 

Accelerometer 

Fig. 11: Accelerometer modelled as a mass-spring system [50]. 
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An accelerometer can be modeled as a mass-spring system (Fig.11). It measures the acceleration 

experienced by a mass as it moves from its resting position. The mass is subjected to an elastic 

force described by Hooke’s law (2)  

𝐹 = 𝑥 ∙ 𝑘                                                            (2) 
where x is the displacement and k is the elastic constant of the spring.  

According to Newton’s second law, the inertial force is (3) 

F =  𝑚 ∙ 𝑎                                                        (3) 

Equating the elastic force to the inertial force (4): 

𝑚 ∙ 𝑎 =  𝑥 ∙ 𝑘                                                  (4) 

 

From this, the acceleration 𝑎 can be calculated, given that the mass 𝑚 and the elastic constant 𝑘 

are known, and the internal displacement 𝑥 is measurable. In MEMS accelerometers, internal 

displacement is typically measured through changes in capacitance between plates, which 

correspond to the mass-spring system's behavior (Fig.12). 

 

The sensed acceleration, 𝑎, is the vectorial sum of the linear acceleration of the body, the proper 

acceleration 𝑎𝑝𝑟𝑜𝑝𝑒𝑟, and the gravity acceleration, 𝑔, (5): 

 

𝑎 =  𝑎𝑝𝑟𝑜𝑝𝑒𝑟 −  𝑔                                                      (5)  

Fig. 12: MEMS accelerometers, where the displacement is typically 
measured through changes in capacitance between plates [51]. 
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This means that accelerometers cannot directly provide displacement through double integration 

of the acceleration due to the gravitational component. The function of an accelerometer depends 

on whether it is in a static or dynamic state. In static conditions, where 𝑎𝑝𝑟𝑜𝑝𝑒𝑟 is zero, the 

accelerometer senses only the gravitational acceleration and can act as an inclinometer, indicating 

the direction of the gravity vector. In free fall, it outputs zero as both 𝑎𝑝𝑟𝑜𝑝𝑒𝑟 and 𝑔 cancel each 

other out.  

In dynamic conditions, the output reflects both gravity and the body's acceleration, making it 

unsuitable for determining inclination or calculating linear displacement via double integration. 

Therefore, it is first necessary to eliminate the contribution of gravity by transforming the 

acceleration into the global reference frame. 

Gyroscope 

Gyroscopes are devices used to measure angular velocity of an object (Fig.13).  

 

 

Gyroscopes manage the Coriolis effect on a vibrating framework. When an object vibrates, it 

tends to stay in its original vibrational plane even as its base moves. The Coriolis effect causes a 

secondary vibration orthogonal to the initial vibration. The Coriolis force is described by the 

equation (6): 

 

𝐹𝑐𝑜𝑟𝑖𝑜𝑙𝑖𝑠 =  −2𝑚(𝜔 × 𝑣)                                           (6) 

with 𝑚: mass; 

𝜔: angular velocity; 

𝑣: velocity of the mass. 

 

This effect generates a force from the vibrating object onto its base, which can be measured to 

gauge the rotation rate. Gyroscopes ideally respond only to rotational velocity across three axes. 

Fig. 13: MEMS gyroscope [52]. 
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By integrating the output once, angular displacement can be calculated.  

However, gyroscopes can suffer from bias instabilities. The bias is the tendency of a gyroscope 

to output a non-zero signal when it should ideally read zero angular velocity. This constant error, 

or bias, affects the accuracy of the gyroscope's measurements. If it is a fixed offset that remains 

constant over time, it can often be corrected through calibration, while if its value is variable over 

time, it can cause the gyroscope drift, leading to cumulative errors in the measurement of angular 

displacement. 

Magnetometer 

The magnetometer measures the strength of the magnetic field via the Hall effect: when a current 

pass through a metal conductor and a magnetic field is applied perpendicular to it, a voltage 

difference is created across the conductor's sides due to the motion of electrons. This Hall voltage 

indicates the magnetic flux density. 

Therefore, without magnetic interferences, such as those from ferromagnetic materials or 

electrical devices, the magnetometer detects only the Earth's magnetic field. 

 

Sensor fusion enhances the performance of the accelerometer, gyroscope, and magnetometer by 

addressing their individual limitations to estimate the 3D orientation of a MIMU. This approach 

allows to remove the gravity vector from accelerometer readings, enabling the computation of 

linear velocity and displacement through single and double integration. 

Orientation estimation involves determining the rotational relationship between the local sensor 

frame and the global frame. Typically, the global reference's z-axis aligns with the gravity vector, 

and the x-axis aligns with the Earth's magnetic north.  

The accelerometer functions effectively as an inclinometer when the sensor is stationary, and the 

magnetometer performs well in a magnetically clean environment. They provide the initial 

orientation estimation of the sensor. The gyroscope's output is integrated to calculate angular 

displacement. However, gyroscope signals suffer from slowly varying bias, leading to unbounded 

drift when integrated. Sensor fusion corrects this drift by using inclination and heading data from 

the accelerometer and magnetometer to enhance overall accuracy. 

 

Sensor fusion approach: the Madgwick filter  

The Madgwick complementary filter [19] is a well-known algorithm for estimating the orientation 

of a sensor and execute the sensor fusion, specifically through the fusion of data from IMU. This 

filter addresses the long-term drift issues associated with gyroscopes and the sensitivity to external 
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disturbances of accelerometers and magnetometers. 

Unlike a simple complementary filter, the Madgwick filter is nonlinear, utilizing a gradient 

descent approach to estimate orientation. This makes it more robust against sensor noise and 

inaccuracies. The filter represents orientation using quaternions, which are mathematical 

structures well-suited for describing 3D rotations without the singularities (gimbal lock) 

associated with Euler angles. A quaternion can be represented as (7): 

𝑞 = [𝑞𝑤, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧]                                                      (7) 

𝑞𝑤:  real part; 

𝑞𝑥, 𝑞𝑦, 𝑞𝑧: imaginary parts. 

 

The filter begins with an initial orientation estimate, usually determined by the accelerometer in 

a static condition, acting as an inclinometer. This initial orientation is represented as a quaternion, 

𝑞. 

The filter continuously receives data from the accelerometer (providing orientation relative to 

gravity), the gyroscope (providing angular velocity), and optionally, the magnetometer (providing 

orientation relative to the Earth's magnetic field).  

The orientation is updated using only gyroscope data, which is quick but prone to drift over time. 

The gyroscope provides angular velocity, Ω= [ ωx, ωy, ωz ] , which is converted into a quaternion 

by placing 0 as the real part Ω= [0, ωx, ωy, ωz ].  

The quaternion update can be calculated as follows (8): 

𝑞̇ = 0.5 ∗ 𝑞 ⊗ Ω                                                          (8) 

𝑤𝑖𝑡ℎ ⊗: quaternion product; 

𝑞̇: quaternion derivative; 

The updated quaternion 𝑞𝑛𝑒𝑤, is then given by (9): 

𝑞𝑛𝑒𝑤 = 𝑞 + 𝑞̇ ∗  ∆𝑡                                                      (9) 

∆𝑡: time interval between measurements. 

To correct the drift introduced by gyroscope integration, the filter employs a gradient descent 

algorithm to minimize the error between the gyroscope-based orientation and the orientation 

measured by the accelerometer and magnetometer. This error is represented by a cost function, 

𝑓(𝑞). Thus, this cost function is minimized using a gradient descent algorithm, which adjusts the 

quaternion 𝑞 to align the gyroscope-based orientation with the accelerometer-based orientation. 

The cost function can be expressed as (10):  
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𝑓(𝑞) = 𝑞 ⊗ 𝑎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ⊗ 𝑞 ∗ −𝑎𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒                              (10) 

where 𝑎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the measured acceleration; 

 𝑎𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the reference acceleration typically [0,0,1] representing gravity in the sensor's frame 

when it is at rest; 

 𝑞 ∗ is the conjugate of the quaternion.  

 

This cost function quantifies the difference between the expected gravity vector (transformed by 

the current orientation) and the actual measured acceleration. 

The minimum of the cost function corresponds to the situation where the error between the 

estimated and measured orientation is as low as possible, i.e., when the orientation estimate is 

closest to physical reality. 

The gradient of the cost function with respect to the quaternion is calculated as (11): 

∇𝑓(𝑞) = [
𝜕𝑓

𝜕𝑞𝑤
,

𝜕𝑓

𝜕𝑞𝑥
,

𝜕𝑓

𝜕𝑞𝑦
,

𝜕𝑓

𝜕𝑞𝑧
]                                           (11) 

The quaternion is updated through gradient descent (12): 

𝑞 = 𝑞 − 𝛽 ∗ ∇𝑓(𝑞) ∗  ∆𝑡                                           (12) 

with β: parameter representing the learning rate of gradient descent. 

The overall equation that combines the gyroscope update and the gradient descent correction is 

(13): 

𝑞𝑛𝑒𝑤 =  
𝑞 + ( 𝑞̇ − 𝛽 ∗ ∇𝑓(𝑞)) ∗  ∆𝑡

||𝑞 + ( 𝑞̇ − 𝛽 ∗ ∇𝑓(𝑞)) ∗  ∆𝑡||
                           (13) 

 

Each step iteratively updates the estimated orientation to reduce error, normalizing the quaternion 

to maintain a unit length. 

The Madgwick filter is effective because it continuously corrects for drift and sensor noise, 

providing a robust solution for accurate orientation estimation in IMUs. 

 

2.2.2.2 Barometers 
 

Pressure (P) is defined as the amount of force (F) per unit area (A) (14): 
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𝑃 =  
𝐹

𝐴
                                                              (14) 

Atmospheric pressure results from the gravitational force acting on air molecules, decreasing with 

altitude due to the reduced number of air molecules at higher elevations. Air pressure is considered 

inversely proportional (although with a non-linear relationship) to the altitude.  

Historically, barometers were used for weather forecasting and, thus, chiefly as environmental 

sensors. As a measurement device of ambient pressure, barometers have recently been used to 

measure evapotranspiration (transfer of water from land to atmosphere) in a given environment, 

for improving motor vehicle engine efficiency by modifying the air–fuel mixture, and for counting 

steps based on the slight disturbances in air pressure during body movements [20].  

Thanks to the relationship between pressure and altitude, barometers are also widely used as 

altimeters to measure altitude [21]. Altimeters are also employed in avionics (as well as consumer 

electronics, such as watches) in order to provide information about how high above mean sea level 

is an aircraft or mountain climber located [21]. Another application is exploited by meteorologists, 

who typically normalize readings with the local sea pressure level in order to make predictions 

for the weather [21]. 

Since the late 1990s, the barometers have been employed for the tracking of human activities. In 

particular, the ubiquity of MEMS barometers in smartphones and other wearable devices makes 

them natural candidates as data sources for the study of human activities and for the field of human 

activity (and movement) recognition. 

Today, barometers along with a suite of sensors like IMUs and magnetometers are used—

individually or through sensor fusion—to track a wide range of human activities. However, such 

use of a barometer is a recent phenomenon. In the last two decades, barometers were found to 

improve some activity class recognition that involves change in height, such as falls or vertical 

movements. In some applications, as recognizing vertical displacement activity, the accelerometer 

has been replaced by or at least given less importance than barometers, which are more energy 

efficient, require less signal processing, and yield less noisy signals than IMU signals [21]. 

Anyway, there are several sources interfering with the change of elevation sensed by a barometric 

pressure, such as temperature and weather changes, or even sudden air flow [14]. 

A MEMS pressure sensors can be classified according to their sensing methods, that could be 

piezoresistive or capacitive [21].  
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Piezoresistive Pressure Sensors 

Piezoresistive sensors change resistance under applied stress. A piezoresistive pressure sensor is 

made up of a diaphragm that experiences a pressure force, which is measured (Fig.14).  

This diaphragm can be created through wet bulk micromachining using chemical agents such as 

tetramethylammonium hydroxide (TMAH), EDP, and KOH, or through dry bulk micromachining 

with DRIE. Alternatively, surface micromachining techniques can also be employed to fabricate 

the diaphragm [21].  

A typical configuration for the diaphragm includes four piezoresistors arranged in a Wheatstone 

bridge configuration.  

Initially, the resistances of these resistors are identical. However, the resistances change under the 

stress induced by applied pressure on the diaphragm, causing two piezoresistors to increase in 

resistance and the other two to decrease. This shift unbalances the bridge and results in an output 

voltage.  

An input current or voltage is supplied to two terminals of the Wheatstone bridge, and the resulting 

output voltage is recorded from the other two terminals. 

Fig. 14: Schematic overview of a piezoresistive pressure sensor. On the 
diaphragm there are four piezoresistors arranged in a Wheatstone 
bridge configuration [53]. 



33 
 

Output voltage of the Wheatstone bridge with input voltage (V) can be written as (15): 

 

Vout = V+ − V− = (
𝑅3

𝑅1+𝑅3
) 𝑉 −  (

𝑅4

𝑅2+𝑅4
) 𝑉=(

𝑅3𝑅2−𝑅1𝑅4

(𝑅1+𝑅3)(𝑅2+𝑅4)
) 𝑉                         (15)  

 

Often, the input voltage source is replaced with a current source (I), then (16,17): 

𝐼 = 𝑖1−3 + 𝑖2−4 =
𝑉

𝑅1+𝑅3
+

𝑉

𝑅2+𝑅4
  = 

𝑅1+𝑅2+𝑅3+𝑅4

(𝑅1+𝑅3)(𝑅2+𝑅4)
 𝑉                          (16)  

 

Vout =  
𝑅3𝑅2 − 𝑅1𝑅4

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4
𝐼                                           (17) 

 

The strategic placement of the piezoresistors at areas of high stress on the diaphragm is crucial 

for enhancing the sensor's sensitivity through maximizing the piezoresistive effect. 

 

 

 

 

 

 

 

Fig. 15: Piezorezistive pressure sensor with a current and a 
voltage supplied to the two input terminals of the Wheatstone 
bridge. The resulting output voltage is 𝑉𝑜𝑢𝑡 = 𝑉+ − 𝑉−. 
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Capacitive Pressure Sensors 

Capacitive sensors consist of a flexible diaphragm and a stationary backplate forming a parallel 

plate capacitor (Fig.16).   

 

As diaphragm flexes in response to the external applied pressure, the distance in between plates 

changes and produces a variable capacitance.  

When pressure is applied to the diaphragm, it deforms and moves closer or further away from the 

backplate. This movement changes the distance between the two plates of the capacitor. The 

capacitance of a parallel plate capacitor is given by the formula (18): 

𝐶 =
𝘦𝐴

𝑑
                                                           (18) 

 

where C:  is the capacitance; 
𝘦: is the permittivity of the material between the plates; 
A: is the area of the plates;  
d: is the distance between the plates. 

The change in capacitance is measured and converted into an electrical signal, which can be 

correlated to the amount of pressure applied. The smaller the distance 𝑑, the higher the 

capacitance, and vice versa. Also in this case, the design of the diaphragm and the material 

properties influence the sensitivity and resolution of the sensor. A thinner diaphragm or one made 

of a material with a high degree of flexibility will be more sensitive to changes in pressure. 

Capacitive pressure sensors are known for their high accuracy and sensitivity. They are less 

affected by environmental factors such as temperature and humidity compared to other types of 

sensors. They also benefit from having no mechanical wear components, which contributes to 

their long-term stability and reliability. 

 

Fig. 16: Capacitive pressure sensor with flexible diaphragm and 
stationary backplate forming a parallel plate capacitor [54]. 
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From pressure to altitude 

 

The signal acquired by the barometer provides atmospheric pressure data in Pascal (Pa). When 

the barometer is used as an altimeter, the conversion of data from Pa to meters (m) is required. 

Pressure decreases exponentially with height, and for a given height z, the atmospheric pressure 

P(z) is defined by the following formula [21] (19): 

 

𝑃(𝑧)  =  𝑃0 ∗  𝑒
−(

𝑧
𝐻

)
                                                    (19) 

Where: 

𝐻 =  
𝑘∗ 𝑇

𝑚∗𝑔  
, pressure scale height; 

𝑃0: reference pressure (Pa); 

P(z) : atmospheric pressure of a given altitude; 

k (Boltzmann’s Constant) = 1.38 ∙ 10-23 m 2 ∙ kg ∙ sec-2 ∙K-1; 

T : Temperature expressed in K; 

m (Average mass of atoms) = 4.76 ∙ 10-26 kg; 

(22% of O2 and 78% of N2) ⇒ (0.22 ∙ 2 ∙ 2.67 ∙ 10-26 Kg + 0.78 ∙ 2 ∙ 2.3 ∙ 10-26 Kg)  

g (Acceleration of gravity) = 9.81 m/sec2; 

 

The following formula is used to rearrange air pressure into altitude (20): 

𝑙𝑛(𝑃(𝑧)) =  𝑙𝑛(𝑃0 ∗  𝑒−(𝑧/𝐻))                 because : ln(x*y) =ln(x)+ln(y) 

𝑙𝑛(𝑃(𝑧)) =  𝑙𝑛(𝑃0)  + 𝑙𝑛( 𝑒−(𝑧/𝐻) )      because : ln(ex )= x* ln(e) = x*1= x 

𝑙𝑛(𝑃(𝑧)) −  𝑙𝑛(𝑃0) =  −
𝑧

𝐻
                        because : ln(x)-ln(y)= ln(x/y) 

𝑧(𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠) =  𝐻 ∗   𝑙𝑛(𝑃0)  −  𝐻 ∗  𝑙𝑛(𝑃(𝑧)) =  𝐻 ∗   𝑙𝑛 (
𝑃0

𝑃(𝑧)
)                  (20) 

 

In the present study the previous formula is used, where P0 is set as the reference pressure that 

depends on the specific application, and the temperature could change during the trial. The 
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obtained altitude 𝑧 is the distance between the points characterized by the pressure 𝑃(𝑧) and 𝑃0. 

 

2.3 CoM tracking with wearable devices 
 
2.3.1 Activity recognition 
 

Recent studies have increasingly utilized barometric sensors, either alone or combined with 

inertial measurement units, to investigate vertical displacements and human activities recognition 

(HAR). Although there is a growing need to assess subjects in home environments, much of this 

research is still conducted in controlled settings. Sensor fusion methods combine data from 

different sources to enhance performance beyond what each source could achieve independently. 

Designing systems based on sensor fusion requires complementary sensors to mitigate the 

limitations of individual sensors with the strengths of others, such as combining a barometric 

altimeter with an Inertial Measurement Unit containing a tri-axial gyroscope and accelerometer.  

One of the key areas of interest is the sit-to-stand transition, which is crucial for evaluating 

rehabilitative progress and assessing motor abilities. Numerous studies have focused on the 

detection capabilities of STS transitions. For instance, Massè et al. conducted two notable studies 

on post-stroke patients using a combination of a barometer and an inertial sensor placed on the 

trunk.  

In the first study [6], a logistic regression classifier was used to detect and classify sit-to-stand 

and stand-to-sit transitions in 12 stroke patients, performing daily activities. The results showed 

that including the barometric data improved the overall correct classification rate (CCR) to 90.6%, 

significantly outperforming the use of inertial sensors alone, that achieved an overall CRR of 

75.4%. The aim of the second study [22] was to improve the recognition of daily activities and 

body elevation in mobility-impaired stroke patients, in particular to classify activities such as 

sitting, standing, walking, lying, and estimate body elevation during activities like stair climbing. 

An event-driven activity classifier based on a hierarchical fuzzy inference system (H-FIS) was 

developed to process the data from 12 stroke patients. The results indicated that the classifier 

achieved a CCR of 90.4% for posture/activity detection, with significant improvements in 

recognizing standing activities compared to previous methods.  

The barometric signal processing in these studies involved converting the barometric data to 

height using the barometric formula, followed by signal enhancement through sinusoidal 

modelling. The integration of the barometric sensor significantly improved performances. 
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Moncada-Torres et al. [23] investigated the optimal placement and selection of wearable sensors 

for classifying 16 activities of daily living (ADL) using a custom-made inertial measurement unit 

enhanced with a barometric pressure sensor. Subjects wore sensors on the wrists, ankles, and 

trunk. The study found that wrist-worn modules provided the highest classification accuracy, 

which was significantly improved by including altitude information from the barometer. The 

research highlighted that gyroscopes did not contribute significantly to classification accuracy 

under their scheme, suggesting potential for energy savings in long-term monitoring. The study 

achieved an overall classification accuracy of almost 93% through k-nearest neighbors (kNN) as 

classification method. 

Additionally, Xie et al. [24] aimed to improve human activity recognition (HAR) using a 

combination of inertial sensors and barometers, employing a multi-layer classification strategy 

where activities were initially divided into dynamic and static categories. It was used a machine 

learning classifier, specifically Support Vector Machines (SVM) for pre-classification and 

Random Forests for detailed activity classification. The method further refined results using 

additional parameters and previous recognition data. This approach achieved an average 

recognition accuracy exceeding 96% for eight activities, including sitting, standing, lying, 

walking, downstairs, upstairs, running, and fall detection, demonstrating high robustness and 

effectiveness. 

Makma et al. [25] proposed the use of relative barometric pressure sensors to enhance the accuracy 

of human activity detection based on a tri-axial accelerometer. In the experiment, 12 subjects wore 

a device with a tri-axial accelerometer and a barometric pressure sensor on their waists while 

performing activities like sitting, standing, walking, and lying. An additional barometric pressure 

sensor was placed on the wall as a reference. Activity classification was compared across three 

datasets: 1) acceleration data, 2) acceleration with on-body barometric pressure data, and 3) 

acceleration with both on-body and reference barometric pressure data. Three classifiers—KNN, 

Decision Tree, and Random Forest—were evaluated. The highest classification accuracy of 

90.4% was achieved using the Random Forest algorithm with the combined dataset of acceleration 

and both barometric pressure data. 

In efforts to differentiate between subjects at risk of falls and those who are not, Ejupi et al. [26] 

focused on developing a wavelet-based algorithm for detecting and assessing the quality of sit-to-

stand movements in older people, aiming to identify fall risk. Using a wearable pendant device 

equipped with an accelerometer and a barometric air pressure sensor, the study evaluated 119 

participants performing daily activities and standardized tests. The algorithm detected sit-to-stand 

movements with 93.1% sensitivity and a false positive rate of 2.9%, distinguishing between fallers 
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and non-fallers based on maximum acceleration, velocity, and power during the sit-to-stand 

movement. The wavelet transform's main advantage is its ability to identify patterns similar to the 

'mother wavelet,' providing a signal representation with excellent localization in both time and 

frequency. 

 Sun et al. [27] proposed a wearable fall detection system using barometric pressure sensors and 

machine learning to address the challenge of detecting falls from different heights. The study 

involved 10 subjects simulating falls and non-fall activities. The system utilized various 

classifiers, including Decision Tree, k-nearest neighbors (kNN), and support-vector machine 

(SVM), achieving the highest accuracy of 94.3% with the linear SVM classifier. The system 

showed promise in accurately detecting falls and reducing false alarms compared to traditional 

IMU-based systems.  

Pierleoni et al. [28] developed a waist-mounted fall detection system for elderly people using an 

Altitude and Heading Reference System (AHRS) combined with a barometric sensor. The device, 

integrating a 3-axis accelerometer, gyroscope, magnetometer, and barometer, provided accurate 

posture and altitude estimations. Tested with various fall scenarios and daily activities, the system 

achieved 100% sensitivity. The algorithm effectively detected falls, including those ending in a 

sitting position, highlighting the importance of combining multiple sensor types and efficient data 

fusion algorithms. 

 

In recent years advanced versions of the TUG test, known as the instrumented TUG (iTUG), have 

been developed and rigorously tested in elderly populations, both with and without specific 

medical conditions [29]. Research has demonstrated that the iTUG, when equipped with portable 

inertial sensors, can effectively identify specific walking impairments in individuals with 

Parkinson's disease, correlating gait deficits with the severity of the condition. Previous studies 

have explored various aspects of the iTUG, including different technologies for enhancing TUG 

tools, the use of iTUG in mobile platforms, and advancements in assessing fall risks. 

The primary methods for precisely and objectively measuring gait patterns are wearable inertial 

measurement units (IMUs) and stationary camera-based optical motion capture systems. Unlike 

traditional stopwatch methods, these instrumented approaches allow for detailed analysis of TUG 

tasks, including movements like sitting to standing, initial walking, turning, returning, and sitting 

back down. The iTUG provides additional performance metrics, objective assessments, and 

automated data management, offering significant improvements over traditional stopwatch-based 

TUG tests. This method supports extensive and easier long-term monitoring and shows promise 

for self-administration in home settings for the elderly. However, challenges such as the cost of 
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acquiring medically certified equipment and the need for specialized training for staff remain 

barriers to widespread adoption. Additionally, some kinematic metrics, like angular velocity, are 

not yet widely understood by healthcare professionals. Nevertheless, there is growing interest 

among physiotherapists, geriatricians, and other medical experts in leveraging the iTUG to 

enhance clinical management and intervention strategies for older patients [29]. 

 

2.3.2 Vertical displacement 
 

Besides HAR, barometers can also be utilized to estimate vertical displacement of the sensor.  

As previously mentioned, fluctuations in pressure can be unrelated to altitude, caused by 

unpredictable atmospheric conditions outdoors or actions like opening/closing windows or doors 

indoors, that make barometric altimeters inherently noisy and inaccurate. 

To address these challenges, Sabatini et al. [30] employed a two-step filtering approach. Firstly, 

a filtering module utilizing a quaternion-based Extended Kalman Filter (EKF) estimates the 

altitude of the body frame using inertial sensors. This allowed the sensed specific force to be 

rotated into the navigation frame and compensated for gravity, yielding vertical linear 

acceleration. Then, a complementary filter, driven by the vertical linear acceleration and measured 

pressure altitude, produced estimates of height and vertical velocity.  

The complementary filter is implanted as suggested in [31] (21): 

 

𝐶𝑥𝑘
=[

𝑥𝑎 𝑘 

𝑥̇𝑎 𝑘 
] = [

1 𝑇𝑠

0 1
] = 𝐶𝑥𝑘−1

+ [1 𝑇𝑠/2
0 1

] 𝐾𝑐 ∙  𝑇𝑠∆𝑥𝑘−1 +  [
𝑇𝑠/2

1
] ∆𝑣𝑘−1                           (21) 

 

where 𝐶𝑥𝑘
 includes the vertical position and the vertical velocity; 

∆𝑥𝑘 =  𝑥𝑝 𝑘 − 𝑥𝑎 𝑘 ; 

∆𝑣𝑘 =  𝑇𝑠𝑥̈𝑎  𝑘 ; 

𝑥𝑝 𝑘  : is the pressure altitude measured by the barometric altimeter at time 𝑡𝑘 = 𝑘𝑇𝑠; 

𝑥̈𝑎  𝑘 : is the vertical linear acceleration at the same time instant, after gravity compensation; 

𝐾𝑐, the gain of the complementary filter, is given by (22): 

 

𝐾𝑐 =  − [
√2𝜎𝑤/𝜎𝑣

𝜎𝑤/𝜎𝑣

]                                                         (22) 
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𝜎𝑤: 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑖𝑠𝑒 𝑖𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑥̈𝑎  𝑘 ; 

𝜎𝑣: 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑖𝑠𝑒 𝑖𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑥𝑝 𝑘  . 

To address the noise and environmental influences on barometric measurements, filtering 

techniques were developed to condition the measured pressure altitude by removing short-term 

correlations caused by environmental pressure changes. The data were processed using two 

methods: Method A employed a 4-point moving average filter, while Method B used a 4-point 

moving average filter cascaded with a whitening filter (designed with a DC gain of 0.21, one pole 

at 1 Hz, and one zero approximately two octaves down). The experimental validation involved 

several tests subjecting the baro-IMU to various motion conditions. Specifically, the no-motion 

condition, where the sensor remained at rest to assess the effects of short-term correlated pressure 

fluctuations on height and vertical velocity estimation; free-fall motion, where the baro-IMU was 

dropped from a known height to evaluate the accuracy of tracking vertical velocity and height 

during free-fall; forced circular motion, characterized by uniform circular motion to test the 

method's performance under controlled rotational movements; and squatting, where subjects 

performed squatting movements to simulate typical vertical human motions and assess the 

method's practical applicability.  

Root Mean Square (RMS) values of the differences between estimated and reference time 

functions were computed for each motion condition when reference data were available. 

With parameter tuning, it was found that 𝜎𝑤=15 mg, 𝜎𝑣= 30 cm for Method A, and 𝜎𝑣= 15 cm for 

Method B. The standard deviation of the noise  𝜎𝑣 for the barometer was chosen based on the 

filtering applied.  Both  𝜎𝑣 and  𝜎𝑤 were obtained from measuring the standard deviation of the 

noise for the barometer and the accelerometer, respectively. 

The results show a RMSE, expressed as mean value (m) ± standard deviation (m) across 10 trials, 

for the no-motion condition equal to 0,4 ± 0,15 (Method A) and 0,08 ± 0,03 (Method B) while the 

free fall motion achieved a value equal to 0,07 ± 0,03 (Method A) and 0,05 ± 0,02 (Method B).  

The last test executed was the squatting, that produced an RMSE equal to 0,86 ± 0,39 and 0,5 ± 

0,11 for Method A and B, respectively. The results (height RMSE in the range 5–68 cm) indicate 

that the sensor fusion method, particularly with the whitening filter, significantly improves the 

accuracy and reliability of vertical displacement and velocity tracking in various motion 

conditions. 

Many applications that utilize the barometer are directed towards aerospace vehicle navigation 

information. For instance, Yu et al. [31] proposed a multi-sensor fusion algorithm for positioning 

and navigation in low-speed rotorcraft used for atmospheric detection tasks. The algorithm 
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integrates data from an Inertial Measurement Unit (IMU), Global Positioning System (GPS), and 

barometric sensors, based on the Federated Kalman Filter. Results from experiments demonstrate 

that the fusion algorithm provides velocity and spatial position estimates closer to the actual values 

compared to those obtained from a single sensor.  

Ensuring accurate, real-time, and consistent altitude data is crucial for the safe operation of 

rotorcraft. While GPS provides vertical altitude readings, its update frequency is limited; 

barometers offer quick altitude updates but are affected by airflow variations. Accelerometers 

deliver fast vertical acceleration data but accumulate errors over time. By integrating the 

capabilities of these sensors, sensor fusion offers a solution that combines high refresh rates with 

stable and precise vertical height measurements. 

The fusion process for vertical height entails two stages: initially, the Kalman Filter combines 

accelerometer and barometer measurements to derive the initial altitude, denoted as ℎ0. The 

second stage employs a least-squares weighted estimation method to fuse the initial altitude 

estimation with GPS altitude measurements. This approach compensates for the slow update rate 

of GPS and the environmental susceptibility of barometric measurements. The resulting RMSE 

for vertical height is 3.12 meters.  

Another paper that exploits the fusion of inertial module, GPS and barometer to enhance the 

accuracy of vehicle navigation is proposed by Sokolovic et al. [32]. The integration approach was 

facilitated through the use of an extended Kalman filter (EKF), which was applied to mitigate the 

errors inherent in each individual sensor system and improve overall system accuracy. The EKF 

also included control signals with an adaptive function to dynamically adjust to varying sensor 

noise characteristics. Experimental analysis of the integrated navigation system's performance 

demonstrates that it consistently delivers continuous and dependable navigation solutions 

especially in environments where GPS data may be intermittently unavailable.  

In the work by Pierleoni et al. [33], due to GPS signal limitations indoors, only an inertial module 

and barometer were used, excluding GPS data. To accurately extract the relevant acceleration 

component, orientation estimations provided by the Attitude and Heading Reference System were 

utilized. Specifically, Madgwick's sensor fusion algorithm was employed to derive quaternion 

representations of the device orientation, crucial for precise movement analysis. 

The accelerometer vector, Ea, comprised both static (gravity) and dynamic (motion-induced) 

accelerations when the device was in motion (23): 

 

𝐸𝑎 =  𝐸𝑑 +  𝐸𝑔                                                           (23) 
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Only the dynamic acceleration component, Ed, and particularly the component perpendicular to 

the Earth's surface (𝐸𝑑𝑧), was considered for the estimation of vertical displacement through 

double integration. This method primarily counters low-frequency noise, necessitating accurate 

orientation estimation to effectively isolate gravity from the acceleration vector. 

Data from the accelerometer and barometer were fused using a complementary filter in a two-

input system. One input contained information with high-frequency noise, subjected to low-pass 

filtering, while the other input, with low-frequency noise, underwent high-pass filtering. This 

configuration ensured that when the low-pass and high-pass filters are mathematical 

complements, the output effectively reconstructs the variable being estimated, subtracting the 

sensor noise. Assuming that 𝑥1 =  𝑧 +  𝑛1 and 𝑥2 =  𝑧 +  𝑛2 represent two measurements of 

the same signal 𝑧, where 𝑛1 and 𝑛2 denote the respective noise measurements, and 𝑧 is the 

estimated signal- if 𝑛1 predominantly consist of low-frequency noise, and 𝑛2 predominantly high-

frequency noise- the output 𝑧 is expressed as (24): 

𝑍(𝑠)  =  𝐺1(𝑠)𝑋1(𝑠)  +  𝐺2(𝑠)𝑋2(𝑠)                                     (24) 

where 𝐺1(𝑠) represents the transfer function of a high-pass filter and 𝐺2(𝑠)  =  1 −  𝐺1(𝑠) 

denotes a low-pass filter. For altitude estimation, a complementary filter is utilized to merge 

altitude data from the altimeter sensor 𝐻𝑏𝑎𝑟𝑜 and vertical displacement derived from AHRS 𝐸𝑑𝑧 

(25): 

𝐻(𝑠)  =  
1

𝑠2
𝐺1(𝑠) 𝐸𝑑𝑧 (𝑠)  +  𝐺2(𝑠) 𝐻𝑏𝑎𝑟𝑜(𝑠)                       (25) 

Kalman filter  

The Kalman filter is an efficient and versatile algorithm for estimating the state of a linear dynamic 

system in the presence of noise [34]. To understand the Kalman filter, it is necessary to introduce 

some elements. 

In particular, the state model encapsulates a mathematical representation that delineates the 

system's evolution over time. This can be expressed through the equation (26): 

𝐱k+1 = A ∗ xk + B ∗ uk + wk                                      (26) 

with, 𝑥𝑘+1: 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 

A: state transition matrix 

B: control input matrix 
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𝑢𝑘: control input vector 

𝑤𝑘: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑛𝑜𝑖𝑠𝑒 

For systems that encompass parameters such as height, velocity, and acceleration, the state vector 

𝑥 is defined as (27): 

𝐱 = [
height

velocity
acceleration

]=[
x
ẋ
ẍ

]                                           (27) 

The state transition matrix, 𝐴, describes as the state evolves over time. For a system influenced 

by velocity 𝑣 and acceleration 𝑎, the motion equations are (28,29,30): 

x =  x0 + v ∗ t + 
1

2
∗ a ∗ t2                                     (28) 

v = v0 + a ∗ t                                                              (30) 

a = a                                                                             (31) 

Consequently, matrix A is defined as (32): 

𝐀 = |
1  Δt 0.5Δt2

0 1 Δt
0 0 1

|                                               (32)  

Δt: time between measurements 

The control matrix 𝐵 in a Kalman filter models how external controls or forces influence the 

system. In many systems, in addition to the natural evolution of the state (described by the 

transition matrix 𝐴), there are external controls or external forces that can change the state. These 

inputs are represented by matrix 𝐵 and a control vector 𝑢. If acceleration is the sole external 

control affecting the system, 𝐵 could be (33): 

𝐁 = |
0.5Δt2

Δt
1

|                                                      (33) 

This matrix maps how the control input influences the state. In this case, the control input directly 

affects acceleration, has a proportional impact on velocity change, and a quadratic impact on 

altitude alteration.  

It is necessary to specify how the measurements are related to the state. For example, if the 

measurement is altitude detected by a barometer, it would be expressed as (34): 
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zk = H ∗ xk + vk                                               (34) 

 𝑧𝑘: 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 

H: measurement matrix, which connects the state to the measurements (35) 

𝐇 = |
1  0 0
0 0 1

|                                              (35) 

𝑣𝑘: 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑛𝑜𝑖𝑠𝑒 

Understanding the characteristics of the process noise 𝑤𝑘 and measurement noise 𝑣𝑘 is also 

crucial. These are typically modelled as independent, normally distributed white Gaussian noises. 

The process begins with an initial estimation of the system state 𝒙0 and its uncertainty, 𝑃0. 

The Kalman filter operates in two phases: the prediction phase (based on the state model) and the 

measurement update phase (based on the measurements) (36,37,38,29,40). 

 

Prediction phase  

xk = A ∗ xk−1 + B ∗ uk−1                                                  (36) 

Pk = A ∗ Pk−1 ∗ AT + Q                                                       (37) 

Update phase 

Kk = Pk ∗ HT ∗ (H ∗ Pk ∗ HT + R)−1                                   (38) 

xk = xk + Kk ∗ (zk − H ∗ xk)                                             (39) 

Pk = (I − Kk ∗ H) ∗ Pk                                                           (40) 

 

with, 𝐾𝑘: 𝐾𝑎𝑙𝑚𝑎𝑛 𝑔𝑎𝑖𝑛, 𝑤ℎ𝑖𝑐ℎ 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Q: covariance of the process noise 

R: covariance of the measurement noise 

I: identity matrix.  

The Kalman gain matrix 𝐾 is central to understanding how the Kalman filter optimizes state 

estimation. When the covariance of the measurement error, 𝑅, is minimal, suggesting near-zero 

values, the current measurement zk is deemed highly reliable, diminishing the reliance on the 

predicted measurement H⋅xk. Conversely, when the covariance of the estimation error, Pk, 



45 
 

approaches zero, the reliability of the current measurement decreases, enhancing the stability of 

the predicted measurement. Defining the noise covariances 𝑅 and Q is crucial for the filter's 

performance. If these parameters are not predefined, tuning is required, typically performed off-

line and possibly using another Kalman filter for optimization. The covariance 𝑅 can be 

determined from off-line measurements to capture variance accurately, whereas Q often embodies 

a less deterministic nature. 

The Kalman filter operates through a feedback control mechanism, continuously adjusting its 

estimates based on new noisy measurements. This process involves two primary sets of equations: 

the time update equations and the measurement update equations. The time update equations, or 

predictive equations, project the current state and covariance forward in time, providing prior 

estimates for the next step. The measurement update equations, or corrective equations, integrate 

new measurements to refine these estimates, resulting in improved posterior estimates. The 

temporal update equations can also be considered as predictive equations, while the measurement 

update equations can be considered as corrective equations. 

The Kalman filter adeptly addresses the challenge of estimating the state of a linear, discrete-time 

controlled process subject to stochastic disturbances. However, in scenarios involving nonlinear 

processes or nonlinear relationships between measurements and the state, standard Kalman 

filtering may not suffice. In these cases, the Extended Kalman Filter (EKF) is employed, which 

adapts to nonlinearities by linearizing around the current estimates. This extension is pivotal in 

applications where nonlinear dynamics are prominent, making the EKF a versatile tool in 

advanced Kalman filtering applications. 

 

3. Experimental setup and protocol 

 
The objective of reconstructing the vertical trajectory of the center of mass of a subject during 

simulated daily activities in the laboratory is pursued through the use of barometric and inertial 

sensors. Specifically, the inertial module used is the one included in the INDIP wearable multi-

sensor system (which will be described in detail in paragraph 3.2.1). The barometer BMP390 from 

Bosch has been specifically integrated in the INDIP system at both hardware and firmware levels. 

The Bosch barometer, encapsulated into the INDIP system within a custom plastic case (INDIP-
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baro), was compared with commercial devices. Subsequently, its parameters were defined at the 

firmware level and, finally, it was characterized. 

3.1  Preliminary tests 
 

Algorithms for motion analysis strongly rely on the metrological accuracy of the recorded data. 

Therefore, preliminary tests to identify the optimal experimental setup and characterize its 

metrological performance were conducted before moving to the implementation of the algorithms.  

3.1.1 Comparison with commercial sensor 
 

Pressure sensors are embedded in a number of commercial devices. To evaluate the advantage of 

using a low-level system instead of a high-level commercial product, the performance of Bosch’s 

BMP390 barometer was compared with those of three commercial products: MTw sensor by 

Movella, a wristband by Panoramic Digital Health, and the new Muse sensor by 221e. 

3.1.2 XSens 

The MTw by Xsens [35] is a compact and highly advanced wireless inertial measurement unit 

designed to capture and transmit accurate motion tracking data. It features a suite of sensors, 

including 3D accelerometers, gyroscopes, magnetometers, and a barometer. The device uses a 

wireless network protocol to transmit data to a receiving station or computer, enabling real-time 

monitoring and analysis of motion data without the encumbrance of wires. 

Fig. 317: Four Xsens sensors and two 
INDIP-BMP390 sensors were used to 
compare the performances. Sensors were 
mounted and fixed on a wooden beam, 
representing a rigid body, to analyze them 
under similar conditions. 
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Being a commercial product, MTws are smaller than the INDIP system, resulting in a more 

compact system compared to the separate IMU and barometer configuration of INDIP. For the 

comparison, which aimed particularly at evaluating the performance of the two barometers, four 

Xsens sensors and two INDIP-BMP390 sensors were used. These sensors were fixed to a wooden 

beam (Fig.39), to analyze performance under similar conditions.  

The barometric MTw sensors sample at a frequency of 50Hz. The selected BMP390 configuration 

samples pressure at 25Hz, but is upsampled on board to 100Hz to match the sampling frequency 

of inertial data, resulting in four repeated samples every 40 ms. To compare performance, missing 

values in the Xsens data were removed, and samples were duplicated to also achieve a sampling 

frequency of 100Hz (Fig.40). 

The preliminary tests involved performing three turns in place, walking down a flight of stairs, 

walking a few meters, and then ascending the same stairs. The initial three turns were conducted 

to manually synchronize the recordings of the different sensors using the vertical angular velocity 

signals.  

 

Fig. 40: Raw barometric signals from four MTw sensors and two INDIP-baro sensors. 

 

The average Pearson correlation coefficient between the pressure signals recorded by the six 

sensors for all tests was 0.9211. The delay associated to the maximum cross-correlation was 0 for 

all the cases, meaning that the signals are in phase i.e., the sensors have similar dynamic responses.  

Variance was calculated on sections of the raw signals associated to constant heights, resulting in 

an average variance of 11.82 Pa for MTw sensors and 1.96 Pa for INDIP sensors. 
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To focus on the behavior of the signals during transitions, the average pressure measured by the 

four MTw sensors was low-pass filtered at a cutoff frequency of approximately 1Hz and compared 

to that of the signals recorded by the two INDIP-baro systems.  

 

Fig. 41: The pressure signals were averaged according to sensor group (MTw or INDIP-baro) and subsequently filtered with a low-
pass filter at a cutoff frequency of about 1Hz. 

 

Finally, the Pearson correlation coefficient was recalculated, yielding an average value of 0.997 

for all tests. 

In conclusion, signals from INDIP and Xsens were strongly correlated and provided similar 

information about environmental pressure changes, although the raw signals from the INDIP 

system showed much smaller variance. From these preliminary tests, it appeared clear that 

filtering the signals may not be enough to allow the identification of individual steps taken for 

neither of the two sensors. 

Given the great similarity between the signals recorded by INDIP-baro and MTw sensors, the two 

setups can be used interchangeably based on necessity and convenience. 

 

3.1.1.2 Panoramic Digital Health 
 

Pressure signals recorded by the integrated INDIP system with the BOSCH BMP390 barometer 

were compared to those recorded by a sensing wristband provided by Panoramic Digital Health 
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(PDH). The PDH wristband is designed to measure behaviors and functions significantly 

impacting patients with chronic health conditions. It can estimate sleep and activity levels, and 

when used in conjunction with beacon data, it provides deeper insights into patients’ lives. 

The PDH wristband includes a 3D accelerometer, gyroscope, magnetometer, and a barome’er 

(specifically the LPS27HHW model from STMicroelectronics [36]). The comparison focused on 

the performance of the two barometers, evaluated during controlled laboratory trials’performed 

by one young healthy participant. A trial involved a sequence of the following actions: sit-to-

stand, walking, lying down, walking, and stand-to-sit. The trial was repeated six times. 

To compare the pressure measurements of the two system in the same experimental condition, 

both the PDH wristband and the INDIP-barometer were positioned on the pelvis using a Velcro 

strap, and equipped with a marker for tracking vertical trajectory using the stereophotogrammetric 

system (Fig.42).  

 

The PDH inertial sensor samples at a frequency of 50 Hz, while its barometer samples at 13 Hz. 

To facilitate comparison, the sampling rates were first aligned to those of the INDIP system (100 

Hz for the accelerometer, gyroscope, and magnetometer, and 25 Hz for the barometer). Temporal 

alignment of the sensors was manually achieved by performing three initial rotations. 

Both barometric signals were converted to height according to (20), and low-pass filtered with a 

cutoff frequency of approximately 1 Hz. After removing the linear trend, the signals were aligned 

with the subject’s known initial pelvic height. 

The following images show the comparison between the signals of the two sensors and the 

stereophotogrammetric system (Fig.43, Fig.44, Fig.45).  

Fig. 42: PDH wristband (blue) and INDIP-barometer (red) were 
positioned on the pelvis  at the same height to compare their 
performances under simulated daily activities. 
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Fig. 43: Comparison of CoM displacement between reference (stereophotogrammetric signal) and PHD sensor. The barometric 
signal was converted to height, low pass filtered with a cutoff frequency of approximately 1 Hz, detrended, and aligned with the 
initial pelvic height of the subject. 

Fig. 44: Comparison of CoM displacement between reference (stereophotogrammetric signal) and INDIP-barometer. The 
barometric signal was converted to height, low-pass filtered with a cutoff frequency of approximately 1 Hz, detrended, and aligned 
with the initial pelvic height of the subject sensor. 

Fig. 45: Comparison of CoM displacement between INDIP-barometer and PHD sensor. 
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Performance evaluations were conducted by comparing the heights obtained from the barometers 

to the reference, the stereophotogrammetric signal. The results are presented in table 7 

 

Mean value  Max error 

(cm) 

mean error 

(cm) 

RMSE (cm) MAPE(%) Pearson 

coefficient 

BMP390 48,33 -7,23 8,55 13,52 0,93 

PDH 130,41 13,63 25,45 48,83 0,57 

 
Tab. 7: Performances of height reconstruction with BMP390 and LPS27HHW barometers relative to the gold standard. 

 

 

 

3.1.1.3 Muse v3 
 

MUSE, a product of the company 221e, is a low-power, miniaturized, wireless multi-sensor logger 

that integrates state-of-the-art sensing technology into a compact, robust, customizable, and user-

friendly platform [37]. It includes inertial and environmental sensors, on-board flash storage, 

wireless connectivity, automated on/off functions, and a regulated rechargeable power supply. 

This design ensures a versatile system for data acquisition across multiple applications. Fully 

certified and safe, MUSE serves as a production and professional research platform for wearable 

and connected industrial use cases. 

MUSE has been employed in a range of wearable and IoT devices developed by global enterprises, 

innovative startups, and leading researchers worldwide. Its capabilities include measuring 

acceleration, angular rates, 3D rotation, magnetic fields, temperature, humidity, proximity, 

ambient light, ambient pressure, and signal intensity.  

Notably, the pressure sensor incorporated in the MUSE v3 is the LPS22HH from 

STMicroelectronics [38]. The temperature and ambient pressure are sampled at a fixed rate of 25 

Hz, while the inertial unit has a sample frequency of 100Hz. The dedicated software samples 

inertial, temperature and barometric data at a frequency of 100Hz.  

The sensors were mounted on a rigid axis for the execution of the preliminary test (Fig.46). The 

test involved raising and lowering the sensors to known heights; they were left in static conditions 

for approximately 25 seconds before the next raising or lowering.  
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The barometric signals were converted into altitude, with the barometric formula. The BMP390 

barometer is configured with pressure oversampling (x16), temperature oversampling (x2), and 

low-pass filtering (IIR coefficient=15). To compare the signals, the barometric data from the 

MUSE was filtered using a filter equivalent to the one present on board the BMP390. The data 

from different sensors are aligned through the initial execution of 3 rotation.  

The following plot highlights the signals acquired from both sensors and the reference 

displacement (Fig.47). 

The standard deviation calculated on static condition, when the barometers are positioned on the 

ground, are 10.8 cm for the Muse barometer and 2.3 cm for INDIP barometer.  

Fig. 46: Muse and INDIP sensors 
mounted and fixed on a fixed axis, 
to execute the comparison. 

Fig. 47: The image highlights the signals from BMP390 barometer, integrated in the INDIP system, and 
LPS22HH barometer, integrated in the Muse. The test involved raising and lowering the sensors to known 
heights (yellow signal).  
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3.1.3 Determination of the firmware parameters for BMP390 
 

The INDIP system has been integrated with the BMP390 sensor, which provides accurate 

measurements of both pressure and temperature. Notably, the pressure measurement is 

compensated with the temperature measurement to ensure precision.  

The BMP390 sensor [39], a piezoresistive pressure sensor, supports oversampling of pressure and 

temperature measurements by an oversampling factor, ranging from 0 to 32. Moreover, the 

sensor’s firmware incorporates an Infinite Impulse Response (IIR) digital filter designed to 

mitigate short-term disturbances in the output data caused by environmental factors such as door 

slamming or air movement around the sensor. This filtering process effectively narrows the 

bandwidth of the output signal, with filter coefficients adjustable from 0 (off) to 127. The filtered 

output data is computed using the following formula (41): 

 

datafiltered= 𝑑𝑎𝑡𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑜𝑙𝑑∗𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡+𝑑𝑎𝑡𝑎𝐴𝐷𝐶

𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡+1
                         (41) 

 

where 𝑑𝑎𝑡𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑜𝑙𝑑 is the signal from the previous acquisition while 𝑑𝑎𝑡𝑎𝐴𝐷𝐶 is the data 

obtained from the ADC prior to IIR filtering. 

Fig. 24 illustrates the sensor measurement cycle, which includes the processes of measuring 

temperature and pressure with potential oversampling. . 

 

Fig. 218: Overview of the measurement cycle, which includes the processes of measuring 
temperature and pressure with potential oversampling. Following the measurement phase, the 
data undergoes filtering using the IIR filter. 
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In the context of the BMP390 sensor configuration, pressure measurement can either be executed 

or bypassed; when bypassed, the sensor exclusively detects temperature. When pressure 

measurement is executed, multiple oversampling options are available. Each oversampling setting 

reduces noise and increases the resolution of the output data by 1 bit. The pressure oversampling 

settings (osr_p) are specified in the "OSR[2:0]" register. Tab.1  presents the pressure 

oversampling options, highlighting the configuration utilized in this study.  

 

Similarly, temperature measurement can either be executed or avoided; in the latter case, the 

sensor can provide pressure readings more rapidly. When temperature measurement is executed, 

multiple oversampling options are available, each reducing noise and increasing the resolution of 

the output data by 1 bit. The temperature oversampling settings (osr_t) are specified in the 

"OSR[5:3]" register. The table below presents the temperature oversampling options, highlighting 

the configuration utilized. It is advisable to select the osr_t value based on the set value of osr_p, 

as indicated in the previous table. Oversampling temperature beyond x2 is possible, but it will not 

significantly enhance the accuracy of the pressure output, as the noise in the compensated pressure 

value is more influenced by the raw pressure noise than the raw temperature noise.  

 

 

 

 

 

 

Tab. 1: Oversampling settings for the pressure measurement. The setting highlighted 
in red is the one chosen for the present study.  

Tab. 2: Oversampling settings for the temperature measurement. The 
setting highlighted in red is the one chosen for the present study.  
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Regarding data sampling frequency, the maximum sampling rate is 200Hz, and it depends on the 

settings for temperature and pressure oversampling. Tab.3 outlines the typical and maximum 

measurement times based on the oversampling settings. The settings selected for this study 

provide a sampling frequency of 25Hz. Given that the INDIP system samples at 100Hz, there will 

be four identical samples in the pressure and temperature signals.  

 

Other configurations, in addition to the final one indicated in this paragraph, have also been 

analyzed, as will be demonstrated in the following sections. 

 

3.1.3 Characterization of BMP390 
 

In the initial phase of this work, tests were conducted to understand the functioning of the 

barometric sensor and to characterize it. The tests were performed using the sensor's configuration 

denoted in the datasheet as “Indoor Navigation” [39], with the following settings (Tab.4): 

Sampling frequency fs 25 Hz 

Pressure oversampling factor x 16 

Temperature oversampling factor x 2 

IIR filter coefficient 15 

Tab. 4:  BMP390 set up for preliminary tests. 

This configuration was chosen because it is recommended in the datasheet for using the sensor as 

an altimeter, which aligns with the objectives of this thesis. The tests conducted can be categorized 

into three groups. 

Tab. 3: The table highlights the range of the measurement frequency related to the pressure 
and temperature oversampling.  
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Static tests - Test 1 and Test 2 

Initially, two tests (Test 1 and Test 2) were conducted to evaluate the pressure values recorded by 

the sensors in static conditions and to identify any trends over time. The physical setup for both 

tests is illustrated in Fig.25: two sensors (indicated as #72 and #102) for each test were positioned 

at a constant height of 58 cm above the floor and maintained at this height for the entire duration 

of the acquisition, which lasted ten minutes.  

 

 

Tests 1 and 2 were performed consecutively on the same day, with negligible variations in 

atmospheric conditions. Specifically, in Test 1, four repetitions were performed, during which the 

two sensors were turned off and then turned back on between each repetition. Prior to signal 

acquisition, the sensors were allowed to stabilize in place for approximately ten minutes.  

In contrast, during Test 2, the two sensors remained powered on between successive acquisitions. 

This approach was used to evaluate any potential differences in sensor performance and stability 

when continuously powered. The signals recorded by the sensors during one of these repetitions 

are shown in figure 26. 

Fig. 219: Set up for Test 1 and Test 2. The sensors are positioned at constant height, in static condition.  
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Fig. 26: The image shows the barometric signals of the two sensors acquired during a repetition of Test 2, in static condition. 
 

Tab.5 contains the mean values and standard deviations of the barometric signals for each 

repetition relative to Test 1. Furthermore, the table includes the differences between the mean 

values of the two sensors across all repetitions. The same values are reported for Test 2 (Tab.6). 

 

Pa Mean value 

sensor #72 

Mean value 

sensor #102 

Standard deviation 

sensor #72 

Standard deviation 

sensor #102 

Difference between 

the mean values 

Repetition 1 99051,53 98992,89 5,84 6,31 58,64 

Repetition 2 99009,87 98950,07 3,14 3,62 59,81 

Repetition 3 98988,38 98928,46 2,65 2,99 59,92 

Repetition 4 98969,37 98910,03 0,95 0,71 59,33 

 
Tab. 5: Mean values, standard deviations of the barometric signals and differences between the mean values of the two sensors 
across all repetitions relative to Test1. 

Pa Mean value 

sensor #72 

Mean value 

sensor #102 

Standard deviation 

sensor #72 

Standard deviation 

sensor #102 

Difference between 

the mean values 

Repetition 1 99223,55 99165,45 2,92 2,62 58,10 

Repetition 2 99209,43 99150,61 2,68 3,28 58,83 

Repetition 3 99203,15 99143,91 1,96 1,84 59,24 

Repetition 4 99197,01 99137,83 3,59 4,04 59,17 
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Tab.6: Mean values, standard deviations of the barometric signals and differences between the mean values of the two sensors 
across all repetitions relative to Test2. 

To compare the values reported in the tables for the two conditions analyzed in Test 1 and Test 2, 

a scatter plot is provided (Fig.27), illustrating the mean values and corresponding standard 

deviations for each repetition. It can be observed that the difference between the mean values of 

the sensors placed at the same height consistently approximates 60 Pa, for each repetition of both 

tests. For pressure values around 99000 Pa, which correspond to atmospheric pressures observed 

in the tests, a difference of 60 Pa translates to approximately 5.3 meters. In Test 2, with the sensors 

left turned on between transitions, the mean pressure values of the four repetitions are more similar 

one to each other than in Test 1.  

 

Fig.27: Scatter plot of (mean values ± standard deviations) of barometric signals in static condition during repetitions of Test 1 
and Test 2. Each test is repeated four times and is represented on the graph by a point, indicating the average pressure value, 
and by an error bar, which represents the standard deviation of the pressure values during the test. 

 

Test 3 

Temperature variations and the presence of airflow on the sensor are additional factors influencing 

atmospheric pressure. To evaluate the impact of these elements, Test 3 was conducted. During 

this test, the sensors were placed at a constant height on a cart, which was maintained throughout 

the data acquisition period, while the temperature varied.  

 

Test 1 #72 Test 1 #102 Test 2 #72 Test 2 #102 
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In the first repetition (Fig. 29), the temperature decreased as the sensors were moved into an air-

conditioned room. For the second and third repetitions (Fig. 30 and Fig. 31), the temperature 

increased due to the heat emitted by a hairdryer, which also exposed the sensors to moving air. 

Despite the temperature changes, the sensor pressure readings remained stable. 

Fig.28: Set up used for Test 3. The sensors were placed at a constant height on a cart, 
subjected to temperature variations.  

Fig.29: Barometric and temperature signals during the exposition of decreasing temperature. 
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Test 4 

Test 4 considers the use of the barometer as an altimeter, i.e., the function for which it is used in 

this work. The objective was to observe the altitudes estimated by the barometers with respect to 

Fig.30: Barometric and temperature signals during the exposition of increasing temperature. 

Fig.31: Barometric and temperature signals during the exposition of increasing temperature. 
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the reference heights and their minimal achievable resolution using both sensors. Due to the 

unavailability of a statimeter, a measuring instrument used to measure height, stacked boxes, each 

with a constant height of approximately 4.25 cm, were used to position the barometer at increasing 

heights. Two sensors were used: one barometer was kept stationary on the floor, while the other 

was first brought to the ground and then moved to increasing heights at constant intervals (0 cm, 

4 cm, 0 cm, 8 cm, 0 cm, 12 cm, and so on), as marked by a stopwatch. The final height reached 

was approximately 60 cm, corresponding to 14 stacked boxes.  

The experimental setup, as described, is shown in Fig.32. The actual movement of the sensor 

relative to the floor is indicated in blue (Fig.33). 

 

 

Fig. 33: The signal corresponds to the true vertical displacement of the sensor that is positioned at increasing height relative to 
the ground, used as reference. 

Fig. 32: Experimental set up for Test 4. 
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The signals of the two barometers are presented in Fig. 34. As highlighted through Tests 1 and 2, 

it is observed that when the two sensors are positioned at the same height, that is, at the beginning 

of the Test 4 when both are at floor level, the pressure values differ by approximately 60 Pa. 

 

The barometric formula was first used to convert the barometric data into height, after aligning 

the signals by removing the 60 Pa difference. To estimate height relative to the ground from the 

sensors’ readings, two approaches were followed: a single sensor setup and a dual sensors setup.  

In the dual sensors setup, the raw barometric signal of the moving sensor is transformed into 

height (Fig.35), using the pressure perceived by the stationary sensor on the floor as the reference 

pressure (P0 in the barometric formula, paragraph 2.2.2.2). By calculating the average values of 

the raw barometric signal when the moving sensor was stationary at a constant height, it was 

possible to compare the height differences perceived by the two barometers (signal in red) against 

the reference height difference (signal in yellow) as shown in Fig.35.  

Fig.36 illustrates the same information but reports only the height mean values at each step.  

Fig. 34: The red signal corresponds to the pressure sensor that is moving, positioned at increasing height. The blue signal 
corresponds to the stationary barometer, located to the ground.  
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The same procedure was followed using the single sensor setup, with the pressure at the beginning 

of the trial from the moving sensor serving as the reference pressure (P0 in the barometric formula, 

paragraph 2.2.2.2). Fig.37 again displays the movement of the sensor and the perceived height 

differences. Fig.38 illustrates the same information but reports only the height mean values at each 

Fig. 35: Height relative to the ground estimated by the moving sensor relative to the barometer located at the ground in static 
condition, obtained through the barometric formula. The red signal represents the mean values of the dual sensors setup signal 
when both sensors are at constant height. The yellow signal is the reference signal.  

Fig. 36: The plot highlights the height differences of the barometer (blue signals) between one step and the following.   

Dual baro set-up 
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step. The signal is affected by an increasing trend, which negatively impacts performance 

compared to the dual sensor setup results.  

 

Fig. 320: The image shows the height of the moving sensor relative to the ground, obtained through the barometric formula with 
the single sensor set up. The red signal represents the mean values of the barometric signal when the sensor is at constant height. 
The yellow signal is the reference signal, that highlights the real movement executed.  

 

Fig. 321: Relative height at each level with respect to the previous level. Since the inter-levels step was approximately of 4 cm, the 
reference label (red line) is a line with constant slope.  

Single baro set-up 
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In both setups, height differences of approximately 4 cm were detected. Both the configurations 

provided a direct assessment of the vertical movement performed by the moving sensor with 

respect to the sea level (single-sensor setup) or the stationary sensor (dual-sensor setup). Such test 

demonstrated that the dual-sensor setup is reliable in quantifying relative height, as it effectively 

eliminates common sources of interference.  

3.2 Experimental setup 
 

The recording systems utilized for the study include the wearable multi-sensor system INDIP 

and the stereophotogrammetric system Vicon. 

3.2.1 The INDIP System 
 

The INertial module with DIstance Sensors and Pressure insoles (INDIP) is a multi-sensor 

wearable system that combines multiple MIMUs with other wearable sensors (pressure insoles , 

time-of-flight distance sensors, barometers) for human motion analysis purposes. It was designed 

by Università degli Studi di Sassari and it was originally designed as a validation tool for other 

devices used in gait analysis as part of the European Project, Mobilise-D. By leveraging the 

redundancy of information from different sensing principles and incorporating cutting-edge 

technologies and algorithms, the INDIP system has the potential to serve as a benchmark ("best 

available" reference) for real-world movement assessment applications [40]. The INDIP system 

is modular, meaning that the number and type of sensors included in the setup can change 

depending on the application.  

The complete INDIP setup includes various inertial, pressure, and distance wearable sensors, 

which can be used individually or simultaneously (Fig. 48). In particular seven MIMUs, placed 

on the head, wrists, lower back, and feet, attached using Velcro bands to prevent slippage and 

motion artifacts; two pressure insoles (one for each foot) placed within the participant's shoes, 

where each insole contains 16 pressure sensors, providing detailed mapping of foot-to-ground 

contact and protected by rubber insoles to avoid damage to the sensing components; two IR 

distance sensors attached to the shanks with Velcro.  

In the present study, the setup included only magneto-inertial modules of the INDIP system and 

pressure sensors of the selected model (BMP390L), specifically integrated into the INDIP system 

at both firmware and hardware levels 

The INDIP system samples at a frequency of 100 Hz, while the barometer at a frequency of 25Hz. 

Thus, in the barometric signal there are four identical samples. Prior to each recording session, 
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MIMUs must be individually connected via USB to a computer to synchronize their timestamps 

with the current date. This process, facilitated by a custom graphical user interface (GUI) 

developed in Matlab, is essential to ensure that the timestamps from different sensors are aligned 

and free from delays. 

After synchronization, the MIMUs are positioned on the participant's body and connected via 

Bluetooth Low Energy (BLE) to a custom app also developed in Matlab. This app allows the user 

to initiate data acquisition from all connected sensors. Once the acquisition begins, the participant 

is free to move. While the MIMUs may disconnect from the computer if the participant moves 

out of range, they continue recording data offline. At the end of the recording session, the sensors 

can be reconnected to the app via BLE to stop data acquisition, and then connected via USB to 

the GUI to download the recorded data. 

Each magneto-inertial module included a 3D accelerometer (range: ±16 g), a 3D gyroscope 

(range: ±2000 °/s), and a 3D magnetometer (range: ±50 Gauss). Magneto-inertial modules also 

serve as recording units, as they contain the CPU (ARM® 32-bit Cortex®-M4), a Bluetooth 

module for wireless communication, and a128 MB flash memory for data storage, allowing for 

up to twelve hours of data logging. Additionally, the system supports synchronization with third-

party devices via an external trigger. 

 

 

 

 

 

 

 

 

 

  

 

 

d) c) 

a) 
b) 

MIMU Barometer 

Fig. 48:  INDIP System with a) pressure insoles with 16 force resistive sensing elements, b) time-of-flight 
distance sensors, c) MIMU connected to the BMP390 pressure sensor; d) complete setup worn on the 
lower limb for gait analysis. The configuration used in this study includes only the INDIP system 
equipped with a magneto-inertial module and barometer (c). 
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The MIMU and barometric sensors enclosures are connected via a six-pin stripe cable 

approximately 6 cm in length (Fig.48). 

3.2.2 Vicon reference system 
 

Vicon Nexus® is a CE-marked stereophotogrammetric motion capture platform. The system 

comprises a personal computer, a connectivity unit, 14 Vero infrared-sensitive cameras, 3 Bonita 

visible-light-sensitive cameras, passive infrared-reflective markers to be attached to the subject, 

proprietary software for reconstructing marker positions within the acquisition space and applying 

biomechanical models provided with the system. From this reconstruction, kinematic parameters 

of motion, such as joint angles, angular velocities, and angular accelerations, can be obtained. The 

active components of the device do not come into contact with the subject, who only wears passive 

spherical reflective markers, each weighing 1-2 grams. The frame rate of the infrared-sensitive 

cameras is set to 100 Hz, which is sufficiently high to capture the detailed movements considered 

in the study. 

3.3 Experimental protocol 
 

3.3.1 Minimum Sample Size and Demonstration of Achievability of Results 

 

Determining the minimum sample size in a study is crucial to ensure that the results are 

statistically significant and reliable. A statistical power analysis was conducted to define the 

minimum number of subjects (𝑛) required, following the procedure proposed in [41] 

(42,43,44,45): 

 

𝑛 = 1 + 
2 (𝑧𝛼 + 𝑧𝛽)

2
∗  𝑘

𝑙𝑛
2(𝐶0)  ∗  (𝑘 − 1)

                                                 (42) 

𝐶0 =  
1 + 𝑘𝜃0

1 + 𝑘𝜃1
                                                           (43) 

𝜃0 =  
𝑅0

1 − 𝑅0
                                                             (44) 

𝜃1 =  
𝑅1

1 − 𝑅1
                                                             (45) 
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where 𝛼 = 0.05 is the significance level; 

𝛽 = 0.9 is the power of the analysis; 

𝑧𝛼= 1.96 is the critical value for α assuming a standard normal distribution;  

𝑧𝛽= 1.64 is the critical value for 1-β, assuming a standard normal distribution;  

k = 2 is the number of measurements (tests for each subject); 

𝑅0 = 0.7 is the minimum acceptable value of the intra-class correlation coefficient (ICC);  

𝑅1= 0.94 is the expected ICC value. 

The power analysis showed that the minimum number of subjects needed for an ICC > 0.94 is 20, 

with a number of tests per subject equal to 2 (𝑘). 

 

3.3.2 Tests 
 

Test were conducted within the BIOMed Movement Analysis Room at the interdepartmental 

center PoliToBIOMed Lab of the Polytechnic University of Turin, Corso Castelfidardo 30/a, 

Turin, Italy.  

The need to use this space for acquisitions is due to the presence of Vicon Nexus® systems within 

the specified laboratory.  

The necessary equipment for this work included two INDIP devices (two to be attached to the 

subject), the VICON stereophotogrammetric system connected to the respective desktop 

computer, a laptop with software installed for communication with INDIP, two portable scales, a 

couch, and two chairs. The stereophotogrammetric system and INDIP systems were synchronized 

through the use of a third INDIP, synchronized with both. 

The twenty volunteers signed an informed consent form indicating their willingness to participate 

in the study voluntarily, having been informed about the study procedures and objectives, and 

authorizing the researchers to use the recorded signals, stored in a completely anonymized form 

(see paragraph 3.3.3).  

The volunteers wore the two INDIP systems. One device was attached on the lower back at the 

level of the fifth lumbar vertebra of the subject (approximately close to the CoM) using a 

waistband, and the other to the left foot using a snap clip and a velcro strap. At the time of 

attachment, the operators ensured that neither the clip nor the velcro caused discomfort, 

inconvenience, or pain to the participant.  

A marker was attached to the case of each barometric sensor. Additionally, a third reference 

marker was attached at the sternum level. The use of markers is due to the need to accurately 
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measure the vertical trajectory performed by the pelvis and foot during the experiments to 

compare it with that estimated by the INDIP devices. Specifically, to directly compare the 

estimates of the wearable sensors with those of stereophotogrammetry, the markers are firmly 

attached to the case of each barometer using double-sided tape. The presence of the third marker 

attached to the sternum of the participant is related to the need for the VICON cameras to have at 

least three points to reconstruct the planes on which the markers lie.  

The INDIP system positioned on the pelvis is attached to a rigid support containing 4 markers at 

its corners, allowing for the verification of the estimated orientation's accuracy. In total, 7 markers 

were used.  

The complete setup is shown in the following images (Fig.49).  

 

 

 

 

 

 

 

 

 

 

 

 

Each subject performed four tests. Specifically, two tests involved performing actions commonly 

carried out in daily life, thereby simulating everyday conditions in the laboratory.  

These activities required the vertical displacement of the subject's center of mass. Therefore, the 

purpose of these two tests is to validate the algorithm for reconstructing the CoM's vertical 

movement. 

The other two tests conducted were the Sit-to-Stand and the Timed Up and Go tests. These were 

performed to evaluate the system's ability to extract clinically relevant parameters.  

Below is the description of the tests conducted. 

a) 

b) c) 

Fig. 49: INDIP systems and markers (green circled) worn by the subjects; a) subject frontal view, with highlighted 
the marker located on the sternum, and used as reference; b) focus on left foot, with the MIMU module (fixed 
with a snap clip) connected to the barometer (fixed with a velcro strap); c) INDIP system located on the pelvis with 
rigid support containing 4 markers at its corner. 
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Test 1  

The first test involved performing the following sequence of actions twice:  

1. sitting on a chair (10s)  

2. walking  

3. lying down on a bed (15s)  

4. walking  

5. sitting on a chair (10s)   

6. standing (5s)  

7. walking  

8. standing (5s)  

9. lying down on a bed (15s) 

10.  standing (5s)  

11. walking  

12. standing (5s)  

13. sitting on a chair (10s).  

 

 

 

 

 

 

 

 

 

 

In the second repetition, the participants were asked to move slowly during the sit-to-stand and 

stand-to-sit transitions, using the side handles of the chair to support themselves, to evaluate the 

algorithm's ability to manage different types of sit-to-stand movements. Performing this 

movement slowly aimed to emulate the clinical conditions of elderly subjects or those with 

c
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r 

inflatable 

mattress 

Fig. 50: Experimental set up used in Test 1 to evaluate the CoM’s reconstruction of the vertical displacement. The set up 
includes the presence of a chair and a bed (inflatable mattress) to simulate everyday life transitions from a bed and a 
chair. The image shows A) the photo of the experimental setup conducted in the laboratory and B) its reconstruction to 
highlight the path taken by the subjects. 

A) B) 
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pathologies, who can no longer perform these transitions smoothly. The experimental set up, as 

well as the walked circuit, are shown in Fig.50.  

Test 2  

The second test involved performing the following sequence of actions twice:  

1. sitting on a chair (10s)   

2. walking  

3. climbing up and down the steps in succession  

4. walking  

5. squatting 

6. walking  

7. sitting on a chair (10s)   

8. standing (5s)   

9. walking   

10. standing (5s)   

11. climbing steps with a 5-second pause on each step  

12. standing (5s)  

13. walking  

14. squatting  

15. standing (5s)   

16. walking  

17. standing (5s) 

18. sitting on a chair (10s) 

c
h
a
i

steps 

sq

Fig. 51: Experimental set up used in Test 2 to evaluate the CoM’s reconstruction of the vertical displacement. The 
set up includes the presence of a chair and steps to simulate everyday life transitions from chair or climbing 
up/down the stairs. The test also involves the execution of squat. The image shows A) the photo of the 
experimental setup conducted in the laboratory and B) its reconstruction to highlight the path taken by the 
subjects. 
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The squat was included to simulate everyday actions [26] where the center of mass is significantly 

lowered, such as picking up an object from the ground. The experimental set up is shown in Fig.51. 

Tests 1 and 2 were designed in a way to obtain multiple recordings of the target actions (sitting, 

standing, laying, etc…), in order to observe the sensors' behavior over extended periods of time. 

 

StS and TUG tests 

Finally, two tests aimed at assessing the ability of the system to gain clinically-relevant data were 

performed:  

• STS test: each subject performed 10 sit-to-stand actions in succession holding their arms 

crossed.  

• TUG test: each volunteer, starting seated in a chair, walked 3 meters in a straight line, 

turned, walked another 3 meters, and sat down again. the task was executed twice. 

 

3.3.3 Request for ethical committee evaluation 

The work proposed in this study was positively evaluated, upon prior request, by the Research 

Ethics Committee of the Polytechnic University of Turin, with protocol number 27213.  

In the request document, the measures aimed at ensuring the safety of subjects, operators, and 

bystanders are highlighted. 

The sample population is determined based on the following inclusion and exclusion criteria. 

Exclusion Criteria: 

o Being enrolled in the bachelor's or master's degree program in Biomedical Engineering; 

o Age below 18 or above 65 years; 

o Belonging to one of the classes defined as "vulnerable" under Regulation 2017/745; 

o Presence of known pathologies that may render the subject incompatible with the study, 

such as ambulatory and/or motor disorders. 

Inclusion Criteria: 

o Willingness to participate in the study voluntarily; 

o Absence of ambulatory problems and generally good physical health. 

B) 



73 
 

The inclusion and exclusion criteria were verified verbally during the first contact with the 

potential participant, before providing them any documents or recording any personal data. If the 

candidate met one or more of the exclusion criteria listed above, the potential participant was not 

enrolled. Vice versa, if a potential participant satisfied the inclusion and exclusion criteria, they 

were provided with the information sheet, and, if they were interested in participating in the study, 

they were given the Information Notice pursuant to Article 13 of the General Data Protection 

Regulation (EU) 679/2016.  

The experimental protocol was divided into three phases, repeated for each volunteer: 

1. Acquisition of informed consent and explanation of the study protocol; 

2. Attachment of the two INDIP devices and their respective passive markers; 

3. Execution of motor tasks. 

In the first phase, volunteers were required to present the signed copy of the informed consent, 

previously provided to them during enrollment along with the information sheet. The researcher 

ensured to reiterate the key points of the study protocol and asked the volunteers if they had any 

questions before beginning. The subject was required to provide personally identifiable 

information, specifically their first and last name, as well as anthropometric data, namely weight 

and height. The personally identifiable information was collected through the informed consent 

form, will remain in paper form, and will be kept by the study supervisor. Anthropometric data 

and acquired signals were saved using a randomly generated alphanumeric code, which will not 

allow for any personal data of the participant to be traced. 
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4. Methods 
4.1 Overview 
 

As defined in the previous chapters, the objective of the present study is to develop a method for 

the reconstruction of the vertical trajectory of the BCoM of healthy  subjects during the execution 

of simulated daily activities in a controlled environment. The developed algorithm was based on 

data recorded by body-mounted IMUs and barometers. 

The main steps of the algorithm are summarized in Fig.52: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

1. Pre-processing of the barometric 
signal: the raw pressure signals 
acquired from the barometers are 
processed to enhance their 
characteristics. 

 

2. Detection of transitions: a transition 
is defined in this work as the interval 
where a relevant change in the height of 
the BCoM is observed, and it’s defined 

by a start point and an end point. The 
proposed approach detects the 
transitions through the first derivative 
of the barometric signal. 

3. Reconstruction of the vertical 
displacement of the BCoM: several 
approaches are evaluated, particularly 
using only the barometer or the 
accelerometer, or leveraging sensor 
fusion algorithms that integrate 
accelerometric data with barometric 
data (Kalman filter, Sabatini filter).  

Fig.52: Description of the developed pipeline for 
reconstructing the vertical displacement of the BCoM 
using inertial and barometric sensors. 
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The algorithm for reconstructing the BCoM trajectory is based on three steps executed 

sequentially. The first step involves processing the barometric signal to convert it into height. The 

second step entails searching for transitions, while the third involves the actual reconstruction of 

vertical displacement.  

4.2 Single device or double devices set-up 
 

The experimental setup described in Chapter 3 included two INDIP-baro configurations 

positioned on the pelvis and on the left foot, each of them consisting of an inertial module and a 

barometer. Depending on the application, data recorded by only one (single-device setup) or both 

the configurations (double-device setup) can be used to extract information on the vertical 

displacement of the BCoM.  

If the single-device setup is used, only data recorded by the IMU and the barometer placed on the 

pelvis are considered. In this case, during the conversion from Pascals to meters using the 

barometric formula (paragraph 3.3.3), the reference pressure P0 is the pressure corresponding to 

the first sample of the barometer on the pelvis. This allows for the determination of the BCoM 

height during the trial relative to its initial position. 

The initial condition, i.e., the initial height of the BCoM, is known: thus, the absolute height of 

the pelvis relative to the floor is obtained.  

This configuration provides direct information on the vertical displacement of the pelvis relative 

to the floor; however, it is affected by common-mode interference such as drift and noise due to 

air movements or doors/windows opening and closing. Therefore, dedicated signal processing is 

required to mitigate these interfering elements. 

 

If the dual-device setup is used, data recorded by both the INDIP-baro configurations positioned 

on the subject is used, specifically the one on the pelvis and the one on the foot. In this case, 

during the conversion from Pascals to meters of the pressure recorded by the barometer mounted 

on the lower back, the reference pressure P0 is the pressure recorded by the barometer on the foot. 

Thus, unlike the single sensor setup, this value is not constant but varies along the trail, allowing 

for the determination of the BCoM height relative to the foot during the execution of movements.  

The information obtained with the two setups can coincide when the subject's foot remains fixed 

to the floor, a condition not met in the trials conducted during the experimental phase and in 

general not representative of daily life situations. Consequently, the dual sensor setup does not 

provide direct information on the absolute vertical displacement of the pelvis. However, the 

advantage is that it allows for the removal of interfering elements common to both barometers, 
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such as time-induced drift and noise due to air movements. 

 

In conclusion, the two setups provide different but complementary information. The single-device 

setup allows for obtaining the absolute vertical displacement of the pelvis, while the dual-device 

setup enables noise removal. In this work, the vertical displacement of the BCoM is reconstructed 

using the single-device setup because it provides an absolute measure of the displacement and 

offers a simpler setup in terms of usability, making it easier to export the method to a home 

environment. Additionally, preliminary performance results were satisfactory for the purposes of 

this work.  

Fig. 53: Raw barometric signal acquired from the barometer located on the pelvis, during the execution of a trial.  

Fig. 54: Raw barometric signal acquired from the barometer located on the foot, during the execution of a trial. 
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Fig.53 and Fig.54 show an example of the barometric signals extracted from the pelvis and the 

foot during the execution of a trial acquired in the experimental phase. A common trend is 

observed in both signals. 

Subsequently, the images (Fig. 55 and Fig. 56) show the vertical displacement of the pelvis, in 

meters, obtained using respectively the single sensor setup and the dual sensor setup as described 

before. In the latter, the removal of the trend is noticeable. 

 

Fig. 55: Vertical displacement of the BCoM through the single sensor set up. 

Fig. 56: Vertical displacement of the BCoM through the double sensor set up. 
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 4.3 Barometric signal 
 

The experimental acquisitions were performed with the firmware set to the following 

configurations (Tab.8): 

 

 

  

  
  
  
  
  
  
  
 

 Tab 8: Firmware setting of BMP390 barometer by Bosch used for experimental acquisitions. 

 

It was decided to remove the onboard low pass filtering in order to implement it manually in 

Matlab. This approach ensures that the data processing can be reproduced with barometric signals 

from different pressure sensors.  

The barometric signal from the sensor positioned on the pelvis is converted into height using the 

barometric formula, with the reference pressure P0 being the pressure of the same sensor at the 

start of the trial. This provides the height of the pelvis relative to its initial position.  

To reduce the presence of the trend in the signal, the Matlab function detrend (𝑑𝑒𝑡𝑟𝑒𝑛𝑑(𝑥, 𝑛)) is 

used, where 𝑥 is the signal and 𝑛 indicates the the nth-degree polynomial trend removed. Here, 𝑛 

is set to 2. 

The signal is successively filtered replicating the same low pass filtering proposed in the BMP390 

datasheet by Bosch, to reconstruct the CoM vertical displacement.  

Filter response in the time domain (formula provided in the sensor manual, [39]) (46): 

 

𝑦[𝑛] =
𝑦[𝑛−1]∗𝑘+𝑥[𝑛]

𝑘+1
                                                     (46) 

 
 

with k=15 to reproduce the Indoor Navigation configuration proposed in the datasheet. 

Filter response in the Z-transform domain (47,48): 

𝑌(𝑍) = 𝑌(𝑍) ∗ 𝑍−1 ∗ (
𝑘

𝑘+1
) +

𝑋(𝑍)

𝑘+1
                                  (47) 

Sampling frequency fs 25 Hz 

Pressure oversampling x 16 

Temperature oversampling x 2 

IIR filter / 
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H(Z)= 𝑌(𝑍)

𝑋(𝑍)
= 

1

1+𝑘

1−
𝑘

𝑘+1
∗𝑍−1

                                                   (48) 

 
corresponding to an IIR, all-pole filter with one pole. 

Filter response in the frequency domain (Z -> ejwT ) (49):  
 

H(ejwT)= 𝑌(𝑍)

𝑋(𝑍)
= 

1

1+𝑘

1−
𝑘

𝑘+1
∗e −𝑗𝑤𝑇

                                               (49) 

 

with 𝑗: imaginary unit, 𝑤: angular frequency (𝑟𝑎𝑑/𝑠), 𝑇: sampling time (0.01s). 

Magnitude of the frequency response (50): 

 

|𝐻(𝑒𝑗𝑤𝑇)| =

1
1 + 𝑘

|1 −
𝑘

𝑘 + 1
∗ e −𝑗𝑤𝑇|

                                   (50) 

 

The cutoff frequency wcut-off, is sought such that |H(ejwT)|=√2

2
= -3 dB. Substituting into the above 

equation, fcut-off= 1.016Hz. 

The filter was constructed in Matlab with parameters 𝑏=1 and 𝑎= [16,−15], and its characteristics 

were visualized using the freqz function (Fig.57). 

 

Fig.57: Magnitude and phase of the low-pass filter proposed in the sensor datasheet and reproduced in the data processing.  
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The following image (Fig.58) shows the original raw signal compared to the processed signal, 

where the trend has been removed and low-pass filtering has been applied using the previously 

described filter. 

 

4.4 Algorithms for the detection of transitions 
 

The algorithm for reconstructing the vertical displacement of the CoM assumes that the height of 

the pelvis remains constant, except during transitions.  

In this study, a transition is defined as the time interval during which the CoM experiences vertical 

displacement, either increasing or decreasing its initial height. Each transition is marked by a start 

point and an end point, which delineate the period of displacement.  

Before and after each transition, the height of the CoM is assumed to be constant.  

Specifically, the transitions performed in the acquired experimental trials include sit to stand, at 

both normal and slow speed, stepping up and down stairs, squats, stand to sit at both normal and 

slow speed, laying down, and getting up from bed. Sit to stand and stand to sit movements were 

analyzed under different conditions to evaluate the algorithm's ability to generalize across various 

motor conditions and to simulate motor difficulties typical of elderly or pathological subjects. 

 

 

Fig.58: Raw barometric signal compared to the processed one, through the detrending and low pass filtering.  
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4.4.1 Method based on derivatives 
 

The proposed method for transition detection is based on the first derivative of the barometric 

signal converted to altitude.  

Specifically, the points where the first derivative of a function 𝑓(𝑥) equals zero, namely the 

solutions to the equation 𝑓′(𝑥) = 0 are candidates for the function's local maxima, minima, i.e., 

the extremal points, or horizontal inflection points. 

To determine whether the points 𝑥 that nullify the first derivative are maxima, minima or 

horizontal inflection points, it is necessary to examine the sign of the first derivative. In intervals 

where the first derivative is positive, the function 𝑓(𝑥) is monotonically increasing, whereas in 

intervals where the first derivative is negative, the function 𝑓(𝑥) is monotonically decreasing. Any 

sign changes in the first derivative at the points where it equals zero determine the nature of these 

points. For example, 𝑓′(𝑥1) =0: 

 

- If the derivative 𝑓′(𝑥) is positive to the left of 𝑥= 𝑥1 and negative to the right, then 𝑓(𝑥) increases 

to the left of 𝑥= 𝑥1 and decreases to the right. Consequently, 𝑥= 𝑥1 is a relative maximum point 

for the function 𝑓(𝑥). 

- If the derivative 𝑓′(𝑥) is negative to the left of  𝑥 = 𝑥1 and positive to the right, then 𝑓(𝑥) decreases 

to the left of 𝑥= 𝑥1 and increases to the right. Consequently, 𝑥= 𝑥1 is a relative minimum point for 

the function 𝑓(𝑥). 

- If the derivative 𝑓′(𝑥) is negative both to the right and left of 𝑥= 𝑥1, or positive both to the right 

and left, then there are no sign changes. Consequently, the function does not exhibit monotonic 

variations and is classified as a horizontal inflection point.  

 

The peaks of the first derivative correspond to the inflection points of the signal 𝑓(𝑥). If 𝑓(𝑥) 

corresponds to the height and 𝑓′(𝑥) is the velocity, the inflection points represent the points 

where, from a biomechanical viewpoint, the acceleration of the transition changes its versus. For 

example, during the act of sitting, it corresponds to the moment when the subject begins to brake 

the movement. A positive peak in 𝑓′(𝑥) corresponds to the inflection point of a monotonically 

increasing transition while a  negative peak in 𝑓′(𝑥) corresponds to the inflection point of a 

monotonically decreasing transition. The inflection points are the points of interest for the 

transition identification algorithm because they allow for the identification of transitions in the 

vertical displacement of the CoM. 
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𝑓(𝑥): 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡   

𝑓(𝑥)′: 𝑓𝑖𝑟𝑠𝑡 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡, 𝑖. 𝑒. , 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  

𝑓(𝑥)′ = 0, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚, 𝑚𝑖𝑛𝑖𝑚𝑢𝑛 𝑜𝑟 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 

𝑆𝑖𝑔𝑛 𝑜𝑓 𝑓(𝑥)′ : {
𝑓(𝑥)′ > 0, 𝑓(𝑥) 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠

𝑓(𝑥)′ < 0, 𝑓(𝑥) 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠
 

 

𝑃𝑒𝑎𝑘𝑠 𝑜𝑓 𝑓(𝑥)′: 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑒𝑖𝑔ℎ𝑡, 𝑐𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 

 

Starting from the barometric signal converted into height, 𝑟𝑎𝑤_𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒, the derivative method 

exploits two signals: 

o 𝑚𝑜𝑣𝑖𝑛𝑔_𝑎𝑣𝑒𝑟𝑎𝑔𝑒: 𝑟𝑎𝑤_𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 filtered with a low-pass filter with a cutoff frequency of 

1Hz, replicating the Indoor Navigation configuration proposed by the sensor's datasheet 

(paragraph 4.3), and further filtered with a moving average filter (window of 200 samples). 

o 𝑥_𝑓𝑖𝑙𝑡: 𝑟𝑎𝑤_𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 filtered with a low-pass filter with a cutoff frequency of 0.5Hz. 

The first derivative of both signals is calculated and further filtered to better highlight the peaks, 

which are the points of interest to identify transitions. 

 

Using the 𝑓𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠 function, the peaks (both positive and negative, to identify rising and falling 

transitions) of the first derivative of the 𝑚𝑜𝑣𝑖𝑛𝑔_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 signal are detected, with conditions 

𝑀𝑖𝑛𝑃𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡=0.0005 and 𝑀𝑖𝑛𝑃𝑒𝑎𝑘𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒=400 samples. The value of 𝑀𝑖𝑛𝑃𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡 

was chosen through data tuning using the grid search method, evaluating the sensitivity and 

precision of the identified transitions. 

The 𝑚𝑜𝑣𝑖𝑛𝑔_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 signal is highly filtered, which results in a good noise reduction with better 

transition highlighting but, at the same time, poor temporal reliability. For this reason, once the 

peaks of the first derivative of the moving_average are identified, the focus shifts to finding the 

corresponding peaks in the first derivative of the x_filt signal. This approach enhances temporal 

resolution. Fig.59 shows the positive and negative peaks of the first derivative signal of the height 

and the corresponding increasing and decreasing transition in the height. 
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Fig. 59: The figure shows the filtered barometric signal (x_filt) and its first derivative. The positive peaks, highlighted in green, 
and the negative peaks, highlighted in blue, of the first derivative are shown. These peaks correspond to the monotonically 
increasing transitions (circled in purple) and monotonically decreasing transitions (circled in yellow) of the height, respectively. 

 

In this way, transitions are identified: to define them, it is necessary to find the start and end 

instants. Analytically, a transition is preceded by a minimum point and followed by a maximum 

point, where the first derivative of the signal is zero. The start and end points of the transition are 

therefore identified using the zero-crossing technique, identifying the zero crossings of the first 

derivative of 𝑥_𝑓𝑖𝑙𝑡 (Fig.60). 

 

Fig.60: Following the identification of the transitions through the detection of peaks in the first derivative signal, the start and 
end instants of the transitions are determined using the zero-crossing technique. The zero crossing points are highlighted both in 
the first derivative signal and in the height signal, as starting and ending points of the transitions.  
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Finally, a last check is performed to remove transitions erroneously identified and caused by noise 

(Fig.61). 

 

Fig. 61: Final start and end points of transitions identified through the first derivative method. 

 

Using a height threshold of 10 cm, chosen again with the grid search method, transitions where 

the absolute height difference between the start and end of the transition does not exceed this 

value are removed. 10 cm is a good compromise between the noise in the barometric signal and 

the smallest transition that needs to be observed, which is 15 cm for the step.  

Due to the diversity of transitions performed, especially the steps associated with a small 

displacement of the BCoM, the choice of the 𝑀𝑖𝑛𝑃𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡 threshold is very impactful. 

Choosing a threshold with a low value facilitates the recognition of transitions, but may result in 

noise detection and an increase in false positives or extra events. An extra event, in the context of 

the study, could indicate that the patient is performing more physical activity than they actually 

are. Conversely, a higher threshold increases precision at the expense of sensitivity, resulting in 

an increase in missed events. In this case, the patient seems to be performing less physical activity 

than they actually are. 

 

4.4.2 Manual labelling of stereophotogrammetric signal 

 

To compare the points representing transitions identified using the derivative method, the vertical 

component of the stereophotogrammetric signal of the pelvis, which is used as a reference for the 

vertical displacement of the BCoM, is manually labeled. The manual labeling is performed by 
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indicating the start and end moments of each transition through observation of the signal itself 

(Fig.62). This approach allows for the evaluation of the performance of the derivative method. 

 

Fig. 62: Manual labeling of stereophotogrammetric signal, by identifying the start and end points of each transition. 

 

4.4.3 Performance evaluation 

 

The points identified using the derivative method are compared with the manually labeled points 

from the stereophotogrammetric signal. The evaluation of the automatic method is developed by 

analyzing both the accuracy of transition detection and then the temporal correctness of the 

correctly identified transitions. 

 

Evaluation of transition detection 

The automatically detected points are categorized as follows: 

- True Positives (TP), which are the correctly identified points; 

- False Positives (FP), which are the incorrectly identified points that do not correspond to 

a transition. 

Additionally, it is possible to identify False Negatives (FN), which are points that the derivative 

method failed to detect but correspond to a transition. 

The number of manually labeled reference points is given by the sum of TP and FN, while the 

number of automatically detected points is given by the sum of TP and FP. 

To evaluate the performance of the proposed method, the following parameters are used 

(51,52,53): 
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1) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100  (51) , representing the number of correctly identified relevant 

instances divided by the total number of relevant instances that exist; 

2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100  (52) , representing the number of correctly identified relevant 

instances divided by the total number of instances identified; 

3) 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 ∗ 100  (53), representing the harmonic mean of 

precision and recall, providing a balance between these two metrics. 
 

A transition is considered correctly identified if both the start and end times are accurately 

detected. The true positive transitions are classified based on the type of transition (for Test1: StS, 

slow StS, laying, and for Test2: StS, squat, and step). For each type of transitions is indicated the 

sensitivity of transition detection, to highlight the recognition percentage of each group. This 

classification helps to determine whether the proposed method based on derivatives performs 

better on specific types of transitions or can generalize and work equally well regardless of the 

type. 

Evaluation of temporal correctness 

For the true positive transitions identified, where both the start and end points of the transition are 

correctly detected, additional parameters are extracted to evaluate the temporal accuracy: 

- 𝑅𝑎𝑛𝑔𝑒 10 − 90%: it is a parameter used to evaluate the duration of a transition by 

focusing only on its central portion. This means excluding the initial and final phases of 

the transition and concentrating on the period where the majority of the change occurs. 

Specifically, it measures the time taken for the transition to progress from 10% to 90% of 

its total completion, referencing the initial and final heights of the transition in question 

(Fig.63). By comparing the "10-90% range" values obtained from stereophotogrammetric 

data (considered as gold standard) with those from the barometric signal, the accuracy of 

the derivative method in detecting the actual duration of transitions is assessed.  

If  ℎ𝑒𝑛𝑑𝑠𝑡𝑒𝑟𝑒𝑜 is the height reached at the end of a transition and ℎ𝑠𝑡𝑎𝑟𝑡𝑠𝑡𝑒𝑟𝑒𝑜 is the height 

at the beginning of transition for the reference signal (54,55,56): 

 

𝛥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  =  ℎ𝑒𝑛𝑑𝑠𝑡𝑒𝑟𝑒𝑜  −  ℎ𝑠𝑡𝑎𝑟𝑡𝑠𝑡𝑒𝑟𝑒𝑜                                              (54) 

ℎ10%𝑠𝑡𝑒𝑟𝑒𝑜 =  𝛥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  ×
1

10
+  ℎ𝑠𝑡𝑎𝑟𝑡𝑠𝑡𝑒𝑟𝑒𝑜                                        (55) 

ℎ90%𝑠𝑡𝑒𝑟𝑒𝑜 =  𝛥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  ×
9

10
+  ℎ𝑠𝑡𝑎𝑟𝑡𝑠𝑡𝑒𝑟𝑒𝑜                                        (56) 
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The samples 𝑡10%𝑠𝑡𝑒𝑟𝑒𝑜 and 𝑡90%𝑠𝑡𝑒𝑟𝑒𝑜 are found, where the reference height during the 

transition reaches the values ℎ10%𝑠𝑡𝑒𝑟𝑒𝑜 and ℎ90%𝑠𝑡𝑒𝑟𝑒𝑜 (57).  

 

𝑟𝑎𝑛𝑔𝑒10−90%𝑠𝑡𝑒𝑟𝑒𝑜 = 𝑡90%𝑠𝑡𝑒𝑟𝑒𝑜  −  𝑡10%𝑠𝑡𝑒𝑟𝑒𝑜                              (57) 

 

Similarly, for the barometer (58,59,60,61): 
 

𝛥𝑏𝑎𝑟𝑜  =  ℎ𝑒𝑛𝑑𝑏𝑎𝑟𝑜  −  ℎ𝑠𝑡𝑎𝑟𝑡𝑏𝑎𝑟𝑜                                            (58) 

ℎ10%𝑏𝑎𝑟𝑜 =  𝛥𝑏𝑎𝑟𝑜  ×
1

10
+ ℎ𝑠𝑡𝑎𝑟𝑡𝑏𝑎𝑟𝑜                                           (59) 

ℎ90%𝑏𝑎𝑟𝑜 =  𝛥𝑏𝑎𝑟𝑜  ×
9

10
+ ℎ𝑠𝑡𝑎𝑟𝑡𝑏𝑎𝑟𝑜                                           (60) 

𝑟𝑎𝑛𝑔𝑒10−90%𝑏𝑎𝑟𝑜 = 𝑡90%𝑏𝑎𝑟𝑜  −  𝑡10%𝑏𝑎𝑟𝑜                                                (61) 

 

The difference between 𝑟𝑎𝑛𝑔𝑒10−90%𝑠𝑡𝑒𝑟𝑒𝑜 and 𝑟𝑎𝑛𝑔𝑒10−90%𝑏𝑎𝑟𝑜 for each transition 

provides an indication of the accuracy of the automatic transition's temporal duration. 

 

 

- 50% 𝑅𝑎𝑛𝑔𝑒: it generally refers to the point in time at which half of the transition is 

completed, with reference to the initial and final heights of the transition in question. By 

comparing the temporal points where the 50% of a transition is completed, obtained from 

the stereophotogrammetric data and the barometric data, information on the delay with 

Fig.63: Graphical representation of the 10-90% range for a transition of the stereophotogrammetric signal. 

 

Range 10-90% 

ℎ𝑒𝑛𝑑𝑠𝑡𝑒𝑟𝑒𝑜 

ℎ𝑠𝑡𝑎𝑟𝑡𝑠𝑡𝑒𝑟𝑒𝑜 

ℎ90%𝑠𝑡𝑒𝑟𝑒𝑜  

ℎ10%𝑠𝑡𝑒𝑟𝑒𝑜  

𝑡90%𝑠𝑡𝑒𝑟𝑒𝑜 𝑡10%𝑠𝑡𝑒𝑟𝑒𝑜 
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which the transition is identified can be obtained (Fig.64) (62,63,64,65). 

 

𝛥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  =  ℎ𝑒𝑛𝑑𝑠𝑡𝑒𝑟𝑒𝑜  −  ℎ𝑠𝑡𝑎𝑟𝑡𝑠𝑡𝑒𝑟𝑒𝑜                                           (62) 

ℎ50%𝑠𝑡𝑒𝑟𝑒𝑜 =  𝛥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  ×
5

10
+  ℎ𝑠𝑡𝑎𝑟𝑡𝑠𝑡𝑒𝑟𝑒𝑜                                     (63) 

𝛥𝑏𝑎𝑟𝑜  =  ℎ𝑒𝑛𝑑𝑏𝑎𝑟𝑜  −  ℎ𝑠𝑡𝑎𝑟𝑡𝑏𝑎𝑟𝑜                                                 (64) 

ℎ50%𝑏𝑎𝑟𝑜 =  𝛥𝑏𝑎𝑟𝑜  ×
5

10
+  ℎ𝑠𝑡𝑎𝑟𝑡𝑏𝑎𝑟𝑜                                                (65) 

 

The samples 𝑡50%𝑠𝑡𝑒𝑟𝑒𝑜 and 𝑡50%𝑏𝑎𝑟𝑜 are found, where the reference height and the 

barometric height during the transition reaches the values ℎ50%𝑠𝑡𝑒𝑟𝑒𝑜 and ℎ50%𝑏𝑎𝑟𝑜 (66). 

 

𝑑𝑒𝑙𝑎𝑦 = ℎ50%𝑠𝑡𝑒𝑟𝑒𝑜 − ℎ50%𝑏𝑎𝑟𝑜                                              (66)  

 

 

4.5 Algorithms for the tracking of the vertical trajectory of CoM 
 

Following the identification of the transition start and end moments, it is possible to reconstruct 

the vertical displacement of the Center of Mass. Various approaches are evaluated, including the 

use of a single barometric sensor placed on the pelvis, the single accelerometer of the IMU located 

Fig.64: Graphical representation of the point where the 50% of a transition of the stereophotogrammetric signal 
is completed. 

ℎ𝑒𝑛𝑑𝑠𝑡𝑒𝑟𝑒𝑜 

ℎ𝑠𝑡𝑎𝑟𝑡𝑠𝑡𝑒𝑟𝑒𝑜 

ℎ50%𝑠𝑡𝑒𝑟𝑒𝑜  

ℎ10%𝑠𝑡𝑒𝑟𝑒𝑜  

𝑡50%𝑠𝑡𝑒𝑟𝑒𝑜  𝑡10%𝑠𝑡𝑒𝑟𝑒𝑜 
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on the pelvis or the integration of barometric data with accelerometric data from the inertial unit. 

Outside of the moments when transitions occur, the height is assumed to be constant. 

4.5.1 Single-baro approach 
 

To reconstruct the trajectory using a single barometric sensor placed on the pelvis, various 

methods leveraging different signal characteristics have been explored to determine the most 

effective tracking approach. 

Approach 1 

The first approach involves converting the raw barometric signal into altitude (paragraph 3.3.3), 

using as reference pressure 𝑃0 the one measured at the beginning of the trial from the barometer 

on the pelvis. Two signals are utilized: 

1)  𝑏𝑎𝑟𝑜_𝑑𝑒𝑡𝑟𝑒𝑛𝑑: the raw barometric signal in meters is detrended to remove any long-term drift 

(Matlab function 𝑑𝑒𝑡𝑟𝑒𝑛𝑑(𝑥, 𝑛) with n=2). 

2) 𝑏𝑎𝑟𝑜_𝑑𝑒𝑡𝑟𝑒𝑛𝑑_𝑓𝑖𝑙𝑡: the detrended signal is further processed using a low-pass filter with a 

cutoff frequency 𝑓𝑡=1Hz to reduce high-frequency noise. The filter is the one proposed by the 

pressure sensor’s datasheet (paragraph 4.3). 

Between successive Transitions 

Outside the transition periods, the altitude is considered constant. The constant value is 

determined as the mean of the detrended signal (𝑏𝑎𝑟𝑜_𝑑𝑒𝑡𝑟𝑒𝑛𝑑). To mitigate edge effects, the 

averaging interval spans 200 samples and is centered around the temporal midpoint between the 

two transitions. 

During Transitions 

During transitions, the filtered signal (𝑏𝑎𝑟𝑜_𝑑𝑒𝑡𝑟𝑒𝑛𝑑_𝑓𝑖𝑙𝑡) is utilized. This approach allows for 

precise tracking of the Center of Mass movements by reducing noise while preserving essential 

signal characteristics. 

Initial Height Alignment 

The initial height for the trial is obtained from the stereophotogrammetric signal, which is used as 

a reference to align the reconstructed barometric signal. 

 

Fig.65 illustrates an example of the first approach, demonstrating how the processed barometric 

data is used to reconstruct the vertical displacement of the BCoM. The present approach leads to 

errors, in particular peaks, when the final height perceived in a transition is different from the 
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mean value in the following period. The following image (Fig.65) highlights the described 

situation. 

 

Fig. 65: A comparison between the estimated vertical displacement, reconstructed through the single-baro approach, and the 
reference, showing the start and end point of transitions. The image highlights a peak that doesn’t correspond to a real movement 
and is due to the fact that the final value reached during the transition does not correspond to the average in the subsequent 
segment. 

 

Approach 2 

This approach tries to correct the presence of peaks in the previous method, leveraging again 

𝑏𝑎𝑟𝑜_𝑑𝑒𝑡𝑟𝑒𝑛𝑑 and 𝑏𝑎𝑟𝑜_𝑑𝑒𝑡𝑟𝑒𝑛𝑑_𝑓𝑖𝑙𝑡 signals, along with the assumption of constant height 

between two consecutive transitions.  

The 𝑏𝑎𝑟𝑜_𝑑𝑒𝑡𝑟𝑒𝑛𝑑_𝑓𝑖𝑙𝑡 signal is used to estimate the height during a transition. At the end of the 

transition, the achieved height, denoted as ℎ𝑒𝑛𝑑𝑏𝑎𝑟𝑜  , is compared with the average height avr, 

calculated from the baro_detrend signal over the interval between the current and the next 

transition. 

Height Comparison and Adjustment 

• For increasing transitions (height going up): if ℎ𝑒𝑛𝑑𝑏𝑎𝑟𝑜   is less than avr, then 

ℎ𝑒𝑛𝑑𝑏𝑎𝑟𝑜  is maintained as the constant height until the next transitions. If ℎ𝑒𝑛𝑑𝑏𝑎𝑟𝑜   is 

higher than avr, then 𝑎𝑣𝑟  is maintained as the constant height until the next transitions. 



91 
 

• For decreasing transitions (height going down): if ℎ𝑒𝑛𝑑𝑏𝑎𝑟𝑜  is greater than avr, then 

ℎ𝑒𝑛𝑑𝑏𝑎𝑟𝑜  is maintained as the constant height until the next transitions. If ℎ𝑒𝑛𝑑𝑏𝑎𝑟𝑜  is 

less than avr, then ℎ𝑒𝑛𝑑𝑏𝑎𝑟𝑜  is maintained as the constant height until the next transitions. 

This adjustment ensures that the calculated height at the end of the transition does not exceed 

the average expected height, thereby preventing unrealistic jumps in the estimated height.  

Initial Height Alignment 

The initial height for the trial is obtained from the stereophotogrammetric signal, which is used 

as a reference to align the reconstructed barometric signal.  

 

Fig. 66 illustrates an example of the application of the second approach, demonstrating the 

effectiveness of the height adjustment mechanism in maintaining realistic height estimations 

during transitions.

 

Fig. 66:  A comparison between the estimated vertical displacement, reconstructed through the single-baro approach, and the 
reference, showing the start and end point of transitions. 

Approach 3 

 

The third proposed method utilizes two signals:  

1)  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒: temperature provided by the sensor; 

2) 𝑏𝑎𝑟𝑜_𝑑𝑒𝑡𝑟𝑒𝑛𝑑_𝑓𝑖𝑙𝑡: the raw barometric signal in Pascal is detrended to remove any long-term 

drift (Matlab function 𝑑𝑒𝑡𝑟𝑒𝑛𝑑(𝑥, 𝑛) with n=2). The detrended signal is further processed using 
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a low-pass filter with a cutoff frequency 𝑓𝑡=1Hz to reduce high-frequency noise. The filter is the 

one proposed by the pressure sensor’s datasheet (paragraph 4.3). 

The height of the CoM is considered constant between successive transitions. 

During Transition 

During transitions, the height is calculated using the barometric formula. Unlike previous 

methods, the reference pressure P0 is set to the pressure at the first sample of each transition, rather 

than the pressure at the start of the trial. This adjustment provides a more accurate and context-

specific baseline for height calculation during each transition. 

Between successive Transitions 

The height at the end of each transition is used as the constant value for the subsequent interval.  

Initial Height Alignment 

The initial height for the trial is obtained from the stereophotogrammetric signal, which is used as 

a reference to align the reconstructed barometric signal.  

Fig. 67 shows an example of the application of this third approach, highlighting the process and 

effectiveness of using the raw barometric signal and the adjusted reference pressure for accurate 

height estimation during transitions. 

 

Figure 67 comparison between the estimated vertical displacement, reconstructed through the single-baro approach, and the 
reference, showing the start and end points of transitions 
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4.5.2 Dual-baro approach  
 

The approach that utilizes the dual sensor setup with the differential signal, which allows the 

elimination of the common interference of the two signals and the determination of the pelvis 

displacement relative to the foot, is not further analyzed in this work. This is because the 

preference is to develop an algorithm that uses a single sensor, allowing for the direct 

measurement of pelvis displacement relative to the floor. 

4.5.3 IMU-based approach 
 

The trajectory reconstruction algorithm based on the IMU positioned on the pelvis exploits the 

vertical component of acceleration, 𝑎z. To properly utilize the acceleration data, the Madgwick 

filter [12] (paragraph 2.2.2.1) is applied to the inertial data obtained from the sensor output. 

At the beginning of the trial, the subject is seated in static conditions, which allows for the 

calculation of the initial orientation of the sensor using the accelerometer as an inclinometer, 

according to the method proposed by Valenti et al. [42]. The resulting quaternion represents the 

orientation from the global frame to the local frame of reference. It is necessary to apply the 

operation of complex conjugation to this quaternion and use the result to initialize the Madgwick 

filter [19], which then provides the orientation of the local system relative to the global frame. 

Using the Madgwick filter, the orientation of the sensor throughout the trial is obtained, allowing 

for the removal of the gravity component from the acceleration data to acquire the proper 

acceleration of the sensor. Theoretically, by integrating the vertical component of acceleration, 

𝑎z, twice, the displacement along the z-axis can be determined (67,68). 

 

𝑣𝑧(𝑡) =  𝑣0 + ∫ 𝑎𝑧(𝑡) 𝑑𝑡
𝑡1

𝑡0

                                             (67) 

𝑧(𝑡) =  𝑧0 +  ∫ 𝑣𝑧(𝑡) 𝑑𝑡
𝑡1

𝑡0

                                              (68) 

 

However, this estimation is affected by drift. It is crucial to recognize that the acceleration cannot 

be integrated over the entire duration of the trial but only within limited integration intervals where 

the initial conditions are well-defined. Therefore, the integration intervals correspond to the 

transition periods [t0-t1], where 𝑡0 is the instant of the beginning of the transition and 𝑡1 is the 

instant of the end of the transition (manually labeled or automatically detected with method based 
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on derivatives). The conditions for applying double integration are that the subject starts from rest 

and, after the transition, returns to rest. Within these integration intervals, the following conditions 

hold: 

o 𝑣𝑧
𝑡0 = 0 𝑚/𝑠 𝑒 𝑣𝑧

𝑡1 = 0 𝑚/𝑠: velocity is zero at both the beginning and end of the 

integration process. This feature allows for the imposition of both initial and final integration 

conditions. 

o ɑ𝑥,𝑦,𝑧
𝑚𝑒𝑎𝑛  = 0 𝑚2/𝑠: As a consequence of the first condition, the mean value of acceleration 

is null. 

The integration is performed using the method proposed by Zok et al. [5], known as Double and 

Reverse Integration (DRI), which consists of three distinct phases: 

 

(a) Direct Integration: The original signal undergoes double integration with appropriate initial       

conditions, resulting in a function d(t). 

(b) Reverse Integration: The original signal is double integrated inversely in time, treating final 

conditions as 'initial' conditions, yielding a function r(t). 

(c) Weighting: A time-dependent weight function, w(t), ranging from 0 to 1, is employed to 

balance the combined effects of the two integrated curves. Consequently, the final integrated 

signal is expressed as (69): 

𝐷𝑅𝐼(𝑡) =  𝑟(𝑡)𝜔(𝑡) + 𝑑(𝑡)(1 − 𝜔(𝑡))                                      (69) 

This proposed method enables the calculation of velocity, 𝑣𝐷𝑅𝐼, from the accelerations through 

the DRI method. The vertical displacement, 𝑧(𝑡), is obtained using the following formula (70): 

𝑧(𝑡) =   ∫ 𝑣𝐷𝑅𝐼(𝑡) 𝑑𝑡
𝑡1

𝑡0

                                                           (70) 

The trajectory reconstruction algorithm assumes that the height remains constant between 

successive transitions. During the transitions, displacement is obtained from the accelerometer 

using the described method (Fig. 68). Therefore, the integration intervals correspond to the start 

and end instants of the transition. 

The height reached at the end of the transition is then used as a constant value for the next interval, 

resulting in errors that accumulate over time.  
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Unlike algorithms based solely on barometric data, the selection of transition points significantly 

influences the displacement estimation made through the accelerometer. Specifically, a better 

choice of these points, always in the proximity of the transition, can lead to a considerably 

improved reconstruction (Fig. 69).  

Fig.69: The figure shows the reconstruction of the vertical displacement using the single accelerometer setup. Specifically, image a) contains 
the accelerometric data integrated twice at the automatically identified transition instants, while image b) contains the accelerometric data 
integrated twice at the manually identified transition instants. Improving the accuracy of the start and end transition instants significantly 
enhances the reconstruction accuracy. 

a) 
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4.5.3 Sensor fusion approach 

 

As detailed in Section 2.3.2, sensor fusion algorithms enable the integration of data from various 

sensors to enhance the performance beyond what is achievable with individual sensors. In this 

study, sensor fusion involves combining data from a barometer and an accelerometer. Two sensor 

fusion methods are evaluated: the Sabatini filter and the Kalman filter. 

Both filters depend on parameters that must be optimized. These parameters were fine-tuned 

through data tuning, using a validation set comprising five subjects, each undergoing two trials. 

The test set consisted of the remaining 15 subjects, also with two trials each. 

The parameter optimization was conducted using the grid search method, a well-established 

technique for hyperparameter tuning in machine learning models. This method systematically 

explores multiple combinations of model parameters to identify the optimal set. It involves 

defining a parameter grid that outlines all possible parameter combinations to be tested and 

determining an appropriate method for evaluating model performance for each combination. 

The model was trained on the validation set to select the optimal parameter values and 

subsequently evaluated on the test set to assess performance.  

The height reconstruction algorithms employing the Kalman filter and the Sabatini filter 

respectively integrate data from both the barometer and the accelerometer to estimate height 

during transitions. Between successive transitions, the height is maintained constant at the value 

achieved at the end of the previous transition. 

 

4.5.4.1 Kalman filter 

 

The implemented Kalman filter [34] employs state variables including altitude ℎ and vertical 

speed 𝑣 (71,72):  

ℎ𝑛𝑒𝑤 =  ℎ𝑜𝑙𝑑 + 𝑣 ∗  𝛥𝑡                                                     (71) 

𝑣𝑛𝑒𝑤 =  𝑣𝑜𝑙𝑑 + 𝑎 ∗  𝛥𝑡                                                     (72) 

The prediction phase is represented by the following equations (73): 

𝑥𝑛𝑒𝑤 = 𝐴 ∗  𝑥𝑜𝑙𝑑 + 𝐵 ∗ 𝑢                                                 (73) 

b) 
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𝐀 = |
1  𝛥𝑡
0 1

| 

𝐁 = |0.5𝛥𝑡2

𝛥𝑡
| 

u: acceleration measured by the accelerometer. 

The measurement model incorporates the barometer measurement 𝑧𝑏𝑎𝑟𝑜, with the measurement 

matrix H = |1 0|, as only the altitude is directly measured. 

The filter initialization includes an estimate of the initial state, the covariance matrix, and the 

process and measurement noise parameters. The equations for the prediction and update phases 

are consistent with those detailed in Section 2.3.2. During the prediction phase, the state model 

and control input (proper acceleration, 𝑎𝑧) are used to predict the current state. Subsequently, 

barometer measurements are utilized in the update phase of the Kalman filter to refine the 

estimated state.  

The process noise covariance 𝑄 and measurement noise covariance 𝑅 represent the uncertainties 

associated with the process and measurement models, respectively. Proper determination of these 

values is crucial, as inappropriate choices can degrade filter performance. 𝑅 reflects the 

uncertainty or variance in sensor measurements, which can be estimated through trial 

measurements. 𝑄, on the other hand, is less deterministic and includes 𝑄1,  that represents the 

variance of the noise associated with position, and 𝑄2, that represents the variance of the noise 

associated with velocity. Assuming uncorrelated process noises for position and velocity (74): 

 

𝑄 = [
𝑄12 0

0 𝑄2
]                                                     (74) 

 

The tuning was executed for both 𝑄 and 𝑅, with the following values for the grid search:  

𝑄1= [0.1:0.1:2]; 

𝑄2= [1:1:20]; 

𝑅 = [0.001:0.1:2]. 

Performance evaluation involved analyzing the average absolute error (cm) of the perceived 

height difference in each transition (ℎ𝑒𝑛𝑑−𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 − ℎ𝑏𝑒𝑔𝑖𝑛−𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛), using the Kalman filter-

based height reconstruction relative to the gold standard (𝑠𝑡𝑒𝑟𝑒𝑜𝑒𝑛𝑑−𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 −
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𝑠𝑡𝑒𝑟𝑒𝑜𝑏𝑒𝑔𝑖𝑛−𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛). 

The final parameters were:  

𝑄 = [52 0
0 12

] 

𝑅 = 0.001 

The mean error for the validation set was 4.94 ± 0.62 cm, and the test set achieved a mean error 

of 4.55 ± 0.47 cm.  

The following image (Fig.70) illustrates an example of height reconstruction using the Kalman 

filter. 

 

 

Fig. 70: A comparison between the estimated vertical displacement, reconstructed through the Kalman filter, and the reference, 
showing the start and end point of transitions. 

 

 

4.5.4.2 Improved Kalman filter (Sabatini filter) 

In the formula presented by Sabatini et al. [30], as cited in Section 2.3.2, 𝜎𝑤 𝑎𝑛𝑑 𝜎𝑣 represent the 

weights assigned to the displacement data obtained from the accelerometer and the barometer, 

respectively, for sensor fusion.  

Specifically, 𝜎𝑤  denotes the standard deviation of the acceleration noise  𝑥̈𝑎  𝑘 , and 𝜎𝑣 denotes 

the noise of the reconstructed height from the barometer 𝑥𝑝 𝑘 . These weights provide a measure 
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of the importance of the two data sources in the final displacement result: the lower the weight, 

the more significant the source is in the final result. 

Performance was evaluated by analyzing the mean absolute error (cm) of the reconstructed height 

using the Sabatini filter across all trials, with reference to the gold standard. 

Parameter tuning was performed for both 𝜎𝑤 and 𝜎𝑣  using the following grid search values: 

𝜎𝑤 = [0.001:1:5]. 

𝜎𝑣= [1:1:50].  

The optimal parameters were set to 𝜎𝑤=0.001 and 𝜎𝑣 =50. 

The mean error obtained for the validation set was 14.27 ± 1.37 cm, while the test set achieved 

a mean error of 21.88 ± 0.38 cm. 

The following image (Fig.71) illustrates an example of height reconstruction using the Kalman 

filter.

 

Fig. 71: A comparison between the estimated vertical displacement, reconstructed through the Sabatini filter, and the reference, 
showing the start and end point of transitions. 
 

4.5.5 Performance evaluation 
 

The reconstruction of the vertical displacement of the CoM through the 6 previously detailed 

methods (approaches with barometer, approach with accelerometer and sensor fusion via Kalman 

filter and Sabatini filter) is evaluated against the reference signal, which is the 
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stereophotogrammetric signal of the pelvis. 

The proposed pipeline consists of a sequence of two steps executed in cascade: the detection of 

transitions and the actual reconstruction of the vertical displacement. Both blocks are necessary 

to achieve the final goal.  

Each block is evaluated separately to analyze the reconstruction of the BCoM without and with 

the influence of errors present in the transition detection block. Therefore, the height 

reconstruction is evaluated both by providing the algorithm with manually labelled transitions and 

by executing the complete pipeline, with the true positive automatic transitions. In the last case, 

if the transitions are not detected (false negatives) using the derivative method, the reconstruction 

of CoM displacement is interrupted and resumes at the first subsequently detected transition. If 

the height reconstruction is interrupted, when it resumes, the initial height value is provided by 

the barometric signal filtered with a low-pass filter (Fig.72). 

 

 

Fig.72: The figure illustrates an example of vertical displacement reconstruction of the CoM using the complete pipeline, 
specifically through the application of a Kalman filter. The reconstruction is conducted on true positive (TP) transitions, and is 
interrupted if the transitions are not identified. Upon resumption, the initial value of the signal is derived from the barometric 
signal filtered with a low-pass filter. 

 

The following performances are calculated for the reconstruction of vertical tracking for both the 

automatically executed pipeline and the pipeline with manually identified transitions. 

If 𝑦̂ is the reconstructed signal, 𝑦 is the reference signal, and 𝑛 is the number of observations 
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(length of the signals), the vertical displacement reconstructed along each trial is evaluated in 

terms of (75,76): 

1) Root Mean Square (RMSE) = √
∑ ‖𝑦(𝑖)−𝑦̂(𝑖)‖2𝑛

𝑖=1

𝑛
                         (75) 

2) Mean error=  
∑ 𝑦(𝑖)−𝑦̂(𝑖)𝑛

𝑖=1

𝑛
                                                          (76) 

3) Correlation coefficient: it is a statistical measure that describes the strength and direction of 

the relationship between two variables. It ranges from -1 to 1, where 1 indicates a perfect 

positive correlation, -1 indicates a perfect negative correlation, and 0 indicates no correlation. 

The Pearson correlation coefficient measures the linear relationship between two continuous 

variables. It assumes that both variables are normally distributed and have a linear 

relationship.  

The Spearman correlation coefficient, on the other hand, is a non-parametric measure that 

assesses how well the relationship between two variables can be described using a monotonic 

function. It does not assume a linear relationship or normally distributed data, making it 

suitable for ordinal data or non-linear relationships.  

The correlation is evaluated through the Pearson or Sperman coefficient, whether the 

correlation is linear or not respectively.  

Errors in the reconstruction of the vertical displacement of the BCoM can be attributed to the 

accumulation of errors occurring during the height reconstruction at transitions. Therefore, 

increasing/decreasing height reconstructed during transitions is also evaluated against the gold 

standard.  

For a given transition, hfinal_stereo and hstart_stereo   are the heights of the stereophotogrammetric signal 

at the beginning and end of the transition, while hfinal_reconstructed and hstart_reconstructed are the final 

and initial heights of the reconstructed vertical displacement of CoM. The performance is 

evaluated as follows (77,78,79): 

𝛥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = hfinal_stereo - hstart_stereo 

𝛥𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = hfinal_reconstructed  - hstart_reconstructed 

 

1) Absolute deviation = ‖𝛥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  − 𝛥𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑‖                         (77) 

2) Mean error= 𝛥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  − 𝛥𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑                                          (78) 
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3) Percentage error= 
‖𝛥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 −𝛥𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑‖

𝛥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

                                     (79) 

The mentioned values are specifically calculated for each type of transition (StS, StS slow, Laying, 
Step, Squat). 
 

4.6 Testing procedure 
 

A statistical analysis was conducted on both the detection of transitions, evaluating the proposed 

method of derivatives, and height reconstruction.  

The statistical analysis needs to be performed on an error distribution. The first step is to determine 

whether the error distributions are normal or not. This is done using the Shapiro-Wilk test, which 

helps to establish whether a sample of data comes from a normally distributed population or if it 

significantly deviates from such a distribution. The test operates under the null hypothesis that the 

data are normally distributed. If the null hypothesis is rejected, a non-parametric analysis can be 

performed; otherwise, a parametric analysis is appropriate. 

For parametric analysis, the ANOVA test can be used to identify statistically significant 

differences, whereas for non-parametric analysis, the Kruskal-Wallis test is applied. The null 

hypothesis in the ANOVA test is that all group means are equal (assuming a normal distribution 

and homogeneous variances), while in the Kruskal-Wallis test, it is that all group distributions are 

identical, without making specific assumptions about the data distribution. 

For both ANOVA and Kruskal-Wallis analysis, the evaluation parameter is p, and the significance 

level, 𝛼, is set at 0.05 in this work: 

o p ≤ 0.05, if the p-value is less than or equal to the chosen significance level, the null 

hypothesis can be rejected. This indicates sufficient evidence to support that at least one 

group has a significantly different distribution from the others. 

o p > 0.05, if the p-value is greater than the significance level, there is insufficient evidence 

to reject the null hypothesis. Therefore, it cannot be concluded that there are significant 

differences between the groups. 

In statistical analysis, in the case of multiple comparisons, post hoc correction is necessary, which 

arises when multiple statistical tests are conducted on the same dataset. This approach is crucial 

to avoid increasing the likelihood of Type I errors, which occur when the null hypothesis is 

wrongly rejected. When multiple tests are conducted, even using a standard significance level of 
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0.05 for each test, the overall probability of obtaining at least one significant result by chance 

increases with the number of tests.  

To manage this risk, post hoc corrections adjust the significance level or the p-values to maintain 

an acceptable Type I error rate across all tests. 

In this study, the Bonferroni Correction was chosen as the post hoc correction method, where the 

significance level (α) is divided by the total number of tests conducted. 

4.6.1 Detection of transitions 
 

The accuracy of the transitions identified using the derivatives method is evaluated through 

precision, sensitivity, and F1 score. These three values are calculated for each subject and each 

trial (Trial 1 and Trial 2). Statistical analysis is performed on the F1 score, considering the 

following divisions: 

o Division by test type, evaluating whether there are significantly different error 

distributions between two groups, Test 1 and Test 2. Each group is characterized by 20 F1 

score values, one for each subject. 

o Division by subject, evaluating whether there are significantly different error distributions 

among the 20 subjects. Each group is characterized by two F1 score values. 

 

4.6.2 Tracking of the vertical trajectory of CoM 

 

The tracking of the vertical displacement of the CoM is evaluated both by providing the algorithm 

with manually labeled transitions and by executing the complete pipeline. For each type of 

evaluation, performance is calculated for the reconstruction of the trajectory throughout the trial 

(in terms of RMSE, mean error, and correlation coefficient calculated for each subject and each 

trial) and for the perceived height difference in each transition, divided by transition type (StS, 

slow StS, Laying, step, and squat). The following statistical analysis are conducted for both the 

automatically executed pipeline and the pipeline with manually identified transitions.  

Reconstruction of the trajectory throughout the trial 

Statistical analysis is performed by evaluating the distribution of RMSE according to the 

following divisions: 
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1) Fixed one of the six proposed methods (3 approaches with the barometer, accelerometer, 

sensor fusion with Kalman filter, and sensor fusion with Sabatini filter), classification 

according to the test type: evaluating whether there are significantly different error 

distributions between two groups, Test 1 and Test 2. Each group is characterized by 20 

RMSE values, one for each subject. 

 

2) Fixed one of the six proposed methods (3 approaches with the barometer, accelerometer, 

sensor fusion with Kalman filter, and sensor fusion with Sabatini filter), classification 

according to the subject: evaluating whether there are significantly different error 

distributions between twenty groups, i.e. subjects. Each group is characterized by 2 RMSE 

values, one for each test (Test 1 and Test 2). 

 

3) Classification according to the method: evaluating whether there are significantly different 

error distributions between the six proposed reconstruction methods (six groups), 3 

approaches with the barometer, accelerometer, sensor fusion with Kalman filter, and 

sensor fusion with Sabatini filter. Each group is characterized by 40 RMSE values, two 

for each subject (Test 1 and Test 2). 

Height Difference During Classified Transitions 

For each type of transition, StS, StS slow, laying, step, and squat, the perceived height difference 

with the proposed algorithm is evaluated against the actual elevation or lowering provided by the 

stereophotogrammetric signal.  

For each subject, the values of absolute deviation, mean error, and percentage error are provided 

for StS, StS slow, laying, step, and squat manually labeled or automatically detected. Statistical 

analysis is performed on the absolute deviation, evaluating the following division: 

1) Fixed one of the six proposed methods (3 approaches with the barometer, accelerometer, 

sensor fusion with Kalman filter, and sensor fusion with Sabatini filter), classification 

according to the type of transition: evaluating whether there are significantly different 

error distributions between 5 groups, StS, slow StS, Laying, step, and squat. 

 

2) Classification according to the reconstruction method: evaluating whether there are 

significantly different error distributions between 6 groups (3 approaches with the 

barometer, accelerometer, sensor fusion with Kalman filter, and sensor fusion with 
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Sabatini filter), on the absolute deviation for the transitions StS, slow StS, Laying, step, 

and squat. Each group is characterized by a different number of errors in case of automatic 

pipeline and pipeline with manual transitions, respectively a total of 705 and 874 

transitions. 

5. Results  

 
5.1 Detection of transitions 
 

The proposed method for transitions detection, based on the first derivative of the barometric signal 

(converted to altitude), is compared with the manual labeling of the stereophotogrammetric signal, 

used as reference. Precision, sensitivity, and F1-score are calculated for each subject and each test 

(Test 1 and Test 2). The following table (Tab. 9) shows the (mean values ± standard deviation) % of 

precision, sensitivity, and F1 score for all subjects during Test 1, Test 2 and overall. The (average 

values± standard deviation) % F1-score, sensitivity and precision calculated over both Test 1 and 

Test 2 are reported for each subject as a bar diagram (Fig.72).  

 

(%) Precision Sensitivity F1 score 

Test 1 97.28 ± 4.05 99.68 ± 1.39 98.42 ± 2.13 

Test 2 98.28 ± 2.76 69.96 ± 8.23 

 

81.48 ± 6.21 

Test 1 and Test 2 97.78 ± 3.46 84.82 ± 16.14 

 

89.95 ± 9.73 

Tab.9: Evaluation of detection of transitions through the method based on derivatives with (mean values 
± standard deviations) % of precision, sensitivity, and F1 score calculated for all subjects, both separated 
by Test 1 and Test 2 and combined. 
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The correctly identified transitions, for which both the start and end points are detected, are 

classified based on their type (for Test 1: StS, StS slow, laying, and for Test 2: StS, squat, and 

step) and quantified by (mean values ± standard deviations) % of sensitivity for each type of 

transition (Tab. 10). 

(%) Sensitivity 

Sit to Stand 99.06 ± 4.37 

Sit to Stand (slow)  98.75 ± 5.59 

 

Laying 100 ± 0.00 

Step 60.00 ± 13.68 

Squat 55.63 ± 33.56 

Tab.10: Evaluation of correctly identified transitions divided by transitions type. 

 

Fig. 72:  Bar diagram to summarize the transition detection with (average values± standard deviations) % between Test 1 and Test 2 
for F1 score, sensitivity and precision for each subject.  
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A transition is correctly identified when both the start and end points are true positive, thus the 

temporal accuracy is evaluated in terms of delay, calculated between centroids of transitions, and 

the 10-90% range to assess the overall duration. Since the temporal performance are calculated 

by subtracting the value obtained by the proposed method from the reference value, a negative 

delay indicates that the barometric signal is delayed with respect to the stereo label, while a 

positive value indicates an advance in the barometric signal compared to stereophotogrammetry. 

Similarly, a negative error between transition durations indicates that the method overestimated 

the real duration for that transition. Table  (Tab. 11) shows the (mean values ± standard deviations) 

ms of delay and range 10-90% calculated for all subjects, both separated by Test 1 and Test 2 and 

combined. The scatter plot (Fig.73) highlights the actual versus predicted values of range 10-90% 

for transitions duration.  

(ms) Delay Range 10-90% 

Test 1 -11 ± 9 -35 ± 440 

Test 2 -13 ± 6 -440 ±120 

 

Test 1 and Test 2 -12 ± 7 -240 ± 380 

 
Tab.11: Temporal accuracy of correctly identified transitions assessed with (mean values ± standard deviations) ms of delay and 
range 10-90% calculated for all subjects, both separated by Test 1 and Test 2 and combined. 
 

 

Fig. 72: Scatter plot of the predicted durations estimated by the first derivative method and the actual durations of transitions, 
to access and evaluate the correctness.  
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5.2 Tracking of the vertical trajectory of the CoM  
 
Manually labeled transition 

 
To evaluate the reconstruction of the vertical displacement of the CoM, which is based on two 

cascading steps (detection of transitions and the actual reconstruction of height using a single 

barometer, a single accelerometer or sensor fusion), the influence of these two is evaluated 

separately. Below are the results of the reconstruction of the vertical displacement obtained by 

providing manually labeled transition instances.  

Specifically, for each method, the (mean value ± standard deviation) of RMSE, mean error, and 

correlation coefficient across 20 subjects are reported for Test 1 and Test 2 separately and then 

considered together (Tab.12, Tab.13, Tab.14, Tab.15, Tab.16, Tab.17). 

Kalman filter 

 RMSE (cm)  Mean error (cm)  Correlation coefficient  

Test 1 18 ± 11 6 ± 18 0.96 ± 0.03 

Test 2 12 ± 6 5 ± 1 

 

0.92 ± 0.04 

Test 1 and Test 2 15 ± 9 5 ± 14 

 

0.94 ± 0.04 

Tab.12: Reconstruction of CoM vertical displacement with Kalman filter evaluated with (mean values ± standard deviations) cm 
of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and then 
considered together.  

 

Barometer (approach 1) 

 RMSE (cm)  Mean error (cm)  Correlation coefficient  

Test 1 11 ± 4 7 ± 5 0.97 ± 0.01 

Test 2 10 ± 4 8 ± 5 

 

0.94 ± 0.02 

Test 1 and Test 2 11 ± 4 7 ± 5 

 

0.96 ± 0.02 

Tab.13: Reconstruction of CoM vertical displacement with barometer (approach 1) evaluated with (mean values ± standard 
deviations) cm of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and 
then considered together.  
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Barometer (approach 2) 

 RMSE (cm)  Mean error (cm)  Correlation coefficient  

Test 1 9 ± 3 7 ± 4 0.98 ± 0.01 

Test 2 11 ± 4 8 ± 5 

 

0.93 ± 0.03 

Test 1 and Test 2 10 ± 4 7 ± 4 

 

0.96 ± 0.03 

Tab.14: Reconstruction of CoM vertical displacement with barometer (approach 2) evaluated with (mean values ± standard 
deviations) cm of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and 
then considered together. 

 

Barometer (approach 3) 

 RMSE (cm)  Mean error (cm)  Correlation coefficient  

Test 1 18 ± 11 5 ± 11 0.96 ± 0.03 

Test 2 12 ± 7 5 ± 18 

 

0.92 ± 0.04 

Test 1 and Test 2 15 ± 9 5 ± 15 

 

0.94 ± 0.04 

Tab.15: Reconstruction of CoM vertical displacement with barometer (approach 3) evaluated with (mean values ± standard 
deviations) cm of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and 
then considered together. 

 

Sabatini filter 

 RMSE (cm)  Mean error (cm)  Correlation coefficient  

Test 1 35 ± 23 1 ± 36 0.85 ± 0.11 

Test 2 28 ± 17 -7 ± 28 

 

0.76 ± 0.22 

Test 1 and Test 2 31 ± 20 -3 ± 32 

 

0.80 ± 0.18 

Tab.16: Reconstruction of CoM vertical displacement with Sabatini filter evaluated with (mean values ± standard deviations) cm 
of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and then 
considered together. 
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Accelerometer 

 RMSE (cm)  Mean error (cm)  Correlation coefficient  

Test 1 35 ± 23 1 ± 37 0.84 ± 0.12 

Test 2 28 ± 17 -8 ± 28 

 

0.75 ± 0.22 

Test 1 and Test 2 31 ± 20 -4 ± 32 

 

0.80 ± 0.18 

Tab.17: Reconstruction of CoM vertical displacement with the accelerometer evaluated with (mean values ± standard 
deviations) cm of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and 
then considered together. 

 
The height difference in each transition relative to the actual displacement is evaluated. The results 

are categorized by type of transition, providing the (mean value ± standard deviation) cm of the 

absolute deviation, mean error, and percentage error (Tab.18, Tab.19, Tab.20, Tab.21, Tab.22, 

Tab.23). 

Sabatini filter 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

4.5 ± 4.1 4.7 ± 3.8 13 ± 12 6.4 ± 7.5 4.9 ± 5.6 

Mean error 
(cm) 

1.9 ± 5.8 1.4 ± 5.9 

 

7.5 ± 16 -0.68 ± 9.9 -0.27 ± 7.5 

Percentage 
error (%) 

13 ± 12 14 ± 14 

 

16 ± 14 28 ± 28 12 ± 14 

 
Tab.18: Height differences for each type of transition relative to the actual displacement performed with the Sabatini filter 
evaluated with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage error across 20 
subjects. 
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Kalman filter 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

3.9 ± 2.8 4.1 ± 2.6 4.3 ± 3.5 5.3 ± 4.0 6.9 ± 5.3 

Mean error 
(cm) 

2.3 ± 4.2 1.0 ± 4.8 

 

1.1 ± 5.5 4.8 ± 4.6 6.4 ± 5.8 

Percentage 
error (%) 

11 ± 8 11 ± 7 

 

5 ± 4 25 ± 18 17 ± 13 

 
Tab.19: Height differences for each type of transition relative to the actual displacement performed with the Kalman filter 
evaluated with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage error across 20 
subjects. 
Barometer (approach 1) 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

3.5 ± 3.1 4.0 ± 2.9 4.1 ± 4.1 5.5 ± 3.9 7.3 ± 4.7 

Mean error 
(cm) 

0.2 ± 4.6 0.7 ± 4.9 

 

-0.20 ± 5.7 4.4 ± 5.1 6.7 ± 5.5 

Percentage 
error (%) 

10 ± 8 12 ± 8 

 

5 ± 5 27 ± 19 19 ± 13 

 
Tab.20: Height differences for each type of transition relative to the actual displacement performed with the barometer (approach 
1) evaluated with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage error across 20 
subjects. 
Barometer (approach 2) 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

4.8 ± 4.2 5.1 ± 3.5 5.8 ± 4.2 6.6 ± 5.7 9.0 ± 6.5 

Mean error 
(cm) 

4.5 ± 4.1 4.3 ± 4.4 

 

5.3 ± 4.9 6.5 ± 5.8 8.7 ± 6.9 

Percentage 
error (%) 

14 ± 12 15 ± 10 

 

7 ± 5 31 ± 21 23 ± 15 

 
Tab.21: Height differences for each type of transition relative to the actual displacement performed with the barometer evaluated 
with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage error across 20 subjects. 
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Barometer (approach 3) 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

3.8 ± 2.8 4.0 ± 2.6 4.3 ± 3.4 5.3 ± 4.0 6.8 ± 5.1 

Mean error 
(cm) 

2.2 ± 4.2 1.0 ± 4.8 

 

0.9 ± 5.5 4.8 ± 4.6 6.2 ± 5.8 

Percentage 
error (%) 

11 ± 8 11 ± 8 

 

5 ± 4 25 ± 19 17 ± 12 

 
Tab.22: Height differences for each type of transition relative to the actual displacement performed with the barometer 
(approach 3) evaluated with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage 
error across 20 subjects. 

 

Accelerometer 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

4.5 ± 4.2 4.6 ± 3.7 13 ± 12 6.4 ± 7.5 5.0 ± 5.6 

Mean error 
(cm) 

1.9 ± 5.9 1.4 ± 5.7 7.7 ± 16 0.9 ± 9.8 -0.47 ± 7.5 

Percentage 
error (%) 

13 ± 13 14 ± 14 16 ± 15 29 ± 28 13 ± 14 

 
Tab.23: Height differences for each type of transition relative to the actual displacement performed with the barometer 
(approach 2) evaluated with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage error 
across 20 subjects. 

 
Automatic transition 
The same results are provided by executing the complete pipeline and supplying the algorithm 

with the true positive transitions identified using the derivative method. If the transitions are not 

identified, the height reconstruction is halted. Therefore, the results are based on the reconstructed 

segments.  

The (mean value ± standard deviation) cm of RMSE, mean error, and correlation coefficient 

across 20 subjects are reported for Test 1 and Test 2 separately and then considered together 

(Tab.24, Tab.25, Tab.26, Tab.27, Tab.28, Tab.29). 
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Kalman filter 

 RMSE (cm)  Mean error (cm)  Correlation coefficient  

Test 1 24 ± 7 0 ± 24 0.93 ± 0.05 

Test 2 14 ±14 9 ± 10 

 

0.93 ± 0.05 

Test 1 and Test 2 19 ±12 5 ± 19 

 

0.93 ± 0.05 

Tab.24: Reconstruction of CoM vertical displacement with Kalman filter evaluated with (mean values ± standard deviations) cm 
of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and then 
considered together.  

 

Barometer (approach 1) 

 RMSE (m)  Mean error (m)  Correlation coefficient  

Test 1 9± 3 5 ± 4 0.98 ± 0.01 

Test 2 8 ± 4 3 ± 4 

 

0.93 ± 0.06 

Test 1 and Test 2 9 ± 3 4 ± 4 

 

0.96 ± 0.05 

Tab.25: Reconstruction of CoM vertical displacement with barometer (approach 1) evaluated with (mean values ± standard 
deviations) cm of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and 
then considered together.  

 

Barometer (approach 2) 

 RMSE (cm)  Mean error (cm)  Correlation coefficient  

Test 1 9 ± 2 6 ± 4 0.98 ± 0.01 

Test 2 6 ± 3 2 ± 3 

 

0.97 ± 0.02 

Test 1 and Test 2 8 ± 3 4 ± 4 

 

0.97 ± 0.02 

Tab. 26: Reconstruction of CoM vertical displacement with barometer (approach 2) evaluated with (mean values ± standard 
deviations) cm of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and 
then considered together.  
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Barometer (approach 3) 

 RMSE (cm)  Mean error (cm)  Correlation coefficient  

Test 1 24 ± 13 -1 ± 24 0.93 ± 0.05 

Test 2 9 ± 4 0 ± 5 

 

0.93 ± 0.05 

Test 1 and Test 2 17 ± 12 0 ± 17 

 

0.93 ± 0.05 

Tab. 27: Reconstruction of CoM vertical displacement with barometer (approach 3) evaluated with (mean values ± standard 
deviations) cm of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and 
then considered together.  

 

Sabatini filter 

 RMSE (cm)  Mean error (cm)  Correlation coefficient  

Test 1 39 ± 23 1 ± 38 0.79 ± 0.24 

Test 2 27 ± 11 8 ± 15 

 

0.58 ± 0.15 

Test 1 and Test 2 33 ± 19 5 ± 28 

 

0.69 ± 0.23 

Tab. 28: Reconstruction of CoM vertical displacement with Sabatini filter evaluated with (mean values ± standard deviations) cm 
of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and then 
considered together.  

 

Accelerometer 

 RMSE (cm)  Mean error (cm)  Correlation coefficient  

Test 1 39 ± 23 1 ± 38 0.80 ± 0.15 

Test 2 28 ± 11 8 ± 15 

 

0.58 ± 0.24 

Test 1 and Test 2 33 ± 19 5 ± 29 

 

0.69 ± 0.22 

Tab. 29: Reconstruction of CoM vertical displacement with accelerometer evaluated with (mean values ± standard deviations) 
cm of RMSE, mean error, and correlation coefficient across 20 subjects reported for Test 1 and Test 2 separately and then 
considered together. 
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The height difference in each transition relative to the actual displacement performed is evaluated. 

The results are categorized by type of transition, providing the (mean value ± standard deviation) 

of the absolute deviation, mean error, and percentage error (Tab.30, Tab.31, Tab.32, Tab.33, 

Tab.34, Tab.35). Below the scatter plots for each method of reconstructing the vertical 

displacement of the CoM are reported, showing the perceived and expected values of the height 

difference associated with all automatically identified transitions (Fig. 73, Fig.74, Fig.75, Fig.76, 

Fig.77, Fig.78). 

 

Sabatini filter 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

5.8 ± 6.1 14 ± 10 13 ± 13 5.2 ± 8.6 15 ± 5.6 

Mean error 
(cm) 

0.8 ± 8.4 11 ± 14 

 

6.3 ± 17 -0.11 ± 10 -1.6 ± 18 

Percentage 
error (%) 

17 ± 19 42 ± 32 

 

16 ± 16 26 ± 33 34 ± 24 

 
Tab.30: Height differences for each type of transition relative to the actual displacement performed with the Sabatini filter 
evaluated with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage error across 20 
subjects. 
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Fig. 73: Plot of the predicted height differences estimated by the Sabatini filter versus the actual height differences provided by 
the reference system during automatically identified transitions. 

 

Kalman filter 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

3.8 ± 2.8 5.9 ± 4.8 6.4 ± 5.5 4.4 ± 3.6 4.2 ± 3.4 

Mean error 
(cm) 

-0.6 ± 4.7 2.4 ± 7.3 

 

0.8 ± 8.4 -1.2 ± 5.6 3.1 ± 4.4 

Percentage 
error (%) 

11 ± 9 17 ± 14 

 

8 ± 7 28 ± 23 10 ± 7 

 
Tab.31: Height differences for each type of transition relative to the actual displacement performed with the Kalman filter 
evaluated with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage error across 20 
subjects. 
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Fig.74: Plot of the predicted height differences estimated by the Kalman filter versus the actual height differences provided by 
the reference system during automatically identified transitions. 
 

Barometer (approach 1) 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

3.8 ± 2.8 5.9 ± 4.8 6.4 ± 5.5 4.7 ± 4.1 4.1 ± 3.4 

Mean error 
(cm) 

-0.6 ± 4.7 2.4± 7.3 

 

-0.8 ± 8.5 -0.9 ± 6.1 3.0 ± 4.4 

Percentage 
error (%) 

11 ± 9 17 ± 14 

 

8 ± 7 28 ± 24 9 ± 7 

 
Tab.32: Height differences for each type of transition relative to the actual displacement performed with the barometer 
(approach 1) evaluated with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage 
error across 20 subjects. 
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Fig.75: Plot of the predicted height differences estimated by the barometer (approach 1) versus the actual height differences 
provided by the reference system during automatically identified transitions. 
 

Barometer (approach 2) 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

5.4 ± 5.7 7.1 ± 5.5 7.1 ± 6.3 5.9 ± 7.2 7.5 ± 8.2 

Mean error 
(cm) 

4.8 ± 6.2 6.4 ± 6.2 

 

6.0 ± 7.4 4.5 ± 8.2 6.9 ± 8.7 

Percentage 
error (%) 

15 ± 14 21 ± 17 

 

8 ± 8 31 ± 31 17 ± 19 

 
Tab.33: Height differences for each type of transition relative to the actual displacement performed with the barometer 
(approach 2) evaluated with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage 
error across 20 subjects. 



119 
 

 

Fig.76: Plot of the predicted height differences estimated by the barometer (approach 2) versus the actual height differences 
provided by the reference system during automatically identified transitions. 
 

Barometer (approach 3) 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

3.8 ± 2.8 5.9 ± 4.8 6.4 ± 5.5 4.4 ± 3.6 4.2 ± 3.4 

Mean error 
(cm) 

-0.6 ± 4.7 2.7 ± 7.3 

 

0.8 ± 8.4 -1.2 ± 5.6 3.1 ± 4.4 

Percentage 
error (%) 

11 ± 9 17 ± 14 

 

8 ± 7 27 ± 24 10 ± 7 

 
Tab.34: Height differences for each type of transition relative to the actual displacement performed with the barometer 
(approach 3) evaluated with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage 
error across 20 subjects. 
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Fig.77: Plot of the predicted height differences estimated by the barometer (approach 3) versus the actual height differences 
provided by the reference system during automatically identified transitions. 

 

Accelerometer 

 StS  StS slow  Laying Step Squat  

Absolute 
deviation (cm) 

5.7 ± 6.1 14 ± 10 13 ± 13 5.2 ± 8.6 15± 9.9 

Mean error 
(cm) 

0.6 ± 8.3 11 ± 14 6.0 ± 17 -0.2 ± 10 -1.6 ± 18 

Percentage 
error (%) 

17 ± 19 41 ± 32 16 ± 16 26 ± 33 34 ± 24 

 

Tab.35: Height differences for each type of transition relative to the actual displacement performed with the accelerometer 



121 
 

evaluated with the (mean values ± standard deviations) cm of absolute deviation, mean error, and percentage error across 20 

subjects. 

 

5.3 Testing 
 
5.3.1 Detection of transitions 
 

A statistical analysis was conducted to evaluate the ability of the method to generalize, evaluating 

the distribution of the F1-score, considering both the division by test (2 groups: Test 1, Test 2) 

and by subjects (20 groups).  

The distributions of the F1 scores are not normal for all the analyses conducted, evaluated through 

the Shapiro-Wilk test.  

Using the Kruskal-Wallis test with a significance level of 𝛼=0.05, it was found that there is no 

significant difference when considering the division by subjects (with post hoc correction with 

the Bonferroni correction).  

However, there is a significant difference between Test 1 and Test 2.  

 

Fig.78: Plot of the predicted height differences estimated by the accelerometer versus the actual height differences provided by 
the reference system during automatically identified transitions. 
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5.3.2 Tracking of the vertical trajectory of CoM 

 

Statistical analysis is performed both on the reconstruction of the trajectory throughout the entire 

trial and on the perceived height differences during the transitions classified by type. The analyses 

are performed both by providing manually labeled transitions and by executing the complete 

pipeline. 

Manual transitions 

Reconstruction of the trajectory throughout the trial 

1) The distribution of RMSE error is evaluated for each method (3 approaches with the barometer, 

accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini filter) 

individually, assessing the error distribution between Test 1 and Test 2 (Tab.35). The significance 

level is set at 0.05.  

For each method, it is assessed whether the error distribution is normal using the Shapiro-Wilk 

test (in the following table, in the 'normal distribution' box, ✘ indicates a non-normal distribution, 

while ✓ a normal distribution).  

If the distribution is normal, parametric analysis is performed using the ANOVA test, while 

otherwise, the Kruskal-Wallis test is used.  

In both cases, the p-value is obtained. If p > 0.05, there are no significant differences between the 

error distributions, while if p < 0.05, there are significant differences.  

It is noted that there are no significant differences (𝛼=0.05, p>0.05) between the two tests for all 

the proposed methods. 

 

Method Normal 

distribution 

Anova test Kruskar-

Wallis test 

p-value  

Barometer 

approach 1  
✘ ✘ ✓ >0.05 

Barometer 

approach 2 
✓ ✓ ✘ >0.05 

Barometer 

approach 3 
✘ ✘ ✓ >0.05 
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Accelerometer ✘ ✘ ✓ >0.05 

Kalman filter ✘ ✘ ✓ >0.05 

Sabatini filter ✘ ✘ ✓ >0.05 

Tab. 35: Statistical analysis assessing the distribution of RMSE error throughout the trial for each method (3 approaches with 
the barometer, accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini filter) individually, evaluating 
the error distribution between Test 1 and Test 2. The significance level is set at 0.05. 

 

2) The distribution of RMSE error is evaluated for each method (3 approaches with the barometer, 

accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini filter) 

individually, assessing the error distribution between subjects (Tab.36). The significance level is 

set at 0.05.  

For each method, it is assessed whether the error distribution is normal using the Shapiro-Wilk 

test (in the following table, in the 'normal distribution' box, ✘ indicates a non-normal distribution, 

while ✓ a normal distribution).  

If the distribution is normal, parametric analysis is performed using the ANOVA test, while 

otherwise, the Kruskal-Wallis test is used.  

In both cases, the p-value is obtained. If p > 0.05, there are no significant differences between the 

error distributions, while if p < 0.05, there are significant differences. Since multiple analyses are 

performed, a post hoc correction is necessary. If the correction performed with the Bonferroni 

method confirms the hypothesis of no significant differences, the symbol ✓ is indicated in the 

appropriate box in the following table. If the error distributions are significantly different, the 

group with a different distribution is identified through post hoc correction and is indicated in the 

table. 

It is noted that there are no significant differences (𝛼=0.05, p>0.05) between the subjects for all 

the proposed methods. 

Method Normal 

distribution 

Anova test Kruskar-

Wallis test 

p-value  Post hoc 

correction 

Barometer 

approach 1  
✘ ✘ ✓ >0.05 ✓ 
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Tab. 36: Statistical analysis assessing the distribution of RMSE error throughout the trial for each method (3 approaches with 
the barometer, accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini filter) individually, evaluating 
the error distribution between subjects. The significance level is set at 0.05. 

 

3) The distribution of RMSE error is evaluated between the six proposed method (3 approaches 

with the barometer, accelerometer, sensor fusion with Kalman filter, and sensor fusion with 

Sabatini filter), assessing the error distribution between them. The significance level is set at 0.05. 

The error distribution is non-normal, analyzed using the Shapiro-Wilk test. The Kruskal-Wallis 

highlights that p < 0.05 and there are significant differences between the methods. 

Height Difference During Classified Transitions 

1) For each method of reconstructing the vertical trajectory of the CoM (three approaches using 

the barometer, accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini 

filter), the distribution of the absolute deviation across different types of transitions (StS, slow 

StS, Laying, step, and squat) is evaluated (Tab.37). Considering the 20 subjects, each method 

comprises a total of 240 StS transitions, 80 slow StS transitions, 160 laying transitions, 240 steps, 

and 160 squats.  

For every approach, it is assessed whether the error distribution is normal using the Shapiro-Wilk 

test (in the following table, in the 'normal distribution' box, ✘ indicates a non-normal distribution, 

while ✓ a normal distribution).  

If the distribution is normal, parametric analysis is performed using the ANOVA test, while 

otherwise, the Kruskal-Wallis test is used.  

In both cases, the p-value is obtained. If p > 0.05, there are no significant differences between the 

error distributions, while if p < 0.05, there are significant differences.  

Barometer 

approach 2 
✓ ✓ ✘ >0.05 ✓ 

Barometer 

approach 3 
✘ ✘ ✓ >0.05 ✓ 

Accelerometer ✘ ✘ ✓ >0.05 ✓ 

Kalman filter ✘ ✘ ✓ >0.05 ✓ 

Sabatini filter ✘ ✘ ✓ >0.05 ✓ 
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Since multiple analyses are performed, a post hoc correction is necessary. If the correction 

performed with the Bonferroni method confirms the hypothesis of no significant differences, the 

symbol ✓ is indicated in the appropriate box in the following table. If the error distributions are 

significantly different, the group with a different distribution is identified through post hoc 

correction and indicated in the table. 

It is noted that there are significant differences (𝛼=0.05, p<0.05) for all methods. 

 

 

 

 

Method Normal 

distribution 

Anova test Kruskar-

Wallis test 

p-value  Post hoc 

correction 

Barometer 

approach 1  
✘ ✘ ✓ < 0.05 Significant 

difference with 

the squat 

transition 

Barometer 

approach 2 
✘ ✘ ✓ < 0.05 Significant 

difference with 

the squat 

transition 

Barometer 

approach 3 
✘ ✘ ✓ < 0.05 Significant 

difference with 

the squat 

transition 

Accelerometer ✘ ✘ ✓ < 0.05 Significant 

difference with 

the step 

transition 

Kalman filter ✘ ✘ ✓ < 0.05 Significant 

difference with 

the squat 

transition 

Sabatini filter ✘ ✘ ✓ < 0.05 Significant 

difference with 

the step 

transition 

Tab.37: Each method of reconstructing the vertical trajectory of the CoM (three approaches using the barometer, 
accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini filter) is evaluated to analyze the distribution of 
the absolute deviation across different types of transitions (StS, slow StS, Laying, step, and squat). 
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2) The distribution of absolute deviations for the 874 transitions performed by each of the 20 

subjects is evaluated across various methods of reconstructing the vertical trajectory (three 

approaches using the barometer, accelerometer, sensor fusion with Kalman filter, and sensor 

fusion with Sabatini filter). The error distribution, assessed using the Shapiro-Wilk test, is non-

normal. Consequently, a non-parametric analysis is conducted using the Kruskal-Wallis test, 

revealing a significant difference (𝛼=0.05, p<0.05). Post hoc correction highlights that the method 

referred to as 'Barometer (approach 2)' has a significantly different error distribution compared to 

the other methods. 

Automatic transitions 

Reconstruction of the trajectory throughout the trial 

1) The distribution of RMSE error is evaluated for each method (3 approaches with the barometer, 

accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini filter) 

individually, assessing the error distribution between Test 1 and Test 2 (Fig.38). The significance 

level is set at 0.05.  

For each method, it is assessed whether the error distribution is normal using the Shapiro-Wilk 

test (in the following table, in the 'normal distribution' box, ✘ indicates a non-normal distribution, 

while ✓ a normal distribution).  

If the distribution is normal, parametric analysis is performed using the ANOVA test, while 

otherwise, the Kruskal-Wallis test is used.  

In both cases, the p-value is obtained. If p > 0.05, there are no significant differences between the 

error distributions, while if p < 0.05, there are significant differences.  

It is noted that there are no significant differences (𝛼=0.05, p>0.05) between the two tests for all 

the proposed methods. 

 

Method Normal 

distribution 

Anova test Kruskar-

Wallis test 

p-value  

Barometer 

approach 1  
✓ ✓ ✘ >0.05 

Barometer 

approach 2 
✓ ✓ ✘ >0.05 
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Barometer 

approach 3 
✘ ✘ ✓ >0.05 

Accelerometer ✘ ✘ ✓ >0.05 

Kalman filter ✘ ✘ ✓ >0.05 

Sabatini filter ✘ ✘ ✓ >0.05 

Tab. 38: Statistical analysis assessing the distribution of RMSE error throughout the trial for each method (3 approaches with the 

barometer, accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini filter) individually, evaluating the 

error distribution between Test 1 and Test 2. The significance level is set at 0.05. 

 

 

2) The distribution of RMSE error is evaluated for each method (3 approaches with the barometer, 

accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini filter) 

individually, assessing the error distribution between subjects (Fig.39). The significance level is 

set at 0.05.  

For each method, it is assessed whether the error distribution is normal using the Shapiro-Wilk 

test (in the following table, in the 'normal distribution' box, ✘ indicates a non-normal distribution, 

while ✓ a normal distribution).  

If the distribution is normal, parametric analysis is performed using the ANOVA test, while 

otherwise, the Kruskal-Wallis test is used.  

In both cases, the p-value is obtained. If p > 0.05, there are no significant differences between the 

error distributions, while if p < 0.05, there are significant differences. Since multiple analyses are 

performed, a post hoc correction is necessary. If the correction performed with the Bonferroni 

method confirms the hypothesis of no significant differences, the symbol ✓ is indicated in the 

appropriate box in the following table. If the error distributions are significantly different, the 

group with a different distribution is identified through post hoc correction and indicated in the 

table. 

It is noted that there are no significant differences (𝛼=0.05, p>0.05) between the subjects for all 

the proposed methods. 
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Tab.39: Statistical analysis assessing the distribution of RMSE error throughout the trial for each method (3 approaches with the 
barometer, accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini filter) individually, evaluating the 
error distribution between subjects. The significance level is set at 0.05. 

 
3) The distribution of RMSE error is evaluated between the six proposed method (3 approaches 

with the barometer, accelerometer, sensor fusion with Kalman filter, and sensor fusion with 

Sabatini filter), assessing the error distribution between them. The significance level is set at 0.05. 

The error distribution is non-normal, analyzed using the Shapiro-Wilk test. The Kruskal-Wallis 

highlights that p > 0.05 and there are significant differences between the methods. 

Height Difference During Classified Transitions 

1) For each method of reconstructing the vertical trajectory of the CoM (three approaches using 

the barometer, accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini 

filter), the distribution of the absolute deviation across different types of transitions (StS, slow 

StS, Laying, step, and squat) is evaluated (Fig.40). Considering the 20 subjects, the dataset 

comprises a total of 238 StS transitions, 76 slow StS transitions, 158 laying transitions, 144 steps, 

and 89 squats correctly recognized.   

For every approach, it is assessed whether the error distribution is normal using the Shapiro-Wilk 

test (in the following table, in the 'normal distribution' box, ✘ indicates a non-normal distribution, 

Method Normal 

distribution 

Anova test Kruskar-

Wallis test 

p-value  Post hoc 

correction 

Barometer 

approach 1  
✓ ✓ ✘ >0.05 ✓ 

Barometer 

approach 2 
✓ ✓ ✘ >0.05 ✓ 

Barometer 

approach 3 
✘ ✘ ✓ >0.05 ✓ 

Accelerometer ✘ ✘ ✓ >0.05 ✓ 

Kalman filter ✘ ✘ ✓ >0.05 ✓ 

Sabatini filter ✘ ✘ ✓ >0.05 ✓ 



129 
 

while ✓ a normal distribution).  

If the distribution is normal, parametric analysis is performed using the ANOVA test, while 

otherwise, the Kruskal-Wallis test is used.  

In both cases, the p-value is obtained. If p > 0.05, there are no significant differences between the 

error distributions, while if p < 0.05, there are significant differences.  

Since multiple analyses are performed, a post hoc correction is necessary. If the correction 

performed with the Bonferroni method confirms the hypothesis of no significant differences, the 

symbol ✓ is indicated in the appropriate box in the following table. If the error distributions are 

significantly different, the group with a different distribution is identified through post hoc 

correction and indicated in the table. 

It is noted that there are significant differences (𝛼=0.05, p<0.05) for all methods. 

 

Method Normal 

distribution 

Anova test Kruskar-

Wallis test 

p-value  Post hoc 

correction 

Barometer 

approach 1  
✘ ✘ ✓ < 0.05 Significant 

difference the 

StS slow and 

laying 

transitions with 

StS 

Barometer 

approach 2 
✘ ✘ ✓ < 0.05 Significant 

difference the 

StS transition 

and step 

transitions with 

the others 

Barometer 

approach 3 
✘ ✘ ✓ < 0.05 Significant 

difference the 

StS transition 

with StS slow 

and laying 

Accelerometer ✘ ✘ ✓ < 0.05 Significant 

difference the 

StS transition 

and step 

transitions with 

the others 
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Tab.40: Each method of reconstructing the vertical trajectory of the CoM (three approaches using the barometer, accelerometer, 
sensor fusion with Kalman filter, and sensor fusion with Sabatini filter) is evaluated to analyze the distribution of the absolute 
deviation across different types of transitions (StS, slow StS, Laying, step, and squat). 

 

2) The distribution of absolute deviations for the 705 transitions performed by the 20 subjects is 

evaluated across various methods of reconstructing the vertical trajectory (three approaches using 

the barometer, accelerometer, sensor fusion with Kalman filter, and sensor fusion with Sabatini 

filter). The error distribution, assessed using the Shapiro-Wilk test, is non-normal. Consequently, 

a non-parametric analysis is conducted using the Kruskal-Wallis test, revealing a non-significant 

difference (𝛼=0.05, p>0.05). Post hoc correction highlights that the method hasn’t a significantly 

different error distribution between them. 

 

 

 

 

 

 

 

 

 

 

 

Kalman filter ✘ ✘ ✓ < 0.05 Significant 

difference the 

StS transition 

with StS slow 

and laying 

Sabatini filter ✘ ✘ ✓ < 0.05 Significant 

difference the 

StS transition 

and step 

transitions with 

the others 
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6. Discussion 
 

The present study aims to propose and validate a novel method for reconstructing the vertical 

displacement of the Center of Mass using barometric sensors integrated into the INDIP wearable 

system, which includes an inertial measurement unit.  

Twenty healthy subjects performed two trials of daily activities in a controlled laboratory 

environment, including Sit-to-Stand (StS), lying on a mattress, squatting, and step climbing. The 

stereophotogrammetric system was employed as the gold standard.  

The proposed algorithm hypothesizes that the height of the CoM remains constant except during 

transitions, where it increases or decreases. Transitions were identified using the derivative 

method by calculating the first derivative of the barometric signal. During transitions, vertical 

displacement was tracked using four approaches: barometer-only data, accelerometer-only data, 

and two sensor fusion approaches, using data from both sensors. 

6.1 Method based on derivative 

 

Detection of transitions 

Firstly, the method for detecting transitions is evaluated against the transitions manually labeled 

by the stereophotogrammetric signal. The detection performance is assessed in terms of precision, 

sensitivity, and F1 score (Table 9). Additionally, the sensitivity of transition detection is calculated 

and reported separately for each type of movement, including Sit-to-Stand (StS), slow Sit-to-

Stand (StS slow), lying down, stair climbing, and squatting. This detailed analysis helps determine 

whether the proposed method performs better for specific types of transitions or maintains 

consistent performance across different movements (Table 10). Statistical analysis was conducted 

to evaluate the distribution of F1 score values, examining the method's ability to generalize across 

subjects and tests. 

 

The results show an average F1 score of 90%. Notably, Test 1, which included only StS, StS slow, 

and lying down, achieved a higher F1 score of 98% compared to Test 2, which also included stair 

climbing and squatting, achieving an F1 score of 81%. The significant difference between tests is 

confirmed by the statistical analysis. 

When calculating sensitivity according to the type of transition, it is observed that StS, slow StS, 

and lying transitions show detection rates of 99% for the first two and 100% for lying down. In 

contrast, the performance decreases for stair and squat transitions, with sensitivities of 60% and 
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56%, respectively (Table 10). Sensitivity, which is penalized by false negatives, is very high for 

Test 1, at 100%, but decreases to 70% for Test 2. Precision remains high for both tests, around 

97%, indicating that the proposed method identifies few false positives despite the tests. 

It can therefore be concluded that the method's effectiveness is constrained by the type of 

transitions, as confirmed by the statistical analysis. However, it is robust regardless of the mode 

of movement, including both slow and comfortable speed Sit-to-Stand transitions.  

It performs better for transitions involving larger vertical displacements, such as StS and lying 

down. The vertical displacements associated with step execution are around 15 cm, a value similar 

to the amplitude noise in the barometric signal. Regarding squats, despite the significant vertical 

displacement, they are detected with a low percentage because, being rapid movements, the 

barometric signal processing through a moving average dampens the amplitude of the movement, 

penalizing its detection. 

The threshold values present in the derivative method (such as the peak of the derivative and the 

minimum height difference to consider a segment as a transition) were chosen by tuning the data, 

evaluating sensitivity and precision. The choice of threshold values aimed to optimize both scores. 

Indeed, a high number of missed events would indicate that, according to the proposed algorithm 

and with a view to exporting the method to a home environment, the subject moves less than 

reality, presupposing poor motor skills.  

Conversely, a high number of extra events would suggest that the subject moves more than reality, 

presupposing good motor skills. Overestimating transitions could lead to the satisfaction of a 

rehabilitation path, while underestimating transitions could result in its intensification. 

 

Temporal correctness  

 

The temporal accuracy of the correctly identified transitions is evaluated in terms of delay and 

duration (Table 11). Analyzing the mean delay and duration of the transitions identified using the 

derivative method, it is noted that these values are negative. Since they are calculated by 

subtracting the reconstructed values from the reference ones, it is inferred that the automatic 

transitions are detected with a delay and exhibit a longer duration compared to the gold standard. 

 

6.2 Tracking of the vertical trajectory of the CoM 
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The reconstruction of the vertical displacement of the Center of Mass is evaluated using both 

manually labeled transitions and automatically detected transitions. In the case of automatically 

detected transitions, the reconstruction process is halted if any transitions are not detected. Errors 

are assessed using Root Mean Square Error (RMSE), mean error, and correlation coefficient, 

calculated over the entire reconstructed trial. 

Furthermore, for each type of movement (StS, StS slow, lying down, steps, and squatting), the mean 

absolute error, mean error, and percentage error in height elevation/reduction during transitions are 

reported. 

Statistical analysis was conducted to assess the generalization capability of each method, 

independent of test, subject, and transition type. Additionally, the performance was evaluated in 

terms of RMSE distributions to identify any significant differences between the methods. 

Manually labelled transitions 
 

The performances (Tab.12, Tab.13, Tab.14, Tab.15, Tab.16, Tab.17) highlight that the 

reconstruction using the barometer provides the best outcomes, with an average RMSE of (10 ± 

4) cm and a correlation coefficient of (0.96 ± 0.03). The accelerometer yields the poorest 

performance, with an RMSE of (31 ± 20) cm and a correlation of (0.80 ± 0.18). The Kalman filter, 

which combines barometric and accelerometric information, offers intermediate results with an 

RMSE of (15 ± 9) cm and a correlation coefficient of (0.94 ± 0.04). The Sabatini filter, also a 

sensor fusion technique, provides performance very similar to that of the accelerometer. This 

implies that in the sensor fusion process, the weights are initialized in such a way that the 

accelerometer is favoured over the barometer.  

Regarding the performance related to the Δh executed during a transition (Tab.18, Tab.19, Tab.20, 

Tab.21, Tab.22, Tab.23), the methods showed almost similar values. The highest percentage error 

is associated with the execution of a step. 

The statistical analysis revealed that each method of CoM displacement reconstruction is 

consistent regardless of the subject and the trial. However, the distributions of absolute deviations 

associated with the transitions vary depending on the type of transition.  

Finally, evaluating the RMSE distributions between the methods reveals that they are significantly 

different. 

Automatic transitions 
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The performances (Tab.24, Tab.25, Tab.26, Tab.27, Tab.28, Tab.29) highlight that the 

reconstruction using the barometer provides the best outcomes, with an average RMSE of (8 ± 3) 

cm and a correlation coefficient of (0.97 ± 0.02). The accelerometer yields the poorest 

performance, with an RMSE of (33 ± 19) cm and a correlation of (0.80 ± 0.18). The Kalman filter, 

which combines barometric and accelerometric information, offers intermediate results with an 

RMSE of (19 ±12) cm and a correlation coefficient of (0.93 ± 0.05). The Sabatini filter, also a 

sensor fusion technique, provides performance very similar to that of the accelerometer. This 

implies that in the sensor fusion process, the weights are initialized in such a way that the 

accelerometer is favoured over the barometer. 

 

The results show that the use of a single barometer provides the best height reconstruction. This 

outcome was unexpected and could be attributed to the specific implementation of the initial part 

of the pipeline, which relies heavily on the barometric signal's morphology to detect transitions.  

Additionally, the sensor fusion methods could be further enhanced. The integration of 

accelerometer data, after gravity removal, is not optimal because the intervals for double 

integration to obtain the vertical displacement are determined based on the barometric signal. 

Consequently, the conditions applied to the integration may not be accurate. Specifically, the 

reconstruction using the accelerometer could be improved by incorporating the accelerometric 

signal to detect transition instances more accurately. 

It is noted that when providing the algorithm with automatic transitions, the average percentage 

error between StS and StS slow diverges and the StS slow has a higher error. This could be caused 

by the temporal accuracy of the identified transitions with the derivative method.  

The average RMSE values corroborate the results obtained by Sabatini et al. in their work, where 

they reported an RMSE range of 5 to 68 cm for the tests conducted. Particularly noteworthy in 

Sabatini's study is the squatting test, which is also included in this thesis. In Sabatini's work, this 

test demonstrated an average RMSE of 50 cm. These values are confirmed and improved with the 

same filter implemented in this study, as the average RMSE obtained is 31 cm. 

The statistical analysis revealed that each method of CoM displacement reconstruction is 

consistent regardless of the subject and the trial. However, the distributions of absolute deviations 

associated with the transitions vary depending on the type of transition. Finally, evaluating the 

RMSE distributions between the methods reveals that they are significantly different. 
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7. Conclusion  
 

The study aimed to develop and validate a method for tracking the vertical trajectory of a subject 

performing daily activities in a controlled environment. The objective is to adapt this method for 

everyday living environments, allowing for long-term recordings to gather information on 

subjects' motor abilities. 

To this aim, the wearable multi-sensor INDIP system, which includes an IMU, was integrated 

with the BMP390 barometer from Bosch at both the hardware and firmware levels. This 

integration overcomes the limitations of using a single IMU for vertical displacement 

reconstruction, proving a direct measurement of height.  

The study proposes an innovative use of the barometer, typically an altimeter in avionics, to detect 

small height variations. 

Twenty healthy subjects were involved in the study, performing two tests simulating daily 

activities such as sit-to-stand (StS), lying on a mattress, ascending and descending steps, and 

performing squats. The stereophotogrammetric system was used as a reference. 

The proposed pipeline is based on two steps. First, transitions are identified, which are intervals 

where the height of the CoM increases or decreases. Outside these intervals, the height is assumed 

to be constant. During transitions, height is reconstructed using various methods: single 

barometer, single accelerometer, or sensor fusion approaches that combine both data sources. 

The results show an average F1 score of 90% for detecting transitions. The method works best for 

StS and lying down, while further investigations are needed to identify the execution of steps and 

squatting. 

The implemented methods allow for accurate estimation of vertical displacement, matching and 

improving upon the results obtained by Sabatini et al., who reported RMSE values ranging from 

5 to 68 cm.  

The integration of the barometric data in the sensor fusion approach using a Kalman filter 

enhances the performance compared to the double integration of the accelerometer's vertical 

component, achieving average RMSE values of 19 cm and 33 cm, respectively. 

The limitations of the proposed study include the restricted number of participants and the fact 

that all subjects were healthy individuals. Additionally, although daily activities were simulated, 

the testing environment was overly controlled.  

Therefore, it is necessary to evaluate the method in real-world conditions and with subjects with 

different motor conditions. 
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In conclusion, the integration of the barometer and IMU yielded good results in accurately 

measuring height changes. This advancement offers significant potential for biomechanical 

analysis and energy consumption assessment, enhancing the understanding and evaluation of 

human movement in real-world settings. 

Future works 
 

The work developed in this study can open numerous avenues, both for enhancing the proposed 

algorithms and for leveraging the collected data to propose new methods. 

 

The implemented method relies heavily on the barometric signal. Specifically, the detection of 

transitions is based solely on the barometric signal. Despite the good performance achieved, 

transition detection could be improved by integrating the accelerometer signal, which would be 

specifically processed to enhance the detection of transition moments. These points correspond to 

the instances of double integration of the accelerometer. This approach would result in more 

accurate reconstruction provided by the accelerometer, thereby improving the sensor fusion. As 

highlighted in paragraph 4.5.3, enhancing the accuracy of the start and end points of transitions 

leads to a significant improvement in the vertical displacement reconstruction using the 

accelerometer.  

Furthermore, the proposed method could be applied in everyday living environments with 

prolonged recordings. In such cases, it would be interesting to assess the performance of the 

barometer in a noisier, uncontrolled setting compared to the laboratory environment. In the 

absence of the stereophotogrammetric system, a new reference system would be necessary. 

In this study, a single sensor setup was chosen for the development of the algorithm, prioritizing 

this over the development of a method that utilizes both barometers positioned on the subjects 

(one on the pelvis and one on the foot). While the dual sensor setup does not provide a direct 

measurement of the vertical displacement of the pelvis relative to the floor, it could still be 

explored for extracting other parameters. This approach effectively allows for the removal of 

common noise and drift.  

Finally, the INDIP system could integrate the barometer internally, ensuring that the sensor setup 

remains compact and non-intrusive for the subjects. Additionally, it would be beneficial to 

evaluate the performance of other pressure sensors, given that the BMP390 was released in 2019. 

This assessment could lead to the incorporation of more advanced sensors that offer improved 

performance and further minimize the system's size and weight. 
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