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Abstract

In biomedical research, a comprehensive approach to detecting and monitoring diseases
during different stages and measuring metabolic processes is essential for early diagnosis,
managing chronic illnesses, and improving health outcomes. Precision medicine exempli-
fies this approach by tailoring treatment to individual patients, thereby enabling more
accurate diagnoses, better disease prediction, and personalized therapies. Central to the
advancement of precision medicine are innovative technologies such as Hyperpolarized
Nuclear Magnetic Resonance (HP-NMR) spectroscopy, which significantly enhances the
sensitivity of molecular analysis. HP-NMR facilitates real-time, non-invasive observation
of molecular processes, providing unprecedented insights into dynamic biological phenom-
ena. However, the complex signals generated by HP-NMR require efficient and accurate
pre-processing methods to extract meaningful information. Addressing these challenges
is essential for fully realizing HP-NMR’s potential in advancing precision medicine.

To address these challenges, this thesis focuses on developing an automated tool for
processing HP-NMR data. The primary goal is to overcame the inefficiency and potential
inaccuracies associated with manual NMR data processing. Manual methods are time-
consuming and prone to human error, making them unreliable for handling the intricate
and voluminous data produced by HP-NMR spectroscopy. Hence, my primary research
question is: "How can an automated tool improve the accuracy and efficiency of prepro-
cessing HP-NMR spectra?"

To answer this question, the research explores several methodologies, including phase
correction and noise reduction techniques. I evaluated three distinct approaches for phase
correction: a coarse and fine tuning strategy, entropy minimization, and absolute spec-
trum comparison. Similarly, I tested three techniques for noise reduction: deep learning
Autoencoders, singular value decomposition (SVD), and moving average filters. I tested
these methods separately to determine their performance in their respective tasks.

The results indicate that the automated tool provides the accuracy and efficiency of
NMR data processing. Each phase correction and noise reduction method shows vary-
ing strengths and limitations, but collectively, they contribute to a more reliable and
standardized preprocessing workflow. The tool’s ability to improve signal clarity and ac-
curacy holds promise for advancing precision medicine by enabling better diagnostic and
therapeutic decisions.



Hence, this thesis demonstrates the effectiveness of an automated tool in preprocessing
HP-NMR spectra, addressing the challenges of noise and phase distortion. Future research
should focus on refining these methodologies and exploring their applications in diverse
NMR datasets to further enhance the tool’s robustness and applicability in precision
medicine.

2



Contents

List of Figures 2

1 Introduction 7

2 State of Art 11

3 Nuclear Magnetic Resonance (NMR) Spetroscopy and Hyperpolariza-
tion 13

3.1 Fundamentals of NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 Nuclear spins and Magnetization . . . . . . . . . . . . . . . . . . . 14
3.1.2 Resonance Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Relaxation Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 NMR experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.5 Composition and operation of NMR . . . . . . . . . . . . . . . . . 21
3.1.6 Benchtop NMR Spectroscopy . . . . . . . . . . . . . . . . . . . . . 21

3.2 Hyperpolarization method in NMR spectroscopy . . . . . . . . . . . . . . 22
3.2.1 Signal-to-Noise Ratio (SNR) . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 NMR Sensitivity and Boltzmann Equation . . . . . . . . . . . . . . 23
3.2.3 Spin Hyperpolarization . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 FID signal and Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 The Free Induction Decay (FID) . . . . . . . . . . . . . . . . . . . 26
3.3.2 Fourier Transformation . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Data Processing 31

4.1 Sensitivity enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Chemical Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Baseline correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Whittaker smoother . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Phase correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3



4.5 Noise reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.1 Deep Learning - Autoencoder . . . . . . . . . . . . . . . . . . . . . 42
4.5.2 Stationary Wavelet Transform technique . . . . . . . . . . . . . . . 45
4.5.3 Rolling Window Technique (Moving average) . . . . . . . . . . . . 46

4.6 Evaluation Metrics for Performance and Accuracy . . . . . . . . . . . . . . 46
4.6.1 Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.2 Euclidean Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.3 Root Mean Square Error . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6.4 Least - Squares Method . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6.5 Structural Similarity index (SSIM) . . . . . . . . . . . . . . . . . . 48

5 Methods 49

5.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Basics processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Phase and Baseline correction . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Manual Phase Correction . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Coarse and Fine Tuning method . . . . . . . . . . . . . . . . . . . 55
5.3.3 Entropy minimization method . . . . . . . . . . . . . . . . . . . . . 57
5.3.4 Absolute spectrum method . . . . . . . . . . . . . . . . . . . . . . 58
5.3.5 Baseline recognition and Correction . . . . . . . . . . . . . . . . . 60

5.4 Simulated spectroscopic data Generation . . . . . . . . . . . . . . . . . . . 62
5.5 Autoencoder for Spectral Noise Reduction . . . . . . . . . . . . . . . . . . 65

5.5.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5.2 Autoencoder Architecture . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.3 Training the Autoencoder . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Alternative Denoising Methods . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6.1 SWT Denoising Technique . . . . . . . . . . . . . . . . . . . . . . . 68
5.6.2 Rolling Window Technique . . . . . . . . . . . . . . . . . . . . . . 68

6 Results and discussion 71

6.1 Performance Assessment of Phase Correction Methods for NMR Spectra . 72
6.1.1 Evaluation of Phase Correction Method Performance . . . . . . . . 73
6.1.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Performance Assessment of Denoising Methods for NMR Spectra . . . . . 79
6.2.1 Evaluation of Noise Reduction Method Performance . . . . . . . . 80
6.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Conclusion 87

4



Bibliography 89

5



6



Chapter 1

Introduction

Hyperpolarized Nuclear Magnetic Resonance (HP-NMR) spectroscopy stands as a pow-
erful analytical technique that greatly amplifies signal strength, enabling detailed explo-
ration of molecular structures and dynamics. This non-invasive and quantitative method
furnishes real-time insights, proving indispensable across diverse domains such as dis-
ease detection and treatment at varying stages, metabolic process measurements, protein
structure analysis, and other scientific inquiries. HP-NMR spectroscopy is widely appli-
cable across diverse fields such as physics, chemistry, biological structure, and medicine,
highlighting its critical role as a versatile and high-throughput analytical tool [15]. It is
essential to enhance its effectiveness and productivity to fully capitalize on its potential
in these multifaceted applications.

This research narrows its focus within the broader context of precision medicine,
which aims to improve diagnostic accuracy and tailor treatments based on individual
disease profiles. Precision medicine facilitates targeted approaches that empower health-
care providers to assess disease risks, prevent illnesses, identify suitable treatments, and
monitor treatment responses effectively. This personalized approach holds promise for op-
timizing medicine by ensuring treatments are more efficacious, with minimized side effects
and enhanced decision-making capabilities [13]. Cutting-edge technologies such as HP-
NMR play a pivotal role in advancing precision medicine through their ability to enhance
the sensitivity of molecular analyses. Therefore, optimizing the processing of HP-NMR
signals is crucial for achieving substantial advancements in this field.

This research is motivated by the pivotal role of HP-NMR in precision medicine, where
the signals it captures necessitate efficient preprocessing methods for extracting crucial
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Introduction

information. Current investigations underscore the necessity for advancements in auto-
mated data processing tools to exceed limitations inherent in manual interpretation. This
thesis introduces an automated NMR data processing tool designed to address challenges
including sensitivity enhancement, chemical shift, and baseline correction, with specific
emphasis on phase correction and noise reduction.

Central to this research is the development of an automated tool for NMR data pro-
cessing aimed at enhancing the efficiency and accuracy of HP-NMR data interpretation.
This objective is driven by the need to overcome current limitations in manual processing
methods, particularly in sensitivity enhancement, chemical shift correction, baseline ad-
justment, phase correction, and noise reduction. Key research questions guiding this study
include: How can automated processing improve the efficiency of HP-NMR spectroscopy
data interpretation? What are the primary challenges in automating HP-NMR data pro-
cessing, and how can they be effectively addressed? To what extent does the developed
tool improve the accuracy of HP-NMR data analysis compared to manual methods?

Figure 1.1 shows the general workflow followed in this study . This thesis delves
into the fundamental principles of NMR spectroscopy, signal acquisition, and hyperpo-
larization methods such as Dynamic Nuclear Polarization (DNP), which aim to enhance
sensitivity. It explains the acquired signal known as Free Induction Decay (FID) in the
time domain and its Fourier transform, providing information in the frequency domain.
Chapter 4 shifts the focus to data processing techniques, emphasizing their importance in
enhancing sensitivity, managing chemical shifts, correcting baselines, phase adjustment,
and denoising. Chapter 5 thoroughly describes the materials and methodologies used in
the research. Chapter 6 presents and analyzes the results of phase correction and noise
reduction methods, offering quantitative and qualitative assessments that compare their
performance against existing methods. The thesis concludes in Chapter 7 by summa-
rizing findings and contributions to NMR data processing, emphasizing implications for
precision medicine and suggesting future research directions. Each chapter builds on the
previous ones, systematically addressing research questions and showcasing advancements
in NMR spectroscopy methodologies.
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Figure 1.1: General workflow: involves analyzing a sample using hyperpolarized Nuclear
Magnetic Resonance (HP-NMR) spectroscopy. The sample is placed in an NMR tube
and hyperpolarized to enhance sensitivity. The tube is then placed in a homogeneous
magnetic field inside a benchtop NMR spectrometer. The nuclei in the sample align into
two energy states. When appropriate frequency radiation is applied, the nuclei absorb
energy. As they return to equilibrium, they release this energy, generating a signal that
reflects the sample’s composition. The Free Induction Decay (FID) signal, initially in the
time domain, is converted into a spectrum via Fourier transform. This initiates the signal
processing pathway to optimize the spectrum for analysis.
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Chapter 2

State of Art

Hyperpolarized Nuclear Magnetic Resonance (HP-NMR) spectroscopy significantly en-
hances the sensitivity of molecular analysis, facilitating real-time, non-invasive observa-
tion of molecular processes [15]. However, the complex signals generated by HP-NMR
necessitate efficient and accurate pre-processing methods, such as phase correction and
noise reduction, to extract meaningful information. Developing new methods in these
areas is essential for advancing the effectiveness of HP-NMR in precision medicine.

Current methods for phase correction and denoising in HP-NMR exhibit significant
limitations, highlighting the need for innovative approaches. Traditional phase correction
methods, including manual adjustments, entropy minimization [11], and coarse and fine
tuning [4], often lack accuracy, efficiency, and ease of use. Manual phase correction, while
precise, is highly time-consuming and prone to human error, making it impractical for
large datasets. Automated methods, such as entropy minimization, are computationally
intensive and may not always converge to the optimal solution due to the complexity
of the required mathematical models. The coarse and fine tuning approach, although
structured, lacks the precision needed for highly sensitive HP-NMR data and does not
effectively handle iterative optimization of phase parameters.

Conventional denoising methods such as moving average filters and Stationary Wavelet
Transform (SWT) [2] also face challenges. Moving average filters, while simple to imple-
ment, tend to smooth out important spectral features, reducing the overall quality of the
data. SWT can better preserve signal characteristics compared to moving averages but
still may not achieve the desired noise reduction level, particularly in high noise scenarios.

To address these shortcomings, I propose two novel methods: an absolute spectrum
comparison method for phase correction and an autoencoder-based method for denoising.

The absolute spectrum comparison method for phase correction maximizes similarity
with the absolute value of the spectrum, offering a novel criterion for phase correction.

11



State of Art

This method relies on simpler mathematical operations, making it more accessible and
less computationally demanding. It incorporates a two-step iterative process: the first
step optimally searches for the value of first-zero order correction, (ph0), followed by a
second step that iteratively finds the optimal value of first-oder phase correction,(ph1).
This structured approach ensures a more precise and accurate phase correction by utilizing
more effective optimization algorithms.

For denoising, the application of an autoencoder leverages deep learning to distinguish
between noise and true signal components. It demonstrates superior performance even
under high noise conditions, ensuring the integrity of the signal is maintained. By tak-
ing into account the specific characteristics of the signal, the autoencoder-based method
preserves important features of each peak in the spectra, which are critical for accurate
signal evaluation.

These innovative methods address the significant shortcomings of existing techniques
and provide a more robust framework for processing HP-NMR data. The absolute spec-
trum comparison method for phase correction and the autoencoder-based approach for
denoising enhance the accuracy and efficiency of data processing while ensuring the preser-
vation of critical details within the HP-NMR spectra, thereby improving the overall quality
of the analytical results.

In summary, the development of the absolute spectrum comparison method for phase
correction and the autoencoder-based denoising method marks a significant step forward
in the pre-processing of HP-NMR data. These novel approaches address the limitations of
existing methods and provide enhanced tools for accurate and efficient data analysis, sup-
porting the advancement of precision medicine through improved HP-NMR spectroscopy.
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Chapter 3

Nuclear Magnetic Resonance (NMR)
Spetroscopy and Hyperpolarization

Nuclear Magnetic Resonance (NMR) spectroscopy is a non-invasive technique that lever-
ages the magnetic properties of atomic nuclei to detect their chemical environment. NMR
spectroscopy is versatile, applicable in both liquid and solid states, in one-dimensional
(1D), two-dimensional (2D) , and multidimensional (nD) experiments. In 2D and nD
NMR spectroscopy, data appear in a space defined by two or more time axes (or frequency
axes in the frequency domain), providing detailed structural information. This versatil-
ity allows NMR to provide detailed information about a sample’s structure, composition,
purity, molecular weight, dynamics, and diffusion properties at the nanometer scale [24].
Additionally, NMR techniques are invaluable for metabolic studies at the molecular level,
enabling the identification of metabolic processes and the tracking of metabolite flux in
living systems, both in vitro and in vivo [42].

When a sample surrounded by a magnetic field and exposed to Radiofrequency (RF)
radiation (energy) at the appropriate frequency, the nuclei in the sample can absorb the
energy. After the nuclei absorb this energy, the duration and manner which they dissipate
that energy provide information about various dynamic processes [44].

Despite its detailed analytical capabilities, NMR spectroscopy suffers from inherently
low sensitivity due to the weak interaction between nuclear spins and magnetic fields.
This limitation sets the stage for the challenges addressed in subsequent sections, which
also present potential solutions to overcome the low sensitivity of conventional NMR, par-
ticularly through a hyperpolarized approach.
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Nuclear Magnetic Resonance (NMR) Spetroscopy and Hyperpolarization

This chapter begins with an overview of the fundamental principles underlying NMR
spectroscopy. It explores nuclear spins and magnetization, which are crucial for under-
standing how nuclei interact with magnetic fields to generate measurable signals.

3.1 Fundamentals of NMR

This section provides a comprehensive overview of the fundamental principles underlying
Nuclear Magnetic Resonance (NMR) spectroscopy. It begins with a discussion on nuclear
spins and magnetization, essential concepts for understanding NMR. Following the dis-
cussion on spins and magnetization, the phenomenon of resonance and its significance in
NMR experiments receives detailed analysis. Finally, we investigate the relaxation pro-
cesses that allow the nuclear spin system to return to equilibrium after excitation. This
foundational knowledge is crucial for interpreting the results and applications of NMR
spectroscopy.

3.1.1 Nuclear spins and Magnetization

Understanding the arrangement and presence of atoms in a chemical compounds is central
to many scientific inquiries. Figure 3.2.a shows the atomic level in which the nucleus is a
dense, positively charged entity described by a set of a quantum properties, one of which
is nuclear spins, denoted by the quantum number I. The nuclear spin is fundamentally
related to the composition of protons and neutrons within the nucleus of an atom or
isotope. Indeed, only atomic nuclei with nuclear angular momentum are analyzable using
NMR spectroscopy [50] [28]. This category includes nuclei with an odd number of protons,
an odd number of neutrons, or both. Conversely, nuclei with an even number of protons
and neutrons possess a nuclear spin quantum number of zero, making them unaffected
by a magnetic field and, therefore, unsuitable for NMR spectroscopy. Consequently, the
most common isotopes of the carbon, nitrogen, and oxygen (12C, 14N and 16O ), which
lack a nuclear spin and therefore remain undetectable through NMR spectroscopy [44].

This work focuses on 13C, a carbon isotope with a spin number I = 1/2. Consequently,
its nuclear spin adopts either a positive (spin up) or negative (spin down) orientation.
Any charge particle in motion generates a corresponding magnetic field [44]. When the
nucleus spins anti-clockwise, it generates a magnetic field represented by an arrow pointing
upwards, referred to as the magnetic moment µ, akin to a small magnet with a north pole
at the arrow’s tip and south pole at the tail. Conversely, a clockwise spin results in a
magnetic moment pointing downwards. A nucleus with a spin of I = ±1/2 can have only
these two configurations. Figure 3.2.b presents all of the aforementioned information.

14
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Figure 3.1: Fundamental principles of NMR spectroscopy. (a) Represents an unper-
turbed system where atomic nuclei in the sample are randomly oriented, leading to a net
magnetic moment of zero as the individual magnetic moments cancel each other out. (b)
Shows the sample places in a homogeneous static magnetic field B0, causing magnetiza-
tion. In this state, nuclei align with the external magnetic field, with the majority in
the lower energy α state (parallel to B0) and fewer in the higher energy β state (anti
parallel to B0). (c) Depicts the application of a short radiofrequency (RF) pulse, causing
the nuclei to resonate and flip from the lower energy state to the higher energy state by
absorbing energy. (d) The RF pulse is removed, and the nuclei return to their initial
state through precession, a process known as relaxation.

The relationship between the nuclear spin (I ) and the magnetic moment (µ) follows
the equation:

µ = γI (3.1)

Where γ is the gyromagnetic ratio, a constant dependent on the isotope [9]. NMR
spectroscopy detects only atomic nuclei with I /= 0 (NMR-active nuclei, such as 1H , 2H,
13C and, 15N) [9].
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Figure 3.2: Structure and properties of the sample at the atomic level. (a) Illustra-
tion of the sample at the atomic level, highlighting the nucleus with its positive charge
and quantum spin property (I ). The nucleus has both an angular momentum (ωs) and
a magnetic moment (µ). (b) The spin positive (spin up) with I = 1/2, spinning coun-
terclockwise and the magnetic moment pointing upwards, or negative (spin down) with
I = −1/2, spinning clockwise with the magnetic moment pointing downwards.

Placing a sample in a strong magnetic field causes the magnetic moments of individual
nuclei to align with the external field, a process called magnetization, showed in Figure
3.1.b [9] [50] [44]. The force of this magnetic alignment is defined by the gyromagnetic
ratio γ [9].

In the field of a larger magnet, the orientation of the small magnet is no longer random
as depicted in Figure3.1.a. Instead, one particular orientation becomes more probable.
The most favorable orientation aligns parallel to the external magnetic field and corre-
sponds to the positive nuclear spin 1/2, representing the low-energy state. Conversely, the
less favorable state aligns anti-parallel to the field, associated with the negative nuclear
spin −1/2, representing the high-energy state. [44] [9]. These two orientations correspond
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3.1 – Fundamentals of NMR

to the two spin states labelled as α and β [30]. It is a quantum mechanical requirement
that any nuclear spins with I = 1/2 be in one of the two states in a magnetic field.

The energy difference (∆E) between these levels depends on the magnetic field and
gyromagnetic ratio, affecting the sensitivity of the technique [9]. This relationship follows:

∆E = Eβ − Eα = γ
h

2π
B0 (3.2)

Where h is the Planck’s constant (6.63× 10−27 erg sec) and B0 is the magnetic field
surrounding the nucleus [44]. A stronger external magnetic field results in a larger ∆E [30].

According to Planck’s equation (E = hν), the relationship in Equation 3.2 becomes:

hν = γ
h

2π
B0 (3.3)

By eliminating h from both sides and converting the frequency from Hz to radians/s
(multiplying by 2π), the equation becomes:

ω = γB0 (3.4)

This is the Larmor equation, ω is the frequency of the precessional motion of the
nucleus into the field, also called Larmor frequency, proportional to the magnetic field
and the gyromagnetic ratio of the nucleus. Thus, in the presence of an external magnetic
field, nuclei with different gyromagnetic ratios distinguish themselves by their precession
frequencies. The Larmor equation defines both the precession frequency of the magnetic
moment about the direction of the external field and the energy splitting associated with
the transitions between quantized nuclear magnetic states [31].

In practice, a large number of nuclei in a sample placed in a magnetic field will split
into two sub-populations with respective energy levels. [44] [50]. The population distribu-
tion in different energy states, when the nuclear spin system is unperturbed, follows the
Boltzmann equation:

Nupper

Nlower
=

Nβ

Nα
= e−∆E/kT (3.5)

Where Nupper and Nlower represent the population of nuclei in upper and lower energy
states, respectively, k is the Boltzmann constant, and T is the absolute temperature
(◦K) [44].

The small excess of spins precessing in the low-energy state, randomly distributed
across the precessional cone’s surface, generates a macroscopic magnetization vector M,
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aligned with the magnetic field. The NMR experiment involves manipulation of the
orientation of these magnetisation vectors, and therefore, it is convenient to define an axis
system where the B0 field aligs with the z -direction depicted in Figure 3.1.b [31].

3.1.2 Resonance Phenomenon

In an NMR spectrometer, energy is required to excite protons from the lower energy
state (α spin state) to the higher energy state (β spin state). This energy comes from
electromagnetic radiation B1 in the radio frequency (RF) region, typically applied as a
short pulse. If the RF radiation’s energy matches the energy gap (∆E), or in other words,
if its frequency match the resonance frequency, the proton will flip its magnetic moment
from the lower energy state to the higher energy state, and the nuclei resonate with the
electromagnetic radiation [30] [44].

When the nuclei absorb the B1 energy, the difference between spins up and down
decreases, reducing the macroscopic magnetization in the z -direction. However, magne-
tization will persist; instead, it flips away from the direction of the static B0 field by an
angle θ because the nuclear spins are no longer randomly distributed but tend to point
with the B1 field, as showed in Figure 3.3. The flip angle achieved by the pulse depends
on the nucleus’s nature, the strength of the B1 field, and the pulse duration:

θ = γB1t (3.6)

Pulses also have phases, often applied in the x, y, -x or -y direction [31]. For instance,
when the RF is applied on x, it corresponds to 90◦ pulse.

Common flip angles are 90◦ (π/2) and 180◦ (π), illustrated in Figure 3.3.c and 3.3.d,
respectively. Researchers select various smaller (Figure 3.3.a) and larger (Figure 3.3.b)
angles for different purposes. A 90◦ angle provides the largest possible Mxy and detectable
NMR signal, requiring a known B1 strength and duration. The displacement angle of the
sample’s magnetic moment is linearly related to the product of B1 field strength and time.
For fixed B1 field strength, a 90◦ displacement takes half the time of 180◦ displacement, as
Equation 3.6 indicates. With flip angles smaller than 90◦, less time is needed to displace
Mz, and achieving larger transverse magnetization per unit excitation time [43] [31].
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Figure 3.3: Flip angles θ and their effects on longitudinal magnetization Mz. Flip angle
θ, which is the angle of displacement of the longitudinal magnetization vector Mz from its
equilibrium position when a RF pulse is applied, depends on the duration and amplitude
of the pulse. (a) Shows a small θ (less than 45◦), producing a small Mz. (b) Depicts a
larger θ (around 75◦ to 90◦), resulting in a larger Mz. (c) illustrates θ equal to 90◦, which
generates the maximum transverse magnetization Mxy . (d) Represents a θ equal to 180◦,
which inverts the longitudinal magnetization, aligning it along the negative z-axis.

3.1.3 Relaxation Processes

Relaxation is the process by which a nuclear spin system return to thermal equilibrium
after absorbing RF energy (Figure 3.4.b). Relaxation process, which neither emit nor
absorb radiation, allow the nuclear spin system to redistribute the population of nuclear
spins [44].

After switching off the B1 field, the spins gradually lose the coherence, and the macro-
scopic magnetisation returns to the direction of the static B0 field. These phenomena
follow an exponential decay, described by the Bloch equations:

Mx(t) = [Mx(0)cos(ωt)−My(0)sin(ωt)]e
−t/T2 (3.7)

My(t) = [Mx(0)sin(ωt) +My(0)cos(ωt)]e
−t/T2 (3.8)
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Mz(t) = Meq + [Mz(0)−Meq]e
−t/T2 (3.9)

These equations define how the macroscopic magnetisation evolves in the direction of
each axis, showing how the precessing macroscopic magnetization returns to the direction
of the static field B0 [31].

The Bloch equations illustrate that the recovery time of the macroscopic magnetization
aligners with the static field B0 depends on the Larmor frequency and two parameters
called T1 and T2. These parameters, integral to the Bloch equations, characterize the
relaxation processes of the macroscopic magnetization.

T1 called longitudinal relaxation, impacting Mz and determining how quickly the
magnetisation returns to alignment with the static field (Figure 3.4.a). Conversely, T2

relates to transverse magnetization, affecting Mx and My and delineates the rate at which
coherence is lost following the cessation of B1 excitation (Figure 3.4.c) [31].
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Figure 3.4: Relaxation phenomenon, removing the RF pulse the magnetic moment re-
turns to its equilibrium state, parallel to the static magnetic field B0. (a) Shows the
recovery of longitudinal magnetization Mz, determined by T1, known as longitudinal re-
laxation. (b) Depicts the relaxation process, where Mz returns to equilibrium and trans-
verse magnetization Mxy is lost. (c) Illustrates the loss of transverse magnetization Mxy,
determined by T2, known as transverse relaxation.

20



3.1 – Fundamentals of NMR

3.1.4 NMR experiments

3.1.5 Composition and operation of NMR

An NMR system comprises five essential components: a stable superconducting magnet
for generating a homogeneous magnetic field, a radio frequency (RF) transmitter for
producing electromagnetic radiation, a sensitive RF receiver for detecting signals from
resonating nuclei, a console to control RF pulses and digitize received signals, and software
for data interpretation (Figure 3.5) [23].

The steps below detail the process of obtaining an NMR spectrum of a molecule of
interest.

Samples, often dissolved in a solvent, are positioned precisely within the probe in the
magnetic field. Each NMR-active nucleus in the sample possesses a microscopic magnetic
moment. Initially, these magnetic moments align to form a net macroscopic magnetization
vector parallel to the static magnetic field B0.

Excitation begins with a broad-band RF pulse generated by the spectrometer’s probe
coils, causing the macroscopic magnetization to rotate, typically to the xy plane.

The resulting precession of the magnetization induces weak currents in the probe coils,
known as Free Induction Decay (FID), which is recorded over time by the spectrometer.
The FID, exhibiting a complex exponential decay pattern, is converted into the frequency
domain using Fourier Transform (FT).

Multiple scans are often accumulated to improve the signal-to-noise ratio (SNR) ,factor
discussed in Section 3.2.1, necessary for peak identification and structural elucidation [23].

3.1.6 Benchtop NMR Spectroscopy

Benchtop NMR spectroscopy, showed in Figure 3.5, provids a compact and versatile al-
ternative to traditional high-field NMR systems. Unlike superconducting magnet-based
systems requiring cryogenic cooling, benchtop NMR utilizes rare earth permanent mag-
nets, operating at lower static fields (typically 0.5 - 2.5 Tesla). This technology democ-
ratizes NMR applications, making it accessible in various laboratory and manufacturing
settings [35].

Despite lower resolution compared to high-field NMR, benchtop NMR instruments are
easier to maintain and operate. They detect a smaller proportion of aligned spins per mil-
lion nuclei due to the lower total static field, yet remain effective for diverse chemical and
material analyses. Exciting aligned spins with RF pulses and recording their relaxation-
induced precession forms the basis of benchtop NMR, where accumulated signal improves
detection sensitivity and noise reduction [35].
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Figure 3.5: Components of a standard NMR system: a rare earth permanent magnet,
which generates a homogeneous magnetic field around the centrally placed sample. A
radiofrequency (RF) transmitter sends an RF pulse to the sample. Detection of the
relaxation phenomena occurs through a pre-amplifier and an RF receiver. The signal
then passes through a recorder before being displayed on a visualization tool.

3.2 Hyperpolarization method in NMR spectroscopy

3.2.1 Signal-to-Noise Ratio (SNR)

Noise presents a significant challenge in analytical techniques such as Nuclear Magnetic
Resonance (NMR) spectroscopy, impacting data quality and sensitivity. Noise in signals
is generally considered additive, modeled a signal x(t) by:

x(t) = s(t) + n(t) (3.10)

Where s(t) is the true signal, and n(t) represents the noise, typically approximated as
the Gaussian noise with a flat power spectrum. In NMR spectra, noise appears along the
baseline, making it difficult to distinguish trues signals from background noise, thereby
reducing sensitivity.

Signal-to-Noise Ratio (SNR) quantifies the noise in a signal. SNR, expressed in decibels
(dB) measures the signal strength relative to the background noise:

SNRdb = 20 log10

(︃
As

σn

)︃
(3.11)

Where As is the signal amplitude and σn is the noise standard deviation. A higher
SNR indicates a stronger signal relative to noise, essential for accurate data interpretation.

Enhancing SNR in NMR spectroscopy often involves increasing the number of scans,
as already mentioned in Section 3.1.4. Each scan adds data, and averaging these scans
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tends to cancel out random noise while clarifying the consistent signal. Achieving an
adequate SNR may require thousands of scans, especially for discerning structural peaks
from background noise [23].

3.2.2 NMR Sensitivity and Boltzmann Equation

NMR sensitivity is inherently limited by the weak interaction of magnetic nuclei with
magnetic fields which leads to low nuclear magnetization and spin polarization at thermal
equilibrium [15]. The term spin polarization defines the degree to with the spin is aligned
with a given direction [26].

These week interactions lead to small population difference between nuclear energy
levels, described by the Boltzmann equation 3.5. For proton in a 18.8 T magnetic field
(800 MHz) at room temperature, the population ratio is approximately 0.999872, meaning
only 128 more nuclei are in the lower energy state than in the upper state per 1,000,128
nuclei (as showed in Figure 3.6.a and 3.6.b). This small excess generates the NMR signal,
with the majority of nuclei canceling each other out [44].

Combining Equations 3.2 and 3.3, the Boltzmann equation 3.5 may be rewritten as:

Nupper

Nlower
=

Nβ

Nα
= e−νh/kT (3.12)

Referring to the Equations 3.3 and 3.12, using stronger magnetic fields increases the
population ratio and thus the sensitivity. Figure 3.6.a depicts the linear relation between
the population ratio and the magnetic field B0. Another method to improve sensitivity
is increasing the number of nuclei in the sample, either by raising the concentration or
increasing sample volume [44].

Factors that contributes to lower SNR include non-uniform magnetic field strength,
which causes nuclei to achieve the Larmor condition (Equation 3.4) at different frequencies,
resulting in a broader signal. The design and geometry of the receiver coil also affect
sensitivity. Biological samples often have a high dielectric constant, leading to additional
signal loss [44].

3.2.3 Spin Hyperpolarization

Low spin polarization levels lead to weak signal intensities in NMR, resulting in limited
sensitivity in experiments. This limitation hinders the application of magnetic-resonance-
based techniques across various fields, such as rapid analytical NMR in combinatorial
synthesis and screening, chemical and pathogen detection, portable NMR, and magnetic
resonance in imaging (MRI) for in-field chemical sensing or emergency medical diagnosis.
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Figure 3.6: Effects of magnetic field strength and hyperpolarization on nuclear spin
states. (a) Dependence on the magnetic field strength B0 in separating nuclei into two
different energy states for a spin I = 1/2, along with the relative population for each
energy state assuming approximately 2 million protons in the sample (an unrealistic value
as typically higher numbers are present in reality). (b) Thermal equilibrium depicting
protons in a magnetic field of 18.8 T (corresponding to 800 MHz in 1H NMR frequency)
at room temperature. (c) Hyperpolarization effect where all spins align in the same
direction as B0, resulting in signal enhancement (phyp ∼ 1) compared to their relative
thermal equilibrium state (b).

The primary constrains include the limited amount or concentration of the sample, short
feasible observation times, and the impracticality of using large supercondution magnets
to induce sufficient polarization [15].

Enhancing NMR-based techniques’ sensitivity can significantly broaden their applica-
tions. Hyperpolarization, which increases nuclear spin polarization by driving the system
into a non-equilibrium state, offers a solution. This approach can achieve signal enhance-
ments of four to five orders of magnitude or more, providing stronger signals than those
available under thermal equilibrium [15].

To illustrate the underlying concepts in relatively simple terms, consider an ensemble
of nuclei with a nonzero spin. The interaction of the spins with an applied static magnetic
field generates nuclear magnetization, which remains small due to the weak interaction.
Essentially, the magnetic field attempt to orient nuclear spins along one direction but
cannot effectively compete with thermal randomization, resulting in weak spin orientation
preference [15].

Spin polarization, indicating the population on energy levels, characterizes the degree
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of spin orientation. For isolated spin 1/2 species with a gyromagnetic ratio γ in a static
magnetic fields, polarization p is relatively straightforward:

p = sgn(γ)
nα − nβ

nα + nβ
(3.13)

where ni is the number of species in state i, and sgn(γ) is the sign (+1 or -1) of
gyromagnetic ratio. Signal intensity in an NMR spectrum is directly proportional to
nuclear spin polarization [15].

The polarization of a thermally equilibrated spin system, ptherm, depends on the mag-
netic field strength, temperature, and the nuclei’s gyromagnetic ratio, γn. The factor
sgn(γ) ensures ptherm is always positive. At ambient temperatures, spin polarization of
a sample at thermal equilibrium in modern NMR instruments is on the order of 10−4 to
10−5 for the 1H nuclei, and even lower for other nuclei with smaller γn. Only one in every
10.000 100.000 spins contributes to the observable signal due to opposing contribution
from spins in α and β states (Figure 3.6.b) [15].

Increasing the intrinsically low polarization levels at thermal equilibrium involves en-
hancing nuclear spin polarization by driving the spin system into a non-equilibrium state,
a process known as hyperpolarization. Techniques for hyperpolarizaztion can achieve spin
polarization phyp ∼ 1, corresponding to signal enhancements of 4-5 order of magnitude
(Figure 3.6.c) [15].

Here is the signal enhancement defined as:

ε =
I

I0
(3.14)

where I and I0 are the intensities of the hyperpolarized and thermally polarized spin
system, respectively, under identical experimental conditions [15].

Significan signal enhancements of several orders of magnitude significantly widen the
scope of applications of NMR and MRI, even on high-field instruments [15]. Diverse hy-
perpolarization techniques offering substantial sensitivity improvements include dynamic
nuclear polarization (DNP), which replies on electron - nuclear polarization transfer,
to utilize the higher polarization of electron spins. DNP can yield nuclear spin states
with polarization levels far exceeding those achievable by the highest-field spectrome-
ters under Boltzmann equilibrium [15]. Metabolites have also been hyperpolarized using
parahydrogen-induced polarization (PHIP), a technique base on the use of H2 in its singlet
nuclear spin state which is called parahydrogen [15].

Ex situ dynamic nuclear polarization (DNP) produces liquid-phase samples with spin
polarizations up to 50 %, providing NMR sensitivity equivalent to averaging about 1.000.000
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scans. However, this process necessitates obtaining the comprehensive spectrum within
just one or a few transients [36]. These advancements in hyperpolarization significantly
enhance NMR sensitivity, enabling a broader range of novel and advanced applications.

3.3 FID signal and Fourier Transform

The previous sections detailed the principles of Nuclear Magnetic Resonance and acquisi-
tion of a signal that decays due to relaxation processes. This signal, know as Free Induction
Decay (FID), is time-dependent. However, analysis requires a signal in the frequency do-
main, which is achieved through a mathematical process called Fourier Transform (FT),
resulting in a spectrum.

This section begins with a discussion of the mathematical equation of the FID and
its characteristics, followed by an exploration of spectrum features such as phase and
lineshapes, which are closely associated with the Fourier transform.

3.3.1 The Free Induction Decay (FID)

The FID is the detectable NMR signal resulting from the precession of nuclear spin mag-
netization out of equilibrium around the magnetic field. When this magnetization vector
has a component in the xy plane, it generates an oscillating voltage in both the detection
coils (one aligned with the x-axis and one with y-axis) surrounding the sample. The FID,
which is a time-domain signal, is directly proportional to the magnetization and is influ-
enced by numerous instrumental factors [20].

Consider this signal as arising from a vector of length S0 rotating at frequency f0

(Figure 3.7.a). The x and y components of the vector give Sx(t) and Sy(t) (they are
represented in Figure 3.7.b with the blue dotted line). It is convenient to regard Sx(t)

and Sy(t) as the real and imaginary part of a complex number S(t):

S(t) = Sx(t) + iSy(t)

= S0 cos ( 2πf0 t ) + i S0 sin ( 2πf0 t )

= S0 e
i 2πf0 t

(3.15)

However, the relaxation time T2 limits the duration of the Nuclear Magnetic Resonance
(NMR) signal, describing the rate at which the transverse magnetization decays over
time [25]. Consequently, the FID follows an exponential decay with a time constant T2

(Figure 3.7.b and Figure 3.7.c with the red line) and the Equation 3.15 becomes as:
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S(t) = S0 e
i 2πf0 t · e−t / T2

= S0 e
−t / T2 cos ( 2πf0 t ) + i S0 e

−t / T2 sin ( 2πf0 t )
(3.16)
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Figure 3.7: Evolution of the signal over the time: (a) A vector of amplitude S0 rotating
at frequency f0 without decay, maintaining a constant amplitude over time; (b) The real
(Sx) and imaginary (Sy) components of the signal S(t), depicting both non-decaying (blue
dotted line) and decaying (red line) amplitudes over time; (c) A vector with amplitude
S0 rotating at frequency f0 exhibiting exponential decay over time.

When the sample contains multiple detectable nuclei, the FID reflects the combined
contributions of each nucleus [25]. Therefore, Equation 3.16 becomes:

S(t) =

n∑︂
i

S0,n e−t / T2,n cos ( 2πf0,n t ) + i S0,n e−t / T2,n sin ( 2πf0,n t ) (3.17)

Where n denotes the number of detected nuclei.
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3.3.2 Fourier Transformation

The Fourier transform converts a time-domain signal into the frequency domain, which is
essential for interpreting NMR parameters more effectively. Due to the linear nature of
the Fourier transform, the FID contains superimposed frequencies corresponding to dif-
ferent chemical environments of the nuclei in the sample, resulting in peaks with specific
widths and frequencies, both positive and negative, in the transformed signal [25].

Since the time-domain signal comprises both real and imaginary components (illus-
trated in Figure 3.8.a), the frequency-domain signal also includes these components, the
real part, known as the absorption mode (showed in Figure 3.8.b), and the imaginary part
(Figure 3.8.c), called the dispersion mode.

The term ’absorption’ relates to the energy absorbed by nuclei transitioning between
energy levels in a magnetic field, it is a even function typically appearing as peaks centered
around the resonance frequency of the nuclei [33] [4].

’Dispersion’ refers to the energy dispersed by the nuclei during these transitions, it is
a odd function manifesting antisymmetric which contributes to a long positive tail on one
side of the peak and a long negative tail on the other side [33] [4].

The absorption lineshape typically displays a positive value, but there are situations
where this may not hold true (as explained in Section 4.4). Whereas the dispersion line-
shape exhibits both positive and negative parts.

c)b)a)

Figure 3.8: Illustration of the Fourier transformation of the time-domain signal FID. (a)
The time-domain free induction decay (FID) signal, comprising both real and imaginary
components. (b) Absorption mode the real part of the frequency-domain signal (c)
Dispersione mode the imaginary part of the frequency-domain signal.

Introducing key features of the signal reveals the close link between spectrum param-
eters and the FID signal. A non-decaying signal (as shown in Figure 3.9) transforms into
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a single peak through the Fourier transform. However, the FID, which decays over time
as nuclei return to a stable state after excitation removal, transforms into a peak with a
broader linewidth. The area under the line (the peak intensity) correlates with the number
of contributing nuclei, aiding in quantifying their relative amounts in the sample [22] [25].
This changing from a single peak to a broader peak indicates that the frequency-domain
lineshape is directly related to the FID’s behavior.

The equation correlating the time-domain and frequency-domain signals is:

W1/2 =
1

πT2
(3.18)

Here, W1/2 represents the Full Width at Half Maximum, linked to the frequency
domain, and T2 denotes the relaxation time, related to the time domain [22]. This inverse
relationship means that as T2 decreases, W1/2 increases, resulting in broader lines (Figure
3.9). Despite the area under the line remaining constant, the peak magnitude diminishes.

Thus, the peak height (the peak magnitude) in the frequency domain is directly pro-
portional to the signal amplitude S(t); an increase in S0 leads to a corresponding rise in
peak height [25].

A potential issue arises if the signal is not recorded until complete decay, leading to
a ’truncated’ signal. This truncation affects the frequency domain, reducing peak height
and introducing ripples at the entire baseline, an undesirable artifact. Section 5.2 address
this issue.
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Figure 3.9: Fourier Transform of Non-Decaying and Decaying Signals: The figure il-
lustrates a non-decaying signal that transforms into a single peak through the Fourier
transform. Subsequent figure demonstrate the inverse proportionality between the re-
laxation time T2 and the Full Width at Half Maximum W1/2 increases. This leads to a
decrease in the height of each peak.

30



Chapter 4

Data Processing

The analysis of raw NMR spectra necessitates initial processing steps such as phase cor-
rection, baseline correction, and noise reduction. These corrections are crucial for both
improving the visual quality of spectra, thereby facilitating analysis, and ensuring the
accuracy of quantitative results [41]. This chapter delves into these fundamental data
processing techniques, emphasizing their importance in enhancing sensitivity, managing
chemical shifts, correcting baselines, phase adjustment, and denoising. Each section pro-
vides a detailed exploration of methods employed to optimize the quality and reliability of
NMR data, underscoring their significance in obtaining precise and interpretable results.

To evaluate the effectiveness of these processing methods, various metrics are utilized.
These metrics assess the accuracy and quality of the processed spectra, ensuring that the
enhancements contribute to the overall reliability of the data. By systematically applying
these techniques and evaluating their impact through specific metrics, we aim to achieve
the highest standards in NMR data analysis.

4.1 Sensitivity enhancement

When recording a FID signal, background noise is also captured. This interference pre-
dominantly originates from the intrinsic thermal noise generated by the instrument’s de-
tection coil.

Hence, because NMR has limited sensitivity, it is essential to improve the Signal-to-
Noise ratio (SNR) of the resultant spectrum. Optimisation of the SNR signal is achieved
by processing FID signal [25] . In data acquisition, it is customary to extend the recording
duration beyond the decay of the FID to capture all the precessing phenomenon accu-
rately, thereby mitigating the risk of information loss and artifact introduction in spectral
analysis.
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However, prolonged recording periods leads to the predominance of noise over signal as
the FID weakens. Hence, employing techniques to shorten the acquisition time becomes
essential. Reducing acquisition time can enhance the SNR since the most substantial
signal components are typically present in the initial segment of the FID. Nevertheless,
exercising caution to avoid excessively truncating the acquisition duration is essential, as
doing so may result in overlooking critical portions of the FID, thereby diminishing the
SNR and introducing ripple artifacts in the spectrum [25].

One effective method is to deliberately multiply the FID by a weighting, called apodiza-
tion function, that starts at 1 and gradually decreases to zero. This approach emphasizes
the early part of the FID, where the signal is strongest, and attenuates the later part,
where the signal is weakest. By doing so, the essential segment of the signal remains
preserved, while minimizing the noise contribution.

A typical formulation for this function is an negative exponential, as shown in the
following equation:

W (t) = e−RLBt (4.1)

In this equation, RLB represents a rate constant modifiable to regulate the decay rate
of the weighting function, while t denotes the acquisition time [25].

From Figure 4.1, it is possible to see the effect of the weighting function and different
rate constants. In Figure 4.1.g and 4.1.h, the improvement in SNR compared to the
spectrum in Figure 4.1.b is evident. However, Figure 4.1.h, which uses the more rapidly
decaying weighting function shown in Figure 4.1.d, demonstrates a further reduction in
the noise level.

It is important to note that a more rapidly decaying signal leads to broader line widths
and a decrease in peak intensity, as shown in figures 4.1.g and 4.1.h. Thus, although
the application of this function can reduce noise interference in the signal tail, it also
causes greater line broadening, potentially resulting in the loss of small peaks and further
reducing SNR. Therefore, two conflicting effects are at play: a more rapidly decaying
function attenuates interference and noise but also broadens the lines, thereby reducing
the SNR. To address this issue, normalizing the data is crucial, as shown in Figure 4.1.i
and 4.1.j.

4.2 Chemical Shift

The nuclei of different elements, each with distinct gyromagnetic ratios, generate signals
at different frequencies when subjected to a specific magnetic field. However, nuclei of the
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Figure 4.1: Improving Signal-to-Noise Ratio (SNR) using weighting functions: the orig-
inal FID signal and its spectrum are shown in (a) and (b). Multiplying the FID by
the weighting function in (c) results in the signal in (e) and its Fourier transform in
(g). The more rapidly decaying weighting function in (d) produces the signal in (f) and
its spectrum in (h). Normalized signals in (i) and (j) highlight the SNR improvement.
Weighting functions enhance SNR by emphasizing the stronger early signal components
and minimizing later noise, despite causing broader linewidths and reduced peak intensity.

same type can resonate at different frequencies when the local magnetic field affecting the
nucleus deviates slightly from that of another similar nucleus [22].

The variation in the local magnetic field is illustrated in Figure 4.2. When a molecule
containing the nucleus of interest (nucleus B in the Figure Figure 4.2) is placed in a
magnetic field (B0), it induces electron currents within the molecule, perpendicular to
the applied magnetic field. These induced currents create a small magnetic field opposite
to B0, effectively shielding the nucleus. Consequently, the magnetic field perceived by a
second nucleus (A in the Figure 4.2) will be very slightly altered from the applied field B0

due to the both contribution of B0 and the induced magnetic field, affecting the frequency
at which the nucleus resonates [22]. The shielding and the resulting resonance frequency
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Figure 4.2: Magnetic Shielding Effect. Nucleus B placed in an external magnetic field
B0 induces electron currents that create a small magnetic field opposing B0, shielding
nearby nucleus A

are determined by the specific characteristics of the electronic environment surrounding
the nucleus [22].

To eliminate this variability in NMR, the frequencies are usually measured relative to
a frequency standard proportional to the magnetic field. It is convenient to define the
chemical shift (expressed in term of parts per million ppm) as:

chemical shift (δ) =
υsample − υref

υref
∗ 106 (ppm) (4.2)

Where υ is resonance frequency. In order to establish a chemical shift scale, it is
necessary to choose a reference substance, which is defined to have a chemical shift of 0.0
ppm. The most used reference substance is TMS (tetramethylsilane) [34].

4.3 Baseline correction

The baseline of a spectrum is the flat, horizontal line that connects points not related to
the signal (i.e, noise). Ideally, the baseline should be perfectly flat and smooth to facilitate
accurate identification and quantification of the peaks corresponding to different nuclear
spins in the sample [14].
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Deviations frequently arise from distortions in the initial points of the FID, often due
to transmitter breakthrough. This effect occurs because the detector requires a recovery
period from the pulse effect, despite being switched off during the pulse application [14].
Another potential cause is if the signal recording is terminated before the FID has fully
decayed. This premature truncation results in oscillations around the base of the peaks
[25].

Baseline distortion is also influenced by the first-order phase correction, which will be
examined in detail in Section 5.3.

Baseline distortions can significantly impact the accuracy and repeatability of manual
and automatic phase correction results, especially for methods that rely on maximizing the
integral of absorption spectrum or maximizing the number of baseline points [4]. There-
fore, a baseline correction is necessary. However, a robust baseline recognition method,
immune to phase and baseline distortion, must be implemented to determinate the posi-
tion of the left and right tails of the peaks [4]. The baseline recognition used in this study
and implemented by Qingjia Bao, et.al. [4], is based on absolute value of the derivative
spectra versus frequency ω, as shown in the following equation:

ADSpec =

⃓⃓⃓⃓
∂S

∂ω

⃓⃓⃓⃓
(4.3)

The absolute derivative spectra have the advantage of eliminating low-frequency base-
line distortions through derivative operation, while all signals appear as absorption peaks
[4].

Working with the absolute derivative spectra makes it immune to phase distortion,
which is an important consideration [4]. In a spectrum with Lorentzian peaks, an un-
phased signal is represented as follows:

S(ω) = A [ a(ω) + i d(ω) ] [ cos(ϕ) + i sin(ϕ) ] (4.4)

where ϕ denotes the phase distortion of peaks. The absorption a(ω) and the dispersion
d(ω) modes are defined as follows:

a(ω) =
A/T2

(1/T2)2 + (ω − ω0)2
(4.5)

d(ω) =
A(ω − ω0)

(1/T2)2 + (ω − ω0)2
(4.6)

Where A is the amplitude, T2 is the transverse relaxation time, and ω0 is the center
frequency of the peak .
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Assuming that ϕ is approximately constant, considering Equation (4.4), the absolute
derivative spectra is described as follows:

ADSpec =

⃓⃓⃓⃓
∂S

∂ω

⃓⃓⃓⃓
=

A

(1/T2)2 + (ω − ω0)2
= T2 · a(ω) (4.7)

This shows that it only depends on a(ω), so the peaks describe a pure absorption
mode and are independent of phase distortion [4].

To perform the derivative, the standard numeric derivative algorithm has as major
drawback of increasing the noise level. For this reason, in their work Bao et al. [4] used
the Continues Wavelet Transform (CWT). In particular, the Haar wavelet has been em-
ployed because it helps in detecting changes or discontinuities, highlighting areas of abrupt
change.

After baseline recognition, the baseline correction is applied. This process involves
two steps. First, a baseline model is constructed using the Whittaker smoother, with all
baseline points identified through the baseline recognition procedure. Subsequently, the
spectrum is corrected by subtracting the baseline model [4].

4.3.1 Whittaker smoother

The Whittaker smoother, based on penalized least squares, is highly efficient, providing
continuous control over smoothness and automatic interpolation [14].

Given a series y with distorted baseline of length m, where observations are regularly
sampled at uniform intervals (a common scenario for most applications), the goal is to fit
a smooth series z to y. Achieving this necessitates balancing two conflicting objectives:
fidelity to raw data and smoothness z. A smoother z will deviate more from y [14].

Express the roughness of z in terms of dth differences, typically with d typically being
1 or 2. For instance, first differences are given by:

∆zi = zi − zi−1 (4.8)

Squaring and summing these differences provides an effective measure of the roughness
of z :
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R =
m∑︂
i=1

(∆zi)
2 (4.9)

Measuring the lack of fit to the data (fidelity) using the conventional sum of squares
of differences:

F =
m∑︂
i=1

(yi − zi)
2 (4.10)

A balanced combination of these two objectives is given by the following sum:

Q = F + λR (4.11)

where λ is a user-chosen parameter that trades off the smoothness of z against its
fit to the data y [14]. The scalar smoothing parameter λ significantly influences the
output z, and its optimal value varies based on the application. When λ tends to zero,
the penalization on the estimate is minimal, resulting in a non-smoothed curve closely
resembling the input data. Conversely, large values of λ lead to an oversmoothed curve
with a poor fit. The optimal λ value yields a smooth cure that accurately reflects the
underlying data, eliminating roughness and randomness [12] [14].

The goal is to penalize the least squares finding the series z that minimizes Q. The
larger the value of λ is, the greater the influence of R on Q, resulting in a smoother z.

To simplify the algebra, it is advantageous to introduce matrices and vectors:

Q = |y − z|2 + λ|Dz|2 (4.12)

Where D is a matrix such that Dz = ∆z [14].
Using results from matrix calculus, the vector of partial derivatives is found as:

∂Q

∂z
= −2(y − z) + 2λD′Dz (4.13)

Equating this to 0 leads to the linear system of equations:

(I + λD′D)z = y (4.14)

where I is the identity matrix [14].

Data may often contains missing values do to several reasons. To address this, modify
the smoother by assigning an arbitrary value, such as 0, to the missing elements of y, and
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introduce a weight vector w. Set wi = 0 for missing observations and wi = 1 otherwise [14].
The measure of fit in Equation 4.10 is then changed to:

F =
m∑︂
i=1

wi(yi − zi)
2 = (y − z)′W (y − z) (4.15)

4.4 Phase correction

NMR spectra are mostly presented in absorption mode due to its advantages over magni-
tude or power mode, such as higher resolution and more accurate quantitative information
regarding spin concentrations. However, post-Fourier Transform, the spectra often appear
in dispersion modes other than absorption. There are many reasons attributed to this
inconsistency, including the misalignment of the reference phase relative to the receiver
phase detector, amplifier dead time, and phase shift introduced by the digital filter used
for noise reduction. Therefore, phase correction is an essential procedure in NMR data
processing [4].

Examining the FID signal, one can readily identify the factor causing a spectrum to
deviate from absorption mode. Decomposing the FID signal into its x and y components
could show that these components may differ at time zero. For instance, Sx(t = 0) may
assume a distinct nonzero value, whereas Sy(t = 0) equals zero.

However, this is not necessarily always the case; the situation could be reversed or fall
anywhere in between. This general scenario indicated that the signal is phase-shifted or
has a phase error [25]. The phenomenon is illustrated in Figure 4.3.

In Figure 4.3.a, the signal begins out along the x-axis and precessing towards y-axis.
The real part of the FID (corresponding to Sx) shows up as a cosine wave, while the
imaginary part (corresponding to Sy) appears as a damped sine wave. Fourier transform
yields a spectrum where the real part contains the absorption mode lineshape, and the
imaginary part shows the dispersion mode. Fig. 4.3.b illustrates the effect of a 45◦ phase
shift, ϕ. Here, Sy starts out at finite value rather than at zero, resulting in both the real
and imaginary parts of the spectrum displaying a mixture of absorption and dispersion
modes, rather than a pure abosorption mode lineshape. A similar phenomenon occurs
with a 90◦ phase shift, as illustrated in Figure. 4.3.c. Finally, in Figure. 4.3.d, a 180◦

phase shift produces a negative absorption mode signal in the real part of the spectrum.

It can be concluded that the appearance of the spectrum depends on the position of
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Figure 4.3: Effect of Phase Shift on NMR spectra: (a) Ideal absorption mode whit Sx

starts at maximum and Sy at zero. (b) 45◦ phase shift causing mixed absorption and
dispersion modes. (c) 90◦ phase shift showing further deviations. (d) 180◦ phase shift
resulting in a negative absorption mode. In each diagram, the vector indicates the signal’s
position at time zero.

the signal at time zero, specifically on the phase of the signal at this initial point [25].
Mathematically, this phase distortion can be incorporated into the complex FID signal
defined by the Equation 3.16 as:

S(t) = S0e
iϕ e i 2πf0 t · e−t / T2 (4.16)

Phase correction is a process of mixing the real and imaginary parts directly obtained
after Fourier transformation of the FID signal S(t) [4]. The corrected spectrum S′(ω)

is determined by directly multiplying the original complex spectrum, which includes an
initial phase error, S(ω), by a phase shift term ∆ϕ. This shift term encompasses two main
parameters: the zero-order phase correction ph0 and the first-order phase correction ph1.

∆ϕ = ϕ0 + ϕ1 · ω (4.17)

The phase correction follow the equation:
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S′(ω) = S(ω) · ei∆ϕ (4.18)

Including Equation 4.17, the Equation 4.18 becomes:

S′(ω) = S(ω) · ei(ϕ0+ϕ1ω)

= S(ω) · (cos(ϕ0 + ϕ1ω) + i sin(ϕ0 + ϕ1ω))
(4.19)

Where ϕ0 is measured in radians, and ϕ1 in radians per unit frequency.
By carefully tuning ph0 and ph1, a spectrum can be achieved where the real part corre-
sponds to the absorption mode and the imaginary part to the dispersion mode.

(b) First- order correction required

1
2
3y

x
ϕ

x

y

1

3
2

mixing

Real absorption mode

Imaginary dispersion mode
+

Zero - order correction required(a)

pivot

Figure 4.4: Effects of zero-order and first-order phase shifts on spectra. (a) an example
of a spectrum with a zero-order phase shift by an angle ϕ resulting in a mixture of the
real and imaginary parts. All signals exhibit the same phase distortion. (b) An example
of a spectrum with a first-order phase shift, where the phase error depends on frequency;
the greater the offset from the pivot point, the greater the phase error.

The zero-order phase shift arises from a discrepancy in the relative phase between the
transmitter pulse and receiver. This disparity causes a fusion of the desired real part of
the spectrum with a portion of the corresponding imaginary part, resulting in a downward
deviation of one side of the base of each peak below the baseline (Figure 4.4.a). Correcting
this zero-order phase undoes this mixing. Notably, this correction uniformly affects all
frequencies in the same way, and is deemed frequency-independent [38]. On the other
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hand, the first-order phase shift induces a frequency-dependent phase distortion (Figure
4.4.b). This distortion originates from delays occurring the pulse sequence and detection
processes, leading to a phase error proportional to the chemical shift. When these de-
lays are small compared to the frequency offset, corrective measures can rectify the phase
error [38]. Otherwise, in scenarios characterized by significant delays, attempting such
correction may result in the introduction of baseline distortion, which was introduced in
the Section 4.3.

correction (ph1)
first- phase 

 

fp

0

fp

unphased signal 

correction (ph0)
zero - phase 

phased signal 

frequency

anum

pivot

Figure 4.5: Phase Correction process: phase correction begins by selecting a strong
peak in the spectrum as a reference point (pivot). First, adjust the zero-order phase to
ensure the pivot exhibits a pure absorption mode. Subsequently, calculate the vector
anum, which is zero at the pivot frequency, fp, and use it for frequency-dependent first-
order phase correction.

To correct the phase, it is crucial to select a strong peak in the spectrum as the a
reference point called pivot. Initially, the zero-order phase is adjusted to ensure that the
pivot exhibits a pure-absorption mode. Subsequently, the first-order correction is fine-
tuned until the signal at the opposite end of the spectrum also attains a pure-absorption
mode. All the process is showed in Figure 4.5.
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While manual phase correction offers satisfactory results through a carefully tuning of
the ph0 and ph1 parameters, this approach is laborious and dependent on user expertise.
Consequently, I propose automatic phase correction methods to streamline the process.
We will elucidate this aspect further in Section 5.3.

4.5 Noise reduction

Noise reduction is essential in signal processing, particularly in the context of NMR spec-
troscopy, where noise from electronic interference, thermal fluctuations, and sample impu-
rities can obscure spectral features and complicate data analysis. Enhancing data quality
by attenuating this unwanted noise is therefore crucial. This section introduces three
distinct noise reduction techniques: deep learning Autoencoders, singular value decompo-
sition (SVD), and moving average filters. Each method employs different principles and
computational approaches to effectively reduce noise and improve signal clarity.

4.5.1 Deep Learning - Autoencoder

Deep Learning (DL) operates within the domain of machine learning, specifically lever-
aging Artificial Neural Networks (ANNs) designed to emulate human brain data process-
ing [46]. Unlike conventional machine learning, which relies on predefined features, deep
learning automatically extracts hierarchical features from raw data. This capability is
particularly effective for tasks such as noise reduction, scaling efficiently with data vol-
ume. Despite requiring extensive training time due to numerous parameters, DL models
execute rapidly during testing compared to traditional algorithms [46].

This study focuses on applying noise reduction techniques to signals. Various mathe-
matical methods exist for filtering noise, such as subtracting the mean signal when noise
is consistent across multiple signals [51]. However, these methods assume prior knowledge
about noise characteristics, which may not always be available. In such cases, learning
noise patterns from example data becomes crucial, and DL techniques like Autoencoders
are advantageous [51].

Autoencoders compress input data into a latent space representation and then recon-
struct the original data. Comprising an encoder, latent space, and decoder, this architec-
ture captures essential features in a lower-dimensional format and restores the input from
this representation (Figure 4.6). In the context of signal noise, an Autoencoder processes
noisy input data to learn and subsequently remove noise, reconstructing the clean signal
from the noisy version.
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DecoderEncoder

Latent
space

input output

Figure 4.6: General Autoencoder architecture: Autoencoder compress input data into
a latent space representation and then reconstruct the original data. Comprising an
encoder, latent space, and decoder, this architecture captures essential features in a lower-
dimensional format.

While effective for specific tasks like signal denoising, Autoencoders may perform
poorly in other domains without retraining, highlighting their domain-specific adaptabil-
ity [51].

An auntoencoder uses a mathematical operation called convolution to extract features
from input data by applying a filter (or kernel) across the data. In a one-dimensional
convolution (Conv1D) the kernel slides over the input data and computes a dot product
between the kernel weights and the input values at each position.

Mathematically, for an input signal x and a kernel w, the convolution operation y at
position t follows:

y(t) =
k−1∑︂
i=0

x(t+ i) · w(i) (4.20)

where k denotes the size of the kernel. The size of the filter determines the length of
the segment of the input data over which the convolution is computed. A larger kernel size
captures broader features, while a smaller kernel size focuses on finer details. However,
they are generally important both to control the initialization of each kernel’s weights and
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to add constraints during the optimization process to prevent the weights from growing
too large.

Other important parameters include stride and padding. Stride is the number of po-
sitions the kernel moves in each step, e.g. a stride of 1 means that the kernel only moves
one position at a time. A higher stride value results in fewer convolutions and a smaller
output size, but this may lead to coarse data extraction. Padding involves adding extra
values (typically zeros) to the input data to control the spatial dimension of the output.
There are three types of padding: same padding, which keeps the output size the same
as the input size adding an equal number of elements to each side; valid padding, which
denotes that there is no padding resulting in a reduction of the output size and casual
padding which adds elements only to the left side of the input, also ensuring that each
output only depends on the current and past inputs, not the future ones [39] [1].

Transposed convolutional layers, also known as deconvolutional layers, are integral
to the decoder in Autoencoders. They upsample the compressed data back to its orig-
inal dimensions. Unlike traditional convolutional layers that reduce spatial dimensions,
transposed convolutional layers increase them. They achieve this by applying a reverse
operation to the convolution: instead of computing dot products, they spread input values
across the output space according to the kernel weights. This process helps in reconstruct-
ing the input data from its compressed representation.

To ensure the network learns complex patterns, activation functions introduce non-
linearity into the network. Common activation functions include sigmoid, hyperbolic
tangent (tanh), rectified linear unit (ReLU), and leaky rectified linear unit (Leaky ReLU).

This work introduces the final two activation function previously mentioned. ReLU
applies a threshold, activating neurons by outputting the input directly if positive and
zero otherwise (Figure 4.7.a) . Leaky ReLU, showed in Figure 4.7.b, allows a small non-
zero gradient (a) when the input is negative.

One common problem in training neural networks is overfitting. Overfitting occurs
when a model achieves a good fit on the training data but does not generalize well to
new, unseen data. In other words, the model learns patterns specific to the training data
that are irrelevant to other data [8]. Several regularization techniques help mitigate this,
including early stopping, dropout, weight initialization techniques, and batch normaliza-
tion [47].

Batch normalization, in particular, makes neural networks faster and more stable by
adding extra layers that perform standardizing and normalizing operations on the input
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Figure 4.7: Activation Functions: (a) The ReLU (Rectified Linear Unit) function out-
puts the input directly if it is positive; otherwise, it outputs zero. (b) The Leaky ReLU
function permits a small, non-zero slope (a) for negative input values, allowing a minor
gradient when the input is negative.

of a layer coming from a previous layer. This process happens in batches, not as a single
input. Batch normalization is a two-step process: first, the input is normalized, and then
it is rescaled and offset [47].

Deep neural networks suffer from the degradation problem, where performance de-
clines as the network depth increases. Autoencoders, with multiple convolutional and
deconvolutional layers, also experience performance issues during image or signal recon-
struction due to information loss. Residual networks with skip connections address this
problem. Adding skip connections from the encoder to the decoder in Autoencoders helps
improve performance. These connections directly send feature maps from an earlier en-
coder layer to a later decoder layer, helping the decoder form clearer decompressions of
the input signal or image [49].

4.5.2 Stationary Wavelet Transform technique

The technique proposed by Adam R. Altenhof et.al [2] for denoising frequency-domain
NMR data utilizes the Wavelet transform (WT) method to represent signals using or-
thonormal basis functions known as wavelets. Unlike the traditional Discrete Wavelet
transform (DWT), which decimates components through downsampling, the Station-
ary Wavelet transform (SWT) retains undecimated values, preserving the original signal
length at each decomposition level. This approach benefits from analyzing highly local-
ized frequencies within a signal, aiding in the identification and removal of noise through
thresholding [2].

The denoising procedure begins with SWT decomposing the real component of the
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frequency-domain data into approximation Ak and detail Dk components across k levels.
Next, signal windowing isolates baseline noise in each Ak component. A crucial part of
this method is the application of a thresholding routine, allowing selection among hard,
soft, and modified thresholding. In general, the threshold constant λ is derived from the
windowed noise per decomposition level, where λ = σnoise

√︁
2 log(n), with n the repre-

senting number of data points.

Hard thresholding sets any spectral intensities below a certain threshold λ to zero.
Soft thresholding not only sets the spectral intensities below the threshold to zero but
also shrinks the remaining coefficients towards zero by subtracting the threshold value,
ensuring a more continuous signal by avoiding abrupt changes. The modified threshold-
ing technique, as described by Wang and Dai [53], introduces an additional parameter,
alpha α, to adjust the thresholding process, which ranges between 0 and 1. For each
decomposition level, the modified thesholding applies the formula:

di =

⎧⎨⎩di − α
λ4
i

d3i
|di| ≥ λi

(1− α)
d5i
λ4
i

|di| < λi

(4.21)

This formula allows for nuanced adjustments to the data, reducing noise while pre-
serving important signal features.

Finally, the inverse SWT (ISWT) then reconstructs the denoised NMR spectrum.

4.5.3 Rolling Window Technique (Moving average)

The moving average filter employs a rolling window technique. This method groups
observations into sets of size n and shifts the window one observation at a time across
the dataset. As the window moves, it aggregates data using a summary statistic, the
average in the case of a moving average filter. For each data point, the filter replaces
its value with the average of its neighboring points. Most observations are part of n-1
groups, except those near the beginning or end, which are included in fewer groups. This
process dampens rapid fluctuations in the signal while preserving slower fluctuations in the
smoothed signal. Section 5.6 provides a more detailed discussion of the implementation
of the median filter.

4.6 Evaluation Metrics for Performance and Accuracy

In data analysis and model evaluation, various metrics assess performance and accuracy,
providing quantitative measures to compare predicted outcomes against actual values.
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These metrics help identify the strengths and weakness of the methods used. This section
discusses the evaluation metrics employed in this work. Each metric evaluates signal A
and B, where signal B is the reference signal and A represents the predicted signal from
the method under evaluation for its similarity to the reference signal.

4.6.1 Correlation Coefficient

The correlation coefficient is a statistical measure describing the degree to which two
variables move in relation to each other. It ranges from -1 to 1 where, 1 indicates a
perfect positive linear relationship, -1 indicates a perfect negative linear relationship, 0
indicates no linear relationship.

The correlation coefficient matrix, r, for A and B, consists of correlation coefficients
for each pairwise variable combination:

r =

(︄
ρ (A,A) ρ (A,B)

ρ (B,A) ρ (B,B)

)︄
(4.22)

Where ρ represents the Pearson correlation coefficient, which, for variables with n
scalar observations, is defined as:

ρ(A,B) =
1

n− 1

n∑︂
i=1

(︃
Ai − µA

σA

)︃(︃
Bi − µB

σB

)︃
=

cov(A,B)

σAσB
(4.23)

Since A and B are always directly correlated with themselves, the diagonal entries of
the matrix r are 1 [17].

4.6.2 Euclidean Norm

The Euclidean norm, also known as the L2 norm or Euclidean distance. This measure
represents the length of the straight line connecting the points in Euclidean space. The
result is always non-negative, with a value of 0 indicating that the two points coincide,
while larger values signify greater distances between them [55]. For two vectors A =

(a1, a2, ..., an) and B = (b1, b2, ..., bn), the Euclidean distance is defined as:

||A−B||2 =

⌜⃓⃓⎷ n∑︂
i=1

(ai − bi)2 (4.24)
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4.6.3 Root Mean Square Error

The Root Mean Square Error (RMSE) quantifies the average magnitude of the errors
between estimated and actual values. RMSE, derived from the Mean Square Error (MSE),
provides a more interpretable measured as it retains the same units as the original data.
The formula for RMSE is:

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(Ai −Bi)2 (4.25)

Lower RMSE values signify better model performance indicating smaller discrepancies
between predicted and actual values [10].

4.6.4 Least - Squares Method

The least-squares method approximates solutions by minimizing the sum of the squares
of the residuals, which are the differences between observed and calculated values. To find
the least-squares solution x for a system of linear equations represented in matrix form
as Ax = B, solve:

min
x

||Ax−B ||22 (4.26)

When x is close to 1, A and B are highly similar, indicating a good fit between observed
and calculated values. As x deviates from 1, the similarity between A and B decreases,
reflecting a poorer fit [5].

4.6.5 Structural Similarity index (SSIM)

The structural Similarity Index (SSIM) measures the uniformity of a spectrum or pattern
by comparing predicted values with the actual values. SSIM is particularly useful for
comparing signals because it accounts for structural information, offering a more compre-
hensive assessment of similarity than metrics focusing solely on magnitude differences.

The SSIM equation is:

SSIM(A,B) =
(2µAµB)(2σAB)

(µ2
A + µ2

B)(σ
2
A + σ2

B)
+ c (4.27)

Here, µA and µB represent the means of A and B, σ2
A and σ2

B denote variances of A
and B, σAB is the covariance between A and B. The constant c is a small constant that
ensures the SSIM is bound over a range of [−1,+1], where 1 indicates perfect similarity,
0 indicates no similarity, and -1 indicates perfect dissimilarity [2].
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Chapter 5

Methods

This chapter focuses on developing automated methods for processing hyperpolarized
NMR spectroscopy spectra, crucial for enhancing spectral analysis quality and accuracy
to facilitate more reliable data interpretation.

It begins with foundational processing steps, including data extraction from FID sig-
nals, parameter selection from instrument settings, and essential spectral adjustments.
These steps ensure data readiness for subsequent analysis by providing accurate prepro-
cessing.

Next, the chapter explores phase and baseline correction techniques, detailing both
automated algorithms and manual methods. Automated approaches include coarse and
fine tuning, entropy minimization, and maximizing similarity between phased and ab-
solute vale of the unphased signals. Baseline correction methods additionally address
distortions encountered during phase correction, ensuring a clear baseline for accurate
peak identification and quantification.

Additionally, the chapter covers the generation of synthetic datasets simulating real-
world NMR spectroscopy data. These datasets incorporate realistic noise patterns and
signal characteristics, essential for training and evaluating noise reduction techniques.

Moreover, the chapter investigates advanced techniques such as autoencoder neural
networks for spectral noise reduction. Autoencoders train to reconstruct clean spectra
from noisy inputs, utilizing deep learning to enhance signal clarity and quality. Alternative
methods such as Stationary Wavelet Transform and Rolling Window techniques are also
under exploration for their potential to complement or substitute neural network-based
approaches.

In summary, this chapter aims to establish a robust framework for automated spectral
processing in hyperpolarized NMR spectroscopy. By integrating diverse methodologies
from initial data preprocessing to advanced noise reduction techniques it aims to enhance
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the efficiency and reliability of spectral analysis, contributing to advancements in both
research and practical applications of NMR spectroscopy.

5.1 Materials

I evaluated the performance of the methods using signals collected by the Pulsar NMR
benchtop from Oxford Instruments [40]. I previously discussed the operational principles
of this instrument in Chapter 3. In total, I analyzed 31 experiments on 13C, a carbon
isotope, each comprising a variable number of spectra. This variability arises because some
spectra contain multiple signals from different time instants, as the instrument permits
sequential acquisitions during chemical reactions to monitor changes in specific functional
groups. Overall, I analyzed 2021 spectra.

For each experiment, the Pulsar instrument provides one file containing the FID signal
and another containing the list of parameters and tool settings. Each experiment has a
parameter set-up routine, resulting in variability in the spectra’s parameters, such as the
number of points associated with each spectrum. I used these spectra to assess both phase
correction and denoising methods. For phase correction methodologies, I evaluated the
metrics across the entire experiment, computing an average of the metrics for experiments
containing multiple spectra.

For noise reduction methodologies, I generated synthetic data to closely represent the
real data, as Deep Learning techniques require a large training dataset. In evaluating
the effectiveness of the denoising techniques on both synthetic and real data, I assessed
each spectrum individually rather than averaging metrics for experiments with multiple
spectra. This approach ensured a comprehensive assessment of the denoising methods.

5.2 Basics processing

After extracting the data, it is important to select key parameters from the settings of
the Pulsar benchtop instrument [40]. These parameters include the Receiver Points (RP)
expressed in Hz, which indicate the number of data points collected in each scan. The
Channel Frequency Offset (O) given in HZ is the deviation from the base frequency for
the nucleus channel (such as Hydrogen, Carbon, or another nucleus). The Base Frequency
(SF) measured in MHz represents the frequency of the reference substance. Finally, the
Filter (bound) refers to the bandwidth, which determines the range of frequencies allowed
during data acquisition.

An inspection of the data revealed a delay at the beginning of the FID signal (Figure
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5.1.a), starting at zero values and lacking significant information. Applying the FT to
this FID signal produces a spectrum with a ripple baseline (Figure 5.1.b), a phenomenon
similar to the effects mentioned in Section 3.3.2 when the signal undergoes truncation.
The ripples effects in the resulting baseline distortion often cause automated algorithms
to misidentify them as peaks, or they may obscure nearby weaker peaks leading to misin-
terpretation of the signal. To remove this delay, it was quantified using two parameters:
the RP provided by the instrument and the Actual Points (AP), which is the number
of points in the signal considering the starting offset. The number of samples associated
with the delay was calculated using the following equation:

delay = AP −RP − 1 (5.1)

FT

a) b)

Figure 5.1: Impact of an initial delay in the FID signal on the resulting spectrum. (a)
Initial segment of the FID signal showing a delay with no significant information. (b)
Spectrum obtained by applying the Fourier Transform to the FID signal, displaying a
ripple baseline caused by the initial delay.

Chapter 4 on Data Processing explains the sensitivity enhancement method, which
the subsequent procedure implemented and showed in Figure 5.2. Considering Equation
4.1 the only modifiable parameter is RLB. To apply weighting function that matches
the linewidth of the highest peak in the spectrum select the appropriate value of RLB is
necessary. For this reason, RLB is defined as the width at half prominence of the highest
peak R2, expressed in frequency.

The calculation of the weighting function utilized Equation 4.1 and normalized it to
start at 1.
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Figure 5.2: Sensitivity enhancement applied to a real signal. The noisy FID signal
is shown in gray, while the red line represents the weighting function, an exponentially
decaying function. The light blue line depicts the result of multiplying the noisy FID
signal by the weighting function, which decays more rapidly than the noisy signal.

The subsequent step involved expressing all spectra in terms of chemical shift to ensure
their independence from the magnetic field strength of the NMR spectrometer. This
standardization facilitates the comparison of chemical shift across different experiments
and spectrometers. I adjusted the spectra using a constant O, which requires careful
consideration. Essentially, the observed and reference frequencies are centered around
this offset. Given that the reference frequency provided by the instrument is expressed in
MHz, the chemical shift in ppm was calculated using the following equation:

ppm =
(f +O)− (SF +O)

SF +O
∗ 106 (5.2)

With some simplification, the Equation (5.2) becomes:

ppm =
(f − SF )

SF +O
∗ 106 (5.3)

The highest peak in each spectrum, corresponding to the [1 −13 C]pyruvate signal,
should appears at approximately 171 ppm [7]. However, the alignment of these peaks
was inaccurate due to the procedure conducted, as showed in Figure 5.3.b, requiring
further adjustments. Primarily, one must calculate the disparity in ppm terms between
the observed highest peak position in the spectrum and its actual value. Once this shift
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value is determined, it is subtracted from the Equation (5.3) obtaining the spectrum in
Figure 5.3.c.
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Figure 5.3: Process of chemical shift correction in NMR spectra. (a) Illustrates a spec-
trum with frequency (Hz) on x-axis and signal intensity on the y-axis. (b) shows the
spectrum transformed into chemical shift representation, where the highest peak associ-
ated with [1 −13 C]pyruvate is not centered at 171 ppm. (c) Shows the the corrected
spectrum in chemical shift following adjustment, resulting in the peak precisely centered
at 171 ppm, highlighted by the vertical orange line.

5.3 Phase and Baseline correction

Manual correction, although regarded as the gold standard, demands a profound under-
standing of zero and first-order components. Additionally, manual correction may require
significant time due to high volume of spectra to correct. Also, manual correction may
entail errors that vary depending on the user’s experience level.

To address the challenges inherent in manual correction, automated algorithm have
been developed.
In this chapter section, I introduce three automated phase correction algorithms utilized
in this project. The first approach employs a strategy combining "coarse tuning" and
"fine tuning", while the second focuses on minimizing the signal’s entropy. Lastly, the
third approach involves comparing the unphased signal with its absolute magnitude.

Additionally, in each method, I applied baseline correction after phase correction to
rectify any baseline distortions that may have arisen from first-order corrections.
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5.3.1 Manual Phase Correction

A developed algorithm enables manual phase correction of the provided spectrum. This
algorithm incorporates an interactive function that automatically generates user interface
controls for data exploration and interaction, as showed in Figure 5.4. Adjusting the
cursors associated with ph0 and ph1 values will modify these values according to Equation
4.19. Additionally, adjusting a slider linked to the pivot parameter causes a red vertical
line to shift.

In this study, the pivot was chosen as the highest peak, and the vector ω in Equation
4.19 was determined by:

ω =
range(−pivot, pivot+ n)

n
(5.4)

Where pivot represents a frequency and n denotes the spectrum size.

frequency [Hz]

Figure 5.4: Interactive interface for manual phase correction, showing adjustable pa-
rameters (ph0, ph1, pvt) and their effects on spectrum adjustment. Zoom functionalities
(zoomT, zoomR, zoomL) allow users to examine specific spectral regions in detail.

In the initial phase correction step, the adjustment of the ph0 involves moving a
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slider to modify the phase of the chosen pivot, typically the highest signal in our scenario.
Should a ph1 correction be required, one can adjust the slider relative to the pivot until the
vertical line aligns with the selected pivot. Utilizing a visualization tool, we can zoom in
on both the x-axis and y-axis to scrutinize the correction’s impact meticulously. Utilizing
a visualization tool, users can zoom in to observe the detailed effects of the correction on
the data.

Following this phase correction, the baseline may become distorted because of ph1

correction, demanding baseline correction.

5.3.2 Coarse and Fine Tuning method

The first automated phase correction method is based on the technique proposed by
Qingjia Bao, et.al. [4], modified to better fit the available data. This method exploits
two key differences between the absorption spectrum and the incorrectly phased signal:
the tail peaks are shorter and more symmetrical in a correctly phased spectrum, and the
spectrum does not contain negative peaks.

According to these criterion, the automatic phase correction implements two steps:
coarse tuning and fine tuning.

Coarse tuning initially employs a baseline recognition method, as discussed further
in Section 5.3.5, to locate the left and right tail ends of peaks, followed by a function to
quantify the height differences between these ends. Subsequently, the spectra undergoes
phasing by minimizing this function using a simple method.

After identifying signal-free baseline regions, the next step involves determining the
signal area by excluding these baseline regions and marking the left and right ends as the
start and end points of identified peaks.

Following this, the algorithm utilizes the height differences between the start and end
points of each peak to construct an Objective Function (OF). This function is used to
minimize deviations in order to find optimal values of ph0:

OF =
PR∑︂
k=1

⃓⃓⃓
ℜ
(︂
Sb(sk) · ei

π
180

(ϕ0)
)︂
−ℜ

(︂
Sb(ek) · ei

π
180

(ϕ0)
)︂⃓⃓⃓

(5.5)

Here, PR represents the number of recognized peaks, sk denotes the start index of
the k-th peak, and ek signifies the end index. Sb(sk) and Sb(ek) are the data values at
the start and end indices of the k-th peak, respectively. The length of the spectrum is
denoted by L, and ℜ denotes the real part of the complex number.
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This optimization process iteratively calculates a few points for each recognized peak,
ensuring computational efficiency.

To adjust the zero-order phase shift using the preliminary tuning results, the phase
data correction is computed as:

SCT = Sb e
i· π

180
(x) (5.6)

where Sb is the signal before the correction and x is the best solution founded through
the minimization of the Equation 5.5, expressed in degrees. Subsequently, if the real part
of SCT at the maximum peak index is negative, performing the inversion of the entire
array ensuring correct peak orientation.

After the initial ’coarse tuning’ negative points might appear in the spectra, requiring
further refinement through ’fine tuning’. This process devices a new Penalty Function
(PF) based on the absence of negative point in the absorption mode spectra, except for
those within negative or distorted peaks. This refined penalty functions aids in achieving
more accurate phase corrections.

Before the next steps, to mitigate the impact of baseline distortion, the baseline recog-
nition is necessary.

To establish this custom PF, it is important the categorization of the peaks into
three classes: positive, negative and distorted. Qingjia Bao, et.al. [4] introduce a simple
and effective method to categorize the peaks in the spectra after ’coarse tuning’. After
recognition and categorization of the peaks, the spectrum undergoes further phasing by
minimizing the custom PF:

PF = −
N∑︂
j=1

( Stemp(j)− | Stemp(j) | ) (5.7)

Where Stemp is the temporary spectrum calculated as:

Stemp = SCT · eiϕ1·anum (5.8)

It only contains first-order phase correction since ’coarse tuning’ is effective for pivot
phase correction.

The significant of formula 5.7 is straightforward: if a negative point appears in tem-
porary spectrum, the square of that point is added to the penalty value.

A Genetic Algorithm (GA) determinates the optimum ph1 value for minimizing the
PF equation, as the optimisation algorithm used in the previous step encountered a local
minimum and failed to provide the correct ph1 value.
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To correct the spectra using the fine tuning result, the best solution found through
minimizing 5.7, denoted as Y, is applied:

SFT = SCT · ei y ·anum (5.9)

5.3.3 Entropy minimization method

The second automated phase correction approach relies on the technique proposed by Li
Chen, et.al. [11], with slight adjustments made to adapt it more effectively to the available
data. Claude Shannon introduced the concept of entropy as a quantitative measure of
uncertainty [48].
In a correct Fourier transform NMR spectrum, the real part contains only non-negative
spectral bands, in contrast, the imaginary part possesses both positive and negative values.
Consequently, only the entropy of real parts of the phased spectra is considered in the
objective function. Shannon introduced the following equation to measure the information
uncertainty, called entropy S, of the probability distribution h:

S = −
∑︂
j

hj lnhj (5.10)

Therefore, this equation is applied to the spectrum, defining the probability distribu-
tion h as:

hi =
|Ri|∑︁
i |Ri|

(5.11)

Where Ri is the spectrum’s real part.
Entropy, closely linked to the region above the signal in a spectrum, yielding identical

values for both negative and positive spectra. However, since the goal is to achieve a
spectrum in absorption mode, entropy minimization should lead to the former scenario,
where the final spectrum comprises solely positive values. Therefore, the OF, acting as a
Shannon-type information entropy measure for phase correction, incorporates a PF. This
function serves to prevent the occurrence of the latter scenario, where the spectrum is
predominantly negative, by penalizing such instances.

The OF is given by the following equation:

min

(︄
−
∑︂
i

hi lnhi

)︄
(5.12)

The PF operates on the principle that an increase in entropy value occurs if the max-
imum value of Ri differs from the maximum value of its absolute value. This adjustment
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ensures that the zero-order and the first-order phase correction factors are optimized ef-
fectively, mitigating the risk of the optimization algorithm producing inaccurate results.

The present contribution implements phase correction optimization using two GAs.
The first genetic algorithm was employed to determinate x, the optimal ph0 value, that
minimized the objective function 5.12. Essentially, it seeks the ph0 value that generates
a new signal with minimized entropy when applied to the original signal. The optimal
number found is used to correct the signal:

Rga1 = Sb ∗ e−ix (5.13)

As previously mentioned, entropy is associated with the region above the signal, em-
phasizing the importance of implementing baseline correction after each phase adjustment.

Subsequently, the second GA is employed with slightly different features. In this case,
the aim is to find y, representing the optimal ph1 value. Given the frequency-dependent
nature of this correction, it is crucial to define a vector (anum) closely tied to the pivot
value, corresponding to the Equation 5.4. The final phase correction is then executed
according to the following equation:

Rga2 = Rga1 ∗ e−iy·anum (5.14)

5.3.4 Absolute spectrum method

The third method for automatic phase correction is based on the principle that a spec-
trum in absorption mode contains only positive values. A similar signal exhibiting these
characteristics is the absolute value of the spectrum. Thus, the algorithm determines the
value of ph0 and ph1 by comparing the phase-corrected signal with the absolute value of
the phase-incorrected signal.

To evaluate the correction, the objective function employs a similarity metric, namely
the Mean Square Error (MSE) defined as:

mse =
1

N

N∑︂
j=1

(Rabsj −Rj)
2 (5.15)

Here, N is the sample number, Rj represents the j -th element of the real spectrum,
and Rabsj denotes the j -th element of the real part of the absolute value of the spectrum,
calculated as:
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Rabs = real(
√︂
R2

b + I2b ) (5.16)

Where Rb and Ib are respectively the real and imaginary parts of the signal before
phase correction. As in the previous method, penalizing signals with negative points is
important, accomplished by employing the follow penalty function implemented by Li
Chen, et.al. [11]:

P (Ri) = γ

[︄∑︂
i

F (Ri)R
2
i

]︄
(5.17)

Here, γ, set to 0.1, is a penalty factor that balances the contributions of entropy and
penalty parts. The function F is defined as:

F (y) =

⎧⎨⎩0 y ≥ 0

1 y > 0
(5.18)

The objective function is expressed as:

min

(︄
1

N

∑︂
i

(Rabsj −Rj)
2 + P (Ri)

)︄
(5.19)

Optimization of phase correction is achieved using two genetic algorithms (GAs). The
first GA determines the optimal ph0 value, denoted as x, that minimizes the objective func-
tion 5.19. This value generates a new signal with minimized MSE between the spectrum
with zero-order phase correction and the absolute value of the signal before correction
calculated as in Equation 5.16. The obtained optimal number is then used to correct the
signal:

Rga1 = Sb ∗ eix (5.20)

Subsequently, the ph1 correction is applied following a similar principle. However,
since baseline distortion may occur after ph1 correction, the objective function is applied
considering the signal with the baseline corrected. This choice is made because first-
order phase correction may result in a distortion of the baseline, as showed in Figure 5.5.
Without baseline correction, the smallest MSE value might correspond to an incorrect
ph1 value. This happens because the resulting spectrum’s baseline may be closer to the
absolute value of the signal, even if the phase correction is wrong. Since non-peak point
outnumber peak points, the baseline values disproportionately affect the MSE value. Con-
sequently, the algorithm may converge to a suboptimal solution. After baseline correction,
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the optimal value of ph1, denoted as y, is determined, and the final phase correction is
executed using the following equation:

Rga2 = Rga1 ∗ eiy·anum (5.21)

Figure 5.5: Baseline distortion across varying values of the first-order correction ph1.
The absolute signal intensity is shown in blue, while the red spectrum illustrates an
uncorrected ph1 value, evident from the presence of negative peaks. The green spectrum
represents a corrected ph1 value, albeit with a significantly distorted baseline compared
to the red and blue spectra.

5.3.5 Baseline recognition and Correction

A baseline correction is applied to the output of the phase correction (shown in Figure
5.6.a). For this purpose, a specialized function was designed by Qingjia Bao, et.al. [4]
for baseline recognition and peak detection in spectral data, employing a sliding window
method and threshold application.

The function requires three inputs: real spectral data, a noise level scaling factor set
to 6, and a Continuous Wavelet Transform (CWT) filter factor set to 0.001. Its output is
a structure array containing peak information [4].

The process begins with the initializing and preparing the spectral data, where the
real part is extracted and stored, and its size is determined. Subsequently, the function
performs a Continuous Wavelet Transform on both the real and imaginary parts of the
spectrum using the Haar wavelet. The results have been combined and the absolute value
applied obtaining the absolute derivative spectra as showed in Figure 5.6.b.
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Figure 5.6: Algorithm scheme for baseline recognition and baseline correction

The noise level is then calculated using one of two methods. In the first method, noise
is computed based on the first segment of the data, while the second method divides the
data into sixteen segments, calculates the standard deviation for each segment, and selects
the minimum value as the noise level. The chosen noise value is then scaled by the noise
factor parameter.

Thereafter, a sliding window traverses the spectrum. Its specified width is typically
one-thousandth of the spectrum’s total width. The height is calculated as the difference
between the maximum and the minimum values of the signal within the specified window
width. For each window, comparison to the scaled noise level is conducted. Points within
the window are classified as either baseline or signal based on this comparison. If the
window height exceeds the noise level, a potential peak is detected, and the peak start
point is recorded. Conversely, if the window height is below the noise level, the end of a
peak is recorded.
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Detected peaks (Figure 5.6.c) are stored in a structure array, which includes start, end,
and maximum slope information. These peaks undergo filtering based on their length,
retaining only those that meet a minimum length criterion (set to 10 samples, this number
reflects empirical determination.).

Consequently to the baseline recognition, the baseline correction function is designed
to correct baseline variations in spectral data by identifying and excluding peak regions.
To achieve this, a binary weights vector, with a length matching that of the spectrum, is
generated based on the peaks identified through the previous procedure. Samples corre-
sponding to the peaks are assigned a value of 0, while those corresponding to the baseline
are designated a value of 1 (Figure 5.6.d).

Employing the Wittaker smoother (discussed in more detail in Section 4.3.1), the func-
tion constructs a sparse matrix to incorporate the exclusion zones identified by the peaks.
In Matlab, the implementation of baseline correction is facilitated by the availability of
built-in functions such as diff() for computing the first derivative matrix D. For shorter
data series, typically comprising less than 1000 points, direct computation of the baseline
using dense matrices is viable. However, beyond this scale, computational time and stor-
age requirements escalate significantly. To mitigate this issue, sparse matrices are utilized
to reduce memory consumption and computation overhead [14]. With sparse matrices,
only the nonzero elements of the identify matrix are stored.

The matrix undergoes Cholesky decomposition to compute the baseline (Figure 5.6.e).
The selection of Cholesky decomposition over direct solution method is predicated on its
suitability for spare systems and its avoidance of unnecessary bandwidth optimization,
which can be time-intensive for extensive dataset [14]. In instances where peak detection
fails or encounters errors, the baseline is set to zero. Subsequently, the baseline-corrected
data is derived by subtracting the estimated baseline from the original data (Figure 5.6.f).

This methodology guarantees efficient and precise baseline correction, even for sizable
spectral datasets, without compromising computational efficiency or memory usage [14].

5.4 Simulated spectroscopic data Generation

To train the proposed network and compare it with other noise reduction methods, I
developed a simulated dataset using Python. This dataset simulates NMR spectroscopy
data from the Pulsar benchtop from Oxford instrument [40], considering signals already
in the correct phase. Initially, the process generated noise-free signals, then introduced
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random noise to these pure signals (Figure 5.8).

Each generated signal has a duration of 10 seconds and contains 5120 samples, making
it easily divisible into segments of 512 samples, which is important for network training
as already mentioned in Section 5.5.1. The starting point is Equation 3.16, in which
the adjustable parameters include the number of peaks n, magnitude S0, relaxation time
T2, and Larmor frequency f0. These parameters closely reflect real data characteristics,
featuring very high peaks next to very small peaks and narrower linewidths, reflecting
varying amplitude values S0 and high relaxation times T2.

Figure 5.7: Chosen T2 values used for generating synthetic data to closely emulate real
signals, each value being assigned an increasing probability.

Real signals predominantly feature low peaks. In the simulation, for a given FID signal
and number n of nuclei, 80% of the nuclei received an amplitude value between 5 and 50
to replicate the prevalence of small peaks, while 20% received a value between 300 and
500.

To ensure the synthetic signals closely represent real data, the selection of the T2 pa-
rameter required careful consideration. Since real signals typically feature small amplitude
peaks, the simulation favored higher relaxation times. Section 3.3.2 discusses the relation-
ship between amplitude and relaxation time in detail. The method assigns probabilities
to each T2 value (x-axis in Figure 5.7) using a weight vector. This approach increases the
selection likelihood for larger T2 values by providing higher probabilities (y-axis).

Consequently, the number of nuclei in the sample is a random value between 2 and
10 to produce spectra with varying numbers of peaks. The Larmor frequency has a value
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randomly selected from an array of frequencies ranging from −400 to +400Hz.
The calculation of the Fourier transform for each FID signal produced and stored the

spectra (Figure 5.8.a).

Afterward, I add noise with a normal (Gaussian) distribution N to the pure signals,
following the additive noise model as described in Equation 5.22. This process is charac-
terized by the following equation:

Snoisy(t) = Spure(t) + noise factor ·N(µn, σn) (5.22)

For this signal, selecting three parameters is necessary: the mean value of the distri-
bution (µn, the standard deviation ((σn, which must be non-negative), and the dimension
of the noise.

Initially, the mean of the distribution is set to 0, with the standard deviation randomly
chosen between 50 and 500, and the length matching that of the spectrum

Additionally, another crucial factor is the noise factor, which indicates the amount of
noise added to the original signal. This factor plays a significant role in simulating real-
world conditions where signals are often corrupted by various sources of noise. Therefore,
the noise factor can has a random value in a range between 3 and 8.

a)

b)

 Snoise(t) = Spure (t) + noise factor * N(t) 

Figure 5.8: Simulated spectroscopic data: (a) noise-free synthetic spectra, and (b)
spectra affected by Gaussian noise with a zero mean (µm) and standard deviation σ
chosen from the range between 50 and 500.
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5.5 Autoencoder for Spectral Noise Reduction

This section explores the application of Autoencoders for noise reduction in spectral data.
It details the methodology, including data pre-processing, model implementation, and
training processes. The following subsections discuss the essential steps involved in prepar-
ing the data, constructing the Autoencoder architecture, and the specifics of the training
process to achieve optimal noise reduction performance.

5.5.1 Data Pre-processing

Before training the Autoencoder for denoising spectra, several pre-processing steps are
essential to prepare the data for input into the neural network. These steps include
normalization, segmenting the data, and reshaping it to fit the requirements of Tensor-
Flow/Keras (Python), each step playing a crucial role in optimizing the neural network’s
performance and efficiency.

Normalization is the first step, scaling the data to fall within a specific range [0,1].
This ensures consistency in the input scale, allowing the network to learn more effectively
and converge faster. For both signal, noisy and pure, normalization is achieved by dividing
the signal by its maximum value, optimizing the loss function used, the MSE. This step is
essential because input data can vary significantly in range, rendering the incomparable
without normalization. For instance, one feature x1 might range from 10 and 50, while
another feature x2 ranges from 1000 to 5000. These disparities lead to different value
scales, causing varied weight updates and optimization steps, which can distort the shape
of the loss function. Consequently, a lower learning rate would be necessary to prevent
overshooting, resulting in a slower learning process. Thus, normalization stabilizes and
enhances the optimization process [3].

The dataset initially comprised dimensions of (10.000, 5120). To process the data
more effectively, each signal is segmented into smaller segments of 512 samples, resulting
in a new dataset with dimension of (100.000, 512). This segmentation is advantageous for
several reasons. Firstly, smaller segments reduce the computational load on the network,
making the process more efficient. Additionally, neural networks often perform better
when the input size is a power of 2, aligning well with the architecture of the underlying
hardware (e.g., GPUs), leading to optimized memory usage and faster computations.

After segmenting, the data undergoes reshaping by adding an extra dimension to
represent the number of channels, transforming the dataset size to (100.000, 512, 1). This
additional dimension indicates a single channel for one-dimensional signals, similar to
working with grayscale images [51].
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The next step involves dividing the reshaped dataset into training and validation sets,
with 70% allocated for training and 30% for validation. Another dataset of the same initial
size serves as the test set, following the same pre-processing procedures as the training
set.

5.5.2 Autoencoder Architecture

Figure 5.9 illustrates the Autoencoder architecture implemented in this study. The en-
coder component of the model compresses the input signal into a lower-dimensional rep-
resentation through successive Conv1D layers. The input layer accepts the input signal
with a shape of (512, 1). Subsequent Conv1D layers increase the number of filters (32, 64,
128, 256, 512, and 1024), use a kernel size of 3, stride of 2, and ’same’ padding to preserve
the input size. Each Conv1D layer employs the ReLU activation function (mentioned in
Section 4.5.1), and includes both kernel constraint and a kernel intializer.

Kernel constraints keep kernel weights from becoming excessively large during opti-
mization, which can lead overfitting and numerical instability [6]. The Max Norm which
constraints used in this study restricts the maximum norm of the weights as follows:

|| W || ≤ c (5.23)

where c is set to 2.0.
The neural network requires an initial set of weights that are iteratively updated.

Kernel initialization sets these initial values using a statistical distribution or function.
He Normal initialization is particularly effective with ReLU activation function, addressing
issues such as the inactivation of ReLU neuron. He Normal initializes the weights with
values draw from a normal distribution with a mean of 0 and a standard deviation of√︁

2/n, where n is the number of neurons in the previous layer. This method helps prevent
vanishing or exploding gradients, improving stability and convergence during training [32].

Each layer’s output passes through a LeakyReLU activation with a small negative
slope (0.003) to allow a gradient when the units inactive.

Some layers incorporate skip connections, where output from an earlier layer is added
to a later layer’s output.

The bottleneck layer, representing the compressed latent space, is the flatted output
of the last convolution layer and applying a dense layer with 500 neurons and ReLU ac-
tivation, capturing the input signal’s essential features compactly.

The decoder mirrors the encoder, using transposed convolutional layers to upsample
the data back to its original dimensions. Each transposed layer corresponds to an encoder
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layer, reversing the encoding process. The first transposed layer applies 1024 filter, with
the final one applying a single filter to match the original input dimension. Batch nor-
malization layers follow the Leaky ReLU activations in the decoder to standardize inputs
and accelerate training.

The decoder also employs skip connections, combining high-level features from the
encoder with upsampled features to aid in reconstruction.

The output layer uses the sigmoid activation function, suitable for reconstructing
normalized input data.

Figure 5.9: Autoencoder Architecture implemented in this study. The encoder com-
presses the input signal into a lower-dimensional representation using Conv1D layers with
increasing filters (32 to 1024), ReLU activation, kernel constraints, and He Normal initial-
ization. LeakyReLU activations (slope 0.003) maintain gradient flow. Skip connections
and a bottleneck layer with a dense layer capture essential features. The decoder mirrors
the encoder with transposed convolutions, batch normalization, and skip connections for
reconstruction. Output uses sigmoid activation for normalized data.

5.5.3 Training the Autoencoder

The training process involved the compilation and fitting of the model using the Adam
optimizer, set with a learning rate of 1e-7, and the mean squared error (MSE) loss function.
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During this phase, the model underwent training with the noisy and pure signals input
for a total of 20 epochs. Preliminary experiments show that model performance plateaus
after this number of epochs, with no significant improvements in validation loss beyond
this point, leading to the selection of this specific number of epochs. A batch size of
32 facilitates the training process, while reserving a portion of the dataset for validation
monitors the model’s performance and generalization capabilities throughout the training
period. This approach ensured an optimal balance between training efficiency and model
accuracy, preventing overfitting while maximizing the model’s ability to learn from the
data.

5.6 Alternative Denoising Methods

5.6.1 SWT Denoising Technique

In implementing the method discussed in Section 4.5.2, the process starts by calculating
the noise threshold for each decomposition level using a region-specific binary spectrum
that distinguishes peak regions from noise. Following this calculation, the wavelet denois-
ing function applies the SWT up to k decomposition level, typically ranging from 5 to 7
for most NMR spectra using the modified threshold method with α = 0. In this study,
both levels underwent evaluation to determine their respective performances. Finally, the
function reconstructs the denoised spectrum using the ISWT with the ’bior2.4’ wavelet [2].

5.6.2 Rolling Window Technique

The implementation of a Moving average, discussed in Section 4.5.3, is straightforward.
This technique uses a window of a specific size to perform a mathematical operation on
the signal. The window size, a key parameter, determines the number of observations
used for the average calculation. In this study, I used a simple function in Pandas to
apply this filter and denoise the signal.

Two critical parameters for this function are the window size and the window type.
The window size determines the extent of noise reduction; a larger window results in
greater noise reduction but also increases the loss of information. Additionally, selecting
the appropriate window type is essential. The simplest type is a uniform window, were
all points have equal weight. Other types include the Gaussian, Barlett, Hamming, and
Parzen windows, each of which may require additional parameter settings. For example,
the Gaussian window necessitates specifying a standard deviation.

In the Rolling Window technique, I evaluated two types of moving average windows: a
simple rolling window and a Gaussian window. Both windows had a length of 7, with the
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Gaussian window having a standard deviation of 3. This evaluation aimed to determine
the effectiveness of each window type in denoising the signal.
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Chapter 6

Results and discussion

In this chapter, I present the outcomes of applying various signal processing techniques
to NMR spectra, highlighting the advantages and limitations of each method. The chap-
ter is divided into sections focusing on phase correction methods and denoising techniques.

Overall, this chapter provides a comprehensive comparison of different signal pro-
cessing techniques for NMR spectra, highlighting the advantages and limitations of each
method.

The initial section evaluates and benchmarks three automatic phase correction meth-
ods: combined coarse and fine tuning (CFTph), inspired by Qingjia Bao et al. [4]; entropy
minimization (Hph), based on the work of Li Chen et al. [11]; and absolute similarity max-
imization (Absph), developed and implemented specifically for this study. Each method
underwent refinement to better align with the objectives.

I assess these methods using metrics such as correlation coefficients, Euclidean dis-
tances, and root mean square errors (RMSE) to determine their accuracy compared to
manually corrected references. I provide a detailed analysis of each method’s performance,
considering their strengths and weaknesses in handling different types of NMR signals.
The second section explores various denoising techniques applied to synthetic and real
NMR data. I assess the performance of the Autoencoder (Auto), stationary wavelet
transform (SWD), and rolling window smoother (RWD) methods. The evaluation is
based on metrics such as Structural Similarity Index (SSIM), correlation coefficient, and
Euclidean distance. I also investigate how these methods perform under different noise
levels and compare their effectiveness in reducing noise in real NMR spectra. Through
visual representations and detailed analysis, I identify the Autoencoder as the most effec-
tive method, with SWD and RWD demonstrating varying degrees of effectiveness.
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6.1 Performance Assessment of Phase Correction Methods
for NMR Spectra

In this section, I evaluate and benchmark three automatic phase correction methods for
NMR signals: combined coarse and fine tuning (CFTph) detailed in Section 5.3.2; entropy
minimization (Hph) explained in Section 5.3.3; and absolute value maximization (Absph)
discussed in Section 5.3.4. Figure 6.1 presents an example of the output from these three
phase correction methods, comparing them to the signal before phase correction and the
signal with manual phase correction.

The chosen metrics provide insights into the methods’ performance across different
NMR signals types. Non-hyperpolarized samples, with inherently varying signal-to-noise
ratios (SNR), can lead to differences in metric values, potentially skewing comparisons.
Normalizing signal amplitudes ensures comparability without altering underlying noise
characteristics. To mitigate the issue of noise remaining constant post-normalization,
evaluations focused on signal regions containing prominent peaks, where the true signal
information is concentrated, rather than across the entire spectra.
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Figure 6.1: Performance of three phase correction methods for NMR spectra: combined
coarse and fine tuning (CFTph), entropy minimization (Hph), and absolute value maxi-
mization (Absph). These methods are evaluated against signals prior to phase correction
and signals corrected manually.
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6.1.1 Evaluation of Phase Correction Method Performance

The correlation coefficient, analyzed via box plots in Figure 6.2, indicates the linear rela-
tionship between automatic and manual corrected signals. The x-axis represents the three
different phase correction methods, while the y-axis shows the correlation coefficient val-
ues, indicating the degree of linear relationship between the phase-corrected signal and
the ground truth obtained by the manual correction. Each box plot includes the median
(central line), interquartile range (IQR, the box) and potential outliers (points outside
the whiskers).

A correlation coefficient value close to 1 suggests strong linear relationships. The
three methods in question demonstrate a linear correlation for most tested signals, as
evidenced by a median value close to 1 for all of them. However, the CFTph method
shows greater variability in the results, denoted by the larger IQR. The Hph and Absph

methods exhibit comparable performance, as evidenced by the similarity between their box
plots when evaluating the correlation coefficient. Both methods have a high median value
and relatively narrow IQR, suggesting consistency and low variability in performance.

All three methods produce values that deviate more from the mean correlation coeffi-
cient, with outliers primarily due to signals that are challenging to correct. However, the
Hph and Absph methods, perform better on a wider range of spectra, as evidence by fewer
outliers and closer to the median value.

Upon evaluating the Euclidean distance through heatmap visualization (Figure 6.3),
the findings indicate varying degrees of proximity between phase spectra and reference
spectra across different experiments. A heatmap visualizes data using colors to represent
values, providing a graphical representation of information [21]. In this context, each
cell within the heatmap denotes the Euclidean distance calculated between the reference
signal (manually corrected) and the signals phased by the three methods across various
experiments. The color gradient ranges from dark blue to dark red, indicating ascending
Euclidean distance values.

The CFTph technique exhibits variability in Euclidean distances across experiments,
indicating moderate performance variance and occasional deviation from the reference
spectrum, as observed from a mixture of blue and dark red shades. This variability sug-
gests that in certain experiments, CFTph yields higher Euclidean distances compared to
the Hph and Absph methods, which consistently demonstrate lower Euclidean distances
indicated by uniform lighter shades. These methods consistently perform well across ex-
periments, characterized by lower Euclidean distances, reflecting minimal variance and
closer alignment with the reference spectra.
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In Figure 6.4 the RMSE values depict the dissimilarity between signals, specifically
between the output signals of automatic phase correction and the reference spectrum. This
visualization enables as assessment of how these metrics vary across different correction
method. The correlation matrix highlights both the self-correlation of each method and
its correlation with others, represented on the x- and y- axes by their respective RMSE
values.

Upon examining these metrics, it become evident that the CFTph method exhibits
poorer performance compared to the other two, as indicated by higher RMSE values,
reaching a maximum of 0.601, as shown in the first plot on the diagonal. This suggest
a greater discrepancy between automatically corrected signal and the manually corrected
reference. Conversely, the Hph and Absph methods consistently demonstrate better per-
formance, with RMSE values peaking around 0.16. Notably, the main diagonal of the
correlation matrix reveals lower RMSE values for both, underscoring their stability and
reliability across experiments. Furthermore, the correlation coefficient r between Hph and
Absph is notably higher at 0.62, indicating a stronger similarity in RMSE trend compared
to other method pairs. This implies that the performance consistency between Hph and
Absph is more pronounced relative to the first method.

Figure 6.5 illustrates the solution x that minimizes the Equation 4.26. This equation
achieves its minimum then the result is 0, indicating equality between A and b with x
equal to 1. The degree of similarity between A and b directly influences how closely
x approaches 1. In our context, A represents the automatically corrected signal and b
the manually corrected reference. As observe from previous metrics, the CFTph method
exhibits slightly lower performance compare to the other two methods, suggesting that A
and b may diverge more across different experiments, leading x to deviate from 1. Indeed,
in the Figure 6.5, the CFTph method generally performs similarly to Hph and Absph , but
typically yields a lower x values the other methods. In contrast, considering this metric,
the Hph and Absph methods exhibits slightly different trends, particularly in challenging
experimental scenarios. The results reveal that CFTph often shows more variable and
occasionally less accurate corrections compared to Hph and Absph.
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Figure 6.2: Correlation coefficient values computed between spectra corrected using
three methods (CFTph, Hph,Absph) and manually phase corrected signals.
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Figure 6.3: Heatmap visualization of Euclidean distances (L2 norm) computed between
phase corrected spectra using three methods(CFTph, Hph,Absph) and a reference spectrum
(manually corrected).
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Figure 6.4: RMSE (Root Mean Square Error) values that quantify dissimilarities be-
tween automatic phase-corrected signals and a reference spectrum. This visualization
allows assessment of these metrics across different correction methods. The correlation
matrix depicts both the self-correlation of each method and its correlation with others,
shown on the x- and y-axes by corresponding RMSE values.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Experiments

-0.2

0.2

0.6

1

Le
as

t q
ua

re
 e

rr
or

Least quare error

CFT ph
Hph
Absph

Figure 6.5: Solution x minimizing Equation 4.26. The degree of similarity between
automatically corrected signal, A, and manually corrected reference, b. Solution for the
methods: CFTph, Hph,Absph
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6.1.2 Discussions

Based on the results of using different phase correction methods on NMR spectra, it is
evident that these strategies yield varying performance outcomes due to their inherent
methodologies.

The coarse and fine tuning (CFTph) approach involves identifying and classifying peaks
as positive, negative, or distorted during the fine-tuning before applying the penalty func-
tion in Equation 5.7. This function targets positive or negative peaks by adding the square
of each negative peak’s value, while distorted peaks have their values set to zero, thereby
avoiding penalties [4]. Avoid distorted peaks can lead to incorrect ph1 phase choices dur-
ing the optimization of the objective function. In contrast, entropy minimization (Hph)
and similarity maximization with the absolute spectra (Absph) apply a penalty function
that indiscriminately penalizes all negative points in the spectrum.

Despite the CFTph method’s lower performance compared to Hph and Absph, it oper-
ates significantly faster. This speed advantage primarily arises from CFTph using recog-
nized peaks rather than all data points when performing the objective function in Equation
5.5. Additionally, the efficiency comes from employing optimization algorithms to find the
optimal values ofph0 and ph1, incorporating both global and local optimizers.

Local optimization algorithms start with a randomly generated hypothesis and subse-
quently optimize it using a greedy algorithm [27]. These algorithms make locally optimal
choices at each step, aiming to find a global optimum solution. However, decisions are
based solely on current information without considering future implications [18]. The
local optimization process generates an initial hypothesis randomly and repeats this pro-
cess multiple times, each time with a different randomly generated hypothesis [27]. Con-
sequently, local optimizers often find the nearest minimum, which is typically a local
minimum unless the starting point is exceptionally well-chosen.

Local optimization techniques struggle with global optimization problems. They fre-
quently become trapped in local minima and cannot generate or utilize the global in-
formation needed to find the global minimum for functions with multiple local minima.
In contrast, the genetic algorithm (GA) addresses optimization problems by mimicking
biological evolution principles. It repeatedly modifies a population of individual points
using rules modeled on gene combinations in biological reproduction. Due to its stochastic
nature, the genetic algorithm increases the chances of finding a global solution by cleverly
sampling the parameter space to approach the optimum [37].

Although both algorithms may spend considerable time around a reached minimum
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point [19], genetic algorithms tend to be slower due to their structural complexity and the
intricate genetic operators involved, which contribute to slow computational speeds [16].
However a local optimizer, although faster, may provide suboptimal solutions as it stops at
a local extremum. This speed does not guarantee accuracy and may yield incorrect values
by not finding the global minimum. Hence, a global optimizer is preferred for achieving
the global minimum (or maximum). The CFTph method employs a local optimizer for
ph0 and a global optimizer for ph1, while Hph and Absph use a global optimizer (GA) for
both phase correction values, resulting in increased computational time.

The quality of the results and the convergence speed of genetic algorithms can be
significantly influenced by algorithm parameters, particularly the initial population of so-
lutions [52]. Genetic algorithms typically consist of two main processes: selecting individ-
uals for the production of the next generation and manipulating these selected individuals
through crossover and mutation techniques to form the new generation [45]. A large dif-
ference between the initial population and the next generation can lead to prolonged times
for the genetic algorithm to reach the optimal solution [45]. Optimizing the crossover and
mutation processes, along with adaptive parameter adjustments, can help minimize the
differences between consecutive populations. However, it is essential to ensure that the
difference is not too small to avoid local optima [45] [29]. Optimizing crossover and mu-
tation processes can prevent local optima and ensure feasible mutated paths, ultimately
improving search efficiency and convergence speed [29], thereby increasing the overall ef-
ficiency of automatic phase correction methods in NMR spectroscopy.
Another factor impacting computational time is baseline correction. Baseline correction
involves recognizing where there is only noise in the spectrum and identifying and labeling
peaks. For long spectra, and with baseline recognition based on a sliding window, this
process can significantly affect computational time, especially if performed repeatedly. In
this study, the automatic methods for phase correction involve two steps: the first step
searches for the optimal value of ph0, and the second searches for the optimal value of ph1.
Baseline correction primarily occurs at three points: after applying the optimal ph0 value,
during the iterative process to find the optimal ph1 value (applying baseline correction for
each tested phase value), and finally, after applying the optimal ph1 value to obtain the
correctly phase final spectrum. To minimize computational time, the iterative search for
the optimal ph0 value excludes baseline correction. As discussed in Section 5.3.5, only the
first-order phase correction affects the baseline, potentially distorting it. If not corrected
at each iteration, this distortion could lead to selecting a suboptimal ph1 value. SInce ph0

correction does not impact the baseline, applying baseline correction at each iteration for
ph0 is unnecessary and time-consuming.
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6.2 Performance Assessment of Denoising Methods for NMR
Spectra

In this study, I applied various denoising methodologies, namely Autoencoder (Auto),
Stationary Wavelet Transform (SWD), and Rolling Window Smoother (RWD), as dis-
cussed in Section 4.5, to synthetic noisy NMR signals and real NMR spectra. Figure 6.6
illustrates an example of the output signals of these three methods, compared with the
pure signal and noisy signals at varying noise levels.

Before comparison, I normalized the output signals from the rolling window and SWD
methods, as well as the ground truths, to ensure comparability. The Autoencoder is al-
ready configured to provide normalised signals.
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Figure 6.6: Performance of three denoising methods for NMR spectra: Autoencoder
(Auto), Stationary Wavelet Transform (SWD), and Rolling Window Smoother (RWD).
These methods are evaluated against pure signals and noisy signal with varying noise
levels.
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6.2.1 Evaluation of Noise Reduction Method Performance

The evaluation metrics used are Structural Similarity Index (SSIM), Correlation Coeffi-
cient, and Euclidean distance, calculated across 10,000 synthetic spectra.

Firstly, focusing on the SSIM scores (Figure 6.7), the Autoencoder method demon-
strates the highest median SSIM value, indicating superior performance in preserving
structural similarity. This is supported by its narrow interquartile range (IQR) and few
outliers, suggesting consistent and reliable denoising results. The SWD method also shows
a high median SSIM value but with a wider IQR and more outliers, implying some vari-
ability in its performance. In contrast, the RWS exhibits the lowest median SSIM value
and the widest IQR, indicating less consistent performance and more frequent deviations
from the ground truth.

Moving to the correlation coefficient results (Figure 6.8), the Autoencoder method
maintains a high median value, indicating a strong linear relationship between the de-
noised signals and the ground truth. The SWD method performs similarly but with
slightly less consistency, as evidenced by a marginally lower median correlation coefficient.
The RWS again shows the lowest median correlation coefficient among the methods, sug-
gesting weaker linear alignment with the ground truth.

In terms of Euclidean distances (Figure 6.9), which reflect how close the denoised
signals are to the ground truth in a spatial sense, the Autoencoder exhibits the lowest
median Euclidean distance, indicating closer proximity to the noise-free signals. This is
complemented by a narrow IQR, indicating consistent performance across different data
points. Conversely, the SWD method shows a higher median Euclidean distance and a
wider IQR, suggesting less accurate denoising and greater variability. The rolling window
smoother displays the highest median Euclidean distance and the widest IQR, highlight-
ing the least accurate denoising performance with considerable variability and numerous
outliers.

From the box plot analysis, it is evident that the Autoencoder neural network gener-
ally performs the best in terms of maintaining structural similarity to the ground truth
signals, with high median SSIM, strong linear correlation, and minimal Euclidean dis-
tance. The SWD also performs well but with greater variability. In contrast, the rolling
window smoother demonstrates the lowest median SSIM and highest variability. This sug-
gests that the Autoencoder is the most reliable method for denoising NMR spectroscopy
signals among the those tested.

80



6.2 – Performance Assessment of Denoising Methods for NMR Spectra

Figure 6.7: Structural Similarity Index (SSIM) values calculated between pure synthetic
data and noise-reduced synthetic data processed by three different methods (Auto, SWD,
RWD)

Figure 6.8: Box plots illustrate the correlation coefficient values calculated between
pure synthetic data and noise-reduced synthetic data processed by three different methods
(Auto, SWD, RWD)
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Figure 6.9: Box plots illustrate the Euclidean distance (L2 norm) values calculated
between pure synthetic data and noise-reduced synthetic data processed by three different
methods (Auto, SWD, RWD)

Afterwards, I carried out a further test to evaluate how these methods perform under
different noise levels. I divided the data into four groups, each corresponding to an increas-
ing level of noise added to the signals, with a normal distribution, zero mean, and different
standard deviations (50, 250, 350, and 500). For each group, the box plots in Figure 6.10
represents how SSIM metric evaluates the aforementioned denoising techniques.

With a standard deviation of noise equal to 50 (Figure 6.10.a), the Autoencoder shows
a high median SSIM with relatively low variance, indicating good denoising capability.
The SWD method presents a slightly lower median SSIM compared to the Autoencoder
but still with robust performance and moderate variance. The RWS has the lowest median
SSIM among the three, with higher variance, indicating less effective performance.

As the noise level increases, the Autoencoder maintains relatively high median SSIM
values with manageable variance, though performance slightly decreases. The SWD
method’s median SSIM decreases with increasing noise, showing reduced effectiveness.
The RWS continues to exhibit the lowest performance, with decreasing median SSIM and
increasing variance.

82



6.2 – Performance Assessment of Denoising Methods for NMR Spectra

c)

b)a)

d)

Figure 6.10: Box plots illustrating the Structural Similarity Index (SSIM) values be-
tween pure synthetic data and noise-affected synthetic data processed by three methods
(Auto, SWD, RWD), varying noise levels. Panels (a) to (d) display SSIM values calcu-
lated between the pure signal and signals affected by noise with standard deviations (std)
of 50, 250, 350, and 500, respectively

In this project, I evaluated the performance of three denoising methods on real data
data from the Pulsar benchtop from Oxford instrument [40]. I assessed their effectiveness
by calculating the noise deviation from 10% of each signal, presumed to contain only noise,
and comparing these deviations with the original noisy signals. For these comparisons,
I used violin plot (Figure 6.12) and bar plot (Figure 6.11). A violin plot, similar to a
box-and-whisker plot, shows the distribution of data points after grouping by one or more
variables. Unlike a box plot, each violin is drawn using a kernel density estimate of the
underlying distribution [54]. A bar plot presents data with rectangular bars proportional
i height to the values they represents, and includes error bars to indicate uncertainty
around each estimate [54]. In the performance analysis, Autoencoder method achieved the
most significant reduction in nose standard deviation, outperforming the other methods.
Its performance is evidenced by the lowest bar height in the bar plot and a marked
shift toward lower standard deviations in the violin plot, indicating superior denoising
performance. SWD provided a noticeable reduction in noise but was less effective that the
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Autoencoder. The bar plot shows a moderate height for SWD, reflecting its intermediate
performance in noise reduction, while the violin plot displays a reduction compared to
the original noise but with a broader spread, indicating some variability in performance.
RWD demonstrated the least noise reduction, with standard deviations only slightly lower
than the original noisy signals. The bar plot for RWD is closest in height to the original
noise bar, indicating minimal denoising effectiveness, and the violin plot has a distribution
similar to the original noise plot, suggesting that this method is less effective in denoising
NMR specta.

Figure 6.11: Bar plot depicting the distribution of standard deviations calculated from
10 % of the signal after applying three denoising methods (Auto, SWD, RWD). The red
violin represents the distribution of standard deviations before noise reduction. The error
bars indicates uncertainty around each estimate
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Figure 6.12: Violin plot depicting the distribution of standard deviations calculated
from 10 % of the signal after applying three denoising methods (Auto, SWD, RWD).
The red violin represents the distribution of standard deviations before noise reduction.

6.2.2 Discussion

Based on the results of applying various denoising methods to NMR spectra, the Au-
toencoder method demonstrates superior performance compared to stationary wavelet
denoising (SWD) and rolling window denoising (RWD). This trend holds across synthetic
data with variable noise levels, synthetic data with progressively increasing noise, and
real-world data.

The Autoencoder method consistently outperforms the other techniques, maintaining
higher Structural Similarity Index (SSIM) values and demonstrating greater robustness
in increasing noise levels. It shows a strong linear correlation with the noise-free signal
and minimal Euclidean distance. Violin and bar plots further confirm the Autoencoder’s
significant improvement in denoising NMR spectroscopy signals under varying noise con-
ditions.

In contrast, the SWD method shows moderate performance, which diminishes as noise
levels increase. While it provides a more refined approach compared to RWD, SWD is
not fully automatic due to the need to set specific variables, such as the threshold for
defining peak levels, gaps between recognized peaks, and the number of points to add
around peaks. These settings might not be suitable for all spectra types, limiting the
generalizability of the SWD method.
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RWD demonstrates the lowest performance, particularly at higher noise levels, with
lower SSIM values and higher variance. This method is less effective at reducing noise in
NMR spectra and requires manual selection of window size, which significantly impacts
the results. A large window size averages more points, losing fine details, while a small
window size reduces noise insufficiently. Therefore, the choice of window size must be
based on the signal’s noise level, rendering RWD less automatic and less effective for
varied NMR spectra.
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Chapter 7

Conclusion

This thesis has addressed the critical question: "How can an automated tool enhance
the accuracy and efficiency of preprocessing HP-NMR spectra?" Through the develop-
ment and evaluation of an automated preprocessing tool, substantial advancements in
both accuracy and efficiency demonstrate improvements compared to traditional manual
methods.

The focus of this research was on automating baseline correction, phase correction (im-
plemented in Matlab), as well as noise reduction (implemented in Python) for HP-NMR
spectra, aiming to minimize human error and enhance reproducibility. The automated
phase correction method, particularly the one based on maximizing similarity between cor-
rected and uncorrected absolute signals, proved to be robust and accurate. This approach
outperformed manual techniques could significantly reducing user-dependent errors and
improving processing speed, particularly with large datasets. Furthermore, the applica-
tion of an Autoencoder for noise reduction showed superior performance in preserving
important signal details compared to other methods, albeit with notable computational
resource requirements for training.

Future research directions should prioritize refining phase correction methods with
additional constraints and broader spectral considerations. Improvements in denoising
techniques tailored to diverse noise conditions and spectrum types would further enhance
the efficacy of the automated preprocessing tool. Practical recommendations include ex-
tensive deployment in chemical and biological research settings to validate its effectiveness
and integration with complementary analytical software for a comprehensive preprocessing
suite.

This study aims to significantly advance the field of NMR spectroscopy by introducing
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an automated preprocessing tool that enhances both accuracy and efficiency. Addition-
ally, it addresses the critical gap in standardizing and automating preprocessing workflows.
By advocating for the adoption of automated techniques in routine NMR analysis, this
research challenges the conventional reliance on manual methods. Importantly, these ad-
vancements contribute directly to precision medicine by improving the reliability of NMR
data. This enhancement accelerates the identification of disease biomarkers and metabolic
patterns, thereby facilitating more robust and reproducible diagnostic and therapeutic
strategies aligned with the goals of precision medicine to deliver personalized healthcare.

In conclusion, integrating automated preprocessing into HP-NMR spectroscopy work-
flows marks a significant advancement across various fields, illustrating its potential to
enhance outcomes in precision medicine and beyond.
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