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Abstract

The objective of this work is to advance the development of intelligent products from
Technology Readiness Level 4 to Technology Readiness Level 6. This advancement will
be achieved by developing efficient data analysis methods and integrating algorithms with
intelligent hinges, thereby enhancing the functionality and performance of these systems.
This research is crucial as it addresses the growing need for precision and efficiency in
various industries that rely on automation and intelligent technologies, particularly in
the context of Industry 4.0 and smart edge solutions.The focus of this study is on lin-
ear belt drive motion systems and encoder detection systems. Linear belt drive systems
are common in industrial processing and transportation, where the condition of the belt
during transportation needs close attention to better monitor and prevent failures. There-
fore, this work emphasizes developing algorithms to visually reflect the current state of
the belt through the encoder detection system, integrating this with intelligent hinges to
transition product testing from the laboratory to real-world environments.
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Chapter 1

Introduction

As technology progresses, industries are increasingly adopting innovations that enhance
efficiency and accuracy. Industry 4.0 is a pioneer of this transformation, characterized
by the integration of digital technologies and intelligent systems into manufacturing and
industrial processes. This shift necessitates the development of smart products that can
adapt to dynamic environments and enhance operational performance.

A key component of Industry 4.0 is the deployment of intelligent edge solutions that
utilize real-time data and advanced analytics to optimize industrial operations. In this
context, the concept of technology readiness level(TRL) serves as a framework to assess
the maturity of technologies, guiding their development from the conceptual stage to
fully operational systems. This work focuses on advancing smart products from TRL 4
(validation of basic technological components in a laboratory environment) to TRL 6
(demonstration of these systems in relevant operational environments).

A specific area of focus in this research is the enhancement of linear belt-driven motion
systems, which are indispensable in many industrial applications including manufactur-
ing, material handling, and transportation. These systems require precise monitoring to
prevent failures and ensure continuous high efficiency. The core of this research combines
encoder detection systems with intelligent hinges, aiming to provide accurate real-time
monitoring and control of belt conditions.

The problem addressed in this study is the need for reliable and efficient monitoring
solutions for linear belt-driven systems. Current detection methods for belt systems often
fail to provide the necessary precision and real-time data required for proactive mainte-
nance and optimization. By developing complex algorithms that utilize encoder detection
systems, this research strives to accurately reflect the operational status of belts, thereby
preventing downtime and enhancing overall system performance. Ultimately, this not only
saves production costs and labor but also significantly improves production quality and
efficiency, fully aligning with the current smart manufacturing ideals of Industry 4.0.

Moreover, the entire process aims to bridge the gap between laboratory testing and
actual application. By combining intelligent hinges with the developed monitoring al-
gorithms, it ensures that these systems can be effectively tested and validated in envi-
ronments simulating actual industrial conditions. This approach not only enhances the
reliability and performance of the products but also ensures they are deployment-ready
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Introduction

for actual industrial scenarios.
In summary, this work contributes to advancing the TRL of smart products and the

field of monitoring and maintaining belt systems, particularly focusing on linear belt-
driven motion systems and encoder detection systems. It also helps to perfect the cloud-
based GUI interface and enables the cloud to monitor the status of machines in real-time,
laying the foundation for future analysis and product development.

The structure of this thesis is as follows:

• Chapter 2: This chapter discusses the integration of internet of things(IoT), AI, and
edge computing within Industry 4.0, focusing on the application and maintenance
of linear belt-driven motion systems, including the use of various algorithms and
statistical methods for predictive maintenance.

• Chapter 3: This chapter provides an overview of TRL, emphasizing its importance in
structured assessment, clear communication, and risk management during product
development, particularly for conveyor belt systems integrated with IoT and edge
computing.

• Chapter 4: This chapter details the use of encoder monitoring systems to detect
belt tension and the methodology for collecting and analyzing data to monitor and
maintain belt-driven systems, including statistical and algorithmic approaches to
fault detection.

• Chapter 5:This chapter presents laboratory experiments for validating belt-driven
systems at TRL 4-5, involving data processing, transformation methods, and sta-
tistical analysis to test and verify the system’s reliability and performance.

• Chapter 6: This chapter describes experiments conducted in relevant environments
to demonstrate belt-driven systems at TRL 5-6, focusing on data collection, analy-
sis, and the application of machine learning models for fault detection and system
validation.

• Chapter 7: This chapter focuses on incorporating the developed data processing
algorithms into a comprehensive algorithm framework. It details the development of
a graphical user interface(GUI) designed for the maintenance of running conditions.

• Chapter 8: This chapter summarizes the findings and achievements of the research,
highlighting the advancements made in transitioning intelligent products from TRL
4 to TRL 6. It also outlines potential areas for future research and development,
suggesting improvements and further applications of the developed systems and
algorithms.
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Chapter 2

Intelligent Technologies and
Belt-Driven System Maintenance

The industrial landscape is significantly transformed by emerging technologies and Indus-
try 4.0 principles. At the forefront, smart product development incorporates IoT, artifi-
cial intelligence(AI), edge and cloud computing, crucial for enhancing efficiency, product
quality, and enabling predictive maintenance. Belt-driven systems, prevalent in indus-
trial settings, necessitate regular upkeep due to their inherent characteristics. Hence, the
adoption of intelligent detection and maintenance technologies is vital for their sustained
reliability and longevity.

2.1 Background and Importance of Smart Product Devel-
opment

The development of smart products has become a key focus in modern manufacturing
and industrial sectors. The integration of advanced technologies such as the Internet of
IoT, AI, and cloud computing is transforming traditional product development processes
into intelligent, efficient, and highly adaptive systems.

The advent of Industry 4.0, often referred to as the Fourth Industrial Revolution,
has had a significant impact on the development of smart products. This revolution is
characterized by the integration of cyber-physical systems, IoT, and edge computing
or cloud computing, collectively enhancing the connection and automation of industrial
processes [7] as Figure 2.1. Industry 4.0 aims to create a highly flexible and efficient
manufacturing environment where data from various sources, such as sensors and devices,
is used to optimize production, improve quality, and reduce costs.

IoT technology is pivotal in smart factories, underpinning Industry 4.0 by facilitating
real-time data exchange and communication across factory components. This technology
transforms traditional manufacturing settings into highly efficient, adaptable systems [3].
Utilizing sensors and actuators, IoT creates a seamless network that monitors and controls
production, ensuring factory-wide synchronized operations.
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Figure 2.1: Industrial 4.0 Concept Diagram [7]

This connection not only enhances operational efficiency but also significantly im-
proves the factory’s responsiveness and adaptability to changes. The vast amount of
data collected by IoT devices provides deep insights into the manufacturing processes,
supporting data-driven decision-making that further optimizes production processes and
resource utilization. This data-driven approach makes production flows more intelligent
and precise, thereby increasing overall productivity and product quality.

Within the framework of Industry 4.0, IoT also facilitates the high degree of automa-
tion and self-optimization of production systems. Through horizontal and vertical data
integration, IoT technology seamlessly connects suppliers, partners, and customers while
achieving complete integration from product development to final production within the
organization as Figure 2.2. This comprehensive integration enables production systems to
respond quickly to market changes, meet personalized demands, and enhance production
flexibility and customer value.

Edge computing plays a crucial role in the advancement of Industry 4.0 by addressing
the limitations of traditional cloud computing in the Industrial industrial internet of
things(IIoT). In Industry 4.0, edge computing enhances real-time data processing, reduces
latency, and improves bandwidth efficiency by processing data closer to the data source.
This decentralized approach ensures faster response times, critical for applications such
as predictive maintenance, real-time quality control, and automated decision-making in
manufacturing environments as Figure 2.3. For instance, edge computing allows for the
immediate detection of anomalies in machine operations and enables rapid responses to
potential issues, thereby minimizing downtime and optimizing production processes [13].

The integration of edge computing with IoT is fundamental to the realization of IIoT.
Edge devices equipped with sufficient computing power can preprocess data locally, re-
ducing the volume of data that needs to be sent to the cloud. This not only alleviates
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2.1 – Background and Importance of Smart Product Development

Figure 2.2: Smart Factory and IoT [3]

Figure 2.3: Reference Architecture of Edge Computing in IIoT [13]

network congestion but also enhances data security by minimizing the transfer of sen-
sitive information over networks. In smart factories, for example, edge gateways collect
and process data from various sensors and machines, enabling real-time monitoring and
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control of production lines. This setup allows for more efficient and responsive manu-
facturing processes, contributing to the overall agility and productivity of Industry 4.0
initiatives [3].

Moreover, the synergy between edge computing and IoT extends to various industrial
applications, where edge computing facilitates real-time monitoring and management of
energy distribution, enhancing the reliability.

Edge computing significantly enhances the capabilities of Industry 4.0 by enabling
real-time data processing, improving system performance, and ensuring data security [9].
Its integration with IoT forms the backbone of IIoT, driving innovations in various indus-
trial sectors and paving the way for more responsive, efficient, and intelligent industrial
operations, AI faces significant challenges related to the edge limitations of computing
capacity within Industry 4.0. To effectively monitor and analyze shop floor machines
using AI models, cloud services are necessary to address issues related to storage and
computational resources. The pre-existing knowledge bases and big data stored in cloud
servers can collaborate with edge computing, providing reliable and accurate information
to edge devices [3].

Figure 2.4: Industrial AI Data Pipeline [15]

In Industry 3.0, productive maintenance was optimized, and Total total productive
maintenance(TPM) checklists were introduced, significantly reducing downtime and fail-
ure rates. However, achieving completely uninterrupted production was nearly impossible.
In Industry 4.0, data-driven methods can determine machine status based on historical
data sets and even predict potential downtimes. This predictive maintenance allows fac-
tories to plan alternative solutions and backups, laying the foundation for zero downtime.

Machine learning models are commonly used for predictive maintenance, where col-
lected data can be utilized for maintenance and fault prediction [15] as Figure 2.4. Com-
mon maintenance models include support vector machine(SVM), Autoencoder, and re-
current neural network(RNN). These models enable the factory to anticipate issues and
take preemptive actions, thus improving overall efficiency and reducing unexpected dis-
ruptions.

2.2 Overview of Linear Belt-Driven Motion Systems

Linear belt-driven motion systems are a crucial component in various automation and
mechanical applications as Figure 2.5, providing precise linear movement with high speed
and precision.
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2.2 – Overview of Linear Belt-Driven Motion Systems

Figure 2.5: Structure of belt system

where 1. Carts 2. Circular Rail 3. Drive Pulley 4. Idler Pulley 5. Aluminum Base
6. Conveyor Belt Carriages are a critical component in the circular system, designed to
support and guide loads along the circular rail. They are equipped with guide rollers that
support the load in all directions. The standard carriages feature concentric and eccentric
guide rollers which ensure precise movement on both the circular and straight sections of
the rail.

The circular rail is composed of both circular and straight sections, induction hardened
and ground to improve surface finish and accuracy. The rail’s modular design allows for
easy shipment and assembly, with alignment blocks simplifying the joining of rail sections.

The drive pulley is directly mounted on the gearbox output shaft to achieve maximum
integration and dynamic performance. High-quality gearboxes with reinforced bearings
support the belt tension and ensure precise movements.

The idler pulley in the system is mounted on a slide to allow for belt tensioning. This
feature ensures that the toothed belt remains at the correct tension, providing reliable
and smooth operation. Proper belt tensioning is crucial for maintaining the system’s
performance and longevity.

The system’s base is constructed from machined aluminum alloy, providing a compact
and space-saving solution. This base directly connects to the gearbox, ensuring stability
and ease of mounting. The aluminum profiles supporting the linear guide rails have T-slots
for fixing additional components like lubricators and carriage indexing cams, enhancing
the system’s flexibility and customization options.

The toothed conveyor belt is used for carriage traction in the system, offering a silent
and maintenance-free transmission. The design minimizes the distance between the belt
and carriage to reduce peak loads during high-speed transitions between straight and
curved paths. The belt’s length determines the module dimensions, and its tension is
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maintained by the idler pulley, ensuring consistent and reliable operation.
Linear belt-driven motion systems are integral to modern automation solutions, of-

fering a blend of precision, flexibility, and durability. Their application ranges from man-
ufacturing lines to complex robotic systems, underlining their versatility and importance
in various industrial contexts.

2.3 Current Maintenance Technologies in Linear Belt-Driven
Systems

The reliability of linear belt-driven systems is a critical focus in the production process.
Maintaining operational status and implementing predictive maintenance are essential to
ensure system safety and reliability.

Jaroslaw and colleagues researched the maintenance of underground mine belt con-
veyors. They used robots to collect thermal imaging data of conveyor idlers to ascertain
the current system status. Since the rolling resistance between the idlers and the moving
belt affects belt wear, the thermal imaging data near the idlers serve as maintenance
indicators, primarily using computer vision methods [8].

Xiangwei Liu and others detected the state of the belt pulley system by continuously
measuring the temperatures of multiple idlers with different lifespans over several days.
They simulated studies through constant inspection intervals. After some months of con-
tinuous operation, the normal distribution of the temperatures of more and more idlers
shifted to a higher value range, indicating a significantly increased failure rate. This al-
lows predicting the threshold for failures, helping to forecast the frequency and number of
idler replacements within a certain period, thus aiding in overall system status detection
and fault assessment [14].

D.Valis and colleagues employed a direct measurement method of belt extension since
belt elongation directly affects system operation. They collected hundreds of data points
on-site and established a Local Linear Model to assess the conveyor belt’s status. Subse-
quently, they constructed Kalman filters, Kalman smoothers, and predictors to forecast
the system’s future state [4].

P.V.S.Anusha proposed a predictive maintenance system based on IoT, cloud storage
services, and machine learning. This system successfully identified potential fault indica-
tors, thereby reducing production downtime. The design primarily consists of hardware
composed of sensors and ESP32 development boards, Amazon Web Services for data col-
lection, storage, and analysis, and machine learning algorithms to develop conveyor belt
fault prediction models. Multiple machine learning algorithms, such as decision tree(DT)
and SVM, were compared [11].

Arthur Pollak and others conducted fault detection for belt drives based on the In-
dustry 4.0 platform. They achieved online monitoring through sensor devices and cloud
storage technology. Faults and normal equipment were then identified using the neural
network Autoencoder algorithm, ultimately distinguishing between normal equipment
data and assumed faulty equipment data [1].

Callum Webb and colleagues predicted the wear rate of mining conveyor belts. They
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2.4 – Overview of the Methodological Approach

used cross-validation to evaluate the performance of the Random Forest and linear re-
gression algorithm. Finally, they developed a predictive model applicable to other types
of conveyors [2].

In this thesis, we adopt a simulation method for belt tension status, significantly
reducing the development cycle. Statistical methods are used to estimate the trend of
belt tension and predict fault occurrence. Lastly, combining IoT, smart hinge, and edge
computing concepts, we design a product based on the Industry 4.0 concept.

2.4 Overview of the Methodological Approach

This section delves into the methodology used to advance the belt-driven system products
from TRL 4 to TRL 6. The primary focus is on developing an effective and stable approach
by combining technologies and processes encompassed within Industry 4.0 to monitor and
maintain the operational status of this system. The key technologies utilized include IoT,
edge devices, edge computing, cloud servers, statistical validation, and machine learning
algorithm estimation as Figure 2.6.

Figure 2.6: Methodological Approach of product maintenance

The first step involves using encoder devices to collect real-time data from the belt-
driven system. Encoders are crucial for accurate and continuous feedback on the belt’s
status. This data is essential for identifying any deviations or anomalies that may indicate
potential issues or inefficiencies within the system. During the transition from TRL 4
to TRL 6, data collection does not involve long-term continuous data collection from
the conveyor system. Instead, the system’s behavior under different stress conditions is
assumed, which helps accelerate product development and ensure the reliability of the
results.
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Once data is collected, it is transmitted to edge computing devices located near the
belt system, known as ’SMART EDGE’. These devices are capable of performing initial
data processing and cleaning. The advantage of using edge devices is their ability to
process data locally, reducing latency and enabling faster response times. Local processing
includes filtering out noise and irrelevant data, compressing data to reduce transmission
size, and extracting meaningful features critical for further analysis.

After initial processing at the edge, the data is sent via IoT technology to a central
server. This server is part of the intelligent hinge platform, which integrates data sources
from the system. At this stage, data undergoes more comprehensive analysis and is stored
for historical tracking and deeper learning.

On the cloud server, advanced machine learning and deep learning algorithms are
applied to the data. These algorithms aim to predict potential faults and maintenance
needs by learning from historical data patterns and current operational indicators.

A GUI on the server allows for real-time monitoring and visualization of the system
status. This interface provides operators and maintenance teams with a user-friendly way
to view and interpret data. It displays various metrics, such as current operational status,
trend analysis, and alerts for any detected anomalies.

Additionally, the system incorporates communication tools like email and instant mes-
saging to automatically notify maintenance personnel and system operators of potential
issues. This proactive communication helps schedule maintenance activities in a timely
manner and prevents unexpected downtimes.

The cloud platform continuously updates predictive models based on new data and
insights gained from ongoing operations. This iterative learning process ensures the sys-
tem evolves and adapts to changing conditions in the operational environment, thereby
enhancing the reliability and efficiency of the predictive maintenance system.

In summary, advancing the belt-driven system from TRL 4 to TRL 6 involves a
combination of real-time data collection, edge computing, IoT integration, and advanced
data analysis hosted on a cloud platform. This integrated approach ensures the system
is not only effectively monitored and maintained but also capable of adapting to new
challenges and demands in industrial environments.
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Chapter 3

Definition and Significance of
Technology Readiness Level

TRL serve as a crucial framework for assessing and communicating the maturity of a
technology. Originally developed by NASA, TRL has been widely adopted across various
industries including defense, aerospace, energy, and manufacturing, underscoring its ver-
satility and significance in guiding technology development. The structured assessment
provided by TRL aids in identifying and mitigating risks early in the development pro-
cess, facilitates clear and consistent communication among stakeholders, ensures effective
resource allocation, and enhances risk management. This chapter also explores the ap-
plication of TRL in developing conveyor belt systems integrated with Industry 4.0, IoT,
and edge computing technologies, and outlines the implementation methods for advancing
these systems from TRL 4 to TRL 6 through systematic validation and integration. [5]

3.1 Overview of Technology Readiness Levels

TRL is an important framework for assessing and communicating the maturity of a
technology. TRL scale was originally developed by NASA in the 1970s to evaluate the
readiness of technologies for space missions and has since been adopted by various indus-
tries [5], including defense, aerospace, energy, and manufacturing. This adoption high-
lights its versatility and significance in guiding technology development. The levels are as
Figure 3.1.

The use of TRL is particularly important in product development and research for
the following reasons:

Structured Assessment: TRL provides a structured and standardized method to assess
the progress of technology development from basic research to full deployment. This
structure helps identify and mitigate risks early in the development process.

Clear Communication: By providing a common language and set of standards, TRL
facilitates clear and consistent communication among stakeholders, including developers,
investors, and regulatory bodies. This clarity helps set realistic expectations and timelines.
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Figure 3.1: Transition Phases and Technology Readiness Levels (TRL) [5]

Resource Allocation: The systematic approach of TRL helps in the effective allocation
of resources by emphasizing the readiness level of a technology. This enables managers to
make informed decisions about where to focus investments and efforts.

Risk Management: TRL helps identify potential risks at various stages of technology
development. Understanding these risks early allows developers to implement appropriate
mitigation strategies, increasing the likelihood of successful project completion.

Advantages of TRL in Developing Industrial 4.0, IoT, and Edge Computing Prod-
ucts Enhanced Decision-Making:Provides a clear framework for assessing technological
progress, aiding in making informed decisions about continuing, modifying, or halting
projects [12].

Improved Efficiency: Ensures the efficient use of resources by focusing on technologies
that are ready to progress to the next stage of development.

Increased Stakeholder Confidence:Demonstrating a systematic approach to technology
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development can enhance stakeholder confidence and attract potential investors.
Application of TRL in Conveyor Belt Systems for Industry 4.0, IoT, and Edge Com-

puting. In the context of developing conveyor belt systems integrated with Industry 4.0,
IoT, and edge computing technologies, transitioning from TRL 4 to TRL 6 is crucial.

TRL 4 to TRL 5: At this stage, the system is validated in a laboratory environment.
For instance, IoT sensors and edge computing modules can be tested under controlled
conditions for data collection, processing, and transmission.

TRL 5 to TRL 6: This involves demonstrating the integrated system in a relevant
environment. Here, the system with IoT and edge computing technologies can be deployed
in a pilot industrial environment to verify its performance, reliability, and operational
benefits.

Using the TRL framework for this development ensures systematic validation of each
technological component and their integration, reducing the risk of failures during full-
scale implementation. It also helps address potential issues related to interoperability,
scalability, and real-time data processing, which are critical for the success of Industry
4.0 applications.

In conclusion, the TRL framework is an indispensable tool for guiding the develop-
ment of innovative technologies, ensuring they reach the necessary maturity levels before
large-scale deployment. Its application in developing advanced conveyor belt systems for
Industry 4.0, IoT, and edge computing will help achieve reliable, efficient, and scalable
solutions.

3.2 Implementation Methods for Advancing From Technol-
ogy Readiness Level 4 to 6

The laboratory prototype and relevant environment prototype of the Linear Belt-Driven
Motion Systems product have both been designed and are ready for experimentation. The
two prototypes differ in size; the laboratory prototype is intended to test functionality
and the effectiveness of algorithms, while the relevant environment prototype is used to
validate the applicability of the functionality and algorithms.

Transition from TRL 4 to TRL 5: Initially, data collected from the prototypes is
cleaned. The next step is to preprocess the data. If any errors are found during the
preprocessing stage, the data will need to be collected again until a suitable and stable
collection method is found. Data analysis is conducted according to the laboratory en-
vironment settings, continuously seeking suitable analytical methods to achieve results
that meet the initial expectations. The distinction between normal and fault states is
made, and statistical tests are performed on different data distributions. Fault thresholds
are defined, and future states are predicted. During this stage, the analytical methods
developed are not deployed to the edge devices nor integrated with the algorithms of the
edge devices, as this stage is solely for laboratory testing. The matured algorithms will
be deployed to edge devices in the next stage.

Transition from TRL 5 to TRL 6: In the second stage, data is collected using the
same methods and processed and analyzed using the laboratory methods on data from
the relevant environment. The obtained results are compared with the expected outcomes.
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If the results do not meet expectations, the processing and analysis methods are adjusted
to fit the current environment’s data. Similar to the previous stage, fault thresholds and
methods to distinguish fault states, along with related statistical results, are determined.
Usable algorithms are then integrated with the pre-deployed algorithms on the edge
devices. Finally, these are deployed to the edge devices and connected to the cloud server.
A GUI interface is developed to display and monitor the product’s status and all available
information.

This structured approach as the Figure 3.2, ensures that each stage of the development
process is thoroughly tested and validated, leading to a reliable and efficient final product
ready for deployment in real-world industrial settings.

Figure 3.2: Process Flow from TRL 4 to TRL 6
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Chapter 4

The Data Collection for the
Linear Belt-Driven Motion
System

4.1 Introduction to Encoder Monitoring Systems

The encoder detection system is integral to monitoring the operational integrity and
longevity of belt-driven mechanisms. The primary function of this system is to detect
variances in belt tension that can indicate belt wear or potential failure. This detection
is crucial for preventative maintenance and ensuring operational efficiency.

The encoder collects information about the belt, focusing primarily on two types of
pulleys: the motor-driven pulley and the passive idle pulley. Both pulleys have holes in
their structures. The encoder measures the time it takes for these holes to pass by, which
allows it to determine the time difference between the passive and active pulleys. This
time difference is then correlated with the tension of the belt.

The variation in belt tension can be considered inversely proportional to the time
difference. As the tension decreases, it becomes more difficult for the drive pulley to move
the driven pulley, resulting in a greater time difference. Consequently, greater tension
corresponds to a smaller time difference detected by the encoder. Therefore, the time
difference variable is crucial for state estimation and fault detection.

The information collected by the encoder can be divided into two main conditons
due to the uncertainty of the initial states of the two pulleys. The position of the holes
determines which pulley’s measurement signal is detected first. Therefore, the two main
conditons are as follows.

The transition signal from the motor-driven pulley is detected before the transition
signal from the passive idle pulley, and the transition signal from the passive idle pulley
is detected before the transition signal from the motor driven pulley.

These two conditons arise because the starting positions of the pulleys are not fixed.
Depending on the initial alignment of the holes on the pulleys, the encoder will detect
the transition of one pulley before the other. This initial detection sequence affects how
the subsequent timing differences are interpreted and consequently how the belt tension

23



The Data Collection for the Linear Belt-Driven Motion System

is evaluated.
The detailed analysis of these conditons allows for accurate monitoring of belt tension

by correlating the timing differences between the pulleys’ transitions. This ensures that
variations in belt elasticity can be detected early, facilitating preventative maintenance
and reducing the risk of unexpected belt failures.

The encoder collects information under the case that the first high-to-low transition
of the motor-driven pulley’s signal occurs before that of the passive idle pulley. Any signal
from the initial condition to on-condition. The special sign "DC" means "don’t care",in
other words,we can neglect the initial condition of any signal because it is not related to
our anylysis. Under this case, there are four classic case:

• Both the motor-driven pulley’s and the passive idle pulley’s encoder signals transi-
tion from low to high.

Figure 4.1: Case 1: both the motor encoder signal and the idle encoder signal present a
transition from Low to High.

• Both the motor-driven pulley’s and the passive idle pulley’s encoder signals transi-
tion from high to low.

Figure 4.2: Case 2: both the motor encoder signal and the idle encoder signal present a
transition from High to Low.

• The motor-driven pulley encoder signal transitions from low to high, while the
passive idle pulley encoder signal transitions from high to low.
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Figure 4.3: Case 3: the motor encoder signal presents a transition from Low to High,
while the idle encoder transitions from High to Low.

• The motor driven pulley encoder signal transitions from high to low, while the
passive idle pulley encoder signal transitions from low to high.

Figure 4.4: Case 4: the motor encoder signal has a transition from High to Low while the
idle encoder from Low to High.

Another special case arises in which the first transition of the idler pulley encoder occurs
before the first transition of the motor encoder pulley. In this case, there are also four
sub-cases, which are as follows:

• The motor encoder signal transitions from Low to High while the first idle encoder
signal transitions from High to Low then to high. Initially, the idle pulley’s signal
is high, and the motor-driven pulley’s signal is low. This indicates that the motor-
driven pulley begins to detect activity while the idle pulley reduces its detected
activity.
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Figure 4.5: Case 1: The motor encoder signal has a transition from Low to High while
the first idle encoder transitions from High to Low.

• The motor encoder signal transitions from High to Low while the first idle encoder
signal transitions from Low to High then to low. Initially, the motor-driven pulley’s
signal is high, and the idle pulley’s signal is low. This suggests that the motor-driven
pulley reduces its activity while the idle pulley begins to detect increased activity.

Figure 4.6: Case 2: The motor encoder signal has a transition from High to Low while
the first idle encoder transition from Low to High.

• Both the motor encoder signal and the idle encoder signal have an initial transition
from Low to High then idle encoder will be to low. In this case, both pulleys initially
have low signals. This simultaneous increase in activity could indicate synchronized
changes in the belt’s tension or motion.

Figure 4.7: Case 3: both the engine and neutral encoder signals have an initial transition
from Low to High.

• Both the motor encoder signal and the idle encoder signal have an initial transition
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from High to Low then idle encoder will be to high. Initially, both pulleys have
high signals. This simultaneous decrease in activity suggests a uniform change in
the belt’s condition or movement.

Figure 4.8: Case 4: both the engine and neutral encoder signals have an initial transition
from High to Low.

By analyzing signal transitions detected by the encoder, the system can determine
the timing differences between pulley signals, thereby providing insights into belt ten-
sion. This differentiation is crucial for accurately assessing the operational status and
ensuring the proper functioning of belt-driven mechanisms. To effectively analyze these
transitions, the data must be divided into eight distinct groups during data processing.
This classification enables the distinction between various cases under which the data was
collected. By comparing the statistical performance of different datasets under identical
cases, the impact of different belt tensions can be more clearly illustrated. Consequently,
this approach facilitates a detailed analysis of belt usage and opera.

4.2 Analysis of Belt Inspection Algorithms
In the previous section, we discussed the relationship between belt tension and time
difference. We understand that the belt tension decreases over time during the system’s
operation until the belt’s tensioning function fails. Therefore, it is crucial to halt the
system before the belt tension reaches a critical state.

Given the robust and stable design of the linear belt-driven motion system and the
good working environment of the belt system with minimal external noise, we assume
that the time difference corresponding to the belt tension will exhibit a linear trend
over extended periods of operation. This assumption eliminates the need for long-term
observation and data collection of the belt system. Instead, we can simulate multiple
similar belt tension states to test the algorithm’s effectiveness.

The belt tension can be manually adjusted through the mechanical structure of the
conveyor system, allowing the simulation of different tension levels and their correspond-
ing encoder data distributions. By analyzing these data distributions, we can derive one
or several statistical metrics to describe the belt’s performance under current cases. Based
on our assumption, the belt tension should exhibit a trend similar to that illustrated in
Figure 4.9.

By using these simulated tension states, we can efficiently test and validate the effec-
tiveness of our inspection algorithms, ensuring that the belt system operates reliably and
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safely without the need for extensive long-term data collection. This approach allows for
timely intervention before the belt reaches a critical tension state, thus maintaining the
system’s integrity and performance.

Figure 4.9: Estimated Belt Tension Over Time

In Figure 4.9, where 1.Statistical Descriptors of Time Difference Data Distribution
for Different Belt Tensions 2.Estimated Trend of Belt Tension over Extended Operation
3.Estimated Fault States

As shown in the figure, this experiment simulates continuous tension changes as dis-
crete tension changes. This approach significantly reduces product development time and
increases the stability of the developed algorithms. The linear assumption has been proven
effective with small prototypes in the early TRL stages.

This study aims to conduct state detection and fault analysis on a larger system. If
data distributions under different belt tensions show differences and trends, future belt
states can be predicted.

First, the encoder will distinguish eight different conditons for data analysis. The
analysis involves distinguishing these eight conditons and performing the corresponding
data analysis. Pseudocode shown as below:

This pseudocode initializes by reading the initial states of the motor encoder and
the idle encoder. Then, it determines whether the event sequence belongs to a "typical"
or "special" case based on the first transition of the motor encoder relative to the idle
encoder. For each encoder sample, the pseudocode checks for transitions, records the time
difference (∆T ) based on the specific situation, and finally calculates the weighted ∆T
according to the sequence and time of transitions.

The resulting ∆T data distribution for each situation will be either quasi-Gaussian
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Algorithm 1: Analysis of Encoder Transition Timings
Data: Initial samples for motor encoder and idle encoder
Result: Analysis based on encoder transitions and timing
Begin
Initialize list ∆T
Read initial samples for motor encoder and idle encoder
if first transition of motor encoder occurs before idle encoder then

Set flag = 0 (Classic Case)
else

Set flag = 1 (Special Case)
end
foreach sample in motor and idle encoders do

Check transition type for motor encoder
Check transition type for idle encoder
if motor encoder transitions from Low to High and idle encoder from High to
Low then

Append ∆T with current timestamp difference (Case 1 or Case 5)
else if motor encoder transitions from High to Low and idle encoder from
Low to High then

Append ∆T with current timestamp difference (Case 2 or Case 6)
else if motor encoder transitions from Low to High and idle encoder
transitions from Low to High then

Append ∆T with current timestamp difference (Case 3 or Case 7)
else if motor encoder transitions from High to Low and idle encoder
transitions from High to Low then

Append ∆T with current timestamp difference (Case 4 or Case 8)
end
if flag == 0 then

Classical case analysis complete;
else

Special case analysis complete;
end
Calculate weighted ∆T based on the sequence and timing of transitions
End
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or quasi-Poisson. If the data is not quasi-Gaussian, statistical data transformation meth-
ods are employed to convert the data distribution into a quasi-Gaussian distribution,
facilitating subsequent analysis.

Once a quasi-Gaussian distribution is obtained, statistical tests are conducted on
the data to analyze the distribution corresponding to each different tension, yielding
differential data. The magnitude of these differences is then compared to distinguish the
system’s state. Since tension is adjustable, the analysis is conducted under known tension
cases. Subsequently, the trend is estimated based on the statistical measures of all data.
After obtaining the trend, an algorithm or machine learning model is used to detect faults.
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Chapter 5

Experiments for Technology
Readiness Level 4 to 5 Validation
and Result

5.1 Data Processing in a Laboratory Environment

In a laboratory environment, time difference ∆T data corresponding to different belt
tensions of the Linear Belt-Driven Motion Systems is collected. First, all time difference
data is extracted from the raw data, and non-positive invalid values are removed. The
data is then divided into eight different categories based on the varying cases of encoder
data collection. Two approaches are attempted from this point: one involves analyzing
the original quasi-Poisson distribution of the data, and the other involves performing
data transformation on the dataset and then analyzing the quasi-Gaussian distribution
data. Since the Poisson distribution does not require further processing, only the second
approach is discussed here.

To make the data distribution conform to a quasi-Gaussian distribution, data trans-
formation methods are used. Effective data transformation methods for the existing data
include logarithmic transformation, Box-Cox transformation, Yeo-Johnson transforma-
tion, etc. At this stage, the effects of various feasible data transformation methods are
compared, and one or several effective methods are selected as the processing approach.

Using 690 N as the dataset for verifying the data transformation method, the prob-
ability distribution plots of the originally classified data are drawn. The original data is
observed to exhibit a right-skewed distribution characteristic. Effective processing meth-
ods for right-skewed data include Box-Cox transformation, Yeo-Johnson transformation,
Cube transformation, Log transformation and Arcsin transformation.

The Box-Cox transformation is used to stabilize variance and make the data more
normally distributed. The formula is:

yi(λ) =

⎧⎨⎩
yλ

i −1
λ if λ /= 0

ln(yi) if λ = 0
(5.1)
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where yi is the original data, and λ is the transformation parameter. Yeo-Johnson trans-
formation extends Box-Cox transformation to allow for zero and negative values. The
formula is:

yi(λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(yi+1)λ−1
λ if λ /= 0, yi ≥ 0

ln(yi + 1) if λ = 0, yi ≥ 0
− (−(yi+1))2−λ−1

2−λ if λ /= 2, yi < 0
− ln(−(yi + 1)) if λ = 2, yi < 0

(5.2)

The cube transformation raises each data point to the third power. The formula is:

y′
i = y3

i (5.3)

where yi is the original data, and y′
i is the transformed data. The log transformation is

used to reduce skewness. The formula is:

y′
i = ln(yi) (5.4)

where yi is the original data, and y′
i is the transformed data. Note that for non-positive

data, you need to add a constant to make all data positive before applying the transfor-
mation.

The Arcsin transformation is commonly used for data that are proportions or per-
centages. The formula is:

y′
i = arcsin(√yi) (5.5)

where yi is the original data (usually in the range [0, 1]), and y′
i is the transformed

data. All the results of different data transform methods can be observed according to
probability density function(PDF) plot and quantile–quantile(Q-Q) plot, as Figure 5.1
and Figure 5.2.

According to the PDF, it can be seen that the five methods are to some extent similar
to the Gaussian distribution. Through the Q-Q plots, it is observed that the box-cox,
Yeo-Johnson, log, and cube methods are closer to the assumed normal distribution.

The kolmogorov-smirnov(KS) test and anderson-darling(A-D) test are used for sta-
tistical testing to determine whether the distribution of the data, after being processed
by various data transformation methods, is closer to a normal distribution.

The K-S test is a non-parametric statistical method used to compare the differences
between a sample distribution and a reference probability distribution, or to compare the
differences between two sample distributions. In this context, the K-S test is employed to
determine whether the dataset conforms to a normal distribution.

First, calculate the empirical distribution function(EDF). Given a sample dataset, the
empirical distribution function is defined as:

Fn(x) = 1
n

n∑︂
i=1

1{xi≤x} (5.6)

where 1 is the indicator function, which equals 1 when xi is less than x, and 0 otherwise.
Next, calculate the theoretical distribution function(TDF).
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Figure 5.1: PDF plot for 5 different data transformation methods

For a normal distribution, the theoretical distribution function is the cumulative dis-
tribution function(CDF) of the standard normal distribution:

F (x) = Φ(x) = 1
2

[︃
1 + erf

(︃
x − µ

σ
√

2

)︃]︃
(5.7)

where µ and σ are the sample mean and standard deviation, respectively, and erf is the
error function.

The K-S statistic value D is defined as the maximum difference between the empirical
distribution function and the theoretical distribution function.

Finally, calculate the p-value and make a decision. Based on the sample size n and
the K-S statistic D, use computational tools to determine the p-value. If the p-value is
less than the significance level of 0.05, the null hypothesis is rejected, indicating that the
data does not follow a normal distribution.

The A-D test is a statistical method used to assess whether a sample data set follows
a specific distribution. Similar to the K-S test, the A-D test is also a non-parametric test
but is more sensitive to the tails of the distribution. The A-D test is particularly suitable
for testing whether data follows a normal distribution.
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Figure 5.2: Q-Q plot for 5 different data transformation methods

First, sort the sample data in ascending order, then calculate the CDF using the same
formula as the K-S test. Next, compute the A-D statistic as follows:

A2 = −n − 1
n

n∑︂
i=1

[︂
(2i − 1) ln(F (x(i))) + (2(n − i) + 1) ln(1 − F (x(n−i+1)))

]︂
(5.8)

where n is the sample size, xi is the i-th ordered data point, and F(x) is the theoretical
distribution function.

Based on the A-D statistic, use computational tools to determine the p-value. If the
p-value is less than the significance level, reject the null hypothesis, indicating that the
data does not follow a normal distribution.

Table 5.1: Comparison of Transformation Methods

Transformation K-S P-value A-D Statistic

CUBE 8.77 × 10−41 78.00
LOG 8.58 × 10−18 41.00
YEO-JOHNSON 1.42 × 10−20 37.64
ARCSIN 4.71 × 10−96 192.00
BOXCOX 9.42 × 10−21 37.92
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According to table 5.1, Although the K-S test P-values for LOG , Yeo-Johnson Trans-
formation are both very small, they are relatively larger among all the transformation
methods, which suggests that their deviation from the normal distribution may be rela-
tively smaller.The comparison of the A-D statistic to its critical value for Box-cox Trans-
formation, along with a relatively higher K-S P-value, also indicates that it may be closer
to a normal distribution, although the difference remains significant. Arcsin Transforma-
tion showed the greatest deviation from normal distribution, with both K-S and A-D
tests clearly indicating a significant difference from the normal distribution.

Conclusion of comparison:
Based on the K-S P-values and A-D statistics, LOG Transformation and Yeo-Johnson

Transformation exhibit relatively smaller deviations from normal distribution. Box-cox
Transformation also shows better results, but slightly less so. CUBE Transformation
and Arcsin Transformation significantly deviate from the normal distribution, especially
Arcsin Transformation, which shows the greatest deviation in both tests.

Therefore, if we must choose the transformation that best conforms to the Gaussian
distribution, Yeo-Johnson Transformation might be the best choice, closely followed by
LOG Transformation. These two transformations provide the data distributions that are
relatively closest to the normal distribution, although it is still important to note that all
transformed data did not fully meet the strict definition of a Gaussian distribution.

5.2 Data Analysis in a Laboratory Environment
After processing the data, both the transformed and untransformed datasets were an-
alyzed. Initially, data distribution plots and box plots were created to compare the re-
lationships between the datasets. Subsequently, ANOVA and Tukey honest significant
difference(HSD) tests were employed to quantify and compare the differences in the re-
sults.

To compare the differences among the three datasets, a one-way ANOVA was con-
ducted. The ANOVA test uses the following formula to calculate the F-statistic:

F = MSbetween
MSwithin

(5.9)

Where MSbetween (Mean Square Between Groups) is calculated as:

MSbetween = SSbetween
dfbetween

(5.10)

SSbetween (Sum of Squares Between Groups) measures the variance between the means
of the groups:

SSbetween =
k∑︂

i=1
ni(X̄i − X̄grand)2 (5.11)

SSwithin (Sum of Squares Within Groups) measures the variance within each group:

SSwithin =
k∑︂

i=1

ni∑︂
j=1

(Xij − X̄i)2 (5.12)
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dfbetween (Degrees of Freedom Between Groups) is:

dfbetween = k − 1 (5.13)

dfwithin (Degrees of Freedom Within Groups) is:

dfwithin = N − k (5.14)

where k is the number of groups, ni is the number of observations in the i-th group, x̄i is
the mean of the i-th group, x̄grand is the grand mean (mean of all observations), N is the
total number of observations.

To perform a post-hoc analysis following the ANOVA, the Tukey HSD test was used.
This test compares all possible pairs of means to determine if they are significantly dif-
ferent from each other. The formula for Tukey HSD is as follows:

HSD = qα,k,N−k

√︄
MSwithin

n
(5.15)

qα,k,N−k is the range distribution critical value at the desired significance level (α),for k
groups and N−k degrees of freedom.

MSwithin is the mean square within groups from the ANOVA.
n is the number of observations per group (assuming equal sample sizes).
The test statistic for each pair of group means (barXi and barXj) is calculated as:⃓⃓⃓

X̄i − X̄j

⃓⃓⃓
(5.16)

Analysis of Transformed Data: Firstly, the belts with three different pre-set tensions
were analyzed, with the tensions being 300 N, 690 N, and 800 N, respectively. From eight
different cases, several groups with clear and significant performance were selected, using
data from case 1. The data distribution is as Figure 5.3, Figure 5.4.

Use ANOVA and Tukey HSD to quantify the differences among three different distri-
butions. The result of ANOVA is: F=13300.

Table 5.2: Group Comparison Results

group1 group2 mean diff p value reject

800 390 20.9 7.34e-50 TRUE
800 690 19.8 3.6e-22 TRUE
390 690 -1.10 4.3e-37 TRUE

The ANOVA results show a very significant F-value (13300), indicating that there is
a statistically significant difference in the means of at least two groups. This is strong
evidence that the means of the distributions of these three groups are not the same after
undergoing the Yeo-Johnson transformation. The results of the Tukey HSD test further
reveal the specifics of these differences: According to the Tukey HSD test results, all of
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Figure 5.3: PDF in case 1 from transformed data

Figure 5.4: Boxplot in case 1 from transformed data

p value are too much smaller than 0.05 which is the experience value in statictical test.
That means the different distributions are totally different. The mean difference between
the 800 group and the 390 group is 20.9, while the mean difference between the 800 group
and the 690 group is 19.8. This means that the difference between the 800 group and the
390 group is slightly larger than the difference between the 800 group and the 690 group,
although both are very significant. Therefore, it can be said that the difference between
the 800 group and the 390 group is greater.

First, we applied data conversion to process the dataset. While this method helped
clarify the discrepancies between the datasets, it is evident that the 800N maximum
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tension dataset significantly differs in distribution from the others. However, the trend
observed does not support the hypothesis that higher tension leads to smaller time differ-
ences. This could be due to alterations in the dataset during the data conversion process,
which might not have yielded the desired results. Consequently, it is essential to also
explore methods that do not involve data conversion.

Without transforming the data, directly compare the situations under different tension
according to the Poisson distribution. From two scenarios, filter out the three different
stresses corresponding, selecting only case 1 and case 6. The probability distribution and
box plot are as Figure 5.5, 5.6, 5.7, 5.8.

Figure 5.5: PDF in case 1

Figure 5.6: Boxplot in case 1

When analyzing non-Gaussian distributions, we utilize the Kruskal-Wallis H test and
Dunn’s multiple comparison test, followed by Cliff’s Delta effect size to quantify the
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Figure 5.7: PDF in case 6

Figure 5.8: Boxplot in case 6

magnitude of differences between distributions.
The Kruskal-Wallis H test is a non-parametric method used to determine whether

samples originate from the same distribution, particularly when the assumptions of ANOVA
are not satisfied. The formula for the Kruskal-Wallis H test is as follows:

H =
(︄

12
N(N + 1)

k∑︂
i=1

R2
i

ni

)︄
− 3(N + 1) (5.17)

N is the total number of observations across all groups. k is the number of groups. Ri

is the sum of the ranks for the i-th group. ni is the number of observations in the i-th
group.
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Dunn’s test is a post-hoc analysis used following a significant Kruskal-Wallis test to
determine which specific groups are different. The formula for Dunn’s test is:

z = Ri − Rj√︃(︂
N(N+1)

12

)︂ (︂
1
ni

+ 1
nj

)︂ (5.18)

Ri and Rj are the mean ranks of the groups being compared. N is the total number
of observations. ni and nj are the number of observations in the respective groups.The
z-value is compared against the critical value from the standard normal distribution to
determine significance.

Cliff’s delta is a measure of the effect size for ordinal data. It indicates the degree of
overlap between two distributions. The formula for Cliff’s delta is:

δ = 2(A − B)
n1n2

(5.19)

A is the number of times a value from the first group is greater than a value from the
second group. B is the number of times a value from the first group is less than a value
from the second group. n1 and n2 are the number of observations in the respective groups.
Cliff’s delta ranges from -1 to 1, 1 indicates all values in the first group are greater than
the second group. -1 indicates all values in the first group are less than the second group.
0 indicates no difference between the groups.

The results of the Kruskal-Wallis H test, Dunn’s post hoc test for multiple compar-
isons, and the calculation of Cliff’s delta provide an in-depth analysis of the distribution
of the three groups of data. Here is a detailed analysis of the results: For Case 1, the result
of Kruskal-Wallis H test is :Statistic: 304, P-value: 7.24×10−67. And according to Dunn’s
multiple comparison test can get the p value between 390 and 690 is 1.4 × 10−26,between
800 and 390 is 4.02 × 10−63,between 800 and 690 is 1.24 × 10−66.

Table 5.3: Cliff’s delta Values for Comparisons Between Groups

Comparison Cliff’s delta Range

Group 800 vs. Group 390 -0.299 [-1, 1]
Group 800 vs. Group 690 -0.104 [-1, 1]
Group 390 vs. Group 690 0.193 [-1, 1]

The results of the Kruskal-Wallis H test are highly significant, indicating that at least
one group’s distribution significantly differs from the others. In other words, this result
suggests that at least one of the three groups has a median that significantly differs from
the others.

The results of Dunn’s post hoc test for multiple comparisons further reveal significant
differences between specific groups. Specifically: The P-value between the 390 group and
the 690 group is approximately 1.4 ×10−26, indicating an extremely significant difference.
The P-value between the 390 group and the 800 group is about 4.02×10−63, which also
shows an extremely significant difference, and this P-value is smaller than that between
the 390 and 690 groups, suggesting that the difference between these two groups is even
more significant.
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The P-value between the 690 group and the 800 group is approximately 1.24×10−66,
indicating a significant difference between them as well, but this P-value is relatively
larger, meaning the difference is smaller compared to that between the 390 and 800
groups.

The results of Cliff’s delta provide another perspective on the size of these differences:
Cliff’s delta between the 800 group and the 390 group is -0.299, indicating a medium
to large effect size, and this difference is the largest among the three comparisons. This
means that the difference between the 800 group and the 390 group is not only statistically
significant but also substantial in practical terms. Cliff’s delta between the 800 group
and the 690 group is -0.104, indicating a smaller effect size, showing that the difference
between these two groups is smaller than between the 390 and 800 groups. Cliff’s delta
between the 390 group and the 690 group is 0.193, indicating a medium effect size, but
this difference is smaller than between the 800 and 390 groups. In summary, the difference
between the 800 group and the 390 group is not only statistically highly significant but
also the largest in terms of effect size. This indeed suggests that the difference between
the 800 group and the 390 group is greater than between the 800 and 690 groups, as
well as between the 390 and 690 groups. This indicates that, in terms of median, the 800
group and the 390 group have distinctly different distributions in their characteristics.
For case 6 the result of Kruskal-Wallis H test is 72.3, P-value is 1.93×10−16. The result
of Dunn’s Multiple Comparison test is : p value between 390 and 690 is 1, between 690
and 800 is 5.42 × 10−15, between 390 and 800 is 1.36 × 10−13. And Cliff’s Delta value is
as Table 5.4.

Table 5.4: Cliff’s Delta Values for Comparisons Between Groups

Comparison Cliff’s Delta Range

Group 800 vs. Group 390 -0.324 [-1, 1]
Group 800 vs. Group 690 -0.364 [-1, 1]
Group 390 vs. Group 690 -0.021 [-1, 1]

The Kruskal-Wallis H test shows significant differences among the three groups.
Dunn’s test indicates no significant difference between 390 and 690, but clear differences
between the other two groups. According to Cliff’s delta, the difference between 800 and
690 is greater. The result is similar to the one in Case 1. Not only does this method
effectively distinguish between the three groups, but it also uses effect size to illustrate
the magnitude of differences in data distribution. The trend of the results aligns with the
initial hypothesis of this study, laying the groundwork for further analysis in the next
phase. Finally, the next phase will also employ a non-data transformation approach to
handle the data.
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5.3 System On-Condition Observation and Fault Detection
in Laboratory Environments

A fault detection method is proposed based on the above data analysis, which reveals
that the simulated data exhibits some differences. From the earlier TRL stages of product
design, it is understood that the larger the belt tension, the smaller the time difference
data obtained by the encoder. The estimated fault tension value should be around 500
N.

The on-site implementation steps for system status detection and on-condition moni-
toring involve measuring the belt tension at the initial operation stage of the equipment
and then collecting the time difference data detected by the encoder over a period of time.
The equipment will operate for several days or months, periodically capturing a segment
of time difference data as a dataset for analysis to estimate the current state. If the value
exceeds a certain range, it is considered a fault.

To conduct the fault detection experiment, three different tension data points from
Case 1 were selected. First, it is ensured that the differences in data distribution can be
described using statistical tests, meaning that the data corresponding to each tension is
stable within a certain range under the assumed tension. D.Valis used a local linear model
to process the belt experience data, resulting in a technically reliable estimated trend [4].
The local linear model model includes two processing steps: first, using the Kalman filter
to estimate the data, and then using the Kalman smoother to smooth the estimated curve,
clearly showing the trend of the overall continuous data. In this study, local linear model
processing was performed for all three tensions. Since the time difference data contains
one variable, a one-dimensional model is suitable.

First, the initial covariance P0 is chosen, which reflects the uncertainty of our initial
state estimate. If the initial state estimate is very uncertain, a larger P0 is selected. In
this way, the filter will rely more on the measurements in the initial state. If the initial
state estimate is relatively certain, a smaller P0 is selected. Thus, the filter will rely more
on the initial estimate in the initial state. Given the data appears to fluctuate widely
and spans a broad range, a moderate value, such as P0=1, can be chosen to balance the
uncertainty of the initial estimate.

The process noise covariance Q reflects the uncertainty in the system model. If the
uncertainty in the system model is large, a larger Q is chosen. This way, the filter will
rely more on the measurements rather than the model predictions. If the uncertainty in
the system model is small, a smaller Q is chosen. This way, the filter will rely more on the
model predictions. Based on the data, if the variations in the data are relatively smooth,
a smaller value can be chosen, such as Q = 1 × 10−5.

The measurement noise covariance R reflects the uncertainty in the measurements. If
the measurement noise is large, a larger R is chosen. This way, the filter will rely more on
the model predictions rather than the measurements. If the measurement noise is small,
a smaller R is chosen. This way, the filter will rely more on the measurements. Based on
the data, if the measurement noise is relatively small, a moderate value can be chosen,
such as R = 1 × 10−2.

Then, these parameters are applied to the Kalman filter and the Kalman smoother.
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The prediction formula for the Kalman filter is as follows, State prediction:

x̂k|k−1 = x̂k−1|k−1 (5.20)

Covariance prediction:
Pk|k−1 = Pk−1|k−1 + Q (5.21)

Kalman Gain:
Kk =

Pk|k−1
Pk|k−1 + R

(5.22)

State update:
x̂k|k = x̂k|k−1 + Kk(zk − x̂k|k−1) (5.23)

Covariance update:
Pk|k = (1 − Kk)Pk|k−1 (5.24)

Smoother Gain:
Jk =

Pk|k
Pk+1|k

(5.25)

Then, the state and covariance are smoothed using the following formulas:

x̂k|N = x̂k|k + Jk

(︂
x̂k+1|N − x̂k+1|k

)︂
(5.26)

Pk|N = Pk|k + Jk

(︂
Pk+1|N − Pk+1|k

)︂
Jk (5.27)

The final graphs for the three different tensions are as Figure 5.7 and Figure 5.8 and
Figure 5.9.

Figure 5.9: Data of 800 N with Kalman filter and smoother

It can be seen that the distribution of each dataset corresponding to different tensions
is stable, with no obvious internal trends. This allows for the combined analysis of the
datasets and the use of statistical tests to find differences, thereby identifying the system’s
state.

43



Experiments for Technology Readiness Level 4 to 5 Validation and Result

Figure 5.10: Data of 690 N with Kalman filter and smoother

Figure 5.11: Data of 390 N with Kalman filter and smoother

The statistical effect size from the analysis of the data in Case 1 can describe the
differences in the time difference data corresponding to the three tensions. It was found
that the time difference data for 390 N is statistically larger than those for 690 N and
800 N. The absolute value of the effect size between 390 N and 800 N is greater than that
between 800 N and 690 N, and the statistical effect size between 690 N and 800 N is smaller
than that between 390 N and 690 N. In other words, the time difference distribution of
the three tensions shows a trend opposite to the tensions themselves under statistical
testing.

Therefore, it can be concluded that if the tension of 800 N is used as the initial
comparison tension and the Cliff’s Delta effect size is between -0.32 and -0.36, then the
belt’s state is approaching the fault interval. However, using this as a standard cannot
precisely indicate a fault, and additional fault detection steps are necessary.
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Artur Pollak used the autoencoder for fault detection in maintaining belt drive sys-
tems [1].The autoencoder is a type of neural network known for its excellent memory
and comparison capabilities as Figure 5.10, making it useful for distinguishing multiple
deviation signals or data. The autoencoder is a generative unsupervised deep learning
algorithm that applies back propagation to perform dimensionality reduction by using
the target data as input values. It consists of three components: the encoder, the coder,
and the decoder. The autoencoder works by compressing the input data with the encoder,
generating a code with the coder, and then reconstructing the input data as accurately
as possible with the decoder. If there is a data point x belonging to Rd, the reconstruc-
tion error between the training data and the autoencoder output will be used as the loss
function:

L(x, x̂) = ∥x − x̂∥2 (5.28)

x is the original input data, x̂ is the reconstructed data. ∥·∥ denotes the norm, typically the
Euclidean norm This loss function helps the autoencoder learn to reconstruct the input
data by minimizing the reconstruction error, making it effective for anomaly detection
when applied to data from belt drive systems.

Figure 5.12: The autoecoder Architecture

After training, the autoencoder will reconstruct other normal datasets and fault
datasets. Those with higher reconstruction errors will be considered anomalies, as only
normal data is used to train the autoencoder.

In Artur Pollak’s experimental data, fault data and normal data were well distin-
guished. However, based on previous observations, the differences between the datasets
in this study are minimal, making the performance of a simple autoencoder unreliable.
Considering that a composite model will perform better and distinguish the two types of
data more effectively, a more complex approach is resonable.

Peihua Han and others conducted fault detection research in the field of ship main-
tenance using a combined model of variational autoencoder(VAE) and long short-term
memory(LSTM) [6]. VAE is a variant of the autoencoder based on Bayesian theory [10].
The purpose of VAE is not only to reconstruct data but also to regularize the latent space
distribution to be close to a prior distribution. VAE replaces the encoded variable Z of
the autoencoder, as shown in the Figure 5.11.

The encoder first maps the input data to a probability distribution in the latent
space, typically using a normal distribution with a mean of 0 and a standard deviation
of 1 as the latent probability distribution. The encoder generates not z but the mean and
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Figure 5.13: VAE Architecture

variance of the distribution qϕ(z | x) , as the mean and standard deviation are sufficient
to describe a distribution. The decoder samples from the latent distribution to obtain
the data corresponding to the latent variable z and maps it back to the original data
space to generate the distribution pθ(x | z), ultimately producing the reconstructed data
x′. The training objective of the VAE is to maximize the evidence lower bound(ELBO),
which consists of the reconstruction error and the kullback-leibler(KL) divergence. The
reconstruction error is the difference between the reconstructed data x′ and the original
data x, typically measured using the log-likelihood estimate.The KL divergence measures
the difference between the latent distribution qϕ(z|x) produced by the encoder and the
prior distribution p(z):−KL(q(z|x)∥p(z)), then Combining these two components, the loss
function for the VAE is:

Lvae = −DKL(qϕ(z|x)∥pθ(z)) + Eqϕ(z|x)[log pθ(x|z)] ≤ log p(x) (5.29)

Subsequently, back propagation is used to update the parameters of the encoder and
decoder based on the gradients of the loss function. The gradient descent optimization
algorithm is employed to adjust the parameters, minimizing the loss function. This in-
volves calculating the gradients of the loss function with respect to the encoder and
decoder parameters and iteratively updating these parameters in the direction that re-
duces the loss. The overall process ensures that the VAE learns to effectively encode the
input data into a latent representation and accurately reconstruct the data from this
representation, while maintaining the regularization imposed by the KL divergence.

LSTM is a type of RNN, but it incorporates a memory cell to regulate the flow of
information within the unit, enhancing the standard RNN architecture [6]. As shown in
the Figure 5.12.

Each memory cell contains three nonlinear gating units, which function to protect
and regulate the cell’s state. LSTM can use these gating units to address the vanishing
gradient problem. For each element in the input sequence, LSTM uses the following
formulas:

it = σ(Wiixt + bii + Whiht−1 + bhi) (5.30)

ft = σ(Wif xt + bif + Whf ht−1 + bhf ) (5.31)
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Figure 5.14: LSTM Cell Architecture

gt = tanh(Wigxt + big + Whght−1 + bhg) (5.32)

ot = σ(Wioxt + bio + Whoht−1 + bho) (5.33)

ct = ft ⊙ ct−1 + it ⊙ gt (5.34)

ht = ot ⊙ tanh(ct) (5.35)

At time t, ht represents the hidden state, ct represents the cell state, and xt represents
the input. ht−1 and ct−1 represent the hidden state and cell state at time t-1 respectively.
it, ft, gt, and ot are the input gates, forget gate, cell gate, and output gate respectively.
The cell gate and output gate use the sigmoid function, where σ is the sigmoid function
and ⊙ represents the Hadamard product (element-wise multiplication). W and b are the
weights and biases in the LSTM unit.

This thesis introduces a Variational Autoencoder based on long short term memory
and variational autoencoder (LSTM-VAE). The LSTM-VAE is a combination of VAE
and LSTM, where VAE assumes that the data stream is independent and identically
distributed over time. To introduce time dependency into this model, replace the feed-
forward network in the VAE with LSTM. Figure 5.13 shows the structure of LSTM-VAE
unfolded in the time dimension.

Given the multivariate input xt at time t, the encoder LSTM outputs the hidden
state ht using xt, ht−1, and ct−1. Then, ht is fed into two linear modules to estimate
the mean µt and the log variance of the posterior p(zt|xt). After randomly sampling zt

from p(zt|xt), it is input into the decoder LSTM. Finally, a linear module outputs the
reconstructed input x̂. The parameters ϕ and θ of the encoder and decoder are obtained
by minimizing the following loss function:

Loss =
T∑︂

t=1
[DKL(qϕ(zt|xt)∥pθ(zt)) + MSE(xt, x̂t)] (5.36)
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Figure 5.15: Variational Autoencoder with LSTM for Fault Detection

Here, mean squared error(MSE) and T is the length of the sequence. A standard normal
distribution N(0,1) is used as the prior for the latent space pθ(zt).

For this experiment with Linear Belt-Driven Motion Systems, the 800 N tension data
was used as the training dataset. Using cross-validation, the 800 N dataset was divided
into 70 percent for training and 30 percent for validation. Then, the complete datasets
of three different tensions were used to test the model. The reconstructed outputs were
obtained for each dataset, and the root mean square error(RMSE) for each data point was
calculated by comparing the reconstructed output with the original dataset. Finally, all
the RMSE values were plotted on the same coordinate system to compare the performance
of the three different tensions, as shown in the figure 5.14.

Figure 5.16: Reconstruction Error Distribution for Different Dataset

It can be observed that the RMSE distribution of 390 N differs from the other two.
Based on this RMSE data, a classifier is created. The RMSE data for the fault condition
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(i.e., 390 N tension) is labeled as class 1, while the RMSE data for the normal conditions
(i.e., 800 N and 690 N tensions) is labeled as class 0.

Considering the existence of different classifiers, we will compare multiple classifiers
in this experiment. For all classifiers, X represents the standardized reconstruction errors,
and y represents the labels corresponding to class 0 and class 1. The specific classifiers
are as follows:

The goal of logistic regression(LR) is to find a probabilistic model to predict the
probability of the output y given the input X. The model’s prediction function is:

ŷ = σ(wX + b) (5.37)

In this context, σ is the sigmoid function, which converts any real-valued number into a
probability value in the range (0, 1). W is the model parameter (weights), b is the bias.

k-nearest neighbors(KNN) classifies the test data by calculating the distance between
the test data and each training data point, selecting the KNN nearest training samples,
and voting to determine the label of the test data. The prediction formula is as follows:

ŷ = mode{yi : xi ∈ nearest K} (5.38)

The nearest K refers to the K training samples that are closest to x, where the distance
is measured using the Euclidean distance. haty is the predicted label.

A decision tree constructs a tree-structured classifier by recursively selecting the op-
timal features and splitting the data. The splitting criterion of a decision tree is based
on information gain, aiming to find the best split point that maximizes the ability to
distinguish between different classes. For binary classification problems, the tree tests at
each node when X[j] ≤ threshold goes left branch otherwise goes right. Here, j is the
feature index, and the threshold is the optimal split point found through the training
data.

SVM classifies data by finding a hyperplane that maximizes the margin between the
training data points of different classes. For linear SVM, the classification decision is
based on:

ŷ = sign(wX + b) (5.39)

Here, w is the normal vector to the hyperplane, and b is the bias term.
naive bayes(NB) classifier is based on Bayes’s theorem and assumes that the input

features are mutually independent. The prediction model is as follows:

ŷ = arg max
c

P (y = c)
∏︂

i

P (Xi|y = c) (5.40)

The comparison of the metrics for all classification models is presented in the table 5.6.
First, the reconstruction error data for normal tension is classified as class 0, and the

fault data is classified as class 1. Then, the reconstruction error data for all three tensions
is combined and randomly shuffled. Using cross-validation, the data is split into 70 percent
for training and 30 percent for validation. The validation set is then used to calculate the
performance metrics, and the results are presented in the table. In the table, "support"
refers to the number of occurrences for each condition. The metrics are calculated twice:
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Table 5.5: Summary of Model Performance Metrics

Metric LR KNN DT SVM NB

Support label 1 218 218 218 218 218
Support label 0 154 154 154 154 154
Support total 372 372 372 372 372

Accuracy 0.58 0.59 0.62 0.59 0.59

Precision 0 0.59 0.66 0.69 0.64 0.59
Precision 1 0.47 0.51 0.53 0.51 0.76

Recall 0 0.96 0.63 0.50 0.68 0.43
Recall 1 0.05 0.53 0.59 0.43 0.74

F1-score 0 0.73 0.64 0.59 0.66 0.51
F1-score 1 0.09 0.52 0.56 0.46 0.74

Macro avg precision 0.53 0.58 0.61 0.57 0.29
Macro avg recall 0.51 0.58 0.55 0.57 0.57
Macro avg f1-score 0.41 0.59 0.61 0.56 0.37

Weighted avg precision 0.54 0.58 0.61 0.59 0.58
Weighted avg recall 0.58 0.59 0.62 0.59 0.59
Weighted avg f1-score 0.47 0.59 0.62 0.58 0.43

once with class 1 as the positive class and once with class 0 as the positive class. This
allows for different precision, recall, and F1-score values to be obtained. Based on these,
the macro average and weighted average can be calculated.

The positive and negative classes are further categorized into: true positive(TP), true
negative(TN), false positive(FP), flase negative(FN).

Accuracy represents the proportion of correct predictions made by the model, includ-
ing both positive and negative classes:

Accuracy = TP + TN

TP + TN + FP + FN
(5.41)

The DT has the highest accuracy at 0.62, indicating that it has the best prediction
accuracy among all samples. The others perform slightly lower than DT.

Precision represents the proportion of samples predicted as positive by the model that
are actually positive. Depending on which class is considered the positive class, there are
two types of precision:

Precision = TP

TP + FP
(5.42)

Similar to Accuracy, DT has the highest precision for both classes, indicating that it
makes fewer errors when predicting the positive class. NB has a precision of 0 for class 1,
indicating that this model fails and cannot correctly identify fault conditions.

Recall represents the proportion of actual positive samples that are correctly predicted
as positive by the model. There are two types of recall, depending on which class is
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considered the positive class:
Recall = TP

TP + FN
(5.43)

Although NB has a recall of 1, it also indicates that this model fails. Additionally, DT
has the highest recall for class 1, indicating that it is the most capable in identifying fault
samples. LR has the highest recall for class 0 but very low recall for class 1, indicating
that it has a strong ability to identify normal samples but cannot identify fault samples.

F1-score is the harmonic mean of precision and recall:

F1-Score = 2 × Precision × Recall
Precision + Recall (5.44)

NB has the highest F1-score for class 0, but it is 0 for class 1, indicating that it performs
well in recognizing normal samples but is completely ineffective for fault samples. DT
has the highest F1-score for class 1, indicating that it has the best overall capability in
recognizing fault samples.

Macro average is the arithmetic mean of each class’s metrics, without considering the
differences in the number of samples for each class:

Macro Precision =
∑︁

Precision
N

(5.45)

Macro Recall =
∑︁

Recall
N

(5.46)

Macro F1-Score =
∑︁

F1-Score
N

(5.47)

where N is the total number of classes.
Weighted average takes into account the number of samples in each class, performing

a weighted average of each class’s metrics based on the number of samples:

Weighted Precision =
∑︁

(Precision × Support)∑︁
Support (5.48)

Weighted Recall =
∑︁

(Recall × Support)∑︁
Support (5.49)

Weighted F1-Score =
∑︁

(F1-Score × Support)∑︁
Support (5.50)

Where "support" corresponds to the number of samples in each class, and the quantity is
used as the weight to perform weighted multiplication with the corresponding metrics.

Macro average and weighted average show similar performance. DT performs the best
in both metrics, indicating that its overall performance is the best regardless of whether
class balance is considered.

In summary, DT is the relatively best classifier in terms of overall performance. It
outperforms other classifiers in all metrics, particularly in accuracy, macro average, and
weighted average. The TRL 4-5 stage involves testing a small-scale prototype. The results
indicate that the classification is not very effective because the data collection process
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is uncontrollable, and the small size may result in a less clear relationship between the
time difference data and belt tension trends. In the later stages, data will be collected
from larger prototypes, and the data will undergo the same processing and analysis. In
the next phase, the data collection process will be optimized and adjusted.
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Chapter 6

Experiments for Technology
Readiness Level 5 to 6
Demonstrations and Result

6.1 Data Processing in a Related Environment
In the TRL 5-6 stage, the linear belt-driven motion system will use a larger prototype and
be tested in relevant environments. Additionally, the loading and operating conditions of
the belt system will be more standardized before data collection. In this experiment, the
belt system will have 24 loaded carriages, each carrying a one-kilogram weight, and the
initial speed of the belt will be set to 4 m/s2. The preset tensions used are 800 N, 600 N,
and 470 N.

Under these preset conditions, data will still be collected using an encoder. There
will be 8 cases, and after collecting the data, the probability density distribution plots
for each of the 8 cases will be created. The case with the most significant difference will
be selected for analysis. Case 3 was ultimately chosen for analysis, and the probability
density distribution plot is shown as Figure 6.1.

It can be seen that there are certain differences in the performance across the three
datasets. The results are based on the original data, without any transformation. This
outcome provides a foundation for subsequent data analysis and model development.

6.2 Data Analysis in a Related Environment
First, statistical tests are used to determine if there are significant differences among the
three datasets. The result from the Kruskal-Wallis H Test is: H-statistic = 7800. This
result indicates that the median of at least one group is significantly different from the
others. The Kruskal-Wallis H Test is a non-parametric test used to determine if there
are significant differences in the overall distribution among three or more independent
samples.

Cliff’s Delta is an effect size measure used to describe the magnitude of the difference
between the distributions of two groups. The values of Cliff’s Delta range from −1 to +1.
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Figure 6.1: PDF Comparison within TRL 6

The larger the absolute value, the greater the difference. The Cliff’s Delta values between
470 and 600, and between 470 and 800, are close to 0.76, indicating a large effect size and
a significant difference between these datasets. In contrast, the Cliff’s Delta value between
600 and 800 is only 0.01, indicating almost no difference between these two datasets.

6.3 Fault Detection in Related Environments

Since the belt tension corresponding to each dataset is a preset parameter before the belt
system operates, the tension will continuously decrease due to belt wear during the opera-
tion of the belt system. However, because the state of the belt will not change significantly
in a short time, the change in time difference data will not be substantial. Therefore, it
is necessary to verify whether the time difference data in the datasets corresponding to
the different tensions do not have significant trend changes.

Scatter plots of the data for the three different tensions are drawn, and the Kalman
filter and Kalman smoother are used to estimate their trends. This allows the use of all
the data corresponding to each tension in subsequent analysis and modeling.

The results for the three datasets are shown in Figure 6.2, Figure 6.3 and Figure 6.4.
Observing the distribution and fit of all three datasets confirms that the data points do

not show significant trend changes under the current preset tension conditions. Therefore,
the overall data can be analyzed in subsequent stages.

As in the previous stage, the LSTM-VAE model is used for modeling. The distribution
plot of the reconstruction error values obtained is shown as Figure 6.5.

The red dashed lines in the reconstruction error distribution plots represent the dif-
ferent tension conditions. Observing these plots, it can be seen in table 6.3.

The reconstruction error for the 470 N tension dataset shows significant deviations
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Figure 6.2: Dataset 470 N with Kalman Smoother Fit and Confidence Interval within
TRL 6

Figure 6.3: Dataset 600 N with Kalman Smoother Fit and Confidence Interval within
TRL 6

compared to the 600 N and 800 N tension datasets.
The 600 N and 800 N tension datasets have similar distributions, indicating similar

behavior under these conditions.
The LSTM-VAE model effectively highlights the differences in reconstruction errors

for varying tensions, allowing for better analysis and fault detection in the belt-driven
motion system. Subsequently, classifiers are built using the current reconstruction error
data, including LR, KNN, DT, SVM, and NB. The results are shown in the table below:

From the table, it can be seen that: SVM shows the highest accuracy (0.884), indicat-
ing it classifies most accurately overall. For label 0, SVM exhibits the highest precision
(0.94) among all models. For label 1, LR, KNN, and SVM show similar and relatively
high performance. In terms of recall, SVM performs best for label 1 but less well for label
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Figure 6.4: Dataset 800 N with Kalman Smoother Fit and Confidence Interval within
TRL 6

Figure 6.5: Reconstruction Error Distribution for Datasets 800 N, 600 N, and 470 N

0. SVM has very high F1-scores for both classes, especially for label 1 (0.84), indicat-
ing a good balance between precision and recall. SVM also excels in Macro Average and
Weighted Average, reflecting its efficient handling of different classes.

NB and LR usually perform well with linearly separable data, as evidenced by their
accuracy, macro average, and weighted average metrics. KNN perform well in terms of
precision and recall, has its performance influenced by the choice of k-value and distance
computation method.

Ultimately, SVM will be chosen as the classifier due to its overall superior performance.
It shows high performance across most metrics, likely because it effectively classifies by
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Table 6.1: Summary of Model Performance Metrics

Metric LR KNN DT SVM NB

Support 0 3978 3978 3978 3978 3978
Support 1 2042 2042 2042 2042 2042
Support total 6020 6020 6020 6020 6020

Accuracy 0.87 0.86 0.83 0.88 0.87

Precision 0 0.90 0.91 0.87 0.94 0.91
Precision 1 0.82 0.79 0.75 0.79 0.81

Recall 0 0.91 0.88 0.87 0.88 0.90
Recall 1 0.81 0.84 0.75 0.90 0.82

F1-score 0 0.90 0.90 0.87 0.91 0.90
F1-score 1 0.81 0.81 0.75 0.84 0.82

Macro avg precision 0.86 0.85 0.81 0.87 0.86
Macro avg recall 0.86 0.86 0.81 0.89 0.86
Macro avg f1-score 0.86 0.86 0.81 0.88 0.86

Weighted avg precision 0.87 0.87 0.83 0.89 0.87
Weighted avg recall 0.87 0.87 0.83 0.88 0.87
Weighted avg f1-score 0.87 0.87 0.83 0.89 0.87

maximizing the margin between decision boundaries.
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Chapter 7

Integration Into Smart Hinge
System and Graphical User
Interface

7.1 Comprehensive Analysis of Smart Edge Products and
Introduction to Integrated Data Processing Algorithms

At the initial stage of the entire data processing workflow, encoders collect data through
a real-time sampling system. This data is first transmitted to servers operating on the
Linux system as shown in Figure 7.1. Each time the device is activated, these raw data
are automatically appended to a .log file, which is updated in real-time within the Linux
environment, preserving the data’s originality and integrity. This method of continuous
data recording lays a solid foundation for subsequent data analysis.

Figure 7.1: Encoder Overall Workflow Diagram

While data is continuously collected, the .log file is constantly updated. The Rou-
tine.py program runs within the OS Linux environment, monitoring changes in the .log
file in real time as illustrated in Figure 7.2. The primary task of this program is to extract
new data entries from the updated .log file and distribute them to the appropriate anal-
ysis software according to requirements. The essence of this process lies in the real-time
nature and accuracy of the data, ensuring that each update is processed promptly.

Upon detecting updates in the .log file, Routine.py immediately notifies the analysis
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Figure 7.2: SmartEDGE Data Analysis Workflow

program via a predefined queue mechanism. This queue-based communication mechanism
ensures the orderly and timely processing of data. Once the data is received by the anal-
ysis program, it promptly undergoes processing, with each program executing algorithms
tailored to specific data characteristics, outputting the results of the analysis. Given that
the ultimate product of this thesis focuses solely on statistical analysis of data distribu-
tion for edge computing processes, the TRL 6 stage concentrates specifically on the time
difference between active and passive wheels as shown in Figure 7.3. The software ana-
lyzes the input data at each step of operation and generates plot points that conform to
a Gaussian distribution. After accumulating a certain sample size (for example, 24 hours
of operational data), these plot points can be used to extract critical information about
the belt tension state and ultimately generate a comprehensive "point" that detailedly
depicts the current operational status of the equipment.

7.2 Development of Graphical User Interface for Operation
and Maintenance Status

In conclusion, this thesis also makes contributions toward improving a GUI interface,
incorporating previously analyzed data describing various statistical distribution param-
eters into the cloud server, and connecting it to machinery within the factory. This setup
allows the server to receive information from the machines and display it on the GUI
interface in real-time. As shown in Figure 7.4, the interface allows users to set a time
range and obtain corresponding data curves, where each data point represents an average
of 24 data points corresponding to 24 different carts. If the number of carts is changed
in future experiments, the average capacity corresponding to these points will also vary.
Different colors on the interface represent different cases. Due to the instability of the
results in the last four cases, only the first four are chosen. This approach allows for the
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Figure 7.3: SmartEDGE to Cloud Data Transfer and Analysis

real-time observation of the system’s status by plotting the average data curve. In the
plot below, Case 4 is not displayed because the encoder collected too few data points for
this case during the current time period.

Figure 7.4: Visualization of Belt System Data with Parameter Readings

Additionally, another display interface focuses on the average data corresponding to
each time point, as depicted in Figure 7.5. Since the encoder’s data collection across the
eight different cases occurs randomly, the interval between each data point within a case
is not uniform. The data collection on the right, labeled "Most Recent Data Collection,"
refers to all the information corresponding to the last observed data point. It should be
noted that this thesis only added the Table page, along with functionalities and data
related to the time difference deltaT; other data and interfaces are not pertinent to this
study.
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Figure 7.5: Tabular Display of Belt System Data with Parameters in a specific period
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Chapter 8

Conclusions and Future Work

Due to some technical issues when deploying the trained model on the server, primarily
because data is collected in real-time and factory data may not always be gathered under
consistent environmental conditions, it is challenging to obtain a suitable training set for
model training. This thesis only demonstrates that the LSTM-VAE model is suitable for
such data. For the current TRL stage, the parameters describing data distribution on the
GUI specifically the mean of the time difference data distributional are already sufficient
to characterize the state of the belt system and lay a solid foundation for further product
development.

8.1 Main Research Summary

This dissertation delves into the integration of data analysis and intelligent technologies
to enhance the functionality and reliability of linear belt-driven motion systems within
the framework of Industry 4.0. The focus of the research is on transitioning the system
from TRL 4 to TRL 6, demonstrating the effectiveness of the system in both laboratory
and real-world environments. Through a series of experiments and practical applications,
this study validates the practicality and stability of the integrated system.

Main Contributions of This Study:

• Advanced Encoder Monitoring System: Developed an advanced encoder monitoring
system capable of efficiently predicting belt wear and potential operational failures.
This monitoring system employs machine learning algorithms to analyze sensor
data and provide early warnings of system issues, thereby reducing unexpected
downtime.

• Edge Computing Solution: Implemented an edge computing solution that optimizes
data processing close to the data source. This approach not only reduces data
transmission latency but also enhances the efficiency of real-time data processing,
enabling the system to respond swiftly to various operational demands.

• Cloud-Based Data Analysis: Leveraged existing cloud platforms for data analysis,
storing the results in the cloud, and outputting them through a remote monitoring
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system. This method not only facilitates the operations of maintenance personnel
but also improves the efficiency of system maintenance.

• Enhanced GUI: Enhanced the existing GUI by adding specific entries and function-
alities related to this research. This improvement has streamlined maintenance and
operational adjustments, making the system more user-friendly.

8.2 Impact on the Industry
The outcomes of this research have significant practical implications for the manufactur-
ing sector, particularly within the context of Industry 4.0. By leveraging the IoT and
AI, this project demonstrates how traditional belt-driven systems can evolve into intelli-
gent, interconnected components that form part of a broader manufacturing ecosystem.
Such a transformation can significantly enhance operational efficiency, reduce unplanned
downtime, and enable the formulation of proactive maintenance strategies. Consequently,
this leads to reduced operational costs and optimized production workflows. Specifically,
the intelligent monitoring system and edge computing solutions developed in this study
can assist manufacturing enterprises in achieving real-time equipment status monitor-
ing and predictive maintenance, thereby increasing equipment utilization and production
efficiency.

8.3 Limitations and Challenges
Despite the significant advancements achieved in this study, several limitations and chal-
lenges remain:

• Generality of the Model: The current LSTM-VAE model is trained on a dataset
based on specific experimental conditions, which limits its applicability under dif-
ferent working conditions. If the system operates in varying environments, the model
may fail to perform effectively.

• Cloud Platform Limitations: Although it is possible to deploy the model on cloud
platforms for training, there are currently some issues with cloud platforms that
make model deployment challenging. In this study, only simple data processing and
analysis were conducted in the cloud, which is acceptable for the current product
stage, but improvements are needed for long-term applications.

• Room for Model Performance Improvement: The performance of the existing model
is not perfect and has substantial room for improvement. Particularly in handling
anomaly detection and predictive maintenance, the accuracy and reliability of the
model need to be further enhanced.

8.4 Future Research Directions
Future research will focus on the following areas:
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• Expanding the Dataset: Increase the variety and quantity of datasets used for train-
ing, such as datasets under different conditions but with the same tension, to im-
prove the model’s generalizability and enable it to handle more diverse working
environments.

• Enhancing Predictive Algorithms: Improve the predictive maintenance algorithms
to increase prediction accuracy and reduce false positive rates in anomaly detection.
Continuous optimization of these algorithms will enhance the system’s ability to
detect various potential failures.

• Data Security: Develop more robust encryption methods and secure data trans-
mission protocols to protect sensitive industrial data. Ensuring the integrity and
security of industrial data during transmission and storage is critical.

• Real-Time Optimization: Explore real-time optimization techniques that allow the
system to make dynamic adjustments based on real-time data, thereby improving
the system’s response speed and adaptability.

In conclusion, future research will continue to advance the application of intelligent
technologies within the Industry 4.0 framework, constantly enhancing the functionality
and reliability of the system, and bringing more innovation and improvements to the man-
ufacturing sector. Future research will not only focus on optimizing and improving existing
technologies but also explore the integration and application of emerging technologies.
Additionally, future research will aim to enhance the system’s adaptive capabilities and
intelligent decision-making processes, further advancing the level of intelligence in produc-
tion processes. Efforts will also be made to develop a more comprehensive data security
framework to ensure the safety and confidentiality of industrial data during transmission
and storage. Ultimately, through multifaceted technological innovation and integrated
applications, future research will provide a stronger theoretical foundation and techni-
cal support for the intelligent transformation of the manufacturing industry, driving it
towards greater efficiency, flexibility, and intelligence.

65



66



Bibliography

[1] Wojciech Ptasi Jacek Kucharczyk Damian G asiorek Artur Pollak, Sebastian Temich.
Prediction of belt drive faults in case of predictive maintenance in industry 4.0
platform. Applied Sciences, pages 1–5, 2021.

[2] Ramzan Nazim Khan Callum Webb, Joanna Sikorska and Melinda Hodkiewicz. De-
veloping and evaluating predictive conveyor belt wear models. Data-Centric Engi-
neering, pages 1–10, 2020.

[3] Guido Colombo. Cloud driven edge computing on smart systems integration. "on-
line", 2020.

[4] D. Mazurkiewicz D.Valis1 and M. Forbelská. Modelling of a transport belt degrada-
tion using state space model. IEEE, pages 1–5, 2017.

[5] York Castillo Santiago Electo Eduardo Silva Lora Jose Carlos Oscar Agustin Fer-
nando Bruno, Dovichi Filho. Evaluation of the maturity level of biomass electricity
generation technologies using the technology readiness level criteria. Elsevier, pages
1–4, 2021.

[6] Peihua Han, Guoyuan Ellefsen, and Holmeset. Fault detection with lstm-based vari-
ational autoencoder for maritime components. IEEE Sensors Journal, pages 21903–
21912, October 2021.

[7] Elvis Hozdic. Smart factory for industry 4.0: A review. International Journal of
Modern Manufacturing Technologies, pages 29–31, 2015.

[8] Ryszard Blazej and Radoslaw Zimroz Jaroslaw Szrek, Jacek Wodecki. An inspection
robot for belt conveyor maintenance in underground mine—infrared thermography
for overheated idlers detection. Applied Sciences, pages 3–11, 2020.

[9] and Alois Knoll Johannes Vater, Lars Harscheidt. A reference architecture based on
edge and cloud computing for smart manufacturing. IEEE, pages 2–5, 2019.

[10] and Welling Kingma, Diederik P. Auto-encoding variational bayes. In 2nd Inter-
national Conference on Learning Representations (ICLR), December 2014. arXiv
preprint arXiv:1312.6114.

[11] D.V.Rama Koti Reddy P.V.S Anusha and P. Swapna. Revolutionizing conveyor belt
systems: Empowering predictive maintenance with iot,cloud, and machine learning.
SSRN, pages 2–9, 2024.

[12] Russi-Vigoya Salazar, George and M. Natalia. Technology readiness level as the
foundation of human readiness level. Ergonomics in Design, pages 25–29, October
2021.

[13] Xiaobo Zhou Tie Qiu, Jiancheng Chi and Mohammed Atiquzzaman. Edge computing
in industrial internet of things: Architecture, advances and challenges. IEEE, pages

67



Bibliography

2463–2469, 2020.
[14] Gabriel Lodewijksa Yusong Panga Xiangwei Liua, Daijie Hea and Jie Meib. Inte-

grated decision making for predictive maintenance of belt conveyor systems. Elsevier,
pages 5–7, 2019.

[15] Wolfgang Mayer Niki Patel Georg Grossmann Markus Stumptner and Ana Kuusk
Zohaib Jan, Farhad Ahamed. Artificial intelligence for industry 4.0: Systematic
review of applications,challenges, and opportunities. Expert Systems With Applica-
tions, pages 3–6, 2023.

68



Acknowledgements

I extend my deepest gratitude to Professors Mihai Lazarescu and Luciano Lavagno, whose
exceptional guidance and mentorship have been pivotal throughout my academic journey
at Politecnico di Torino. Their profound expertise, dedication to fostering an environment
of academic excellence, and unwavering support have profoundly influenced my intellec-
tual growth and professional development. The insightful feedback and encouragement I
received from both professors have been instrumental in my pursuit of knowledge, inspir-
ing me to navigate challenges with resilience and to strive for excellence in my scholarly
endeavors.
I am also profoundly grateful to Mr. Alfonso Picariello, my mentor in the professional
realm, whose invaluable guidance has seamlessly bridged the gap between academic the-
ories and their practical applications in the industry. The mentorship and real-world
insights provided by Mr. Picariello have enriched my understanding of the field, equip-
ping me with essential skills and perspectives crucial for my future career. His belief in
my potential and consistent support have been pivotal in my professional growth.
Furthermore, I wish to express my sincere appreciation to the esteemed faculty and
staff of the Politecnico di Torino. The enriching academic environment and the diverse
opportunities provided by this prestigious institution have significantly contributed to
shaping my academic and professional path. The knowledge and experiences I have gained
during my time here have laid a solid foundation for my future endeavors.
My journey thus far would not have been possible without the support and encouragement
from these distinguished individuals and the broader academic community at Politecnico
di Torino. I am indebted to them for their faith in me and for being an integral part of
my educational and professional journey. I hope to repay this debt by contributing to our
field with integrity, innovation, and passion.
Thank you for believing in me and for guiding me towards achieving my goals.

69


	List of Figures
	Introduction
	Intelligent Technologies and Belt-Driven System Maintenance
	Background and Importance of Smart Product Development
	Overview of Linear Belt-Driven Motion Systems
	Current Maintenance Technologies in Linear Belt-Driven Systems
	Overview of the Methodological Approach

	Definition and Significance of Technology Readiness Level
	Overview of Technology Readiness Levels
	Implementation Methods for Advancing From Technology Readiness Level 4 to 6

	The Data Collection for the Linear Belt-Driven Motion System
	Introduction to Encoder Monitoring Systems
	Analysis of Belt Inspection Algorithms

	Experiments for Technology Readiness Level 4 to 5 Validation and Result
	Data Processing in a Laboratory Environment
	Data Analysis in a Laboratory Environment
	System On-Condition Observation and Fault Detection in Laboratory Environments

	Experiments for Technology Readiness Level 5 to 6 Demonstrations and Result
	Data Processing in a Related Environment
	Data Analysis in a Related Environment
	Fault Detection in Related Environments

	Integration Into Smart Hinge System and Graphical User Interface
	Comprehensive Analysis of Smart Edge Products and Introduction to Integrated Data Processing Algorithms
	Development of Graphical User Interface for Operation and Maintenance Status

	Conclusions and Future Work
	Main Research Summary
	Impact on the Industry
	Limitations and Challenges
	Future Research Directions

	Bibliography

