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Abstract

Vulnology is a field focused on treating wounds, an often underestimated health issue. When
a chronic ulcer worsens without monitoring it can become chronic in 30 % of cases sometimes
leading to non healing wounds and, in severe instances, even death. Hence consistent follow
up care is essential to prevent complications. It’s crucial to establish protocols in this area
and incorporate telemedicine tools to aid healthcare providers. With the advancements in deep
learning technology for image analysis neuromorphic systems are now being integrated into devices
to assist clinicians during examinations. These systems can automatically analyze wound images
using deep learning algorithms reducing the need for contact and lowering the risk of exacerbating
the wound condition. It is crucial to assess the capability of these algorithms to identify and
classify wounds, and simultaneously determine which medical images are best suited for extracting
useful features. After examining the field and considering the methods used, it was decided
to evaluate the capabilities of the algorithm through the use of thermal images.This method
represents a new approach within the framework of automated assessments to wound management.
By accomplishing this task we can offer vulnologists an AI powered tool that streamlines their work
process, enhances examination quality and follow up care and fosters efficient healing outcomes
for patients.
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Chapter 1

Introduction

Neuromorphic methods are techniques based on artificial intelligence and thus on neural networks
that allow us to automate and thus speed up several processes in healthcare. Neural networks
can in fact be used not only for detection tasks but also for segmentation and classification,
supporting the physician in clinical decisions when integrated on medical devices. It emerges that
the vulnological field can benefit from this type of device as there is a clear need for standardisation
and sharing of clinical data. In order to be able to analyse something we need to see it, which
is why the subject of imaging in wound care is also explored. The type of medical images used
is indeed essential in deciding the type of feature to be extracted by AI, in order to provide the
physician with the most useful information for diagnosis and treatment and to digitise this area
of medicine that is often left aside.

1.1 The field of vulnology
Vulnology is the field of medicine that deals with wounds and lacerations of the skin, derived in
fact from the Latin word ’vulnus’ meaning wound. Skin lacerations, contrary to popular belief,
are clinically widespread in all age groups with a marked prevalence from the age of 60 onwards.
Under this branch of study we find skin ulcers, a condition with many possible causes that if
left untreated can lead to amputation of the affected body part or in extreme cases death from
infection. Skin ulcers can be linked to neoplasms, they can be of diabetic origin or linked to a
sedentary condition where they take the name of pressure or decubitus ulcers. Then there are
vascular ulcers, caused by a poor outflow capacity of the blood vessels affecting the area where
the lesion forms. In some cases a chronic wound may also originate post-operatively, due to errors
during surgery or factors that slow down complete healing such as bacterial infections. Chronic
wounds are divided into different types, depending also on the causes of the pathology. One of
the complication of diabete is the diabetic foot ulceration which is a kind of lesion that expands
more underneath the skin in respect of the surface. Because of the the type of lesion’s structure
there is a major risk of infection and chronic vascular changes in the wound area. These factors
can compromise the healing process.
Vascular alterations can, in the case of venous recirculation dysfunction, lead to the formation
of venous ulcers, which cause oedema and problems with normal venous return. Poor perfusion
to a certain district, often in the limbs, leads to the formation of arterial ulcers, wounds that
very often do not heal and cause permanent infections with the need for subsequent amputation.
Another determining factor is sedentariness or being bedridden, which causes bed sores. During
the covid period, this type of chronic wounds has seen a dramatic increase, where body areas with
protruding bones such as the heels and sacral area are exposed to prolonged and unnatural body
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Introduction

weight pressure with the consequent formation of these types of sores.
In a hospital environment it is not unusual to be exposed to non-sterile environments with viruses
or bacteria, which if they come into contact with an already present wound can trigger a local
infection. This type of wound has pus or abscesses that must be drained to prevent the infection
from becoming permanent and spreading through the circulatory system. Post-surgical wounds
are also exposed to this danger and may take a long time to heal or reopen.

Figure 1.1. Incidence of varois types of ulcers of the lower limbs among the population [1]

1.2 Impact of chronic wounds on the health system
From data available from the literature, it is estimated that 2% of the world’s population will
develop at least one skin ulcer-related disease during their lifetime [2]. Unfortunately, a healthy
lifestyle cannot always prevent the onset of such complications, but there is evidence that inter-
vening early on in an acute phase injury can prevent it from becoming chronic. Total Medicare
spending estimates for all wound types ranged from 28.1 to 96.8 billion. Including infection costs,
the most expensive estimates were for surgical wounds (11.7, 13.1, and 38.3 billion), followed by
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1.2 – Impact of chronic wounds on the health system

diabetic foot ulcers (6.2, 6.9, and 18.7 billion,). The highest cost estimates in regard to site of
service were for hospital outpatients (9.9–35.8 billion), followed by hospital inpatients (5.0–24.3
billion). The data refer to the US federal health insurance Medicare established in 1965 [3]
In Europe alone, The costs in the European population were 2% of the European health budget,
which results in a life time cost of 4 billion to European healthcare system [4]. Patients suffer-
ing from chronic injury-related diseases number more than 10 million in Europe. This economic
problem does not only concern europe, recent studies worldwide have shown that the costs of
hospitalisation and treatment for patients with chronic wounds are not small.
A recent analysis of costs in Canada for the conditions of pressure sores, diabetic foot and lower
limb ulcers reported that the average life time cost for individuals hospitalised due to these types
of wounds is approximately one billion dollars[5]. Often either because of lack of beds or because
the patient’s condition is not critical enough to require hospitalisation, home follow-up is opted
for. It is essential that the wound is monitored and dressed periodically; it has been shown that
early detection of a critical wound can be a determining factor in healing and preventing it from
becoming chronic. After 4 weeks there is a 30% greater chance of the injury never healing, a 50%
greater chance of potentially losing the limb, and a 50% greater chance of death over the next 5
years[6].
The choice of home care introduces quite a few problems from a logistical point of view: there
are few specialists in the field compared to the demand, and home visits may be prevented by
external causes (covid). It is therefore necessary to make the processes of home care delivery
more efficient, so as to make effective use of resources. One of the solutions to this problem is
the introduction of telemedicine, understood as telecare and telemonitoring. It allows patients
fewer visits to the hospital, optimising documentation and examination times, and encourages
the periodic follow-up that acute injuries need to heal. Telemedicine services are based on the
introduction of technological devices to support the clinician’s activity for data storage, diagnosis
or detection of a given pathology. Data archiving also allows the creation of large databases used
to extrapolate knowledge for medical or research purposes.
Managing the large volume of data in medicine has required the implementation of AI (Artifi-
cial Intelligence) based technologies. Archiving is not the only use of this type of technology,
detection and characterisation can also be implemented after training the algorithms on appro-
priate datasets to provide support for the physician’s work. An automation of certain practices
is achieved, resulting in considerable time savings. Another problem sought to be solved by these
devices is the variability of inter- and intra-operator judgement: the degree of infection or other
parameters may in fact be judged differently between different specialists or even by the same
doctor at different times due to situations that generate stress or other concomitant causes.
At the AIUC national congress in Turin in October a survey was carried out by questioning
the attending nursing specialists to understand the position of healthcare professionals regarding
the introduction of new technologies The need for hospital-wide centralisation of clinical data
on individual patients to keep track of wound trends and applied dressings to ensure continuous
treatment of the individual and to improve communication and cooperation between practitioners
also emerged among nursing specialists. Respondents were then asked for their opinion on the
usefulness of telemedicine in supporting skin ulcer care processes, with a positive response in 100%
of the interviews. The aspects found most interesting in the introduction of new technologies to
support the diagnosis and treatment of skin ulcers were:

• Objective assessment of the skin ulcer

• Remote monitoring and direct connection with home patients

• Shortening of diagnosis and treatment time Wound evolution history and continuity of care

• Facilitation of communication between clinicians and formation of a multidisciplinary team

5



Introduction

• Easy access and sharing of patient data

1.3 Analysis of wounds, scale bars to asses the healing pro-
cess

In order to outline the best treatment for a skin ulcer, one initially proceeds with the patient’s
anamnesis, in order to ascertain whether any pathologies are present as a result of which the
wound may have been created or worsened.
The next step is the wound visual inspection and analysis of wound-specific parameters

• localisation

• the multiplicity or uniqueness

• the size and morphology of the wound

• the staging of the wound floor

• the appearance of the edges and periulcerous skin (which maintains in relation to the ulcer
relations of close interdependence)

• the depth with particular attention to the presence of subdominations, sinuous formations
sinuous and fistulous pathways or pus collections

Characterising the wound serves to distinguish what type of injury it is and to understand its
status and criticality. Collecting data correlated with this information allows a preliminary assess-
ment of the lesion, which is then contextualized with present complications, such as infection and
edema or specific risk factors, such as family history, thrombophlebitis, surgery undergone, and
ischemia present in the patient’s medical history. There are also several scales in the literature to
classify the state of the wound with respect to different aspects.

1.3.1 Wound Bed Preparation [WBP]
Cleansing and searching for infection of wounds is fundamental to the treatment and preparation
of the wound bed in order to achieve faster healing. In the context of the WBP we identify the
TIME scale, a framework designed to identify 4 clinical areas that should be considered for wound
bed preparation: tissue, infection or inflammation, moisture imbalance, epidermal margin.
For each scale parameter, what to look at is suggested and thus what aspects are of interest for
proper diagnosis, how to intervene on the items to be corrected, and the expected results for each
field. For the T parameter, attention is paid to the amount of necrotic tissue present, for the I
parameter the heat of the cure, edema and fever, for the M parameter we note whether excess
exudate or dryness is present to quantify the fluid imbalance present in the lesion, and for the E
parameter we focus on the wound margins, hence undermining and hypertrophy. According to
the WBP standard for facilitated healing, the outcomes that should be aimed for with treatment
are:

• restoration of the bed of the lesion

• control of inflammation and infection

• balancing of fluid supply to the affected area

• proper proliferation of the wound margins
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1.3 – Analysis of wounds, scale bars to asses the healing process

Table 1.1: Table showing wound classification according to the
percentage of granulation tissue [7]

CLASS Specifications
A Wound is composed of 100% granulation tissue.
B The wound consists of more than 50% but less than 100% granu-

lation tissue. Absence of eschar or necrotic tissue.
C The wound is composed of less than 50% granulation tissue. Nei-

ther eschar nor necrotic tissue is present.
D Present eschar or necrotic tissue

1.3.2 Photographic Wound Assessment Tool
The Wound Photographic Assessment Tool (PWTA) provide a sub-classification according to
wound characteristics. PWTA takes into account more parameters than WBP, also characterising
the type of granulation and necrotic tissue present in the wound. Basically, the difference with
the WBP scale is a more qualitative than quantitative assessment of the tissue present in the
wound area.

Table 1.3: Wound assessment table

Item Description Assessment
1. Size It is used to describe the size of the

wound, if the wound is larger the scores
are higher

0 = skin intact
(< 0.3 cm2)

1 = 0.5 − 2.0 cm2

2 = 2.0 − 10.0 cm2

3 = 10.0 − 20.0 cm2

4 = > 20.0 cm2

2. Depth Is used to quantify damaged layers of
tissue

0 = wound is healed

1 = Full thickness
3. Necrotic type Characteristics of the necrotic tissue

present in the lesion
0 = Non visible

1 = necrotic tissue is thin
grey or yellow
2 = necrotic tissue is
thick, majority white yel-
low or fibrin
3 = necrotic tissue is de-
vitalized, eschar, white or
grey
4 = majority of tissue is
hard with black eschar

4. Necrotic amount Percentage of necrotic tissue present in
the lesion

0 = non visible or closed
lesion
1 = characterize 25% of le-
sion

Continued on next page
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Table 1.3 – Continued from previous page
Item Description Assessment

2 = characterize 25% to
50% of lesion
3 = characterize > 50%
but < 75% of lesion
4 = characterize 75% to
100% of lesion

5. Granulation Type Features of the granulation tissue 0 = wound is closed
1 = > 50% of the lesion
is characterized by healthy
tissue
2 = most of the granula-
tion tissue is unhealthy
3 = most of the tissue is
damaged
4 = the tissue present in
the wound is all necrotic

6. Granulation Amount Quantity of granulation tissue in the
wound

0 = wound is closed

1 = 75% to 100% of the le-
sion is composed by gran-
ulation tissue
2 = > 50% and < 75% of
the wound is composed by
granulation tissue
3 = 25% to 50% of the
wound is composed by
granulation tissue
4 = < 25% of wound bed
is covered with granula-
tion tissue

7. Edges Characteristics of wound edges 0 = wound is closed
1 = > 50% of the border
has epithelial tissue
2 = most of edges are not
advancing
3 = most of edges are un-
dermined
4 = most of edges are fi-
brotic

8. SKin diseas associated with skin near lesion number of collateral diseas
affecting the area
0 = None
1 = One
2 = Two or Three
3 = Four or Five
4 = more than Five
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1.3 – Analysis of wounds, scale bars to asses the healing process

1.3.3 Diabetic ulcers classification
Diabetic ulcers, particularly diabetic flail ulcers if the foot area is affected, are very difficult wounds
to treat with a high risk of amputation, so again proper follow-up and classification is essential
so as to prevent limb loss. The most common classification methods found in the literature are
shown below.

Meggitt-Wagner system

It consists of six grades of classification, which focuses on the depth of the lesion and the presence
of necrotic tissue. One of the weaknesses of this method is that it cannot distinguish between
infection and ischemic injury.

Table 1.4: Table showing DFU classification according to Meggitt-
Wagner system [8]

GRADE Ulcer depth
0 Pre-ulcerative area without open lesion
1 Superficial ulcer (partial/full thickness)
2 Ulcer creep to tendon, capsule, bone
3 Stage 2 with abscess, osteomyelitis, or joint sepsis
4 Localized gangrene
5 Global foot gangrene

Texas classification system

The method proposed by the University of Texas focuses on the depth, infection and ischemic state
of the wound. It divides patients into 4 categories with respect to the 3 parameters mentioned
above.

Table 1.5: Table showing DFU classification according to Texas
scale [8]

GRADE DESCRIPTION STATUS STATUS DESCRIPTION
0 Skin without lesions A Neither infection nor ischemia is present
1 Superficial ulcer B Infection presence
2 Deep ulcer C Infection presence
3 Ulcer with bone involvement D Presence of both infection and ischemia

1.3.4 General protocol of approaching ulcers
As far as there are no defined clinical pathways for the treatment of ulcers, an attempt has been
made to summarize what is usually done by physicians and nurses, confirmed by data taken at
the AIUC national exhibition.
It is wrong to treat the lesion without an adaguate family and patient history. In fact, it is noted
that often the formation of the chronic lesion is a consequence of another disease, which if left
untreated leads to failure to heal the ulcer itself. The Medical History and General Examination
should be conducted simultaneously upon the patient’s intake to gather all necessary data. This
aims to stabilize the patient’s general condition and gather information regarding any medical
conditions that may have contributed to the development of chronic skin lesions, thus providing
insights into the potential etiology of the ulcer. Following this, we can proceed with the physical
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Introduction

examination.
Shown in the figure is what may be a process of analyzing a lesion, where history, other concomi-
tant diseases, and the final follow-up of the ulcer are taken into account. We assess not only the
presence of the lesion but also the possible formation based on determinant risk factors Figure??
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Chapter 2

Imaging and measurment in
wound care

The first thing that is done by the experienced vulnologist is to observe the wound so as to make
a preliminary assessment of its condition. The ulcer is also measured, in some cases manually
through the use of calibrated instruments such as a ruler. This way of performing the measure-
ment can bring pain to the patient since it includes direct contact with the instrument; it also
creates the risk of worsening infection if the instruments are not used in a sterile environment
such as an apartment. For these reasons, digital imaging used for measurement can be a great
help to the clinician bringing benefit to both him and the patient. By photographing the wound,
measurements can be automated, or digital floor plans can be obtained, which superimpose a grid
over the image to aid the physician in estimating the area. The size and depth of the lesion are
not the only parameters that interest us in assessing the healing status of the ulcer, of which a
complete evaluation can only be obtained by integrating microbiological and biochemical anal-
yses as well. Commonly, swab tests are practiced where with a metal instrument the bacteria
present are collected by direct contact with the wound for later analysis, or a biopsy of the ulcer
is performed directly. These two practices again present the problem of direct contact and can
also further damage tissue that was already struggling to heal. An integral aspect of wound care
involves the removal of devitalized or bacteria-laden tissue through debridement, which acts as a
barrier to healing and can compromise the efficacy of topical antimicrobial agents. Determining
the extent of debridement required can be challenging and may sometimes lead to overly aggres-
sive measures to ensure complete removal. Therefore, the use of digital imaging can be helpful
in overcoming these limitations, until the advent of imaging, immediate information regarding
the presence and location of bacteria was largely based on conjecture. Imaging provides specific
target for debridement but not only, is useful in order to monitor the wound over time, conduct
tele-visits, seek second opinions. It is therefore clear that it may be useful to keep simple RGB
photos of ulcers on file for comparison and to find increasingly effective methods for analysis,
characterisation and monitoring. Monitoring in this type of disease seems to be the key element
to be included in treatment protocols to avoid serious complications.[9]

2.1 Types of imaging techniques
Different types of medical imaging could be used, beyond visible light imaging. Two main types
of imaging used in vulnology can be distinguished, optical and nonoptical imaging.
Optical-type imaging uses electromagnetic waves(light) at different wavelengths to generate an
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Imaging and measurment in wound care

image. The most common technology attributable in this category of imaging is based on X-rays.
Although this type of technology is suitable in many practices, in wound care it is preferred to use
’EDI’ type techniques that stands for Enhanced Digital Imaging, which work in the visible light
range. One of the advantages of these techniques is the standardization of color [6]. The light inci-
dent on the sensor is identified through the 3 main components of color: red, green and blue. This
feature can be used for the analysis of wounds, distinguishing their condition by color, something
not available with any type of imaging. Another type of analysis that falls under the classification
of optical-type imaging is multispectral imaging (HI), which is coupled with EDI-type techniques
where emitters are installed. Light is emitted at different light frequencies, the reflected photons
are detected by specific sensors in order to create the image based on their intensity and energy.
HI techniques differ from each other in the wavelength used during the procedure, as different
values of this parameter change the type of analysis and experimental set-up.
NIRS, near infrared spectroscopy, is a noninvasive optical imaging technique that is used to mea-
sure blood flow to a specific district. This technique is often used in neurology but also in wound
care. The procedure is performed with at least 2 wavelengths used to quantify the chromophores
of interest by absorption and scattering phenomena. Quantification of these chromophores pro-
vides insight into the amount of oxygenated and deoxygenated hemoglobin flux in the district of
interest. We take advantage of the different wavelengths at which the phenomenon of absorbance
occurs in the infrared spectrum, which differs for the two states of hemoglobin. Thus there is an
emitter and a receiver, photons are emitted from the emitter, when they meet the body surface
they are deflected and travel a curved path(banana shape) to the receiver. The distance between
emitter and receiver has to be chosen according to the type of analysis and as a trade-off between
the optical path that the photons travel, which the longer it gets the more absorbance phenomena
increase along with scattering phenomena: these two things can compromise the spatial resolution
and and sensitivity of the analysis done by NIRS. The temporal resolution of the technique turns
out to be relatively good( order of a few seconds) while the spatial resolution is relatively low (of
the order of cm).
Then we can identify imaging techniques based on a non-optical system that do not use to cre-
ate images light reflected or emitted but other physical fenomena like magnetization of water
molecules in Magnetic Resonance Imaging (MRI). MRI and ultrasonography are used in the field
of wound care to analyze hemodynamic. Ultrasonography is based on sound waves sended and
detected after the reflection: areas with small variation will be seen as dark, instead the areas
with wide variations are seen as bright.
However, there remains the problem of the absence of a standardized protocol, observation of
the ulcer is subject to the opinion and evaluation of the physician, with no objective assessment.
Many imaging techniques used are very expensive, such as MRI, PET, CT, so the need to find
cheaper alternatives is highlighted. All techniques used in wound care are shown in the Table2.1
with main advantages and limitations.
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2.1 – Types of imaging techniques

Table 2.1: Comparison of Various Imaging Techniques Used in
Wound Infection Diagnosis

[10]

Imaging Tech-
nique

Application in
Wound Infection
Diagnosis

Pros and Cons Sensitivity Specificity

Plain radiogra-
phy

Initial examination of
soft-tissue infections.

Simple operation, low
cost, wide availability;
radioactive; reveals in-
flammatory changes.
Can distinguish swelling
due to infection from
fractures; nonspecific
findings.
Misled by other condi-
tions.

Low Low

Computed
tomography

Diagnosis of soft-tissue
infection and intra-
abdominal abscesses;
evaluation of deeper
structures and the
extent of surround-
ing inflammations;
identification of small
infected collections.

Wide availability; fast
scanning speed; high
spatial resolution; mul-
tiplanar reformatting
capabilities; high penetra-
tion depth.
Radioactive, sometimes
requires contrast agent.

High High

Magnetic reso-
nance imaging

Diagnosis of soft-tissue
infection; Can pro-
vide anatomic and
pathophysiologic in-
formation about the
extent of infection
within both soft tissue
and the underlying
bone.

High spatial/contrast res-
olution; nonradioactive.
Costly; low availability;
requires special training/-
facility; hard to distin-
guish foreign bodies from
adjacent structures within
superficial wounds.

High High

Ultrasound
imaging

Diagnosis of skin and
soft tissue infections.
Can evaluate sus-
pected radiolucent
foreign bodies.

Fast; Accurate; cost-
effective; portable; avail-
able in many clinics; no
ionizing radiation.
Interference from air; low
penetration depth; relies
on operator’s skill.

Medium Medium

PET Diagnose and predict
remission of antibiotic
treatment for diabetic
foot infections by
developing 3D images
from accumulation of
radioisotopes.

High-resolution 3D imag-
ing; high penetration
depth.
Costly; Short tracer
half-life; requires special
training/facility; Possible
misdiagnosis resulting
from sterile inflammation.

High High

Continued on next page
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Imaging and measurment in wound care

Table 2.1 – continued from previous page
Imaging Tech-
nique

Application in
Wound Infection
Diagnosis

Pros and Cons Sensitivity Specificity

SFDI Identify burn wound
infection by quantify-
ing volume fraction of
tissue chromophores.

Noncontact; distinguishes
infected and noninfected
burn wounds.
Limited scanning area and
wound types.

High High

Thermography Use an infrared camera
to measure infrared
radiation emitted from
the wound tissue.
Smart phone-based
thermography has
been developed for
diabetic foot ulcer
detection and wound
healing prediction.

Simple; portable; cost-
effective; real-time imag-
ing; noninvasive; remote
diagnosis.
Limited accuracy and
specificity.

Low Medium

Luminescence
imaging

Portable imager dis-
tinguishes infected
wounds from unin-
fected ones in a pig
model based on inten-
sity and distribution
of visible photons
emitted by Chernow
radiation.

Simple; portable; cost-
effective; real-time imag-
ing; noninvasive; remote
diagnosis.
Limited specificity; re-
quires more research.

Medium Medium

Autofluorescence
imaging

A handheld portable
device diagnoses bac-
terial infection in
diabetic foot ulcers in
real time by detecting
autofluorescence due
to the light absorbing
properties of en-
dogenously produced
bacterial porphyrins.

Simple; portable; cost-
effective; real-time imag-
ing; noninvasive; sensitive;
remote diagnosis.
Low specificity; Can-
not determine microbial
species.

High Low

Microwave-
microfluidic
biosensor

A microwave-
microfluidic biosensor
for quantification of
Escherichia coli within
medium solutions to
increase the efficacy
of clinical wound
infection assessment;
the growth of bacteria
can be monitored over
time.

Small; cost-effective;
rapid; contactless; real-
time measurement;
noninvasive; sensitive.
Limited detectable bacte-
rial species.

High N/A
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2.2 – Ultraviolet radiation for bacterial fluorescence

In particular, we find in the state of the art techniques that also allow a microbiological
assessment of the lesion to be performed. In addition, when wound swabs are subjected to
microbiological analysis, they can only detect microorganisms present on the surface of the wound
or within the depth of the tissue biopsy obtained. Consequently, deeper-seated pockets of infection
might go unnoticed during these evaluations. Additionally, it’s important to acknowledge that
while laboratory and microbiological assessments offer objectivity, they might fail to detect local
changes that haven’t yet triggered a systemic inflammatory response, and their effectiveness can be
influenced by the operator’s proficiency in sample collection. It generally takes 36 to 48 hours for
the outcomes of wound cultures to be available. In cases of significantly mixed cultures, the task
of distinguishing between different bacterial strains can introduce further hold-ups. Such delays
in receiving culture outcomes are hardly beneficial for surgeons who are in urgent need of making
decisions about whether a wound should be closed or not. As a result of these postponements,
the bacterial load present in the wound can significantly alter by the time the culture results are
received [11]. Hence, these limitations highlight significant gaps that could be addressed through
the concurrent utilization of these imaging techniques[12].

2.2 Ultraviolet radiation for bacterial fluorescence
The discovery of fluorescence was initially made by Stokes in 1852. However, the realization that
tissue fluorescence could have diagnostic applications was acknowledged considerably later, in
1911 by Stubel [13]. The detection of principles of infection is critical for wound healing, and with
fluorescence uv signals we are able to obtain useful information for this purpose without going for
a biopsy. Recently this innovative technology has been integrated on medical devices such as the
Moleculight[14]. Tissue is excited and emits a spectrum of fluorescent signals that are emitted by
different elements in the wound. Many proteins that contain amino acids with aromatic structure
are in fact self-fluorescent. Structural proteins such as collagen and elastin are also affected by
this phenomenon [15]. Fluorescence imaging offers clinicians immediate diagnostic information
and feedback on treatment efficacy by revealing the presence and extent of bacterial infection in
wounds. One can then evaluate the different components of the wound based on the color of the
fluorescent signal emitted as shown in Figure 2.2.

Table 2.2. Characteristic fluorescence signals from wound tissues

Color Characteristic fluorescence signals from
wound tissues

Green High collagen content (i.e., emitted by a tendon)
Pseudomonas aeruginosa High fibrin content

Brown Blood or high vascular tissue (i.e., granulation tis-
sue)

Pink Fluorescence from bacteria
Red Endogenous porphyrins from bacteria
Cyan Pyoverdines, specific to Pseudomonas aeruginosa

To identify regions of bacterial fluorescence, the following should be analyzed and distinct: tis-
sue and fluid fluorescence signals, bacterial fluorescence signals, and artifacts that can be created
[16]. The result is a mapping of the bacteria in the wound that can be used by the physician for
targeted cleaning of the wound or to make decisions about what type of therapy to pursue. No
contrast agents are used because bacterial autofluorescence properties are exploited. The infor-
mation captured in these images can facilitate more targeted and thorough wound debridement,
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support clinical decision-making, aid in dressing selection, and help determine the necessity for
antimicrobial therapy, ultimately improving clinical outcomes. The technique brings with it some

Figure 2.1. Limitations of bacterial fluorescence are highlithed[16]

issues, including the need to perform the analysis in a totally dark environment to avoid artifacts
as shown in the figure. As we can see from the image Figure 2.1, if the illumination conditions
are not right, the image is contaminated with blue fluorescence that has no clinical significance.
Unfortunately, many creams and gels and some contrast agents also exhibit the autofluorescence
phenomenon that contaminates such analyses. Other causes of artifacts can be tattoos, cotton
products such as hospital bed sheets, dust in the environment and on wounds, collagen-based
bandages and ointments used to treat wounds with necrotic or eschar tissue.
Devices such as Moleculight present no small innovation in the field of wound care, as under
certain conditions it is possible to obtain feedback on the degree of infection affecting the wound,
without performing biopsies and thus without contact and harm to the patient.

2.3 Thermography
Thermography was developed in the 1950s for military use to allow soldiers with night vision
capabilities. Beyond enhancing night vision, it has been utilized to improve the visibility for
military vehicle operators in conditions obscured by smoke, dust, light fog, and rain, and has also
been applied in target identification, and tracking. In the last years the scope of thermal imaging
has broadened significantly due to ongoing advancements in technology, making it a valuable tool
in various sectors including healthcare and veterinary science.
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Termography is an imaging tecnique based on radiation emitted in the infrared bend, captured
by an infrared camera. Thanks to this types of cameras we are able to detect the temperature of
the object of interest, in this case a wound. Thermography has been used in wound care in several
applications: Thomas et al. [17] evalueted the use of infrared technology in laser skin treatment of
vascular lesion, Mason et al.[18] concluded that for burn injury depth themorgraphic imaging was
more accurate than clinical based pathways. Mercer et al. have used Infrared for monitoring the
improvement of wound healing in human subjects with chronic venous stasis ulcers[19]. Through
the heat detected we can tell what the state of blood perfusion is in the area observed, which is
crucial information for understanding the state of a wound. The correlation between The heat
detected at the skin surface and the surrounding blood flow is expressed by the Pennes equation
of bio-heat[20]

k∆2T − cbwb(T − Ta) + qm = 0 (2.1)

Several studies suggested a correlation between surface’s heat and infection of wounds[21]. Physi-
cians are often tasked with differentiating between infected and non-infected wounds, a process
that can vary significantly among specialists due to the inherent challenges in assessing a wound’s
condition. The manual methods usually used by the physician to assess warming of the affected
area are manual palpation or direct contact with thermometers, practices that can again bring
discomfort to the patient with all the problems that direct contact with the wound causes. It is
important to keep track of the temperature of the ulcerated area because when tissue undergoes
cooling, it poses a heightened risk of infection due to several physiological responses. Cooling may
result from several factors and may also be an effect of the change in dressing of the lesion. These
include vasoconstriction, which reduces blood flow and oxygen delivery to the area. Consequently,
there’s a decreased oxygen availability for neutrophils, key cells in the immune response against
infection. Additionally, as temperature drops, the activity of important cells such as neutrophils,
fibroblasts, and epithelial cells diminishes. Hypothermia also adversely affects platelet activation
and the ability of neutrophils to kill pathogens through oxidative mechanisms. Moreover, collagen
deposition, crucial for wound strength, declines under hypothermic conditions[22].
Utilizing thermographic images of the lesion can provide valuable support in these situations.
Given that clinical inspection alone has been shown to accurately identify infected wounds less
than 60% of the time, there is a crucial need for additional diagnostic tools to enhance detection
rates. Thermal imaging has found applications across various medical fields, notably in predict-
ing ulcer formation in diabetic patients’ feet. This utility arises from its capacity to discern and
quantify minute variations in skin temperature associated with pathological transformations, in-
cluding the inflammation of soft tissues, the ensuing breakdown, and the infection of ulcers. These
methods have also been used in individuals at risk of developing wounds by comparing the skin
temperature distribution of both feet of participants, termed as asymmetry analysis:the foot with
the higher temperature is considered to be at risk of ulceration. The heat given off by the skin
may depend on the blood supply to the ulcerated area, so a lower temperature may indicate im-
paired cellular metabolism. This method is resilient to natural variations in ambient conditions,
scaling and rotation, and does not require contact with the wound of the individual. Further-
more, computerised analysis of textural features is a time efficient and cost-effective method to
identify delayed healing of VLUs and further research to assess generalisability and to reference
the methods is warranted.
The measurement can be affected by the external environmental factors, such as the temperature
of the environment in which the analysis is performed. To mitigate these effects, the patient is
made to lie on his or her side for a few seconds to dissipate heat from the area that may have
accumulated in the supine position. A reference area is then defined, which is subjected to the
same environmental heat conditions. The reference area must have a temperature change of no
more than 1 degree and no bone protrusions[23]. Clinically, temperature differences between a
wound and a control area can provide significant information on the presence or absence (as well
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as degree) of inflammation and/or infection in a wound. It can also provide an indication of the
underlying perfusion to the area. That being said, skin temperature changes resulting from a
pathologic process can be a matter of degrees. The interpretation of very similar temperatures
may be normal or pathologic, depending on the clinician and the type of wound. In this way,
the relative measured temperature can be associated with physiological or pathological conditions
independently of other factors[24]. In addition to temperature information and thermal image ob-
servation, recent research proposes the calculation of new parameters that can be associated with
these types of images. The Wound Inflammatory Index (WII)[25] is obtained through a process
of thermographic image analysis. Initially, the anatomical surfaces of the foot are examined to
identify any hot or cold spots where inflammation or circulatory leakage is occurring, respectively.
Next, thermographic and visual images are examined to determine the shape, area, curvature, and
eccentricity characteristics of the wound. This process helps to identify the shape of the wound
and describe its base in terms of granular, fibrotic, or necrotic tissue. Once these details have
been identified, we proceed to calculate the Thermal Index (TI), which is a dimensionless unit
derived from the thermal characteristics of the wound. TI is calculated using the following formula:

TI = DT × a

A
DT is the temperature difference between the wound and the average temperature of the foot a
is the area of the isotherm (highest or lowest temperature) in the wound area, A is the area of
the wound bed. Area is calculated in terms of pixels for this analysis. The choice of the highest
or lowest isotherm must be made at the beginning of the analysis and followed consistently. Cur-
rently, these features are manually extracted from the thermographic image. Once TI is obtained,
it can be used as an indicator of wound inflammation and the healing process over time. Analysis
of thermographic images and calculation of TI can then provide an objective indication of the
health of the tissue and the progress of wound healing over time.
Some injury assessment criteria include temperature among the parameters such as the STOONES
criteria. The STONEES mnemonic consists of seven clinical signs: Size enlargement, Temperature
increase of 3° F or more versus the opposite limb mirror image temperature, Os (bone exposed
or direct probing), New areas of break down on the wound margin, Exudate increase, Erythema
and/or Edema (usually indicates cellulitis), and Smell. Any three of the seven STONEES crite-
ria are diagnostic of deep and surrounding infection (with a sensitivity of 90% and specificity of
of 69.4%).[26] Khalad Maliyar et al.[26] found that noncontact infrared thermometry comparing
maximum temperatures of mirror image of a wound on the opposite extremity, when combined
with two or more other STONEES criteria, is a significant indicator of deep and surrounding
infection. Thus, a correlation emerges from the literature between lesion temperature and the
infectious and microbiological processes occurring in situ. This correlation indicates that similar
information can be obtained from thermal images to that which comes from images obtained by
fluorescence, without the problems of light and reflection that are encountered using ultraviolet
radiation. Another problem encountered for ultraviolet radiation is that results can be compro-
mised by the presence of dust, which can distort the analysis, whereas infrared technology is not
affected by dust, water droplets or salt particles since the absorption contribution made by these
elements is largely negligible [27]. Thermal imaging is also portable and much cheaper than MRI
or other very precise technique, also it should be noted that it is not harmful to the patient in
contrast to many imaging techniques now more widely used, such as X-rays. Thermography, al-
though a relatively new technology in the field of wound care imaging, is gaining recognition in the
scientific literature for its significant success. This technique is establishing itself as a cost-effective
solution, providing a non-invasive, rapid, and reliable method for assessing and monitoring the
status of wounds. Thanks to its ability to detect subtle temperature variations associated with
different stages of wound healing, thermography is positioned among the techniques that could
be both economically viable and highly predictive of wound conditions.
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Process of acquisition

In a thermal imaging camera we can find 3 main components: focal plan array module, control
and digital processing module, imaging module. The signals from IR sensors are converted from
analog to digital by the analog digital converter so that they can be processed by the image pro-
cessing unit. As in any electronic system, each added module causes greater resource consumption,
so it is necessary to understand the basic steps to process the acquired image. The main task
performed by the image processing unit is the control of the focal plane array so as to read the
input values from each sensor detector, correct the non-uniformities in the image, and generate
the necessary data for the dispaly unit that will allow the acquired image to be displayed[28].
Basically, the electromagnetic radiation from the objects passing through the focal plane array is
analyzed by the device so as to visualize the already preprocessed image. The infrared (IR) sensor

Figure 2.2. Thermal camera operating logic

is an electronic device that plays a crucial role in detecting specific features in its environment by
either emitting or sensing infrared radiation. These sensors are capable of detecting or measuring
an object’s heat and motion. Such sensors operate similarly to human vision in sensing obstacles,
though they do not rely on visible light. Typically, in the infrared spectrum, all objects emit
some level of radiation, which, while invisible to the human eye, can be detected by IR sensors.
All objects at temperatures above absolute zero emit IR radiation and the amount of the emitted
radiation increases with temperature.
The radiation emitted in the infrared band is approximately between 0.3 and 1000 micrometers.
This type of sensor has an aperture that defines the field of view (FOV), where a lens is inserted to
allow signals in the infrared region to pass through it. The FOV of the sensor is critical determines
the field I want to analyze, within which I must place the objects whose temperature I want to
measure. A very narrow field of view indicates point measurements, less thermal power will be
collected but it will be very sensitive. The signal of interest is focused and penetrates the device,
the sensor heats up according to the temperature of the object being measured. We then find a
sensing element that can absorb infrared, heat up, and produce a signal proportional to the heat
absorbed. The sensing element itself has a temperature, so the voltage signal produced is propor-
tional to the difference between the temperature of the sensing element and the temperature of
the container. By placing a reference sensor that measures the temperature of the container, we
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are able to finalize the measurement. This is the basis working principle of an IR sensor.
IR sensors are governed by three fundamental principles of physics: Planck’s Radiation Law,
the Stefan-Boltzmann Law, and Wien’s Displacement Law. Planck’s Radiation Law states that
any object with a temperature above absolute zero emits radiation. The Stefan-Boltzmann Law
relates the total energy emitted across all wavelengths by a black body to its absolute tempera-
ture. Wien’s Displacement Law suggests that the peak wavelength of emission from objects shifts
inversely with temperature, meaning hotter objects emit radiation at shorter wavelengths.

Figure 2.3. FLIR A300 thermal camera [29]

The raw frames captured by the sensor initially do not offer any discernible details. To convert
these into a visually interpretable format that highlights thermal attributes of the scene, the
Thermal Image Processing pipeline performs a sequence of operations on the raw image. These
operations include tone mapping to adjust brightness and contrast, correcting defects such as bad
pixels, compensating for the camera’s non-uniform response across the image, and enhancing the
image digitally using various filters. Following these initial steps, the pipeline employs overlays and
assigns color palettes to distinguish different temperature ranges within the scene. The process
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results is shown in the referenced figures, illustrating the transformation from non-thermal to
thermal visualization. The output of this process is a thermal image that is easily comprehensible
to humans, resembling the example depicted in the image below Figure 2.4 Figure 2.5. We
can see some details from this image [Figure 2.5] with thermal staining, we have a red area, so
warmer on the leg, which does not reach the wound. This indicates a strong circulation problem
affecting the limb, we also notice cooler areas inside the wound, which may indicate principles of
necrosis.

Figure 2.4. Thermal camera output image Figure 2.5. Thermal camera output image whit
colourmap applied
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Chapter 3

Integration of deep learning in
digital imaging techniques

Artificial intelligence is a set of techniques that mimic human behavior, mainly the techniques
are divided into machine learning and deep learning. Machine learning techniques are based on
supervised learning, i.e., algorithms are first trained on categorized and structured data extracted
from the data to be used. In deep learning techniques, a subgroup of machine learning, there is no
need to provide input data features because they are automatically extracted by the algorithm.
The structures of these techniques are the multilayer neural networks and are used when the
features that are decisive for proper classification cannot be extracted a priori or it is not known
which feautures may be decisive for classification.

Figure 3.1. Relationship between machine learning and deep learning techniques
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3.1 Basic operating principle of a neural network

Figure 3.2. Illustration of perceptron

All artificial neural networks share several characteristics: a set of interconnected nodes, several
layers and one or more activation functions. The network receives different inputs and associates
different weights with the information, what it tries to do is to change the weights until the
output class is equal to the input class. The final output of a neuron is obtained by applying the
activation function used, which can be for example sigmoid, tangentoid, ReLu or SiLu. These
functions inject non-linear elements into the architecture, allowing the network to capture intricate
patterns within the dataset. Regarding the layers that can make up a neural network there
are 3 main categories: the input layers, where there are neurons that receive information from
outside, the hidden layers where the information is processed, and finally the output layer. All
the neurons in the intermediate layers are connected to the other layers to approximate precisely
the interconnections of human neurons.
The simplest mathematical approximation of the human neuron is shown in the Figure3.2, known
as perceptron, introduced by Frank Rosemblatt in 1958. It consists of an input layer, no hidden
layers, and the output. The artificial neuron is the basic element of a Neural Network. Artificial
neuron is mentioned because the idea is to create a system that simulates the human brain, or
at least the human way of learning. In fact, neural networks are based on a learning algorithm
that after exposure to a sufficient number of example samples are able to "learn," for example, to
classify the item being proposed into a certain class.
The type of learning can be mainly of two types-supervised and unsupervised. One can speak of
supervised learning when the neural network needs to receive as input a set of already correctly
classified items in order to be able to understand the classification task being asked. On the other
hand, one speaks of unsupervised learning when it is not necessary to provide the model with
examples, the neural network will try on the basis of the characteristics of the elements provided
to it to identify groups (clusters) of homogeneous elements. One of the most popular learning
algorithms is the backpropagation algorithm. Its structure can be summarized in 4 steps [30]:

• feed-forward computation

• back propagation to the output layer

• back propagation to the hidden layer
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• weight updates

An error function is created that represents the difference between the input and the output.
The algorithm stops when the value of the error function is small enough. A limitation of the
perceptron model is that classification can only be done for two classes at a time. By complicating
the model, multiclass classification can be achieved with the Multilayer Perceptron.
Multilayer Perceptron is composed of several neurons connected to each other and organized in
different layers in order to perform tasks more complicated than the single perceptron. The
structure consists of an input layer that receives the information, several hidden layers by which
the network is able to represent not only continuous functions such as the perceptron but also
discontinuous ones so as to perform complex classification tasks. There is finally an output layer,
where the number of neurons present will depend on the number of input classes.
As previously mentioned there is also unsupervised learning, where input data need not be la-
beled. What is called "competitive learning" is used: during the training phase, neurons in the
layers become active only under certain conditions, there is then a "winner" neuron. During the
subsequent learning phase only the weights of the winning neuron will be updated. An example of
neural networks using this learning technique are the Kohonen self-organizing maps (SOM) [31].

3.2 Different neural network architectures
There are several neural network architectures, which differ in how the output is obtained, how
the data is processed, and what operations are performed to extract the features of interest for
classification or other tasks. Feedforward Neural Networks (FNNs) are the foundational architec-
ture of artificial neural networks where data flows linearly from input to output. FNNs are layered
structures, each of which is composed of nodes where calculations are performed and output is
transmitted to subsequent layers. They are structured so as not to have loops where the output
of one layer is carried back to a previous layer: the information only moves in one direction,
hence the name ’feedforward’[32]. Instead, there are types of neural network architectures such
as the recurrent neural network where neurons through cycles and loops send feedback back to
each other. The idea behind this architecture is to simulate at a more complex level human brain
activity where the various neuronal areas interact with each other with feedback signals[33]. This
architecture is ideal for analyzing sequential or time-series data, finding its place in applications
ranging from speech recognition to natural language understanding. To overcome the limitations
of RNNs, more complex models have been proposed based on two units in particular: long short-
term memory unit (LSTM) and gated recurretn unit (GRU). LSTM was proposed by Hochreiter
and Schmidhuber in 1997. In contrast to simple network recurrence units, LSTMs maintain mem-
ory for a certain period of time t. When the weights are updated, the memory cell is partially
updated: new information is added and some of the old is deleted. It can be modulated via the
input parameters how much the memory is updated each time. As for the GRU, invented by
Cho et al [34], its mechanism also involves a partial update of the memory state of the unit by
a linear interpolation of the state before and after activation. The difference is that the degree
of memory update cannot be modulated [35]. These modifications allow the networks to capture
long-term dependencies more effectively, enhancing performance in complex sequential tasks like
language translation and speech-to-text conversion. Convolutional Neural Networks (CNNs) excel
in processing structured grid data such as images.(Multilayer Perceptrons in Machine Learning:
A Comprehensive Guide) Another type of neural network are autoencoders, designed for unsuper-
vised learning, which are designed to decode input data to obtain a determinant representation
and decode the extracted features to obtain an output similar to the input [36]. They are often
used for a better representation of input data e.g. images in order to decrease noise. This ap-
proach is useful for reducing dimensionality, denoising data, and enabling generative models. It is
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also important to mention a type of network capable of generating realistic data that can also be
used to expand an image dataset: this architecture is known as generative adversarial networks
(GAN). The configuration of this type of model involves the training of two separate networks,
one taking the role of generator and the other that of discriminator. The generator must try to
reproduce data increasingly similar to the input data in order to confuse the discriminator [37].
When the discriminator can no longer tell whether the data provided by the generator is real or
synthetic, the training is over. This framework has proven that can generate realistic synthetic
images, video and tokens

3.3 Applications of deep learning in medical imaging

In medicine one may be interested in the classification of an element of an image, for oncological
purposes for example one is interested in the nature of a lesion that may be benign or malignant. In
the present case one may be interested in classifying the wound according to different scales such as
the WBP, to understand its status and the decisions to be made regarding treatment. In addition
to the classification task, as also evident in chronic wound assessments one may be interested in
the area and thus the segmentation of a given image element so as to have an automatic and
precise measurement.Alternatively or in conjunction with segmentation some networks are used
for detection tasks and thus detection of a suspicious element or simply an element of interest in
an image. There are complex neural networks, created from scratch or obtained as a combination
of different architectures so that all tasks are achieved together. Alternatively, different simpler,
non-combined models are used if one is interested in achieving certain performance for a specific
task, or different, non-combined models can be used at different times to lighten the computational
cost if one is interested in multiple tasks.

3.3.1 Segmentation networks

Networks for segmenting objects or areas of interest in the image have a common basic structure
that consists of two parts: encoder and decoder. The encoder part extracts features useful for
classifying each pixel by convolution and pooling operations from the input image by reducing its
size. Once the initial dimensions have been reduced, the decoder part builds the output of the
network through an upsampling mechanism to bring the image back to the output dimensions,
assigning to each pixel the probability of belonging to the class it is interested in segmenting.
The basic structure of this type of network is likened to a U, hence the name of the U-net neural
network Figure3.3. Another type of network used for segmentation is the FastFCN. FCNs
prior to the introduction of the improvements due to the studies of Huikai Wu et al [39]. were
used much less due to model heaviness and high memory consumption The core of FastFCN is
the introduction of the Joint Pyramid Upsampling (JPU) module, which replaces the dilated
convolutions commonly used in FCN networks to increase the resolution of the final feature map
without losing the receptive field. While dilated convolutions are effective in maintaining spatial
resolution, they lead to a significant increase in computational complexity and memory usage.

28



3.3 – Applications of deep learning in medical imaging

Figure 3.3. U-net structure [38]

Figure 3.4. FastFCN structure

In the context of discussing Segmentation Networks, it’s pivotal to mention the utilization
of Deep Convolutional Neural Networks (DCNNs). DeepLab is an advanced semantic image
segmentation system that leverages the power of DCNNs to segment objects within an image,
i.e., to label each pixel of the image with a class representing the object to which it belongs.
Semantic segmentation is a dense prediction task that demands high localization accuracy as well
as semantic understanding of the image [40].

Figure 3.5. Deep Convolutional neural network structure
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3.3.2 Detection and classification networks
One of the most widely used architectures for image classification and object detection is the
convolutional neural network. The basic structure of a CNN consists of layers practising the
convolution operation, layers practising pooling operations, fully connected layers and various
functions for activating between the different layers and for extracting the final output as shown
in the Figure3.6. Convolutional layers allow the network to learn patterns within the image,

Figure 3.6. Typical structure of a convolutional neural network

using filters (kernels) of different sizes to extract the most interesting spatial features. The convo-
lution operation is precisely defined by the size of the kernel used, which turns out to be a matrix
of dimensions defined a priori when building the model. The matrix is moved over the image, and
the result will be the sum of the multiplication of each kernel pixel value by the image pixels. The
output will be a matrix equal to the size of the kernel used for the convolution operation as shown
in Figure3.7. The edges of the image are a problem for this operation, however, since when the

Figure 3.7. Convolution operation between two matrices

kernel is centred on an edge pixel it will fall out of the range of the image, a solution may be to
use zero padding so that we do not have to perform an impossible operation but simply multiply
by zero. Decreasing the size of the initial matrix is also a problem, first of all we don’t want the
size to be reduced every time otherwise we would not be able to reconstruct the output: padding
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presents a solution to this problem as well 3.7. The kernel in addition to size can be set with
several parameters among which we find the stride. The parameter refers to the displacement in
number of pixels that the kernel makes at each step. This is useful for computational cost since
increasing the stride, increases the movement of the kernel in number of pixels and thus the oper-
ation becomes inherently faster. In addition, a high value stride can be useful for the convolution
to consider different parts of the image together so that new patterns can be found. Pooling
layers are another key component of cnn, where the spatial dimension of the input is reduced
again. There are several ways of performing the pooling operation, the two most common being
max pooling and avarage. After the size of the image submatrix on which to perform pooling is
initialized, max pooling involves retaining only the largest value present in the submatrix, while
avarage mode averages over the submatrix of interest and that value is retained as representative.
Due to this type of architecture, this network model has become very popular and as already
mentioned can be used for detection and subsequent classification of detected objects.
Object detection task can usually be summarized in 3 main steps the process of object detection
performed by a CNN. First, the entire image is analyzed and resized so as to begin predicting
bounding boxes of objects of interest. The candidate regions are then further analyzed to find
characteristic features. The last part of the procedure involves the final classification of what is
found in each bounding box.
Object detection methods can be distinguished based on anchor free or anchor based methodol-
ogy settings. Anchor-based methods are a cornerstone technique in the field of object detection,
playing a crucial role in identifying objects within images. These methods rely on the concept of
anchor boxes, which are predefined bounding boxes of various sizes and aspect ratios that serve
as references for predicting the presence and location of objects in images. The anchor boxes
are strategically designed to cover different shapes and sizes, mirroring the diversity of objects
that the model might encounter in the dataset. When an image is processed, these anchor boxes
are tiled across the image in a dense grid, ensuring comprehensive coverage. Each anchor box is
evaluated by the detection model to predict whether it closely aligns with an actual object within
the image. The model does not directly predict the bounding box from scratch but adjusts the
size, position, and aspect ratio of the anchor boxes based on the objects present. This adjustment
is typically done by predicting offsets and applying these to the anchor boxes, refining them to
tightly encompass the detected objects. The use of anchor boxes allows the model to efficiently
search for objects across different scales and aspect ratios, significantly improving the detection
of varied object sizes and shapes. It simplifies the object detection problem by transforming it
into a classification and regression problem, where the model classifies each anchor box as con-
taining an object (or not) and regresses the box dimensions to best fit the objects in the image
Two-stage methods for object detection, such as the well-known Faster R-CNN, employ a sequen-
tial approach to identify and classify objects within an image. Initially, these methods focus on
generating region proposals. This entails scanning the image to pinpoint areas that are likely to
contain objects, essentially pre-selecting regions of interest. Following this, each proposed region
undergoes classification and bounding box refinement. This two-phased approach allows for a
more meticulous examination of potential objects, which is why two-stage methods are generally
praised for their accuracy. They excel in scenarios where precision in detecting and localizing
objects is paramount, thanks to the dedicated step of generating high-quality region proposals
before proceeding to the actual object detection task. However, this meticulousness comes at a
cost. The inherent nature of the two-stage process, requiring region proposal generation followed
by classification and localization, makes these methods slower in terms of inference time. This
slower processing rate renders two-stage methods less ideal for real-time applications where speed
is crucial. The additional step of generating region proposals before moving on to detection intro-
duces a delay that can be a significant drawback in scenarios demanding quick responses. Thus,
while two-stage methods stand out for their accuracy, their practicality is limited in contexts
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where rapid object detection is necessary.
One-stage detectors such as YOLO (You Only Look Once) and SSD (Single Shot MultiBox Detec-
tor) mark a significant shift in the approach to object detection by eliminating the region proposal
step seen in two-stage methods. These models operate under a streamlined principle, aiming to
identify and classify objects across the entire image in a singular, consolidated pass. This direct
approach is designed to enhance processing speed, allowing these models to classify and localize
objects without the need for a preliminary step to highlight areas of interest. The advantage
of this method is its efficiency, making one-stage detectors particularly well-suited for real-time
applications where speed is of the essence. They strike an appealing balance between speed and
accuracy, enabling rapid object detection without the procedural delay introduced by generat-
ing and processing region proposals. However, the simplification that bolsters their speed also
introduces certain drawbacks. Primarily, one-stage methods tend to lag behind their two-stage
counterparts in terms of detection accuracy. The root of this issue lies in their direct approach,
which, while eliminating delays, also increases the likelihood of false positives. Predicting over
the entire image without first isolating regions of interest can lead to a broader margin of er-
ror, as the model may mistakenly identify irrelevant parts of the image as objects. This can be
particularly challenging in complex scenes with multiple objects or in situations where objects
blend closely with their background. Despite these limitations, the appeal of one-stage detectors
remains strong in scenarios where the immediacy of detection is paramount, offering a practical
solution that balances the need for speed with reasonable accuracy [41].
Anchor-free detectors represent a significant evolution in object detection technology, diverging
from the traditional anchor-based approach by eliminating the need for predefined anchor boxes.
These models directly detect objects within an image without relying on a set group of bounding
box shapes and sizes, offering a more flexible and intuitive method for locating and classifying
objects. YOLOv1 was one of the early models to adopt an anchor-free approach, simplifying
object detection into a single process. By dividing the image into a grid, YOLOv1 directly pre-
dicts bounding boxes and class probabilities for each grid cell, streamlining the detection process
and enabling real-time predictions. This method significantly reduces the complexity involved
in object detection, offering a more efficient and faster approach. Following YOLOv1, several
innovative anchor-free models emerged, each introducing unique strategies for object detection.
CornerNet utilizes keypoints to identify the corners of objects, avoiding traditional anchors and
employing a novel corner pooling layer for more efficient localization. ExtremeNet takes a bottom-
up approach, detecting the outermost points of objects to define the bounding box, emphasizing
geometric relations within the object’s structure. RepPoints represents objects as sets of adapt-
able sample points, allowing for a more detailed and flexible object representation than traditional
bounding boxes. The FSAF model addresses issues in anchor-based detectors by employing a dy-
namic, online feature selection strategy that optimizes detection across different feature levels
without predefined anchors. The FCOS model further simplifies the detection process by treat-
ing it similarly to semantic segmentation, predicting objects per-pixel and removing the need
for complex anchor and proposal mechanisms. ATSS and OTA introduce advanced sampling
and label assignment techniques, respectively, enhancing the precision of anchor-free detection by
leveraging statistical characteristics and optimization theory. DSLA improves the transition be-
tween positive and negative samples, offering a refined approach to classification and localization.
YOLOv8, building on the legacy of YOLO, presents a state-of-the-art model that combines speed,
accuracy, and ease of use, incorporating advancements in architecture and feature detection. In
summary, anchor-free detectors have revolutionized object detection by offering models that are
not only faster and simpler but also capable of achieving impressive accuracy. These models avoid
the complexities and limitations associated with anchor boxes, opting instead for direct detection
methods that can more intuitively adapt to the varied shapes and sizes of objects within an image
[41].
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3.3.3 Deep Learning and wound care
The application of deep learning methodologies in vulnology has been a growing trend in recent
years, not only has there been an increase in research in the literature, but actual devices with this
type of integration have sprung up to support the physician in decision-making processes. A prime
example is the WoundViewer, designed to capture images of injuries and automatically classify
them according to the WBP, Texas scale in the case of diabetic feet (DFU). The device consists of
a CMOS camera and 16 IR sensors. The IR sensors are essential for measuring distance, area and
wound depth. These measurements are possible thanks to the deeplearning algorithm integrated
in the device’s software. The algorithm consists of two parts, each relating to a different neural
network: the first part has the task of extracting the regions of interest (ROI) from the input
image, its structure is that of a CNN with several layers performing the convolution operation
connected to each other. The second part is composed by a Discrete Time Cellular Non-linear
Network (DT-CNN):here the output image from the first neural network is analysed and divided
into 4 colour macro-groups (white, yellow, black and red) to identify the wound bed and then
proceed to identify the area and classify the lesion according to WBP score. Some examples are
provided in Figure 3.8. The wound ROI is then extracted from the first network so that the

Figure 3.8. Wound Bed Preparation scale and Wound Viewer algorithm classification [42]

second one can operate directly on the roi, resulting in a computationally less demanding model
as only essential image information is presented to the second analysis block [43]. The results
obtained with the WoundViewer algorithm were then compared with the opinion of an expert
in order to calculate the static parameters necessary for the validation of the device. In the test
phase all 4 wound types identified by the WBP scale were identified with more than 90% accuracy.
In addition to the classification, information was obtained on the percentage of granulation tissue
present in the wound, where the data reported by the device were consistent with the respective
identified wound classifications. Correct classification is essential to the function of the physician
support device, but other features are also included such as the ability to manually enter various
parameters that can be shared among specialists creating a digital patient record and a strong
tool for data sharing among physicians. This device achieve only 6% of error measuring wound’s
area and 99% of precision in calculating granulation percentage, for this reason it ranks among
the candidates to be considered a gold standard in the field of vulnology. Other automatic area
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measurement algorithms are known from the literature, such as Chino et al.[44] who use a deep
neural network to obtain an error of 14% or Spinczyk et al. [45] who implement the measurement
using a triangulation technique with an error of 11%. Regarding the estimation of granulation
tissue, algorithms composed of deep neural networks were proposed by Nejati et al.[46] with an
accuracy of 86.4 % and by Hsu et al.[47] with an accuracy of 83.54 %. Results comparable with
those of the WoundViewer were achieved by Maity et al.[48] with 99% accuracy in classifying the
amount of granular tissue in the wound.
H. Nejati et al. [46] proposed a pipeline for the classification of chronic wounds not into 4
subgroups but rather 7, expanding the classification of B, C and D wounds according to wbp even
more specifically. The proposed tool consists of training by transfer learning using the AlexNet
from which feautres are extracted for subsequent classification using support vector machine. The
results obtained using this method performed better than using the single ALexNet to classify
all classes. The network individually obtained statistically significant results only by dividing the
dataset into three classes. Another important application of machine learning in this area is the
tracking of how the wound evolves over time. Changan et al. [49] proposed a unified framework
that not only includes the calculation of wound area but also allows for a binary classification
on the presence of infection and a prediction on the probability of wound healing based on ulcer
behaviour over time. The prediction is made on the basis of the decrease or increase in area
relative to the initial area of the wound. The model estimates are promising in that the results
show a 95% confidence interval on the healing predictions of the wound time series used as a test
set.
From these data, evidence emerges that the integration of deep learning in this field can bring
enormous benefits both clinically and logistically. A lot of research and applications focus on
RGB images but they are not the only type of images that can be useful. A new frontier of study
are images acquired by thermal imaging, which can supplement the information that RGB images
can provide. Innovative research on this type of image applied to wounds is emerging, Fletcher
and Niyigena [50] developed two neural network models for surgical site infections analysis using
thermal images. Their aim is to emphasise the importance of accurate prediction of infection,
which is essential for wound healing. The ASEPSIS score was used to calculate the probability
of a possible infection, under the supervision of a trained physician. This type of scale was
invented by Wilson et al in 1986, possible additional treatments, serous discharge, erythema,
purulent exudate, separation of deep tissues, presence of bacteria, impaired mobility for more
than 14 days are analysed [51]. The two models used in Fletcher’s research are a basic CNN with
3 convolutional layers where the activation function implemented is ReLu. The second model is
more complex, with a ResNet50 architecture optimised for application via Transfer Learning. The
results obtained with the ResNet50 model have a classification accuracy of 90%. The limitation
of this research is that the classification is binary, i.e. ’infected wound’ or ’non-infected wound’.
Beau et al. [52] have used both thermal and RGB images to provide a unique model able to
generalise predictions for both type of images. Two models were generated: one trained with
only RGB images and the other one use RGB+Thermal. Predictions were made on 3 classes, as
’wound’, ’skin but not wound’, ’non-skin’. The results obtained are excellent, but no significant
improvement of the model is noted with the addition of thermal images, indicating that thermal
features are not particularly used by proposed models for classification.
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Chapter 4

Analysis of thermal images to
assess infection status

Images acquired by thermal imaging contain features that can bring significant advances in the
clinical treatment of skin ulcers, however, it is interesting to understand whether information
typically extracted from RGB images can also be obtained through the automatic analysis of
thermal images. These types of images have been used for a short time in wound care, so it was
decided to use them to see if the features extracted from deep learning models are informative
enough to create generalisable and complete models. The deep learning models most often found
in the literature are then applied to the dataset of images acquired with a thermal imaging camera.

4.1 Dataset

The images used are from the European database of chronic wounds[29]. This database contains
wound images of 188 cases from 79 patients. This dataset was chosen because it includes both
RGB images and the respective thermal images of the wounds. Thermal images are acquired with
a FLIR A300 thermal camera: images are captured 2D with 320x240 resolution. The camera has
a field of view (FOV) of 25° x 18.8° and a thermal sensitivity of 0.05°C. The detection of IR is
made thanks to a focal plane array (FPA).
Were also acquired stereo-images with MicronTracker Hx40, depth images with depth camera,
SwissRanges SR4000. The calibration phase was done with a checkerboard image, to find the
spatial correlations between the 4 cameras and the global room reference. For each patient, all
the above-mentioned types of images were acquired. Both before and after calibration data are
available. In the following analysis, the images after calibration were used so that the thermal
and RGB images were superimposable. This factor was crucial and was decisive in the choice of
dataset, as the algorithm used for ground truth works with images of an RGB nature.In Figure
4.20 and Figure 4.21 an example of 2 images from the dataset is provided.
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Figure 4.1. Calibrated thermal image Figure 4.2. Calibrated RGB image

4.2 Ground truth generation and preprocessing

The WoundViewer algorithm was used to obtain a reliable ground truth, in order to compare
performance with a method validated in clinical practice. RGB images were utilised for this part
of the work, of which the outline is segmented Figure 4.3. In order to obtain a mask of binary

Figure 4.3. Contour identified by the algorithm

type, the image was further processed. The image is converted into HSV Figure 4.4, the pixel
value with which the segmentation was performed is identified.
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4.2 – Ground truth generation and preprocessing

Figure 4.4. HSV Transformation

A thresholding in the specific blue range was performed with the following settings so that
only the wound contour was obtained.

lower_blue =
[︁
110, 50, 50

]︁
upper_blue =

[︁
130, 255, 255

]︁
After the tresholding a binary image is obtained, but the contours are not closed and defined

Figure 4.5.

Figure 4.5. Thresholding result

A morphological operation is performed to close the contours. The closing operation is equiv-
alent to two cascading morphological operations with a kernel of equal size. First a dilation and
then an erosion is performed. The kernel chosen to achieve the best result is a 12x12 elliptical
shape. The result is shown in Figure4.6.
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Figure 4.6. Final binary mask

The images were then classified according to WBP scale using WoundViewer algorithm.

4.2.1 Construction and Test set
The dataset makes available 250 images acquired by thermal imaging camera. The data and
they are divided into 4 classes (A,B,C,D) according to the classification of the algorithm used as
ground truth. In order to ensure representation of all classes in Construction and Test set, thirty
per cent of the images are then randomly drawn for each class to be used as Test sets using a
stratified sampling approach 4.1. The classes are unbalanced, particularly class C and D. Class D
is essential to be represented as it indicates the most severe state of the ulcer. Data augmentation
techniques are performed so that the classes are equally represented 4.2.

Class Construction Set Test Set
A 61 images 25 images
B 54 images 22 images
C 35 images 16 images
D 25 images 12 images

Table 4.1. Split dataset in construction and test set for each class

Class Training set Training set + augmentation Validation set
A 36 108 25
B 32 96 22
C 21 126 14
D 15 135 10

Table 4.2. Split construction set

To increase the number of class D images of the Construction set, vertical and horizontal
translations of random value are done. For the more numerous class C images, only horizontal
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translations are performed, as shown in Figure 4.10. Translations are applied equally to the
corresponding masks. A colourmap jet is then applied to make the temperature differences and
thermal information represented in grey tones more visible. It was decided not to perform image
cropping on the ulcer with a possible clinical model in mind where, due to logistics, images with
high accuracy cannot be acquired. Furthermore, it was intended to test the ability of the various
models to generalise even with a different, non-homogeneous background.

Figure 4.7. Original image Figure 4.8. Image with applied colourmap

The numerosity of Construction set is further increased by performing horizontal and vertical
flips of all images. 60% of the images in the Construction Set are used as Training Sets, the
remaining images are used as Validation Sets.

Figure 4.9. Original image Figure 4.10. Image with random translation
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4.3 Segmentation and classification of wounds
Segmenting and measuring the area correctly in wound care is a very important task. The area
of the wound over time gives fundamental information such as the status of the healing progress.
Three networks were chosen based on literature sources:

• U-net[38] is a very popular structure for segmentation, often used and validated in wound
care for wound segmentation [53].

• PSP-Resnet50 this network has achieved good segmentation performance in several searches
[54], it also has a Resnet backbone which is one of the best networks for extracting features
from wound images[53].

• YOLOv8 [55],represents the gold standard of object detection in real time [56] [53] , but it
is also capable of classification and segmentation. This model has been also used in wound
care to classify various state of DFU ulcers [57]. YOLOv8 [55] was selected to evaluate the
classification of ulcers obtainable with thermal imaging. Wound classification is equally
important so that the patient receives the right medical attention and avoids infection and
amputation.

The training of PSP-Resnet and YOLOv8 was carried out using a Transfer Learning approach. Re-
spectively, the training starts from the weights of the ImageNet dataset and the COCO (commun
object in context) dataset. It was shown that transfer learning enables better model convergence
in the case of a small dataset and prevents overfitting. Furthermore, several studies show that
the images of the initial training dataset are not decisive for the final performance on the medical
dataset.[58] Models were implemented in Python using Google Colab T4 GPU.

4.3.1 U-Net
The architecture has 3 main steps which are the downsampling path,made of 2 convolutional
layers, each followed by the ReLu 4.11 activation function.

Figure 4.11. Graph showing the trend of ReLu loss function
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4.3 – Segmentation and classification of wounds

The second part is the bottleneck, followed by the upsampling path. This last part is made
of upsampling operations of the feature map followed by convolution layers Figure 3.3. The
code used is the one provided by Caffe implementation [38].The images and their respective
masks were normalised in the range of 0 to 1 and resized with final dimension of 256x256. The
number of epochs chosen for training was 40 based on the improvement in loss function after the
following epoch showed an increase without improvement in performance: this parameter was
monitored trough early stopping. Early stopping is a method to prevent overfitting which allows
to choose a patience , representing the maximum number of epochs of training without increasing
performance. Initially, 100 epochs were set [59] in order to figure out the best number of epochs
to use. The loss function used is the binary cross entropy 4.1 [60]. The function takes a value of
0 when ym and xm are equal, in other cases the value of the function is positive.

Jbce = − 1
M

M∑︂
m=1

[ym × log(hθ(xm)) + (1 − ym) × log(1 − hθ(xm))] (4.1)

In 4.1[61] M is the number of training samples, ym is the target label for training images, xm is
the input image of the training, h is the network model with weights . Binary cross entropy loss
is commonly used in binary classifications. It measures the discrepancy between the actual labels
and the model’s predictions. The decrease in the loss function indicates the level of learning of the
model. When the model stops learning, the loss value stops decreasing, based on this principle the
epochs for training are chosen to prevent overfitting. Values of validation loss function relating
different epochs is shown in Figure 4.12

Figure 4.12. Values of loss function for each epoch

The first layer of the network was modified with the input image dimensions. The output
of the network is the feature map, which is thresholded to obtain the output binary mask. The
output image values are related with the probability of the network prediction 4.13, threshold was
evaluated with ROC curve and set at 0.7 in order to obtain the final mask 4.14.
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Figure 4.13. Output fea-
ture map

Figure 4.14. Final prediction
of the model

Figure 4.15. Ground truth
mask

4.3.2 PSP-ResNet50
This type of network consists of a Pyramid scene parsing network (PSP) [62] decoder with
ResNet50 backbone encoder 4.16. PSPNet is a model capable of semantic segmentation that
thanks to a pyramid parsing module analyses global context information by how the features are
aggregated in the different parts of the input image. PSPNet combined with a pretrained CNN
is able to extract the feature map [62].

Figure 4.16. Diagram of PSP-Resnet structure

The ResNet model was devised by He et al.[63] to solve the convergence and degradation
problems of deep neural networks, the concept of residual learning is introduced.A residual network
is characterised by shortcut connections that connect the convolutional layers to each other [63].
The training begins with weights from mmsegmentation[64] pre-train weights library[65]. Since
the model is pre-trained, the input images must be normalised. Another parameter to be set is the
batch size, chosen to be 8. For the pourpose of the bynary segmentation out_channels = 1 was
set. A legend is then set so that the model is able to perform semantic segmentation using ground
truth to identify areas of interest. The images were resized 256x256 and normalised between 0
and 1. Palette parameters were then set to recognise and segment class 0 as background and class
1 as wound. The number of epoch was initially set to 133 with 5000 iterations: the objective was
obtain around 100 epochs for training according to literature founds [59].

Number of iterations for each epoch = Dimension of dataset
Dimension of batch
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4.3 – Segmentation and classification of wounds

Number of epochs = Number of iterations
Number of iterations for each epoch

Cross entropy loss function was used during the training of the network 4.1. Early stopping was
set at 10 epoch patience and did not take place. The last checkpoint saved are used to evaluate
results: the palette for visualising results was background=[0,0,0] and wound=[255,255,255].
The optimized model after training on thermal images dataset is composed by 124 layers.

Figure 4.17. Figure 4.18. Figure 4.19.

4.3.3 YOLOv8-seg
YOLO (you only look once) is a CNN-type network based on a regression mechanism with a
CSPdarknet backbone53 that implements two types of activation functions: on the final layer,
the sigmoid function 4.2 is used, while on the intermediate layers, the SiLu function 4.3 is used.

σ(x) = 1
1 + e−x

(4.2)

SiLU(x) = x · σ(x) = x · 1
1 + e−x

(4.3)

Figure 4.20. Graph showing sigmoid activa-
tion function

Figure 4.21. Graph showing SiLu activation
function
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It is a network with a very complex structure 4.22 capable of performing classification, de-
tection and segmentation tasks. Features are extracted via the CSPDarknet53 backbone, also
thanks to the C2f module that diversifies the normal YOLO neck structure 4.23. The module
precedes the segmentation heads that are able to learn to predict the segmentation based on
the annotations provided for the input images. There are 5 detection modules with 1 prediction
layer, while the detection heads are similar to those of basic YOLOv8. YOLOv8-Seg model out-
performs on various object detection and semantic segmentation benchmarks while maintaining
high speed[56].Since the network is capable of performing several tasks, it implements more than
one loss function to define the learning improvement. The different loss functions used are in fact
specific to the task whose learning evaluation they perform. In particular, the BCE is used for
the classification branch and the Complete IoU together with the distributional focal loss for the
branch that deals with segmentation and bounding box prediction [56]. The complete IoU 4.4 is
an evolution of the other loss functions based on intersection over union. It takes into account in
particular the overlapping areas of the bounding boxes belonging to the ground truth and those
predicted, together with the distance between the centres of the bounding boxes [66].

CIoU = 1 − IoU + ρ2(b, bgt)
c2 + αv (4.4)

In the formula [66] (b, b_gt) indicates the Euclidean distance between the centres of the two
bounding boxes, while c represents the length of the diagonal of the rectangular frame that can
contain the two bounding boxes, v and α are balancing parameters [66].

DFL(Si, Si+1) = − ((yi+1 − y) log(Si) + (y − yi) log(Si+1)) (4.5)

In 4.5[67] Si and Si+1 are the model-predicted probabilities for the values yi and yi+1. y: is the
target value we are trying to predict. yi and yi+1 : are the discrete values that bound y. The

Figure 4.22. Diagram of YOLOv8 detection algorithm
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Figure 4.23. Detail of C2f module structure

network was pre-trained on the public COCO(Common object in context) dataset. The configu-
ration file of the pre-trained network has 80 detectable object classes, which are overwritten with
the classes of interest: background and wound. The network needs to provide for each training
image, thus both training and validation set, a text file annotating the contours of the object
to be detected normalised with respect to the size of the image. Together with the normalised
contour for each object, the numerical code of the class to which it belongs must be written,
which is indicated in the cofniguration file. It is used with task segment, from the available pre-
trained models ’yolov8segX.pt’ was chosen (specification: YOLOv8x-seg summary: 401 layers,
71755663 parameters, 71755647 gradients, 344.5 GFLOPs) as a compromise between computa-
tional cost and average model accuracy on the COCO (common objects) dataset. As far as data
augmentation is concerned, it is implemented automatically by the yolov8.2 model via integra-
tion of the albumentations library (parameters: albumentations: Blur(p=0.01, blu_limit=(3, 7)),
MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0),
tile_grid_size=(8, 8)). In addition, several parameters are available that can be varied during
training to increase the generalisation capabilities of the model such as mosaic=1.0. Mosaic aug-
mentation is a data augmentation technique that combines four different training images into a
single composite image in order to improve the robustness and generalisation capabilities of the
model, the functionality is deactivated during the last 10 epochs compared to the initially set
epochs. We then set fliplr to 0.5, horizontal flipping for augmentation. The batch size is set to
8. The optimizer AdamW type is selected automatically by network. For training process, 200
epochs [68][69] were chosen with patience set to 10. The final training is then done with 110
epochs, the value identified by early stopping. The fused model after training on thermal images
dataset is composed by 195 layers.

4.4 Classification of wound status

YOLOv8 was chosen for the classification task:’yolov8segX.pt’ net weights are also used for this
training. The classes set are the 4 classes identified by the WBP score which are overwritten to
the initial 80 classes. Annotations were provided for each image for the training phase. At each
class was associated a number from 0 to 4 in order provide .txt files for the network training.

45



Analysis of thermal images to assess infection status

Class Code associated

A

B

C

D

0

1

2

3

The epochs initially set are 200, value chosen from literature [68][69], decreased to 135 after the
early stopping intervention (patience set at 10 epochs without increasing of performance). The
fused model after training on thermal images dataset is composed by 206 layers. The network
is able also to segment and detect elements, useful since the images are not cropped, but since
the main task of interest is classification initial loss function are modified as follow: box_loss=5
, cls_loss=3,seg_loss=0.5. The value of class loss is increased from 0.5 to 3 so that the model
focuses on the classification task, penalising errors due to the task to a greater extent. For this
task WoundViewer alghoritm’s classification is set as ground truth.

4.5 Metrics for evaluation of performances
The results obtained were analysed using specific metrics calculated by comparing the ground
truth masks with those obtained after training the models. Precision,recall and Dice were chosen.
The values for the segmentation task were calculated for each image and then averaged to obtain
a value representative of performance. The Python library classification_report imported from
sklearn.metrics was used for the calculation. In particular, the metrics are calculated after obtain-
ing the automatic masks with the different inference processes of the different networks. Pixels
with a value of 255 (white) represent the detected object while pixels with a value of 0 (black)
represent the background. If the pixels of automatic mask and ground truth have the same value
they are true positive if they represent the object to be detected (TP) and true negative (TN) if
they represent the background, if the pixels were meant to represent the object but are detected
as background they indicate a false negative (FN) and on the contrary a false positive (FP).

Recall (Sensitivity)

Recall (Rec) = TP
TP + FN (4.6)

Precision (Positive Predictive Value)

Precision (Pre) = TP
TP + FP (4.7)

F-Score (Dice)

F-Score = 2 × Pre × Rec
Pre + Rec = 2TP

2TP + FP + FN (4.8)

These metrics were chosen through literature analysis, as they were found to be more meaningful
for assessing the performances of wound segmentation algorithms [70] [71]. Recall and Precision

46



4.6 – Results for segmentation task

are essential to understand whether the model is sensitive to over- or under-segmentation. Dice
is obtained by combining precision and recall and returns an indicative value of how much the
predicted area overlaps with ground truth[72].

Figure 4.24. Comparison between ground truth(GT) and algorithm segmentation

As shown in the figure4.24 , unless there is a perfect overlap between ground truth and auto-
matic mask, we may find ourselves in one of two situations. With a very high precision and a low
recall we know that we will be in an under-segmentation situation, while with a particularly high
recall and low precision the prediction will be tending to over-segmentation. These two cases in
relation to the clinical case at hand have different values. Over-segmentation would be prefer-
able, as a wound that does not heal and maintains a large size attracts the physician’s attention,
whereas if a decrease in size is detected by mistake, some data of fundamental importance for a
correct follow-up may be missed.

4.6 Results for segmentation task

All three models were tested on the images of the Test set as they represent 3 alternative pipelines
for the intended purpose. The best results are obtained using the PSP-Resnet50 model, neither
the U-net nor the YOLO exceeded the 50% Dice on the test set images. There is no significant
discrepancy for any model with regard to precision and recall values, indicating that there is no
particular tendency for over- or under-segmentation. The coefficient values for the Training set
are generally higher than the Validation and Test set values as the model is trained to recognise
those images. The YOLO model is the only one that also shows poor results on the Training set.

Table 4.3. U-net segmentation performance metrics

Training set Validation set Test set
Average_Precision 66% 60% 41%

Average_Recall 72% 66% 52%
Average_Dice 63% 57% 39%
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Table 4.4. PSP-Resnet50 segmentation performance metrics

Training set Validation set Test set
Average_Precision 83% 80% 75%

Average_Recall 79% 76% 70%
Average_Dice 80% 77% 72%

Table 4.5. Yolov8 segmentation performance metrics

Training set Validation set Test set
Average_Precision 45% 45% 24%

Average_Recall 50% 47% 34%
Average_Dice 44% 42% 21%

4.7 Results for classification task

Confusion matrices were derived for Training, Validation and Test sets. The metrics of Class
Accuracy, Balanced Accuracy and Error Rate were calculated from the confusion matrices. Again,
it can be seen that better results are obtained for the Training set because the model is trained
to recognise those particular images. Speaking of the Validation and Test set, misclassification
phenomena only occur for type A images but what impacts performance are the unclassified
images.

Class Accuracy

Class Accuracy = TP + TN

TP + TN + FP + FN
(4.9)

Balanced Accuracy

Balanced Accuracy = 1
2

(︃
TP

TP + FN
+ TN

TN + FP

)︃
(4.10)

Error Rate

Error Rate = FP + FN

TP + TN + FP + FN
(4.11)
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Figure 4.25. Confusion matrix of Training set image classifications

Table 4.6. Fine tuned-Yolov8 classification performances metrics on Training set:
metrics for each class

A B C D
Class accuracy 72% 67% 79% 93%

Table 4.7. Fine tuned-Yolov8 classification performances metrics on Training set: general metrics

Error rate 21%
Balanced accuracy 78%

Figure 4.26. Confusion matrix of Validation set image classifications
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Table 4.8. Fine tuned-Yolov8 classification performances metrics on Validation set:
metrics for each class

A B C D
Class accuracy 36% 59% 81% 92%

Table 4.9. Fine tuned-Yolov8 classification performances metrics on Validation set: general metrics

Error rate 33%
Balanced accuracy 71%

Figure 4.27. Confusion matrix of Test set image classifications

Table 4.10. Fine tuned-Yolov8 classification performances metrics on Validation set:
metrics for each class

A B C D
Class accuracy 46% 77% 71% 90%

Table 4.11. Fine tuned-Yolov8 classification performances metrics on Validation set: general metrics

Error rate 38%
Balanced accuracy 67%
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4.8 Discussion
In the light of the results obtained, useful information can be deduced regarding the analysis
of thermal images using deep learning methods, but there is also room for improvement. The
greatest difficulty was finding a dataset that lent itself to this analysis: the corresponding RGB
images of the thermal images were required in order to create a reliable ground truth from which
conclusions could be drawn by comparing performances of the various models. Few images were
found for a more in-depth analysis; it is well known that deep learning needs a large amount of
data to be able to generalise correctly. An example in the field of wound care is the training of the
WoundViewer algorithm, which was performed with around 3,000 images from clinical trials [42].
Another problem was the low resolution of the images, which can further challenge the algorithms
to recognise small details. Segmentation has proven to be a difficult task from thermal images,
the reason may simply be that thermal images as such highlight temperature differences that in
grade A wounds 4.29 , thus composed of 100% granulation tissue, are not often evident because
they are not characterized by marked vascular reorganization. In that case, the information that
the neural network extracts from the thermal image may not be sufficient to highlight a sharp
contour. In the pictures 4.28 4.29 in the figure is noticeable how the difference in temperature
distribution on the patient’s leg with D wound type is evident 4.28.

Figure 4.28. Image with a type D wound Figure 4.29. Image with a type A wound

The YOLO model showed the worst results, probably its more complex structure converges
with more difficulty, thus making it uncompetitive with simpler models such as the U-Net and
PSP-Resnet50. Different performance is also found between the latter two networks, better for
the PSP-Resnet50, attributable to a feature of the structure, the residual module, used by the
Resnet50 backbone but not the U-Net. With the use of the residual unit, in fact, the Resnet is
able to converge faster while avoiding overfitting. Resnet residual units are designed to solve deep
neural network training problems and solve vanishing gradient problems, for this application this
difference in architecture may have been crucial and allowed the backbone Resnet type to make
a difference. In addition, Resnet has been called the gold standard of wound classification several
times in the field of vulnology [53], so using such a backbone for feature extraction,then used by
the decoder for segmentation, can be a winning solution. The results show that the Dice on the
Test set obtained by the model in question is the only one above 50% , making the model’s ability
to recognize wound and background actually useful. Regarding Recall and Precision values, a
good balance of the two values is noted, indicating a good estimate of the wound area. It is

51



Analysis of thermal images to assess infection status

important to remember that if a physician support system is to be built, it must show a certain
reliability, if not its use becomes superfluous or even misleading, failing the main purpose of the
analysis. A very important task in this clinical setting is the correct classification of the degree
of wound healing and infection. Incorrect classification can in fact lead to underestimation of a
wound, which if left untreated can lead to amputation or death in the worst case. The results
of the YOLOv8 model used for detection and classification show balanced accuracy greater than
50 per cent for the Test set indicating a mostly correct classification that can be improved with
more extensive training. The network shows that it was able to generalise and recognise all 4
types of injuries. The greatest difficulty is in the identification of type A wounds, evidently the
features that the network tries to identify in the thermal image are often not sufficient to make a
confident classification. It can be seen that the misclassification is very low and occurs between
type A and B images. This is not worrying from the point of view of learning of the algorithm,
often in clinical practice these two classes are combined into one. What is of interest is to discern
between a wound with more granulation tissue and not infected and a wound that is necrotic and
infected. This objective is fulfilled as all type D images in the test set are recognised. The trained
algorithm is therefore shown to be useful for the recognition of severe wounds tending to worsen
with 90% of accuracy. Precision across all classes is good, but this figure needs to be put into
context, as the parameter does not take into account the high number of unclassifieds which are
still a problem. This phenomenon can also be attributed to the fact that the input image to be
analyzed does not represent only the wound but the whole environment, so some elements may
lead the inference procedure not to have a high enough confidence in detecting the area of the
image that affects the wound. For this reason YOLOv8 had been chosen, so as to also keep the
detection active thus training the network to recognize the wound area and classify only that but
not the whole image. The problem could have been solved by choosing to perform cropping on the
wound area, but since we wanted to keep a worst case situation and test how the network could
behave with this added difficulty the cropping was not done. For this specific application , i.e.,
classification of chronic wounds using thermal imaging, it has been difficult to find examples in
the literature especially for the training parameters of neural network models as it appears to be
a still nascent application. It was not possible to find a model that was capable of performing all
the tasks of interest, so a combined model can be proposed, with a network capable of segmenting
the image well with a network capable of classifying following in cascade. A similar approach is
put into practice by the WoundViewer algorithm, where the first network recognizes the area of
interest in the image where the wound is located and the second analyzes the area found to find
the percentages of granulation or necrotic tissue.

Figure 4.30. Pipeline about the model proposed

As is shown in the Figure4.30, the proposed model to obtain a complete assessment of the
chronic injury would be the set of the network to segment and measure the area, the measurement
of which is expressed in pixels not having the scale factor to carry the measurement in cm, and
to follow the neural network model that can classify what has been previously identified.
Thermal imaging represents a new frontier with much potential in wound care; however, a lot
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of data is needed for analysis with deep learning algorithms. The data needed to develop and
implement ad hoc models will be collected at the clinical trial that will take place at Niguarda
Hospital. Preliminary results show great promise despite the quality of the dataset. A clinical
protocol has been designed so as to collect all the information needed to understand the wound
infection status, such as the biopsy result, which will be used as ground truth to classify the
wound as infected or not through the images provided. Visits will be made on fixed days so as to
have a complete dataset that allows for the development of models that understand the possible
evolution of the same wound over time, which was not possible in this preliminary analysis be-
cause there were few patients compared to the total number for whom data from multiple visits
were available. Key thing will be to acquire both RGB images and thermals so that information
can be extracted from both, for example, segmentation and area measurement from RGB images
and infection degree measurement from thermals. Even in light of the data provided by the pre-
liminary analysis, it can be seen that the classification task was performed more efficiently on
thermal images than segmentation. Thus, the idea of a combined model that can analyze both
RGB and thermal images and extract the most interesting features for both types of images is
not ruled out.
Thermography has the potential to become the new gold standard for predicting wound infections,
aligning well with observations made by wound healing professionals along with new techniques of
deep and machine learning. The studies reviewed confirm the reliability of this method. Combin-
ing traditional thermal imaging with modern digital processing techniques presents an excellent,
non-invasive, cost-effective, and time-efficient solution for diagnosing wound infections. This
method’s versatility makes it suitable for various types of ulcers and different settings, includ-
ing remote clinical care, home care, and long-term hospital facilities, underscoring its reliability.
Quick diagnosis and prompt medical intervention also reduce hospital costs and enhance patient
care efficiency. Establishing a centralized diagnostic method, supported by other biomarkers and
parameters, would facilitate more effective patient recovery and healing. Given the promising
results from other studies and the high costs and complexity of current medical imaging tech-
niques, thermography appears to be a solid approach. By linking thermal images to a set of
static (from single examinations) and dynamic parameters (from multiple medical visits), we can
enhance diagnostic precision and specificity of different neural network architectures. A clinical
trial, of which the flowchart is shown below, to refine this diagnostic method will improve accu-
racy, making thermography the preferred technique for diagnosing skin ulcer infections, benefiting
both patient health and cost-effectiveness, allowing utlher investigation of what features of these
images can be artificially processed in order to create intelligent and efficient models to support
examination and diagnosis.
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Protocollo sperimentazione clinica

“TERMOGRAFIA PER LA DIAGNOSI CLINICA DELLE INFEZIONI NELLE ULCERE CUTANEE ”

Trial spontaneo

Synopsis

Versione 15 novembre 2023

Titolo dello studio:

Coordinatori dello Studio:

Studio di proof of concept della correlazione tra le immagini
termografiche e lo stato di infezione nelle lesioni cutanee croniche
ulcerative per determinare la situazione clinico-patologica
dell’infiammazione.

Dott. Giovanni Sesana, Chirurgia Vascolare, ASST Grande Ospedale

Metropolitano Niguarda (PI clinico)

Prof. Jacopo Secco, Dipartimento di Elettronica e Telecomunicazioni,
Politecnico di Torino, Torino (PI non clinico)

Razionale: Allo stato attuale l’insorgenza di un’infezione viene osservata

tipicamente attraverso le valutazioni soggettive dell’operatore, i

parametri fisiologici del paziente (analisi del sangue, urine,

temperatura corporea), esami diagnostici strumentali e le analisi

microbiologiche. La presenza di un’infezione definisce chiaramente il

rallentamento del processo di guarigione della ferita e il suo

conseguente peggioramento, con effetti sulla condizione clinica globale

del paziente sia nel periodo di ricovero sia nel post-operatorio. I

dispositivi attualmente presenti sul mercato sono difficilmente

utilizzabili in quanto manca un processo di individuazione automatica

dell’infezione della ferita e viene quindi richiesta una partecipazione

dell’operatore. In particolare, le tecniche strumentali di CT, MRI, PET

sono troppo onerose e complesse per l’analisi dell’ulcera; dall’altro lato

le analisi microbiologiche sono lente e costose. La prima diagnosi
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dell’infezione deve essere il più possibile rapida e facile, attraverso un

protocollo semplice ed efficace d’azione standardizzato per il pronto

intervento nella cura della lesione. Lo scopo del presente studio è

dunque quello di utilizzare immagini termografiche della ferita che

consentano un’automatica identificazione, in maniera precisa,

dell’infezione della ferita con un’accuratezza altrettanto adeguata a

quella delle tecniche di diagnosi tradizionali. Premesso che la

valutazione del letto di ferita è il parametro clinico più importante,

utilizzato sia come indicatore dell’evoluzione del trattamento in corso,

sia come guida per le decisioni terapeutiche, l’analisi termografica

permetterebbe facilmente di valutare anche lo stato infettivo

dell’ulcera che spesso rappresenta la prima causa di peggioramento

della stessa. La situazione attuale è determinata in modo

preponderante dall’esperienza degli operatori, che ovviamente è

soggettiva e difficilmente uniformabile. Il nuovo algoritmo di

classificazione dello stato infettivo della ferita, basato sulla correlazione

tra analisi termografica della ferita e la sua stessa infezione, si propone

di superare sia la soggettività insita nel sistema sia le vecchie tecniche

di diagnosi attraverso la standardizzazione della valutazione attraverso

l’uso combinato di diversi parametri fisiologici del paziente.

Scopo della sperimentazione sarà quello di verificare che l’analisi

termografica riesca ad identificare l’effettiva presenza di un’infezione

nell’ulcera cutanea di un paziente, acquisendo un’immagine della ferita

con opportuna fotocamera termica volta a fornire dati sullo stato

termico e infettivo della lesione, saggiando al contempo la percentuale

di affidabilità ed il margine di errore, sia sulle singole acquisizioni dati,

sia su campioni statisticamente rilevanti.

Disegno dello studio: Si tratta di uno studio di tipo osservazionale prospettico in quanto

verranno prese immagini termografiche di ulcere con il sistema
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integrato Wound-Viewer Lite01, Omnidermal Biomedics srl. Il sistema

di analisi e classificazione verrà poi valutato in termini di accuratezza e

precisione su tutto il campione statistico preso in considerazione. Lo

studio avrà caratteristiche di studio monocentrico. Il tipo di studio non

è randomizzabile in quanto il confronto avviene verso parametri che

sono rilevati strumentalmente dagli operatori sulle stesse lesioni.

Il fine della presente analisi è volta a testare l’accuratezza e la

precisione dell’analisi termografica con l’acquisizione delle immagini

termografiche di ulcere cutanee, per la diagnosi di una possibile

infezione, come metodo alternativo ma soprattutto più efficace

rispetto alle altre tecniche diagnostiche in uso. Nello specifico:

● Analisi microbiologiche

● CT, MRI, PET

● Analisi cliniche

● Valutazione clinica

I parametri misurati e integrati con il metodo di classificazione della

presenza dell’infezione, sono raccolti con il dispositivo Wound-Viewer e

sono i seguenti:

Dati del paziente, questi saranno pseudo-anonimizzati con chiave di

cifratura legante il paziente con il suo codice a database. La chiave di

cifratura è accessibile solo da parte del PI clinico (Ospedale Niguarda)

attraverso username e password privata:

1. Copia del database dei dati paziente e chiave di cifratura ad uso

esclusivo del PI clinico Dott. Giovanni Sesana:

a. Nome e Cognome

b. ID a database (chiave di cifratura)

2. Copia del medesimo database senza nome, cognome e data di

nascita, o comunque mancante di qualsiasi riferimento che

potrebbe riportare al riconoscimento del paziente. Riferimento

al paziente solo tramite ID.

Dati del paziente al momento della visita:
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1. Area della ferita in cm^2,

2. Profondità della ferita in mm,

3. Volume della ferita in cm^3,

4. Dolore percepito dal paziente (su una scala da 1 a 10),

5. Grado di infezione secondo la scala di Cutting e Harding,

6. Classificazione WBP,

7. Classificazione TEXAS (se piede diabetico),

8. Medicazione e trattamento della ferita,

9. Immagine della ferita in RGB,

10. Aspetto del tessuto della ferita (granulazione percentuale

rossa, nera, bianca e gialla),

11. Immagine termografica della ferita e della zona peri lesionale

immediatamente circostante,

12. Immagine termografica dell’arto controlaterale sano,

13. Esito Biopsia

Dati della ferita:

1. Eziologia,

2. Età dell'ulcera,

3. Stato clinico,

4. Profondità anatomica,

5. Parte del corpo

La combinazione dei seguenti parametri e dell’elaborazione delle

rispettive immagini termografiche acquisite sulle ulcere dei pazienti,

dovrà permettere di stabilire un criterio di classificazione della lesione

nello stato infiammatorio infettivo o non infettivo attraverso algoritmo

di machine learning.

Ciascuna immagina verrà pseudo-anonimizzata ai sensi del

regolamento GDPR (UE) 2016/679.

I dati raccolti verranno elaborati all’interno di un algoritmo di machine

learning con l’intenzione di riuscire a classificare la ferita come infetta o

non infetta.
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L’algoritmo di machine learning si basa su una rete neurale che riceve

in ingresso una serie di feature del paziente: immagine termografica,

immagini tridimensionali e bidimensionali, misurazioni della lesione in

termini di parametri osservazionali, valori clinici fisiologici, punteggi di

valutazione della ferita come il WBP (Wound Bed Preparetion Score),

composizione tissutale dell’ulcera. L’architettura della rete neurale e il

suo algoritmo di classificazione prende ispirazione da metodi di analisi

non lineari, sistemi neuromorfici di calcolo, basati sul network delle

cellule neurali, random forest o il modello del perceptron.

L’analisi effettuata sui risultati del metodo formulato si baserà sulle

decisioni del classificatore nell’indicare la possibilità di infezione o

non-infezione su ciascun paziente esprimendo un risultato codificato in

maniera binaria. Per far ciò si valuta l’effettiva accuratezza

dell’algoritmo di classificazione secondo diversi parametri: accuratezza,

recall, F1, score, precisione, curva ROC, mean square error, coefficiente

di correlazione, percentuale di falsi negativi e falsi positivi, veri positivi

e veri negativi, tramite matrice di confusione. Il valore di tali parametri

è da considerarsi come diretta conseguenza del raggiungimento degli

endpoint primari e secondari descritti di seguito. A seguito di questa

prima valutazione sulla totalità del campione, seguiranno valutazioni

dei seguenti parametri per ciascun gruppo eziologico delle ferite. Per il

caso di classificatore binario, il criterio di metodo di valutazione sarà

basato sul metodo holdout. Per questo i dati raccolti e forniti al

classificatore saranno precedentemente divisi in dati di train, test e

validation, già targhettati per addestrare l’algoritmo di apprendimento

supervisionato.

Questo genere di analisi ha lo scopo di stabilire la sensitivitá

dell’algoritmo di classificazione e paragonarla con il reale stato infettivo

della lesione. La valutazione della bontà del classificatore è basata sulla

numerosità del campione scelto.
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Popolazione

Numero di visite:

Verranno arruolati 270 pazienti suddivisi in 6 gruppi in base alle

seguenti tipologie di ulcere. La costruzione del campione è stata fatta

cercando di arruolare quanti più pazienti possibile compatibilmente

con i tempi di valutazione della ferita del medico, la disponibilità di

pazienti all’inserimento del trial, la costruzione di un campione

statisticamente rilevante, come suggerito dalla letteratura e il

soddisfacimento dei criteri di inclusione da parte dei pazienti. Inoltre, il

criterio per stabilire la numerosità del campione, affinché fosse

statisticamente significativo, si è basato sul reclutamento di dati in

maniera da rappresentare equamente ciascun tipo eziologico di

lesione. I tipi eziologici scelti sono stati eletti in base alla casistica

clinica più comune di lesione, data da indagini preliminari sul luogo

della sperimentazione. Per ogni gruppo consideriamo un gruppo di

controllo di pazienti non infetti (15 soggetti per ogni eziologia) e un

gruppo di lesioni infette già diagnosticate in rapporto 1:2 in maniera

evidenziare la sensibilità dell’algoritmo nel diagnosticare l’infezione.

● Ulcere dell’arto inferiore minimo 30 (+ 15 non infetti) lesioni

infette

● Lesioni in piede diabetico minimo 30 (+ 15 non infetti) lesioni

infette

● Ulcere da pressione minimo 30 (+ 15 non infetti) lesioni infette

● Ulcere acute minimo 30 (+ 15 non infetti ) lesioni infette

● Lesioni da patologia autoimmuni minimo 30 (+ 15 non infetti)

infette

● Ferite chirurgiche sternali da cardiochirugia, chirurgia generale

e vascolare minimo 30 (+ 15 non infetti) infette.

● 3 visite al T0, T1, T2 per tutte le lesioni eccetto le ferite sternali:
le visite verranno programmate a distanza di 7 giorni una
dall’altra, considerando il T0 al giorno 1, T1 al giorno 7 e T2 al
giorno 16.
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Centri di studio:

Strumentazione:

● 3 visite al T0, T1, T2 per ferite sternali: le visite verranno
programmate considerando: T0 al primo giorno
post-intervento, T1 al quarto giorno post-intervento, T2
all’ottavo giorno post-intervento.

● 1 sito clinico, ASST Grande Ospedale Metropolitano Niguarda,
Milano, piazza Ospedale Maggiore 3 – 20162

● Biopsia
● Etichetta cartacea da porre nella zona sana limitrofa alla ferita

per avere un riferimento nelle immagini.
● Wound Viewer Lite01 by Omnidermal Biomedics srl, integrato

con FLIR T620 Thermal Imager, FLIR Systems Boston, MA.
Manuale d’uso e certificazione CE sono in allegato nella
documentazione.

Criteri di inclusione: I pazienti devono soddisfare tutti i seguenti criteri per essere
ammissibili per l'inclusione nello studio:

1. Paziente di età > 18 anni;
2. Paziente sottoposto a cure standard;
3. Ottenimento del consenso informato;
4. Lesioni > 2 cm2;
5. Lesioni < 100 cm2;

Criteri di esclusione: I pazienti che hanno incontrato uno dei seguenti criteri (screening
visita) non sono ammessi a partecipare nello studio:

1. Mancato ottenimento del consenso informato;
2. Lesioni < 2 cm2;
3. Lesioni > 100 cm2

Criteri di sospensione: non previsti

Page 7



Validazione clinica della Termografia per la diagnosi delle infezioni ulcerose Novembre 2023

Endpoints Endpoint Primario:
● Valutazione della correlazione tra immagini termografiche e

stato infiammatorio dell’ulcera tramite coefficiente di
correlazione sulla base dei risultati e i parametri di valutazione
ottenuti sull’algoritmo di classificazione elaborato.

● Valutazione dell’accuratezza e dell’affidabilità del sistema di
classificazione dello stato infettivo dell’ulcera basato sull’analisi
termografica. Questo verrà effettuato tramite il parametro di
accuratezza ottenuto dai risultati del classificatore,
specificatamente dalle percentuali di falsi positivi e negativi e
veri positivi e negativi. L’affidabilità verrà valutata tramite i
parametri di sensitività e specificità basati sui risultati del
classificatore.

Endpoint Secondari:
- Valutazione della presenza dell’infezione sulla totalità del

campione.
- Valutazione della perfusione del sito lesionato.
- Valutazione della presenza dell’infezione su ulcere di diversa

etiologia.

Metodi: Valutazione nella stessa sessione della lesione mediante giudizio clinico

con il dispositivo Wound Viewer Lite01 per raccogliere i dati del

paziente e lo stato della ferita attraverso parametri già menzionati e

immagini fotografiche.

Sono previste 3 visite per ogni ferita: per tutte ad eccezione delle ferite

sternali verranno valutate al giorno 1, 7 e 16, mentre le ferite sternali

saranno sottoposte a valutazione nel primo, quarto e ottavo giorno

post-operatorio.

Tutti i pazienti effettueranno una biopsia per valutare lo stato infetto o

meno della ferita. La biopsia consiste nella detersione con soluzione

fisiologica della ferita e il prelievo di tessuto profondo che viene poi

inviato in laboratorio utilizzando la provetta ESWAB. Il campione viene

poi inviato con impegnativa M501UL al laboratorio di analisi che

provvede ad elaborare l’esito dell’esame clinico. Successivamente il

laboratorio analisi performerà l’esame secondo il protocollo standard

allegato nel file ‘Protocollo Microbiologia’.

Il risultato permetterà di reclutare pazienti nella giusta coorte di infetti

o non infetti fino al raggiungimento del numero minimo di soggetti

richiesti dalla definizione della popolazione.

Gli esami e i dati dei pazienti, ricoverati o in ambulatorio, verranno

raccolti in centro ospedaliero o ambulatoriale, inviati e archiviati nel
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sistema cloud del dispositivo Wound Viewer. Nello specifico l’esito della

biopsia verrà trasmesso secondo il protocollo e il sistema sanitario

standard al medico richiedente l’esame (PI clinico), il quale registrerà a

sua volta l’informazione della biopsia (infetto/non infetto),

nell’apposito spazio ‘Note’ presente nel sistema digitale integrato WV

quando si performa la visita del paziente. Il sistema prevede l’utilizzo di

CRF digitale già implementata nel dispositivo. Il software implementato

all’interno del dispositivo, atto a raccogliere i dati della

sperimentazione, è certificato anch’esso come dispositivo medico

rientrante nella certificazione del dispositivo stesso, allegata alla

documentazione. Si può accedere ai dati del dispositivo esclusivamente

tramite credenziali private fornite al PI clinico dello studio. Tali dati

vengono automaticamente pseudo-anonimizzati dal sistema (i.e. le

chiavi di cifratura rimangono accessibili solo tramite dispositivo e

relativo software) prima della condivisione con il PI non clinico.

Di tutte le lesioni verrà eseguita un’acquisizione dei parametri

attraverso il dispositivo Wound Viewer Lite01 già integrato di

fotocamera termografica FLIR per acquisizione delle immagini

termografiche. L’immagine termografica verrà acquisita sull’arto affetto

da lesione cutanea e a discrezione dell’operatore sull’arto

controlaterale sano. Su entrambi gli arti verrà posizionato un marker

non invasivo e anti-irritazione, in una zona sana della cute per poter

elaborare le immagini termografiche acquisite con eventuali

sovrapposizioni con altre immagini RGB. La posizione di tale marker

dovrà risultare nella zona in alto a destra della foto.

Parametri e immagini saranno raccolti ed elaborati nell’algoritmo di

classificazione come metodo di identificazione dell’infezione.

L’algoritmo di classificazione viene quindi sviluppato sulla base dei

campioni raccolti.

I campioni vengono elaborati con un sistema di intelligenza artificiale

integrabile nello stesso dispositivo non invasivo e portabile che

raccoglie i dati e le immagini del paziente.

L’algoritmo di machine learning si basa su una rete neurale che riceve

in ingresso una serie di feature del paziente: immagine termografica,

immagini tridimensionali e bidimensionali, misurazioni della lesione in

termini di parametri osservazionali, valori clinici fisiologici, punteggi di

valutazione della ferita come il WBP (Wound Bed Preparetion Score),

composizione tissutale dell’ulcera. L’architettura della rete neurale e il

suo algoritmo di classificazione prende ispirazione da metodi di analisi

non lineari, sistemi neuromorfici di calcolo, basati sul network delle
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cellule neurali, random forest o il modello del perceptron. La

dimensione della rete viene gestita in base al numero di dati in input. Il

processamento dell’immagine viene sottoposto ad una tecnica di

computing basata sul memristor, Memristor Cellular automata,

progettata e allenata per questo scopo specifico.

Dai dati in possesso possono essere estratte nuove feature, ancora più

significative per l’addestramento della rete, quale il gradiente termico

spaziale e temporale della temperatura della lesione. Avere feature

pre-elaborate e significative da dare in input alla rete, permette di

rappresentare e spiegare meglio i risultati ottenuti.

Analisi statistica: dimensioni del campione:
270 ulcere cutanee suddivise in 6 gruppi.

● Ulcere dell’arto inferiore minimo 30 (+ 15 non infetti) lesioni

infette

● Lesioni in piede diabetico minimo 30 (+ 15 non infetti) lesioni

infette

● Ulcere da pressione minimo 30 (+ 15 non infetti) lesioni infette

● Ulcere acute minimo 30 (+ 15 non infetti ) lesioni infette

● Lesioni da patologia autoimmuni minimo 30 (+ 15 non infetti)

infette

● Ferite chirurgiche sternali da cardiochirugia, chirurgia generale

e vascolare minimo 30 (+ 15 non infetti) infette.

Tipo di analisi:

Sulla totalità del campione:

1. Calcolo della bontà del classificatore con metodo holdout.
2. Valutazione dei parametri di un classificatore binario:

accuratezza, precisione, specificità, sensitività, recall, F1, score,
coefficiente di correlazione, percentuali di falsi negativi e
positivi, veri negativi e positivi.

3. L’analisi è valutata tramite matrici di confusione e curve ROC.
4. Il coefficiente di correlazione verrà utilizzato per valutare la

correlazione tra l’analisi termografica e il grado di infezione.
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Questo processo sará ripetuto per tutti i gruppi eziologici descritti in
precedenza.
Affinché l’analisi dia un esito positivo le seguenti ipotesi devono essere
verificate secondo i valori attesi presenti nella seguente tabella
La metodologia statistica è stata sviluppata in collaborazione con il Prof.
Mauro Gasparini, Ordinario di Statistica al Politecnico di Torino.
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