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Abstract 
This study investigates the key factors influencing fuel consumption in cold chain 

logistics (CCL) and presents a machine learning approach to estimate and optimize fuel 
usage. By analyzing data from various sources, the research identifies significant variables 
affecting fuel consumption, including vehicle age, maintenance frequency, temperature 
control settings, route characteristics, and load management. The findings highlight the 
importance of leveraging advanced technologies and machine learning models to enhance 
fuel efficiency, reduce costs, and improve environmental sustainability in CCL operations. 
Various linear regression models were tested to identify the best predictive solution, ensuring 
accurate and reliable estimates of fuel consumption under different conditions. This rigorous 
testing process helps identify the most effective strategies for minimizing fuel use. This 
approach paves the way for more sustainable and efficient logistics operations, ensuring 
adaptability and competitiveness in a rapidly evolving market. 
Keywords: Cold Chain Logistics (CCL), Transportation Efficiency, Food Logistics, Fuel 
Consumption, Machine Learning 

1.  Introduction 

1.1. Definition of Cold Chain Logistics and its Importance 
Cold chain logistics (CCL) refers to the process of management and transportation of 

temperature-sensitive products, like perishable food items, through a supply chain with 
controlled temperatures (Wang et al., 2018).  That may also be defined as a low-temperature 
supply chain system combining the refrigeration industry and logistics. The list of products 
that need cold chain logistics ranges from perishable goods like fresh produce, dairy products, 
meat, and seafood to special products like vaccines and medications (Han et al., 2021). Most 
of these products are highly perishable and demand strict temperature ranges to maintain their 
quality and make them fit for use or consumption. This same process is necessary to 
maintaining the quality, safety, and shelf life of these same perishable goods and in reducing 
food losses during the entire distribution process (Capo, 2021). In this respect, it may be said 
that CCL is crucial for making safe and high-quality products available to customers. It 
requires strict temperature control, monitoring, and special kinds of equipment and 
infrastructure. CCL is a complex and challenging field that needs a lot of factors to come 
together in order to be effective and sustainable. This ranges from energy consumption to fuel 
efficiency and environmental impact, involving processes at different stages: production, 
storage, and transportation down to consumption. In this regard, innovative technologies can 
be implemented, such as the Internet of Things (IoT) and Machine Learning (ML) tools 
targeted at enhancing efficiency and productivity in those processes. (Capo, 2021). 

Preserved quality and safety are thus significant components of cold chain logistics. If the 
products that are perishable are subjected to higher temperatures or other unregulated adverse 
climactic conditions during transport or storage, their quality rapidly deteriorates, rendering 
markets unsafe for consumption (Capo, 2021). Loss of food as a consequence of poor 
management in the cold chain adds up to the food waste and has economic and environmental 
consequences associated with it (IPCC, 2019). Temperature control in CCL is very critical 
because small deviations from the optimum temperature window could mean this product will 
go to spoilage, reduction in quality, and sometimes even cause harm to consumers. However, 
maintaining the required temperature range can be energy-intensive, with refrigeration 
accounting for a significant portion of the energy consumed in CCL (Han et al., 2021). As 
such, identifying and prioritizing energy-efficient measures for cold chains, including the 
estimation of fuel consumption rates, is essential for mitigating these negative impacts and 
promoting sustainable food supply practices (Marchi et al., 2022b). As a result, it has made 
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fuel consumption efficiency one of the key factors toward the optimization of CCL 
operations. Besides, reducing this fuel consumption helps logistics companies in 
environmental sustainability, which reduces costs and improves the profitability of the firm 
(Wang et al., 2018). 

In developing green supply chains, CCL's environmental performance is critically 
associated with the travel economy, vehicle loads, and fuel consumption rates of transport 
vehicles; hence, the study of their relationship is required (Rahman et al., 2022). The 
estimation methods would include doing regression analysis based on data statistics to 
provide a linear expression of fuel consumption per unit distance (Ning et al., 2023). 
Considering the parameters, for better fuel consumption rate estimation and promoting 
sustainable CCL practices, the application of machine learning techniques may be applied 
(Wang et al., 2018). 

1.2. Global Trends and Market Growth of Cold Chain Logistics 
The demand for cold chain logistics is growing rapidly, driven by factors such as 

globalization, urbanization, and increasing consumer awareness of food safety and quality 
(Chandran et al., 2022). The concept of CCL has been around since ancient times, with early 
civilizations using ice and snow to preserve food and other perishable items. The definition of 
CCL has evolved over the years, with the development of technology and the increasing 
demand for fresh and quality products. Over time, technological advancements have allowed 
for more sophisticated and reliable cold chain systems, enabling the growth of industries such 
as pharmaceuticals, food, and biotechnology. In recent years, CCL, especially for agricultural 
products, has seen significant development which aims to keep agricultural products fresh 
before they arrive at the designated locations (Han et al., 2021). Besides, the scale demand for 
CCL is growing due to the serious global loss of perishable food, causing a significant 
environmental burden. 

A recent report by Grand View Research, Inc. projects today, cold chain logistics is a 
rapidly expanding industry, with a global market size estimated at USD 233.2 billion in 2022 
and projected to reach $271 billion in 2023.Also the global CCL market forecasted to reach 
USD 892.3 billion by 2030, rising at a CAGR of 18.6% from 2023 to 2030 (Grand View 
Research , 2022). The market is expanding due to growing investment in cold chain 
development, rising Information Technology (IT) spending in cold storage logistics, and 
rising demand for high-quality goods. Currently in 2023, the Asia Pacific region, particularly 
China, is a major contributor to the cold chain market due to factors such as technological 
advancements in the packaging, processing, and storage of seafood products, rising demand, 
and growing cold chain infrastructure development (Grand View Research , 2022). 
Furthermore, the COVID-19 pandemic has increased the growth in e-commerce sales, which 
is driving the demand for cold chain solutions. The pandemic has led to a significant rise in 
the number of e-commerce purchases, including the purchase of perishable products, which 
must be kept in cold storage warehouses and distributed with thermally insulated packaging 
through refrigerated vehicles. Additionally, The importance of CCL has been further 
highlighted during the COVID-19 pandemic, where it played a critical role in the transport of 
vaccines (Grand View Research , 2022). This trend highlights the need for the food value 
chain to transition toward a cold-chain system that maintains perishable goods for extended 
durations. 

Various trends and emerging markets are shaping the landscape of CCL. One such trend 
is the increasing use of data analytics in decision-making for CCL. This approach allows 
companies to better understand the complex factors influencing their logistics operations, and 
in turn, optimize their processes to minimize costs and energy consumption (Chaudhuri et al., 
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2018). Additionally, the rise of bi-objective mathematical models for CCL networks takes 
into account economic, social, and environmental factors, providing a more comprehensive 
understanding of the industry (Z. Wang et al., 2020). 

Technological advancements are playing a crucial role in improving the efficiency and 
sustainability of CCL. One such advancement is the use of RFID-based sensing for real-time 
monitoring of perishable cargo, which allows for improved cold chain management and 
reduced waste (Emenike et al., 2016). Moreover, the estimation of efficient fossil fuel prices 
that reflect supply costs, environmental costs, and general consumer taxes is another 
important aspect of sustainable CCL (International Monetary Fund, 2023). Briefly, the growth 
in CCL can be attributed to technological advancements and the growing need to ensure 
shipment integrity, efficiency, and safety (Grand View Research , 2022). 

1.3. Problem Statement and Objectives 
One of the primary challenges related to fuel consumption in CCL is the need to balance 

the travel economy with vehicle loads, in addition to considering the environmental impact of 
greenhouse gas emissions (Rahman et al., 2022). CCL networks are complex systems that 
require careful consideration of multiple factors, including economic, social, and 
environmental concerns (Z. Wang et al., 2020). As a result, it is crucial for researchers and 
practitioners alike to identify key supply-chain dependencies and explore ways to foster 
domestic production and export of low-carbon technologies (LCT) products through 
technology and innovation (International Monetary Fund, 2023). 

The need for improved fuel efficiency and emission reduction is a pressing issue in the 
CCL sector. Given that the industry is responsible for a significant portion of global 
greenhouse gas emissions, it is imperative to explore strategies to reduce fuel consumption 
and improve overall environmental performance (Z. Wang et al., 2020). Some potential 
avenues for achieving these goals include optimizing the use of air conditioning systems, 
implementing thermal load management strategies, providing improvements in operational 
processes, and encouraging the adoption of new generation vehicle types. By focusing on 
these areas, the CCL sector can contribute to important reductions in greenhouse gas 
emissions and improvements in fuel economy. 

The objectives of this research study are to provide a comprehensive literature review on 
the determination of key factors of fuel consumption in CCL, identify the main problems and 
challenges associated with fuel consumption and emissions in the industry using machine 
learning tool, and explore the relationship between fuel consumption and the factors related to 
vehicle selection, temperature control, route planning, load planning and driver behaviour. By 
examining the various factors that contribute to fuel consumption in CCL, the study aims to 
develop a mathematical model that considers vehicle, environment and temperature, route, 
load, driver related concerns. Evaluate the potential for fuel consumption reduction through 
improved air conditioning, thermal load management, and alternative fuel technologies. 
Provide valuable insights and recommendations for both academia and industry practitioners 
to promote more sustainable and efficient CCL operations. Ultimately, the study seeks to 
provide valuable insights and recommendations for both academia and industry practitioners, 
with the goal of promoting more sustainable and efficient CCL operations. 

1.4. Scope, Limitations, and Significance of the Research 
The scope of this study revolves around 5 main key factors: vehicle related, refrigeration 

related, route related, load related and driving related which have a significant impact on fuel 
consumption in CCL. The research methodology employed in this study is a machine learning 
approach, which will include several models to achieve and compare different solutions. This 
method allows the researchers to analyse large datasets and identify underlying themes and 
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patterns that can help in understanding the factors affecting fuel consumption in the CCL 
industry. 

There are certain limitations that need to be addressed and offer opportunities for future 
research. One notable limitation is the need for validation of the findings through further 
empirical research and modelling. Additionally, the development of more comprehensive 
methods and datasets is crucial for effectively utilizing the potential of modern computing in 
this field. Future research could also focus on exploring other factors that may have an impact 
on fuel consumption in CCL, as well as the potential implementation of alternative fuel 
sources and technologies to reduce overall energy consumption. 

The significance of this research lies in its potential to contribute to the decision-making 
processes in CCL by using data analytics. By identifying the key factors that influence fuel 
consumption and developing estimation models, industry practitioners can make more 
informed decisions regarding vehicle loads, route planning, and energy management. 
Moreover, this research can assist in the development of new fuel economy applications for 
the CCL industry. Ultimately, the findings of this study have the potential to lead to more 
efficient and environmentally sustainable practices in the CCL industry, benefiting both 
businesses and society as a whole. 

2. Literature Review 

2.1. Challenges in Cold Chain Logistics 
Cold chain logistics presents numerous challenges in storage, packaging, and 

transportation (Al-Wakkal, 2020). Overcoming these challenges requires a strong 
understanding of the specific requirements of temperature-sensitive goods, as well as the 
implementation of effective monitoring systems and visibility into the supply chain (Marchi 
et al., 2022b). By addressing these challenges, logistics managers can ensure that 
temperature-sensitive products reach their final destination in optimal condition, maintaining 
their quality and safety throughout the entire cold chain process (Fan et al., 2021). 

One of the primary challenges in CCL is maintaining the appropriate temperature 
conditions for temperature-sensitive products during storage (Mercier et al., 2017). 
Inadequate insulation, outdated equipment, and insufficient temperature monitoring and 
maintenance systems contribute to the inefficiencies in cold storage operations. These 
inefficiencies can result in substantial economic losses and increased greenhouse gas 
emissions, further highlighting the need for improved storage practices and facilities (Ashok 
et al., 2017). This requires a continuous monitoring system that can track and record 
temperature fluctuations. Inadequate temperature control can lead to product spoilage, 
decreased shelf life, and potential health risks (Ren et al., 2022). Additionally, managing the 
storage capacity to accommodate varying product volumes while ensuring that the 
temperature requirements are met can also be a challenge. A lack of supply chain visibility 
can further exacerbate these issues, making it difficult for logistics managers to make 
informed decisions about storage conditions and capacity (Ren et al., 2022). 

Proper packaging plays a vital role in preserving the quality and safety of temperature-
sensitive products. Poor packaging and insulation can result in temperature changes within 
the packaging, leading to product spoilage or damage. The use of inappropriately ventilated 
packaging can result in the deterioration of product quality. The challenge in packaging lies in 
selecting the right materials and insulation that can withstand the rigors of transportation 
while effectively maintaining the required temperature range (T. Ren et al., 2022). This often 
involves a delicate balance between cost and effectiveness, as more advanced packaging 
materials can be expensive. Furthermore, the packaging must be designed to accommodate 
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various product sizes and shapes, ensuring that they remain protected throughout the 
transportation process (Ren et al., 2022). 

Transportation is another critical aspect of CCL, as it directly impacts the quality and 
safety of temperature-sensitive goods. Some challenges in transportation include selecting the 
appropriate transportation equipment that can maintain the required temperature range, 
carefully choosing transportation routes to minimize transit time and exposure to extreme 
temperature fluctuations, and ensuring perfect timing to coordinate the delivery of products to 
their final destination (Xu et al., 2023). Studies propose optimization models to minimize unit 
costs of product freshness, as well as carbon trading mechanisms to reduce the environmental 
impact of transportation. Visibility into the transportation process is essential to effectively 
manage these challenges, as it allows logistics managers to monitor and make real-time 
adjustments to transportation conditions and routes (Xu et al., 2023). 

2.2. Fuel Consumption in Cold Chain Logistics and Environmental Impact 
In the cold chain, there is a temperature-controlled section of the supply chain required 

for those products that need a series of temperature-controlled environments uninterrupted all 
the way from production to delivery (Capo, 2021). The inability to monitor the temperature 
and maintain it with proper systems can cause temperature excursions or equipment 
breakdowns, which remains a challenge to the safety and potency guarantees regarding 
perishable products during transportation and storage (Ashok et al., 2017). 

The other major factor of CCL in the supply chain is associated with infrastructural and 
technological difficulties. It has been analyzed that location and routing are optimized in such 
a way that carbon imprinting and transport efficiency are considered for diminishing the 
challenges in CCL (Wang et al., 2018). This optimization will help the means towards 
diminishing the pressure on the environment and operational hazards by maintaining the cold 
chain process. Moreover, big data technology integrated with cloud logistics has been 
considered a viable way of improving CCL management (Xie & Zhao, 2016). Poor data 
collection and limited accountability structures can hinder accurate and regular inventory 
updates, leading to challenges in understanding the current status of cold chain equipment 
(Ashok et al., 2017). 

Operational efficiency and logistics optimization in the view of CCL are the most 
important, for they would ensure that fuel consumption is kept at a minimum level and thus 
reduce its impact on environmental degradation. This proposed method could ensure the 
optimization of CCL through machine learning approaches in the estimation for fuel 
consumption of heavy-duty vehicles (Katreddi, 2023). In CCL operational efficiency 
optimization, it is most important to determine and understand the amount of energy used 
during all the different stages (Tan et al., 2021). 

Factors influencing fuel consumption of cold chain vehicles again support the high cost 
and low environmental sustainability of such logistic operations (J. Zhang et al., 2019). The 
research in the field of fuel-consuming features of a vehicle, like engine efficiency, vehicle 
weight, and aerodynamics, becomes very crucial for finding improvement scopes (Katreddi, 
2023). This can also be affected by external factors, which involve driving behavior, route 
optimization, and weather conditions (Rahman et al., 2022). A company can understand these 
factors to establish strategies and best practices to reduce fuel consumption and efficient 
CCL. 

Fuel consumption in CCL has a direct impact on cost and environmental sustainability 
(Rahman et al., 2022). High fuel consumption can lead to increased operational costs, which 
can negatively affect a company's profitability and competitiveness in the market (Fares et al., 
2023). Additionally, higher fuel consumption contributes to higher greenhouse gas emissions, 
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resulting in adverse environmental impacts (Al-Wakkal, 2020). The energy efficiency of cold 
warehousing is a significant contributor to sustainability impacts due to energy costs and 
greenhouse gas emissions (Al-Wakkal, 2020). Therefore, reducing fuel consumption in CCL 
is essential for achieving cost savings and minimizing the environmental footprint of these 
operations. 

In addition to the challenges mentioned above, fuel consumption in CCL also faces 
environmental impacts, high energy consumption, and carbon emissions. CCL operations 
contribute significantly to carbon emissions, ozone depletion, and a decline in air quality, and 
depletion of non-renewable resources, further exacerbating climate change and environmental 
degradation. (J. Chen et al., 2021). By increasing greenhouse gas emissions, particularly 
carbon dioxide, it is a major contributor to global warming and climate change (Leng et al, 
2020). Therefore, improving fuel efficiency in CCL can help to reduce greenhouse gas 
emissions and mitigate the impact of logistics operations on climate change (Jia, 2022). 
Moreover, the carbon emissions from CCL are relatively high, contributing to environmental 
degradation which negatively impact ecosystems and human health (Chandran et al., 2022). 
Since the refrigerated transport industry is believed to be responsible for 15% of all fossil fuel 
energy consumed worldwide, there has been an increase in interest in recent decades in 
optimizing these systems to decrease their environmental impact. In road refrigerated 
transport, vapor compression refrigeration units, which are often driven by diesel engines, are 
the most widely utilized systems (Maiorino et al., 2021). Greenhouse gas (GHG) emissions 
from CCL are particularly concerning, with the sector accounting for nearly 2.5% of global 
GHG emissions (Chandran et al., 2022). This includes both direct and indirect effects of the 
industry's activities, highlighting the significant environmental impact of CCL on a global 
scale. Therefore, it is crucial to focus on fuel efficiency and sustainability in the supply chain. 
This requires a holistic approach that considers factors such as logistics costs, energy 
consumption, and carbon emissions, aiming to minimize total costs and total carbon 
emissions (Xu et al., 2023). By addressing these challenges and implementing efficient and 
sustainable practices, CCL can continue to play a vital role in maintaining the quality and 
safety of fresh agro-products while contributing to a more sustainable future (Rahman et al., 
2022). 

Additionally, fuel consumption also contributes to air pollution, which can have 
detrimental effects on human health and the environment. Therefore, reducing fuel 
consumption can also contribute to improved air quality. To mitigate these environmental 
risks, it is essential to adopt strategies that reduce fuel consumption and promote eco-friendly 
practices in CCL operations (Rahman et al., 2022). By improving fuel consumption 
efficiency, companies can reduce their air pollution and contribute to a more sustainable 
future (Rahman et al., 2022). 

Several fuel reduction strategies and best practices have been identified to help reduce 
fuel consumption in CCL. Some of these strategies include: 

● Route optimization: By planning the most efficient routes, companies can minimize 
travel distances and reduce fuel consumption (Capo, 2021). 

● Vehicle maintenance: Ensuring that vehicles are well-maintained, including regularly 
checking tire pressure and engine performance, can improve fuel efficiency (Katreddi, 
2023). 

● Driver training: Educating drivers on fuel-efficient driving behaviors, such as 
maintaining a steady speed, can help reduce fuel consumption (Fares et al., 2023). 

● Load optimization: Properly distributing and minimizing vehicle loads can improve fuel 
efficiency (Rahman et al., 2022). 
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● Use of advanced technologies: Implementing machine learning and artificial 
intelligence algorithms for route planning, load optimization, and vehicle maintenance 
can further reduce fuel consumption (Chen, 2020).  

By adopting these fuel reduction strategies and best practices, companies can improve the 
efficiency of CCL, reduce operational costs, and contribute to environmental sustainability. 

2.3. Factors Affecting Fuel Consumption 
Economic, environmental, and social effects are the most dominating issues in CCL 

(Leng et al, 2020). Considering those factors that influence or affect fuel consumption can 
turn around reducing the organization's chain on the environment, decreasing the cost of 
transportation, and enhancing the overall efficiency through SC. Literature review is done for 
some literature related to these variables of fuel consumption in CCL to present a deeper 
understanding of their extent and implications. Such consideration is important in the factors 
affecting fuel consumption in CCL, given the possible economic, environmental, and social 
impacts (Leng et al, 2020). With regard to the factors affecting fuel consumption, a business 
would ensure the optimization of its operations in CCL to minimize the environmental 
impacts while maintaining customer satisfaction and ensuring overall efficiency in the supply 
chain. 

Infrastructures and regulations generally play a crucial role in determining the fuel 
consumption of CCL (Han et al., 2021). Most infrastructures of cold chains are in a 
substandard state, with lack of sufficient standardization that increases fuel consumption and 
other associated logistical problems (Han et al., 2021). Some of the factors that have 
generally plagued the cold chain management include the high installation and refrigeration 
systems cost, lack of finance, lack of government support, and inadequate infrastructure. 
National policy and financial intervention in countries like China are expected to be the main 
driving forces behind renovating infrastructure and improving CCL efficiency (Han et al., 
2021). Not just the infrastructure itself, but the rules and regulations regarding fuel efficiency 
and emissions are slated to play a huge role in fuel usage in CCL (S. Wang, 2022). 

Vehicle-related factors have important roles in fuel consumption within CCL (Rahman et 
al., 2022). Specifically, vehicle type, aerodynamics, and default fuel consumption all have 
essential roles in measuring overall fuel efficiency for CCL (Kirby et al., 2000). A number of 
vehicle types exist with different kinds of applied measures for aerodynamics, tires, and 
powertrain configurations, which are all contributors to fuel consumption (NHTSA, 2010). 
Proper vehicle selection with enhanced aerodynamics and fuel-efficient configurations can 
ensure considerable saving of fuel and a lesser impact on the environment in CCL (Smith et 
al., 2007). The specification of vehicles and their technologies have a large impact on fuel 
consumption for CCL (Leng et al, 2020). There exist many technologies and techniques 
developed for improving fuel efficiency in medium and heavy-duty vehicles, including those 
that optimize engine characteristics, advanced transmission systems, and energy-efficient tires 
(NHTSA, 2010). Therefore, the use of sophisticated vehicle technologies and following the 
right specifications can help reduce overall logistics costs, which involve fuel consumption 
and associated environmental impacts (Leng et al, 2020). Other factors that influence fuel 
consumption in CCL incorporate the age and maintenance status of a vehicle. According to 
Kirby et al. 2000, some of the vehicle factors that influence fuel efficiency include a vehicle's 
age, tire features, and engine features including size and horsepower (Kirby et al., 2000). For 
example, old motor vehicles may not have upgraded technologies of engines, hence 
consuming more fuel than newer vehicles with more efficient engines. Moreover, a poorly 
managed fleet may raise fuel consumption due to factors such as poor tire conditions, higher 
wear of the engines, and decreased efficiency in the running of components. As such, 
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optimization of fuel consumption and reduction of environmental impact may be attained 
through regular fleet maintenance and consideration of fleet age while choosing fleets for 
CCL operations. 

Other relevant factors in fuel consumption for CCL would include refrigeration factors, 
projected by Capo in 2021 (Capo, 2021). These are container types and capacity of reefer 
units, which involve great discrepancies. Analysis of the proper selection of reefers will 
noticeably impact energy consumption and therefore GHC emission, as pointed out by 
Maiorino et al. 2021 (Maiorino et al., 2021). Understanding the involved trade-offs and 
complexities of reefer logistics is of prime importance to improve the efficiency of these 
units. The proper selection of the type of reefer unit and ensuring its efficiency will go a long 
way in reducing logistic firms' fuel consumption and, therefore, their environmental impact 
(Maiorino et al., 2021). One of the key factors related to the enclosures of the vehicles used 
for refrigerated transportation is thermal insulation. This is an important factor not only for 
cold chain quality but also for saving fuel.  To some extent, temperature stability and saving 
fuel can be done by application of cold-chain insulated containers with phase-change 
materials (Capo, 2021). Another core factor that influences fuel consumption of CCL 
involves cargo pre-cooling and temperature control. Objectively, the proper pre-cooling of 
cargo and maintaining a constant temperature range throughout the transportation process 
would play a vital role in reducing fuel consumption to a large extent (Behdani et al., 2019). 
Additionally, the efficient management of the refrigeration system, such as temperature 
monitoring and control, can contribute to fuel efficiency in CCL (Z. Wang et al., 2020). 
Comprehensive monitoring and management of refrigeration temperature, selection of 
efficient refrigeration systems, and implementing new technologies are necessary for an 
efficient cold chain system. 

Next is the environment and weather-related key factor group because it deals with fuel 
consumption in CCL. Temperature and humidity are the essential and important 
environmental factors that greatly influence fuel consumption in CCL (Chandran et al., 2022). 
Additionally, extreme temperatures and high humidity could increase energy usage during the 
process of transportation for temperature-sensitive products. This is because the energy 
required to keep the desired level of temperature and humidity in the refrigerated vehicles 
raises fuel consumption. For instance, it has been estimated that cold chain transportation-in 
particular, refrigerated semi trailer trucks use 20% more fuel than other modes of 
transportation (Chandran et al., 2022). The other variables, which raise fuel consumption in 
CCL, are road types and terrains (Kirby et al., 2000). Where there are steep inclines or high-
altitude areas, the vehicle will need more power to attain the required speed and acceleration, 
hence consuming much fuel (Mills, 2019). Besides, uneven terrain may result in variation in 
engine load and affect its efficiency (Kirby et al., 2000). Another environmental factor that 
will affect fuel consumption in CCL is wind and, more generally, air resistance (NHTSA, 
2010). Another environmental factor that will affect fuel consumption in CCL is wind and, 
more generally, air resistance, according to NHTSA, 2010. Because vehicles create some 
form of air resistance when on the move, the car needs more energy to be waste-resistant; 
hence, more fuel is used up. Wind direction and speed can still result in fuel inefficiency with 
headwinds offering more resistance and tailwinds providing a boost in momentum. The 
National Highway Traffic Safety Administration (NHTSA) has proposed the development of 
wind-averaged coefficient of drag values using computational fluid dynamics, coast-down, 
and constant-speed test procedures to better understand how wind and air resistance influence 
fuel consumption (NHTSA, 2010). 

The next in line are route-related aspects. (Wang et al., 2018). Route planning and 
optimization are very important to the effectiveness of CCL and ultimately to fuel 
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consumption (Qin et al., 2019). Provided that the route planning was perfectly planned and 
optimized, it would indeed reduce the distribution cost and carbon emissions of logistics 
enterprises, thereby promoting their sustainability and eco-friendliness of operations. (J. Chen 
et al., 2021). In the cold-chain logistics vehicle-routing problem under time window 
constraints, controlling and limiting carbon emissions are directly related to fuel consumption  
(Wang et al., 2018). Reducing the total distances in route optimization will significantly 
reduce fuel consumption (Z. Wang et al., 2020).  Customer satisfaction, transportation cost, 
energy consumption, and time should be put into consideration in the process of making an 
optimal distribution plan (Xu et al., 2023). Besides, a well-planned route may contribute to 
avoiding traffic congestion and hence further reduce energy consumption and carbon 
emissions (Guo et al., 2022).  Zhao et al. have pointed out that the traffic pattern and how to 
avoid the formation of traffic congestion are also large factors affecting fuel consumption in 
CCL (Zhao et al., 2020). Long driving times imply higher energy use, augmented emission of 
CO2 equivalent emissions, and a potential loss of food safety due to the prolonged exposure 
of food to variable temperatures (S. Wang, 2022). Several studies have dealt with traffic 
patterns and novel strategies for avoiding congestion, which shall also be investigated here to 
help logistics companies enhance the general operational efficiency of their activities and cut 
down on fuel use (NHTSA, 2010).  Fuel storage and handling practices are also important in 
the overall fuel consumption of CCL (Rahman et al., 2022). Proper storage and handling can 
reduce losses and ensure optimal vehicle performance, which may in turn reduce energy 
consumption and carbon emissions (Rahman et al., 2022). Furthermore, other ways in which 
transportation is undertaken by the company, like the mode of transport, in intermodal freight 
transport (IFT), will impact fuel consumption. While IFT may lead to extented transport 
times, it allows, in most cases, for lower fuel consumption compared to conventional road 
transport. (Fan et al., 2021). 

The load carried by the vehicles also affects fuel consumption; therefore, efficiently 
managing and distributing cargo loads can lead to fuel savings. The weight and distribution of 
cargo play a significant role in determining fuel consumption in CCL (Rahman et al., 2022). 
Proper resource allocation and planning can help reduce the comprehensive cost of cold chain 
transportation (Xu et al., 2023). The distribution of cargo should be carefully planned to 
maintain balance, as uneven loads can lead to increased fuel consumption and handling 
difficulties. Furthermore, optimizing the weight of the cargo can help maintain temperature 
integrity and reduce energy consumption (Jia, 2022). Multi-stop strategies and consolidation 
can also affect fuel consumption in CCL, as the frequency and duration of door openings 
during transportation impact temperature control and energy usage (Tassou et al., 2009). Door 
opening frequency can lead to temperature fluctuations, which can compromise the quality of 
perishable goods and increase the need for additional cooling. To mitigate these effects, CCL 
enterprises should employ efficient routing and delivery strategies, which may include 
consolidating shipments (Behdani et al., 2019). These approaches can help reduce door 
opening frequency and duration, thereby minimizing temperature fluctuations and conserving 
energy (Maiorino et al., 2021). Pallet stacking and utilization are additional factors that can 
influence fuel consumption in CCL (Fan et al., 2021). Proper pallet stacking can lead to more 
efficient use of space within the refrigerated container, reducing the need for additional or 
larger vehicles. This, in turn, can result in lower fuel consumption and reduced carbon 
emissions (Jia, 2022). Additionally, appropriate pallet stacking can help maintain the integrity 
of perishable goods by promoting even temperature distribution throughout the container 
(Mercier et al., 2017). By addressing these factors, CCL enterprises can improve fuel 
efficiency, reduce costs, and contribute to a more sustainable supply chain (Chandran et al., 
2022). 
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Driving behavior and techniques are other key elements of fuel consumption within CCL 

(Smith et al., 2007). It is envisaged that increasing drivers' awareness of the factors of fuel-
saving techniques, such as maintaining optimal speeds and proper acceleration, will help 
lower fuel consumption (C. Zhang et al., 2021). A questionnaire-based study indicated that 
increasing drivers' knowledge with regard to fuel-saving techniques could certainly play a 
very important role in order to save fuel for CCL as a whole (C. Zhang et al., 2021). One 
study measured the driving pattern for 15 drivers along a 22-mile stretch of road, matching 
their driving practices to their fuel use (Mills, 2019). The finding revealed that acceleration, 
deceleration, and idle time directly impact fuel use. Another factor affecting fuel use by CCL 
is driving technology (Mills, 2019). Digitalization of the concerned industrial machines, in 
this case, transport vehicles, can make the vehicle achieve fuel efficiency and hence lead to 
the solving of challenges in the logistics sector (Al-Wakkal, 2020). Advanced technologies 
such as telematics systems can monitor and even give real-time feedback on driving behavior, 
route optimization, and vehicle performance to help reduce fuel consumption. Besides, the 
adoption of eco-driving technologies in cars can make drivers alter their driving habits to 
become more fuel-efficient. Driver education and awareness form part of the strategies for 
tackling fuel consumption issues in CCL (Smith et al., 2007). Proper training can guide 
drivers on how driving behavior impacts fuel usage and environmental issues, the reason it 
remains essential to incorporate proper driving practices for fuel efficiency as part of its 
features (Smith et al., 2007). Besides, awareness can be raised with drivers, so that drivers 
adopt more environmentally friendly driving habits and reduce fuel consumption, hence being 
more green in CCL (C. Zhang et al., 2021). They should develop eco-friendly driving habits 
wherever possible, with techniques proven to help reduce fuel consumption. These include 
smooth acceleration and deceleration, reducing idle time by turning off the engine during a 
long stop, constant speed, cruise control whenever possible, and route planning in order to 
avoid congestion and minimize extra miles of travel. These good practices will help drivers 
reduce fuel consumption considerably and offer a hand towards a more sustainable CCL 
process. 

Literature reviews with regard to the same factors that affect fuel consumption in CCL 
come up with a few major factors contributing towards the overall environmental impact of 
supply chain operations. Economic, environmental, and social effects are among the most 
dominating issues in CCL, particularly fuel consumption, which has emerged as huge 
research hotspots with very optimistic prospects. Indeed, the factors that will affect fuel 
consumption in CCL can only be effectively measured and analyzed using a data-driven 
approach. Several studies focused on data-driven fuel consumption prediction models, 
classifying and summarizing data relevant to fuel consumption (D. Zhao et al., 2023). 
Besides, decision-making in CCL using data analytics has been the focus of recent literature 
(Chaudhuri et al., 2018). his data-driven approach enables a better comprehension of the 
relationships between several factors affecting fuel consumption. 

Despite advancements in understanding and measuring factors affecting fuel consumption 
in CCL, several limitations and gaps still exist in the current literature. Most studies have 
applied factor models to estimate the amount of fuel consumption and carbon emissions, but 
either those models are not related to CCL or there are not enough fields of data to analyse. 
Moreover, whereas new ways, such as the location-routing problem-based low-carbon cold 
chain (LRPLCCC), are proposed, innovation in this line still requires further research and 
development (Leng et al, 2020). Therefore, future research should seek to address these 
limitations and gaps in an attempt to improve on the understanding and management of fuel 
consumption in CCL. 
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2.4. Traditional Approaches for Fuel Consumption Estimation 
The traditional methods for fuel consumption estimation in CCL normally include 

physical models and analytical methods (Rahman et al., 2022). For example, Wang et al. 
proposed a vehicle routing problem in cold-chain logistics with time window constraints, 
taking into consideration the controlling and limitation of carbon emissions (Wang et al., 
2018). In this respect, various mathematical models were applied in order to study the 
interrelationship of intelligent logistics, cold chain shipping, and fuel consumption efficiency: 
from qualitative data analysis to optimization techniques. Furthermore, a comprehensive 
review of literature on vehicle routing problem (VRP) in CCL reveals a substantial body of 
research dedicated to understanding and improving fuel consumption in this context (Qin et 
al., 2019). In the research of Zhao et al., there has been a comprehensive review of the data-
driven fuel consumption prediction models by classifying and summarizing the relevant data 
that affects fuel consumption (D. Zhao et al., 2023). Another example includes the 
development of a model of fuel consumption prediction using the back-propagation training 
algorithm for artificial neural networks by Katreddi (Katreddi, 2023). Through all these 
techniques of data analysis, several researchers learn various factors affecting fuel 
consumption and thus be in a position to invent more accurate estimation models. 

Literature confirms key findings in previous studies that bring out many aspects of fuel 
consumption efficiency in CCL. For example, the study on national policy and financial 
intervention in CCL recognized the need to optimize cold chain length for fresh produce to 
achieve fuel efficiency (Han et al., 2021). Further, studies on the interactions between energy 
savings and product quality have illustrated the potential for adjustment of vessel speed to 
maintain a balance in these two conflicting objectives in CCL (Fan et al., 2021).  These 
findings underscore the potential requirement for additional research and innovation in terms 
of further fuel consumption mitigation in the CCL sector. 

For as much as traditional approaches have been potent in fuel consumption estimation in 
CCL, there are inherent limitations. Among the most significant is the fact that these earlier 
methods do not exhibit the same levels of continuous improvement, as can be seen with more 
contemporary methods that now include significant use of Machine Learning technologies 
(Capo, 2021). Additionally, traditional methods may not be able to account for the wide range 
of factors that influence fuel consumption in CCL, such as cross-relationship of the criteria 
and the complex nature of CCL. Besides, basing results on historical data in statistical 
modeling and its regression analysis methods may limit the correctness in predicting 
complications in the realistic changeable environment. 

2.5. Machine Learning for Fuel Consumption Prediction 
Machine learning benefits fuel consumption prediction for CCL in a variety of ways. The 

core feature of modeling and predicting fuel consumption is crucial for enhancing the fuel 
economy of vehicles and also to detect fraudulent activities in fleet management 
(Wickramanayake & Bandara, 2016). Machine learning algorithms can analyze large data 
sets, identify patterns, and make predictions from historical data, thereby helping in 
increasing the accuracy of fuel consumption estimation that would increase the effectiveness 
in CCL (Capo, 2021). Machine learning is also able to account for such complex relationships 
which exist between these variables defining travel economy, vehicle loads, and fuel 
consumption (Rahman et al., 2022). Some of the advantages of fuel consumption prediction 
through the use of machine learning include the improvement in the accuracy of the 
predictions and continuous improvement for each and every data that is uploaded to the 
dataset to train the model. Predictive analytics is an advanced technique that makes 
predictions with respect to future events with the utilization of machine learning algorithms, 
along with historical data. Such requirements of demand necessitate CCL companies to 
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heavily rely on efficiency, punctuality, and accuracy. An intelligent cold chain management is 
the one that provides appropriate temperature, vibration, light, and humidity monitoring and 
control of perishable food during the cold chain (Kale & Patil, 2020). 

Various machine learning algorithms have been used for fuel consumption prediction in 
CCL. Among the popular algorithms are Support Vector Machine (SVM) , regression models, 
and neural networks (Hamed et al., 2021). Algorithms used in these studies forecast fuel 
consumption for real-world scenarios with regard to economic travel, vehicle loads, and 
environmental conditions. Comparing the performance of different algorithms will help these 
researchers to find out which is most preferably suitable for an application. Thus, it provides 
more accurate and reliable predictions in cases such as fuel consumption predictions 
(Wickramanayake & Bandara, 2016). Popular machine learning algorithms for fuel 
consumption prediction include, Support Vector Machine (SVM), Regression models, Neural 
networks 

According to earlier research, there is a probability that machine learning would enhance 
fuel consumption estimation in CCL. For instance, another study proposed a machine learning 
model based on the Support Vector Machine algorithm for vehicle fuel consumption 
estimation, including some determinants of travel economy and vehicle loads (Hamed et al., 
2021). Another study dealt with machine-learning-based predictions that were designed to 
determine vehicle features with the most relevant effect on fuel consumption in heavy-duty 
vehicles with real data (Katreddi, 2023). Moreover, the optimization of cold-chain integrated 
inventory routing problems has also considered carbon emissions, in which attaining accurate 
fuel consumption prediction could play a significant role in sustaining the environmental 
performance of CCL (Li et al., 2019). These findings underscore the value of employing 
advanced machine learning methods to address the challenges of fuel consumption estimation 
and optimization in CCL. 

2.6. Existing Research Gaps and Challenges 
One of the most important gaps exists in the comprehensive application of machine 

learning and datasets for the training of models in CCL research. Efficiency and usefulness of 
machine learning models depend to large extends on the amount and better quality of data 
available for the training and validation purposes. Much of the researchvv that has been done 
is concentrated on a few selected factors or limited datasets, and this might not be the case in 
the real world due to the diverse factors surrounding fuel consumption. In view of this, it is 
necessary for the development of more extended and diversity-filled datasets that enable 
researchers to generate more accurate and robust machine learning models. In case of 
availability of such datasets, it would allow the research community to investigate the 
interdependencies between and interactions among multiple factors affecting fuel 
consumption in CCL (Chaudhuri et al., 2018). 

Another research gap in this area is estimating fuel consumption in the CCL operational 
cycle by considering real-time data and external contingencies in the machine learning 
models developed. Current efforts are tending towards repeating historical data or making 
theoretical assumptions that do not always adapt to the dynamic character of the CCL 
operational cycle (Chen, 2020). For instance, traffic triggers, weather conditions, vehicle 
maintenance timings, are all very influential in fuel consumption and must all be included 
when coming up with models for such analysis (Katreddi, 2023). Additionally, with the rapid 
development in technology, specifically big data analytics, this limitation can be conquered 
using real-time monitoring logistics to build the model that will prove to be the most 
influential factors behind the delay or inefficiencies (Chen, 2020). If real-time data and 
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external factors could be integrated into the machine learning models, it may increase the 
precision and accord practical applicability to a significant level in industry. 

Lastly, addressing the interpretability and explainability of machine learning models is 
another challenge that needs to be overcome in the field of fuel consumption estimation in 
CCL. While machine learning models have demonstrated their potential in providing accurate 
predictions, their complexity often makes it difficult for practitioners to understand and trust 
their results (Capo, 2021). This lack of transparency may lead to hesitance in adopting these 
models in real-world applications, despite their potential benefits. Therefore, research should 
focus on developing machine learning models that are not only accurate but also interpretable 
and explainable, enabling users to gain insights into the underlying relationships between 
various factors affecting fuel consumption (Chen, 2020). This would ultimately contribute to 
the successful implementation of machine learning models in CCL and help the industry 
optimize fuel consumption and reduce its environmental impact. 

3. Methodology 

3.1. Emprical Analysis 
A typical day in CCL, for the delivery of commodities from a morning warehouse to the 

destination and back to the evening warehouse, undergoes a well-orchestrated process just to 
keep temperature-sensitive commodities within an environment that is controlled. Loading 
the goods into the refrigerated trucks with great care in the morning is necessary, where 
storing and tying is essential. These are accompanied along the way by temperature 
monitoring devices and data loggers, which record conditions to ensure the cold chain is 
maintained. On arrival at destination, efficient offloading and unloading procedures minimize 
exposure to ambient temperatures. Deliveries of goods to locations while documentation, if 
any, is handled efficiently. In the evening, empty trucks return to a cleansing process at the 
warehouse, after which they are sent out again the following morning. Here also, like in every 
step, number one is cold chain compliance—bringing the shipment to its destination with an 
optimum level of fuel consumption, freshness, and safety. Fuel consumption becomes very 
critical here, typically measured by liter of diesel fuel. Adding to this, in regard to fuel 
consumption, metrics are taken into consideration. They pose a great impact on the operation. 
In general, they involve factors related to Vehicle, Refrigeration and Temperature, Route, 
Load, and Driving behaviour. Among those numerous metrics, some are considered due to 
data tracking, measurability,  and other limitations. The 22 factors affecting diesel 
consumption that need to be accounted for are given below with explanation: 

3.1.1. Vehicle Related Factors 
● Default Fuel Consumption (1): Default fuel consumption refers to the baseline fuel 

consumption rate of a vehicle which specified by the manufacturer. Various elements 
contribute to this consumption, including engine size, aerodynamic drag, and the 
presence of outdated technology in older vehicles. The reason why this factor is taken 
as default is that varying factors such as vehicle brand, model, aerodynamic effects and 
engine size are gathered under one roof. It represents the amount of fuel consumed per 
unit distance traveled and is typically measured in liters per kilometer (L/100km). 

● Vehicle Age (2): The production year of a vehicle indicates its age and technological 
advancements. Older vehicles tend to have higher fuel consumption due to wear and 
tear, which can affect the vehicle's efficiency. As vehicles age, their engines may lose 
efficiency, and the vehicle's aerodynamics may degrade, leading to increased air 
resistance and higher fuel consumption. Additionally, newer vehicles often have more 
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efficient engine technologies, resulting in lower fuel consumption compared to older 
models.. The production year is typically measured in years (yr). 

● Vehicle Mileage (3): Vehicle mileage refers to the total distance that a vehicle has 
traveled over its lifetime. Higher mileage can lead to increased wear and tear, 
potentially affecting fuel efficiency. Vehicle mileage is typically measured in 
kilometers (km). 

● Vehicle Maintenance (4): Vehicle maintenance encompasses regular upkeep and 
servicing of vehicles. Proper maintenance ensures optimal performance and fuel 
efficiency by addressing factors such as tire conditions, engine wear, and component 
and coolant operation. Vehicle maintenance is crucial for minimizing fuel consumption 
and is measured based on last maintenance schedules and records in terms of weeks(w). 

● Vehicle Volume (5): Vehicle volume refers to the physical capacity or size of the 
vehicle's cargo space. It is an important factor in determining the load capacity and load 
utilization in CCL. Vehicle volume is measured in cubic meters (m3) 

3.1.2. Refrigeration and Temperature Related Factors 
● Ambient (Max) Temperature (7): Ambiento temperature is the temperature of the 

outside environment. It might have an impact, generally, on the energy demand by CCL 
refrigeration systems. At very high or low temperatures, the energy required to maintain 
the exact level of the temperature in refrigerated vehicles increases. It is measured in 
degrees Celsius ℃. 

● Morning (Min) Temperature (8): Morning temperature refers to the minimum 
temperature of the day of delivery, usually measured at the start of a work day in the 
morning. This is particularly important in the case of early start-up of the cooler where 
goods are being transported either at +4 ℃ or at -18 ℃. The morning temperature will 
be measured in degrees Celsius ℃. 

● Frozen Cabin (9): Cabin Frozen is a parameter depicting the temperature setting inside 
the vehicle. "0-1" Variable transformations for Cabin Frozen had been done prior to 
sampling. If it takes the value 1, that would be -18°C for frozen goods to really ensure 
product preservation that requires ultra-low temperature storage. And 0 is for +4°C, 
which is for chilled products not requiring frozen conditions but still needing controlled 
cooling. This Frozen Cabin feature must make available an estimate of energy 
consumption with respect to the quality and safety preservation of temperature-sensitive 
goods while in transit. 

● Double Cabin (10): A vehicle double cabin is an additional inner insulated enclosure 
that should ideally maintain a constant cold temperature throughout the delivery 
process. This feature of the double cabin adds to the overall vehicle weight and thus 
affects its fuel efficiency. However, the sealed cabin door ensures less loss of cold 
temperatures. It might find a mention as one of the critical parameters defining the fuel 
efficiency and load-carrying capacity of the vehicle. In the case of "Double Cabin", "0-
1" variable transformation was done before the data collection phase. The vehicles 
having that feature were assigned with the value "1" and vehicles without that feature 
were assigned with a value of "0". 

● Cooling Stem Time (11): Cooling stem time refers to the duration required for the 
refrigeration system to reach and stabilize at the desired temperature range before 
loading the temperature-sensitive goods. It is an important factor in ensuring that the 
products are properly loaded into cooled environment before transportation. Cooling 
stem time is measured in minutes (min). 



 
 

3.1.3. Route Related Factors 
● Route Distance Forward (12): The total distance covered from the warehouse in the 

morning to the last destination of trònsporUED. This factor is very key to fuel 
consumption and gives an insight into how efficient the route logistics is. It is measured 
in kilometers (km). 

● Route Distance Return (13): This is the total distance covered from the destination 
back to the warehouse at the close of a distribution process, accounting for miles 
covered where there is no coolant activity during the return journey. It is, however 
considered in fuel consumption and in calculating optimal logistics routes. Route 
distance return is measured in kilometers (km). 

● Route Time Forward (14): The time consumed from the warehouse in the morning to 
the final destination. It is very critical information in planning and scheduling logistics 
operations and may impact fuel consumption. It is measured in minutes (min). 

● Route Time Return (15): Route time return is the duration taken to back tract and reach 
the warehouse at the end of the distribution process. It represents time spent during the 
return journey without any coolant activity, stipulated in logistic planning and fuel 
consumption computations. Route time return is expressed in minutes (min). 

3.1.4. Load Related Factors 
● Load Weight (Payload) (16): The load weight or simply the payload represents the total 

weight of temperature-critical cargo to be moved. It is one of the principal factors when 
estimating vehicle capacity and fuel economy. This is normally given in kilograms (kg). 

● Delivery Points (17): These are the total number of locations or, said differently, a 
number of stops that the vehicle has to make during the process of transportation. Each 
stop adds additional time, distance to the route, with an added opening coolant door that 
potentially impacts fuel consumption. The number of stops is measured as a numerical 
value (#). 

● Load & Unload Time (18): This is the time consumed for the loading and offloading of 
the temperature-critical shipments from the truck. Effective load and unload processes 
waste less idle time and contribute to the overall efficiency of CCL. This may generally 
be measured in minutes (min). 

3.1.5. Driving Related Factors 
● Average Speed (19): Average speed refers to the average rate at which a vehicle travels 

during the process of transportation. It is very important in fuel consumption since high 
speeds would generally result in a high aerodynamic drag and high requirements for 
energy. Average speed is normally measured in kilometers per hour (km/h). 

● Max Speed (20): This is the top speed that can be built up by the vehicle. It states that it 
is a very important parameter not only for drivers to safely deliver their goods but also 
not to be an inconvenience. Overspending too much may cost a waste of fuel and can be 
hazardous as well. Max speed is measured in kilometers per hour (km/h). 

● Idle Time (engine off) (21): Idle time with engine off refers to the period of time when 
the vehicle is still standing with its engine turned off in the course of transportation. 
Since the air conditioner used in automobiles is engine driven, the air conditioner will 
not run during Idle Time with engine off period and will not consume fuel. However, 
since this is going to raise the temperature of the cabin, this period is kept short not to 
allow overshooting beyond the limit temperature. Any type of break or parking with an 
engine-off condition during working time is considered as Idle Time (engine off). The 
time for idle time with the engine off is measured in minutes (min). 



 
 

● Idle Time (engine on) (22): Idle time with the engine on refers to the standstill time of 
the vehicle during transport that has an engine running. Since the vehicle air conditioner 
is driven by the engine, the air conditioner will be running and consuming energy as 
long as the engine is on. Too much idling leads to fuel waste and unnecessary 
emissions. Because reducing idle time under the engine increases fuel economy. Idle 
time under the engine is recorded in minutes (min). 

3.2. Data Collection and Sampling Methods 
Data were gathered over a span of 10 weeks (from weeks 5 to 14) from the 14 

subcontractor dealership vans in Izmir, Turkey. The period of time is applicable for a relevant 
data analysis, because the period is not affected by some extraordinary events, such as bank 
holidays, and bad weather. Moreover, the stability of seasonal daily density during this time 
period serves to minimize the impact of external factors on the collected data. 

The mentioned vans only deliver frozen food products such as frozen pizzas or potatoes 
or chilled nourishment, such as dairy products like cheese or yoghurt and cold cuts. Each 
week 2 to 4 days, products from different vendors arrive to the dealership. If the products are 
not going to be delivered same day, they are taken into the temperature controlled cool room 
or freezers.  Usually, each truck has two employees who are in charge of managing, driving, 
and providing delivery assistance. When there is a lack of presence, an additional worker is 
hired, or else a single person completes the work to keep the firm running. As a result, 
business processes continued to operate normally over the monitoring time.   

Initially, driver surveys and personal interviews with drivers and logistics managers were 
conducted to obtain some heuristic insights into the operational procedures and probable 
inefficiencies. These realizations have been very basic in the interpretation of quantitative 
data, correlating the understanding of the bigger picture with respect to the fuel consumption 
trends within the framework of CCL. Data collection from different sensors and monitoring 
devices mounted on every vehicle followed, recording variables such as fuel consumption, 
ambient temperature, route distance, vehicle speed, and others for a given period. 

3.3. Statistical Tools Used for Analysis 
● Python: (Programming Language for training, testing, and validation). Python is an 

extremely versatile and powerful programming language heavily used in data science 
and machine learning; it owes its flexibility and usability to the collection of libraries. 
This eases a nice running of several ML models where it gives support to carrying out 
the implementation of ML techniques that are possible to define and train in a way that 
the code is clear and easy to understand. Python also allows the easier validation and 
testing of the models. Such cross-validated approaches through model assessment and 
division of data into training and test sets make model outputs robust and easily 
transferable to fresh data. The handling of data by Python is also made easy, mainly 
through libraries such as Pandas and Numpy, which go a long way in the effective 
handling of large datasets. This is mainly by performing operations like cleaning and 
transforming data, data aggregation, and other vital processes that require data 
preparation before it is fed into a machine learning model. 

● JupyterLab: (Text editor for Python). JupyterLab is a next-generation web-based user 
interface for Project Jupyter and is ideally an integrated development environment 
online which can provide support to data science, machine learning work. JupyterLab is 
a high-quality non-prose writing environment for Python code. Execution can then be 
completed to the nearest tick of any single cell in order to support a test and debug 
environment. It also supports rich text formatting and even has a feature for more 
advanced visualizations, which is used to display workflows in diagrams and results. 



 
 

This also can be useful in order to guarantee analysis is reproducible when working 
with Jupyter Notebooks. Following from data preprocessing to model evaluation 
everything can be saved and shared with others in order to get the most out of 
collaboration and transparency. 

● Pandas: (Data processing library). Pandas is an open source Softwares library, 
developed to be used in Python for data analysis and manipulation. Handling of missing 
data, removal of redundant information to save memory, rectifying inconsistencies in 
the data so that the dataset be clean and reliable before getting it fed into the machine 
learning models. Going from one data format to another, combining different datasets, 
and transforming data are common tasks in any analysis or modelling process. Pandas 
also allows one to get basic statistics and perform data exploration of the dataset, which 
gives pre-insight into how the dataset is patterned. It helps to recognize the significant 
factors impacting fuel consumption in cold chain logistics using this initial analysis. 

● Numpy: (Numerical calculation library). Numpy is a base package for scientific 
computing with Python. It supports large, multidimensional arrays and matrices, along 
with mathematical functions that operate on them, including effective statistical 
computations for mean, median, minimum, maximum, and standard deviation. Not only 
that, it also houses a series of mathematical functions to perform various mathematical 
functions, such as trigonometric, statistical, and algebraic, to carry out complex 
calculations with data. Moreover, Numpy will ensure top performance so that you gain 
quick computation even with bulky datasets; this is pretty much necessary in big data 
processing. 

● SciPy: (Scientific and technical computing library). SciPy works in parallel with 
Numpy as an extension for scientific and technical computing. It contains modules on 
optimization, integration, interpolation, and innumerable other complex mathematical 
functions in module form. Among its modules are tools for optimization, integration, 
and interpolation, which help in modeling and refining the models, whereas for any 
complex mathematical operation one requires in the analysis, it provides the same too. 
It also has modules for signal processing, which will, in turn, get help for time series, 
and statistical tools, along with hypothesis testing and other kinds of statistical analysis, 
which will help you validate your findings. 

● ScikitLearn: (Machine learning library). ScikitLearn is a Python machine learning 
library with tools for data mining and data analysis on a general-purpose foundation 
formed by NumPy, SciPy, and Matplotlib. ScikitLearn provides a host of machine 
learning algorithms, among which is linear regression, whose application in fuel 
consumption estimation will be discussed. Secondly, it also provides a consistent 
interface for using these machine learning algorithms, which will allow the user to 
easily change between several models. ScikitLearn provides the ability to create 
machine learning pipelines. This capability makes the workflow from data 
preprocessing to model training and assessing very smooth, with the assurance that each 
of the steps is consistent and repeatable. Further, ScikitLearn provides some metrics for 
the model performance. Such metrics include mean squared error, R-squared, and 
different cross-validated scores, which help to assess the accuracy and generalizability 
of the models. 

● Matplotlib: (Data visualization library including seaborn). It's a plotting library for the 
Python programming language. Matplotlib offers its users total control over plots they 
create, and these include static, animated, and interactive visualizations. One can use 
Matplotlib to produce a wide range of plots, from line graphs and histograms to bar 
charts and scatter plots. They help in exploring and giving better understanding of the 
data, and hence one can communicate the findings effectively. Tools for visualization 



 
 

help in understanding the result of models. For example, one could plot the prediction 
versus the real fuel consumption in order to see how the regression models are doing. 
Visualization before and after processing gives an insight into the distribution of data, 
trends, and anomalies in the data. Seaborn is a library based on Matplotlib and is closely 
integrated with Pandas data structures. It provides a high-level interface for drawing 
informative and attractive statistical graphics. 

3.4. Overview of Machine Learning Models 
The consumption of fuel is analyzed for cold chain logistics; several linear regression 

models are considered for the selection of significant factors and the estimation of fuel 
consumption. Linear regression models are some primary tools in the field of statistical 
modeling and machine learning that model the relationship between a dependent variable and 
one or several independent variables. Below is explained in detail how each linear regression 
model has been adapted; after that, the equation and the terms involved for each one are 
found accordingly. 

3.4.1. Simple Linear Regression:   
Linear regression model is the simplest machine learning and statistical technique on the 

topic. That describes the relationship between one dependent variable and one or more 
independent variables. The process is the definition of a linear relationship for the predicted 
dependent variable with respect to independent variables. It is used so generally for reasons of 
its simplicity, interpretability, and because it gets tedious for many practical applications. The 
linear regression model can be best denoted using the following equation: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+𝛽𝑝𝑥𝑝 + 𝜖 (Eq. 1) 

○ 𝑦 is the dependent variable (response variable). 𝑦 
○ 𝑥%, 𝑥&, … , 𝑥' are the independent variables (predictors). 
○ 𝛽( the intercept term, representing the expected value of 𝑦 when all independent 

variables are zero. 
○ 𝛽%, 𝛽&, … , 𝛽' are the coefficients (weights) associated with the independent variables, 

indicating the change in 𝑦 for a one-unit change in the corresponding 𝑥. 
○ 𝜖 is the error term, capturing the variability in 𝑦 that cannot be explained by the linear 

relationship with the independent variables. 
 
The coefficients 𝛽%, 𝛽&, … , 𝛽' in the linear regression model are typically estimated using 

the method of least squares. This method minimizes the sum of the squared differences 
between the observed values and the values predicted by the model. The objective function to 
be minimized is: 

Minimize:	{∑ (𝑦) − 𝑦7))&*
)+% = ∑ (𝑦) − 𝛽( − 𝛽%𝑥% − 𝛽&𝑥& −⋯− 𝛽'𝑥')&*

)+% }		 (Eq.	2)	

○ 𝑛 is the number of observations 
○ 𝑦) is the observed value of the dependent variable for the i-th observation 
○ 𝑦7) is the predicted value from the linear regression model. 

Assumptions: For linear regression to produce reliable and meaningful results, several 
assumptions must be met: 

1. Linearity: The relationship between the dependent variable and the independent variables is 
linear. 



 
 

2. Independence: The observations are independent of each other. 
3. Homoscedasticity: The residuals (errors) have constant variance at all levels of 𝑥. 
4. Normality: The residuals of the model are normally distributed. 
5. No Multicollinearity: The independent variables are not highly correlated with each other. 

Violations of these assumptions can lead to biased or inefficient estimates, reducing the 
reliability of the model's predictions. 

3.4.2. PCR (Principal Component Regression):  
Principal Component Regression (PCR) is a hybrid technique that combines the 

principles of Principal Component Analysis (PCA) and linear regression. It was specifically 
intended to address multicollinearity (when variables are highly correlated with each other) in 
datasets and reduce dimensionality, thereby stabilizing and increasing the interpretability of 
the regression models. PCR is particularly helpful when dealing with large datasets having 
many predictors, sometimes highly correlated. PCR avoids the pitfalls of multicollinearity 
and at the same time maximizes the predictive performance of the regression model by 
transforming the original predictors to a subset of uncorrelated components. Accordingly, the 
number of the predictors in the model is decreased due to suppression of the multicollinearity 
effect. Some of the benefits acquired from using PCR include effective multicollinearity 
management, effective reduction in the number of predictors, ease in the model, and an 
increase in ease in computation. However, shrinking many original predictors into few 
components makes it hard to interpret regression coefficients, and having too few components 
might result in losing important information. The two major steps in a PCR are PCA followed 
by linear regression. 

a. Principal Component Analysis (PCA): PCA transforms the original set of predictors 
into a new set of uncorrelated variables called principal components. These components 
are linear combinations of the original predictors and capture the maximum variance in 
the data. 

Let 𝑋 be an 𝑛 × 𝑝 matrix representing the 𝑛 observations and 𝑝 predictors. PCA decomposes 
𝑋into a set of principal components 𝑍: 

𝑍 = 𝑋𝑊 (Eq. 3) 

○ 𝑊 is a 𝑝 × 𝑝 matrix of eigenvectors of the covariance matrix 𝑋,𝑋	
○ 𝑍  is a 𝑛 × 𝑝  matrix of principal components. 

 
a. Linear Regression on Principal Components: Once the principal components are 

obtained, linear regression is performed using these components as predictors instead of 
the original variables. The linear regression model can be expressed as: 

𝑦 = 𝛽( + 𝛽%𝑍% + 𝛽&𝑍& +⋯+ 𝛽-𝑍- + 𝜖	 (Eq.	4)	

○ 𝑍%, 𝑍&, … , 𝑍- are the first 𝑘 principal components. 

3.4.3. PLS (Partial Least Square Regression):  
Partial Least Squares Regression (PLS) is a technique that combines the characteristics of 

Principal Component Analysis and multiple linear regression at the same time. The PLS 
method is custom-made for datasets in where there are many, possibly colinear, predictors. It 
looks for new components that explain the predictors at the same time as it predicts the 



 
 

response variable well. PLS greatly helps when predictors are strongly collinear with one 
another or when the amount of predictors in a dataset largely surpasses the number of 
instances. PLS decomposes the predictor and response variable into latent structures that 
maximize the covariance between them. In fact, it works quite well on the multi-collinearity 
aspect, the predictors' number is reduced since it simplifies the model, and hence it is good 
for computational efficiency. But most importantly, the predictions are quite robust. 
However, as in PCR, the regression coefficients are very difficult to interpret, due to the 
construction of the latent variables, and the number of components requires a bit of judgment. 
The main steps in PLS are as follows: 

a. Latent Variables: PLS finds latent variables (components) that are linear combinations 
of the original predictors and have the highest covariance with the response variable. 

Let 𝑋 be an 𝑛 × 𝑝 matrix representing the 𝑛 observations and 𝑝 predictors. PCA decomposes 
𝑋into a set of principal components 𝑍: 

𝑋 = 𝑇𝑃	𝑇	 + 𝐸 
𝑦 = 𝑈𝑞𝑇	 + 𝐹 

 

(Eq. 5) 
 

(Eq. 6) 

○ 𝑋 is a 𝑛 × 𝑝 matrix of predictors and 𝑦 is an 𝑛 × 1 vector of responses 
○ 𝑇 is a 𝑛 × 𝑘 matrix of scores for predictors. 
○ 𝑃 is a 𝑝 × 𝑘 matrix of loadings for predictors. 
○ 𝐸 is the matrix of residuals for predictors. 
○ U is a 𝑛 × 𝑘 matrix of scores for the response. 
○ 𝑞 is a vector of loadings for the response. 
○ 𝐹 is the vector of residuals for the response. 
○ 𝑘 is the number of latent variables. 

a. Regression on Latent Variables: Once the latent variables are obtained, a linear 
regression model is fit using these components: 

𝑦 = 𝛽( +M𝛽)𝑇) + 𝜖
-

)+%

 
(Eq. 7) 

○ 𝑇) are the latent variables obtained from PLS. 

3.4.4. Ridge Regression  
Ridge regression, better known as Tikhonov regularization, is the method that uses 

multicollinearity-skewed multiple regression data. Existence of highly-correlated independent 
variables may make the OLS model very sensitive to small variations and hence undergo a 
large variance. Ridge regression fits a model and adds some bias to give a more definite 
reduction in standard errors. Ridge regression modifies the least squares objective function by 
attaching a penalty term that is proportional to the square of the magnitude of the coefficients. 
Ridge regression is particularly good at combating multicollinearity and enhances the 
prediction accuracy and stability because it adds a regularization term. However, Ridge 
regression adds bias into the model and does not perform feature selection since it does not 
put any coefficients exactly to zero. The ridge regression model is given by: 

𝑦 = 𝛽( + 𝛽%𝑥% + 𝛽&𝑥& +⋯+ 𝛽'𝑥' + 𝜖 (Eq. 8) 



 
 

Minimize: { ∑ (𝑦) − 𝛽( − ∑ 𝛽.𝑥).
'
.+% )&*

)+% + 	𝜆 ∑ 𝛽.&
'
.+% 		} (Eq. 9) 

○ 𝑦) is the observed value of the dependent variable. 
○ 𝑥). are the observed values of the independent variables. 
○ 𝜆 is the regularization parameter that controls the amount of shrinkage applied to the 

coefficients. 
The strength of the penalty is determined by the degree controlled by 𝜆. When 𝜆=0, the 

case of ridge regression reduces to ordinary least squares regression. If 𝜆 is large, then the 
magnitude of the coefficients shrinks toward zero but does not reach exactly zero. By adding 
this penalty term in the cost function, ridge regression shrinks the coefficients, and hence it 
reduces their variance and mitigates effects from multicollinearity. 

3.4.5. Lasso Regression: 
Lasso regression, which stands for Least Absolute Shrinkage and Selection Operator, is a 

linear regression form containing L1 regularization. Lasso helps in shrinking the features to 
zero to help reduce variance and is also instrumental in feature selection by shrinking some 
coefficients right to zero. Lasso regression has many applications when we work with high-
dimensional data, which would require feature selection. In performing lasso regression, it 
selects automatically in-built features and trumps multicollinearity by driving some of the 
coefficient estimates right to zero. It can, therefore, simplify the model and enhance the 
prediction accuracy. On the other hand, this regularization introduces bias that sometimes 
results in inconsistent variable selection, especially for predictors that are highly correlated. 
The lasso regression model can be put in the regular linear regression form, and the lasso 
regression to be minimized in the cost function contains the L1 penalty term: 

𝑦 = 𝛽( + 𝛽%𝑥% + 𝛽&𝑥& +⋯+ 𝛽'𝑥' + 𝜖 (Eq. 10) 

Minimize: { ∑ (𝑦) − 𝛽( − ∑ 𝛽.𝑥).
'
.+% )&*

)+% + 𝜆∑ O𝛽.O
'
.+% 	} (Eq. 11) 

○ 𝑦) is the observed value of the dependent variable. 
○ 𝑥). are the observed values of the independent variables. 
○ 𝜆 is the regularization parameter that controls the amount of shrinkage applied to the 

coefficients. 
The L1 penalty in the cost function causes some of the coefficients to be exactly zero, 

which implements feature selection automatically and simplifies the model. This 
characteristic of Lasso allows shrinking of the coefficients to zero, and this is very useful in 
high dimensions. It retains only important predictors that help in identifying them. By 
introducing bias through regularization, lasso reduces the variance of the model that might 
improve generalizability and, therefore, performance on unseen data. 

3.4.6. ElasticNet Regression: 
ElasticNet regression is a type of regularized regression technique that improves ridge 

regression and lasso regression. It overcomes the drawbacks of both approaches, so it is most 
effective in situations where the datasets are characterized by having several relevant features 
that present a high level of multicollinearity or when the number of predictors is vastly 
greater than the number of observations. ElasticNet does a pretty good job of putting together 



 
 

variable selection and regularization in one step, thus enhancing the prediction accuracy and 
interpretability of the model. ElasticNet applies both the L1 and the L2 penalty as a linear 
combination of Lasso and Ridge, respectively. In other words, ElasticNet is a very good 
approach to handle multicollinearity and do feature selection at the same time. The mix of 
penalties in ElasticNet is more effective in handling multicollinearity and in automating the 
feature selection but increases the complexity of the problem by tuning two hyperparameters, 
which turns out to be computationally intensive. The cost function for the optimization 
problem is written as the sum of the penalties of ridge regression and lasso regression. The 
ElasticNet model can be expressed by the linear regression equation: 

𝑦 = 𝛽( + 𝛽%𝑥% + 𝛽&𝑥& +⋯+ 𝛽'𝑥' + 𝜖 (Eq. 12) 

Minimize: { ∑ (𝑦) − 𝛽( − ∑ 𝛽.𝑥).
'
.+% )&*

)+% +	𝜆%∑ 𝛽.&
'
.+% 	+ 	𝜆& ∑ O𝛽.O

'
.+% 	} (Eq. 13) 

○ 𝑦) is the observed value of the dependent variable. 
○ 𝑥). are the observed values of the independent variables. 
○ 𝜆% is the regularization parameter for the ridge component (L2 penalty). 
○ 𝜆& is the regularization parameter for the lasso component (L1 penalty). 

3.4.7. Lars Regression: 
Least Angle Regression (LARS) is an algorithm designed for regression against high-

dimensional data with multicollinearity among predictors. It will be efficient under the 
condition: the number of predictors should be much larger than the number of observations. 
LARS is an algorithm that works iteratively over the predictors. It also provides a further less-
greedy version of forward stepwise regression, which is computationally efficient and gives a 
full solution path with the variation of the regularization parameter. In this manner, LARS can 
build a linear model iteratively by selecting the most correlated predictors with the response 
and then adjusting the coefficients. LARS will provide a full solution path for dataset size, 
and a model can be determined in this way to study predictor inclusion and further model 
selection. This feature of the LARS model usually makes it harder to implement or interpret 
than the simpler regression methods. Of course, the general linear model is: 

𝑦 = 𝛽( + 𝛽%𝑥% + 𝛽&𝑥& +⋯+ 𝛽'𝑥' + 𝜖 (Eq. 12) 

However, the algorithm for determining the coefficients 𝛽. is unique to LARS. The 
algorithm proceeds as follows: 

1. Initialization: Start with all coefficients 𝛽. = 0 
2. Iteration: At each step, identify the predictor most correlated with the residual from 

the previous step. Increase the coefficient of this predictor in the direction that reduces 
the residual sum of squares. 

3. Pathwise Solution: Continue this process, moving the coefficients in the direction of 
the identified predictor until another predictor becomes equally correlated with the 
residual. Then, move in the direction equiangular between the predictors. 

The process can be summarized by the following equations and steps: 



 
 

	𝑦7 = 𝑋𝛽P  (Eq. 13) 

○ 𝑋  is the matrix of predictors. 
○ 𝛽P  is the vector of estimated coefficients. 
○ 𝑦7 is the vector of predicted values. 

At each step, the algorithm adjusts the coefficient 𝛽. such that: 

	𝛽.
(-0%) = 𝛽.- + 𝛾 (Eq. 14) 

where 𝛾 is the step size determined based on the correlation of the predictors with the 
current residuals.  

LARS is computationally efficient, especially for high-dimensional data, where the 
number of predictors is large. It provides a full piecewise linear solution path, which enables 
one to look at the whole sequence of feasible models as the regularization parameter changes. 
It can easily be modified to give solutions comparable to the lasso and forward stagewise 
regression with modifications to step size and selection criteria. 

3.4.8. LassoLars Regression: 
LassoLars stands for Least Angle Regression with Lasso, which is a refitted version of 

Lasso regression, combined with the efficiency of the LARS algorithm. It is designed to 
provide the benefits of the two: variable selection and regularization same as Lasso and being 
computationally efficient while providing a full path of solutions like LARS. This technique 
is very useful in high-dimensional data; that is, when the number of predictors in the data is 
very large. This ensures that some coefficients will be exactly equal to zero, making model 
simplification and interpretation possible. However, this implies very careful parameter-
tuning considerations which, in turn, could be computationally intensive. The basic linear 
regression model that LassoLars follows is as shown: 

𝑦 = 𝛽( + 𝛽%𝑥% + 𝛽&𝑥& +⋯+ 𝛽'𝑥' + 𝜖 (Eq. 15) 

Minimize: { ∑ (𝑦) − 𝛽( − ∑ 𝛽.𝑥).)&
'
.+%

*
)+% + 𝜆∑ O𝛽.O

'
.+% 	} (Eq. 16) 

LassoLars is a modification of the LARS algorithm to introduce some of the coefficients 
to be exactly zero due to the L1 penalty. From Lasso regression, it has the nature of the L1 
penalty, which shrinks some coefficients toward zero for variable selection. LARS 
Algorithm: This is very useful and efficient in high dimensions computationally. It provides 
the complete path of the solution, which allows examination of a model for various levels of 
regularization and, more generally, in an environment for model selection. It will return 
piecewise linear coefficient paths so that the process by which predictors are added into the 
model may be further explained. 

3.4.9. LassoLarsIC Regression: 
LassoLarsIC extends the LassoLars to include the automatic selection of the 

regularization parameter using information criteria, such as AIC or BIC. The procedure thus 
integrates within a single tool the variable selection, the regularization properties of the 



 
 

Lasso, the computational efficiency of LARS, and the automatic selection of the model 
complexity driven by the data. This automatically selects the regularization parameter using 
information criteria to avoid manual tuning or cross-validation and make the model more 
interpretable and computationally efficient. It extends LassoLarsIC along the same linear 
regression model of LassoLars because the cost function contains the Lasso regression L1-
term: 

LassoLarsIC selects the regularization parameter 𝜆 based on minimizing an information 
criterion, such as AIC or BIC: 

1. Akaike Information Criterion (AIC): AIC balances the goodness of fit of the model 
with the complexity of the model. It is defined as: 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿) (Eq. 17) 

where 𝑘 is the number of parameters in the model and 𝐿 is the likelihood of the model. 
2. Bayesian Information Criterion (BIC): BIC is similar to AIC but includes a stronger 

penalty for models with more parameters. It is defined as: 

𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2𝑙𝑛(𝐿) (Eq. 18) 

where 𝑛 is the number of observations. 
The LassoLarsIC chooses the value of  which minimizes one of the information criteria 

AIC or BIC. It basically searches for a model with good balance between complexity. This 
would mean that one is able to avoid the manual tuning implicit in using cross-validation. 
Includes the L1 penalty, which enables variable selection through shrinking some of the 
coefficients to zero. It applies the LARS algorithm; thus it is computationally efficient and 
suitable for high-dimensional data. Uses information criteria to balance model fit and 
complexity, which leads to more interpretable models. 

3.4.10. BayesianRidge Regression 
Bayesian Ridge Regression is a linear regression technique that adopts a Bayesian 

inference approach in estimating the distribution of the model parameters. It is a probabilistic 
regression approach that allows one to estimate the uncertainty in the model coefficients and 
regularizes to avoid overfitting. Further, Bayesian Ridge Regression helps in dealing with 
multicollinearity in the correct manner and makes the model robust. Bayesian Ridge 
Regression further introduces regularization via specification of a prior on both the 
parameters and the noise term, thereby making it better in terms of understanding and 
estimating uncertainty while obtaining a less sensitive model to multicollinearity and 
overfitting. In what follows, we derive Bayesian Ridge Regression as an extension of the 
standard linear regression model with priors placed on the model coefficients and the noise 
term: 

In Bayesian Ridge Regression, priors are placed on the coefficients βj and the variance of 
the error term 𝜎&	

𝛽. ∼ 𝑁(0, 𝜆&)	   ,   𝜎& ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) (Eq. 19) 



 
 

where 𝜆 is the precision of the prior distribution for 𝛽. 	(inverse variance). 𝛼 and 𝛽 are the 
hyperparameters of the Inverse Gamma distribution controlling the prior on 𝜎&. 
The likelihood of the observed data is assumed to be Gaussian: 

𝑦) ∼ 𝑁(𝑋)𝛽, 𝜎&) (Eq. 20) 

where  𝑋) is the i-th row of the design matrix 𝑋. Incorporates prior distributions for model 
parameters, allowing for probabilistic interpretation and uncertainty estimation. The priors on 
the coefficients introduce regularization, helping to prevent overfitting and handle 
multicollinearity. Bayesian Ridge Regression automatically estimates the regularization 
parameters from the data, improving model robustness. 

3.4.11. ARDRegression Regression: 
ARDRegression is a Bayesian linear regression technique that tries to make a decision on 

the importance of predictors by putting a different type of prior distribution on the 
coefficients. Such models are very useful for high-dimensional data when it is important to 
retain only the most relevant predictors. ARDRegression prevents overfitting by adapting the 
precision parameters to shrink the coefficients of less relevant variables toward zero. 
Inclusion of priors in relevance determination through ARDRegression increases the 
robustness of the model, particularly in complex datasets. The ARD model extends the 
standard linear regression model by priors for the regression coefficients. 

In ARDRegression, the coefficients 𝛽. are treated as random variables with their own 
prior distributions. Typically, Gaussian priors are used: 

𝛽. ∼ 𝑁(0, 𝛼.2%) (Eq. 21) 

Where 𝛼 is the precision (inverse variance) of the prior distribution for 𝛽.. A high value of 
𝛼. 	indicates that 𝛽. is likely to be close to zero, thus deeming the corresponding predictor less 
relevant. 

The likelihood of the observed data is assumed to be Gaussian: 

𝑦) ∼ 𝑁(𝑋)𝛽, 𝜎&) (Eq. 22) 

where Xi is the i-th row of the design matrix 𝑋, and 𝜎& is the variance of the error term. 
ARDRegression uses a Bayesian framework to estimate the coefficients, incorporating prior 
knowledge about their distribution. The model automatically adjusts the precision parameters 
𝛼. to identify and shrink the coefficients of less relevant predictors towards zero.  

3.5. Model Evaluations (Success Metrics) 
Once such regression model coefficients are estimated, the performance of the model has 

to be checked for validity and reliability. The model evaluation metrics provide some 
quantitative guidance to the states about how well the model fits the data and how well it 
probably generalizes to new data. Among the most common evaluation metrics for linear 
regression models are Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and 
R-squared (R²). One cannot consider any of the three measures superior to the other since all 
three provide related information on different aspects of the performance of a model. 



 
 

Mean Squared Error (MSE) 
The Mean Squared Error (MSE) is one of the base measurements that is utilized to 

approximate the competency of a regression model that computes the mean of the squares of 
the amount of error—the difference of the observed true outcome—and the outcome that the 
model has estimated. Mathematically, MSE is defined as: 

𝑀𝑆𝐸 = 	
1
𝑛M(𝑦) − 𝑦7))&

*

)+%

 
(Eq. 23) 

where n is the number of observations, 𝑦) is the observed actual, 𝑦7) is the predicted value for 
the i-th observation. MSE generally shows how far the prediction errors deviate and, because 
it involves squaring, gives more weight to the larger errors. Therefore, a smaller MSE value 
indicates a closer fit of the model to data since the predicted values are much closer to the true 
value. 

Root Mean Squared Error (RMSE) 
Root Mean Squared Error (RMSE) is another commonly used metric that is derived from 

MSE. RMSE is the square root of the Mean Squared Error and provides an error metric in the 
same units as the dependent variable, making it more interpretable. The formula for RMSE is: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = h
1
𝑛M(𝑦) − 𝑦7))&

*

)+%

 

(Eq. 24) 

 
RMSE, like MSE, reflects the average magnitude of the prediction errors, but it is more 

interpretable because it is in the same units as the dependent variable. A lower RMSE 
indicates better predictive accuracy of the model. 

R-squared (R²) 
R-squared (R²), also known as the coefficient of determination, is a metric that quantifies 

the proportion of the variance in the dependent variable that is predictable from the 
independent variables. It provides an indication of the goodness of fit of the model. The 
formula for R-squared is: 

𝑅& = 1 −
∑ (𝑦) − 𝑦7))&*
)+%

∑ (𝑦) − 𝑦i))&*
)+%

 
(Eq. 24) 

where 𝑦i is the mean of the observed actual values. 
The R² values are from 0 to 1. An R² value equal to 1 states the model explains all the 

variability of the response data 1 and the mean, thus perfectly fitting the model. An R² value 
of 0 states that the model does not explain any of the variability in the response data. Taking 
it more generally, the better the model fits, the more significant the R² value will be. One 
disadvantage of R² is that it does not adjust for the number of predictors within the model; 
therefore, it may suggest a too-optimistic fit in cases where too many predictors have been 
included in the model. Adjusted R² overcomes this weakness by controlling for the number of 
predictors in the model relative to the number of observations. 



 
 

4. Data Analysis of Machine Learning Model for Fuel Consumption Estimation 

4.1. Data Preparation and Descriptive Statistics 
The primary step in the data preparation is to load the dataset. This is done using the 

pandas library, which is very efficient for the manipulation and analysis of data and designed 
for Python. The next step is to read a subset of data in columns 2 to 25 from the CSV file. The 
next 700 rows are selected, then read into a DataFrame for further analysis.  

An overview of the data from df.info() command can help us to know what data 
structures and types exist in the data and how many non-null entries exist in the DataFrame. 
This overview helps in understanding the structure of the dataset, identifying the types of data 
present (numerical, categorical, etc.), and detecting any missing values. In this way, we could 
detect if some variables need to be transformed or reduced. However, since data 
transformation has been completed before the data collection, there were no need to transform 
or reduce the data. Example of data transformation can be given for cabin type and frozen 
cabin data. While these variables were nominal, the data has been collected as binary values 
(0-1). 

Figure 1: Overview of the Data 

 

The CSV file is loaded into a DataFrame with rows 0 to 699 and columns 2 to 24. Also, 
from this DataFrame, the rows with an empty cell at the end of the row are deleted. Finally, 
the remaining missing values in the DataFrame are imputed using the average value of 
corresponding columns. The process is necessary so that machine learning and regression 
analysis work correctly with the dataset because the dataset can prototype false model 
prediction results and can give the biased result by not having all values. Integrity is 
maintained in the filling of missing values with means of columns, thereby giving consistency 
to the aggregated inputs to the algorithms, which makes the model reliable and of good 



 
 

performance. Then, for the entire DataFrame, we check for the presence of null values using 
df.isnull().values.any(). 

The command df.describe().T will produce summary statistics that describe the dataset in 
terms of central tendency, dispersion, and shape of the data distribution. Afterwards, the .T 
method is used in order to view the output in columns since it makes the statistics more 
readable. The summary contains count, mean, standard deviation, minimum and maximum, 
and three quartile values (25%, 50%, 75%). The descriptive statistics are very primitive in 
explaining the characteristics of the data and allow one to identify potential misuse or 
possible outliers. 

Figure 2: Descriptive Statistics of the Data

 

4.2. Correlation Analysis 
The purpose of correlation analysis is to find out the connection between variables in the 

dataset. It measures the magnitude of association between two factors. It further aids in the 
detection of strongly related variables that may bring about an effect on the dependent 
variable, which in the current study is fuel consumption. This study further evaluates 
correlation with the help of graphical tools, for example, seaborn, where heat maps or pair 
plots are created. Seaborn is a powerful Python visualization library that provides a high-level 
interface to produce informative and beautiful datasets. We can thus plot the correlation 
matrix and check what set of variables have high correlation coefficients. If close to +1 or -1, 



 
 

it is an indicator that the variables are in a high positive or high negative relationship. If close 
to 0, it is an indicator that the relationship is weak or there is none. 

Figure 3: Correlation Matrix Heatmap

 
The correlation analysis counts for significant relationships between these various factors 

that are taken into consideration in influencing fuel consumption in cold chain logistics. The 
correlation between default fuel consumption and vehicle age (default_fc and age_van) 
amounts to 0.35, meaning that there is a moderate positive correlation. Moderate positive 
correlation means that an increase in the age of the vehicle should result in increased fuel 
usage since new generation vehicles include modern technological additions, leading to 
relative inefficiency of the older vehicles. The correlation between vehicle age (age_van) and 
vehicle mileage (mileage) is placed at 0.66, meaning that it is a strong positive correlation. 
Mileage is positively correlated with age, which is very intuitive since a vehicle that is older 
will have been placed into service for a greater period and thus would have traveled more 
distance. That vehicle might then be indicative of potential wear and tear, which implies that 
older vehicles with higher mileage are likely to experience difficulties with regard to 
maintaining fuel efficiency. The relationship between vehicle volume (volume) and cooling 
stem time (cool_stem) is 0.46, implying a moderate positive relationship. Bigger vehicles 
with higher cargo volume take more time to reach and maintain the desired temperature 
before they are loaded with cargoes. This, of course, is obvious: when a larger vehicle has 
more volume of storage, this correlates to more space within the cooling stem. This 
relationship then points to the relevance of an effective cooling system within a larger vehicle 
to hold this extended time and energy needed to maintain the right temperature.  

The correlation between the presence of a double cabin (doubl_cab) and the use of a 
frozen cabin (frozn_cab) is 0.39, indicating a moderate positive relationship. This suggests 



 
 

that vehicles equipped with a frozen cabin, which is necessary for transporting goods at -
18°C, often have a double cabin. The double cabin provides better insulation and temperature 
control, which is crucial for maintaining the extremely low temperatures required for frozen 
goods. This setup helps in minimizing temperature fluctuations and ensuring the quality and 
safety of the transported goods. The relationship of using a frozen cabin (frozn_cab) and 
cooling stem time (cool_stem) is relatively strong at 0.53. It takes much stem time in getting 
the frozen cabin down to -18 °C before fruits will be loaded into the cabin. More cooling 
chamber time is needed to get the chamber's temperature down to the lowest set point for the 
fruits to remain frozen throughout the journey. In this regard, this indicates a significant role 
and practice of effective pre-cooling processing in vehicles meant to transport frozen 
products. The correlation between the use of a frozen cabin (frozn_cab) and idle time with the 
engine on (on_eng) is 0.42, showing a moderate positive relationship. It means that vehicles 
which are equipped with a frozen cabin are supposed to have the engine on more hours than 
with a cool cabin, which is necessary for the power supply of the refrigeration unit and the 
keeping of the air temperature inside the cabin at -18°C. The relationship shows that fuel 
consumption and operation costs increase in the case of maintaining very low temperatures 
during transport. 

The relationship between max_temp and min_temp is strong and positive, at 0.59. This 
was expected, as generally, lower morning temperatures lead to lower maximum 
temperatures. The general weather patterns show that most often, cooler days can be forecast 
from cool mornings. Knowledge of this relationship will lead to planned adjustments of 
cooling requirements according to expected daily temperature profiles. The relationship of 
min_temp with cool_stem is measured at 0.47, which shows a moderate relationship. Most 
drivers have tended to set the cooling process according to ambient temperature prevailing in 
the morning. In the event of a high morning temperature, it will take a longer cooling stem 
time to reach the desired temperature and come to rest. This shows the importance of ambient 
conditions in planning the pre-cooling phase to ensure that temperatures are maintained 
throughout the trip. 

The correlation analysis of delivery points (delivery_pts), forward distance (forw_dist), 
and forward time (forw_time) stands at a high positive correlation of 0.72 and 0.79 
respectively. This means that an increased number of delivery points is directly proportional 
to the increase in the forward distance covered as well as the time taken to deliver the goods 
to those points. As more delivery points are serviced, the route becomes larger, and hence, the 
vehicle has to cover larger distances, which in turn increases the time taken to deliver the 
goods. The above relationship shows the underlying logistics of dealing with multiple 
delivery points efficiently, as it has a direct impact on the overall time and distance covered in 
delivering to different points. The correlation between delivery points (delivery_pts) and 
return distance (retn_dist) and return time (retn_time) is slightly less, but still high at 0.61 and 
0.53 respectively. Though the correlation is not as high as in the previous case of forward 
distance and time, the correlation still shows that an increased number of delivery points 
generally increases the return journey distance and time as well. As deliveries are made and 
the vehicle has to turn back, the more the number of delivery points, the more the distance 
and time required to return. This shows the underlying cumulative effect of having multiple 
stops in the overall route planning, including the journey back to the starting point. 

There is a positive 0.59 correlation between delivery points (delivery_pts) and kg_load 
and a positive 0.73 correlation between delivery points and unload time (unload_time). This 
means that more delivery points generally lead to a higher total load being delivered, while 
more time is consumed in unloading products at each stop. This relationship is intuitive 
because as the delivery points increase, the amount of cargo and the handling and unloading 



 
 

time at each point also increase. The correlation of off_eng and on_eng with unload time 
(unload_time) equals 0.90 and 0.66, respectively. These are robust correlations. This is 
because the vehicle will be forced to stop and wait for the unloading to take place, which 
means the engine will either be running or will be switched off. The very high correlation 
with off-time indicates that engines are often shut off—possibly for fuel savings—when 
unloading. The moderate correlation with on-time suggests that, for significant portions of the 
unloading period, the engine remains on, likely to maintain cabin temperatures or for other 
operational reasons. This relationship underscores the impact of unloading activities on fuel 
consumption and vehicle idling practices. 

The correlation of distance with speed is high for forw_dist and retn_dist in both 
avg_speed and max_speed, meaning that the farther the distance covered, the higher the 
average and maximum speed could likely be. This can best be explained, meaning longer 
routes can have more highways factored into them with higher velocities. At the same time, 
shorter distances to more delivery points will take more time on local streets, finding a place 
to park, and making more frequent stops, which makes the average speed lower. Such a 
relation develops different driving conditions and speed profiles depending on route length 
and delivery density.  

The correlation analysis of the correlation of fuel consumption per 100 km with default 
fuel consumption leads to a high level of correlation value of 0.57. This means that the default 
fuel consumption, as expressed by the maker at the starting point, is highly related to the 
actual fuel consumption that occurs over a distance. In other words, the more default fuel 
consumption a given vehicle has, the more fuel consumption per 100 km will be, thereby 
ultimately and directly relating the level of importance that the overall level of fuel efficiency 
built into a vehicle is defined. The correlation between fuelc_100km and age_van is low and 
positive, r = 0.28. In more straightforward words, it means that a 100 km distance will likely 
burn more fuel with the car's age increasing. This may be because of wearing out of the 
engine parts and general inefficiency with the aging of the cars and degradation of the vehicle 
system. However, it does not go solid on correlation, and hence, there exist other factors that 
have a vast determination of the fuel consumption. On the other hand, fuelc_100km computes 
near zero correlations with vehicle mileage (mileage), vehicle maintenance (maint_wk), 
vehicle volume (volume), and whether the vehicle has a double cabin (doubl_cab). This 
means that about the other variables, these other variables do not directly affect the quantity 
of fuel consumed in 100 kilometers.  This implies that the effect is so tiny that there is no 
visible effect at all, for if not, there have been apparent indicators that show that their impact 
is overwhelmed or overridden by more dominating factors such as fuel consumption default 
and vehicle age. 

The correlation between Fuelc_100km and frozn_cab is positive and set at 0.33, hence a 
low to moderate positive correlation. This implies that a car at an ultra-low temperature of -
18°C will expend much more energy to cool down things in the cabin than it will at its 
average temperature of +4°C and, therefore, also spend more fuel. Hence, it calls for ultra-
low temperatures to be set to maintain the temperature in the cabin. It justifies that the vehicle 
will consume more fuel in that situation. The correlations of the fuelc_100km values at the 
maximum temperature of the stalk are pretty wrong. This suggests that the ambient 
temperature conditions and initial cooling time do not seem to influence fuel consumption per 
100 km. These might be optimally taken care of in the operational structure so as not to 
influence fuel consumption. 

The delivery points (delivery_pts) have a weakly negative correlation of -0.15 with fuel 
consumption per 100 kilometers (fuelc_100km). This means that as the number of delivery 
points increases, the fuel used per delivery slightly decreases. This reduction may be due to 



 
 

economies of scale, where the fuel cost per delivery point drops as the number of stops 
increases, possibly because of optimized routing and load distribution. Fuel consumption per 
100 kilometers also has a low to moderate negative correlation (ranging from -0.2 to -0.45) 
with forward distance (forw_dist), forward time (forw_time), return distance (retn_dist), and 
return time (retn_time). These negative correlations indicate that longer travel distances and 
times are associated with lower fuel consumption per 100 kilometers. This might be because 
longer routes usually involve more highway driving, which generally results in better fuel 
economy compared to shorter, stop-and-go trips in urban areas. 

The relationship between fuel consumption per 100 kilometers (fuelc_100km) and both 
load weight (kg_load) and unload time (unload_time) is slightly positive. This means that 
heavier loads and longer unloading times do increase fuel consumption, but their effect is not 
as significant compared to other factors. The extra fuel used for carrying heavier loads and the 
time spent idling during unloading do matter, but they have a smaller impact. 

Fuel consumption per 100 kilometers (fuelc_100km) has a low to moderate negative 
correlation with average speed (avg_spd) and maximum speed (max_speed), with values of -
0.46 and -0.27 respectively. This suggests that higher speeds generally result in better fuel 
efficiency per 100 kilometers. Vehicles use less fuel per distance traveled when they go 
faster, especially on highways, because they maintain steady speeds and operate more 
efficiently. 

Lastly, fuel consumption per 100 kilometers (fuelc_100km) has a near-zero correlation 
with idle time when the engine is off (off_eng) at -0.01 and a positive correlation with idle 
time when the engine is on (on_eng) at 0.23. When the engine is off, it doesn't use any fuel, 
which explains the near-zero correlation. However, when the engine is on, idling consumes 
more fuel, especially when running the air conditioning to keep the cabin cool. 

4.3. Variance Inflation Factor (VIF) 
In addition to correlation analysis,  another measure called the Variance Inflation Factor 

(VIF) is used to check how much the variance of a regression coefficient is increased because 
of correlations with other predictors. When the VIF values are high, it means the predictors 
are highly correlated, which can make the regression results unstable and unreliable. If a VIF 
value is greater than 10, it indicates a significant problem with multicollinearity, meaning the 
predictors are very similar to each other. To fix this, we can identify the variables with high 
VIF values and consider removing or combining them to improve the model’s reliability. In 
our study, factors like default fuel consumption (default_fc), age of the van (age_van), 
volume, delivery points (delivery_pts), forward distance (forw_dist), forward time 
(forw_time), unload time, average speed (avg_spd), maximum speed (max_spd), off engine 
time (off_eng), and on engine time (on_eng) have VIF values much higher than 10. This 
shows severe multicollinearity, making it difficult to determine the individual impact of each 
predictor on the dependent variable. This high multicollinearity increases the standard errors 
and makes the statistical conclusions less reliable. For example, the variable default_fc has 
the highest VIF value of 501.26, meaning it is almost perfectly correlated with other 
predictors in the model, with an R² value of 0.998005. Similarly, forw_time, forw_dist, and 
off_eng also have very high VIF values, indicating they are highly correlated with other 
variables. These high VIF values can distort the true relationships between predictors and the 
outcome, making it hard to understand which factors are really important. 

 
 
 



 
 

Figure 4: Variance Inflation Factor (VIF) 

 
To deal with multicollinearity problems, you may want to remove some high correlation 

predictors in the model with very high VIF over the threshold. Or, better yet, you one could 
reduce those correlated predictors into a handful of uncorrelated components through 
methods like Principal Component Analysis (PCA). Regularization methods such as Ridge 
Regression or Lasso Regression could also be employed to mitigate the effects of 
multicollinearity by adding a penalty to the size of the coefficients, thereby stabilizing the 
estimates. Similarly, these steps can enhance the reliability and interpretability of the model 
which in turn will provide precise and actionable intelligence to determine the underlying 
factors in consumption of fuel in case of cold chain logistics. 

It's crucial to understand these relationships before applying machine learning models 
because multicollinearity, where independent variables are highly correlated, can distort the 
model's interpretation and predictions.  This affects the reproducibility of the model and its 
interpretation because multicollinearity inflates the variance of our coefficient estimates and 
can lead to a highly sensitive model to a perfectly valid dataset. 

4.4. Regression Analysis of Key Factors 
Regression analysis is used to understand how the dependent variable (fuel consumption) 

relates to various independent variables (key factors). The process involves several steps to 
make sure the models are reliable and accurate. 

Train-test split: 
We start by dividing the dataset into training and testing sets before creating and testing 

the regression models. This is important to evaluate how well the model generalizes and 
performs on unseen data. A regular split ratio of 80% for training and 20% for testing is 
commonly used. The training set is used to fit the model, while the testing set assesses the 
model's performance. 

Simple Linear Regression with OLS and Analysis: 
Ordinary Least Squares (OLS) refers to a family of methods used for estimating the 

coefficients of the linear regression model. In simple terms, it fits a linear model of the 
response variable with a single independent variable. The resulting OLS estimator minimizes 
the sum of the squared errors, which is the difference between the observed values of the 



 
 

dependent variable and the predicted values from the regression model. Performing an OLS 
provides us information about the strength and direction of the association between the 
variables as well as the importance of the predictor variable. 

Figure 5: OLS Regression Results

 

Linear Regression with Scikit-learn: 
A widely used machine learning library in Python, scikit-learn, contains implementations 

of many algorithms useful for linear regression, that can be easily used to fit the model. While 
this approach may not be optimal for our current problem, scikit-learn’s linear model is 
capable of handling multiple predictors (features) in the linear regression model easily. 
Therefore it is straightforward to extend the simple one-parameter linear regression to 
examine the influence of multiple features on the fuel consumption. This not only simplifies 
the model fitting but also provides tools such as regularization methods (e.g. ridge and lasso) 
and cross-validation schemes that are helpful in enhancing the performance and robustness of 
the model. We will discuss these topics in separate articles in future. 

Significance of Independent Variables 
The results of the regression analysis provided evidence that many of these adopted 

independent variables are statistically significant predictors of fuel consumption in cold chain 
logistics. These variables include defaul fuel consumption, vehicle mileage, last maintenance 
weeks, volume, existence of a double cabin, forward and return travel distance, forward travel 
time, load weight , unloading time, engine on idle time.  Each of these variables' p-values are 
less than 0.05, indicating that all of them are very strongly related to fuel consumption. For 
instance, the p-value for default fuel consumption is 0, indicating that it is a very critical 
factor for fuel usage. Similarly, mileage of the vehicle, maintenance frequency, volume of the 
vehicle, presence of a double cabin, distances travelled -- both forward and return, the time 
taken during forward travel, the weight of the load, time taken for unloading, and the time for 
which the engine is on are all significant and, therefore, show their importance in the fuel 
consumption model. 

On the other hand, most the variables were statistically insignificant predictors of the 
dependent variable, for the simple reason that they do not really relate strongly and/or 
consistently to fuel consumption within the particular dataset and model being used. 
Variables such as the age of the van, presence of a frozen cabin, ambient temperatures, 
cooling stem time, number of delivery points, return travel time, average and maximum 
speed, and engine off idle time might not significantly impact fuel consumption due to several 



 
 

reasons. These variables could have too little variability within the data, their effects on fuel 
consumption may be indirect or perhaps mediated through other variables, or their impact 
may show only in certain contexts and therefore apply variably to different operating 
conditions or vehicle types. In addition, multicollinearity ,many of the independent variables 
being strongly correlated among each other, may further deflate the apparent significance of 
individual predictors. Thus, although these variables may intuitively seem relevant, the fact 
that they are not statistically significant suggests that they do not contribute to fuel 
consumption independently in this particular model. All of these variables have a p-value 
greater than 0.05, indicating that their effect on fuel consumption is statistically not 
significant in this model. For example, the p-value for the age of the van is 0.422, indicating 
that vans in all age categories do not significantly affect fuel consumption. The significance 
of independent variables is presented in Figure 6. 

Figure 6: Significance of Independent Variables 

 
To sum up, the regression analysis reveals that default fuel use consumption according to 

miles, maintenance frequency of vehicle, volume of vehicle, double cabin, forward and return 
distances, forward travel time, load weight, and time spent offloading and engine on-time are 
factors which predict fuel consumption in cold chain logistics significantly. The above results 
emphasize frequent service of vehicles and monitoring the usage of vehicles and optimize 
operational factors which improve fuel efficiency in transportation. The non-significance of 
variables such as age, van, multiple temperature measures, and speed measures themselves 
indicates that other operational variables are of more pivotal operation in determining fuel 



 
 

consumption. These insights can help drive strategic decisions in fleet management toward 
better fuel efficiency and lower operational costs in cold chain logistics. 

Considering that in machine learning, all independent variables are used, even if some are 
not significant in the regression analysis. Machine learning models can pick up on 
complicated relationships and interactions that traditional regression modeling might 
overlook. Variables that seem insignificant in a linear regression will still add to information 
when considered with other variables to enable better predictive accuracy. Further, 
regularization machine learning techniques, such as Lasso and Ridge regression, may 
automatically handle the irrelevant or less important variables with the redundant 
dimensionality by reducing their influence on the model to prevent overfitting. Cross-
validation techniques ensure the model generalizes well to unseen data, hence confirming the 
overall robustness of the approach. By including all variables, it allows the model to fully see 
the data and pick up any subtle patterns and interactions that may be essential to predict fuel 
consumption. 

Comparison of Linear Regression Models without Model Tuning: 
After fitting the models using both OLS and Scikit-learn, it is important to compare their 

performance without any hyperparameter tuning. This first comparison can be useful in 
establishing the performance baseline of the models, and to discover if any have notably 
superior predictive capability. To evaluate the models, we use metrics including Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²). Using these 
metrics, we can assess which model gives better predictions and how much variability the 
model can catch. These above actions of regression analysis are required at the time of 
constructing good predictive framework. Train-test split to validate the model performance on 
unseen data, OLS to get a basic understanding of the variable relationships, and Scikit-learn 
to make the model building and evaluation easy. Fine-tuning models will also allow easy 
comparisons with different models, showing how each type of model performs in its own 
right, which aids in making decisions for further model development. 

Figure 7: Model Comparison without Model Tuning

 
4.5. Model Tuning 

Model tuning is basically optimizing the performance of machine learning models. It 
involves adjusting hyperparameters to improve the model's predictive accuracy and 
generalization capability. Each model has specific tuning procedures that enhance its ability 



 
 

to handle the given data and improve success metrics such as Mean Squared Error (MSE), 
Root Mean Squared Error (RMSE), and R-squared (R²). 

Figure 8: Simple Linear Regression without Tuning 

 

PCR Model Tuning 
Principal Component Regression (PCR) tuning involves selecting the optimal number of 

principal components. The goal is to balance between dimensionality reduction and retaining 
sufficient variance in the data. By tuning the number of components, PCR reduces overfitting 
and improves model accuracy by retaining the most informative components. 

 

Figure 9: Principal Component Regression (PCR) Model Tuning 

 

 



 
 
PLS Model Tuning 
Partial Least Squares (PLS) regression tuning also involves selecting the number of 

components. PLS aims to find the components that maximize the covariance between the 
predictors and the response variable. Tuning helps in identifying the optimal number of 
components that explain the variance in the response variable effectively, leading to improved 
prediction performance. 

Figure 10: Partial Least Squares (PLS) Model Tuning 

 

Ridge Model Tuning 
Ridge regression tuning involves adjusting the regularization parameter (lambda). This 

parameter controls the degree of shrinkage applied to the regression coefficients. By tuning 
lambda, Ridge regression balances the trade-off between bias and variance, helping to 
mitigate multicollinearity and improve the stability and accuracy of the model. 

Figure 11: Ridge Model Tuning 

 



 
 
Lasso Model Tuning 
Lasso regression tuning focuses on selecting the regularization parameter (lambda). This 

parameter determines the extent to which coefficients are shrunk towards zero. By tuning 
lambda, Lasso performs feature selection, removing irrelevant features and reducing model 
complexity, which enhances prediction accuracy and interpretability. 

Figure 12: Lasso Model Tuning 

 

ElasticNet Model Tuning 
ElasticNet tuning involves adjusting two regularization parameters: lambda1 (L1 penalty) 

and lambda2 (L2 penalty). Tuning these parameters allows ElasticNet to balance between 
Lasso and Ridge penalties, achieving both feature selection and coefficient shrinkage. This 
helps in handling multicollinearity and improving model robustness and accuracy. 

Figure 13: Elasticnet Model Tuning 

 



 
 
Lars Model Tuning 
Least Angle Regression (LARS) tuning involves selecting the number of steps to include 

in the model. This determines how many predictors are included in the final model. Tuning 
helps in controlling the complexity of the model and avoiding overfitting, thereby enhancing 
predictive performance. 

Figure 14: Lars Model Tuning 

 

LassoLars Model Tuning 
LassoLars tuning also involves adjusting the number of steps or the alpha parameter. This 

process ensures that the model includes only the most relevant predictors by applying L1 
regularization in a stepwise manner. Tuning helps in achieving an optimal balance between 
model simplicity and accuracy. 

Figure 15: LassoLars Model Tuning 

 



 
 
LassoLarsIC Model Tuning 
LassoLarsIC tuning focuses on selecting the best model based on Information Criteria 

such as AIC (Akaike Information Criterion) or BIC (Bayesian Information Criterion). This 
tuning process helps in choosing a model that balances goodness of fit and model complexity, 
leading to improved generalization and predictive performance. 

Figure 16: LassoLarsIC Model Tuning 

 

BayesianRidge Model Tuning 
Bayesian Ridge Regression tuning involves adjusting hyperparameters related to the 

priors on the coefficients and the noise term. This process allows for the incorporation of 
prior knowledge and helps in regularizing the model. Tuning these parameters improves the 
model's ability to generalize to new data and provides more reliable uncertainty estimates for 
the predictions. 

Figure 17: BayesianRidge Model Tuning 

 



 
 
ARDRegression Model Tuning 
Automatic Relevance Determination (ARD) Regression tuning involves adjusting 

hyperparameters related to the priors on the coefficients. This process helps in determining 
the relevance of each predictor, effectively performing feature selection and regularization. 
Tuning ARD regression improves model interpretability and predictive accuracy by focusing 
on the most relevant features. 

Figure 18: ARDRegression Model Tuning 

 
Each of these tuning processes is applied to enhance the model's performance by: 
● Reducing overfitting and improving generalization to unseen data. 
● Selecting the most relevant features and reducing model complexity. 
● Balancing the trade-off between bias and variance. 
● Improving the accuracy, stability, and interpretability of the models. 
By carefully tuning these models, the research ensures that the predictive models are 

robust, reliable, and capable of providing accurate estimates of fuel consumption in cold 
chain logistics. This ultimately leads to better decision-making and optimization of logistics 
operations. 

5. Discussion of Results 

5.1. Interpretation of Results 
Evaluating the ability to predict fuel consumption using various machine learning models 

is an important process in cold chain logistics. We can compare various models and judge 
which one gives the best performance among particular success metrics. This consists of 
aggregating the outputs of different tuned models, ranking them on some performance 
metrics, and studying the results. Machine learning model comparison is used to determine 
how a number of regression models perform in the context of a particular set of data and a 
given metric. This score is measured in the primary metric against which we will compare the 
models, the Cross-Validation Root Mean Squared Error (Cross Val. RMSE), indicating its 
predictive performance and generalization on unseen data. 
 
 



 
 

Figure 19: Comparison of Machine Learning Models 

 
After evaluating and comparing the models based on Cross-Validation RMSE, the top 

three identified models are ARDRegression, LassoLarsIC, and LassoLars. ARDRegression 
achieved the lowest Cross-Validation RMSE, indicating it provides the most accurate fuel 
consumption predictions. This model uses a Bayesian framework that automatically 
determines the relevance of predictors, effectively using the most important variables while 
ignoring irrelevant ones. This leads to more precise estimates and better generalization to new 
data by applying separate priors to each coefficient, a form of regularization that prevents 
overfitting. 

LassoLarsIC, which combines the LARS algorithm with Lasso regression and 
information criteria for model selection, also performed well, though it had a slightly higher 
RMSE than ARDRegression. It simplifies the model and improves interpretability by setting 
some coefficients to zero, balancing goodness of fit with model complexity through the use of 
information criteria like AIC or BIC. This enhances its predictive performance. 

LassoLars, a variant of the LARS algorithm incorporating Lasso regularization, came 
third in the comparison. It is computationally efficient and capable of handling large datasets 
with many predictors, benefiting from Lasso's feature selection ability, which contributed to 
its high ranking. 

The comparison highlights that models incorporating Bayesian techniques and 
information criteria, such as ARDRegression and LassoLarsIC, tend to perform better in 
predicting fuel consumption using research data on cold chain logistics. These models 
effectively balance model complexity and prediction accuracy, making them particularly 
well-suited for this type of analysis. ARDRegression's ability to automatically determine the 
relevance of each predictor, combined with its robust regularization approach, makes it the 
best-performing model in this study. 

 
 
 
 
 



 
 

Figure 20: Model Comparison Chart by Cross Validated RMSE 

 

 

Figure 21: Model Comparison Chart by Cross Validated R2 

 



 
 

5.2. Key Factors in Fuel Consumption Estimation Model 

Figure 22: Coefficients Comparison of ML Models (Vehicle Related) 

 
Key information is provided by the coefficients for vehicle-related factors in the fuel 

consumption estimation models that explain how these attributes affect fuel consumption. The 
default fuel consumption rate and the vehicle age are both consistently significant predictors 
across all models we analyzed. The default fuel consumption rate (default_fc.coef) is positive, 
meaning that greater baseline consumption increases the overall fuel consumption expectedly. 
Interestingly, the vehicle age (age_van.coef) generally has a negative coefficient in some 
models like ARDRegression and Ridge, suggesting that newer vehicles, which are typically 
more efficient, help reduce fuel consumption. However, in models like Lasso and ElasticNet, 
vehicle age coefficients are zero, indicating that these models either do not account for this 
factor or deem it less significant when penalizing less influential predictors. Vehicle 
maintenance (maint_wk.coef) consistently shows a positive impact, highlighting the 
importance of regular maintenance in mitigating increased fuel consumption due to wear and 
tear. The volume of the vehicle (volume.coef) also contributes positively across all models, 
suggesting that larger vehicles, which can carry more load, tend to consume more fuel, 
aligning with expectations. The double cabin (doubl_cab.coef) feature increases aerodynamic 
drag and weight, thus negatively impacting fuel consumption, except in the case of Ridge 
regression where it shows the highest negative impact. 

 
 
 
 
 
 
 
 
 
 



 
 

Figure 23: Coefficients Comparison of ML Models (Temperature Related) 

 

Temperature-related factors are important in fuel consumption, especially in cold chain 
logistics where temperatures must be controlled. The ambient maximum temperature 
(max_temp) coefficients vary slightly across models but are generally small, indicating a 
moderate direct effect on fuel consumption. The frozen cabin parameter (frozn_cab), showing 
whether goods are kept at freezing temperatures, has a positive coefficient in models like 
ARDRegression, reflecting higher energy needs for freezing conditions. However, models 
like Lasso and ElasticNet show negative or zero coefficients for this parameter, suggesting 
they minimize its importance with regularization. The morning minimum temperature 
(min_temp) coefficient is close to zero across models, indicating minimal direct impact on 
fuel consumption due to advancements in insulation and cooling technologies. 

Figure 24: Coefficients Comparison of ML Models (Route Related) 

 

Because route-related characteristics are directly correlated with trip time and distance, 
they play a critical role in determining fuel usage. All models have negative coefficients for 



 
 

the forward and return route distances (forw_dist.coef and retn_dist.coef), indicating that 
longer routes tend to use less gasoline per kilometer, presumably as a result of faster speeds 
and fewer stops. Longer travel times, perhaps as a result of idling and fluctuating traffic 
circumstances, increase fuel consumption, but the amount of time spent on these routes 
(forw_time.coef and retn_time.coef) has a favorable impact on fuel consumption. This 
emphasizes how crucial it is to optimize routes for both distance and travel time in order to 
successfully reduce fuel usage. 

Figure 25: Coefficients Comparison of ML Models (Load & Driving Related) 

 

Driving and load related practices have also impact on fuel consumption. The payload 
weight (kg_load.coef) is always positive, meaning that when loads are heavier, slightly more 
fuel is needed to carry them because it takes more energy. It is possible that lengthier 
loading/unloading times will result in slightly higher overall fuel usage because of the 
necessity for refrigeration and idling during this time. This is indicated by the positive unload 
time (unload_time.coef). In most models, the average speed (avg_spd.coef) have negative 
coefficients, while the maximum speed (max_spd.coef) has positive coefficients. This implies 
that traveling at a high speed, which increases fuel consumption owing to aerodynamic drag, 
is less fuel-efficient than maintaining a constant, moderate pace. Mixed coefficients are 
shown for engine off periods (off_eng.coef), with some models suggesting very little fuel use 
at these times. On the other hand, idle time with the engine running (on_eng.coef) has a 
substantial positive coefficient in all models, indicating that it continues to operate the engine 
and the refrigeration system, which significantly increases fuel consumption. 

These analyses offer insightful information about the primary factors influencing fuel use 
in cold chain logistics, highlighting the significance of van selection, well prepared route 
planning, and effective load management as ways to reduce fuel consumption. 

5.3. Interpretation of Fuel Consumption Patterns  

Fuel consumption patterns in cold chain logistics entail a very complex study of the 
various factors that come into play to determine the amount of fuel used in the transportation 
of temperature-sensitive goods. Descriptive statistics, a correlation matrix, and the 
coefficients from the multiple machine learning models together give important insights into 
these patterns. 



 
 
Looking at the descriptive statistics, we see high variability of the key factors influencing 

fuel consumption: default fuel consumption rate, vehicle age, mileage, maintenance 
frequency, and vehicle volume. For example, the default fuel consumption rate averages 7.75 
liters per 100 kilometers, with a relatively small standard deviation, which is consistent with 
fuel consumption across different types of vehicles. Vehicle age and mileage show higher 
variability, indicative of very different conditions and usage patterns throughout the fleet; 
therefore, these could be very impacting factors for fuel consumption efficiency. Regular 
maintenance, measured by weeks since the last service, is essential in maintaining the 
efficiency of fuel consumption, with vehicle age and mileage, older and heavily used vehicles 
tend to use more fuel if not properly serviced. The correlation matrix further details the 
relationships between these variables. For instance, a positive relationship is evident between 
the default fuel consumption and vehicle age, which means that older vehicles tend to use 
more fuel. Likewise, vehicle maintenance is negatively correlated with fuel consumption, 
emphasizing the importance of regular maintenance for minimizing the use of fuel. Vehicle 
volume is also positively related to fuel consumption, consistent with the notion that large 
vehicles, though they can carry more tons of load, consume more fuel. 

Coefficients from the different machine learning models, ARDRegression, Lasso, Ridge, 
and ElasticNet, indicate the degree to which each of the factors influences fuel consumption. 
Vehicle-related factors include vehicle default fuel consumption rate and vehicle age. The 
high value of the default fuel consumption rate for all four models shows that it is a critical 
factor in determining overall fuel consumption. Vehicle age shows a negative value in models 
such as Ridge, where the resulting coefficients would indicate that newer vehicles are more 
fuel-efficient. Temperature-related factors include ambient maximum temperature and the 
setting of the frozen cabin. Coefficients for ambient temperature are relatively small, thus 
having a moderate effect, but the setting of the frozen cabin has a more remarkable effect, 
with most models indicating increased fuel consumption to maintain very low temperatures. 
Route-related factors greatly impact fuel consumption patterns as reflected by coefficients for 
forward and return route distances and times. Generally, longer distances are correlated with 
reduced per-kilometer fuel consumption, possibly resulting from improved driving conditions 
over long hauls. On the other hand, the longer travel time increases fuel consumption because 
of factors such as idling and varying traffic conditions. Load and driving-related factors 
indicate that heavier payloads and longer unload times increase fuel consumption. Average 
speed has a negative coefficient, which suggests that maintaining a steady and moderate 
speed is more fuel-efficient. High maximum speeds, on the other hand, increase fuel 
consumption due to aerodynamic drag. Idle time, particularly with the engine running, 
significantly contributes to higher fuel consumption since the engine and the refrigeration 
system are on at all times. 

In conclusion, this research demonstrates several aspects of fuel consumption patterns in 
cold chain logistics. It highlights the importance of optimizing vehicle maintenance, route 
planning, load management, and driving behavior to boost fuel efficiency. With knowledge 
about these factors, logistics companies can significantly reduce their fuel use, save costs, and 
lessen their environmental impact. 

5.4. Implications and Recommendations for Cold Chain Logistics Efficiency  
The implications of this research on cold chain logistics efficiency highlight the potential 

transformative power of advanced technologies—especially machine learning models—to 
optimize fuel consumption, reduce costs, and enhance environmental sustainability. By 
drawing on data-driven insight and predictive analytics, companies in the cold chain logistics 
sector may develop strategies that significantly improve operational efficiency. In this sense, 



 
 

the environmental advantages of machine learning and other advanced technologies in cold 
chain logistics are huge, mainly because such technologies aid in fuel consumption 
optimization and so significantly reduce greenhouse gas emissions. This contributes to the 
larger objective of rendering supply chain operations sustainable. Companies are then in a 
position to align their practices with environmental regulations and standards, advancing their 
corporate social responsibility profiles in light of a growing consumer demand for logistics 
practices that are environmentally friendly. 

Machine learning models offer robust tools for the analysis of huge amounts of data, 
which will allow discovery of patterns and correlations not immediately obvious by any other 
method. These models may be used in forecasting fuel consumption based on a vast variety of 
factors: vehicle type, weight of the load, route characteristic, and environmental conditions. 
The predictive ability of such models means that firms can optimize the logistics operations 
so that they could minimize the fuel used and the attendant costs. For instance, machine 
learning algorithms could predict the impact of specific variables on fuel consumption and 
thus enable logistics managers to adjust their strategy proactively. Integration with Internet of 
Things devices further increases the efficiency of the cold chain logistics. IoT devices allow 
for the real-time monitoring and data collection on various parameters related to temperature, 
humidity, and vehicle performance. This real-time data can be fed into machine learning 
models to update and refine the predictions continuously, ensuring the logistics operations 
dynamically adapt to changing conditions. Integration helps to keep the temperature for 
perishable goods at an optimal level, thus reducing the energy for refrigeration and 
subsequently the fuel consumption. Advanced technologies also help in improved resource 
allocation and planning. Machine learning models can help determine the most efficient use 
of refrigeration units, ensuring that they operate within optimal parameters. That helps in 
energy conservation, as well as in the increased longevity of the equipment, and hence cost 
savings in maintenance and replacement. In addition, predictive maintenance, powered by 
machine learning, can anticipate equipment failures before they ever take place and allow 
interventions that are on time and prevent costly downtimes and inefficient fuel consumption. 

In sum, the fusion of advanced technologies and machine learning models heralds a new 
frontier for cold chain logistics. Being able to harness the power of predictive analytics and 
real-time data, companies are capable of huge improvements in fuel efficiency, cost 
efficiency, and environmental sustainability. This practice will not only optimize present 
operations but also set a runway for continuous improvement and innovation within the 
logistics sector to ensure resilience and competitiveness in a changing market. 

6. Limitations and future research 
Key limitations to the study include the scope of the data used for analysis. While the 

dataset used in this work is rich in information, increasing the size of the datasets, covering 
longer time periods and using larger numbers of vehicles, would make the findings more 
robust. Future studies should collect and analyze data across multiple seasons and years for a 
better understanding of fuel consumption patterns and factors that cause their variations. This 
will include all forms of operational conditions and variables. 

This research is based mainly on conventional diesel vehicles. As the logistics industry 
evolves, taking into consideration the various emerging technologies, electric vehicles, 
hydrogen-powered vehicles, and hybrid vehicles, is likely to give additional insights into fuel 
efficiency and environmental impact. The operational characteristics and efficiencies of these 
technologies present unique features that are likely to change significantly in the dynamics of 
cold chain logistics. Future studies need to investigate the incorporation and performance of 
such alternative vehicles in cold chain logistics frameworks. 



 
 
The study might also benefit from the consideration of a more extended list of variables 

that affect fuel consumption. Critical components in the determination of fuel efficiency, such 
as road quality, road gradient, and driver aggressiveness, were not comprehensively studied in 
this research. Further research can include such variables to come up with more exact and 
holistic models of fuel consumption in cold chain logistics. Inquiring about how shifting 
drivers' behaviors or different road conditions affect fuel utilization might lead to more 
accurate and actionable recommendations. 

Geographical diversity is another ground for future research. Results are based on data 
from a particular region, which may not be wholly representative of global cold chain 
logistics operations. Replicating this study in various parts of the world would help to validate 
findings, as well as test their applicability across different climates, infrastructural qualities, 
and logistical challenges. This may be done through comparative studies in different regions. 

Lastly, the different time windows used by a fleet could be a determinant in fuel 
consumption. Although this study is based mostly on an average operation time, different 
times of the day, such as early morning, afternoon, and evening, could affect fuel efficiency 
because of variables such as traffic, temperature changes, and driver fatigue. Other future 
studies should look at how such time-related variables affect fuel consumption so that 
logistics firms can optimize their operations based on time. In brief, though this study informs 
significantly on fuel consumption in cold chain logistics, further research will be necessary to 
enhance the understanding and optimization of cold chain logistics efficiency. 

7. Conclusion 
Analyzing the fuel consumption pattern in cold chain logistics shows a variety of factors 

that interact with fuel usage during the transportation of temperature-sensitive goods. The 
variability in default fuel consumption rate, vehicle age, mileage, maintenance frequency, and 
vehicle volume is attested to by the descriptive statistics. The correlation matrix shows how 
such variables are correlated with each other. For example, a positive correlation between the 
default fuel consumption and vehicle age indicates that older vehicles are more likely to 
consume more fuel; in contrast, the negative correlation between route distance and fuel 
consumption underscores the importance of route planning in minimizing fuel usage. Indeed, 
the coefficients of the machine learning models ARDRegression, Lasso, Ridge, and 
ElasticNet show in detail the quantitative influence of each factor on fuel consumption. 
Vehicle-related factors, such as default fuel consumption rate and vehicle age, are found to be 
strong predictors, with the effect of vehicle age suggesting better fuel efficiency of newer 
vehicles. Temperature-related factors, consisting of ambient maximum temperature and the 
setting of the frozen cabin, come moderately significant in consumption patterns. Route-
related factors are found to have a significant effect on fuel consumption, based on the 
distance and time of both the forward and return routes, where the longer time taken to travel 
resulted in increased fuel consumption due to factors such as idling and varying traffic 
conditions. Load and driving-related factors demonstrate that heavier payloads and longer 
unload times increase fuel consumption, while keeping the speed steady and moderate tends 
to be the most fuel-efficient strategy, as opposed to driving at low or high speeds. 

In conclusion, the study highlights that fuel consumption in cold chain logistics is 
multifaceted. It emphasizes the need for optimization of vehicle maintenance, route planning, 
and management of load and driving behavior for more effective fuel efficiency. In so doing, 
logistics companies could drastically cut down on fuel consumption, which results in cost 
savings and other environmental benefits. Integration with the machine learning model 
provides a robust framework to predict fuel consumption and detect optimization 
opportunities to help the logistics industry base its continuous improvement and innovation. 
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