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Abstract 
 
In the era of Industry 4.0, optimizing production processes has become increasingly critical 
due to the high demand for efficiency, flexibility, and customization in manufacturing.  
The Job Shop Scheduling Problem (JSSP), a prominent NP-hard problem, plays a pivotal role in 
this context, requiring the scheduling of jobs with multiple operations on specific machines in 
a predetermined order. Effective solutions to JSSP are essential for minimizing production 
time, reducing costs, and enhancing overall productivity.  

This thesis presents the development and evaluation of a single-agent reinforcement learning 
algorithm designed to address both the JSSP and its dynamic variant (DJSSP).  
The primary objective of this research is to test the efficiency and adaptability of 
reinforcement learning algorithm for scheduling solutions in both deterministic and dynamic 
environments characterized by variability and uncertainty.  

The proposed reinforcement learning approach autonomously learns optimal scheduling 
policies through iterative interactions with the scheduling environment, dynamically adapting 
to changes and unexpected disruptions. The algorithm's performance is rigorously 
benchmarked against traditional scheduling methods, including First-Come, First-Served 
(FCFS), Shortest Processing Time (SPT), and Genetic Algorithms (GA).  

Empirical results demonstrate that the reinforcement learning algorithm is comparable to 
traditional scheduling methods in the deterministic case, while outperforms conventional 
techniques in dynamic environments, exhibiting superior adaptability and efficiency across 
various scheduling scenarios.  

These findings underscore the significant potential of AI-driven methodologies to improve 
operational efficiency in complex scheduling tasks, offering valuable contributions to 
manufacturing, logistics, and other industries where optimal resource allocation is 
paramount.  
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Introduction  
 
In recent years, the advent of Industry 4.0 and Industry 5.0 has markedly transformed the 
manufacturing and production sectors. Industry 4.0 is distinguished by the integration of 
cyber-physical systems, Internet of Things (IoT), and big data analytics, with the objective of 
establishing smart factories. In these environments, machines and systems are interconnected 
and capable of autonomous communication to optimize production processes. 

A pivotal enabler within the frameworks of Industry 4.0 and Industry 5.0 is the deployment of 
advanced machine learning algorithms. These algorithms hold substantial potential across 
various industries by learning from data and subsequently making predictions or 
classifications based on acquired knowledge. Industry 5.0 advances this paradigm by focusing 
on human-machine collaboration, sustainable manufacturing practices, and the customization 
of products.  
The transition from traditional manufacturing models to smart factories under Industry 4.0 
has presented a range of challenges and opportunities, fostering significant advancements in 
production efficiency and innovation. 

One of the critical challenges is the high demand for efficiency, flexibility, and customization 
in manufacturing. 
The job shop scheduling problem, a notable NP-hard problem, requires scheduling jobs with 
multiple operations on specific machines in a predetermined order. A strong assumption is 
that all the information of the manufacturing environment is known in advance and there is 
no modification during the scheduling process. However, the real-world environment is 
significantly affected by uncertainties. The dynamic job shop scheduling is a variant of the job 
shop scheduling problem in which the scheduling environment is subject to changes over time 
including variations in job arrival times, processing times, machine break- downs, resource 
availability and job priority.  

Traditional approaches to solving JSSP, such as heuristic and enumerative methods, often fall 
short in dynamic settings due to their inability to adapt to changes effectively. 
Reinforcement learning (RL), a subfield of artificial intelligence, offers a promising alternative 
by enabling systems to learn and adapt to dynamic environments. RL algorithms train agents 
to make decisions through trial-and-error interactions with the environment, optimizing a 
cumulative reward signal over time. This adaptive capability makes RL particularly suitable for 
addressing the complexities of DJSSP. 
 

Objectives 
 
The primary focus of this thesis is the development of a reinforcement learning algorithm to 
address the Dynamic Job Shop Scheduling Problem (DJSSP). The goal is to design a system that 
can adapt to changes in the job shop environment, such as new job arrivals, and variable 
processing times, while optimizing the overall performance of the scheduling process. 

The objectives of this thesis are as follows: 
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• Develop a Single-Agent RL Scheduler: Design and implement a single-agent 
reinforcement learning algorithm tailored to the DJSSP, leveraging state-of-the-art DRL 
techniques for improved stability and performance. 

• Incorporate Dynamic Elements: Integrate dynamic elements into the scheduling 
environment to create a realistic and challenging DJSSP scenario. 

• Optimize Scheduling Performance: Evaluate the proposed RL algorithm against 
established benchmarks, focusing on key performance metrics. 

• Compare with Traditional Methods: Conduct a comparative analysis with traditional 
heuristic and exact methods to highlight the advantages and limitations of the RL 
approach in dynamic settings. 

The proposed methodology involves several key steps: 

1. Problem Formulation: Define the DJSSP as a Markov Decision Process (MDP), 
specifying the state space, action space, and reward function. 

2. Algorithm Development: Develop a RL algorithm to tackle the Job Shop Scheduling 
Problem and its dynamic variant 

3. Simulation and Training: Create a simulated job shop environment to train the RL 
agent, using realistic job shop scenarios to enhance the training process. 

4. Evaluation and Analysis: Evaluate the trained RL agent on a set of benchmarks DJSSP 
instances, comparing its performance with traditional methods and analyzing its 
adaptability to dynamic changes. 

This thesis aims to contribute to the field of job shop scheduling and reinforcement learning 
in several ways: 

• Novel RL Framework: Introduce a novel single-agent RL framework for DJSSP, 
demonstrating its effectiveness and adaptability in dynamic scheduling environments. 

• Enhanced Performance: Show that the proposed RL algorithm can outperform 
traditional heuristic and exact methods in terms of key performance metrics under 
dynamic conditions. 

• Scalability and Practicality: Provide insights into the scalability and practicality of RL 
approaches for real-world manufacturing and production environments, highlighting 
potential applications and future research directions. 

 

Structure of the thesis 
 
This thesis is organized into ten chapters that systematically explore the integration of 
Reinforcement Learning in the context of the Job Shop Scheduling Problem within the Industry 
4.0 paradigm.  
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The first chapter provides a comprehensive overview of Industry 4.0, tracing the evolution 
from earlier industrial revolutions and defining the key features, impacts, and challenges of 
Industry 4.0. 
The second chapter delves into scheduling, highlighting its significant economic, 
environmental, and customer satisfaction impacts, and discussing the challenges associated 
with scheduling and underscores its growing importance in the context of Industry 4.0. 
Chapter three focuses on the Job Shop Scheduling Problem itself, offering a detailed problem 
overview including the historical context, and the relevance of JSSP in contemporary 
manufacturing. 
Reinforcement Learning is introduced in chapter four, covering the basics of artificial 
intelligence and machine learning, and providing an in-depth overview of RL algorithms. 
Building on this foundation, chapter five explores Deep Reinforcement Learning (DRL), 
introducing deep learning concepts and specific DRL algorithms such as Deep Q-learning and 
Proximal Policy Optimization. 
The literature review in chapter seven synthesizes existing research, setting the context for 
the novel contributions of this thesis. Chapter eight details the development of a specific RL 
algorithm for JSSP, discussing both theoretical and practical implementation. 
Chapters nine and ten present empirical results of the RL algorithm application to both 
deterministic and dynamic environments. 
The thesis concludes with an analysis of the findings of the research, and an outline of  
potential directions for future work in this domain. 
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1 Industry 4.0 overview 
 
1.1 Industrial revolutions, from 1.0 to 4.0 
 
The term "Industry 4.0", coined by the German government in 2011 refers to the fourth 
industrial revolution, characterized by the integration of advanced digital technologies into 
manufacturing and production processes [1]. This concept encompasses cutting-edge 
technologies aiming to create interconnected and intelligent production environments [2]. 
The evolution of Industry 4.0 marks a significant transformation from traditional 
manufacturing to smart factories, where machines and systems communicate to enhance 
efficiency and productivity [3]. 
 
The journey to Industry 4.0 is rooted in a series of historical industrial revolutions that have 
profoundly shaped manufacturing and production processes over time (Figure 1). 
 

 
Figure 1: Four industrial revolutions [1] 

 
The first industrial revolution, which began in the late 18th century, introduced mechanization 
through the utilization of water and steam power. This transformative shift from manual labor 
to machine-based production was pivotal in enabling mass production and setting the stage 
for industrialization. 

Building upon these foundations, the second industrial revolution emerged in the late 19th 
and early 20th centuries with the widespread adoption of electricity and the development of 
assembly line techniques. Electricity replaced steam as the primary source of power in 
factories, significantly enhancing productivity and operational flexibility. The introduction of 
assembly lines by pioneers such as Henry Ford revolutionized manufacturing by streamlining 
production processes and enabling efficient mass production on a large scale. 

The third industrial revolution, beginning in the mid-20th century, marked the advent of 
automation and computerization in manufacturing. This era saw the integration of computers 
into industrial processes, facilitating greater precision, control, and automation of tasks. 
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Additionally, advancements in telecommunications and the rise of the Internet during this 
period revolutionized global connectivity and digital information exchange, laying the 
groundwork for further technological advancements.[4] 

In the early 21st century, the fourth industrial revolution, known as Industry 4.0, emerged 
with the convergence of digital technologies and advanced analytics. In this phase, 
characterized by the digitalization of manufacturing and the development of smart factories, 
machines, systems, and humans communicate and collaborate seamlessly, leading to 
autonomous decision-making and real-time optimization of production processes. 

Each industrial revolution has built upon the achievements and innovations of its 
predecessors, driving continuous advancements in manufacturing capabilities and reshaping 
economic and societal landscapes. Industry 4.0 represents a transformative shift towards 
interconnected and intelligent production systems, poised to further accelerate innovation, 
efficiency, and economic growth in the digital age. 

 

Defining Industry 4.0 
 
Industry 4.0 signifies a transformative shift in manufacturing, characterized by the 
convergence of physical and digital technologies that enable smarter, more efficient 
production processes. 
 

• Cyber-Physical Systems (CPS). 

CPS integrate physical processes with computational algorithms and real-time data 
analytics [5]. These systems monitor and control physical operations, such as 
machinery and production lines, enabling autonomous decision-making and 
optimization of manufacturing processes. CPS are essential for achieving higher levels 
of automation and responsiveness in smart factories. 

• Internet of Things (IoT). 

IoT networks connect devices, sensors, and equipment within manufacturing 
environments, enabling seamless data exchange and remote monitoring [6]. In 
Industry 4.0, IoT facilitates continuous data collection from various points in the 
production chain, enabling predictive maintenance, real-time quality monitoring, and 
resource optimization. 

• Big Data and Analytics. 

The proliferation of CPS and IoT devices generates vast amounts of data that are 
analyzed using advanced analytics and AI techniques [1]. Big data analytics in Industry 
4.0 enable manufacturers to extract actionable insights, optimize production 
workflows, and enhance decision-making processes based on real-time data trends 
and patterns [7]. 

• Artificial Intelligence (AI) and Machine Learning (ML). 
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AI and ML algorithms are integral to Industry 4.0 for automating complex tasks, 
predicting outcomes, and optimizing operations [8]. AI-driven systems can adapt and 
learn from data, improving efficiency, quality control, and predictive maintenance 
capabilities across manufacturing processes. 

• Cloud Computing. 

Cloud platforms provide scalable infrastructure for storing, processing, and analyzing 
large volumes of data generated by Industry 4.0 technologies [9]. Cloud computing 
facilitates real-time collaboration, remote monitoring, and access to computational 
resources, enabling manufacturers to deploy and manage applications efficiently. 

• Additive Manufacturing (3D Printing). 

 Additive manufacturing technologies enable the production of customized, intricate 
parts with reduced material waste and lead time [10]. 3D printing in Industry 4.0 
enhances flexibility in manufacturing, allowing for rapid prototyping, on-demand 
production, and complex geometries that traditional manufacturing methods cannot 
achieve. 

• Augmented Reality (AR) and Virtual Reality (VR). 

AR and VR technologies enhance training, maintenance, and design processes in 
manufacturing [11]. These immersive technologies provide real-time visualizations, 
virtual simulations, and interactive guidance that improve operational efficiency, 
training effectiveness, and safety protocols within smart factories. 

 

1.2 Impact and Benefits of Industry 4.0 
 
The implementation of Industry 4.0 technologies in manufacturing brings about several 
transformative benefits that enhance efficiency, flexibility, quality, and decision-making 
processes across industries. 
 

• Increased Efficiency and Productivity: Industry 4.0 integrates real-time data collection 
and analysis through advanced sensors and IoT devices [12]. These technologies 
enable manufacturers to monitor operations continuously, optimize production 
schedules, and minimize downtime by identifying and resolving inefficiencies promptly 
[13]. By leveraging data-driven insights, companies can improve resource allocation, 
streamline workflows, and ultimately enhance overall productivity [7]. 

• Enhanced Flexibility and Customization: Smart factories equipped with cyber-physical 
systems can dynamically adjust production processes in response to changing market 
demands and customer preferences [13]. Through interconnected machinery and 
adaptive manufacturing processes, companies can reduce lead times and offer 
customized products at scale. This capability not only improves customer satisfaction 
but also strengthens competitive advantage in a rapidly evolving market landscape 
[14]. 
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• Improved Quality and Reduced Waste: Advanced monitoring and control systems in 
Industry 4.0 facilitate real-time quality assurance and defect detection [15]. By 
analyzing data from sensors embedded throughout the production line, manufacturers 
can detect deviations from quality standards early, leading to immediate corrective 
actions [15]. This proactive approach not only ensures consistent product quality but 
also minimizes material waste, contributing to more sustainable manufacturing 
practices [16]. 

• Predictive Maintenance: IoT-enabled sensors and AI algorithms enable predictive 
maintenance strategies by continuously monitoring equipment performance and 
detecting anomalies [17][18]. Predictive maintenance anticipates equipment failures 
before they occur, allowing for timely repairs and preventing costly unplanned 
downtime [7]. By optimizing maintenance schedules based on real-time data insights, 
manufacturers can extend asset lifespan and reduce overall maintenance costs. 

• Better Decision-Making: Industry 4.0 provides decision-makers at all levels of the 
organization with access to comprehensive, real-time data analytics [5]. Advanced 
analytics tools, powered by big data and AI, enable accurate forecasting, risk 
assessment, and performance monitoring [19]. This data-driven approach empowers 
managers to make informed decisions swiftly, optimize supply chain management, and 
capitalize on emerging market opportunities [20]. 

In summary, Industry 4.0 represents a paradigm shift towards interconnected, intelligent 
manufacturing systems that leverage digital technologies to optimize operations, enhance 
product quality, and drive innovation. By embracing these advancements, manufacturers can 
achieve substantial improvements in efficiency, flexibility, and decision-making capabilities, 
positioning themselves for sustainable growth in the global economy. 
 

1.3 Challenges and Considerations 
 
Despite the transformative potential of Industry 4.0, its adoption poses several significant 
challenges that organizations must navigate: 
 

• Cybersecurity: The increased connectivity of cyber-physical systems and IoT devices in 
Industry 4.0 environments heightens the risk of cyberattacks and data breaches. 
Protecting sensitive data, intellectual property, and operational continuity from cyber 
threats is a paramount concern. Robust cybersecurity measures, including encryption, 
authentication protocols, and continuous monitoring, are essential to mitigate these 
risks and ensure the resilience of digital manufacturing ecosystems [2]. 

• Integration with Legacy Systems: Many traditional manufacturing systems were not 
designed with interoperability in mind, posing challenges for integrating new Industry 
4.0 technologies [21]. Legacy systems may lack the necessary connectivity or data 
standards required for seamless integration with modern digital platforms. 
Overcoming these integration barriers often requires significant investments in 
retrofitting existing infrastructure or adopting hybrid approaches that bridge legacy 
and digital technologies [22]. 
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• Skills Gap: The implementation of Industry 4.0 demands a workforce proficient in 
advanced digital technologies, such as data analytics, AI, and robotics [7]. However, 
there is a notable shortage of skilled professionals with expertise in these areas. 
Addressing the skills gap through targeted education, vocational training programs, 
and upskilling initiatives is crucial to empower workers and enable organizations to 
fully leverage the capabilities of Industry 4.0[24]. 

• High Initial Investment: Transitioning to smart manufacturing involves substantial 
upfront investments in technology infrastructure, equipment upgrades, and workforce 
training [25]. For small and medium-sized enterprises (SMEs) in particular, the financial 
burden of adopting Industry 4.0 technologies can be prohibitive. Access to funding, 
incentives for technological adoption, and collaborative partnerships can help SMEs 
overcome financial barriers and facilitate their entry into the digital manufacturing 
landscape [13]. 

• Data Privacy: The proliferation of IoT devices and the extensive collection of data in 
Industry 4.0 environments raise concerns about data privacy and ethical use. 
Organizations must implement robust data governance frameworks to ensure 
compliance with privacy regulations and protect the confidentiality of sensitive 
information. Transparent data management practices, informed consent mechanisms, 
and ethical guidelines for data usage are essential to build trust among stakeholders 
and mitigate privacy risks associated with digital transformation initiatives [26]. 

In conclusion, while Industry 4.0 promises significant advancements in efficiency, 
customization, and decision-making capabilities, addressing cybersecurity risks, legacy system 
integration, skills shortages, financial barriers, and data privacy concerns is essential to 
successfully harness its full potential. 
 

1.4 Future Prospects and Industry 5.0 
 
As Industry 4.0 continues to advance, the concept of Industry 5.0 is emerging as the next 
evolution in manufacturing. Industry 5.0 shifts the focus from purely automated processes to 
a collaborative ecosystem where humans and machines work together synergistically. This 
paradigm aims to harness the efficiency and precision of automation while integrating human 
creativity and innovation into production processes [27] 

Industry 5.0 envisions a future where machines handle routine tasks and repetitive processes, 
allowing human workers to focus on complex problem-solving, creativity, and decision-
making. By leveraging advanced technologies such as AI, robotics, and augmented reality, 
Industry 5.0 aims to enhance the capabilities of human workers, enabling them to interact 
more intuitively with machines and systems [28]. 

The human-centric approach of Industry 5.0 underscores the importance of human skills and 
ingenuity in driving innovation and sustainable manufacturing practices. Unlike previous 
industrial revolutions that often led to concerns about job displacement, Industry 5.0 
emphasizes the augmentation rather than replacement of human labor. This approach 
ensures that technology serves as a tool to amplify human potential, enabling more 
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personalized and adaptive production processes that can respond dynamically to customer 
needs and market changes. 

By fostering a collaborative environment between humans and machines, Industry 5.0 aims 
to achieve higher levels of productivity, efficiency, and quality in manufacturing. This synergy 
allows for greater flexibility and customization in production, leading to improved customer 
satisfaction and sustainability outcomes. 
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2 Scheduling 
 
Scheduling is a fundamental aspect of operations management, playing a crucial role in the 
efficient allocation of resources, the optimization of processes, and the timely completion of 
tasks. As organizations and systems grow in complexity, effective scheduling becomes 
increasingly vital to maintain productivity and competitiveness. This thesis explores the 
intricacies of scheduling, examining various methodologies, tools, and applications that 
contribute to enhanced operational performance. 
The concept of scheduling encompasses a broad spectrum of activities, from simple task 
allocation to intricate project management in diverse fields such as manufacturing, 
healthcare, transportation, and information technology. Effective scheduling ensures that 
resources, including time, labor, and equipment, are utilized optimally, minimizing downtime 
and maximizing output. The ability to prioritize tasks, allocate resources judiciously, and adapt 
to unforeseen changes is central to achieving operational excellence. [29] 
 
In manufacturing, efficient job scheduling is essential for maintaining smooth production 
flows and meeting customer demands. Manufacturers strive to sequence production tasks in 
a way that minimizes setup times, reduces idle machinery, and maximizes throughput.  
 
In logistics, effective scheduling ensures timely delivery of goods and services while minimizing 
transportation costs and optimizing route efficiency. Logistics companies utilize scheduling 
algorithms to coordinate vehicle dispatching, route planning, and inventory management. 
Real-time scheduling systems enable adjustments based on traffic conditions, weather 
forecasts, and customer priorities, enhancing overall logistics performance and customer 
satisfaction. 
 
In healthcare, efficient job scheduling is critical for managing patient appointments, operating 
room schedules, and healthcare staff assignments. Healthcare providers use scheduling 
algorithms to optimize the allocation of resources such as doctors, nurses, and medical 
equipment, ensuring efficient patient care delivery and reducing wait times. Dynamic 
scheduling systems adapt to changes in patient demand and medical emergencies, improving 
healthcare service quality and operational efficiency. 
 
In information technology (IT), job scheduling automates the execution of tasks such as data 
backups, system updates, and batch processing. IT departments rely on scheduling algorithms 
to optimize server utilization, prioritize critical tasks, and minimize downtime. Job scheduling 
software integrates with enterprise systems to streamline workflow management, enhance 
data security measures, and ensure continuous IT service availability [29]. 
 
The complexity of job and task scheduling escalates with the scale of operations and the 
interdependencies among tasks and resources. To address these challenges, industries 
employ sophisticated scheduling methods, including mathematical modeling, heuristic 
algorithms, and artificial intelligence techniques [30]. These approaches enable organizations 
to devise efficient schedules that balance competing objectives and adapt to dynamic 
operational environments. 
Job and task scheduling is integral to optimizing operational efficiency and achieving strategic 
goals across manufacturing, logistics, healthcare, and IT sectors. By leveraging advanced 
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scheduling techniques and algorithms, industries can enhance productivity, reduce costs, and 
improve service delivery, thereby gaining a competitive edge in today's dynamic business 
landscape. 
 

2.1 Scheduling impact 
 

2.1.1 Economic  
 
The economic importance of scheduling cannot be overstated in today’s fast-paced and 
competitive business environment. Efficient scheduling practices directly influence a 
company's financial performance by minimizing idle times, optimizing throughput, and 
reducing operational costs [31].  
 
The impact of scheduling on economic performance is evident across various industries. 
In manufacturing, effective job scheduling plays a pivotal role in ensuring the smooth and 
continuous flow of production processes. By minimizing downtime and maximizing machine 
utilization, manufacturers can achieve higher levels of productivity and profitability. For 
example, proper scheduling aligns production tasks with available resources, reducing setup 
times and ensuring optimal use of equipment and labor resources [32]. 
 
In the service sector, optimized scheduling can improve customer satisfaction and service 
delivery efficiency, leading to increased revenue. Moreover, in sectors such as healthcare and 
transportation, effective scheduling is crucial for balancing demand and supply, thereby 
improving service quality and economic outcomes. 
 
The financial benefits of efficient job scheduling extend beyond immediate cost reductions. 
They enable companies to reinvest saved resources into innovation, infrastructure 
improvements, and talent development, thereby enhancing their competitive position in the 
market [33]. By continuously optimizing scheduling practices, organizations can adapt to 
market dynamics, improve service quality, and maintain sustainable growth in the long term. 
 

2.1.2 Environmental sustainability  
 
The concept of environmental sustainability has become a cornerstone in contemporary 
business practices and operational strategies. Effective scheduling, traditionally associated 
with optimizing resource allocation and enhancing productivity, now also plays a crucial role 
in promoting environmental sustainability. 
Efficient job and task scheduling can yield significant benefits by reducing energy 
consumption, minimizing waste, and lowering carbon emissions across various industries. [ 
 
In energy-intensive manufacturing sectors, scheduling algorithms play a crucial role in 
optimizing production processes to align with periods of low energy costs or high renewable 
energy availability [34]. By strategically scheduling operations during off-peak hours or times 
when renewable energy sources like solar or wind are abundant, industries can reduce their 
reliance on fossil fuels and lower their carbon footprint. This approach not only reduces 
operational costs but also contributes to environmental conservation efforts by mitigating 
greenhouse gas emissions associated with energy consumption (Fang et al., 2011). 
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Efficient logistics scheduling minimizes the environmental impact of transportation activities. 
By optimizing delivery routes, vehicle dispatching, and load consolidation, logistics companies 
can reduce the number of vehicles on the road, thereby lowering fuel consumption and 
emissions [36]. Advanced scheduling systems enable logistics providers to prioritize eco-
friendly transport modes, such as rail or electric vehicles, further reducing the carbon intensity 
of their operations. 
 
The environmental benefits of effective scheduling extend beyond energy efficiency to 
encompass waste reduction and resource conservation. By streamlining production schedules 
and optimizing resource utilization, industries can minimize material waste and enhance 
resource efficiency [29].  
 
The environmental benefits of effective scheduling extend beyond mere compliance with 
regulations. They align with the broader agenda of corporate social responsibility (CSR) and 
the growing consumer demand for sustainable practices. Companies that adopt 
environmentally sustainable scheduling practices can enhance their brand reputation, attract 
eco-conscious customers, and achieve long-term economic benefits through cost savings and 
improved efficiency. 
 

2.1.3 Customer satisfaction  
 
In the modern business landscape, customer satisfaction is a vital component of success, 
deeply influencing loyalty, reputation, and profitability. Central to achieving high levels of 
customer satisfaction is the implementation of effective scheduling practices. By ensuring 
timely and reliable service delivery, optimal resource utilization, and the consistent fulfillment 
of customer expectations, strategic scheduling plays an essential role in enhancing the overall 
customer experience [37]. 
 
The direct impact of scheduling on customer perceptions and experiences is profound.  
For example, in healthcare, reducing patient waiting times and improving patient flow through 
meticulous scheduling can significantly enhance the patient experience. (Gupta & Denton, 
2008). Scheduling algorithms help healthcare facilities allocate medical staff, operating rooms, 
and equipment efficiently, ensuring that resources are available when needed to meet patient 
demand. This enhances the quality of care provided, leading to higher patient satisfaction and 
better health outcomes [38]. 
 
Moreover, in the field of information technology (IT), job scheduling algorithms are 
instrumental in managing computational tasks and optimizing resource utilization in cloud 
computing environments. Cloud service providers rely on efficient scheduling techniques to 
allocate computing resources dynamically, ensuring that applications and services run 
smoothly with minimal downtime. By scheduling tasks effectively, IT organizations can meet 
service level agreements (SLAs), maintain high system availability, and enhance user 
satisfaction with reliable and responsive IT services [39]. 
 

2.2 Scheduling challenges 
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Despite its importance, scheduling is fraught with numerous challenges that can significantly 
impact organizational performance. At its core, scheduling involves the strategic planning 
and coordination of tasks, resources, and time to achieve optimal outcomes. However, the 
complexity of modern operations, characterized by dynamic environments, varying 
demands, and resource constraints, makes scheduling a formidable challenge. 
 
One of the primary challenges in scheduling is dealing with uncertainties and variability. 
Unpredictable factors such as machine breakdowns, supply chain disruptions, and 
fluctuating customer demands can derail even the most meticulously planned schedules.  
 
In addition, the need to balance multiple, often competing objectives—such as minimizing 
costs, maximizing resource utilization, and meeting deadlines—adds another layer of 
complexity to the scheduling process. 
 
 

2.3 Industry 4.0 and the growing importance of scheduling 
 
The advent of Industry 4.0 has significantly heightened the importance of scheduling in 
modern industries. 
These technologies enable real-time data collection and analysis, which can be leveraged to 
optimize scheduling decisions dynamically. For example, IoT sensors can monitor equipment 
status in real-time, allowing for predictive maintenance and reducing unexpected downtimes 
[29].  AI algorithms can analyze vast amounts of data to predict demand patterns and adjust 
production schedules, accordingly, ensuring that supply meets demand efficiently [33]. 
 
The interconnected nature of Industry 4.0 systems means that scheduling must be adaptive 
and capable of responding to real-time changes in the production environment. This 
adaptability is crucial for maintaining operational efficiency and competitiveness in a rapidly 
changing market. Furthermore, the ability to integrate sustainability considerations into 
scheduling processes is enhanced by the advanced data analytics capabilities of Industry 4.0 
technologies. This integration supports more sustainable production practices, aligning 
economic and environmental goals. 
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3 Job shop scheduling problem 
 
3.1 Problem overview 
 
The job shop scheduling problem (JSSP) is a widely studied combinatorial optimization 
problem in the operational research and management field. 
 
The term scheduling refers to the process of determining the timing and sequence of tasks or 
activities to be completed within a specific timeframe or resource constraints. 
 
The classical form of the problem is known as the deterministic job shop scheduling problem 
(DJSSP) [40].  
The DJSSP consist of a finite set of n jobs, denoted as 𝐽 = { 𝐽1, 𝐽2 , … ,  𝐽𝑛}, and a finite set of m 
machine, denoted as 𝑀 = { 𝑀1, 𝑀2, … ,  𝑀𝑚}.  
Each job 𝐽𝑘  involves an ordered sequence of mk operations, denoted as 𝑂 = { 𝑂𝑘1,
𝑂𝑘2, … ,  𝑂𝑘𝑚𝑘

}, with each operation to be executed on a machine. These operations are 

characterized by their start time, denoted as t, and processing time, denoted as τ. 
 
The problem incorporates capacity constraints, meaning that each machine can only handle 
one operation at a time, and each job can only be processed on one machine at a time. 
The dimensionality of the problem instance is n x m. 
 
The general definition of the problem theoretically allows for jobs to be processed more than 
once on the same machine (machine repetitions) or not to be performed on a machine during 
its processing steps (machine absence). However, for simplicity, it is often assumed that each 
job is processed exactly once on each machine, in this case the dimensionality of the problem 
equals nm. 
 
The resolution of the problem requires finding the optimal operation sequence in relation to 
an objective function.  
Some common objective functions [41], include: 
 

• Makespan minimization. “The makespan is the completion time of the last job to leave 
the system.” [42] 

• Total weighted completion time minimization. The weighted completion time 
represents the total holding or inventory cost incurred by the schedule. 

• Maximum of lateness minimization. The lateness relative to a job is the difference 
between its completion time and its due date which is positive in case the job is 
completed late and negative in case the job is completed early. 

 
Despite there being several theoretical objective functions that embody different industrial 
criteria, the most widely used objective function in academic research is the minimization of 
the maximum makespan 𝐶𝑚𝑎𝑥. 
 
The makespan can be formally expressed as follow: 
 

𝐶𝑚𝑎𝑥 = max(𝑡𝑖𝑘 + 𝜏𝑖𝑘):         ∀ 𝐽𝑡 𝜖 𝐽, 𝑚𝑘  𝜖 𝑀 
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Its adoption is justified by an ease in the problem formulation and its mathematical handling. 
[1] 
 
Table 1 shows an example of deterministic job shop problem instance from Muth and 
Thompson (1963) [43]. 
The ft06 job shop scheduling problem is one of the most well-known benchmarks in 
operations research and involves scheduling six jobs on six machines. 
The dimensionality of the problem is 6 x 6. 
The table defines the processing steps associated to each job specifying the machine number 
and the processing time of each operation. 
 

Table 1: Example of Deterministic Job Shop Scheduling Problem (problem instance FT06) 

Job Operations 

J1 M3, 1 M1, 3 M2, 6 M4, 7 M6, 3 M5, 6 

J2 M2, 8 M3, 5 M5, 10 M6, 10 M1, 10 M4, 4 

J3 M3, 5 M4, 4 M6, 8 M1, 9 M2, 1 M5, 7 

J4 M2, 5 M1, 5 M3, 5 M4, 3 M5, 8 M6, 9 

J5 M3, 9 M2, 3 M5, 5 M6, 4 M1, 3 M4, 1 

J6 M2, 3 M4, 3 M6, 9 M1, 10 M5, 4 M3, 1 

 
 
The solution to the ft06 problem is showed in the figure below. 
 

 
Figure 2: ft06 job shop scheduling solution 
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3.2 Problem variants and classification 
 
The strong connection of the job shop scheduling problem with the real-world manufacturing 
and production environments has led researchers to explore several variants of the problem 
with increasing complexity and uncertainty.  
The deterministic Job shop Scheduling problem, indeed, can be further complicated with 
different combinations of constraints and problem settings to address all possible real-world 
scenarios effectively. 
 
According to the [41] 14 different classes of JSSP can be listed. The most relevant to this thesis 
are the following: 
 

• The deterministic JSSP defined above which can be characterized by different machine 
environments including single machine model, parallel machine model, flow shop and 
job shop [42]. 
 

• Static JSP refers to a scheduling problem that is formulated and solved assuming that 
there no changes in parameters or inputs during the scheduling process will occur. 
Static JSPs are common in scenarios where the scheduling horizon is short or where 
there is little variability in the system parameters over time. 
 

• Dynamic JSP in which the scheduling environment is subject to changes over time 
including variations in job arrival times, processing times, machine breakdowns, 
resource availability and job priority. 
 

All the other problem variants can be consulted in the figure below. 
 
 

 
Figure 3: Fourteen classes of JSP according to [3] 
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3.3 Problem representation and classification 
 
The primary classification method for scheduling problems is the four-field notation (A/B/C/D) 
introduced by Conway in 1967 [46], where A is the number of jobs, B the number of machines, 
C the flow pattern within the machine shop and D is the performance measure for evaluating 
the schedule.  
 
The Job Shop Scheduling Benchmark Problem ft06 represented in Table 1, using Conway 
notation might be expressed as follows:  
 

(6/6/1/𝐶𝑚𝑎𝑥) 
 
where 1 indicates a single flow pattern within machine shop. 
 
In 1964 Roy and Sussmann [47] developed a model to represent and solve the JSSP called 
disjunctive graph model. 
A disjunctive graph model is composed of: 
 

• A set N of nodes representing the operations to be performed on the set M of 
machines. Two fictious operations, that represents the initial and final stage of the 
schedule, are added to the set N. 
 

• A set E of direct conjunctive edges representing the precedence constraints between 
operations. The edge (i, j) indicates that operation i must be complete before the 
beginning of operation j. 
The edge weight corresponds to the processing time of the starting node’s operation. 
 

• A set D of disjunctive edges represent the capacity constraint of the problem, ensuring 
each machine to process only one job at a time. 

 
A disjunctive graph representing the connection of the first stage of the Job Shop Scheduling 
Benchmark Problem FT06 is shown in the following Figure: 
 

 
Figure 4: Disjunctive graph model ft06: first layer 
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It is noticeable that the number of possible solutions of the problem, represented by the 
colored lines, increases exponentially with the number of jobs and machines in the problem 
definition. 

 

3.4 Problem history 
 
The Job Shop Scheduling Problem has its roots in the operational research and industrial 
engineering filed [40]. 
 
Even though it is challenging to pinpoint the exact time the problem was first proposed, it 
started gaining significant importance during the mid-20th century when researchers began 
exploring methods to optimize production processes using innovative techniques and 
algorithms. 
 
One of the earliest contributions to the field was Johnson’s two-machines flow shop resolution 
algorithm in 1954 [44], which was later adapted to address the JSSP by Jackson in 1956 [45]. 
 
Throughout the 1950s, research was mostly focused on the definition and application of 
heuristic methods: methods that prioritize the research of a satisfying solution in a reasonable 
amount of time rather than guaranteeing an optimal solution of the problem instance. 
In the 1960s attention shifted towards enumerative algorithm based on more accurate and 
complex mathematical constructs to achieve exact solutions to the problem instances.  
 
During the 1970s and 1980s, research on job shop scheduling highlighted the problem 
complexity leading to the designation of two eras: "Before Complexity" (BC) and "Advanced 
Difficulty" (AD).  
 
During the late 1980s and early 1990s, significant progress was made in solving the job shop 
scheduling problem with the development of innovative metaheuristic algorithms. 
Unlike traditional algorithms, which are designed for specific problem instances, 
metaheuristic algorithms provide general frameworks for finding approximate solutions to 
optimization problems.  
 
In the late 1990s, several iterative methods including artificial intelligence and neural 
networks methods became increasingly important in addressing the complexity of the JSSP. 
 
In recent years, the Job Shop Scheduling Problem has continued to be an active area of 
research, with advancements driven by both theoretical developments and practical 
applications. 
 

3.5 Problem relevance 
 
The importance of the Job shop Scheduling Problem in the academic field arises from its 
inherent characteristics, the principal being its complexity that creates a fertile ground for 
developing and testing optimization algorithms and heuristics methodologies. 
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As the number of jobs and machine increases, the potential number of feasible schedules 
grows exponentially. The exponential growth makes finding an optimal solution 
computationally challenging, particularly for large-scale instances. 
 
JSSP is classified as NP-hard, meaning that it belongs to a class of computationally difficult 
problems for which no polynomial-time algorithm exists to guarantee finding the optimal 
solution. This complexity arises from the need to explore a vast search space to identify the 
best schedule among all possible combinations. [42] 
 
The complexity of the JSSP is further compounded by its various problem variants introducing 
additional constraints like setup times, release dates, and due dates. Each constraint 
introduces additional intricacies that increase the difficulty of finding optimal solutions. 
 
Another key element of the JSSP is its real-world relevance across various industries. 
 
In manufacturing industries such as automotive, electronics, and aerospace, efficient job 
scheduling is crucial for optimizing production processes. By determining the sequence of 
tasks and allocating resources (machines, tools, and manpower) effectively, manufacturers 
can minimize production time, reduce costs, and enhance overall productivity. 
 
In logistics and transportation sectors, the JSSP finds applications in scheduling vehicles, 
routes, and deliveries. Efficient scheduling ensures timely delivery of goods, optimal utilization 
of transportation assets, and cost-effective operations. 
 
In healthcare settings, scheduling plays a vital role in managing patient appointments, 
allocating medical resources, and optimizing staff schedules. Healthcare providers use 
scheduling algorithms to minimize patient waiting times, improve resource utilization, and 
enhance the quality-of-care delivery. 
 
The JSSP also has applications in service industries such as call centers, utilities management, 
and facility maintenance. Efficient scheduling of service appointments, maintenance tasks, 
and workforce assignments helps organizations deliver timely and reliable services to 
customers. By optimizing scheduling processes, service providers can improve customer 
satisfaction, minimize service downtime, and maximize operational efficiency. 
 

3.6 Resolution methodologies 
 
Several approaches and algorithms have been developed over time to tackle the Job Shop 
Scheduling Problem. 
Resolutions methods can be grouped into four main categories: 
 

• Exact methods. 
 
Exact methods refer to algorithms or approaches that aim at finding the optimal 
solution of the problem exhaustively exploring the entire solution space or using 
rigorous mathematical formulations. 
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Exact methods ensure optimality but may suffer from scalability issues as the problem 
size increases due to the exponential growth of the solution space. 
Two of the most important exact methods are: 

o Branch and Bound (B&B): This method systematically explores all possible 
schedules to find the optimal one. It uses upper and lower bounds to prune the 
search space and eliminate suboptimal solutions early. Despite its accuracy, 
B&B is computationally intensive and may not be practical for larger instances 
of the job shop problem. [48] 

o Integer Linear Programming (ILP): ILP formulations translate the scheduling 
problem into a set of linear equations and inequalities, which can then be 
solved using optimization solvers like CPLEX [50] or Gurobi [51]. While 
powerful, ILP can become computationally prohibitive for complex problems. 
[49] 
 

• Heuristic methods. 
 
In situations where funding the optimal solution is computationally infeasible, 
heuristic methods aim at finding a satisfying solution in a reasonable period of time. 
The most used heuristic method bases its efficiency upon the priority dispatching rules. 
Priority Dispatching Rules: These simple, rule-based methods prioritize jobs based on 
specific criteria, such as shortest processing time (SPT), earliest due date (EDD), or 
critical ratio (CR). While not guaranteed to find the optimal solution, they are quick 
and easy to implement. 
 

• Metaheuristic methods. 
 
Metaheuristic methods aim to efficiently explore large solution spaces to find near-
optimal solutions within a reasonable amount of time. 
Metaheuristic methods include: 

o Genetic Algorithms (GA): GAs simulate the process of natural evolution, using 
selection, crossover, and mutation operators to evolve a population of 
solutions over successive generations. This method is effective for exploring 
large search spaces and finding near-optimal solutions. [52] 

o Simulated Annealing (SA): Inspired by the annealing process in metallurgy, SA 
searches for a good solution by allowing occasional uphill moves to escape local 
optima, gradually reducing the likelihood of such moves as the search 
progresses. [53] 
 

• Other methodologies. 
 
Starting from the late 1990, different techniques were implemented for the resolution 
of the JSSP, such as machine learning, reinforcement learning, and neural network 
techniques can be adopted as a resolution method. 
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The main resolution methods belonging to each category are reported in Table 2. 
 
 

Table 2: JSSP resolution methods 

Category Resolution methods 

Exact methods 

Branch and Bound (B&B) 
Branch and Cut (B&C) 
Branch and Price (B&P) 
Integer Linear Programming (ILP) 
Constraint Programming (CP) 

Heuristic methods Priority Dispatching Rule (PDR) 

Metaheuristic methods 
Local search (LS) 
Tabu search (TB) 
Genetic algorithms (GAs) 

Other methodologies 

Machine learning 
Reinforcement learning 
Multi-agent systems 
Neural networks 
Hybrid methods 

 

3.6.1 Priority Dispatching Rules 
 
Priority dispatching rules are fundamental to job shop scheduling, where the objective is to 
determine the optimal sequence of jobs processed on various machines.  
These rules are crucial in enhancing efficiency, reducing wait times, and optimizing resource 
utilization in manufacturing and service industries [54]. 
 
The Longest Processing Time (LPT) rule prioritizes jobs with the longest duration, aiming to 
keep the most critical machines busy and minimize idle time, which can be particularly 
beneficial in environments with high machine utilization rates.  
 
Conversely, the Shortest Processing Time (SPT) rule focuses on minimizing the total job 
completion time by prioritizing jobs with the shortest duration, which helps in reducing the 
average job flow time and improving throughput. 
 
The First-In-First-Out (FIFO) rule, also known as First-Come-First-Served, processes jobs in the 
order they arrive, ensuring fairness and simplicity but potentially leading to inefficiencies if 
early jobs are significantly long.  
 
The Last-In-First-Out (LIFO) rule, which processes the most recently arrived jobs first, can be 
effective in scenarios where newer jobs are more critical, but might cause older jobs to 
experience excessive delays, potentially increasing the average job tardiness [42]. 
 
Each of these rules has distinct advantages and limitations, making their application context-
dependent and often necessitating a combination of rules for optimal job shop performance 
[55]. 
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3.6.2 Genetic algorithm 
 
Genetic Algorithms (GAs) are metaheuristic optimization techniques inspired by the principles 
of natural selection and evolution.  
Introduced by John Holland in the 1960s, GAs have become a popular approach for solving 
complex optimization problems across various domains [56]. The fundamental idea behind 
GAs is to evolve a population of potential solutions (individuals) over multiple generations, 
applying genetic operators such as selection, crossover, and mutation to improve the quality 
of solutions iteratively. 
 
The basic structure of a genetic algorithm includes the following components [52]: 

• Initialization: Create an initial population of potential solutions. 

• Fitness Evaluation: Assess the quality of each solution using a fitness function. 

• Selection: Choose individuals for reproduction based on their fitness. 

• Crossover: Combine genetic information from selected parents to create offspring. 

• Mutation: Introduce random changes in individuals to maintain genetic diversity. 

• Replacement: Form a new population from the offspring and (optionally) some 
parents. 

• Termination: Repeat steps 2-6 until a stopping criterion is met. 

 
 

3.6.2.1 Job Shop Scheduling Genetic Algorithm 
 
For this thesis, a specific genetic algorithm has been developed to address the dynamic job 
shop scheduling problem. Some of the most important functions are reported in the Appendix. 
 
Key components of the implemented GA for JSSP: 
 

• Representation: The algorithm uses a permutation-based encoding, where each 
individual (chromosome) represents a sequence of job operations. This representation 
ensures that precedence constraints within jobs are always satisfied. 
 

• Population Initialization: The initial population is created by generating random 
permutations of job operations, ensuring diversity in the starting solutions. 

 

• Fitness Function: The fitness of an individual is determined by the makespan the 
schedule it represents. The algorithm aims to minimize this makespan. 

 

• Selection: Individuals are selected for reproduction using a fitness-proportionate 
selection method. 



 23 

 

• Crossover: A single-point crossover operator is used to create offspring from selected 
parents. The crossover point is randomly chosen, and genes are inherited from both 
parents while maintaining schedule validity. 

 

• Mutation: The mutation operator randomly swaps two positions in the chromosome, 
introducing small changes that help maintain genetic diversity and explore the solution 
space. 
 

• Evolution: The population evolves over a specified number of generations. In each 
generation, selection, crossover, and mutation operations are applied to create a new 
population. 
 

• Schedule Decoding and Execution: The best individual from the final generation is 
decoded into a feasible schedule. Operations are scheduled according to the order 
specified in the chromosome, respecting machine availability and job precedence 
constraints. 
 

• Dynamic Job Arrival: The algorithm is adapted to handle dynamic job arrivals, 
simulating a more realistic production environment where new jobs enter the system 
over time. As new jobs arrive, they are added to the problem set and GA is re-run to 
schedule the remaining operations. 
 

• Processing Time Variability: To account for uncertainties in real-world scenarios, the 
algorithm incorporates variability in processing times, reflecting potential fluctuations 
in machine performance or job complexity. 

 
This genetic algorithm implementation for JSSP combines elements from classical GA 
approaches with problem-specific adaptations to address the complexities of job shop 
scheduling. The integration of dynamic job arrivals and processing time variability enhances 
the algorithm's applicability to real-world manufacturing scenarios, where uncertainty and 
changing conditions are common challenges. 
 
While this algorithm is only inspired by a major publication [57], its comprehensive approach 
to simulating and solving dynamic job shop problems makes it a valuable benchmark for 
comparing other scheduling algorithms. It incorporates key elements of modern scheduling 
research, such as dynamism and uncertainty, which are often overlooked in classical 
benchmark problems. 
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4 Reinforcement learning 
 
4.1 Artificial Intelligence and Machine Learning introduction 
 
Stanford Professor John McCarthy who first used the term “Artificial Intelligence” in 1955, 
defines it, in a subsequent article [58], as “the science and engineering of making intelligent 
machines, especially intelligent computer programs”. 
 
AI is a multidisciplinary field comprising different subfields such as machine learning, natural 
language processing, computer vision and more. 
Among them machine learning (ML) focuses on the development of algorithms and models 
that enable computers to learn patterns and relationships from large amounts of data and use 
that knowledge to and make predictions or decisions without being explicitly programmed. 
 
Machine learning models can be grouped into three primary categories [59]: 
 

• Supervised machine learning: in supervised learning, the algorithm is trained on a 
labeled datasets in which input data are associated with corresponding output labels. 
The goal is for the algorithm to be able to accurately classify new, unseen data or 
predict outcomes. 
Supervised learning algorithm’s applications include predictive analytics, object 
detection and classification. 
 

• Unsupervised machine learning: in unsupervised learning, the goal of the algorithm is 
to analyze and cluster unlabeled dataset to discover hidden patterns or data 
groupings. 
Unsupervised learning algorithm’s applications include recommendation systems, 
customer segmentation and big data visualization. 

 

• Reinforcement learning: reinforcement learning is similar to supervised learning but is 
well-suited for tasks where explicit supervision is unavailable due to the lack of labeled 
data set. The algorithm is trained through trial-and-error mechanism to learn a policy 
or strategy that maximizes its reward. 

 

 
Figure 5: Artificial Intelligence paradigms 
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4.2 Reinforcement learning overview 
 
Reinforcement Learning (RL) is a machine learning paradigm to solve sequential decision-
making problem [60]. 
It involves an agent which learns to make decisions by performing certain actions in an 
environment to maximize cumulative reward. Unlike supervised learning, which requires 
labeled input-output pairs, RL is based on the interaction between the agent and the 
environment, using trial and error to discover optimal actions. 
 
The fundamental elements of an RL system include: 
 

● Agent: The learner or decision-maker that interacts with the environment. 

● Environment: The external system with which the agent interacts and receives 

feedback. 

● State ( 𝑆 ): A representation of the current situation of the environment. 

● Action ( 𝐴 ): The set of all possible moves the agent can make. 

● Reward ( 𝑅 ): Feedback from the environment to evaluate the action taken. 

● Policy ( 𝜋 ): The strategy used by the agent to determine the next action based on the 
current state. 

● Value Function ( 𝑉 ): Estimates the expected cumulative reward from a given state. 

● Q-Function ( 𝑄 ): Estimates the expected cumulative reward from a given state-action 
pair. 

 
The underlying functioning of this method involves an agent interacting, over time, with an 
environment to achieve a long-term goal.  
The agent-environment interaction, represented in Figure 5, can be explained as follow: 
 

at each time step t:  
the agent observes the environment’s state  𝑆𝑡 , 
the agent selects an action 𝐴𝑡 to be performed on the environment, 
the action is performed, 
the agent receives a reward 𝑅𝑡 (reinforcement), 
the environment transitions to a successor state 𝑆𝑡+1 . 
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The sequence above is repeated until a terminal state is reached marking the end of a training 
episode. 

 
Figure 6: Reinforcement learning functioning [60] 

 
RL operates based on the principle of learning from interaction. The process can be 
summarized as follows: 
 

● Initialization: Initialize the policy and value function. 

● Interaction: The agent observes the current state 𝑆𝑡. 

● Action Selection: The agent selects an action 𝐴𝑡 based on the current policy 𝜋∗. 

● Feedback: The environment responds to the action with a reward 𝑅𝑡 and transitions 
to a new state 𝑆𝑡+1. 

● Update: The agent updates its policy and value function based on the reward and new 
state. 

● Iteration: Repeat the process for a predefined number of episodes or until 
convergence. 

The agent chooses the action to perform based on a policy 𝜋𝑡. The policy expresses the 
probability the agent will take a specific action (among the available ones) in a specific state. 
The agent discovers which action yields the most reward through a trial-and-error search in 
which each action is rewarded based on both the immediate and delayed reward. 
The agent’s policy is updated throughout the learning phase as a result of the agent 
experience. 
The ultimate goal is to find the optimal policy 𝜋∗ that maximizes the expected cumulative 
reward from any given state. 
Each type of reinforcement learning algorithm updates the agent policy differently based on 
the agent experience. 
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4.3 Markov Decision Processes 
 
The Markov Decision Process (MDP) is a mathematical framework to model sequential 
decision-making problems including basic reinforcement learning problems [61]. 
To be more precise a problem can be considered a Markov Decision Process if it satisfies the 
Markov property that is, if the transition from state 𝑠 to state 𝑠′ depends only upon the state 
𝑠. 
 
A Markov Decision process model is composed of five elements:  

• Decision epochs: in a Markov decision process, decisions are made at points in time 
referred to as decision epochs. 
 

• States: at each point in time the environment occupies a state. The set of all possible 
states is called state space 𝑠. 
 

• Actions: at each point in time the agent can undertake an action. The set of all available 
actions available is called action state 𝑎. 
 

• Transition probabilities: the state the environment transitions to, as a result of an 
action at the decision epoch t, is determined by the transition probability function 
which gives the probability of the next state and reward given the current state and 
action. In the basic versions of the Markov Decision Processes, the transition 
probability from one state to another is equal to one. 
 

• Rewards: the decision maker receives a reward on the basis of the action undertaken 
in a specific state at a specific decision epoch. 

  
In reinforcement learning, the agent learns to make decisions by interacting, over time, with 
an environment described by a Markov Decision Process. 
 
The goal is for the agent to maximize the expected sum of future rewards it receives over time. 
This sum is represented by: 
 

𝑅𝑡 =  ∑ 𝛾𝑡 𝑟(𝑡, 𝑘)

∞

𝑘=0

 

 
 where 𝑡 is the current time step, 𝑘 represents the time step into the future at which the 
reward is received, 𝑟(𝑡 + 𝑘) is the immediate reward received at time (𝑡 + 𝑘) and γ (gamma) 
is a discount factor that controls the importance of future rewards relative to immediate ones. 
 
The value 𝑉𝜋(𝑠) of being in a particular state s under a given policy π is the expected sum of 
future rewards the agent can expect to receive from that state onward. 
It is obtained by summing over all possible actions a that can be taken from state 𝑠, and for 
each action, summing over all possible next states 𝑠′ that can be reached from state s after 
taking action 𝑎. 
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For each next state 𝑠′, the value function considers the immediate reward 𝑅𝑠𝑠′
𝑎  obtained by 

taking action 𝑎 and transitioning to state 𝑠′, plus the discounted value 𝛾𝑉𝜋(𝑠′) of being in 
state 𝑠′ onwards under policy π. 
 
This calculation accounts for the expected rewards and their discounting over time. 
 

𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎) ∑(𝑅𝑠𝑠′
𝑎 + 𝛾𝑉𝜋(𝑠′))

𝑠′𝜖𝑆𝑎𝜖𝐴

 

 
 
The formula above is called Bellman equation for the value function. It expresses the 
relationship between the value of the state s and the values of the following states reached 
following a specific policy. 
 
 
The value 𝑄𝜋(𝑠, 𝑎) of taking a particular action 𝑎 in a given state 𝑠 under policy 𝜋 is the 
expected sum of future rewards the agent can expect to receive by taking that action and then 
following the policy. 
Similar to 𝑉𝜋, it considers the immediate reward 𝑅𝑠𝑠′

𝑎  obtained by taking action 𝑎 and 
transitioning to a next state 𝑠′, plus the discounted value 𝛾𝑉𝜋(𝑠′) of being in state 𝑠′ onwards 
under policy π. 
 

𝑄𝜋(𝑠, 𝑎) = ∑(𝑅𝑠𝑠′
𝑎 + 𝛾𝑉𝜋(𝑠′))

𝑠′𝜖𝑆

 

 
These value functions, 𝑉𝜋 for states and 𝑄𝜋  for state-action pairs, help the agent make 
decisions by estimating the long-term rewards associated with different states and actions. 
They guide the agent towards actions that lead to higher cumulative rewards over time. 
 
During learning, the agent aims to find an optimal policy 𝜋∗ that outperforms all other policies 
in terms of accumulating maximum rewards. 
It has been mathematically proven that for every Markov Decision Process (MDP), there exists 
an optimal policy 𝜋∗. 
 
The optimal policy 𝜋∗(𝑠) is determined by selecting the action that maximizes the sum over 
all possible next states 𝑠′ of the immediate reward 𝑅𝑠𝑠′

𝑎  obtained by taking action a and 
transitioning to state 𝑠′, plus the discounted value 𝛾𝑉𝜋(𝑠′)  of being in state 𝑠′ onwards. 
 

𝜋∗(𝑠) = max
𝑎𝜖𝐴

{∑ (𝑅𝑠𝑠′
𝑎 + 𝛾𝑉𝜋(𝑠′))

𝑠′𝜖𝑆

} 

 
Dynamic programming refers to the algorithm used to find the optimal policy given complete 
knowledge of the environment. 
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4.4 Types of Reinforcement Learning 
 
RL can be broadly categorized into different classes: [60] 
 

1. Model-Free vs. Model-Based RL. 
 

o Model-Free RL algorithms learn directly from experience without explicitly 
modeling the environment. They are generally more flexible but may require 
more samples to learn effectively. Examples include Q-learning and SARSA. 

o Model-Based RL algorithms learn a model of the environment, which allows for 
planning and potentially more sample-efficient learning. However, they can be 
sensitive to model errors. Examples include Dyna-Q and PILCO 
 

2. Value-Based vs. Policy-Based RL. 
 

o  Value-Based methods estimate the value of being in a particular state or taking 
a specific action and derive a policy from these estimates. Q-learning and Deep 
Q-Networks (DQN) are prominent examples.  

o Policy-Based methods directly optimize the policy without maintaining a value 
function. They can be more effective in continuous or high-dimensional action 
spaces. REINFORCE and PPO (Proximal Policy Optimization) are examples of 
this approach. 
 

3. On-Policy vs. Off-Policy RL. 
 

o On-Policy methods use the same policy for both behavior generation and 
policy improvement. They can be more stable but less sample efficient. 
Examples include SARSA and PPO.  

o Off-Policy methods can learn from data generated by a different policy, 
potentially improving sample efficiency. Q-learning and Deep Deterministic 
Policy Gradient (DDPG) are off-policy algorithms 

 
4.5 Principal Reinforcement Learning Algorithms 
 

4.5.1 Q-learning 
 
The Q-learning is a popular off-policy reinforcement learning algorithm.[60] [62] 
 
The core of the algorithm is the iterative update of a Q-table associating each state–action 
pair (𝑠𝑡 , 𝑎𝑡)to a value called Q-value which is updated on the basis of the observed reward 
and the discounted maximum Q-value of the next state. The Q-table is usually initially set to 
zero. 
 
At each time step, the agent chooses an action to take using the epsilon – greedy policy. 
The epsilon greedy policy is a strategy used to balance the exploration and exploitation during 
the learning process. In the Q-learning algorithm it is usually implemented in the following 
way: 
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• With probability 𝜀, the agent selects a random action (exploration) 

• With probability 1 − 𝜀 , the agent selects the action with the highest Q-value for the 
current state (exploitation) 

 
The parameter 𝜀 is typically set to decrease over time, reflecting the idea that as the agent 
learns more about the environment, it should rely more on exploitation and less on 
exploration. 
 
Once the action is selected, the Q-value of the state is updated. 
The Bellman function that updates the Q-values can be expressed as follows: 
 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) +  𝛼(𝑟𝑡 + 𝛾 max 𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)) 
 
Where 𝛼 represents the learning rate determining the extent to which new information 
overrides old information, 𝑟𝑡 represents the immediate reward received after taking the action 
𝑎 in state 𝑠, 𝛾 I the discount factor representing the importance of future rewards. 
 
In the Q-learning algorithm, the Bellman equation is used to update the Q-values after each 
action is taken, gradually refining the agent's understanding of the environment and 
improving its decision-making capabilities. 
 
The process is repeated and the Q-values are updated until the agent reaches a terminal state 
or a predefined number of iterations. 
 
With sufficient exploration and appropriate learning rate and discount factor settings, Q-
learning converges to the optimal Q-values, ensuring that the agent learns the optimal policy 
for maximizing cumulative rewards over time. 
 
The basic steps of the Q-learning algorithm are shows in the following image: 
 

 
Figure 7: Q-learning algorithm steps 
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5 Deep Reinforcement Learning 
 
5.1 Deep reinforcement learning overview 
 
Deep reinforcement learning (DRL) is a subfield of artificial intelligence that combines 
reinforcement learning techniques with deep learning methods, specifically deep neural 
networks.  
It involves training AI agents to learn optimal behaviors by interacting with an environment 
using deep neural networks to approximate the agent's policy (the mapping from states to 
actions) and/or value functions (estimating the expected future rewards).  
 
These networks enable RL agents to handle high-dimensional state and action spaces, making 
them suitable for a wide range of real-world applications. 
DRL includes several algorithms such as deep Q-networks (DQN), policy gradient methods 
(such as Proximal Policy Optimization), actor-critic architectures, and more. 
 

5.2 Deep learning 
 
Deep learning, a specialized subset of machine learning, has significantly transformed the 
landscape of artificial intelligence (AI) by enabling the modeling of intricate patterns and 
complex representations through deep neural networks [63]. 
Deep learning, indeed, uses algorithms, called Deep Neural Networks (DNN), whose 
functioning is inspired by the structure of the neural networks in human brains. The purpose 
of deep learning is trying to mimic how the human brain behaves through multi-layers neural 
networks. 
 
The foundation of deep learning lies in its capability to automatically learn and extract features 
from raw data, which traditional machine learning algorithms often struggle to achieve. This 
paradigm shift has facilitated the development of models that excel in various complex tasks, 
achieving human-level or even superhuman performance in some cases. 
 
The inception of deep learning dates back several decades, but its true potential was realized 
in the 21st century with advancements in computational power, availability of large datasets, 
and innovative algorithms. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, often referred 
to as the "godfathers" of deep learning, have been pivotal in this field's progress, contributing 
foundational theories and practical implementations that have underpinned modern AI 
systems [64]. 
 
The application of deep learning has led to groundbreaking advancements in several domains: 
 

● Image Recognition: Deep convolutional neural networks (CNNs) have set new 
benchmarks in image classification, object detection, and segmentation tasks, 
surpassing human-level accuracy in some benchmarks [65]. 

 
● Natural Language Processing (NLP): Recurrent neural networks (RNNs), Long Short-

Term Memory (LSTM) networks, and transformers have revolutionized NLP tasks such 
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as machine translation, sentiment analysis, and language generation, enabling 
applications like real-time translation and conversational agents [66]. 

 
● Game Playing: Deep reinforcement learning has enabled AI systems to master complex 

games such as Go, chess, and various video games. Notable examples include AlphaGo 
and AlphaZero, which have demonstrated strategic thinking and planning capabilities 
previously thought to be exclusive to humans [67]. 

 

5.2.1 Fundamental Concepts of Deep Learning 
 
Deep learning involves training neural networks with many layers, known as deep neural 
networks (DNNs). Unlike traditional machine learning algorithms that rely on manual feature 
extraction, deep learning models automatically learn hierarchical representations from raw 
data. The key idea is that each layer in a DNN captures increasingly abstract features, enabling 
the model to understand complex patterns in the data.[63] 
 
The primary components of a neural network include: [68] 
 

● Neurons. 
 
Neurons are basic processing units that receive inputs, apply a non-linear 
transformation, and produce an output. Each neuron performs a weighted sum of its 
inputs followed by an activation function to introduce non-linearity. 
 

● Layers: 
o Input Layer: The first layer of the network, which receives raw input data. Each 

neuron in this layer represents a feature from the input data. 
o Hidden Layers: Intermediate layers between the input and output layers. These 

layers perform feature extraction and transformation. The depth (number of 
hidden layers) and width (number of neurons per layer) of a network can vary 
based on the complexity of the task. 

o Output Layer: The final layer that produces the network's predictions or 
classifications. The number of neurons in this layer typically corresponds to the 
number of classes in a classification task or the number of outputs in a 
regression task. 
 

● Weights and Biases. 
 
Parameters that determine the strength of connections between neurons. Weights are 
adjusted during training to minimize the difference between the network's predictions 
and the actual outputs. Biases allow the activation function to be shifted to the left or 
right, which can be critical for learning. 
 

● Activation Functions. 
Non-linear functions applied to the input of each neuron to introduce non-linearity, 
enabling the network to learn complex patterns. Common activation functions include 
the sigmoid function, hyperbolic tangent (tanh), and rectified linear unit (ReLU). 



 33 

● Loss Function. 
 
A function that measures the difference between the predicted output and the true 
output, guiding the training process. Common loss functions include mean squared 
error (MSE) for regression tasks and cross-entropy loss for classification tasks. 
 

● Optimizer. 
 
An algorithm that adjusts the network's weights and biases to minimize the loss 
function. Optimizers use gradient-based methods such as stochastic gradient descent 
(SGD), Adam, and RMSprop to update the parameters in the direction that reduces the 
loss. 
 

 
Figure 8: Single neuron with its elements [68] 

 
The functioning of a neural network can be divided into two main phases: forward propagation 
and backpropagation. 
 
 

• Forward Propagation 
 

During forward propagation, input data passes through the network layer by layer. 
Each neuron's output is computed as follows: 
 

𝑧 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

 

 
𝑎 =  𝜎(𝑧) 

 
 

where 𝑧 is the weighted sum of inputs 𝑥𝑖 with weights 𝑤𝑖  and bias 𝑏, and 𝜎 is the 
activation function. The output 𝑎 is then passed as input to the next layer. This process 
continues until the final output is produced. 
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• Backpropagation 
 

Backpropagation is used to update the weights and biases based on the error 
calculated from the loss function.  
It involves the following steps: 

 
o Computing the Loss: The difference between the predicted output and the actual 

output is calculated using the loss function. 
 

o Calculating Gradients: Using the chain rule, the gradients of the loss with respect 
to each weight and bias are computed. These gradients indicate the direction and 
magnitude of change needed to minimize the loss. 

 
o Updating Parameters: The weights and biases are adjusted in the direction that 

reduces the loss, typically using an optimization algorithm like stochastic gradient 
descent (SGD). 

 
 

 

5.2.2 Types of Neural Networks 
 
Several types of neural networks have been developed to address different tasks and data 
types. The most notable ones include: 
 

• Feedforward Neural Networks (FNN) [68] 
 
Feedforward neural networks, also known as multi-layer perceptron (MLPs), are the 
simplest type of artificial neural networks. They consist of an input layer, one or more 
hidden layers, and an output layer, with connections moving in one direction from 
input to output. 

 

 
Figure 9: Feedforward Neural Network: Information flows in one direction from the input layer through hidden layers to the 

output layer [68] 

 
 
 
 



 35 

• Convolutional Neural Networks (CNN) 
 
Convolutional neural networks are designed for processing structured grid data, such 
as images. CNNs use convolutional layers to automatically learn spatial hierarchies of 
features through local connections and shared weights, followed by pooling layers to 
reduce dimensionality (LeCun et al., 1998). 
Elements of CNNs include: 

o Convolutional Layers: Apply filters to the input to create feature maps. 
o Pooling Layers: Reduce the spatial dimensions of the feature maps. 
o Fully Connected Layers: Combine features to make the final prediction. 

 
 

 
Figure 10: Convolutional Neural Network: Consists of convolutional, pooling, and fully connected layers [69] 

 
 

5.3 Deep Reinforcement Learning Algorithms 
 
5.3.1 Deep Q-learning 
 
Deep Q-Learning (DQN) is an extension of Q-Learning that addresses the limitation of handling 
large state-action spaces by using deep neural networks. 
Instead of a Q-table, DQN utilizes a neural network to approximate the Q-function. 
The neural network takes the state as input and outputs Q-values for all possible actions. 
 
Another difference with respect to the Q-learning algorithm is the training method. 
DQN incorporates experience replay, where experiences (state, action, reward, next state) are 
stored in a replay buffer. During training, batches of experiences are randomly sampled from 
the buffer to train the neural network. This helps in breaking correlations between 
consecutive experiences and stabilizes training. 
 
DQN tends to perform better in complex environments with high-dimensional states 
compared to Q-Learning. 
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5.3.2 Proximal Policy Optimization 
 
Proximal Policy Optimization (PPO) is a policy gradient method used to train AI agents to 
perform tasks. Policy Gradient Methods are among the most effective techniques in 
Reinforcement Learning. [70] 
 
PPO objectives is for the agent to learn a policy that maps states to actions yielding the 
maximum possible expected sum of rewards. 
 
The policy approximation is carried out using a neural network. 
The policy network takes the current state as input and outputs a probability distribution over 
actions. During training, the parameters of this neural network are adjusted to improve the 
policy's performance. 
 
The key innovation of PPO is the use of a clipped surrogate objective. Instead of directly 
optimizing the objective function, PPO constrains the policy update to be within a certain 
threshold. This helps to prevent large policy updates that may lead to instability. 
 
Figure 11 shows a detailed process flow for a PPO reinforcement learning algorithm. 
 

• Start: The process begins. 

• Reset Simulation: The environment is reset to its initial state. 

• Environment: This represents the problem space or world the agent interacts with. 

• Actor: The agent that takes actions based on the current state. 

• State and Action Loop:  

o The actor receives the state from the environment. 

o It then takes an action, which is fed back into the environment. 

o This loop continues until a terminal state is reached. 

• RL PPO Library: Once observations are made, they're passed to the PPO algorithm 
implementation. 

• Evaluate State: The current state is evaluated. 

• Collect experience tuple: Information about the state, action, and reward is collected. 

• Experience Collection Loop: Steps 6-8 repeat until the batch size is reached (exp < 
Batch_size). 

• Select a minibatch: Once enough experience is collected, a minibatch is selected for 
training. 
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• Train policy using minibatch: The policy is updated using the selected minibatch. 

• Batch Usage Check: The process checks if all batches have been used for training. 

• Training Loop: If not all batches are used, it goes back to selecting another minibatch 
(step 10). 

• Iteration Check: After training, it checks if the maximum number of steps (n_steps) has 
been reached. 

• End or Continue:  

o If max steps are reached, the process ends. 

o If not, it goes back to resetting the simulation (step 2) for another iteration. 

 

 
Figure 11: Proximal Policy Optimization flow chart [70] 
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7 Literature review 
 
Reinforcement learning algorithms have become a significant focus in tackling job shop 
scheduling and its variants due to their ability to adapt and optimize in complex, dynamic 
environments. Deep reinforcement learning (DRL) approaches have shown promising results 
by leveraging neural networks to handle large state and action spaces effectively. 
This capability allows DRL to capture intricate patterns and dependencies within the 
scheduling problem, making it well-suited for real-world JSSP and DJSSP scenarios where the 
number of possible states and actions can be vast.  
 
In the context of JSSP, researchers have explored several approaches leveraging different 
algorithms, state representations and reward functions to allow for stable learning 
approaches and long-term strategies exploitation. 
Zhao et al. [72] introduced Q-learning as a foundational approach, focusing on iterative 
improvements through action-value updates based on observed rewards. Traditional 
reinforcement learning relies on value functions or policy representations, which can become 
unmanageable as scheduling problems increase in complexity. To address this issue, Tassel et 
al. [73] and Moon et al. [74] employed deep reinforcement learning methods, specifically 
proximal policy optimization and deep Q-network algorithms. DRL uses deep neural networks 
to process high-dimensional input data (such as job and machine states) and out- put optimal 
actions (such as job scheduling decisions) with increased efficiency and stability.  
 
Given the dynamic nature of the environment, the dynamic job shop scheduling problem has 
been primarily tackled with deep reinforcement learning approaches to effectively manage 
the evolving nature of scheduling requirements. One prominent contribution by Zhao et al. 
[75] involves the adaptation of deep Q-networks, which utilize deep neural networks to 
approximate optimal action- value functions where the action set is composed of ten heuristic 
dispatching rules. 
Another notable strategy exploited by Zhang et al. [76] includes Proximal Policy Optimization 
characterized by increased stability and fast optimization speed ensuring adaptation to 
changing scheduling conditions.  
 
In this study, we propose an innovative approach to the Dynamic Job Shop Scheduling Problem 
utilizing Maskable Proximal Policy Optimization [77]. 
To achieve improved performances, the strategy proposed integrates the strengths of state-
of-art approaches with several innovative features. The strategy proposed is based on PPO 
algorithm which is highly regarded for its stability, sample efficiency, and robust empirical 
performance in reinforcement learning. 
To reduce the search space and enhance environment dynamicity, the action set has been 
designed to incorporate priority dispatching rules rather than considering each individual job 
and the use of masked actions ensures that the agent focuses on relevant and feasible 
decisions, enhancing the efficiency of the scheduling process. 
Additionally, our approach employs an event-based control mechanism, where the agent is 
triggered only when necessary. This selective activation not only conserves computational 
resources but also allows for more responsive and adaptive scheduling adjustments. 
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8 Reinforcement learning algorithm 
 
8.1 Algorithm Overview 
 
The central core of the thesis work consists in the development and implementation of a 
reinforcement learning algorithm to tackle the job shop scheduling problem and its dynamic 
variant. 
Job Shop Scheduling problem can be formulated as a sequential decision-making problem (or 
Markov Decision Process) and hence solved using Reinforcement Learning algorithm to train 
an agent to learn the optimal scheduling policy. 
 
Possibilities to solve the JSSP using RL include both single-agent and multi-agent algorithms: 
 

• Single – agent reinforcement learning: a single agent learns to make scheduling 
decisions for all the machines in the job shop environment, 

• Multi-agent reinforcement learning: multiple agents (each representing a machine) 
learn to how to make scheduling decisions cooperatively or competitively. 

 
In this study, the single-agent approach was chosen, and this choice is supported by several 
considerations: 
 

• Simplicity and Manageability: A single-agent framework simplifies the problem 
structure. Managing one agent to control all machines reduces the complexity 
associated with coordination and communication among multiple agents. This 
simplicity can lead to more straightforward implementation and debugging processes. 
 

• Global Optimization Perspective: A single agent has a global view of the entire job shop 
environment, enabling it to optimize the scheduling policy considering all machines 
simultaneously. This holistic approach can potentially lead to better overall 
performance compared to a scenario where multiple agents might focus on local 
optimizations that do not necessarily result in a globally optimal solution. 

 

• Resource Efficiency: Training a single agent generally requires fewer computational 
resources compared to training multiple agents. The learning process for a single agent 
can be more efficient in terms of both time and computational power, as it avoids the 
overhead associated with multi-agent interactions. 
 
 

• Scalability: While multi-agent systems can suffer from scalability issues as the number 
of agents increases, a single-agent system can be more easily scaled to handle larger 
job shop environments by enhancing the agent's capacity and learning algorithms 
without the need to manage inter-agent communications. 
 

Given these reasons, the single-agent RL approach provides a balanced trade-off between 
implementation complexity and the ability to achieve a globally optimized scheduling policy, 
making it a suitable choice for tackling the Job Shop Scheduling Problem in this study. 
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8.2 Theorical aspects of the algorithm 
 

8.2.1 State representation 
 
State representation is a crucial component in the application of Reinforcement Learning to 
the Job Shop Scheduling Problem. It refers to the way in which the status of the job shop 
environment is encoded and presented to the RL agent. An effective state representation 
captures all relevant information about the environment, enabling the agent to make 
informed decisions that lead to optimal scheduling policies. 
 
The state representation serves several essential purposes: 

• Decision Making: It provides the RL agent with the necessary information to decide 
which job to schedule next for each machine. 

• Learning: It allows the agent to learn patterns and dependencies within the job shop 
environment, improving its ability to predict the outcomes of its actions. 

• Environment Interaction: It facilitates the interaction between the agent and the 
environment, ensuring that the agent’s decisions are based on the current status of 
the job shop. 

 
In the context of this study, the state is represented as a matrix where each row corresponds 
to a machine in the job shop, and each column corresponds to a specific feature related to the 
machine's status. The entries in the matrix provide continuous values rather than binary 
indicators, offering a more nuanced depiction of the job shop environment.  
 
Specifically, the state matrix includes the following features for each machine: 

• Leftover Time on Current Operation: This represents the remaining time required for 
the machine to complete its current operation. 

• Current Operation Percentage: This indicates the percentage of the current operation 
that has been completed. 

• Total Leftover Time: This captures the total remaining time for all operations yet to be 
completed on the machine. 

• Idle Time: This measures the amount of time the machine has been idle. 

• Time to Next Operation: This denotes the time until the machine starts its next 
operation. 

The state representation is dynamic and can be updated in real-time to reflect changes in the 
job shop environment as jobs are processed and new jobs arrive. 
The choice of this continuous, feature-based state representation is justified by several 
considerations: 
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• Richness and Detail: Unlike a binary matrix, this representation offers a richer and 
more detailed depiction of the job shop status. Each feature provides specific and 
quantifiable information that can lead to more informed decision-making by the RL 
agent. 

• Dynamic Adaptability: The continuous nature of the state matrix allows it to be 
dynamically updated to reflect real-time changes. This is particularly important in 
environments where the number of jobs is not known a priori, as it ensures that the 
state representation remains accurate and relevant. 

• Efficiency: The continuous feature-based matrix is compact and efficient. This reduces 
the computational burden on the RL agent when processing state information, 
enabling faster decision-making and learning. 

• Scalability: The matrix representation can be easily scaled to accommodate different 
numbers of machines and jobs. This flexibility ensures that the approach can be 
applied to job shops of various sizes without requiring significant changes to the 
underlying representation. 

• Focus on Operational Metrics: By focusing on key operational metrics such as leftover 
time and idle time, this representation highlights the critical aspects of the job shop 
environment that directly impact scheduling decisions. This helps the agent to 
prioritize actions that optimize the flow of jobs through the system. 

 
 

8.2.2 Action space representation 
 
Action representation is a fundamental aspect of applying Reinforcement Learning to the Job 
Shop Scheduling Problem. It defines the set of actions available to the RL agent, which, in turn, 
determines how the agent can interact with the environment to influence the job scheduling 
process. 
 
The action representation serves several critical functions: 
 

• Decision Making: It provides the agent with a clear set of options for influencing the 
job scheduling, directly impacting the overall performance and efficiency of the job 
shop. 

• Learning: A well-defined action space allows the agent to explore different scheduling 
strategies and learn which actions lead to the best outcomes. 

• Policy Optimization: The chosen actions are essential for the agent to develop an 
optimal policy that can handle various job shop scenarios and constraints. 

 
Two strategies are generally used when it comes to defining the action space: 
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• considering all possible actions available to the agent. 
While considering all possible actions in a deterministic context is usually the best 
choice, allowing for a higher degree of control from the agent, in the dynamic scenario 
might entail a constraint in terms of number jobs that the system can handle. 
 

• Considering specific strategies corresponding to the dispatching rules of the priority 
dispatching rule methods: SPT, LPT, FIFO, LIFO and let the agent choose among those 
strategies instead of the actual actions. 

 
In this study, actions are defined as scheduling strategies that the agent can choose from.  
The selected actions have been selected after a profound study of several job shop scheduling 
problem instances. 
 

• LTPT – Longest total processing time.  
 
Choosing the job with the longest total processing time remaining across all machines: 
This strategy prioritizes jobs that require the most time to complete according to its 
operations duration, ensuring that these more complex jobs are scheduled earlier, 
potentially reducing their impact on the overall job shop flow. 
 

• HRS – Highest remaining steps. 
 
Choosing the job with the highest number of remaining steps: This strategy focuses on 
jobs that have the most steps left in their processing sequence.  
A step is an elaboration phase on a specific machine. By addressing these jobs first, the 
agent can help to reduce bottlenecks that may arise from jobs that are still far from 
completion. 
 

• NULL – null action. 
 
Choosing the null action: This action allows the agent to opt for no immediate 
scheduling decision, which can be useful in scenarios where delaying a decision might 
lead to a more optimal scheduling arrangement in subsequent steps. 

 
These actions were chosen based on their ability to address different scheduling challenges 
and their potential to improve the overall efficiency of the job shop. 
 

8.2.3 Action masking 
 
To enhance the efficiency of the agent's decision-making process, the solution implements an 
action masking function. Action masking reduces the search space by preventing the agent 
from selecting illegal or non-optimal actions at each time step. This approach ensures that the 
agent's choices are always meaningful and contextually appropriate, which improves the 
learning process and accelerates convergence to an optimal scheduling policy. [17] 
 
Action masking, in this study serves two primary purposes: reducing the search space and 
preventing non-optimal actions. By eliminating illegal actions, the agent's decision-making 
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process becomes more focused and efficient. This reduction in complexity allows the agent to 
explore relevant actions more thoroughly. Additionally, action masking helps avoid actions 
that would not contribute to an optimal schedule, such as choosing to stand by when 
immediate action is required. 
 
In the implementation, it is ensured that the null action (where the agent chooses to stand 
by) is only allowed if at least one machine is currently processing a job. This prevents the agent 
from wasting opportunities to allocate jobs when machines are idle. For instance, if all 
machines are idle, the agent is forced to select an action that schedules a job, thereby 
minimizing idle time and improving machine utilization. 
 
When there is only one job in the queue, the environment forces the agent to select the first 
strategy, which is to choose the job with the longest remaining processing time across all 
machines. In this scenario, other strategies are redundant and do not provide any additional 
benefit. For example, if Job A is the only job waiting to be scheduled, the agent automatically 
applies the first strategy to allocate Job A, ensuring that decision-making is streamlined and 
relevant. 
 
Incorporating an action masking function significantly enhances the performance of the RL 
agent in the job shop scheduling environment. By preventing illegal and non-optimal actions, 
we ensure that the agent's decision-making process is both efficient and effective, ultimately 
leading to better scheduling outcomes and improved operational efficiency. 
 
Figure 12 and 13 represents the different learning curve in the two cases of PPO with and 
without action masking. It is noticeable how  the learning curve of the Maskable PPO algorithm 
is steeper with respect to the PPO algorithm, representing a quicker learning phase. 
 
 
 

 
Figure 12: PPO learning curve 
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Figure 13: Maskable PPO learning curve 

 
 

8.2.4 Reward function 
 
Designing a reward function that provides feedback to the agent based on the quality of the 
schedules generated is one of the most important steps in the definition of a RL algorithm. 
The reward function should incentivize the agent to generate schedules that maximize the 
objective function. 
An ill-designed reward function can lead to slow learning, suboptimal policies, or even 
convergence to incorrect behaviors.  
 
A well-designed reward function should: 
 

• Encourage Desired Behaviors: It should incentivize the agent to take actions that lead 
to optimal scheduling. 

• Provide Timely Feedback: It should offer frequent and informative feedback to help 
the agent quickly learn the consequences of its actions. 

• Balance Complexity and Clarity: It should be complex enough to capture important 
aspects of the problem but clear enough for the agent to interpret and learn from 
effectively. 

 
The reward strategy explored aims at minimizing idle times (holes) on machines, thereby 
optimizing machine utilization. 
 
Reward Function:  

𝑅(𝑠, 𝑎) =  𝑝𝑎𝑗 − ∑ 𝑒𝑚𝑝𝑡𝑦𝑚(𝑠, 𝑠′)
𝑚∈𝑀

 

 
• 𝑝𝑎𝑗 : Processing time of the scheduled operation. 

• 𝑒𝑚𝑝𝑡𝑦𝑚(𝑠, 𝑠′): Idle time on machine 𝑚 during the transition from state 𝑠 to state 𝑠′. 
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Advantages: 

• Dense Rewards: This strategy provides frequent feedback after each action, helping 
the agent to understand the immediate impact of its decisions. 

• Maximizes Utilization: By focusing on minimizing idle times, it encourages better 
machine utilization, closely related to minimizing the makespan. 

 

8.2.5 Environment dynamics and benefit of event-based control 

 
In this study, the job shop environment operates dynamically, with agent-environment 
interactions triggered by specific events—namely, the availability of one or more machines. 
Unlike traditional Reinforcement Learning frameworks that rely on fixed time intervals or a 
predefined number of steps for updates, our approach leverages event-based control, where 
the agent's internal clock advances only when a new machine becomes available. This method 
offers several significant advantages: 
 

• Timeliness: By prompting the agent to act only when machine availability changes, the 
agent's scheduling decisions are made in real-time based on the current state of the 
job shop. 

• Resource Efficiency: Event-based updates focus the agent’s computational effort on 
significant events, avoiding unnecessary updates that occur in fixed-interval systems. 

 

8.3 Practical implementation 
 
 

8.3.1 Environment 
 
To train, test and evaluate the proposed algorithm, an environment tailored for the 
deterministic and dynamic Job Shop Scheduling problem, utilizing the Python programming 
language has been created. 
The environment is designed to facilitate the comparative analysis of multiple scheduling 
algorithms under both static and dynamic conditions. 
Some of the most important algorithms functions are reported in the Appendix. 
 
The core architecture of the environment encompasses several key modules, including a job 
generator, a scheduler, and a performance evaluator. The job generator simulates various job 
shop scenarios, incorporating both predefined and stochastic job arrival patterns to reflect 
the dynamic nature of real-world manufacturing environments. The scheduler module 
integrates multiple algorithms, allowing for seamless switching and comparative analysis. 
These algorithms include classical methods such as dispatching rules. 
The environment also supports logging and visualization capabilities, enabling detailed 
analysis of the scheduling process and outcomes. 
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The implementation in Python provides several advantages, including ease of integration with 
existing scientific libraries and tools, as well as the flexibility to extend the environment with 
additional features and algorithms.  
 
Overall, this environment represents a robust and flexible tool for the systematic testing and 
evaluation of scheduling algorithms, contributing to the advancement of knowledge in the 
field of Job Shop Scheduling. 
 

8.3.2 Gymnasium and custom environment creation 
 
Gymnasium is an open-source Python library that provides a standard API for reinforcement 
learning environments. It is a fork and successor of the popular OpenAI Gym library, 
maintained by the Farama Foundation [81]. Gymnasium offers a wide range of pre-built 
environments and tools for developing new ones, making it an essential toolkit for 
reinforcement learning research and development. 
 
The foundational concept in Gymnasium is the environment, which encapsulates the 
dynamics of the problem space in which an RL agent operates. This environment defines three 
critical components:  
 

• the state space, 

• the action space,  

• and the transition dynamics, including reward functions.  
 

In the context of the Job Shop Scheduling Problem, these components are carefully designed 
to represent the complexities of industrial scheduling scenarios. 
 
In the context of reinforcement learning environments, the Gymnasium library provides a 
robust framework for defining both observation and action spaces, crucial for agent 
interaction with the environment. The observation space encompasses the information 
available to the agent at each decision point, while the action space delineates the possible 
actions an agent can take. Gymnasium offers a rich taxonomy of space types to define these 
domains, each tailored to different types of data and interaction paradigms. 
 
Mian types of gymnasium spaces include: 
 

• Discrete Space.  
 
The Discrete space is used for scenarios where the action or observation can be 
represented by a finite set of values. For instance, in a simple game with a fixed 
number of moves, each move can be an element in a Discrete space. 
 

• Box Space. 
 
The Box space is utilized for continuous spaces and is defined by lower and upper 
bounds. It is suitable for environments where the agent's observations or actions are 
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multidimensional and can take any value within a specified range, such as the position 
and velocity of an object. 
 

• MultiDiscrete Space. 
 
The MultiDiscrete space extends the Discrete space by allowing a fixed number of 
discrete actions across multiple dimensions. This is particularly useful in environments 
where multiple, independent discrete actions are required simultaneously. 
 

• MultiBinary Space. 
 
The MultiBinary space represents observations or actions as binary vectors. It is 
appropriate for scenarios where each dimension can either be 0 or 1, such as on/off 
states or presence/absence indicators. 
 

• Dict Space. 
The Dict space enables the combination of multiple Gymnasium spaces into a single 
composite space. This is beneficial for environments requiring structured and 
heterogeneous observations or actions, encapsulating different types of data in a 
unified format. 

 
In the Job Shop Scheduling Problem (JSSP) implementation presented in this thesis, the 
observation space is modeled using a Dict space. This composite structure allows the 
integration of multiple subspaces to represent complex and varied data required for decision-
making. Specifically, the Dict space combines MultiBinary spaces to capture the status of 
queues and the availability of machines. 
 

• Queue Status: A MultiBinary space is used to indicate the presence or absence of jobs 
in various queues. Each bit in the binary vector represents whether a specific job is 
waiting in the queue. 

• Machine Availability: Another MultiBinary space is employed to represent the 
operational status of machines. Each bit indicates whether a particular machine is 
available or occupied. 
 

 
 
This approach enables a detailed and organized representation of the environment, allowing 
the agent to receive comprehensive and structured observations. 
 

 
Figure 14: Observation space definition 

 
The action space, which delineates the set of possible decisions available to the agent, is 
represented using a Discrete space in this implementation: 
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Figure 15: Action space definition 

This choice reflects the discrete nature of job selection strategies in the JSSP context, where 
each action corresponds to a specific scheduling heuristic or rule. 
 
In the design and implementation of reinforcement learning (RL) environments, two pivotal 
functions provided by the Gymnasium framework are the step and reset functions. These 
functions are fundamental to the interaction between the agent and the environment, 
enabling the agent to learn and adapt through iterative cycles of action and feedback. 
 
The step function is central to the dynamic progression of the environment. It advances the 
environment by one-time step-in response to an action taken by the agent. This function 
performs several critical tasks: 
 

• Action Processing: The function receives an action from the agent, which is an element 
of the defined action space. 
 

• State Transition: Based on the given action, the environment transitions to a new state. 
This involves updating the environment's internal variables and configurations to 
reflect the consequences of the action. 
 
 

• Reward Calculation: The function computes a reward signal that quantifies the 
immediate benefit or cost of the action taken. This reward is pivotal for the RL agent’s 
learning process, as it provides the feedback necessary to evaluate the desirability of 
actions. 
 

• Termination Check: The function determines whether the current episode has reached 
a terminal state. This could be due to achieving a goal, reaching a maximum number 
of steps, or encountering an error state. 
 

• Information Provision: Additional diagnostic information may also be returned to aid 
in debugging and understanding the environment’s behavior. 
 

The step function typically returns a tuple containing the new state, the reward, a Boolean 
indicating whether the episode has ended, and an optional dictionary of additional 
information. 
 
The reset function is equally crucial in the context of RL training, as it reinstates the 
environment to its initial configuration at the start of each new episode. This function ensures 
consistency and reproducibility in the agent's learning process by providing a stable starting 
point for each episode. The key aspects of the reset function include: 
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• Environment Initialization: The function reinitializes the environment's state to a 
predefined starting configuration, which is often randomly chosen from a set of 
possible initial states to ensure diverse learning experiences. 

 

• State Return: After resetting, the function returns the initial state of the environment, 
which becomes the starting point for the agent's next series of actions. 
 

The consistent reinitialization provided by the reset function is fundamental for episodic 
learning, allowing the agent to repeatedly explore and learn from different scenarios starting 
from a known state. 
 
Together, the step and reset functions form the core interaction loop of RL agents within 
Gymnasium environments. During training, the agent repeatedly performs the following cycle: 
 

• Reset: Begin a new episode by calling the reset function to obtain the initial state. 

• Act: Select an action based on the current policy. 

• Step: Execute the action using the step function to transition to a new state, receive a 
reward, and check for episode termination. 

• Learn: Update the agent’s policy based on the received reward and new state. 

• Repeat: Continue acting and stepping until the episode terminates, then reset the 
environment to start a new episode. 

 
This interaction loop enables the agent to explore the environment, learn optimal policies 
through trial and error, and improve performance over time. 
 

8.3.3 Proximal policy optimization 
 
In this research, it is leveraged the implementation of PPO provided by Stable Baselines3 [80], 
a library recognized for its robust implementations of reinforcement learning algorithms. 
Specifically, the Maskable Actor Critic Policy, which is a variant of the actor-critic architecture 
capable of handling environments with masked actions, has been employed. 
 
PPO’s approach to optimization strikes a balance between exploration and exploitation, 
making it suitable for tasks requiring both robust learning and efficient policy updates. The 
benefit of using Stable Baselines3 is a straight-forward implementation process and the 
assurance of working with a reliable framework designed to support standardized 
reinforcement learning experiments.  
 
 

8.3.4 Hyper-parameter search 
 
Fine-tuning is a crucial process in the field of machine learning, particularly in reinforcement 
learning (RL) and deep learning. It involves the optimization of hyperparameters to improve 
the performance of a model on a specific task. 
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Fine-tuning plays a pivotal role in enhancing the efficacy of machine learning models. It allows 
for the adjustment of model parameters to better fit the specific characteristics of a given task 
or dataset. In reinforcement learning, fine-tuning is particularly important due to the 
sensitivity of RL algorithms to hyperparameter settings [82]. 
 
The importance of fine-tuning in RL can be attributed to several factors: 
 

1. Task Specificity: Different tasks require different hyperparameter configurations for 
optimal performance. Fine-tuning allows the model to adapt to the specific nuances of 
the job shop scheduling problem [83]. 

2. Sample Efficiency: Proper hyperparameter tuning can significantly improve sample 
efficiency, allowing the model to learn more effectively from a limited number of 
interactions with the environment [84]. 

3. Stability: Fine-tuning can enhance the stability of the learning process, reducing the 
variance in performance across different runs. 

4. Performance Optimization: By systematically exploring the hyperparameter space, 
fine-tuning aims to find the configuration that yields the best performance on the 
given task. 

 
The most important Proximal Policy Optimization (PPO) algorithm parameters include: 
 

• n_steps: This parameter determines the number of steps collected per environment 
before updating the policy. It's crucial for balancing between sample efficiency and 
computational cost.  

o Larger values can lead to more stable updates but may slow down learning. 
o Smaller values allow for more frequent updates but might increase variance. 
o Typical range: 1024 to 8192 [85] 

 

• gamma (Discount factor): Gamma represents the discount factor for future rewards. It 
determines the importance of future rewards compared to immediate rewards.  

o Values close to 1 prioritize long-term rewards. 
o Lower values focus more on immediate rewards. 
o Typical range: 0.9 to 0.999 [82] 

 

• learning_rate: The learning rate controls the step size at each iteration while moving 
toward a minimum of the loss function.  

o Too high: May cause unstable training or divergence. 
o Too low: May result in slow convergence. 
o Often uses adaptive methods like Adam optimizer [86] 
o Typical range: 1e-5 to 1e-3 

 

• clip_range: This is a key parameter in PPO, used to clip the policy ratio to prevent 
excessively large policy updates.  

o Helps maintain proximity between the old and new policies. 
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o Typical value: 0.2 (can be annealed over time) 
o Range often explored: 0.1 to 0.3 [79] 

 

• gae_lambda: Used in Generalized Advantage Estimation (GAE), this parameter controls 
the trade-off between bias and variance in advantage estimation.  

o λ = 1 gives high variance, unbiased estimates. 
o λ = 0 gives low variance, but biased estimates. 
o Typical range: 0.9 to 1.0 [79] 

 
Other important parameters not directly tuned in this code but worth mentioning: 
 

• ent_coef (Entropy coefficient): Encourages exploration by adding an entropy bonus to 
the objective.  

o Higher values promote more exploration. 
o Typical range: 0.0 to 0.01 

 

• vf_coef (Value function coefficient): Determines the importance of the value function 
loss in the overall loss function.  

o Balances between policy and value function optimization. 
o Typical range: 0.5 to 1.0 

 

• max_grad_norm: Used for gradient clipping to prevent exploding gradients.  
o Helps maintain training stability. 
o Typical value: 0.5 

 
The interplay between these parameters significantly influences the performance of the PPO 
algorithm. It's important to note that the optimal values for these parameters can vary greatly 
depending on the specific task and environment. This is why hyperparameter tuning has been 
implemented to achieve optimal performance. 
 
The code employs Optuna, a hyperparameter optimization framework, to conduct the fine-
tuning process [87]. 
 
Key aspects of the method: 
 

• Hyperparameter Space Definition: The code defines a search space for five key 
hyperparameters of the PPO algorithm:  

o n_steps: Number of steps per update (2048 to 8192) 

o gamma: Discount factor (0.8 to 0.9999) 

o learning_rate: Learning rate (1e-5 to 1e-3) 

o clip_range: PPO clip range (0.1 to 0.4) 

o gae_lambda: GAE lambda parameter (0.8 to 1.0) 
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• Objective Function: An objective function is defined that trains a PPO model with the 
given hyperparameters and evaluates its performance. The evaluation metric 
combines both the average reward over 10 episodes and a speed score based on the 
moving average of rewards during training. 

• Optimization Process: Optuna conducts 50 trials, each with a different hyperparameter 
configuration suggested by the TPE algorithm. For each trial, the PPO model is trained 
for 70,000 timesteps. 

• Best Configuration Selection: The hyperparameter configuration that yields the 
highest combined score (average reward + speed score) is selected as the best 
configuration. 

• Retraining: After the optimization process, the model is retrained using the best 
hyperparameters found. 

Below are reported few lines of the tuning log showing the fine-tuning process and the best 
hyperparameters reached. 

 

 
Figure 16: Fine-tuning process 
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9 Reinforcement learning in deterministic environments 
 

9.1 Benchmark job shop scheduling problems 
 
The OR library [88] collects test data for a variety of Operational Research problems including 
the job shop scheduling problem. 
The benchmark problems contained in the library are extensively used in the literature to test 
resolution methods and algorithms. 
 
The standard notation of the benchmark problems is exemplified below: 

 
Figure 17: Example of a JSSP instance (ft06) from the OR-Library [88] 

 
The first line specifies the number of job and machines of the problem instance. 
Below a matrix reports the processing order and times of each job. Particularly, every row 
corresponds to a job and contains the ordered sequence of operations associated with the 
job. Each operation is expressed as a pair of values composed of the machine identification 
number (machine id starts from number 0) and the processing time of the operation. 
 
The optimal solution for each benchmark problem is known. For instance, the optimal solution 
of the benchmark problem above reveals a make span of 55 time units. 
 

9.2 Results 
 
The proposed algorithm has been tested it against a series of JSSP established benchmark 
problems collected in the OR library and its performance has been compared with traditional 
methods including priority dispatching rules (FIFO, LPT, SPT), and genetic algorithm literature 
results[19].  
 
This approach is crucial for several reasons. Firstly, benchmark problems provide a 
standardized platform to assess the effectiveness, robustness, and efficiency of the algorithm, 
ensuring that the results are comparable and reproducible. Furthermore, by comparing the 
performance of our algorithm with traditional methods, we can objectively determine its 
relative strengths and weaknesses. This comparison not only highlights areas where our 
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algorithm excels but also identifies potential limitations, thereby providing a balanced and 
thorough assessment of its practical utility.  
Such rigorous testing and comparison are essential to validate the algorithm’s real-world 
applicability and to demonstrate its potential advantages over existing solutions. 
 
The primary metric for comparison is the makespan, which is the total time required to 
complete all jobs. Benchmark problems are associated to specific optimal makespan.  
 
Table 1 summarize the results for three benchmark problems demonstrate that the proposed 
reinforcement learning approach consistently outperforms traditional priority dispatching 
rules (FIFO, LPT, SPT) and achieves makespan that are comparable to those obtained by the 
genetic algorithm (GA).  
 
The last three columns refer to the developed solutions including a Q-learning application and 
the performances of the Proximal policy Optimization method with and without the action 
masking. 
 
 
Table 3: Maskable PPO performance in deterministic environment 

 OPT FIFO LPT SPT GA Q-LEARNING PPO MASKABLE 
PPO 

FT06 
(06X06) 

55 65 77 88 55 60 59 
(50000 

timesteps) 

55 
(50000 

timesteps) 
FT10 

(10X10) 
930 1184 1295 1074 994 1236 1117 

100000 
timesteps) 

1103 
(100000 

timesteps) 
LA01 

(05X10) 
666 772 822 751 667 736 712 

100000 
timesteps) 

666 
(100000 

timesteps) 
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10 Reinforcement learning on dynamic environment 
 
10.1 Elements of dynamicity 
 
After identifying the algorithm that performed best on the deterministic Job Shop Scheduling 
Problems (JSSP), the effectiveness of the solution is further analyzed in a dynamic version of 
the problem. The dynamicity is introduced thanks to three key elements of variability: 
 

1. Random Job Arrival Time: Jobs do not arrive at the system simultaneously. Instead, 
each job arrives at a random time, simulating a more realistic production environment 
where jobs are continuously fed into the system. 

2. Variability in Job Processing Time: The processing time for each job is no longer fixed 
but varies according to a uniform distribution. This introduces uncertainty, requiring 
the algorithm to adapt to fluctuating processing requirements. 

3. Variability in job’s processing sequence and times: the jobs entering the system do not 
belong to a standardized pool as it is for the usual deterministic job shop scheduling 
problem. They are defined by their specific processing sequence and times. 
 

Testing the algorithm in this dynamic environment provides several advantages: 
 

• Realistic Scenario Simulation: It closely mimics real-world job shop conditions where 
new jobs arrive unpredictably, and processing times are not always known in advance. 

• Robustness Assessment: Evaluating the algorithm's performance under these 
conditions helps determine its robustness and adaptability to changes and 
uncertainties. 

• Enhanced Learning: The algorithm learns to handle variability in both job arrival and 
processing times, potentially leading to more flexible and resilient scheduling policies. 
 

By incorporating these dynamic elements into the JSSP, it is possible to understand the 
algorithm's practical applicability and its potential to improve job shop efficiency in more 
complex, real-world settings. 
 

10.2 Results 
 
To assess the performance of the proposed algorithm in a dynamic environment, the maskable 
PPO algorithm has been trained on four different scenarios for a total of 100 000 timesteps. 
Following the training phase, 300 episodes were simulated to assess the effectiveness of the 
learned scheduling policy. 
For comparison, 300 episodes were also run using First-In-First-Out (FIFO), Shortest Processing 
Times (SPT) and Longest Processing Times (LPT) rules, which are one of the most used 
heuristics in dynamic scheduling scenarios.  
The genetic algorithm instead has been tested on only 100 episodes due to an increased 
running time per episode in comparison to other methods. 
 
The makespan and the total workload has been recorded for each episode under each 
scheduling strategy. 
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The workload is defined as the sum of the processing times of each job entered in the system 
on each machine.  
 
For each scenario and strategy, the registered makespan and workload for each episode have 
been plotted in a graph and the graph points have been interpolated to depict the the episode 
durantion trend in relation to an increasing system workload.  
 
The test has been conducted in four different cases.  
 

10.2.1 CASE 1: variability in processing times  
 
The first dynamic environment scenario can be considered as a standardized scenario in which 
the jobs arriving in the system belongs to a pool of tasks, known to the system. 
In the context of standardized production, a factory might produce a limited number of 
standardized products with well-defined processing sequences. The scheduler stores the 
processing sequences and times for these standard products as all orders fall within 
predefined categories.  
The environment, however, involves a variability in job processing times which is determined 
by a uniform distribution.  
In this scenario, defining as “𝑣𝑎𝑙𝑢𝑒” the standard job processing time, the real processing time 

might vary between [𝑣𝑎𝑙𝑢𝑒 − 
𝑣𝑎𝑙𝑢𝑒

2
  , 𝑣𝑎𝑙𝑢𝑒 + 

𝑣𝑎𝑙𝑢𝑒

2
 ]. 

 
In this scenario, not only the coefficient of the line on the Maskable PPO performance graph 
is lower compared to other methods, indicating that Maskable PPO achieves a lower 
makespan per episode in comparison to the other methods, but the graphs show a 
significantly reduced variability of episodes’ duration by using Maskable PPO algorithm 
instead of other methods.  
 

 
Figure 18: Maskable PPO performance 
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   Figure 19: GA performance            Figure 20: FIFO performance 

 
       Figure 21: LPT perfomance             Figure 22: SPT perfomance 

 

 
       Figure 23: Algorithms' comparison - Case 1 
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10.2.2 CASE 2: dynamic job arrival 
 
The second dynamic environment scenario is also standardized scenario in which the jobs 
arriving in the system belongs to a pool of tasks, known to the system. 
 
The key aspect of the case, however, is the variability in job arrival times which are governed 
by a uniform distribution. 
In practical settings, such as in service industries or project management, the variability in job 
arrival times often follows a uniform distribution, mirroring the case presented. This stochastic 
nature can impact resource allocation and scheduling strategies, highlighting the relevance of 
understanding and modeling such distributions in real-world applications. 
 
Notably, the coefficient of the line on the maskable PPO performance graph is lower 
compared to the other methodologies considered, indicating that Maskable PPO achieves a 
lower makespan per episode in comparison to the other methods for the same number of 
total jobs in the system.  

 
Figure 24: Maskable PPO performance 

 

 
    Figure 25: GA performance           Figure 26: FIFO performance 
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       Figure 27: LPT performance             Figure 28: SPT performance 

 
 

 
     Figure 29: Algorithms comparison - Case 2 

 
 
 

10.2.3 CASE 3: dynamic job arrival and variability in processing times  
 
The third dynamic environment scenario constitute a combination of the two cases above 
involving variability in both job processing times and job arrival.  
 
As for the cases above, the Maskable PPO algorithm continues to the other algorithms 
highlighting its robust scheduling capabilities in highly dynamic environments.  
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Figure 30: Maskable PPO performance 

 
        Figure 31: GA performance           Figure 32: FIFO performance 

 
      Figure 33: LPT performance           Figure 34: SPT performance 
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                       Figure 35: Algorithms' comparison - Case 3 

 
 
10.2.4 CASE 4: dynamic job arrival and variability in processing times – unknown tasks 
 
The fourth dynamic environment scenario builds upon the preceding one by incorporating 
variability in both job arrival and job processing times. The key novelty in this case is the 
introduction of jobs that are unknown to the system. At each time step, a random number of 
jobs enter the system, each with its own specific processing sequence and times for each 
machine. 
 
Considering this scenario is important because it reflects the complexity and unpredictability 
found in many real-world environments. Businesses and organizations often face situations 
where new tasks and requirements emerge unexpectedly, necessitating a flexible and 
adaptive scheduling system to maintain efficiency and competitiveness.  
To illustrate this, we can examine various contexts where such a scenario plays a critical role. 
The of standardized production context offers simplicity and efficiency, however, the system's 
flexibility is limited, meaning it may not quickly adapt to production changes or new products.  
In contrast, customized production involves customized products based on customer requests 
for which specifications and processing sequences can vary widely. 
The scheduler in this scenario has the capability to accept and manage new, unseen jobs or 
tasks, quickly integrating new specifications. This approach offers significant flexibility, 
allowing the system to easily adapt to new orders and specifications, thereby increasing 
customer satisfaction and market competitiveness. However, this system is more complex to 
implement and requires continuous updating of information. 
 
In the healthcare sector, hospitals need to efficiently manage resources such as operating 
rooms, medical equipment, and healthcare personnel to treat patients with varying medical 
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needs. The scheduler allocates resources by assigning operating rooms, equipment, and 
personnel based on availability and case priority, optimizes times to reduce patient wait times 
and improve resource efficiency, and manages emergencies by quickly reallocating resources 
as needed. 
In the transportation sector, logistics companies manage a fleet of vehicles to deliver goods 
to various destinations with variable timing. The scheduler in this scenario might optimize 
routes by planning the most efficient delivery routes to minimize travel time and costs, 
manages the fleet by assigning vehicles and drivers based on availability and delivery 
requirements, and adapts to changes by adjusting to unforeseen delays, traffic, and new 
delivery requests. 
 
Figure 6 and 7 depict, for each episode, the total workload of the system and the episode 
duration.  
The points in the graphs have been interpolated to show the episode duration trend in relation 
to an increasing plant workload. 
As for the cases above, the Maskable PPO algorithm continues to outperform FIFO, SPT, and 
LPT showing a coefficient of the line that is lower compared to other methods and highlighting 
its robust scheduling capabilities in highly dynamic environments.  
Overall, the results clearly indicate that the Maskable PPO algorithm outperforms priority 
dispatching rules in all tested scenarios, demonstrating its ability to effectively handle the 
dynamic job shop scheduling problem. By leveraging event-based control and action masking, 
the Maskable PPO algorithm makes more informed and strategic scheduling decisions, leading 
to a significant reduction in makespan compared to FIFO, SPT, and LPT rules. These findings 
high- light the potential of reinforcement learning, in optimizing scheduling policies for 
dynamic job shop environments. The algorithm’s adaptability to changing conditions and its 
ability to avoid illegal and non-optimal actions contribute to its superior performance.  

 
     Figure 36: Maskable PPO performance 
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         Figure 37: GA performance          Figure 38: FIFO performance 

 

        Figure 39: LPT performance          Figure 40: SPT performance 

 
 

 
   Figure 41: Algorithms' comparison – Case 4 
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Overall, the results clearly indicate that the Maskable PPO algorithm outperforms priority 
dispatching rules and the genetic algorithm proposed in all tested scenarios, demonstrating 
its ability to effectively handle the dynamic job shop scheduling problem.  
By leveraging event-based control and action masking, the Maskable PPO algorithm makes 
more informed and strategic scheduling decisions, leading to a significant reduction in 
makespan.  
These findings highlight the potential of reinforcement learning, in optimizing scheduling 
policies for dynamic job shop environments and the algorithm’s adaptability to changing 
conditions. 
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11 Conclusion 
 
This thesis proposes a single-agent reinforcement learning approach to tackle the Job Shop 
Scheduling Problem, assessing its performance in both deterministic and dynamic 
environments.  
The proposed method leverages maskable proximal policy optimization to enhance scheduling 
efficiency.  
 
In deterministic scenarios, the Maskable PPO algorithm consistently achieved optimal or near 
optimal makespans, demonstrating performance on par with the Genetic Algorithm and 
surpassing traditional heuristic methods highlighting its capability to effectively manage fixed 
scheduling tasks.  
 
In dynamic environments, characterized by random job arrivals and variability in processing 
times, the Maskable PPO algorithm excelled by adapting swiftly to changing conditions and 
making informed, strategic scheduling decisions. Its adaptability and robust decision-making 
process resulted in superior performance compared to conventional approaches like priority 
dispatching rules.  
 
These findings emphasize the significant potential of reinforcement learning, particularly the 
Maskable PPO algorithm, in addressing and optimizing complex scheduling challenges across 
various industrial contexts.  
 

12 Future work 
 
Future work on the single-agent reinforcement learning approach for the Job Shop Scheduling 
Problem will focus on refining the algorithm to further enhance its performance and 
adaptability.  
 
One area of improvement involves testing various reward functions to better align the 
reinforcement learning process with specific scheduling objectives, such as minimizing energy 
consumption or balancing workload across machines.  
Additionally, exploring multi-agent reinforcement learning approaches could provide a more 
robust solution by enabling collaboration and competition among agents, thereby improving 
overall scheduling efficiency and adaptability in complex manufacturing environments. 
Another promising direction is the integration of advanced optimization techniques, such as 
metaheuristic algorithms or hybrid methods that combine reinforcement learning with 
traditional optimization approaches. This could help in overcoming local optima and achieving 
better global performance.  
 
To bridge the gap between theoretical optimization and practical implementation, future 
research will explore the development of digital twin solutions.  
By linking the Maskable PPO algorithm to simulation software and integrating it with the 
physical machines in the manufacturing plant, a real-time scheduling solution can be created. 
This digital twin approach will enable continuous monitoring and optimization of the 
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scheduling process, allowing for immediate adjustments based on real-time data from the 
production floor. 
The implementation of a digital twin would involve creating a virtual replica of the 
manufacturing system, where the reinforcement learning algorithm can be tested and refined 
in a simulated environment before deployment. This not only ensures the robustness of the 
scheduling solution but also allows for proactive identification and resolution of potential 
issues. By continuously updating the digital twin with real-time data from the plant, the 
algorithm can adapt to changing conditions, such as machine breakdowns or urgent job 
requests, ensuring optimal scheduling decisions at all times.  
 
In summary, future research will focus on enhancing the reinforcement learning algorithm 
through improved reward functions, multi-agent approaches, and hybrid optimization 
techniques. Additionally, the integration of digital twin solutions promises to provide a 
seamless and adaptive real-time scheduling system, significantly improving operational 
efficiency and responsiveness in dynamic manufacturing environments.  
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Appendix 
 
Dynamic Job Shop Scheduling RL Code 
 
Job class 
 

 
 

Figure 42: Job class 
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Machine class 
 

 
 

Figure 43: Machine class 
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Operation class 
 

 
 

Figure 44: Operation class 
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State class 

 

 
 

Figure 45: State class 
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Environment class 
 

 
 

Figure 46: Environment class 
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Job selection function 
 

 
 

Figure 47: Job selection function 

Random job arrival function 
 

 
 

Figure 48: Random job arrival functio 
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Step function 
 

 
 

Figure 49: Step function 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 78 

Main  
 

 
 

Figure 50: Main function 
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Dynamic Job Shop Scheduling Genetic Algorithm Code 
 
Job handling function 
 

 
 

Figure 51: Job handling function (1) 

 
 

Figure 52: Job handling function (2) 
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Figure 53: Genetic algorithm class (1) 

 

 
 

Figure 54: Genetic algorithm class (2) 
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Figure 55: Genetic algorithm class (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 82 

Deterministic environment solutions 
 
 
la01 solution: 666 
 

 
Figure 55: la01 solution 

 
 
ft10 solution: 1032 

 
Figure 56: ft10 solution 
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