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Summary

This thesis introduces a cutting-edge approach to enhance the perception capabilities
of autonomous vehicles in real-world driving scenarios. The research aims to
recognize and classify various road actors, including vehicles, pedestrians, cyclists,
and obstacles, employing advanced computer vision techniques, and leveraging
tools like Qt Quick 3D and C++ programming language. The study initiates
with an in-depth review of existing methodologies in road actor recognition and
classification, outlining their strengths, limitations, and avenues for improvement.
Building upon this foundation, the thesis proposes an approach integrating state-
of-the-art deep learning algorithms with real-time 3D rendering techniques, using
Qt Quick 3D. The key part of this thesis is the creation and implementation of an
algorithm capable of extracting environmental information using a stereo camera.
This algorithm can recognize and classify all road actors within its field of view.
The system leverages convolutional neural networks (CNNs) for feature extraction
and classification, enabling it to understand the position and orientation of vehicles.
Additionally, Qt Quick 3D is used to develop a human-machine interface (HMI)
that provides real-time 3D representations of the road environment. The use of
C++ ensures seamless integration and efficient execution of the proposed solution.
The research outcome will contribute to the ongoing efforts towards developing safer
and more efficient autonomous vehicles capable of navigating complex real-world
environments with enhanced perception capabilities.
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Chapter 1

Introduction

1.1 Road Actor Recognition and Classification
for First-Person Real-Time 3D Rendering

Road actor recognition and classification for first-person real-time 3D rendering
constitute a pivotal frontier in the realm of autonomous driving and computer
vision. As vehicles navigate through complex urban environments, the ability to
accurately detect, identify, and classify various entities sharing the road, including
vehicles, pedestrians, cyclists, and obstacles, is paramount for ensuring safe and
efficient navigation. At the heart of this endeavor lies the fusion of sensor data
acquired from many different sources, including LiDAR, cameras, radar, and
other environmental sensors. Through sophisticated sensor fusion techniques,
the system integrates information from these diverse modalities to construct a
comprehensive understanding of the vehicle’s surroundings in real-time. Feature
extraction emerges as a critical step in this process, wherein relevant features
are extracted from the sensor data to facilitate robust classification. Geometric,
appearance-based, and deep learning-based approaches are employed to discern
salient characteristics of road actors, enabling the system to differentiate between
various entities with precision. Classification algorithms play a pivotal role in the
subsequent categorization of detected objects into predefined classes. Traditional
machine learning methods such as Support Vector Machines and Random Forests,
alongside deep learning architectures like Convolutional Neural Networks and
Recurrent Neural Networks, are leveraged to classify road actors accurately and
efficiently. Real-time 3D rendering serves as the interface through which the system
provides timely and immersive visual feedback to autonomous driving systems. By
seamlessly integrating classification results with sensor data, the system generates
dynamic 3D representations of the vehicle’s surroundings, enabling it to make
informed decisions in real-time. However, the road to achieving robust road
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Introduction

actor recognition and classification is fraught with challenges. Occlusions, varying
environmental conditions, and computational constraints impose significant hurdles
that demand innovative solutions. Continued research and development efforts are
essential to overcome these challenges and propel the field of autonomous driving
forward, ultimately ushering in a future where vehicles navigate with unprecedented
safety and efficiency.

1.2 The Goal of the Thesis
The central aim of this thesis revolves around the development of a Human-
Machine Interface (HMI) tailored specifically for drivers, with a primary emphasis
on providing a representation of the vehicle surroundings in real-time, especially
focusing on the frontal area with all the information obtained by a stereocamera.
This HMI system is meticulously crafted to elevate driver awareness and ensure
safety through the precise detection, recognition, and classification of diverse objects
encountered on the road. Moreover, it endeavors to compute the distance of these
objects from the vehicle, delineate their spatial coordinates, and ascertain their
orientations relative to the vehicle’s vantage point, leveraging the capabilities of
a meticulously designed stereo camera setup. In the pursuit of this multifaceted
objective, the thesis embarks on a comprehensive exploration of the contemporary
state-of-the-art technologies and methodologies underpinning object detection
and classification. This journey entails a meticulous comparative analysis of
various techniques to discern the most efficacious approaches conducive to real-
time application within the dynamic context of driving environments. Through a
discerning lens, the thesis scrutinizes the nuances of different methods, unraveling
how each technique grapples with the challenges posed by the detection and
recognition of objects across a spectrum of environmental conditions. Moreover, the
thesis endeavors to unravel the intricate mechanisms governing distance estimation,
drawing insights from the realms of disparity and depth perception intrinsic to
pairs of stereo camera images. Delving deep into these fundamental processes,
the research aims to elucidate how these mechanisms synergistically contribute to
the precise calculation of object distances and spatial coordinates within a three-
dimensional framework. This scholarly endeavor is underpinned by an exhaustive
review of existing literature and cutting-edge technologies, thereby facilitating
a nuanced understanding of the prevailing capabilities and limitations inherent
to such systems. Through the culmination of this exhaustive study, the thesis
not only endeavors to construct an advanced HMI tailored for drivers but also
aspires to make substantive contributions to the broader domain of computer
vision and autonomous driving. By meticulously evaluating and enhancing existing
technologies, the research aims to foster the evolution of a robust system poised
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to enhance road safety by furnishing drivers with real-time, granular insights into
their immediate surroundings, thereby fortifying their capacity to navigate complex
driving scenarios with heightened efficacy and confidence.

1.3 Thesis Organization
This thesis is structured into five distinct chapters, each contributing uniquely to
the overarching research endeavor. The inaugural chapter serves as a gateway to
the thesis, offering a comprehensive introduction that not only sets the stage for
the subsequent discussions but also outlines the principal themes and objectives of
the research journey. In the following second chapter, a detailed examination of the
existing literature on Visual Perception, Ego-motion, Occupancy Grids, and Object
Detection and Classification is conducted. This chapter aims to offer a thorough
overview of the theoretical foundations underpinning the research. Furthermore, it
explores the complexities of Stereo Cameras and Stereoscopic Vision, highlighting
their importance in the study’s context. Finally, it delves into various neural
network technologies, providing an in-depth analysis. Following this exhaustive
literature review, the third chapter is dedicated to the exposition of the project
logic and a deep analysis of the code. Herein, the intricacies of the programming
framework utilized in the implementation of the research objectives are meticulously
elucidated, offering readers a detailed understanding of the technical underpinnings
of the study. Chapter four serves as a detailed account of the tests and simulations
conducted throughout the course of the research. Also the results obtained are
analyzed and displayed in this chapter. Finally, in the fifth and concluding chapter,
the culmination of the research endeavor is encapsulated. This chapter not only
summarizes the goals achieved throughout the thesis but also reflects upon the
journey undertaken and discusses potential avenues for future enhancements to
further fortify the efficacy of the system under study. By offering critical reflections
and insights, this final chapter adds depth and nuance to the overall discourse,
thereby enriching the scholarly contribution of the thesis and an appendix with
some part of the code.
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Chapter 2

State of the Art

2.1 Analysis of Current Technologies
As the foundation for any project, a thorough examination of existing technologies
is paramount to understanding the landscape and identifying potential avenues
for innovation. In this endeavor, the initial step involved a meticulous review of
pertinent literature, aimed to understanding the current state-of-the-art technolo-
gies directly relevant to the project’s scope and objectives. The review process
encompassed a comprehensive exploration of macro-areas pivotal to the project’s
domain, with a focus on delineating advancements and trends within each domain.
Three primary macro-areas emerged as focal points of analysis, each offering unique
insights and opportunities for integration within the project framework:

• Ego-Motion: This facet delves into the realm of motion estimation, particularly
from the perspective of the ego vehicle viewpoint. Understanding the dynamics
of ego-motion is crucial for tasks such as localization, navigation, and scene
understanding within dynamic environments.

• Occupancy Grid: The concept of occupancy grid mapping lies at the intersec-
tion of robotics and perception, providing a systematic framework for modeling
spatial environments based on sensor measurements. By discretizing space
into a grid and modeling occupancy probabilities, occupancy grids facilitate
robust environment representation and navigation in uncertain environments.

• Computer Vision: Central to many modern applications, computer vision
encompasses a broad spectrum of techniques and methodologies aimed at
extracting meaningful information from visual data. From object detection
and tracking to image segmentation and scene understanding, computer vision
techniques play a pivotal role in enabling intelligent perception and decision-
making in autonomous systems.
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Through an exhaustive examination of literature, each macro-area was scrutinized to
glean insights into the latest advancements, emerging trends, and notable challenges.
By synthesizing knowledge from diverse sources and disciplines, this comprehensive
analysis serves as a cornerstone for informing subsequent phases of the project,
guiding the selection of appropriate methodologies, algorithms, and technologies to
achieve project objectives effectively.

2.1.1 Ego-Motion
Ego-motion refers to the process of estimating the movement of a camera relative
to a static scene [1]. This capability is a critical component of autonomous
navigation systems in driver-less cars. Accurate ego-motion estimation, along
with visual simultaneous localization and mapping (SLAM), plays a pivotal role
in the development of advanced artificial intelligence applications for modern
vehicles [2]. One of the significant challenges in ego-motion estimation is the
computational complexity involved, which poses limitations for implementation
in embedded systems. To address this challenge, [1] propose a novel hardware
architecture. This innovative approach leverages look-up tables and a feature
matching algorithm, effectively reducing the algorithmic complexity without relying
on iterative loops or complex geometrical constraints. Their experimental results
demonstrate the practicality of a compact GPU-based implementation, which not
only achieves higher accuracy but also increases processing speed compared to
previous monocular visual odometry algorithms. All the documentations highlight
the critical importance of ego-motion estimation in the realm of autonomous
navigation and propose forward-thinking solutions to the associated challenges.
While paper [1] focuses on optimizing hardware for use in embedded systems,
paper [2] delves into the realm of unsupervised learning and visual data for depth
estimation and ego-motion. This research underscores the potential of monocular
cameras to enhance driverless car applications, showcasing significant advancements
in the field. Overall, these studies make substantial contributions to the progress of
autonomous navigation and robotics by presenting efficient and practical solutions
for ego-motion estimation. Their innovative approaches not only enhance the
accuracy and speed of these systems but also pave the way for more effective
integration of such technologies in real-world applications.

2.1.2 Occupancy Grid
The occupancy grid map is a widely-used tool for representing the environments
surrounding mobile robots and intelligent vehicles. Traditional occupancy grid
mapping techniques must adapt to dynamic environments, requiring not only the
detection of occupied areas but also the understanding of dynamic changes [3].
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The basic concept is to create a map of the environment as an evenly spaced grid
of variables that indicate whether a specific location is occupied by an obstacle.
There are two main types of occupancy maps:

• Probability map: Uses probability values to provide a more detailed repre-
sentation. Each cell in the occupancy grid contains a value indicating the
likelihood that the cell is occupied.

• Binary map: Uses boolean values to create the map. A "true" value represents
an occupied spot, while a "false" value represents a free space.

Most research in this field has primarily utilized sonar, radar, or LiDAR to represent
the environment, as confirmed by nearly all the papers analyzed in this area.
In contrast, the study presented in [3] offers a smart alternative using stereo
vision. The papers reviewed span the domains of autonomous driving and robotics,
addressing pivotal challenges critical to the safe and efficient navigation of complex
environments. One of the primary focal points across these studies [4] lies in
obstacle estimation and tracking [5]. Traditional methods often falter due to the
dynamic and unpredictable nature of real-world driving scenarios. By introducing
dynamic information through particle-based occupancy grid tracking and Bayesian
occupancy filters, these papers [6] [7] offer novel solutions that transcend the
limitations of conventional approaches. These methodologies enable autonomous
systems to not only detect obstacles but also track them in real-time with enhanced
accuracy and efficiency, fostering safer navigation through dynamic environments
[8]. Furthermore, advancements in occupancy grid mapping techniques represent
a significant leap forward in environmental perception for autonomous vehicles.
Leveraging radar and LiDAR sensor data, these studies [9] [10] [11] [12] introduce
sophisticated algorithms for estimating road courses, detecting parked vehicles,
and generating detailed 3D object surface meshes. By harnessing the strengths
of these sensor technologies, these methodologies empower autonomous systems
to construct highly accurate representations of their surroundings, essential for
informed decision-making and precise navigation. Moreover, integrating computer
vision techniques with radar data heralds a new frontier in occupancy grid mapping,
where machine learning algorithms are employed to learn inverse sensor models
and perform semantic segmentation tasks [13]. These cutting-edge approaches
[14] not only surpass the limitations of traditional filtering-based methods but
also offer substantial improvements in mapping accuracy, paving the way for more
reliable and robust autonomous navigation systems. In summation, the collective
contributions of these papers represent a significant advancement in the fields of
autonomous driving and robotics. By addressing critical challenges in obstacle
estimation, object tracking, and occupancy grid mapping, these studies not only
push the boundaries of technological innovation but also promise to revolutionize
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how autonomous systems perceive and interact with their environment, ultimately
fostering safer and more efficient transportation solutions for the future.

2.1.3 Computer Vision
Computer vision plays a pivotal role in autonomous driving, particularly in areas
such as object detection, identification, depth estimation, and Simultaneous Lo-
calization and Mapping (SLAM). As autonomous vehicle (AV) technology rapidly
advances, achieving accurate and efficient environmental perception is essential for
safe and effective operation. Nearly all the analyzed papers emphasize the use of
multiple sensors to gather environmental data, enabling the detection and classi-
fication of various objects. This underscores the importance of visual perception
in autonomous driving and highlights the diverse methodologies and innovations
aimed at enhancing object detection, identification, depth estimation, and SLAM in
AV environments. In particular in the [15], the authors propose a novel object classi-
fication method tailored specifically for the fusion of vision and Light Detection and
Ranging (LIDAR) data in AV environments. Leveraging Convolutional Neural Net-
works (CNNs) and image upsampling techniques, their approach integrates depth
information from LIDAR point clouds with Red Green Blue (RGB) data to facilitate
robust object classification across diverse driving scenarios. This fusion method
combines the strengths of both RGB-D and fusion approaches, enabling effective
long-distance object detection while overcoming limitations in depth perception
and spatial density. Similarly, in [16] introduces an Object Detection mechanism
that merges data from cameras and 3D LIDAR (OD-C3DL) for improved object
detection in AVs. By employing CNNs, the proposed mechanism processes point
clouds from LIDAR and images to recognize objects effectively, enhancing object
classification accuracy and reducing extraction time. Notably, OD-C3DL demon-
strates superior performance in identifying automobiles and pedestrians, addressing
challenges such as sparse point clouds and the absence of depth information in im-
ages. In contrast, the [17] focuses on real-time vehicle detection using pure LiDAR
point cloud data. Unlike previous methods, their approach employs a pre-Region
of Interest (RoI) pooling convolution technique and pose-sensitive feature map
design to achieve high accuracy in predicting vehicle location, orientation, and size.
The proposed method significantly reduces processing time, making it suitable for
real-time applications in AVs. Moving beyond object detection, the [18] addresses
the challenging task of real-time vehicle type classification under varying conditions.
The proposed method utilizes adaptive multi-class Principal Components Analysis
(PCA) and self-clustering to classify vehicle types based on eigenvectors representing
extracted vehicle fronts. By automatically extracting Regions of Interest (ROIs)
and treating daytime and nighttime conditions separately, the system achieves
promising performance in real-time classification. Finally, the [19] explores the
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critical role of visual perception in AVs, covering object detection, identification,
depth estimation, and SLAM methodologies. It categorizes vision sensors into
monocular, stereo, and RGB-D cameras, discussing traditional methods and those
based on deep learning. The integration of machine learning and deep learning
enhances the capabilities of vision sensors for better detection results, contributing
to the advancement of AV technology.

2.2 Stereo Camera
In our pursuit of gathering environmental data, we rely on the sophisticated capabil-
ities of a stereo camera, specifically the ZED2 model manufactured by StereoLabs
(depicted in Figure 2.1). A stereo camera, often referred to as a 3D camera, is
a technological marvel equipped with multiple lenses meticulously positioned to
replicate the interocular distance of human eyes. This unique configuration en-
ables the camera to capture images from subtly divergent perspectives, akin to
the mechanism of binocular vision observed in humans. The primary objective
of employing a stereo camera revolves around the creation of depth perception
within captured images or videos. This is accomplished by leveraging the inherent
disparity between the perspectives provided by each lens. Through meticulous
analysis of these disparities, stereo cameras can discern the relative distances to
objects within the scene, thereby facilitating the generation of accurate depth maps
and enabling a multitude of applications. Indeed, the depth information derived
from stereo cameras finds application across a diverse array of domains. From the
realms of 3D imaging and depth mapping to the realms of augmented reality, virtual
reality, object tracking, and gesture recognition, the utility of this data knows no
bounds. By harnessing the nuanced differences in perspectives captured by the
stereo camera, these applications can create immersive and interactive experiences,
blurring the lines between the digital and physical worlds. Furthermore, the ability
of stereo cameras to accurately measure depth and spatial relationships within a
scene has profound implications across various industries. In robotics, for instance,
stereo cameras facilitate precise navigation and obstacle avoidance, enhancing the
autonomy and efficiency of robotic systems. In medical imaging, stereo cameras
aid in the creation of detailed anatomical models and assist in surgical planning.
Similarly, in entertainment, stereo cameras contribute to the creation of captivating
visual effects and immersive gaming experiences. In essence, the versatility and util-
ity of stereo cameras make them indispensable tools in the fields of computer vision,
robotics, medical imaging, entertainment, and beyond. By harnessing the power
of binocular vision and sophisticated depth perception algorithms, stereo cameras
empower us to explore and interact with our environment in unprecedented ways,
paving the path for innovation and advancement across a multitude of disciplines.
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Figure 2.1: ZED2

2.2.1 ZED 2

The ZED 2 stereo camera stands as a pinnacle of technological innovation, heralded
as one of the most formidable devices in its class, particularly renowned for its
unparalleled capabilities in depth perception and artificial intelligence integra-
tion (StereoLabs, [20]). This cutting-edge camera not only boasts an impressive
field-of-view (FOV) but also delivers exceptional image quality, as evidenced by
the specifications outlined in Table 2.1. What sets the ZED 2 apart from its
counterparts is not just its hardware prowess, but also its meticulous design and
engineering. Encased in a robust all-aluminum enclosure, the camera ensures
durability and reliability in even the most demanding environments. Additionally,
the incorporation of thermal control mechanisms within the enclosure serves to
mitigate any potential biases arising from focal length variations or motion sensor
irregularities (ZED2 DataSheet, [21]). The versatility of the ZED 2 extends far
beyond its technical specifications, as it has been purposefully crafted to excel in a
myriad of challenging applications. From facilitating autonomous navigation and
mapping tasks to enhancing augmented reality experiences and enabling advanced
3D analytics, the ZED 2 emerges as a versatile tool capable of tackling diverse use
cases with unparalleled precision and efficiency. In the realm of autonomous naviga-
tion, the ZED 2 empowers robots and unmanned vehicles with the ability to perceive
and interpret their surroundings in three dimensions, facilitating safe and reliable
navigation through complex environments. In augmented reality applications, the
camera serves as a crucial component in overlaying virtual elements seamlessly onto
the real world, blurring the lines between physical and digital realms. Moreover,
in the domain of 3D analytics, the ZED 2 provides researchers and analysts with
invaluable depth data, enabling detailed spatial analysis and modeling for a wide
range of applications, from urban planning to industrial inspection. In essence, the
ZED 2 represents a convergence of cutting-edge technology and practical design,
poised to revolutionize industries ranging from robotics and computer vision to
entertainment and beyond. With its exceptional depth perception capabilities,
coupled with seamless integration of artificial intelligence, the ZED 2 sets a new
standard for stereo cameras, paving the way for groundbreaking advancements in
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various fields of science and technology.

Camera
Output Resolution 2x(2208x1242)@15fps

2x(1920x1080)@30fps
2x(1280x720)@60fps
2x(672x376)@100fps

Field of View Max. 110°(H) x 70°(V) x 120°(D)
Interface USB 3.0/2.0

Integrated 1.2m cable
Depth Range 0.3 m to 20 m

Depth Accuracy < 1% up to 3m
< 5% up to 15m

Table 2.1: ZED 2 - Camera specifications

Sensors
Motion Gyroscope, Accelerometer, Magnetometer

Environmental Barometer, Temperature

Table 2.2: ZED 2 - Sensors specifications

Beyond the fundamental attributes typically associated with stereo cameras, the
Zed camera system offers a distinctive advantage in the form of its integrated suite
of sensors (refer to Table 2.2). This comprehensive array of sensors encompasses a
variety of functionalities, providing an additional layer of versatility and capability
to the camera that can prove invaluable in specific applications. The inclusion
of multiple sensors within the Zed camera package enhances its utility and ef-
fectiveness across a wide range of scenarios. By amalgamating various sensing
modalities, such as inertial sensors, ambient light sensors, and temperature sensors,
the Zed camera transcends the limitations of traditional stereo cameras, offering a
holistic approach to environmental perception and data acquisition. In practical
terms, the integration of these sensors empowers the Zed camera with enhanced
situational awareness and adaptability. For instance, inertial sensors can provide
valuable information about the camera’s orientation and movement, facilitating
more precise navigation and motion tracking in dynamic environments. Ambient
light sensors, on the other hand, enable the camera to adjust its exposure settings
autonomously, ensuring optimal image quality across diverse lighting conditions.
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Physical
Dimensions 174.9 x 29.9 x 31.9 mm

Weight 164g
Op. Temp. -10°C to +45°C

Power 380 mA / 5V USB Powered

Table 2.3: ZED 2 - Physical specifications

Moreover, temperature sensors play a crucial role in thermal management, helping
to regulate the camera’s internal temperature and prevent overheating, thereby
ensuring consistent performance and longevity. This comprehensive sensor package
not only enhances the camera’s performance but also extends its operational capa-
bilities to a broader spectrum of applications. In certain use cases, such as robotics,
autonomous vehicles, and industrial automation, the integration of diverse sensors
within the Zed camera system can provide a distinct competitive advantage. By
leveraging the rich data provided by these sensors, users can gain deeper insights
into their environment, make more informed decisions, and achieve greater effi-
ciency and precision in their operations. Furthermore, the modular nature of the
Zed camera system allows for easy integration and customization, enabling users
to tailor the camera to their specific needs and preferences. Whether deployed
in research laboratories, manufacturing facilities, or outdoor environments, the
Zed camera’s integrated sensor package equips users with the tools they need to
tackle complex challenges and push the boundaries of innovation. In summary,
the integration of a comprehensive suite of sensors within the Zed camera system
enhances its versatility, performance, and adaptability, offering users a distinct
advantage in a wide range of applications. By harnessing the collective capabilities
of these sensors, the Zed camera transcends the limitations of traditional stereo
cameras, paving the way for new opportunities and advancements in the field of
computer vision and beyond.

2.2.2 Stereoscopic Vision
Much like the intricate workings of the human brain in deciphering depth perception,
the utilization of stereoscopic vision techniques offers a sophisticated means to
ascertain the spatial distances between a camera and objects within its field of view
(StereoCamera, [22]). This method harnesses the principles of binocular vision,
mirroring the visual mechanism employed by humans to perceive depth and spatial
relationships in the surrounding environment. At the core of stereoscopic vision lies
the configuration of two lenses, each capturing a slightly different perspective of the
scene. These lenses operate in tandem to create distinct planes of vision that are
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co-planar to each other. Crucially, the projection points derived from these lenses
align along the same level on the y-axis, as illustrated in Figure 2.2. In this visual
representation, the points p1 and p2 serve as exemplary projections captured by the
respective lenses. These points, despite originating from different viewpoints, are
situated on a shared plane, reflecting the consistency in spatial alignment facilitated
by stereoscopic vision techniques. The synchronized alignment of projection points
on co-planar planes is instrumental in enabling accurate depth perception through
stereoscopic vision. By analyzing the disparities between corresponding points
captured by each lens, the system can infer the relative distances to objects within
the scene. This process is akin to the human brain’s interpretation of binocular
cues, where variations in the perspectives of the left and right eyes provide vital
depth cues for spatial perception. Furthermore, the depth information derived from
stereoscopic vision techniques finds extensive application across a myriad of fields,
ranging from robotics and autonomous navigation to virtual reality and 3D imaging.
By leveraging the inherent capabilities of stereoscopic vision, these applications can
achieve heightened precision and fidelity in spatial mapping, object recognition,
and scene reconstruction. In essence, stereoscopic vision serves as a powerful
tool in unlocking the mysteries of depth perception, mirroring the sophisticated
mechanisms employed by the human visual system. Through meticulous analysis
of co-planar projection points and disparities between viewpoints, stereoscopic
vision techniques empower cameras to navigate and interact with the world with
unprecedented depth and clarity, ushering in a new era of innovation and discovery
in the realm of computer vision and beyond.

Figure 2.2: Geometry of Stereoscopic Vision
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2.2.3 Image Rectification
Image rectification is a process that modifies projected images to align them on
a shared plane. This technique is utilized for row-alignment, leveraging epipolar
geometry to ensure that corresponding projection points align at the same pixel
level. As depicted in figure 2.3, epipolar geometry can be represented by two
rectangles that symbolize the image planes of the left and right cameras in a three-
dimensional space. Since the image planes in reality are not perfectly parallel and
coincident, they require adjustment. This adjustment is performed using epipolar
geometry. In figure 2.3, X denotes the points captured by both cameras, and OL

and OR are the optical centers. X is projected onto the left image plane as point
XL and onto the right image plane as point XR. By connecting points OR and OL,
a line known as the baseline is formed. The epipoles, el and er, are the intersection
points of the baseline and the two image planes. An epipolar line is created by
eR and xR, and another epipolar line is created from eL and XL. The match for
each pixel in another image can only be located on the epipolar line. By making
both epipolar lines parallel, XR and XL will be positioned on the same pixel row,
reducing error propagation.

Figure 2.3: Epipolar Geometry

2.2.4 Disparity Map
As depicted in Figure 2.4, the phenomenon of stereoscopic vision unfolds through
the intricate interplay of geometric principles and optical phenomena. At the heart
of this process lies the projection of a tangible object, represented by point P, onto
the image planes of two distinct cameras. However, due to the separation between
the cameras, denoted as T and often referred to as the baseline, the projections
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of point P onto these camera planes exhibit a perceptible shift. In the context of
stereoscopic vision, this shift manifests as the displacement of projection points,
symbolized as Pl and Pr, corresponding to the image of point P as captured by the
left and right cameras, respectively. The magnitude of this displacement is directly
influenced by several key factors: Z, representing the distance from the object to
the camera; T, signifying the baseline or distance between the two cameras; and f,
which denotes the focal length of the camera. The intricate dance between these
parameters dictates the observed shift in projection points and forms the basis
for determining the depth information inherent in stereoscopic imaging. As the
distance Z between the object and the cameras varies, so too does the magnitude
of the displacement, leading to nuanced variations in the perceived depth within
the captured scene. Moreover, the separation between the cameras, represented
by the baseline T, plays a pivotal role in shaping the disparity between projection
points. A wider baseline typically results in a more pronounced shift in projection,
enhancing the depth perception capabilities of the stereoscopic imaging system.
Similarly, the focal length f of the camera influences the scale and distortion of
the captured image, further contributing to the overall disparity observed between
projection points. By carefully calibrating these parameters, practitioners can
fine-tune the stereoscopic imaging system to achieve optimal depth perception and
spatial accuracy. The comprehensive understanding of these geometric relationships
and optical phenomena is paramount in leveraging the full potential of stereoscopic
vision for various applications, including depth mapping, object recognition, and
3D reconstruction. By dissecting the intricate interplay of factors such as baseline
separation, focal length, and object distance, researchers and engineers can unlock
new avenues for innovation and discovery in the realm of computer vision and
beyond.

Figure 2.4: Disparity Scheme
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Stereoscopic vision, a marvel of human perception, mimics the depth perception
experienced by our eyes. Imagine shutting one eye: an object occupies a certain
spatial position. Now, swap eyes, and suddenly, the object seems to shift to a
different location. This apparent motion of objects between two stereo images
is termed "disparity" (d). In essence, it quantifies the variation in distance of
corresponding points between these paired images. Illustrated in Figure 2.4, this
concept is depicted with Pl and Pr representing corresponding points in the left
and right images respectively, each with its respective distances, Xl and Xr.

d = Xl − Xr (2.1)

Utilizing this disparity information, we can derive the distance Z through the
equation:

Z = T ∗ f

d
(2.2)

Here, T denotes the baseline distance between the two cameras, and f represents
the focal length. Notably, this equation highlights the inverse relationship between
distance and disparity; when an observed point is nearer to the image planes, the
disparity value tends to be greater, and vice versa. To transform these mathematical
concepts into visual representations, techniques like semi-global block matching
come into play. This method operates by scanning through pixels in one image,
identifying their corresponding counterparts in the other, and computing the
disparity between them. The resulting disparity values, typically ranging from 0
to 255, are then translated into a grayscale image, known as a "disparity map."
In this map, darker regions represent points closer to the camera, appearing as
black, while brighter areas denote objects farther away, resembling white. Thus, by
iteratively applying this process to both camera images, a unified grayscale image
is generated, vividly portraying the relative distances of objects in the scene.

2.3 Neural Network

2.3.1 Object Detection
Object detection is one of the main task in computer vision. It deals with identify
and localizing different object in an image or video. One single image can include
several region of interest (ROI) pointing to different objects. Objects detection
algorithms can be divided into two main categories: single-shot detectors and two-
stage detectors [23]. One of the earliest successful attempts to address the object
detection problem using deep learning was the R-CNN (Regions with CNN features)
model. It used a combination of region proposal algorithms and a convolutional
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neural networks (CNNs) to detect and localize objects in images. Object detection
algorithms are broadly classified into two categories based on how many times the
same input image is passed through a network [23]. A single-shot object detection,
such as YOLO, uses a single pass of the input image to detect the presence and the
location of the objects in the image. Processing an entire image in a single shot,
make the process very computationally efficient but generally a bit less accurate
than the other method, especially is less effective to detect small objects. Two-shot
object detection instead uses two passes of the input image to understand presence
and location of objects. The first step is used to create a set of proposal or potential
object location, and then with the second one is use to confirm or not the proposal
and make the final prediction. This approach is more accurate but computationally
expensive. Usually for real-time application the single-shot one is more used.

CNN

Convolutional Neural Networks (CNNs) represent a pivotal breakthrough in the
realm of deep learning, revolutionizing tasks ranging from image analysis to natural
language processing and beyond. At the core of their functionality lies a sophis-
ticated architecture comprising distinct layers designed to extract, process, and
interpret intricate patterns within complex data, particularly in image classifica-
tion tasks. The CNN architecture, as illustrated in Figure 2.5, consists of several
interconnected layers, each serving a specific purpose in the hierarchical processing
of input data. At the forefront lies the input layer, where raw data is ingested and
processed. In the context of image analysis, the input layer typically represents an
image encoded as a matrix of pixel values, forming the foundational data structure
upon which subsequent layers operate [24]. Moving beyond the input layer, we
encounter the hidden layers, which constitute the crux of the CNN architecture.
These hidden layers are composed of several key components, each contributing
to the network’s ability to discern meaningful features from the input data [24].
First and foremost among these components is the Convolutional Layer, which
plays a pivotal role in feature extraction. At its essence, the convolutional layer
employs filters or kernels, small matrices typically sized 3x3 or 5x5, which traverse
the input image, systematically scanning for distinctive features such as edges,
textures, and patterns [24]. This process, known as convolution, yields feature
maps or activation maps, which highlight the presence of specific features detected
by the filters. Accompanying the convolutional layer is the concept of stride, which
dictates the step size at which the filter traverses the input image. Strides can vary,
with values of 1 indicating movement one pixel at a time, while larger values skip
pixels, influencing the granularity of feature detection [24]. Moreover, padding,
the addition of extra pixels around the input image, serves to preserve spatial
dimensions post-convolution, with ’valid’ and ’same’ being common padding types
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[24]. An integral element linked with the convolutional layer is the activation
function, typically ReLU (Rectified Linear Unit), applied element-wise to introduce
non-linearity into the network. By replacing negative pixel values with zero, ReLU
enables the network to learn complex patterns and relationships within the data,
enhancing its capacity for feature discrimination [24]. Pooling layers represent
another fundamental component of CNN architecture, tasked with reducing the
spatial dimensions of feature maps. Through techniques such as max pooling
and average pooling, pooling layers extract dominant features while mitigating
computational burden, thereby enhancing the network’s efficiency and robustness
to spatial variations in the input data [24]. Lastly, the fully connected (dense) layer
integrates the extracted features from preceding layers, serving as the nexus for
final classification or regression tasks. Neurons in this layer are connected to all
activations in the preceding layer, with the 2D feature maps flattened into a 1D
vector before being fed into the fully connected layer [24]. Finally, the output layer,
tailored to the specific task at hand, employs appropriate activation functions such
as Softmax for multi-class classification or Sigmoid for binary classification [24]. In
summary, Convolutional Neural Networks epitomize the pinnacle of deep learning
architectures, offering unparalleled capabilities in extracting and interpreting intri-
cate patterns within complex datasets. Through their hierarchical structure and
interconnected layers, CNNs have revolutionized a myriad of domains, propelling
the boundaries of artificial intelligence and paving the way for unprecedented
advancements in machine perception and cognition.

Figure 2.5: CNN Architecture [25]

Another crucial aspect concerning the training of a neural network is addressing
the issues of underfitting and overfitting, which correspond to high bias and high
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variance, respectively. Understanding and managing these problems is essential for
the development of an effective neural network model [26]. When a neural network
suffers from high bias, also known as underfitting, it indicates that the model is
too simplistic to capture the underlying patterns in the data. This usually occurs
when the model has not been trained for a sufficient number of epochs or when
it lacks complexity in its architecture. To mitigate underfitting, it is necessary
to extend the training duration and enhance the model’s capacity by increasing
the number of hidden layers and neurons. This allows the network to learn more
intricate representations of the input data, thereby improving its performance
[26]. Conversely, overfitting occurs when a neural network exhibits high variance.
This means that while the model performs exceptionally well on the training data,
it fails to generalize to new, unseen data. Overfitting typically arises when the
model becomes overly complex, capturing noise and random fluctuations in the
training data rather than the actual underlying patterns. To combat overfitting,
several strategies can be implemented. Regularization techniques, such as L1 and
L2 regularization, introduce a penalty to the loss function based on the magnitude
of the model parameters. This discourages the network from becoming excessively
complex by constraining the size of the parameters. Another effective regularization
technique is dropout. In dropout, the network randomly deactivates a fraction of
its nodes during training, as determined by a specified probability parameter. This
prevents the network from becoming too reliant on any particular set of nodes,
promoting more robust learning [26]. Furthermore, data augmentation methods
can be employed to artificially enhance the diversity of the training dataset. By
applying random transformations such as rotations, translations, flips, random
cropping, and color shifting, the model is exposed to a wider variety of data
scenarios. This encourages the network to learn more generalized and robust
features, ultimately improving its ability to perform well on new, unseen data
[26]. By carefully balancing the complexity of the neural network and employing
appropriate regularization and data augmentation techniques, it is possible to
reduce both underfitting and overfitting, leading to a model that performs well on
both training and test datasets.

YOLO

YOLO (You Only Look Once) revolutionizes object detection by employing an end-
to-end neural network architecture to predict objects within a scene simultaneously,
marking a departure from conventional methods. This approach has yielded
extraordinary results, positioning YOLO as a frontrunner in real-time object
detection algorithms, surpassing its counterparts by a significant margin [23]. In
contrast to traditional algorithms that rely on region proposal networks to detect
regions of interest (ROI) before conducting recognition on these regions separately,
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a process that often involves multiple iterations, YOLO streamlines the entire
procedure into a single fully connected layer, thereby condensing the process into just
one iteration. This unified approach not only simplifies the computational workflow
but also enhances efficiency by reducing redundant computations, ultimately leading
to faster and more accurate object detection. Since its inception in 2015, YOLO has
continuously evolved, undergoing several enhancements with subsequent versions,
as documented in the literature [23]. These iterations have introduced refinements
and optimizations, further improving the algorithm’s performance, robustness, and
versatility. Through ongoing research and development efforts, YOLO continues
to push the boundaries of object detection capabilities, solidifying its status as a
cornerstone in the field of computer vision.

Each iteration of YOLO is driven by the overarching objective of enhancing the
algorithm’s performance in terms of accuracy detection and speed compared to its
predecessors. The evolution of YOLO is characterized by a continuous quest to
refine and optimize its capabilities, aiming to achieve superior results with each
upgraded version. A comprehensive examination of the improvements introduced
in successive iterations is provided in Table 2.4, where the key enhancements from
the previous version are outlined. With each new release, YOLO undergoes a series
of modifications and enhancements targeted at addressing specific shortcomings
and capitalizing on emerging technological advancements. These improvements
encompass a wide range of aspects, including feature extraction, model architecture,
training methodology, and inference optimization. By leveraging insights gained
from empirical evaluations and feedback from the research community, the develop-
ers of YOLO strive to push the boundaries of what is achievable in real-time object
detection. The iterative refinement process inherent to YOLO’s development cycle
underscores its commitment to continuous improvement and innovation. Through
systematic experimentation and rigorous evaluation, each version of YOLO aims to
deliver tangible enhancements in terms of both performance metrics and practical
utility. By meticulously documenting the evolution of YOLO and highlighting the
key improvements introduced in each iteration, researchers and practitioners alike
can gain valuable insights into the trajectory of advancements within the realm of
object detection algorithms.

Figure 2.6 presents a comprehensive performance comparison between two notable
iterations of the YOLO object detection framework: YOLOv8 and YOLOv5. This
visual representation serves as a testament to the significant advancements made
within the span of a year, underscoring the relentless pursuit of excellence in the
field of computer vision. The comparison between YOLOv8 and YOLOv5 provides
valuable insights into the evolution of the YOLO architecture over time, illustrating
the tangible improvements achieved in terms of detection accuracy, computational
efficiency, and overall effectiveness. By comparing the performance metrics of these
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Version Improvements
YOLO v2 - Different CNN backbone (Darknet-19)

- Use of Anchor Boxes (to handle a wide range of object size)
- Batch Normalization (to improve accuracy and stability)

- Multi-scale training strategy (to improve small object detection)
- New Loss Function

YOLO v3 - New CNN architecture (Darknet-53)
- Anchor boxes with different scales and aspect ratios

- Feature Pyramid Network
(to improve multiple scale and small object detection)

YOLO v4 - New CNN architecture (CSPNet)
- k-means clustering (anchor boxes more closely aligned)

- GHM loss
(to improve the model’s performance on imbalanced datasets)

YOLO v5 - More complex architecture (EfficientDet)
- Different training data (D5) with 600 object categories

- Dynamic anchor boxes (new generating method)
- Spatial pyramid pooling

(to improve small object detection performance)
- Introduction of CIoU loss (variant of IoU loss)

YOLO v6 - New CNN architecture (EfficientNet-L2)
- Dense anchor boxes (new generating method)

YOLO v7 - Nine anchor boxes (to reduce the number of false positives)
- Focal loss (To better detect challenging objects)

- Higher resolution
- Higher speed

YOLO v8 - Addition of the CSPDarknet53 backbone
- Use of PANet as the neck network

Table 2.4: YOLO Verisions Imporvments

two versions, we gain a deeper understanding of the progress made and the chal-
lenges overcome in the pursuit of state-of-the-art object detection capabilities. The
observed advancements in YOLOv8 compared to its predecessor, YOLOv5, signify a
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Figure 2.6: Perfromance Comparison of YOLOv8 vs YOLOv5. Source:[27]

culmination of extensive research, experimentation, and innovation. These improve-
ments may encompass a multitude of factors, including algorithmic optimizations,
architectural refinements, dataset enhancements, and training methodologies. More-
over, the performance gap highlighted in the comparison underscores the iterative
nature of algorithm development, wherein each iteration builds upon the successes
and learns from the limitations of its predecessors. By analyzing the performance
gap between YOLOv8 and YOLOv5, researchers and practitioners gain valuable
insights into the trajectory of advancements within the YOLO framework and the
broader landscape of object detection algorithms. This comparative analysis serves
as a guiding beacon for future research endeavors, providing a roadmap for further
enhancements and breakthroughs in the realm of computer vision and artificial
intelligence.
The YOLO algorithm represents a seminal advancement in the domain of object
detection, characterized by its streamlined approach and remarkable efficiency.
At its core, YOLO begins its journey by ingesting an image as input, which
then undergoes meticulous scrutiny through a deep convolutional neural network
(CNN). This CNN architecture, serving as the backbone of YOLO, forms the
bedrock upon which object identification within the image is built, as vividly
depicted in Figure 2.7. The architectural intricacies of YOLO are finely tuned to
optimize performance and accuracy. The initial stages of the model’s convolution
layers undergo pre-training utilizing the vast image repository of ImageNet. This
pre-training phase is pivotal, incorporating temporary average pooling and fully
connected layers to imbue the model with a foundational understanding of image
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Figure 2.7: YOLO Architecture. Source:[23]

features and semantics. Subsequently, this pre-trained model is seamlessly adapted
for detection purposes, as empirical evidence from prior studies has showcased
significant performance enhancements through the addition of convolutional and
connected layers to pre-existing networks. In the heart of YOLO lies a distinctive
approach to object localization and classification. The input image is meticulously
partitioned into an S × S grid, where each grid cell assumes the responsibility
of detecting objects within its domain. Within each grid cell, YOLO predicts
multiple bounding boxes alongside confidence scores, which serve as indicators
of the model’s certainty regarding the presence of an object and the accuracy of
the predicted bounding box. This multi-faceted prediction mechanism not only
facilitates precise object localization but also enhances the overall robustness of the
algorithm. Central to YOLO’s efficacy is its ingenious strategy for bounding box
assignment during training. While multiple bounding boxes may be predicted per
grid cell, only one bounding box predictor is designated to be responsible for each
object. This assignment of responsibility is governed by a dynamic process based
on the predictor’s current Intersection over Union (IOU) with the ground truth,
fostering specialization among predictors and culminating in superior overall recall
scores. An indispensable component of the YOLO pipeline is the application of
non-maximum suppression (NMS), a post-processing technique designed to refine
object detection results. Given the propensity for multiple bounding boxes to be
generated for a single object, NMS plays a pivotal role in eliminating redundancy
and enhancing the accuracy and efficiency of object detection. Through the judicious
removal of redundant or erroneous bounding boxes, NMS ensures that only the most
relevant and reliable bounding boxes are retained, thus producing a refined output
with enhanced precision and clarity. In summary, the YOLO algorithm stands
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as a testament to the ingenuity and innovation driving advancements in object
detection methodologies. From its inception, YOLO has epitomized a paradigm
shift in the field, offering a holistic solution characterized by efficiency, accuracy, and
versatility. Through its intricate fusion of convolutional neural networks, bounding
box prediction mechanisms, and post-processing techniques like non-maximum
suppression, YOLO continues to push the boundaries of what is achievable in
real-time object detection, reshaping the landscape of computer vision with its
unparalleled efficacy and sophistication.

R-CNN

A Regional Proposal Convolutional Neural Network (R-CNN) is a traditional type
of two-stage detector. The core concept involves the network generating region
proposals from an input image—specifically, 2000 candidate regions where objects
might be located. These proposals are then analyzed by a CNN to determine
the presence of objects within them. To generate a manageable number of region
proposals, a selective search algorithm is employed, which primarily consists of
three steps [28]:

• 1. Generate initial sub-segmentation , we generate many candidate regions.

• 2. Use greedy algorithm to recursively combine similar regions into larger
ones.

• 3. Use the generated regions to produce the final candidate region proposal.

Next, a CNN functions as a feature extractor, identifying features used to classify
the presence of an object within each candidate region proposal. Finally, the
algorithm refines the bounding box to improve its precision.

Fast R-CNN

Fast R-CNN is an improved version of the original R-CNN, designed to address
some of its limitations. The basic concept remains similar, but instead of feeding
region proposals into the CNN, the input image is processed by the CNN to produce
a convolutional feature map [28]. From this map, region proposals are identified and
warped into squares. These squares are then reshaped to a fixed size using a Region
of Interest (RoI) pooling layer, allowing them to be fed into a fully connected layer.
Using the RoI feature vector, a softmax layer predicts the class of each proposed
region and its bounding box [28]. This approach is faster than the original R-CNN
because it eliminates the need to process 2000 region proposals with the CNN for
each image. Instead, the convolution operation is performed only once per image,
generating a feature map that is used for all region proposals.
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Faster R-CNN

Both R-CNN and Fast R-CNN use selective search to determine region proposals.
This method is slow and time-consuming, reducing the network’s speed and efficiency.
To address this issue, Faster R-CNN was developed. Similar to Fast R-CNN, the
input image is fed into a convolutional network to produce a convolutional feature
map. However, instead of using a selective search algorithm on the feature map, a
separate network generates the region proposals. These predicted regions are then
reshaped using the RoI pooling layer, which is used to classify the image within the
proposed regions and predict the bounding box offsets. This method is significantly
faster than the previous two and can be used for real-time object detection, similar
to YOLO.

2.3.2 TensorRT
In the expansive domain of deep learning model optimization, TensorRT emerges as
a formidable force, harnessing the computational might of NVIDIA GPUs to elevate
neural network performance to unprecedented levels. As depicted in Figure 2.8, this
optimizer delves into a myriad of crucial aspects, profoundly enhancing the efficacy
of trained neural networks and accelerating their integration across a diverse array
of applications. At its core, TensorRT embarks on the journey of Mixed Precision
Reduction, a sophisticated technique meticulously crafted to augment throughput
while meticulously preserving the intrinsic accuracy of models. Through the metic-
ulous quantization of models to INT8 precision, TensorRT adeptly navigates the
delicate balance between computational efficiency and fidelity to the original model,
laying the foundation for enhanced performance. Furthermore, TensorRT intri-
cately weaves in Layer and Tensor Fusion mechanisms, strategically consolidating
nodes within kernels to optimize the utilization of GPU memory and bandwidth.
This intricate fusion process not only streamlines the computational pipeline but
also serves as a potent remedy for potential bottlenecks, thereby fortifying overall
performance with remarkable efficiency. A standout feature of TensorRT lies in
its implementation of Kernel Auto-Tuning, an ingenious process that dynamically
selects optimal data layers and algorithms tailored to the nuanced intricacies of
the underlying GPU platform. This adaptive methodology ensures that neural
networks operate at peak efficiency across a spectrum of hardware configurations,
unlocking their full potential with unparalleled precision. Moreover, TensorRT
integrates Dynamic Tensor Memory management, an astute strategy aimed at
minimizing memory footprint while facilitating the judicious reuse of memory for
tensors. This dynamic allocation scheme not only conserves precious GPU memory
but also optimally distributes memory resources throughout the course of inference
tasks, optimizing performance with unwavering efficacy. Additionally, TensorRT
showcases its prowess through Multi-Stream Execution capabilities, employing a
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scalable design to concurrently process multiple input streams in parallel. This
parallelized approach significantly enhances throughput and responsiveness, par-
ticularly in scenarios necessitating real-time inference on data streams, thereby
ensuring seamless operation even in the most demanding environments. Lastly,
TensorRT distinguishes itself in its proficiency in optimizing recurrent neural net-
works (RNNs) over temporal sequences, leveraging dynamically generated kernels to
adaptively refine network performance across successive time steps. This temporal
optimization framework ensures that RNNs exhibit optimal performance across
a diverse array of temporal contexts, accentuating their suitability for tasks such
as time-series analysis and sequential data processing. In summation, TensorRT
epitomizes a comprehensive suite of optimization techniques, meticulously tailored
to leverage the computational prowess of NVIDIA GPUs and propel deep neural net-
work performance to unprecedented heights. Through its adept fusion of precision
reduction, memory optimization, and dynamic kernel generation, TensorRT stands
as an indispensable cornerstone in the realm of deep learning model deployment
and inference optimization, shaping the future landscape of AI with unparalleled
innovation and efficiency.
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Figure 2.8: TensorRT [29]
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3.1 Object Detection

The ZED software development kit (SDK) leverages the sophisticated functionalities
of the 3D Object Detection API to perform highly accurate object detection tasks.
By utilizing the advanced capabilities of artificial intelligence and neural networks,
the SDK is able to adeptly identify a wide variety of objects depicted within
images. This state-of-the-art technology is renowned for its exceptional precision,
ensuring robust and reliable detection outcomes [29]. In the context of our specific
application, the extensive range of object classes and their corresponding sub-classes
detected by the API aligns seamlessly with our requirements. This alignment
ensures that the system can effectively recognize and categorize a diverse array
of objects, thereby meeting the stringent demands of our project with excellence.
The versatility of the SDK in identifying both common and specialized objects
underscores its applicability across various domains. By examining the contents
of Table 3.1, we gain a comprehensive understanding of the object classes and
their associated sub-classes. This table serves as an invaluable resource, providing
detailed insights into the extensive range of objects that the SDK can accurately
detect. From everyday items to specialized entities, the API’s capabilities cover
a broad spectrum, confirming its suitability for a wide variety of applications.
The detailed categorization in Table 3.1 not only highlights the depth of the
SDK’s object detection capabilities but also demonstrates its potential to adapt to
diverse use cases. Whether for general-purpose applications or highly specialized
tasks, the SDK’s robust framework and advanced AI algorithms ensure that it can
deliver precise and reliable detection outcomes consistently. This level of detail
and accuracy is crucial for the success of our project, as it guarantees that the
system can handle the complexity and variability of real-world environments with
confidence and efficacy [29].
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Object class Object Sub-classes
Person Person

Person head
Vehicle Bicycle

Car
Motorbike

Bus
Truck
Boat

Bag Backpack
Handbag
Suitcase

Animal Bird
Cat
Dog

Horse
Sheep
Cow

Electronics Cellphone
Laptop

Fruit and Vegetable Banana
Apple

Orange
Carrot

Sport Ball

Table 3.1: Object Detection Class and Sub-classes [29]

In addition to its primary function of object detection and classification, the object
detection API offers a rich array of supplementary outputs, as we can see from
table 3.2, each providing valuable insights into the characteristics and behavior
of detected objects. Delving into these outputs enhances our understanding and
utilization of the API’s capabilities, enriching the analysis and application of
detected objects. Firstly, the API furnishes each detected object with a unique
identifier, facilitating tracking and continuity of analysis across frames or time
intervals. This identification number serves as a crucial reference point for mon-
itoring the object’s trajectory and behavior over time. Furthermore, the API’s
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Object Data Output
ID Integer

Label Class
Tracking state Ok, Off, Searching, Terminate
Action State Idle, Moving

Position [x, y, z]
Velocity [vx, vy, vz]

Dimensions [width, height, length]
Detection confidence 0 - 100

2D bounding box Four pixel coordinates
3D bounding box Eight 3D coordinates

Mask Binary mask

Table 3.2: Object Data Output[29]

output includes detailed labeling for each detected object, specifying its type and
subclass. This categorization enables precise classification, aiding in subsequent
analysis and decision-making processes. Moreover, the object detection API pro-
vides information regarding the tracking state of each object. With four distinct
states - ’Ok’, ’Off’, ’Searching’, and ’Terminate’ - this attribute offers insights
into the current status of object tracking, enhancing situational awareness and
facilitating adaptive response strategies. Additionally, the API offers insights into
the dynamic behavior of detected objects through the ’Action State’ parameter.
This attribute delineates whether the object is stationary or in motion, providing
valuable contextual information for further analysis. The API’s output also includes
spatial information such as the 3D position of the object’s central point, represented
as a vector in the Cartesian coordinate system. This positional data enables precise
localization and spatial awareness, facilitating augmented reality applications and
spatial analytics. Furthermore, the API furnishes velocity vectors for each detected
object, capturing its movement dynamics in three-dimensional space. This velocity
information enriches our understanding of object behavior and facilitates predictive
modeling and motion analysis. Moreover, the API provides dimensional attributes
for each object, including width, height, and length, enabling accurate spatial
characterization and sizing of detected objects. Additionally, the API quantifies the
confidence level of each detection with a value ranging from 0 to 100, reflecting the
precision of localization and classification. This confidence score serves as a crucial
metric for assessing the reliability of detection and guiding subsequent analysis and
decision-making processes. Moreover, the API delineates the spatial extent of each
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detected object through both 2D and 3D bounding boxes. These bounding boxes
enclose the object within the image and spatial domains, respectively, providing
a visual representation of its spatial footprint. Finally, the API offers pixel-level
segmentation masks for detected objects, distinguishing between object pixels and
background pixels. This mask facilitates precise delineation and extraction of object
regions, enabling advanced image processing and analysis tasks. In conclusion,
while the object detection API offers a broad range of output parameters, not all
may meet the specific requirements of certain applications. Nonetheless, it serves
as a robust foundation from which to build and tailor solutions to suit individual
needs.

3.2 Distance and Position estimation
The stereo camera, designed to emulate the human binocular vision system, mirrors
the natural separation between human eyes, which averages around 65 mm. This
separation allows each eye to perceive a slightly different view of the surrounding
environment. By comparing these distinct perspectives, the brain is able to gauge
depth and understand the three-dimensional motion space. The ZED 2 stereo
camera leverages this principle by having its viewpoints separated by 120 mm,
thereby enhancing its depth perception capabilities. Depth perception is crucial
for comprehending the spatial relationships between objects, enabling us to view
the world in three dimensions. To fully exploit this capability, we utilize the depth
map and 3D point cloud data provided by the ZED SDK [29]. The depth map
records the distance (Z) for each pixel (X, Y) in the image, measured from the back
of the left eye of the camera to the corresponding object in the scene. Visually,
the depth map is represented as a grayscale image: pixels closer to the camera
appear white (value 255), while those farther away appear black (value 0). With a
depth estimation range extending up to 20 meters, the camera provides extensive
distance data that meets the requirements of our application. By integrating depth
estimation from the depth map with positional data from object detection, we
achieve a comprehensive understanding of an object’s spatial location and distance
within the environment. This integration is essential for accurately interpreting
the 3D positions of objects in a scene. Stereo vision relies on triangulation to infer
depth from a disparity image. Depth resolution (Dr) is a function of distance (Z)
and can be expressed by the formula:

Dr = Z2 × α

where α is a constant. The accuracy of depth measurement diminishes quadratically
with increasing distance, varying from approximately 1% of the distance in the
near range to 9% in the far range [29]. Depth accuracy can be compromised
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by anomalies, particularly on homogeneous or textureless surfaces such as white
walls or green screens, leading to temporal instability in the measurements. The
ZED 2 stereo camera’s sophisticated design and advanced capabilities make it
an invaluable tool for applications requiring precise depth perception and 3D
spatial awareness. By combining these technologies, we are able to create a robust
system capable of accurately mapping and understanding complex environments.
This detailed understanding is essential for a wide range of applications, from
autonomous navigation to advanced robotics, where precise spatial information is
critical for performance and safety.

3.3 Object Orientation
StereoLabs offers a powerful algorithm capable of detecting objects within the
environment as seen by the ZED2 stereo camera. This algorithm identifies various
objects in the scene and generates precise 2D bounding boxes around each detected
object. These bounding boxes are instrumental in isolating and analyzing the
detected objects within the image. My algorithm leverages these bounding boxes by
using them as regions of interest (ROI) for further image processing. By focusing on
these ROIs, we can more effectively extract detailed information about the objects
within them. Specifically, from each bounding box, we can derive a mask of the
detected object. This process involves assigning a pixel value of 255 to areas within
the bounding box where the object is present and a value of 0 to areas corresponding
to the background. Consequently, this creates a binary mask where the object
is rendered completely white against a black background, providing a clear and
distinct representation of the object. The generation of these masks is crucial for
subsequent image processing tasks. The binary mask not only simplifies the object
segmentation process but also enhances the accuracy of object recognition and
tracking. By isolating the object from its background, the algorithm can perform
more precise analyses, such as calculating the object’s exact dimensions, shape,
and position within the scene. Furthermore, these masks can be used to improve
the performance of machine learning models by providing clean, noise-free data
for training and inference. The clear delineation between object and background
ensures that models can learn and predict with higher accuracy. This is particularly
beneficial in applications such as autonomous navigation, robotics, and augmented
reality, where understanding the precise location and boundaries of objects is
critical. The integration of StereoLabs’ object detection algorithm with my custom
processing techniques creates a robust system for detailed object analysis. By
utilizing the bounding boxes and corresponding masks, we achieve a comprehensive
understanding of the detected objects, enhancing the overall effectiveness of our
image processing pipeline. This combination of advanced detection capabilities and
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precise object segmentation underscores the versatility and power of the ZED2 stereo
camera in real-world applications, making it an invaluable tool for cutting-edge
technological solutions.

3.3.1 Strategy

The fundamental concept employed to detect the orientation of a vehicle relative
to the camera involves analyzing the z distance for each point within the mask.
This process identifies the point with the lowest distance, indicating the object
closest to the camera, which serves as the starting point for orientation detection.
In Figure 3.1, this starting point is denoted by the green circle. By maintaining the
y value constant, we can determine the extreme left and right points (represented
by the blue and red circles, respectively) at the same height as the starting point.
Subsequently, we compute the z distance of these two points. With this information,
along with the lateral distance relative to the starting point (x coordinate), we can
calculate the angles representing the orientation of the vehicle. This methodological
approach is pivotal for accurately determining the orientation of the vehicle in
relation to the camera’s perspective. By leveraging geometric principles and
distance measurements, we can precisely ascertain the angular orientation of the
vehicle with respect to the camera’s viewpoint. This level of detail is crucial for
various applications, such as autonomous navigation systems and driver assistance
technologies, where understanding the spatial relationship between the vehicle and
its surroundings is essential for making informed decisions and executing precise
maneuvers. Furthermore, this approach offers flexibility and adaptability across
different scenarios and environments. By dynamically analyzing the z distances and
geometric relationships within the captured image, the system can effectively detect
and interpret the orientation of vehicles under varying conditions, including changes
in lighting, terrain, and vehicle size. The integration of this orientation detection
technique into the overall framework enhances the functionality and utility of the
camera system. By providing real-time insights into the orientation of vehicles
within the camera’s field of view, the system enables seamless integration with
intelligent transportation systems, surveillance applications, and other advanced
technologies aimed at improving safety, efficiency, and situational awareness in
diverse settings. In summary, the method outlined above represents a robust and
efficient approach to vehicle orientation detection, offering precise and reliable
results that can be utilized across a wide range of applications and environments.
Its effectiveness lies in its ability to leverage fundamental geometric principles and
distance measurements to accurately infer the orientation of vehicles relative to the
camera’s viewpoint, thereby facilitating informed decision-making and enhanced
functionality in various technological domains.
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Figure 3.1: Vehicle points detection

3.3.2 Angles computation
Expanding upon the analysis depicted in Figure 3.2, which provides a zoomed-in
view of the previous illustration, we observe the emergence of two distinct triangles
originating from the closest point. These triangles, delineated by the blue and
red lines connecting to the left and right points, respectively, form the basis for
calculating the orientation angles of the vehicle relative to the camera. To initiate
our calculations, we refer to a fundamental formula in trigonometry, illustrated
in Figure 3.3. This formula serves as the cornerstone of our approach, enabling
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Figure 3.2: Orientation angles

us to establish the necessary relationships between the angles and sides of the
triangles formed by the points of interest. By leveraging trigonometric principles,
we can derive the precise orientation angles of the vehicle based on the geometric
configuration of these triangles. The blue and red triangles, emanating from the
closest point and extending towards the left and right points, respectively, provide
crucial insights into the spatial orientation of the vehicle within the camera’s
field of view. Through careful analysis of the angles and distances within these
triangles, we can infer the angular orientation of the vehicle relative to the camera’s
perspective with a high degree of accuracy. These expressions take into account
factors such as the distances between points and camera and is not affected by
error related to the height of the camera or the angle of inclination, providing a
comprehensive framework for accurately determining the vehicle’s orientation in
three-dimensional space. The utilization of trigonometric principles in conjunction
with geometric analysis enhances the robustness and accuracy of our orientation
detection algorithm. By incorporating mathematical rigor into our methodology, we
can ensure reliable and consistent results across various scenarios and environmental
conditions. This level of precision is essential for applications requiring precise
spatial awareness, such as autonomous navigation systems, augmented reality
overlays, and object tracking technologies. In summary, the zoomed-in view
provided by Figure 3.2 offers a detailed perspective on the geometric relationships
underlying our orientation detection method. By leveraging trigonometric principles
and geometric analysis, we can derive precise orientation angles for vehicles relative
to the camera’s viewpoint, enabling enhanced functionality and performance in a
wide range of technological applications.

tan(θ) = Opposite

Adjacent
(3.1)
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Figure 3.3: Basic Triangle

Equation 3.1 presents a fundamental trigonometric relationship, expressing the
tangent of an angle (θ) as the ratio of the length of the side opposite to the angle
to the length of the side adjacent to it. This relationship is illustrated in Figure
3.3, where the angle θ is defined within the context of a basic triangle. Expanding
upon this fundamental concept, we apply it to our specific scenario involving
triangles formed by variations in the z and x directions. In our case, the sides of
the triangles correspond to the changes in the z direction (∆z) and the x direction
(∆x). Consequently, Equation 3.1 is adapted to our context, resulting in Equation
3.2:

tan(θ) = ∆z

∆x
(3.2)

In Equation 3.2, ∆z represents the variation in the z direction, while ∆x denotes
the variation in the x direction. This equation captures the relationship between
these variations and the angle θ, which characterizes the orientation of the vehicle
relative to the camera. To determine the actual value of the angle θ, we utilize
the inverse tangent function, denoted as tan−1. By applying this function to
the ratio ∆z

∆x
, we obtain the angle θ. This process enables us to calculate the

precise orientation angle of the vehicle based on the observed variations in the
z and x directions. The utilization of trigonometric principles in this manner
facilitates the accurate determination of vehicle orientation, providing valuable
insights for applications such as object tracking, navigation, and surveillance. By
leveraging mathematical relationships derived from basic trigonometry, we can
extract meaningful information about the spatial configuration of objects within
the camera’s field of view, enabling enhanced functionality and performance in a
variety of technological contexts.

35



Project

Filtering

After numerous attempts, we observed significant noise that rendered the vehicle’s
output and, consequently, the car’s spatial orientation angle somewhat unstable.
This noise primarily originates from the depth map. Despite applying various image
filtering techniques and map stabilizers, the depth and distance values continuously
fluctuate. This fluctuation results in constant changes to our green point (the
point closest to the camera), which in turn causes persistent variations in the
angle. To mitigate this issue, we introduced a filtering mechanism for the computed
angle. This filter operates in a very straightforward manner: a queue stores a
fixed number of computed angle values, and then an average of these values is
calculated. Every new angle computed is added to the queue, replacing the oldest
value, ensuring that the average is consistently updated. By adjusting the number
of values stored in the queue, we can achieve an optimal balance between the
responsiveness of angle changes over time (by reducing the number of stored values)
and the stability of the orientation angle (by increasing the number of stored
values). This method allows us to fine-tune the performance, providing a good
trade-off between real-time responsiveness and the stability needed for accurate
spatial orientation. Consequently, this approach significantly improves the overall
stability and accuracy of the vehicle’s spatial orientation, addressing the instability
caused by the fluctuating depth map values.

3.4 Code Explanation
In this section, we delve deeply into all aspects of the C++ code. Specifically, in
the appendices of this document, we provide some key sections of the code. In the
following there is explanations of how the code are designed to give a comprehensive
understanding of the underlying mechanisms and functionalities. We focus on the
following parts:

• StereoCamera (ZED) Setup: We explore the configuration and initialization
of the StereoCamera, detailing the steps required to properly set up the ZED
camera for accurate data capture.

• Computation of Object Distance and Orientation: This part covers the algo-
rithms and methodologies used to calculate the distance and orientation of
objects.

• Data Sent to the QML Model: Here, we explain how the processed data is
emitted and transmitted to the QML model.

• Vehicle Model: This section analyzes the vehicle model implemented in the
code comparing it with the model for the other objects.

36



Project

3.4.1 StereoCamera (ZED) Setup
As the first step of the code, it is essential to set up all the parameters of the ZED
camera to ensure high-quality images under various light and weather conditions.
Additionally, we need to enable all the necessary functionalities for our project. In
Appendix A, we present the initial part of the code, which includes all the camera
setup details. To delve deeper into the setup process, the first section of the code
focuses on the initial parameter configuration. Here, we specify the depth mode
accuracy to "neural" and set the minimum distance to 100cm. This adjustment
helps enhance the medium-range precision of the detection. We also configure the
unit of measurement to centimeters and align the coordinate system with the one
used in the Qt interface, as illustrated in Figure 3.4. Next, we adjust all the video

Figure 3.4: ZED Coordinate System

setting parameters of the camera, including gain, brightness, contrast, saturation,
and other relevant settings, to ensure accurate video acquisition. This step is crucial
for obtaining clear and precise images throughout the project’s execution. Following
the video settings, we proceed to activate the object detection functionalities. This
involves enabling all the necessary features to detect objects effectively. We also
set the confidence threshold to 60%, establishing a lower limit below which objects
are ignored. This threshold helps filter out less reliable detection, ensuring that
only significant objects are considered. Finally, we configure the settings related
to object classes and filters. This involves specifying which types of objects the
system should recognize and how to filter them based on the project’s requirements.
By fine-tuning these parameters, we can optimize the performance of the object
detection system to meet our specific needs.

3.4.2 Computation of Object Distance and Orientation
In this section, we thoroughly examine the portion of the code responsible for
computing the distance and relative position of various objects with respect to the
camera, as well as determining the orientation of detected vehicles. The specific
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code for this functionality is detailed in Appendix B. We begin by iterating through
all objects detected in the scene. The initial step involves extracting the 2D
bounding box of each detected object, which serves as the region of interest (ROI)
for subsequent computations. Next, we focus on the mask of the object within
the bounding box. By analyzing each point within this mask, we identify the
point with the shortest distance with respect to the camera. Once this point is
located, we store its coordinates and proceed to extract the outermost left and
right points of the mask at the same height. These lateral distances, along with the
depth from the camera, are crucial for computing the orientation of the vehicles.
After calculating the left and right angles, we apply a filter to the right one (the
one that we will use for the hmi angle of the cars) to mitigate the shaking effect
observed in the car orientation, thereby enhancing the stability of the output image.
This filtering process involves computing the average value of the last 30 angles
measurements. By carefully following these steps, we ensure accurate and stable
computation of object distances, positions, and vehicle orientations, providing a
reliable basis for further processing and analysis in the system.

3.4.3 Data Sent to the QML Model

To establish a correlation between the information obtained from the camera and
the data computed by our algorithm with the output we want to display on our
Human-Machine Interface (HMI), we must systematically link all the necessary
information to the HMI code in QML. The relevant code for this process is located
in Appendix C. First, after detecting an object, we need to determine if it is a car
or another type of object. We start by processing all objects that are not cars. For
each non-car object, we collect its x, y, and z positions and store these coordinates in
a QVector, which is used to continuously update the object’s position. Additionally,
we save all the relevant variables required to correctly position and size the object
in the HMI. Next, we check whether this is the first time the object, identified by
its unique ID number, is being detected. If it is the first detection, we append the
new object to our data structures; otherwise, we update its position accordingly.
For cars, the procedure is similar but includes an additional step. Besides the x, y,
and z positions, we also capture and process the angle to correctly orient the car in
the 3D space. This extra step ensures that cars are accurately represented in terms
of both position and orientation within the HMI. By meticulously following these
steps, we ensure that all objects, whether cars or not, are correctly represented and
updated in our HMI.
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3.4.4 Vehicle Model
In this section, we delve into the vehicle model used to process the information
described in the previous section, manage it, and emit signals to send it to the
QML code for the HMI interface. The detailed code for this process is provided in
Appendix D. This specific code handles cars, while a similar but slightly simpler
version is used for other objects. The simpler version for non-car objects does not
need to manage orientation and angle parameters. Examining the code, we find
a series of modules primarily designed to store and manage information before
sending it via signals. The process begins by setting the properties of each vehicle.
The initial "append" module creates a QVector to collect parameters for new cars.
Subsequently, the second "append" module adds the new car to the vehicles list,
setting all necessary parameters such as ID, coordinate positions, orientation angles,
and a "canc" variable. The "canc" variable acts as a counter, used to remove objects
from the scene when they are no longer detected. During each update, if the car
(or object) is detected, this counter is reset to its initial value. Conversely, if the
object is not detected, the counter decreases until it reaches zero, at which point
the object is removed from the scene. The "update" module is then used to refresh
the position of vehicles after each iteration. Additionally, there is a "freeupdate"
module that continuously updates the "canc" parameter even if a specific car is no
longer detected. This mechanism ensures that all vehicles are properly removed
from the scene when they are no longer present. Overall, the vehicle model code
is designed to efficiently manage the detection, updating, and removal of objects
within the HMI interface. By emitting signals and handling various parameters,
including position and orientation, it ensures accurate and dynamic representation
of objects in the HMI.

3.5 Qt 3D
Qt 3D stands as a robust framework meticulously crafted to cater to the intricate
needs of near-realtime simulation systems, boasting support for both 2D and 3D
rendering within Qt C++ and Qt Quick applications. Rooted in the ethos of
scalability, extensibility, and flexibility, Qt 3D represents a cornerstone in the realm
of graphics programming, empowering developers to craft immersive and dynamic
visual experiences with unparalleled ease [30]. Delving into the rich tapestry of
features that Qt 3D has to offer unveils a myriad of tools and functionalities tailored
to meet the diverse demands of modern application development. At the heart of
Qt 3D lies its rendering capabilities, encompassing a fully configurable renderer that
furnishes developers with the freedom to implement tailored rendering pipelines
suited to their specific requirements. This inherent flexibility enables swift iteration
and experimentation, facilitating the creation of visually stunning and performant
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applications. Beyond its rendering prowess, Qt 3D distinguishes itself through its
robust simulation framework, providing a generic platform for the development of
near-realtime simulations across a spectrum of domains. From physics simulations
to audio processing, collision detection to artificial intelligence (AI), Qt 3D offers a
versatile canvas upon which developers can paint their simulation scenarios with
unparalleled precision and fidelity. A hallmark of Qt 3D’s design philosophy lies in
its modular architecture, neatly organized into a core framework complemented by a
myriad of interchangeable aspects. These aspects encapsulate specific functionalities,
such as physics, audio, collision detection, AI, and pathfinding, allowing developers
to mix and match components seamlessly to construct tailored solutions that align
with their project’s objectives. In the realm of materials and shaders, Qt 3D shines
with its robust and highly flexible material system, offering developers multiple
levels of customization to achieve their desired visual effects. Supporting all stages
of the OpenGL programmable rendering pipeline, including vertex, tessellation
control, tessellation evaluation, geometry, and fragment shaders, Qt 3D empowers
developers to push the boundaries of graphical fidelity and realism. Shadow
mapping, a critical component of many rendering pipelines, is seamlessly integrated
into Qt 3D with simplicity and efficiency in mind. With Qt 3D, generating
visually appealing shadows comes with minimal performance overhead, allowing
developers to achieve stunning visual effects without compromising on runtime
performance. In the context of academic research, Qt 3D presents a plethora of
avenues for exploration and analysis within the realm of computer graphics and
simulation. For instance, incorporating Qt 3D into a thesis project could involve
the development of a small application or simulation as a case study, demonstrating
the practical applications of the discussed concepts. Alternatively, one could delve
into a performance analysis, examining the behavior of Qt 3D in various scenarios
such as rendering complex scenes or handling large datasets. Moreover, conducting
a comparative study between Qt 3D and other 3D frameworks in terms of ease of
use, flexibility, and performance could yield valuable insights into the strengths
and weaknesses of different approaches. Finally, exploring and discussing unique
features of Qt 3D, such as its aspect-oriented design or material system, could shed
light on the underlying principles driving its architecture and functionality.

3.5.1 3D Interface
The Human-Machine Interface (HMI) developed for this project is a 3D interface
window designed to enhance the visualization and interaction experience for users.
At the center of this interface is the ego car, depicted in blue, which serves as the
primary reference point. This ego car is equipped with a camera, and all detected
vehicles are represented in green. These vehicles are dynamically introduced into
the scene as they are detected, reflecting their real-time orientation relative to the
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camera’s perspective. As the ego vehicle moves, the orientation of the detected
vehicles updates accordingly, providing a realistic and fluid representation of the
surrounding environment. Additionally, the interface allows users to navigate
through the 3D space and manipulate the camera’s viewpoint, offering a flexible
and immersive experience. This feature is particularly useful for observing the
environment from different angles and gaining a comprehensive understanding of
the surroundings. For objects that are not cars, such as pedestrians, other types of
vehicles, and animals, a different approach is used. These objects are represented by
cylinders. This design choice simplifies the representation since the primary focus of
the project is on cars. Cylinders are an ideal shape because they eliminate the need
to depict the orientation of these objects, which is not the project’s goals. Each
cylinder is sized proportionately to the object’s actual dimensions, both in terms
of base area and height, ensuring an accurate and recognizable representation. An
important aspect of the vehicle representation within the HMI is the standardized
orientation of all detected vehicles. All vehicles, regardless of their actual direction,
are oriented to face the same direction as the ego vehicle. This convention addresses
a limitation of the software, which cannot reliably distinguish whether the detected
vehicle is facing towards or away from the ego vehicle. By aligning all vehicles in
the direction of the ego vehicle’s movement, the interface maintains consistency
and avoids potential confusion, thus enhancing the overall user experience. In
summary, this HMI provides a detailed and interactive 3D visualization of the
environment surrounding the ego vehicle. By focusing on cars and using simplified
representations for other objects, the interface achieves a balance between detailed
visualization and practical usability. The ability to navigate and adjust the camera
view further enriches the user’s interaction, making the HMI an effective tool for
monitoring and analyzing the dynamic traffic scenario.

3.5.2 HMI Code
In Appendix E, we provide the QML code pertinent to the Human-Machine Interface
(HMI) of our system. To offer a detailed explanation of how this code is structured
and operates in practice, it is essential to understand the interaction between the
QML interface and the C++ model, which is facilitated through signals. The C++
code emits signals, which the QML code then captures and processes. Initially,
after creating the window, camera, and light components, we establish connections
for these signals to transmit data regarding the position and orientation of the cars.
For other objects, a cylinder representation is used. This means that every time a
new car or object is detected, a corresponding new element is created within the
interface. This element remains within the interface and continuously updates its
position and orientation as long as the object stays within the camera’s field of
view. The mechanism ensures that all detected cars and objects are dynamically
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tracked and rendered accurately in real-time within the HMI. This setup allows for
a seamless and responsive user experience, where the interface reflects the current
state of the environment with minimal latency. The continuous update of the
position and orientation data ensures that the visual representation of the cars
and other objects is always current, providing users with reliable and up-to-date
information about the system’s surroundings.
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Chapter 4

Simulation and Tests

4.1 Simulation

Figure 4.1: Left view

The simulation and testing are conducted in and around the premises of Bylogix.
The test area is designed to resemble a ring surrounding the company, featuring
randomly parked cars and a few pedestrians, creating an ideal environment for
testing. The stereocamera ZED2 is mounted on a test vehicle as we can see from
figure 4.1 and figure 4.2, which is then driven around the circuit.
During these laps, the camera is connected to a PC running the necessary software
to capture and analyze the data. From the resulting images, the outcomes are
promising. The system demonstrates a robust capability to accurately recognize
cars and other objects in its environment. The orientation system’s precision is
satisfactory, effectively displaying and positioning all encountered vehicles relative
to the camera’s viewpoint. Additionally, the system accurately identifies non-car
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Figure 4.2: Front View

objects, and the cylindrical shapes used to represent these objects exhibit high
fidelity, closely matching their real-world dimensions. Overall, the performance of
the system is commendable. It successfully detects and accurately represents various
objects, making it a reliable tool for further development and real-world application
testing. The environment around Bylogix proves to be an excellent testing ground,
providing diverse scenarios that contribute to the thorough evaluation of the
system’s capabilities.

4.2 Results
The results from our tests are highly promising. By comparing the images captured
by the camera with the HMI (Human-Machine Interface) output presented to
the user, we can see that discrepancies between the real world and the HMI
are minimal and fall within an acceptable error range. Every vehicle within the
camera’s field of view is accurately detected and represented in the HMI, with their
orientations correctly aligned relative to the camera. One minor issue observed is a
slight difference in the height of the outputs. This variation arises because, in our
simulation, the camera is mounted on the roof of the test vehicle, which lacks a hood.
Conversely, in the HMI, the camera is depicted as being mounted on the hood. This
positioning choice was made to minimize the presence of the "ego car" in the HMI
view, allowing for more accurate distance estimation and representation between
the test vehicle and the real world. To illustrate the functionality and accuracy of
the HMI output, we captured pairs of frames at different points during our road
test simulations. These pairs consist of the HMI interface and the corresponding
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camera view of the environment, with each detected object in the latter being
surrounded by a 2D red bounding box. This approach enables us to evaluate how
the system performs under varying environmental conditions, providing insight
into its precision and robustness. Each pair of images showcases the HMI’s ability
to consistently reflect the camera’s view, demonstrating the system’s reliability
and effectiveness in real-world scenarios. In the first pair of images (Figure 4.3

Figure 4.3: Example 1: Camera View

and Figure 4.4), we capture an initial snapshot from our test simulation. In these
images, two cars are visible: one is parked laterally relative to our vehicle and is
much closer, while the other is positioned farther away, almost at the edge of the
camera’s detection range. The HMI accurately represents both vehicles, showcasing
their relative positions and orientations concerning the camera and each other.
Notably, the system demonstrates its capability to precisely detect vehicles even
when they are near the detection range limit. This accuracy is crucial for ensuring
the reliability of the system in various real-world scenarios. Another important
aspect to highlight is the lighting conditions in this segment of the testing track.
The area includes a significant shadow zone that is quite dark, followed by a region
with very high brightness. Despite these challenging lighting conditions, the camera
and software perform quite well, maintaining good detection capabilities across
varying light levels. This ability to handle extreme variations in lighting further
underscores the robustness and reliability of our system in different environmental
conditions. The HMI’s performance in these conditions indicates a strong potential
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Figure 4.4: Example 1: HMI View

for deployment in various applications, offering confidence in its ability to handle
complex and dynamic situations like challenging scenarios.

Figure 4.5: Example 2: Camera View
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Figure 4.6: Example 2: HMI View

In the second pair of images (Figure 4.5 and Figure 4.6), we observe a high-
traffic scenario, with a substantial number of vehicles represented by a row of
cars on the right side of the image. The system successfully detects vehicles up
to a certain distance, identifying a total of four cars, all of which are accurately
represented in our HMI, as shown in Figure 4.6. This segment of the testing
track is characterized by direct sunlight shining almost frontally and directly onto
the camera. Despite these challenging lighting conditions, the camera performs
exceptionally well, maintaining clear visibility and accurately detecting cars even
under very high brightness. The system’s ability to function effectively in such
conditions highlights its robustness and reliability. In the HMI, our ego car is
consistently represented in blue. Additionally, the row of detected cars on the
right is displayed by the classical green cars, with their orientations accurately
depicted. This clear and precise representation ensures that the user has an accurate
understanding of the environment, even in complex and brightly lit scenarios. The
performance observed in this high-traffic, high-brightness test scenario underscores
the system’s capability to handle diverse and challenging environments. The
accurate detection and representation of multiple vehicles, despite direct sunlight
interference, demonstrate the effectiveness of the camera and HMI integration in
providing reliable and detailed real-time information to the user.
From the third example (Figure 4.7 and Figure 4.8) onward, the weather conditions
differ from the first two examples as the test was conducted on a different day. The
weather was very cloudy, almost raining, which allowed us to evaluate performance
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Figure 4.7: Example 3: Camera View

Figure 4.8: Example 3: HMI View

under varied weather conditions. Nevertheless, cloudy conditions are ideal for
camera-related work. In this scenario, we detect a light-duty vehicle that obviously
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is not classified as a car, and it is therefore represented as a cylinder with the
dimensions of the bounding box around it. The scene also includes three cars
lined up behind the heavy-duty vehicle, with the first two oriented in the opposite
direction of our motion. However, aligned with what was mentioned in the previous
section, all vehicles are depicted in the HMI with the same orientation as the ego
vehicle’s direction of motion. The output, in this case, remains accurate and precise,
demonstrating consistent performance across different conditions.

Figure 4.9: Example 4: Camera View

The next example (Figure 4.9 and Figure 4.10) takes place in nearly the same
location as the second example. The primary difference in this scenario is the
presence of a person on the left side of the image, accompanied by several cars.
As depicted, the person is represented by a cylinder, consistent with the previous
example, maintaining the same size as the bounding box around them. Additionally,
there is a car situated to the left in front of the person. On the right side of the
image, up to three cars are visible, with any additional vehicles being too distant
to fall within the maximum detection range. This example highlights the system’s
ability to accurately identify and represent different types of objects within the scene,
maintaining consistency in the representation of human figures as cylinders. The
inclusion of multiple vehicles and a pedestrian provides a comprehensive overview
of the detection capabilities in a more complex environment. By comparing this
example to the previous ones, we can observe how the system adapts to varied
arrangements and densities of objects, ensuring reliable performance even when
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Figure 4.10: Example 4: HMI View

the objects are positioned at different distances and have different size.

Figure 4.11: Example 5: Camera View
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Figure 4.12: Example 5: HMI View

The last pair of images (Figure 4.11 and Figure 4.12) showcases a scenario similar
to the previous example, but situated slightly further along the testing track. The
column of cars on the right side remains consistent with the earlier scene. On the
left side, the same car from the previous scene is gradually disappearing from view,
while two people are seen conversing together. In this scenario, the results displayed
on the HMI are very accurate, offering a perfect representation of the captured scene.
The cars are oriented correctly, reflecting their real-world positions and directions.
The two individuals are depicted as distinctly separate cylinders, emphasizing the
system’s capability to differentiate and accurately represent multiple human figures
within the same frame also if they are quite close to each other. This example
further highlights the robustness of the detection and representation system in
handling dynamic and slightly altered scenarios within the same environment. The
ability to consistently track and represent both stationary and moving objects,
including vehicles and pedestrians, underscores the system’s precision.

51



Chapter 5

Conclusion

Given the time constraints of the project, the results obtained are quite commend-
able. It is acknowledged that our output is subject to a certain degree of error,
particularly in the orientation angle detection. This is due to error propagation,
where multiple small errors accumulate, affecting the overall accuracy. One source
of error stems from the depth map, which inherently contains inaccuracies in
depth computation. These inaccuracies are influenced by factors such as lighting
conditions and image quality. Additionally, the three-point estimation process
contributes to the overall error, leading to inaccuracies in angle computation. To
mitigate this issue, we implemented a strategy that involves filtering the angle
values by computing the average. This approach helps to reduce noise and minimize
oscillations in the vehicle representations, resulting in a more stable output. Despite
these errors, the results are still satisfactory and acceptable. However, there is
room for improvement. By focusing on reducing these errors and enhancing the
stability and robustness of the system, we can achieve even better results.

5.1 Further Improvements
A series of potential enhancements can be made to the system to reduce errors
and improve precision, stability, and robustness. The primary strategy involves
implementing a neural network for the detection and classification of road actors,
which would provide greater control and flexibility. A promising approach is the
development of a neural network classifier capable of simultaneously identifying
the type of vehicle and its primary orientation, such as front, rear, and side views
[31] [32] [33]. This would enable a single network to perform an initial powerful
classification, filtering objects in the environment and ensuring a more accurate
representation of the detected vehicles. The use of advanced neural network
architectures, such as convolutional neural networks (CNNs) or recurrent neural

52



Conclusion

networks (RNNs), can significantly enhance the system’s ability to process and
classify visual data with high accuracy. To achieve this, a comprehensive dataset
of vehicle images from all possible viewpoints is necessary, similar to the dataset
created and used in [34] [31]. For instance, in [34], the Car Full View (CFW) dataset
was introduced, which involves recording individual cars from every angle by circling
the vehicle, starting from the top front and walking clockwise until returning to
the initial position. This method ensures a diverse and thorough collection of
vehicle images that can significantly enhance the neural network’s training and
performance. The dataset should include various lighting conditions, weather
scenarios, and different vehicle types to ensure the network is robust and versatile.
Another significant improvement could be achieved by increasing the precision of
distance estimation and depth mapping through sensor fusion. By integrating data
from the stereo camera with information from other sensors, such as a LiDAR
point cloud, we could obtain more accurate and precise measurements. Sensor
fusion combines the strengths of multiple sensing technologies, compensating for
the weaknesses of each individual sensor and resulting in more reliable and robust
data. This approach can help in creating a more comprehensive understanding of
the environment, allowing for better detection and classification of road actors. The
integration of sensor fusion would involve sophisticated algorithms to merge the
data from various sensors. Techniques such as Kalman filtering, particle filtering,
or deep learning-based fusion methods can be employed to effectively combine the
sensor data. These methods help in reducing the uncertainty and noise inherent in
individual sensor measurements, leading to improved overall system performance.
Additionally, from an application standpoint, it is crucial to enhance the system’s
real-time processing capabilities to ensure practical usability. This can be achieved
by optimizing the software and hardware components, ensuring that the neural
network and sensor fusion processes can operate efficiently within the constraints of
the vehicle’s onboard systems. Techniques such as hardware acceleration, parallel
processing, and efficient code optimization can play a significant role in achieving
real-time performance. Moreover, continuous learning and adaptation of the system
can further improve its robustness. Implementing mechanisms for the system to
learn from new data collected during operation can help it adapt to changing
environments and improve its accuracy over time. This can be facilitated through
online learning algorithms or periodic updates to the neural network model based
on newly acquired data.
In conclusion, while the current system performs well within the given constraints,
there are several avenues for improvement that can significantly elevate its accuracy
and reliability. Implementing a neural network for vehicle detection and orientation
classification, utilizing a comprehensive dataset, and employing sensor fusion for
enhanced depth mapping and distance estimation are key strategies to enhance
the system. These enhancements will not only reduce errors but also bolster the
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overall performance and robustness of the system. Continuous improvement and
refinement of the system will lead to more precise and reliable outcomes, ultimately
enhancing the overall effectiveness of the project. By optimizing and adapting the
system, it will remain effective and efficient in real-world applications, contributing
to safer and more reliable autonomous vehicle technologies.
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Appendix

1 #inc lude <s l /Camera . hpp>
2

3 {
4 Camera zed ;
5

6 In i tParameter s init_params ;
7 init_params . depth_mode = DEPTH_MODE: :NEURAL;
8 init_params . depth_minimum_distance = 100 ;
9 init_params . coord inate_uni t s = UNIT : :CENTIMETER;

10 init_params . d ep th _ s t ab i l i z a t i on = 45 ;
11 init_params . coordinate_system = s l : :COORDINATE_SYSTEM: :

RIGHT_HANDED_Y_UP;
12 init_params . sdk_verbose = true ;
13

14 auto returned_state = zed . open ( init_params ) ;
15 i f ( re turned_state != s l : :ERROR_CODE: : SUCCESS) {
16 std : : cout << " Error " << returned_state << " , e x i t program .\ n " ;
17 re turn EXIT_FAILURE;
18 }
19

20 zed . setCameraSett ings (VIDEO_SETTINGS : : GAIN, 1) ;
21 zed . setCameraSett ings (VIDEO_SETTINGS : : BRIGHTNESS, 4) ;
22 zed . setCameraSett ings (VIDEO_SETTINGS : :CONTRAST, 4) ;
23 zed . setCameraSett ings (VIDEO_SETTINGS : :HUE, 0) ;
24 zed . setCameraSett ings (VIDEO_SETTINGS : : SATURATION, 4) ;
25 zed . setCameraSett ings (VIDEO_SETTINGS : : SHARPNESS, 4) ;
26 zed . setCameraSett ings (VIDEO_SETTINGS : :GAMMA, 5) ;
27 zed . setCameraSett ings (VIDEO_SETTINGS : :WHITEBALANCE_AUTO, 1) ;
28 zed . setCameraSett ings (VIDEO_SETTINGS : :AEC_AGC, 1) ;
29

30 ObjectDetect ionParameters detect ion_parameters ;
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31 detect ion_parameters . enable_track ing = true ;
32 detect ion_parameters . enable_segmentation = true ;
33 detect ion_parameters . detection_model = OBJECT_DETECTION_MODEL: :

MULTI_CLASS_BOX_ACCURATE;
34

35 i n t de tec t i on_con f idence = 60 ;
36 ObjectDetectionRuntimeParameters detect ion_parameters_rt (

de tec t i on_con f idence ) ;
37 detect ion_parameters_rt . o b j e c t _ c l a s s _ f i l t e r = { s l : : OBJECT_CLASS : :

VEHICLE, s l : : OBJECT_CLASS : : PERSON, s l : : OBJECT_CLASS : : ANIMAL, s l : :
OBJECT_CLASS : :SPORT} ; detect ion_parameters_rt .
ob jec t_c las s_detec t ion_conf idence_thresho ld [ s l : : OBJECT_CLASS : :
PERSON] = detec t i on_con f idence ; detect ion_parameters_rt .
ob jec t_c las s_detec t ion_conf idence_thresho ld [ s l : : OBJECT_CLASS : :
VEHICLE] = detec t i on_con f idence ; detect ion_parameters_rt .
ob jec t_c las s_detec t ion_conf idence_thresho ld [ s l : : OBJECT_CLASS : :
ANIMAL] = detec t i on_con f idence ; detect ion_parameters_rt .
ob jec t_c las s_detec t ion_conf idence_thresho ld [ s l : : OBJECT_CLASS : :
SPORT] = detec t i on_con f idence ;

38

39 i f ( detect ion_parameters . enable_track ing ) {
40 Pos i t iona lTrack ingParameters pos i t i ona l_track ing_parameter s ;
41 zed . enab l ePos i t i ona lTrack ing ( pos i t i ona l_track ing_parameter s ) ;
42 }
43

44 std : : cout << " Object Detect ion : Loading Module . . . " << std : : endl ;
45 returned_state = zed . enab leObjectDetect ion ( detect ion_parameters ) ;
46 i f ( re turned_state != s l : :ERROR_CODE: : SUCCESS) {
47 std : : cout << " Error " << returned_state << " , e x i t program .\ n " ;
48 zed . c l o s e ( ) ;
49 re turn EXIT_FAILURE;
50 }
51

52 zed . c l o s e ( ) ;
53 }
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1 f o r ( const auto& ob j e c t : o b j e c t s . o b j e c t _ l i s t ) {
2 // Def ine the ROI around the ob j e c t us ing the 2D bounding box

from the ob j e c t d e t e c t i on
3 std : : vector<cv : : Point2f> v e r t i c e s ;
4 f o r ( const auto& point : ob j e c t . bounding_box_2d ) {
5 v e r t i c e s . emplace_back ( cv : : Po int2 f ( po int . x , po int . y ) ) ;
6 }
7

8 // Ca lcu la te the top−l e f t vertex , width , and he ight
9 f l o a t x_min = std : : min ({ v e r t i c e s [ 0 ] . x , v e r t i c e s [ 1 ] . x , v e r t i c e s

[ 2 ] . x , v e r t i c e s [ 3 ] . x }) ;
10 f l o a t y_min = std : : min ({ v e r t i c e s [ 0 ] . y , v e r t i c e s [ 1 ] . y , v e r t i c e s

[ 2 ] . y , v e r t i c e s [ 3 ] . y }) ;
11 f l o a t x_max = std : : max({ v e r t i c e s [ 0 ] . x , v e r t i c e s [ 1 ] . x , v e r t i c e s

[ 2 ] . x , v e r t i c e s [ 3 ] . x }) ;
12 f l o a t y_max = std : : max({ v e r t i c e s [ 0 ] . y , v e r t i c e s [ 1 ] . y , v e r t i c e s

[ 2 ] . y , v e r t i c e s [ 3 ] . y }) ;
13

14 f l o a t width = x_max − x_min ;
15 f l o a t he ight = y_max − y_min ;
16

17 // Create the r e c t a n g l e
18 cv : : Rect2f r o i (x_min , y_min , width , he ight ) ;
19

20 // Center o f r e c t a n g l e
21 i n t x = x_min + width /2 ;
22 i n t y = y_min + he ight /2 ;
23

24 auto ID = std : : to_st r ing ( ob j e c t . id ) ;
25

26 s l : : f l o a t 4 point_cloud_value ;
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27 point_cloud . getValue (x , y , &point_cloud_value ) ;
28

29 f l o a t distance_mask_min = 10000 . 0 ;
30 f l o a t x_pos = 0 . 0 ;
31 f l o a t y_pos = 0 . 0 ;
32 f l o a t l e f t _ a n g l e = 0 . 0 ;
33 f l o a t r ight_ang le = 0 . 0 ;
34 f l o a t y l = 0 . 0 ;
35 f l o a t yr = 0 . 0 ;
36 f l o a t d_x_pos = 0 . 0 ;
37 f l o a t D_to_right = 0 . 0 ;
38 f l o a t D_to_left = 0 . 0 ;
39

40 i f ( ob j e c t . mask . i s I n i t ( ) ) {
41

42 std : : cout << "Mask i s a v a i l a b l e " << std : : endl ;
43 Mat mask = ob j e c t . mask ;
44 cv : : Mat mask_cv = cv : : Mat(mask . getHeight ( ) , mask . getWidth ( ) ,

CV_8UC1, mask . getPtr<s l : : uchar1 >( s l : :MEM: :CPU) ) ;
45

46 f o r ( i n t i =0; i<i n t (mask . getHeight ( ) ) ; i++)
47 {
48 f o r ( i n t j =0; j<i n t (mask . getWidth ( ) ) ; j++)
49 {
50 i f (mask_cv . at<s l : : uchar1 >( i , j ) == 255)
51 {
52 s l : : f l o a t 4 point_cloud_value_mask ;
53 point_cloud . getValue ( j+x_min , i+y_min , &

point_cloud_value_mask ) ;
54

55 i f ( s td : : i s f i n i t e ( point_cloud_value_mask . z ) )
56 {
57 f l o a t distance_mask = abs (

point_cloud_value_mask . z ) ;
58

59 i f ( distance_mask < distance_mask_min )
60 {
61 distance_mask_min = distance_mask ;
62 x_pos = j+x_min ;
63 y_pos = i+y_min ;
64 d_x_pos = abs ( point_cloud_value_mask . x ) ;
65 }
66 }
67 }
68 }
69 }
70

71 cv : : Point MiddlePoint ( x_pos , y_pos ) ;
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72 cv : : c i r c l e ( depth_image_ocv , MiddlePoint , 2 , cv : : S ca l a r (0 ,
255 , 0) , 2) ; // Green

73

74 // External po in t s
75 f l o a t x l = x_min+1;
76 y l = y_pos ;
77 f o r ( i n t i = 0 ; i <10; i++) {
78 x l += i ;
79 s l : : f l o a t 4 point_cloud_value_check_l ;
80 point_cloud . getValue ( xl , yl , &point_cloud_value_check_l ) ;
81 i f ( s td : : i s f i n i t e ( point_cloud_value_check_l . z ) ) {
82 break ;
83 }
84 }
85 cv : : Point Le f tPo int ( xl , y l ) ;
86 cv : : c i r c l e ( depth_image_ocv , LeftPoint , 2 , cv : : S ca l a r (255 , 0 ,

0) , 2) ;
87

88 f l o a t xr = x_max−1;
89 yr = y_pos ;
90 f o r ( i n t i = 0 ; i <10; i++) {
91 xr −= i ;
92 s l : : f l o a t 4 point_cloud_value_check_r ;
93 point_cloud . getValue ( xr , yr , &point_cloud_value_check_r ) ;
94 i f ( s td : : i s f i n i t e ( point_cloud_value_check_r . z ) ) {
95 break ;
96 }
97 }
98 cv : : Point RightPoint ( xr , yr ) ;
99 cv : : c i r c l e ( depth_image_ocv , RightPoint , 2 , cv : : S ca l a r (0 , 0 ,

255) , 2) ;
100

101 s l : : f l o a t 4 point_cloud_value_mask_extLeft ;
102 point_cloud . getValue ( xl , yl , &point_cloud_value_mask_extLeft )

;
103 f l o a t d_xl = abs ( point_cloud_value_mask_extLeft . x ) ;
104 f l o a t distance_mask_extLeft = abs (

point_cloud_value_mask_extLeft . z ) ;
105 D_to_left = abs (d_x_pos − d_xl ) ;
106

107 i f ( D_to_left != 0) {
108 f l o a t le f t_angle_rad = atan ( ( distance_mask_extLeft −

distance_mask_min ) /D_to_left ) ;
109 l e f t _ a n g l e = (180∗ le f t_angle_rad ) /M_PI;
110 }
111 e l s e i f ( abs ( D_to_left+D_to_right ) < 250)
112 {
113 l e f t _ a n g l e = 0 ;
114 }
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115 e l s e
116 {
117 l e f t _ a n g l e = 90 ;
118 }
119

120 s l : : f l o a t 4 point_cloud_value_mask_extRight ;
121 point_cloud . getValue ( xr , yr , &point_cloud_value_mask_extRight

) ;
122 f l o a t d_xr = abs ( point_cloud_value_mask_extRight . x ) ;
123 f l o a t distance_mask_extRight = abs (

point_cloud_value_mask_extRight . z ) ;
124 D_to_right = abs (d_x_pos − d_xr ) ;
125 i f ( abs ( D_to_left+D_to_right ) < 200)
126 {
127 r ight_ang le = 0 ;
128 }
129 e l s e
130 {
131 i f ( D_to_right != 0) {
132 f l o a t r ight_angle_rad = atan ( (

distance_mask_extRight − distance_mask_min ) /D_to_right ) ;
133 r ight_ang le = (180∗ right_angle_rad ) /M_PI;
134 }
135 e l s e
136 {
137 r ight_ang le = 90 ;
138 }
139 }
140 }
141 e l s e
142 {
143 std : : cout << "Mask NOT a v a i l a b l e " << std : : endl ;
144 }
145

146 // Or intentat ion check
147 i f ( D_to_right > D_to_left ) {
148 r ight_ang le = − right_ang le ;
149 }
150

151 // F i l t e r on the ang le
152 f l o a t f i l t e r e d _ r i g h t _ a n g l e = 0 . 0 ;
153

154 i f ( ob j e c t . id > la s t_ id | | f i r s t _ v ) {
155 QQueue<f l o a t > qQ;
156 qQ. push_back ( r ight_ang le ) ;
157 angle_storage [ ob j e c t . id ] = qQ;
158 }
159 e l s e
160 {
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161 i f ( ang le_storage [ ob j e c t . id ] . s i z e ( ) >= 30) {
162 angle_storage [ ob j e c t . id ] . pop_front ( ) ;
163 }
164 angle_storage [ ob j e c t . id ] . push_back ( r ight_ang le ) ;
165

166 f l o a t sum = 0 ;
167 f o r ( i n t i =0; i<angle_storage [ ob j e c t . id ] . s i z e ( ) ; i++) {
168 sum += angle_storage [ ob j e c t . id ] [ i ] ;
169 }
170 f i l t e r e d _ r i g h t _ a n g l e = sum/ angle_storage [ ob j e c t . id ] . s i z e ( ) ;
171 }
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1 // Check a l l ob j e c t d i f f e r e n t from car s
2 i f ( ob j e c t . l a b e l != OBJECT_CLASS : : VEHICLE | | ( ob j e c t . l a b e l ==

OBJECT_CLASS : : VEHICLE && ob j e c t . sub l abe l != OBJECT_SUBCLASS : :CAR) )
{

3

4 QVector3D posUP( ob j e c t . p o s i t i o n . x , ob j e c t . p o s i t i o n . y , ob j e c t .
p o s i t i o n . z ) ;

5 f l o a t pos i t ionX = ob j e c t . p o s i t i o n . x ;
6 f l o a t pos i t ionY = ob j e c t . p o s i t i o n . y ;
7 f l o a t po s i t i onZ = ob j e c t . p o s i t i o n . z ;
8 f l o a t width = ob j e c t . d imensions . x /2 ;
9 f l o a t he ight = ob j e c t . d imensions . y ;

10 i n t canc_p = 15 ;
11

12 i f ( ob j e c t . id > la s t_ id | | f i r s t _ p ) {
13

14 pModel . append ( ob j e c t . id , canc_p , pos it ionX , pos it ionY ,
pos i t ionZ , width , he ight ) ;

15 f i r s t _ p = f a l s e ;
16 l a s t_ id = ob j e c t . id ;
17 }
18 e l s e
19 {
20 pModel . update ( ob j e c t . id , posUP , width , he ight ) ;
21 vModel . f r e eupdate ( ) ;
22 }
23 }
24

25 // For ca r s
26 e l s e
27 {
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28 // Data f o r qml model
29 QVector3D posUP( ob j e c t . p o s i t i o n . x , ob j e c t . p o s i t i o n . y , ob j e c t .

p o s i t i o n . z ) ;
30 QVector3D rotUP (0 , 180 + f i l t e r ed_r i gh t_ang l e , 0) ;
31 f l o a t pos i t ionX = ob j e c t . p o s i t i o n . x ;
32 f l o a t pos i t ionY = ob j e c t . p o s i t i o n . y ;
33 f l o a t po s i t i onZ = ob j e c t . p o s i t i o n . z ;
34 f l o a t angleX = 0 . 0 ;
35 f l o a t angleY = 180 + f i l t e r e d _ r i g h t _ a n g l e ;
36 f l o a t angleZ = 0 . 0 ;
37 i n t canc = 15 ;
38

39 i f ( ob j e c t . id > la s t_ id | | f i r s t _ v ) {
40 vModel . append ( ob j e c t . id , canc , pos it ionX , pos it ionY ,

pos i t ionZ , angleX , angleY , angleZ ) ;
41 f i r s t _ v = f a l s e ;
42 l a s t_ id = ob j e c t . id ;
43 }
44 e l s e
45 {
46 vModel . update ( ob j e c t . id , posUP , rotUP ) ;
47 pModel . f r e eupdate ( ) ;
48 }
49 }
50 }
51

52 // Free update to d e l e t e the scene i f no de t e c t i on
53 vModel . f r e eupdate ( ) ;
54 pModel . f r e eupdate ( ) ;
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1 #inc lude " Vmodel . h "
2 #inc lude <qqml . h>
3 #inc lude <QRandomGenerator>
4

5 VModel : : VModel ( QObject ∗ parent )
6 : QObject{ parent }
7 {}
8

9 QQmlListProperty<VehicleModel> VModel : : v e h i c l e s ( )
10 {
11 #i f QT_VERSION < QT_VERSION_CHECK(5 , 15 , 0)
12 re turn QQmlListProperty<VehicleModel >( th i s , m_vehicles ) ;
13 #e l s e
14 re turn QQmlListProperty<VehicleModel >( th i s , &m_vehicles ) ;
15 #e n d i f
16 }
17

18 void VModel : : append ( i n t id , i n t canc , f l o a t pos it ionX , f l o a t
pos it ionY , f l o a t pos i t ionZ , f l o a t angleX , f l o a t angleY , f l o a t
angleZ )

19 {
20 QVector3D p o s i t i o n = { posit ionX , pos it ionY , pos i t i onZ } ;
21 qDebug ( ) << " Veh ic l e p o s i t i o n : " << p o s i t i o n ;
22 QVector3D eu l e rRota t i on = { angleX , angleY , angleZ } ;
23 qDebug ( ) << " Veh ic l e r o t s t i o n : " << eu l e rRota t i on ;
24 i n t ID = id ;
25

26 append ( ID , canc , po s i t i on , eu l e rRota t i on ) ;
27 }
28
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29 void VModel : : append ( i n t &ID , i n t &canc , QVector3D &pos i t i on ,
QVector3D &eu l e rRota t i on )

30 {
31 VehicleModel ∗ v e h i c l e = new VehicleModel ( t h i s ) ;
32 veh i c l e −>setID ( ID) ;
33 veh i c l e −>setCanc ( canc ) ;
34 veh i c l e −>s e t P o s i t i o n ( p o s i t i o n ) ;
35 veh i c l e −>setEu le rRotat ion ( eu l e rRota t i on ) ;
36 m_vehicles . append ( v e h i c l e ) ;
37 qDebug ( ) << " Veh i c l e s l i s t " << m_vehicles . s i z e ( ) ;
38 emit vehic lesChanged ( ) ;
39 qDebug ( ) << " S igna l vehic lesChanged emitted (Append) " ;
40 }
41

42 void VModel : : update ( i n t ID , QVector3D posUp , QVector3D rotUp )
43 {
44 f o r ( i n t i = 0 ; i < m_vehicles . s i z e ( ) ; ++i ) {
45 auto v e h i c l e = m_vehicles . at ( i ) ;
46 i f ( v eh i c l e −>canc ( ) < 1) {
47 m_vehicles . removeAt ( i ) ;
48 −−i ;
49 }
50 }
51

52 f o r ( auto& v e h i c l e : m_vehicles ) {
53 i f ( v eh i c l e −>ID ( ) == ID) {
54 veh i c l e −>s e t P o s i t i o n ( posUp ) ;
55 qDebug ( ) << " Veh ic l e p o s i t i o n update : " << posUp ;
56 veh i c l e −>setEu le rRotat ion ( rotUp ) ;
57 qDebug ( ) << " Veh ic l e r o t a t i o n update : " << rotUp ;
58 qDebug ( ) << " Update v e h i c l e with ID : " << ID ;
59 i n t v = 15 ; // I n i z i a l i z a t i o n value
60 veh i c l e −>setCanc ( v ) ;
61 }
62 i n t reducedCanc = veh i c l e −>canc ( ) − 1 ;
63 veh i c l e −>setCanc ( reducedCanc ) ;
64 }
65

66 emit vehic lesChanged ( ) ;
67 qDebug ( ) << " S igna l vehic lesChanged emitted ( Update ) " ;
68 }
69

70 void VModel : : f r e eupdate ( )
71 {
72 f o r ( i n t i = 0 ; i < m_vehicles . s i z e ( ) ; ++i ) {
73 auto v e h i c l e = m_vehicles . at ( i ) ;
74 i f ( v eh i c l e −>canc ( ) < 1) {
75 m_vehicles . removeAt ( i ) ;
76 −−i ;
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77 }
78 }
79

80 f o r ( auto& v e h i c l e : m_vehicles ) {
81 i n t reducedCanc = veh i c l e −>canc ( ) − 1 ;
82 veh i c l e −>setCanc ( reducedCanc ) ;
83 }
84 emit vehic lesChanged ( ) ;
85 }
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1 import QtQuick
2 import QtQuick . Contro l s . Bas ic
3 import QtQuick3D
4 import QtQuick3D . Helpers
5 import QtQuick . Window
6

7 import " a s s e t s / t e s l a_b lender "
8 import " a s s e t s / tes la_ego "
9

10 ApplicationWindow {
11 i d : window
12 width: 1280
13 h e i g h t : 720
14 v i s i b l e : t rue
15 c o l o r : " b lack "
16

17 Node {
18 i d : s c eneRoot
19

20 PerspectiveCamera {
21 i d : camera
22 p o s i t i o n : Qt . vector3d (0 , 0 , 0)
23 eu l e rRota t i on . y : 0
24 eu l e rRota t i on . x : 0
25 f i e l dOfV i ew : 70
26 }
27

28 D i r e c t i o n a l L i g h t {
29 eu l e rRota t i on . y : 10
30 eu l e rRota t i on . x : −90
31 }
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32

33 Connections {
34 t a r g e t : vModel
35 f unc t i on onVehicleChanged ( ) {
36 conso l e . l og ( " Manual connect ion s i g n a l " )
37 }
38 }
39

40 Repeater3D {
41 i d : veh i c l e3dRepeate r
42 model: vModel . v e h i c l e s
43

44 d e l e g a t e : Tes la {
45 p o s i t i o n : model . p o s i t i o n
46 s c a l e : Qt . vector3d ( 0 . 5 , 0 . 5 , 0 . 5 )
47 e u l e r R o t a t i o n : model . eu l e rRota t i on
48 }
49 }
50

51 Connections {
52 t a r g e t : pModel
53 }
54

55 Repeater3D {
56 i d : person3dRepeater
57 model: pModel . people
58

59 d e l e g a t e : Model {
60 i d : myCylinder
61 s o u r c e : "#Cyl inder "
62 p o s i t i o n : model . p o s i t i o n
63 property r e a l cy l i nde rRad iu s : model . width
64 property r e a l c y l i n d e r H e i g h t : model . he ight
65 s c a l e : Qt . vector3d ( cy l inderRad ius /100 , cy l i nde rHe igh t

/100 , cy l inderRad ius /100)
66 m a t e r i a l s : P r i n c i p l edMate r i a l {
67 baseCo lo r : "#eeeeee "
68 }
69 }
70 }
71

72 Ego_car {
73 i d : e g o
74 p o s i t i o n : Qt . vector3d (0 , −150 ,100)
75 e u l e r R o t a t i o n : Qt . vector3d (0 ,180 ,0 )
76 }
77 }
78

79 View3D {
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80 i d : view
81 anchors . f i l l : parent
82 camera: camera
83 renderMode: View3D . Overlay
84

85 environment: SceneEnvironment {
86 i d : sceneEnvironment
87 an t i a l i a s i ngMode : SceneEnvironment .MSAA
88 a n t i a l i a s i n g Q u a l i t y : SceneEnvironment . VeryHigh
89 }
90 importScene : sceneRoot
91

92 }
93

94 WasdControl ler {
95 c o n t r o l l e d O b j e c t : camera
96 }
97 }
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