
Politecnico Di Torino
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Survey on Machine Learning and Artificial Intelligence
used for Electronic Design Automation

Supervisor: Candidate:

Prof. Luciano.Lavagno Xing Zeyuan (296454)

July 2024

Contents

1 Abstract 1

2 Introduction 3

3 Background Information 10

3.1 Graph Neural Network (GNN) . 10
3.2 Convolutional Neural Network (CNN) . 11
3.3 Reinforcement Learning (RL) . 13

4 ML for EDA 16

4.1 ML for Functional Simulation . 16
4.2 ML for Formal Verification . 18

4.2.1 SAT . 19
4.2.2 Model Checking . 22
4.2.3 Assertion Estimation . 25
4.2.4 Runtime Estimation . 26

4.3 ML for Logic Synthesis . 27
4.3.1 Power estimation . 27
4.3.2 QoR Improvement . 29

4.4 ML for Placement . 34
4.4.1 Wirelength Minimization . 34
4.4.2 Performance Optimization . 36

i

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation ii

4.4.3 Timing Prediction . 40
4.5 ML for Routing . 42

4.5.1 DRC/Congestion Prediction . 43
4.5.2 Routability Prediction . 46

5 Conclusion 52

6 Acknowledgement 59

CHAPTER 1

Abstract

The complexity of EDA tools for ICs are crucial enablers for the semiconductor industry as the size of integrated
circuits (ICs) have been increasing enormously. With groundbreaking innovations in IC design and integration,
some chips even have up to billions transistors, in the meanwhile the slowing down of Moore’s Law have caused
that the number of transistors per design increases exponentially and doubles every two years. Consequently, the
corresponding design space which originally supposed to be searched for an implementation that satisfies all
specifications and then optimizes all related factors concerned as NP-Hardness problem in EDA like power, area,
delay (PPA) and runtime, etc. Along side this phenomenon, Machine Learning (ML) based algorithms which
could be used to enhance EDA tools and processes as Functional simulation, Logical synthesis, Physical design
(Placement & Routing mainly included) and some specific techniques that used to do verification and test as
Formal verification. Machine Learning techniques have been employed in many domains with great success
because of their ability to build powerful models from data. Consequently, ML has also been applied in computer
engineering where it guarantees to complement the insufficiency left by heuristic algorithms and start other new
possibilities. Employing ML-based algorithms gives the designers space to cultivate the abstraction level by
concentrating to the objective itself only and leave the practical details on how to reach the ultimate goals to the
ML models.

This thesis provides a comprehensive survey of the specific steps and techniques mainly used in state-of-art
EDA tools that use machine learning algorithms. The ML-based EDA tools are categorized based on the IC

1

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 2

design steps and techniques which are functional simulation, formal verification, logic synthesis, placement and
routing separately. State-of-the-art ML-based VLSI-EDA tools, current trends, and future perspectives of ML in
VLSI-EDA are also discussed in the end.

CHAPTER 2

Introduction

Over time, the Integrated Circuits (ICs) chip design flow has merged with several software tools to logic
synthesis, functional simulation, physical design, test and verify different electronic designs efficiently.The
overall compendium of all those technologies is called Electronic Design Automation (EDA). While the down-
scaling of CMOS technology, the design complexity of very large-scale integrated is incrementing, which leads
to the insufficiency of traditional EDA tools, Electronic Design Automation is a critical field in the semiconductor
industry, responsible for the automation of IC design processes.

As IC designs become more intricate and multifaceted, traditional EDA tools encounter significant challenges
in terms of efficiency, accuracy, and scalability. This is particularly evident with the ongoing advancement
of Moore’s Law, which has resulted in ICs with exponentially growing scale and complexity. The traditional
human-driven design and verification processes are becoming increasingly time-consuming and less precise,
creating a pressing need for Artificial Intelligence (AI) intervention to handle tasks that are becoming infeasible
for manual completion due to their time-consuming nature and inherent low precision. Furthermore, the current
EDA approaches are time and resource consuming with no optimal-solution guaranteed usually. However, the
design has to be verified and tested to ensure correctness, or to do the prediction before the actual synthesis to
achieve optimal PPA (Power, Performance, Area) and save the multiple iteration times in the meanwhile. To
achieve better performance and alleviate the situation of EDA tools, AI and Machine Learning (ML) has been
incorporated into many stages of design flow.

3

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 4

The rapid advancements in Machine Learning (ML) and Artificial Intelligence (AI) have revolutionized
numerous domains, including Electronic Design Automation (EDA). EDA tools, essential for designing complex
integrated circuits (ICs), have traditionally relied on algorithmic techniques. However, the ever-increasing
complexity of IC designs necessitates more efficient and intelligent solutions. This has led to the integration of
ML and AI techniques across various stages of the EDA process, from functional simulation to routing.

Machine Learning (ML) and Artificial Intelligence (AI) offer promising solutions to these challenges by
providing advanced methods for optimization, prediction, and automation. These technologies can significantly
enhance the efficiency and accuracy of EDA tools, making them indispensable for future IC design processes.
As the scale and complexity of integrated circuits continue to grow, the necessity for innovative approaches
to design automation becomes even more crucial. The integration of AI and ML into EDA processes aims to
address these challenges by automating the traditionally labor-intensive and error-prone tasks, thus improving
overall design productivity and accuracy.

Functional simulation is one of the initial stages in the EDA process where ML techniques have been
applied to improve efficiency. Traditional simulation methods often require exhaustive testing, which can be
both time-consuming and resource-intensive. ML techniques, such as isolation-forest anomaly detection, have
been employed to select the most relevant tests for simulation, thereby reducing the overall runtime without
compromising coverage. This approach not only enhances the efficiency of the simulation process but also ensures
that critical functional behaviors are thoroughly tested. By leveraging ML algorithms, engineers can focus on the
most pertinent test cases, thereby accelerating the verification process and reducing the computational burden.

In addition to enhancing test selection, ML techniques have been used to predict potential simulation outcomes,
enabling more targeted testing strategies. For instance, predictive models can identify likely failure points within
a design, allowing engineers to preemptively address issues before they become critical. This proactive approach
not only saves time but also enhances the reliability and robustness of the final product. The ability to predict and
mitigate potential issues early in the design cycle is a significant advantage, particularly as IC designs become
more complex and prone to subtle, hard-to-detect faults.

Formal verification is another crucial stage in the EDA process where ML techniques have shown significant
promise. Boolean Satisfiability (SAT) solvers, which are fundamental to formal verification, have been augmented

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 5

with various ML techniques to improve their performance. Techniques such as Gated Graph Convolutional
Networks (Gated-GCN), Recurrent Graph Neural Networks (Recurrent-GNN), and Reinforcement Learning
(RL) have been utilized to develop more efficient SAT solvers. These ML-enhanced solvers can predict solutions,
guide local search heuristics, and learn branching heuristics, thereby making the formal verification process
more robust and scalable. The integration of ML in formal verification not only accelerates the process but also
enhances its accuracy, enabling the verification of increasingly complex designs within feasible timeframes.

One of the significant challenges in formal verification is the state space explosion problem, where the
number of possible states that need to be checked grows exponentially with the size of the design. ML techniques,
particularly those involving neural networks and reinforcement learning, offer a way to navigate this vast state
space more efficiently. By learning from previous verification tasks, these techniques can identify patterns and
heuristics that lead to quicker convergence on a solution. This capability is especially valuable for verifying
modern, large-scale IC designs, where traditional methods struggle to keep pace with the complexity.

Logic synthesis, a critical phase in the EDA workflow, has also benefited from the integration of ML
techniques. Power estimation, Quality of Results (QoR) improvement, and design space exploration are key
aspects of logic synthesis where ML has been applied. Graph Neural Networks (GNN), Deep Neural Networks
(DNN), and Recurrent Neural Networks (RNN) are among the ML techniques used to develop models that can
accurately estimate power consumption, improve QoR, and automate the design space exploration process. These
advancements have led to more efficient and effective logic synthesis methodologies. ML-driven logic synthesis
enables designers to explore a wider array of design alternatives more quickly, leading to optimal solutions that
might be missed using traditional methods.

Moreover, ML techniques have been employed to optimize the trade-offs between power, performance, and
area (PPA) in logic synthesis. By training models on large datasets of design examples, these techniques can
predict the PPA characteristics of new designs with high accuracy, enabling more informed decision-making.
This predictive capability is particularly valuable in the early stages of design, where rapid iterations are essential
to meet stringent design constraints. The ability to accurately estimate and optimize PPA characteristics early in
the design process significantly enhances the overall efficiency and effectiveness of the EDA workflow.

Placement and routing are subsequent stages in the EDA process that involve the physical arrangement of

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 6

circuit components on a chip. The optimization of placement and routing is critical for minimizing wire length,
improving timing, and ensuring overall chip performance. ML techniques such as Graph Attention Networks
(GAT), Policy Gradient Optimization, and Convolutional Neural Networks (CNN) have been employed to
optimize these stages. These techniques enable more accurate predictions of wire length, timing, and congestion,
thus facilitating better placement and routing decisions. The application of ML in placement and routing not only
improves the quality of the final layout but also reduces the time and effort required to achieve an optimal design.

In the placement stage, ML techniques help in predicting the optimal placement of components to minimize
wire length and improve overall design performance. For instance, GNNs can model the interdependencies
between various components and predict their optimal positions on the chip. This predictive capability reduces the
need for iterative placement adjustments, thereby speeding up the design process. Additionally, ML techniques
can be used to optimize specific design parameters, such as timing and power consumption, by considering a
broader range of placement options than traditional methods.

Routing, the final stage in the EDA process, is where the physical connections between components are estab-
lished. ML techniques have been particularly effective in congestion estimation and routability prediction. Linear
Regression, Artificial Neural Networks (ANN), Random Forests, and more advanced models like Conditional
Generative Adversarial Networks (Conditional-GAN) and Lattice Hypergraph Neural Networks (LHNN) have
been used to predict routing congestion and improve the routability of designs. These techniques help identify
potential routing issues early in the design process, allowing for preemptive adjustments that enhance overall
design quality and performance. By accurately predicting and mitigating routing challenges, ML techniques
ensure that the final design meets all performance and reliability requirements.

Furthermore, ML techniques have been used to develop routing algorithms that adapt to the specific charac-
teristics of each design. For example, reinforcement learning-based approaches can learn from previous routing
tasks to develop strategies that are tailored to the unique requirements of new designs. This adaptability is crucial
for handling the diverse and increasingly complex routing challenges posed by modern ICs. By continuously
learning and improving, these ML-based routing algorithms provide a dynamic and effective solution to one of
the most challenging aspects of EDA.

The integration of ML and AI in EDA represents a significant paradigm shift, promising to enhance the

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 7

efficiency and effectiveness of IC design processes. As AI and ML technologies continue to evolve, they
are expected to become increasingly indispensable in EDA design, leading to higher efficiency and greater
precision in the design and verification of ICs. This survey aims to provide researchers and practitioners with
insights into current trends, methodologies, and potential future developments in this rapidly evolving field.
By summarizing the cutting-edge research that combines AI and ML with EDA design, this survey seeks to
highlight the transformative potential of these technologies in overcoming the challenges posed by modern IC
design complexities.

Through this comprehensive review, we aim to shed light on the significant advancements and applications
of ML and AI in EDA, focusing on their impact across various stages of the design process. By examining the
state-of-the-art research and identifying key trends and future directions, this survey serves as a valuable resource
for both academic researchers and industry practitioners seeking to leverage ML and AI for more efficient and
effective EDA solutions. The ultimate goal is to provide a thorough understanding of how these technologies
are currently being applied, their benefits, and their limitations, as well as to offer insights into future research
directions that can further enhance the capabilities and applications of ML and AI in EDA.

The transformative potential of ML and AI in EDA is particularly evident when considering the broader
implications for the semiconductor industry. As the demand for more powerful and efficient ICs continues to
grow, the pressure on design teams to deliver innovative solutions within shorter time-slots is increasing. ML and
AI offer a path to meet these demands by automating and optimizing key aspects of the design process. This not
only reduces the time and resources required to bring new products to market but also enables the development
of more advanced and reliable ICs.

The integration of ML and AI into EDA processes is not just about replacing existing techniques but
augmenting them with new capabilities. For instance, ML models can be used to analyze vast amounts of
design data, uncovering patterns and insights that human designers might miss. This can lead to more informed
decision-making and better design outcomes. Additionally, AI-driven tools can continuously learn and improve
from new data, ensuring that they remain effective even as design challenges evolve. This adaptability is crucial
in a field where technological advancements occur at a rapid pace, requiring tools that can keep up with the latest
developments and provide cutting-edge solutions.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 8

Moreover, the use of ML and AI in EDA can facilitate greater collaboration and integration across different
stages of the design process. For example, data from the functional simulation stage can be used to inform
formal verification, logic synthesis, placement, and routing, creating a more cohesive and streamlined workflow.
This holistic approach can help identify and address potential issues earlier in the design process, reducing the
likelihood of costly revisions later on. By breaking down isolations between different EDA stages, ML and
AI can enable a more efficient and effective design process that leverages the full potential of these advanced
technologies.

In conclusion, the integration of ML and AI into EDA processes is a crucial development that addresses
the growing complexity and demands of modern IC design. By leveraging these advanced technologies, the
EDA field can achieve significant improvements in efficiency, accuracy, and scalability, paving the way for
the next generation of semiconductor innovations. This survey aims to provide a comprehensive overview of
the current state of ML and AI applications in EDA, highlighting the key research advancements, practical
applications, and future directions. By doing so, it seeks to contribute to the ongoing evolution of EDA tools
and methodologies, ultimately supporting the continued progress of the semiconductor industry. The ongoing
research and development in this field promise to unlock new possibilities for IC design, enabling the creation
of more powerful, efficient, and reliable electronic devices that meet the ever-increasing demands of modern
technology.

Through this detailed exploration, we hope to inspire further research and innovation in the application of ML
and AI to EDA. As these technologies continue to advance, their integration into EDA processes will become
increasingly sophisticated, offering even greater benefits. By staying at the forefront of these developments, the
semiconductor industry can continue to push the boundaries of what is possible, driving progress and delivering
cutting-edge solutions that shape the future of technology. The potential of ML and AI in EDA is vast, and we
are only beginning to scratch the surface of what these technologies can achieve. With continued investment and
collaboration, the future of IC design looks brighter than ever, promising a new era of innovation and excellence
in the semiconductor industry.

The rest of the paper is organized as follows. In chapter 3 I described background information on different
Neural Networks as Graph Neural Network, Convolutional Neural Network and Reninforcement Learning

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 9

Methods briefly. Chapter 4 provides a comprehensive illustration of EDA steps and techniques that utilized
machine learning based methods to solve different tasks and reach specific purposes. At last in chapter 5 I gave a
conclusion of the whole paper and present a personal perspective of the future concerns the ML-based methods
within EDA that drew from those papers.

CHAPTER 3

Background Information

In this chapter, I briefly make a summary of background information related to Reinforcement Learning, Graph
Neural Network and Convolutional Neural Network.

3.1 Graph Neural Network (GNN)

In the context of advanced computational techniques, Graph Neural Networks (GNNs) have emerged as a
powerful tool for handling graph-structured data, which is prevalent in many domains, including EDA. GNNs
extend traditional neural networks by incorporating graph structures into their computations, allowing them to
capture dependencies and relationships between nodes. A graph G = (V,E) consists of a set of nodes V and
edges E that connect these nodes. In the case of EDA, the nodes could represent components such as logic gates,
while the edges represent the connections between them.

GNNs operate by iteratively updating the representation of each node based on the features of its neighboring
nodes. This process can be mathematically described by the following update rule:

ℎ(𝑘)𝜈 = 𝜎(
∑

𝜇∈𝑁(𝜈)

𝑊 (𝑘)ℎ(𝑘−1)𝜇 + 𝑏(𝑘)) (3.1)

Where

• ℎ(𝑘)𝜈 represents the feature vector of node 𝜈 at iteration k;

10

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 11

• 𝑁(𝜈) denotes the set of neighboring nodes of 𝜈;

• 𝑊 (𝑘) is a learnable weight matrix;

• 𝑏(𝑘) is a bias term;

• 𝜎 is an activation function;

This equation captures the essence of message passing in GNNs, where information from neighboring nodes is
aggregated to update the node’s representation.

The power of GNNs lies in their ability to learn complex dependencies and relationships within graph-
structured data. This makes them particularly well-suited for applications in EDA, where the design and
verification processes often involve data that can be naturally represented as graphs. For instance, in circuit
design, the components and their interconnections form a graph structure that can be effectively analyzed using
GNNs. By leveraging the structural information in the graph, GNNs can perform tasks such as predicting design
characteristics, optimizing placement and routing, and improving formal verification.

Another key advantage of GNNs is their ability to generalize across different graph structures. This means
that a GNN trained on a specific set of graphs can be applied to new, unseen graphs, making them highly
versatile and adaptable. This generalization capability is particularly valuable in EDA, where designs can vary
significantly in complexity and structure. GNNs can learn to capture the underlying principles and patterns that
govern the behavior of different designs, enabling them to provide insights and optimizations that are broadly
applicable.

3.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are another class of neural networks widely used for processing grid-like
data, such as images. CNNs are particularly effective at capturing spatial hierarchies and patterns through the
use of convolutional layers. A convolutional layer applies a set of filters to the input data, generating feature
maps that highlight various aspects of the data. The convolution operation for a single filter can be expressed as:

(𝑓 ∗ 𝑥)(𝑖, 𝑗) =
∑

𝑚

∑

𝑛
𝑥(𝑖 + 𝑚, 𝑗 + 𝑛)𝜔(𝑚, 𝑛) (3.2)

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 12

Where

• x is the input image;

• 𝜔 is the fileter;

• (i,j) are the coordinates of the output feature map;

The filters are learned during the training process, allowing the network to detect features such as edges, textures,
and shapes at different levels of abstraction.

CNNs also employ pooling layers, which reduce the spatial dimensions of the feature maps and help to make
the representations more invariant to small translations of the input. The most common type of pooling is max
pooling, which takes the maximum value in each local region of the feature map:

𝑦(𝑖, 𝑗) = 𝑚𝑎𝑥(𝑚,𝑛)∈𝑅(𝑖,𝑗)𝑥(𝑚, 𝑛) (3.3)

Where

• R(i,j) denotes the local region around the coordinate(i,j);

The combination of convolutional and pooling layers allows CNNs to build increasingly abstract and high-level
representations of the input data, which are then used for various tasks such as classification, object detection,
and segmentation. In the context of EDA, CNNs can be applied to tasks where the design data can be represented
as images or matrices, such as layout optimization, thermal analysis, and hotspot detection.

CNNs have shown remarkable success in a wide range of image processing tasks, and their application in
EDA is an extension of this success. For example, in layout optimization, CNNs can analyze the layout of the
circuit to identify areas that need improvement and suggest changes that can enhance the overall performance
of the design. Similarly, in thermal analysis, CNNs can predict the thermal behavior of the circuit based on its
layout and component placement, allowing designers to make adjustments that reduce hotspots and improve
thermal management.

In hotspot detection, CNNs can identify regions of the design that are likely to cause manufacturing issues,
such as areas with high density of vias or narrow wire spacing. By detecting these hotspots early in the design

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 13

process, designers can make necessary adjustments to ensure that the design meets manufacturing constraints
and reduces the likelihood of defects. This capability is particularly important in advanced technology nodes,
where the margin for error is significantly smaller, and even minor issues can lead to yield loss.

3.3 Reinforcement Learning (RL)

Reinforcement learning (RL) is a type of machine learning that enables an agent to learn in an interactive
environment by trial and error using feedback from its own actions and experiences. Unlike supervised learning
where a training dataset complete with correct inputs and outputs is provided, in reinforcement learning, the
agent is designed to learn from the consequences of its actions. This approach is closely aligned with the ways in
which sentient beings learn from the environment, making it particularly useful for applications where explicit
programming is not feasible.

The foundational concept of RL involves understanding what actions an agent should take in a given
environment to maximize a notion of cumulative reward. The agent, through interactions within a designed or
simulated environment, receives rewards by performing correctly and penalties for making errors, guiding it to
learn optimal behaviors inherently. This method is modeled as a Markov Decision Process (MDP), characterized
by states, actions, rewards, and transitions.

MDP

• States(S) : A set of states that the enviroment can be in.

• Actions(A) : A set of actions that the agent can take.

• Transition Probability(P) : P(𝑠′ |,s,a) defines the probability of transitioning from state s to state 𝑠′

after taking action a.

• Reward Function(R) : R(s,a,𝑠′) defines the immediate reward received after transitioning from state s
to state 𝑠′ , due to action a.

• Discount Factor(𝛾) : A factor 𝛾 that between 0 and 1 and discounts future rewards, reflecting the
preference for sooner rather than later rewards.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 14

An RL model consists of three primary components: a policy, a reward signal, and a value function. The policy,
often denoted as 𝜋, defines the behavior of the agent by mapping states of the environment to the actions to be
taken when in those states. The reward signal, pivotal to reinforcement learning, indicates the immediate return
from an action taken by the agent. The goal of the agent is often to maximize the total reward it receives over the
long run. The value function specifies what is good in the long run; it provides a prediction of future rewards
that can be expected, conditioned on the current state and action taken by the agent.

Training an RL agent involves exploration and exploitation, where the agent has to balance between exploring
new actions that might lead to higher rewards and exploiting the actions that are known to yield the best results.
This dilemma is often handled using strategies such as 𝜀-greedy, where the agent will usually take the best known
action but occasionally will explore random actions. Another method is the use of advanced algorithms like
Upper Confidence Bound (UCB) or Thompson sampling which intelligently balance this trade-off based on
uncertainty and reward potential.

The learning process updates the policy based on the observed rewards and penalties. Algorithms such as
Q-learning and policy gradient methods are utilized to achieve this. In Q-learning, the agent learns an action-value
function that ultimately gives the expected utility of taking a given action in a given state and following the
current policy thereafter. For each state-action pair, it maintains a Q-value which is updated using the rewards
obtained. In policy gradient methods, instead of learning a value function that tells the potential of each action,
the parameters of the policy itself are adjusted in the direction that maximizes the expected reward.

Deep reinforcement learning combines neural networks with a reinforcement learning architecture that enables
agents to make decisions from unstructured input data. By using deep learning, the agent can interpret complex
sensors and image data to make informed decisions. This has led to significant breakthroughs, particularly in
areas like gaming, autonomous driving, and robotics, where traditional approaches were limited.

Recent advancements in RL include the integration of deep learning techniques, leading to the development
of Deep Q-Networks (DQN) that have achieved superhuman performance in games like Atari. Beyond games,
reinforcement learning is applied in various real-world scenarios such as robotic control, energy management,
healthcare, and more, demonstrating its broad applicability and potential.

Despite its potential, RL faces challenges such as high variance in outcomes, substantial data requirements for

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 15

training in complex scenarios, and the difficulty in defining appropriate rewards that effectively guide the agent
towards desired behaviors without unintended side effects. Moreover, RL systems are typically computationally
expensive and sensitive to hyperparameters, which necessitates careful tuning and substantial computational
resources.

In summary, EDA and advanced neural network architectures like GNNs and CNNs represent two fundamental
areas of modern semiconductor design. EDA provides the tools and methodologies to automate the design
and verification of ICs, ensuring that they meet the required specifications and performance criteria. GNN, RL
and CNNs, on the other hand, offer powerful techniques for processing and analyzing complex data structures,
enabling new levels of efficiency and accuracy in various tasks. By understanding the foundational concepts
of both EDA and these neural networks, researchers and practitioners can better leverage their capabilities to
address the growing challenges of modern IC design.

CHAPTER 4

ML for EDA

4.1 ML for Functional Simulation

Functional simulation in Electronic Design Automation (EDA) serves as a foundational stage, ensuring integrated
circuits (IC) designs meet specified logical correctness before entering the more intricate phases of development.
This simulation validates the IC’s behavior under varied operational scenarios to catch any functional inaccuracies
early, thereby saving significant time and resources later in the design cycle.

The employment of machine learning (ML) techniques in functional simulation has introduced a revolutionary
approach to handling the vast data and complex scenarios typical of this stage. Particularly, the use of unsupervised
learning models like isolation forests in Reference [1] to detect anomalies in test coverage data exemplifies a
strategic enhancement over traditional methods. These models analyze the outputs from fast functional simulators,
which provide rapid feedback on the IC’s behavior under test conditions. By focusing on tests as shows in Figure
4.1that uncover unique or infrequent behaviors, ML-driven approaches can drastically reduce the number of
tests needed while still maintaining thorough coverage. This method not only cuts down on the computational
load but also speeds up the overall simulation process by prioritizing areas of the design that are most likely to
contain critical faults. However, while ML methods offer significant efficiency improvements, they do require
careful calibration and a thorough understanding of the underlying data to be effective. The quality of the results
depends heavily on the accuracy of the anomaly detection model and the relevance of the features it considers.

16

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 17

Figure 4.1: Test Selection Flow with isolation-forests machine learning method as an Anomaly Detector

There is also the risk of overlooking important issues if the model is not appropriately tuned to recognize subtle
but critical anomalies.

Nevertheless, due to the characteristic of functional simulation at RTL which is "100%-accurate", the novel
techniques like Machine Learning is nearly impossible to optimize this part directly with guarantee the accuracy
baseline, hence I looked through several papers that dedicate in this purpose with traditional methods.

Traditional methods in functional simulation continue to play a crucial role, particularly through advancements
in optimizing compilers and code instrumentation techniques. For example, optimizing compilers like the one
used in Reference [2] the JIT compilation approach for RTL simulation can significantly enhance simulation
speeds. By applying hardware-centric optimizations and leveraging an advanced intermediate representation
that accurately models the hardware’s behavior, these compilers transform how simulation tasks are executed.
They allow for runtime code generation that is highly optimized for the target architecture, resulting in faster
simulation times.

Code instrumentation techniques, particularly those that focus on loop-oriented optimizations, address
another common bottleneck in RTL simulations. In Reference [3]by identifying and optimizing the performance
of critical loops within the simulation code, these techniques can considerably reduce the time required to

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 18

simulate complex designs. They provide deep insights into the code’s execution at runtime, enabling targeted
optimizations that improve overall simulation efficiency.

Despite their benefits, traditional methods also have limitations. For instance, optimizing compilers require
extensive knowledge of both software and hardware architectures to effectively translate RTL code into an
optimized form. This dual requirement can complicate the development and maintenance of such tools. Similarly,
code instrumentation can introduce overheads that may slow down the simulation under certain conditions,
especially if not carefully managed.

Moreover, the integration of both ML techniques and traditional methods presents a comprehensive approach
to tackling the challenges of functional simulation. ML methods provide a high-level overview, identifying
key areas for attention, while traditional techniques offer low-level optimizations that enhance the execution
of simulation tasks. This dual approach ensures not only extensive coverage through intelligent test selection
but also efficient processing of simulations, accommodating the increasing complexity and scale of modern IC
designs.

Stage of EDA Purpose ML methodFunctional Simulation Runtime Reduction (by selecting tests for simulation) isolation-forest anomaly detection [1]

Table 4.1: Summary of ML method applied in Functional Simulation

Incorporating ML into functional simulation marks a significant shift towards more intelligent and adaptive
EDA tools. However, it also necessitates ongoing research to further refine these techniques and fully integrate
them into the EDA workflow. As IC designs continue to grow in complexity, the synergy between ML-driven
strategies and traditional optimization methods will be crucial in developing the next generation of EDA tools
that are both powerful and efficient enough to meet the industry’s evolving needs. This blend of old and new
methodologies enriches the toolbox available to engineers, promising continued improvements in the speed and
accuracy of IC design and verification processes.

4.2 ML for Formal Verification

The integration of machine learning (ML) into formal verification within the realm of Electronic Design
Automation (EDA) is showing enormous potential, offering new strategies to improve the verification process’s

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 19

depth and efficiency. As the complexity of integrated circuits increasing promptly, traditional verification
methods are often strained by the vast state spaces and intricate designs they need to manage. ML offers a suite
of techniques that are increasingly considered essential in navigating these challenges more effectively.

Within which, the tasks that should be solved usually would be the Boolean SATisfiability problem, Model
checking, Assertion Generation and Run-time Estimation task.

4.2.1 SAT

To start with Boolean SAT problem, which is a significant NP-complete problem with numerous practical
applications–product configuration, hardware verification, and software package management, to name a few.
There is no single efficient algorithm that solves every SAT problem, but heuristics have been developed that are
sufficient for solving many real-life tasks.

A novel approach, as proposed by Zhang et al. [4], involves the use of a neural network model, NLocalSAT,
to enhance stochastic local search (SLS) solvers for Boolean satisfiability problems, a cornerstone in formal
verification.

NLocalSAT introduces a groundbreaking integration where a neural network is employed to predict initial-
ization assignments for the SLS solvers, fundamentally altering the search dynamics from traditional random
initialization methods. This method leverages the ability of neural networks to process complex patterns and
predict outcomes, thereby providing a more targeted and efficient starting point for the SAT solvers. The approach
significantly improves solver performance, achieving a 27% to 62% improvement in problem-solving efficiency
over traditional methods.

The core of NLocalSAT involves a graph-based neural network model that converts SAT instances into a
bipartite graph format, facilitating the neural network to better understand and process the structural information
of the problem. This structure is then used to predict initial variable assignments that are more likely to lead
to a solution rapidly. The integration of such predictive modeling into the initialization phase of SLS solvers
addresses one of the major inefficiencies in SAT solving — the randomness of initial conditions, which often
leads to prolonged search times and increased computational overhead.

Furthermore, the effectiveness of NLocalSAT is underscored by its application to various SLS solvers across

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 20

Figure 4.2: Query Machanism with an unsupervised Loss-function utilized

multiple datasets, showing consistent improvements across different types of SAT problems, which are common
in formal verification tasks. This adaptability suggests that the NLocalSAT approach could be broadly applicable
in the optimization of other formal verification processes within electronic design automation, potentially leading
to more efficient design cycles and faster time-to-market for complex electronic systems.

As in Reference [5] presented by Ozolins et al. exemplifies this progression by introducing QuerySAT, a
neural SAT solver enhanced with a unique query mechanism as shows in Figure 4.2. This mechanism allows
the solver to iteratively refine its predictions based on feedback from an unsupervised loss function, setting a
new standard for adaptive, intelligent computational tools in EDA. QuerySAT differentiates itself by utilizing a
step-wise recurrent structure where each iteration involves generating a query of variable assignments, evaluating
these against a specially formulated unsupervised loss function, and updating the solver’s state based on the
feedback. This feedback loop enables the model to continuously learn and adjust its strategies, mimicking a form
of ’intelligent’ problem-solving that evolves as the solver processes more information about the SAT instance it
tackles.

The significant advantage of QuerySAT lies in its ability to integrate seamlessly into existing SAT solving
frameworks while providing substantial improvements in performance. In comparative studies highlighted in the
paper, QuerySAT consistently outperforms traditional and baseline neural network models across various SAT
tasks, including complex challenges like 3-SAT and SHA-1 preimage attacks. These results not only demonstrate
the effectiveness of integrating query mechanisms into neural solvers but also suggest potential for further
enhancements in broader applications within EDA.

However, despite its strengths, the approach encapsulates inherent limitations, particularly regarding the

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 21

scalability and generalization of the model to larger, more diverse SAT instances. The reliance on recurrent steps
and the complexity of the unsupervised loss function might pose challenges in operational environments where
computational resources and time are constraints. Additionally, the adaptation of such a model in a real-world
setting would require extensive tuning and validation to ensure reliability and accuracy, particularly in high-stakes
applications like hardware verification.

Graph-Q-SAT represented in [6] with a novel approach where the traditional SAT solving process, especially
the branching heuristic, is enhanced through a Q-learning based algorithm utilizing graph neural networks (GNNs).
This model stands out by training on standard MiniSat, but it significantly deviates by using a reinforcement
learning framework to optimize the branching decisions dynamically, based on the state of the problem at any
point in the solving process.

One of the most commendable features of Graph-Q-SAT is its ability to quickly adapt its strategy based on
the problem instance, leading to a 2-3 times reduction in the number of iterations required to solve SAT problems.
This efficiency not only speeds up the solving process but also exhibits strong generalization capabilities. The
model was effective across various problem sizes and types, from SAT to unsatisfiable (unSAT) instances,
demonstrating its robustness in different scenarios.

Graph-Q-SAT’s training method is particularly notable for its data efficiency, requiring no extensive dataset
preparation or complex feature engineering, which simplifies its integration and scalability in practical settings.
Furthermore, it shows promising zero-shot transfer capabilities, performing well on problem types not encountered
during training. This ability to generalize from limited initial data points to a broader array of problems is a
significant step forward for machine learning applications in formal verification.

However, despite these strengths, the application of Graph-Q-SAT in an industrial context would require fur-
ther development. The primary challenge remains its scalability and the computational overhead associated with
running graph neural networks within the iterative solving process. There is also a need for more comprehensive
testing and refinement to ensure reliability and consistency across even more diverse and complex SAT instances.

the Reference [7] presented by Emre Yolcu and Barnabás Póczos shows a method that further refines the
capabilities of machine learning in this area. This research employs a deep reinforcement learning framework
alongside a graph neural network to develop a variable selection heuristic within a stochastic local search

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 22

algorithm, specifically designed for SAT solving.
The innovative aspect of their approach lies in the use of a graph neural network to enhance the heuristic

decision-making in the SLS algorithm, focusing on learning optimized heuristics for various classes of SAT
problems from scratch. This method allows for a more efficient search process by reducing the steps required to
find satisfying assignments, thereby potentially shortening the verification cycles in electronic design processes.

This study highlights the effectiveness of employing graph neural networks to capture and utilize the intricate
dependencies within SAT problems. The authors demonstrate that the learned heuristics can significantly
outperform generic heuristics, especially in terms of the number of search steps required, although at a higher
computational cost. The primary advantage is the tailored approach to different problem classes, which allows
for a more nuanced and effective search strategy compared to one-size-fits-all heuristics.

However, the scalability of this method poses a challenge, as the computational expense grows with the
complexity of the problems. This limitation may restrict its practical application to smaller or less complex
instances unless further optimizations can be made. Additionally, the generalizability of the learned heuristics
across different types of SAT problems without retraining remains an open question, potentially limiting the
approach’s flexibility.

4.2.2 Model Checking

Model checking is a critical technique in formal verification, designed to prove the correctness of design models
relative to a formal specification using exhaustive state-space exploration in a strict mathematical way . It
checks if a system model conforms to its specifications and can detect errors in systems with infinite states. The
properties to be verified are specified in a formal language, typically temporal logic, such as Linear Temporal
Logic (LTL) or Computation Tree Logic (CTL). Given its complexity and resource intensity, advancements in
integrating machine learning techniques to optimize model checking processes are pivotal.

The Reference [8] proposed by Elmandouh and Wassal explores the integration of supervised machine
learning techniques specifically for the orchestration of formal verification engines in RTL designs. The authors
leverage multi-class classification machine learning to effectively select the most suitable formal engines based
on past performance data, which includes a vast repository of 16,500 formal verification runs.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 23

Figure 4.3: Multi-engines Formal Verification orchestrating Flow

This innovative approach addresses the complexity and diversity of modern hardware design by orchestrating
a set of state-of-the-art formal verification algorithms as shows in Figure 4.3, allowing for efficient scheduling
that minimizes the time consumed for verifying individual design properties. By predicting which formal engines
are most likely to successfully verify a given property, the model ensures that verification tasks are not only
quicker but also more accurate, with an impressive accuracy of 88% in predicting the appropriate formal engines
for new designs. However, the scalability and the heavy reliance on historical data could be seen as potential
limitations. While the system shows significant improvements in runtime, up to 59%, the generalizability of
the approach to different or evolving hardware designs, where past data might not adequately represent future
verification scenarios, remains a challenge.

Another Reference [9] introduces a novel approach utilizing machine learning to streamline the process of
Linear Temporal Logic (LTL) model checking. This paper explores the potential of binary classification methods
to predict the outcomes of LTL model checking, thereby reducing the computational complexity traditionally
associated with this verification process.

The approach centers around training a binary classifier to predict whether a given model satisfies the specified
LTL properties before executing a full model checking process. Within which they’ve used machine learning

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 24

methods such as Boosted Tree(BT) Random Forest(RF) Decision Tree(DT) and Logistic Regression(LR) to
make the result comparasion. This preliminary prediction aims to filter out the models that are likely to fail the
LTL properties, thus potentially reducing the number of model checks needed. The classifier is trained on a
dataset generated from historical model checking runs, which include features extracted from the models and
their LTL specifications.

A significant advantage of this approach is its potential to decrease the computational resources required
for model checking by preemptively identifying models that are likely to violate the LTL properties, thereby
allowing computational efforts to be focused on more promising models. This can lead to faster verification
cycles in electronic design automation, where model checking is a critical component of the verification process.

However, the approach also exhibits limitations. The accuracy of the binary classifier heavily influences the
effectiveness of the entire model checking process. If the classifier’s predictions are inaccurate, it could either
miss some critical errors by falsely predicting compliance or waste resources by incorrectly flagging compliant
models. Additionally, the training process requires a substantial dataset of prior model checks, which might not
be readily available for all types of systems or might not represent future systems accurately, potentially limiting
the generalizability of the model.

Finally the Reference [10] which focused on solving model-checking issue either introduces an innovative
use of Generative Adversarial Networks (GANs) to automate the generation of verification properties for model
checking, specifically targeting the generation of Computational Tree Logic (CTL) properties. This method
represents a significant advancement in the domain of formal verification, where the manual generation of
properties is often complex and time-consuming.

The core idea of this approach is to employ GANs, where a generator network attempts to produce realistic
CTL formulas, and a discriminator network evaluates the realism of these formulas. The generator is trained on
a dataset of existing verification properties, learning to replicate and innovate on the CTL property structure.
The discriminator helps refine the quality of generated properties by filtering out those that do not adhere to CTL
grammar rules.

One of the key strengths of this method is its potential to significantly reduce the manual effort involved in
specifying verification properties, which can be a bottleneck in the model checking process. Additionally, the

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 25

system’s ability to learn and adapt to produce new properties that have not been explicitly taught offers a way to
discover potentially overlooked verification scenarios.

4.2.3 Assertion Estimation

In another hand, the Reference [11] authored by Aditi and Michael S. Hsiao, explores an innovative approach
combining rule-based systems and machine learning to generate SystemVerilog assertions directly from nat-
ural language specifications. This work addresses the complexity of translating natural language into formal
verification code, a process typically prone to human error and requiring considerable manual effort.

This hybrid method employs both rule-based formal analysis and machine learning techniques, specifically
utilizing models like GPT-3’s Curie and DaVinci engines. The rule-based component parses natural language
to understand its grammatical structure, identifying key elements such as signal names, values, and logical
conditions. Machine learning, on the other hand, assists by generating the final assertions based on extracted
information, aiming to enhance accuracy and handle more complex language structures that purely rule-based
systems might struggle with.

One of the main advantages of this approach is its ability to significantly automate the assertion generation
process, potentially decreasing the verification cycle time and reducing the likelihood of human error. This is
particularly valuable in the EDA industry where verification can consume a substantial portion of the development
cycle. Moreover, the method includes a validation step that cross-references the generated assertions with those
produced by other machine learning models to ensure accuracy, thereby minimizing the need for costly manual
validation.

Stage of EDA Purpose ML method

Formal Verification
Boolean SATisfiability

Gated-GCN [4]
Recurrent-GNN [5]

DQN(RL)+GNN [6]
RL+GNN [7]

Model Checking
Logistic Regression/MLP/Decision Tree [8]

Boost Tree/Random Forest/Decision Tree/ Logistic Regression [9]
GAN [10]

Assertion Generation GPT-3/OPENAI CODEX [11]
Runtime Estimation Ridge-Regression/Lasso-Regression [12]

Table 4.2: Summary of ML methods applied in Formal Verification

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 26

4.2.4 Runtime Estimation

he Reference [12] authored by Eman El Mandouh and Amr G. Wassal tackles the significant challenge of
predicting the cost and runtime required for formal verification in hardware design processes. The authors
utilize regression-based machine learning techniques to construct an estimation model that predicts the formal
verification runtime based on attributes of RTL designs.

Their approach employs multiple regression techniques, including Ridge and Lasso regression, to handle the
bias-variance trade-off and perform feature selection respectively. These methods are particularly suited to handle
overfitting and select the most significant features from the dataset which includes 10,000 formal verification
runs. The primary advantage of using these regression techniques is their ability to provide quantitative insights
into which design features significantly impact the verification process’s duration and complexity, thus allowing
for better planning and resource allocation in hardware design projects.

Besides all above, this method also presents limitations, primarily the dependency on the availability and
quality of historical data. Moreover, the regression models could struggle with non-linear relationships unless
appropriately transformed or parameterized, which can complicate the model training and selection process.

The reviewed literature explicit the integration of machine learning with formal verification in electronic
design automation. Highlighting significant advancements in automating and optimizing hardware verification
processes. Across nine studies, various machine learning approaches, including neural networks, regression
models, and reinforcement learning, are utilized to automate and optimize complex verification tasks. These
techniques range from generating SystemVerilog assertions from natural language to predicting formal verification
costs and enhancing solver efficiency. Despite their potential, challenges such as data dependency, model
overfitting, and generalizability still exist. However, the collective findings suggest a promising shift towards
more intelligent, adaptive verification tools that could significantly reduce verification times and improve the
reliability of hardware designs.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 27

4.3 ML for Logic Synthesis

In the stage of logic synthesis for electronic design automation, machine learning technologies are increasingly
being implemented to enhance power estimation, QoR (quality of result) and the overall design process of
converting higher-level descriptions of digital circuits into gate-level descriptions. The integration of machine
learning approaches enables more efficient handling of the complexities and constraints typical in modern circuit
design, such as power, timing, and area optimizations.

Machine learning methods, primarily deep learning and reinforcement learning, are applied to predict
outcomes and guide the synthesis process. For example, deep learning models can be trained on historical
synthesis data to predict the quality of synthesis outcomes based on various design choices. This predictive
capability allows designers to evaluate the potential impacts of different synthesis strategies without fully
implementing each one, thereby saving significant time and resources.

4.3.1 Power estimation

In the evolving field of EDA, particularly within the logic synthesis stage, the utilization of machine learning to
estimate power consumption has emerged as a significant area of research. Two notable contributions in this
area are the studies [13] and [14]. Both papers explore the application of graph neural networks (GNNs) but
focus on different aspects and methods within the power estimation process, reflecting a trend towards more
data-driven, intelligent approaches to handling the complexities of modern integrated circuit design.

GRANNITE focuses on leveraging transferable learning within GNN frameworks to estimate power con-
sumption across different semiconductor technologies without the need for retraining. This approach is significant
as it addresses the challenge of model obsolescence with changes in technology, making the power estimation
process more adaptable and cost-effective. The method involves training a model on a specific technology node
and then applying it to different nodes, highlighting its robustness and flexibility. The GNN model captures
intricate dependencies within the chip layout and operational parameters, offering predictions that adapt to
various configurations and usage scenarios.

GRASPE, on the other hand, delves into post-synthesis power estimation from Register Transfer Level

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 28

(RTL) designs using a graph representation learning approach. This technique is particularly geared towards
providing high accuracy in power estimation by converting RTL designs into a graph format where nodes and
edges represent components and their interactions, respectively. The paper underscores the accuracy of this
method in reflecting the real-world power usage of synthesized circuits, helping designers make more informed
decisions about power efficiency during the early stages of design.

Both papers utilize graph-based data structures to represent the intricate interactions and dependencies of
circuit elements, which is a natural fit for capturing the complex relationships inherent in integrated circuits.
GNNs are particularly suited to this task because they excel in mining relational data for patterns that traditional
neural network architectures might miss.

However, these approaches are not without limitations. The success of GRANNITE’s transferable model
depends heavily on the similarity between the technology nodes. If the nodes are too divergent in terms of design
and operational characteristics, the model’s effectiveness may decrease. GRASPE, while accurate, requires a
comprehensive and correctly labeled graph representation of RTL designs, which can be a resource-intensive
process, potentially limiting its applicability in rapid, iterative design cycles.

By comparing these two methods, it’s clear that while both leverage the strengths of GNNs, they apply
them at different stages of the design and synthesis process and with slightly different aims—GRANNITE
for transferability across technologies and GRASPE for immediate post-synthesis estimation accuracy. Such
distinctions are crucial for understanding the scope and potential deployment scenarios of each method within
the logic synthesis workflow. Subsequently, GRASPE was evaluated with the state-of-the-art GRANNITE for
inference latency and average power estimation and demonstrate an average improvement of 3.985X and 1.28%,
respectively.

Stage of EDA Purpose ML method

Logic Synthesis

Power Estimation GNN [13] [14]
QoR improvement DNN [15]

Recurrent-NN [16]
QoR(tuning DSE automatically RL [17]

QoR(choosing the best oprimizer for different parts of circuits DNN [18]
QoR(choosing high-quality synthesis flow) CNN [19]

QoR(improving synthesis optimization algorithm) RL [20]
Table 4.3: Summary of ML methods applied in Logic Synthesis

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 29

4.3.2 QoR Improvement

The Reference [15]introduces an innovative approach that integrates deep learning with approximate computing
and low-power design to optimize logic synthesis. This work is particularly significant as it aims to address
the Quality of Results (QoR) challenge in logic synthesis by efficiently minimizing power consumption while
managing a predetermined error rate.

Deep-PowerX employs a deep neural network (DNN) to predict the error rates at the primary outputs of
circuits when specific components of the netlist are approximated. This methodology allows the framework to
replace or remove gates strategically to reduce dynamic power consumption and, secondarily, the area. One of
the standout features of Deep-PowerX is its ability to reduce the time complexity of standard approximate logic
synthesis from exponential to linear, making it highly efficient in terms of runtime.

The framework operates by using the trained DNN to guide the approximate logic synthesis engine, proposing
replacements for each node in the circuit based on the error rates predicted by the model. If the predicted error
exceeds the user-defined threshold, the replacement is aborted, ensuring that the circuit maintains acceptable
accuracy levels. This process not only promises significant reductions in power and area but also maintains a
balance between performance and accuracy, a critical requirement in many modern electronic applications where
some degree of computational error can be tolerated for gains in efficiency.

In another Reference [16] Cunxi Yu and Wang Zhou present a sophisticated machine learning framework to
predict Quality of Result (QoR) metrics, such as delay and area, for synthesis flows across different semiconductor
technologies. Their methodology utilizes Long Short-Term Memory (LSTM) networks combined with transfer
learning to forecast the impacts of various synthesis decisions on unseen design flows.

The core innovation of their approach lies in the application of LSTM networks to model the sequential
decision-making process inherent in logic synthesis. The flows are represented in a novel "timed-model" format,
which encodes the sequence and timing of synthesis operations into a two-dimensional matrix. This representation
feeds into an LSTM model that predicts QoR outcomes based on past data collected from synthesis runs.

One of the significant advantages of their approach is the substantial reduction in the required size of the
training dataset, facilitated by transfer learning. This method enables the LSTM model, initially trained on a
dataset from 14nm technology, to adapt effectively to different technologies such as 7nm with minimal additional

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 30

Figure 4.4: Drills Framework with A2C Agent

training data. The model demonstrates impressive accuracy, with a Mean Absolute Percentage Error (MAPE) of
3.7% across technologies, indicating its robustness and the efficacy of the transfer learning strategy.

By improving the QoR indirectly, the Reference [17] authored by Abdelrahman Hosny, Soheil Hashemi,
Mohamed Shalan, and Sherief Reda explore the utilization of reinforcement learning to automate and optimize
the logic synthesis process, a crucial aspect in improving the QoR. The focus is on optimizing logic synthesis to
minimize area while meeting specific timing constraints, which are common goals in the synthesis of digital
circuits.

The DRiLLS framework employs an Advantage Actor Critic (A2C) model as shows in Figure 4.4, a sophis-
ticated type of reinforcement learning algorithm that combines the benefits of policy-based and value-based
methods. This model operates in a simulated environment where the sequential and combinatorial nature of
logic synthesis can be modeled as a decision-making game with clear rules and objectives. The state of the
design at any step is represented as a feature set derived from the And-Inverter Graph (AIG), which characterizes
the circuit. The reward function is carefully formulated to balance the need for area reduction with the adherence
to delay constraints, providing a direct incentive for the learning agent to find optimal synthesis transformations.
One of the key innovations of DRiLLS is its ability to operate autonomously, reducing the reliance on human
expertise traditionally required to tune the synthesis process. This is particularly beneficial given the increasing
complexity of modern integrated circuits and the vast design space that needs to be explored to find optimal

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 31

Figure 4.5: LSOracle optimization Framework with k-way partitioning and Classification used to allocate
different partitions with different optimization algorithms

solutions. The use of A2C allows the system to effectively learn from past actions and improve its strategy
over time, which is demonstrated through comparative benchmarks where DRiLLS consistently outperforms
traditional and other machine learning-enhanced methodologies.

Another Reference [18] which utilized both And-Inverter Graph (AIG) and Majority-Inverter Graph (MIG)
optimizers either presents a novel approach to logic synthesis by manipulating a heterogeneous framework that
combines different types of optimizers to improve the Quality of Results (QoR) for various circuit designs.
This innovative framework, LSOracle, leverages a Deep Neural Network (DNN) to intelligently decide which
optimizer is best suited for different segments of a circuit. This decision is based on the partitioning of the circuit
into multiple segments, which are then individually optimized.

One of the standout features of LSOracle is its ability to adaptively choose the most appropriate optimization
technique for each partitioned segment, making it highly efficient in handling complex, mixed-logic circuits typi-
cally found in modern Systems-on-Chip (SoC). The framework as shows in Figure 4.5applies k-way partitioning
to divide the circuit into manageable parts and then employs the DNN to select the optimal logic optimizer for
each part based on its characteristics. This approach not only improves the area-delay product but also enhances
the overall performance and efficiency of the logic synthesis process. However, the effectiveness of LSOracle
depends significantly on the accuracy of the DNN’s predictions, which in turn relies on the quality and diversity
of the training data used. Additionally, while LSOracle shows substantial improvements in handling mixed-logic
circuits, the complexity of its setup and the computational resources required for running the DNN may pose

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 32

challenges, especially in smaller or resource-constrained environments
To achieve better QoR with choosing the high-quality synthesis flow autonomously, the Reference [19]

explores the application of convolutional neural networks (CNNs), improving the Quality of Results (QoR) in
electronic design. This approach is significant as it targets the automation of a highly complex and traditionally
manual process, potentially reducing the need for expert input and expediting design iterations.

This research utilizes a CNN to classify different synthesis flows into those that provide the best and worst
QoRs, named angel-flows and devil-flows respectively shows as the Architecture 4.6. The CNN model operates
by inputting high-level description language (HDL) and outputs optimized synthesis flows tailored to specific
design objectives like delay reduction or area minimization. This method showcases the power of deep learning
in handling the vast space of synthesis flows, which are often impractical to explore through human testing alone
due to their complexity.

A key strength of this approach is its capacity to learn from data and make informed decisions without
explicit programming for each specific task. By leveraging a CNN, the system can predict the most effective
synthesis strategies from a substantial dataset of potential flows, making it highly scalable and adaptable to
different IC design scenarios.

Figure 4.6: Automatically high-quality synthesis flows choosing architecture with angel-flow and devil-flow only

Finally, the Reference [20] authored by Winston Haaswijk and colleagues introduces an innovative approach
to enhancing logic synthesis optimization algorithms using deep reinforcement learning. This study aims to
automatically discover optimal configurations for logic networks by modeling the optimization process as a
deterministic Markov decision process (MDP). By doing so, it leverages recent advancements in deep learning
to automate and improve the Quality of Results (QoR) in logic synthesis without human intervention.

This approach is innovative in that it allows the model to autonomously generate optimization strategies

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 33

without human intervention, learning to identify and execute the most effective transformations on logic networks.
The system uses a graph convolution network (GCN) to evaluate and score potential moves within the optimization
process, optimizing for size and depth of the logic circuits.

One of the key advantages of this method is its autonomy and ability to generalize from small to larger
logic functions. The framework has demonstrated impressive improvements in optimization tasks, achieving
up to 100% of potential improvement for 3-input functions and significant gains for more complex circuits as
demonstrated in the MCNC benchmark case studies. This showcases the DRL model’s capability to adapt and
perform well across different scenarios and circuit complexities.

In conclusion, the integration of machine learning, specifically through graph neural networks, into power
estimation for logic synthesis presents a promising advancement in electronic design. By automating and
enhancing accuracy in power estimation, these methods support more efficient and sustainable hardware design
practices, aligning with the industry’s ongoing efforts to manage power consumption in the era of complex
multi-functional devices. These studies not only push the boundaries of what’s possible with current technology
but also pave the way for future innovations in EDA. The rest 6 articles on machine learning applications in logic
synthesis collectively demonstrate a shift towards automated and intelligent systems, significantly enhancing the
quality of results (QoR) and optimizing the synthesis process. These studies leverage advanced techniques like
graph neural networks and deep reinforcement learning to tackle complex optimization challenges in electronic
design automation (EDA). While these methods automate and improve efficiency, they also face challenges
such as scalability, computational demands, and the need for high-quality training data. Overall, the integration
of machine learning into logic synthesis heralds a promising future for more efficient design automation tools
capable of addressing the increasing complexity of integrated circuits.

Stage of EDA Purpose ML method

Placement

Minimizing Wire(Net)Length GNN [21]
GNN(GraphSAGE)+RL [22]

Provide Placement-Guidance GNN(GraphSAGE) [23]
Policy Gradient Optimization RL [24]
Minimizing DRC Violations CNN(VGG16) [25]

Timing Prediction Random Forest [26]
Linear Regression/NN/Random Forest [27]

Path-delay Prediction Transformer Network [28]
Table 4.4: Summary of ML methods applied in Placement

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 34

4.4 ML for Placement

Once again, attributing to the rise in the need for semiconductor ICs, generating a layout from a netlist is essential
in the IC design process. Physical design is converting a logical netlist or RTL into a physical layout. Most
fabrication processes require design houses to use certain design libraries specific to their fabrication process.
Generating these design layouts from the design netlist and other design files is complex and time-consuming.
Chip placement is an important processes in the IC design flow. Finding the optimal floor plan and placement
of a design is considered one of the most time-consuming and complex processes. Modern IC designs have
numerous smaller IPs, macros, and modules that require multiple iterations of placement to figure out the optimal
position for each instance. Most ICs do not have the most optimal placement simply because of the high number
of placement permutations possible, even for small designs. This is exacerbated by larger designs, and a solution
to find the best placement while using reasonable resources is a challenge. Multiple research teams have been
invested in finding solutions to improve the placement.

4.4.1 Wirelength Minimization

The exploration of machine learning applications in the placement phase of VLSI design focuses on improving the
optimization of wire and net lengths, crucial for enhancing the overall performance and efficiency of electronic
circuits. Two notable papers in this domain employ advanced machine learning techniques, each bringing a
unique approach to addressing the challenges associated with placement optimization. The first Reference [21]
introduces a method utilizing graph attention networks (GATs) to predict net lengths before the actual placement
occurs. This predictive model is designed to guide the placement tool by providing early insights into potential
net length issues, allowing for preemptive adjustments. The use of GATs enables the model to focus on specific
parts of the netlist that contribute most significantly to net length, dynamically adjusting its attention based on
the structure of the netlist and the connections between components. This approach not only helps in predicting
the net lengths more accurately but also aids in understanding how different elements within the netlist interact,
potentially identifying critical areas that require special attention during placement. The strength of this method
lies in its predictive accuracy and the ability to handle complex netlist graphs by learning which connections are

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 35

Figure 4.7: GraphSAGE (a GNN package used for graph embedding) In their experiments, 32 features were
extracted firstly for each node in the graph. Next, the mean among all nodes for each feature were calculated. In
the end, 32 features were obtained for the en- tire graph.

most influential in determining net length.
The second Reference [22] models the placement problem as a Markov decision process (MDP) where each

action taken by the RL agent adjusts placement parameters that affect the overall wire length of the circuit. It
takes a different approach by applying deep reinforcement learning (RL) to optimize placement parameters
dynamically. This method leverages the capabilities of reinforcement learning to make sequential decisions,
adapting the placement strategy based on real-time feedback and iteratively improving the placement to minimize
wire lengths. The reinforcement learning model operates by learning from the environment it creates through
each placement iteration, effectively learning from its actions to optimize both the placement process and its
outcomes in terms of wire length and other crucial parameters like timing and power.

This approach benefits from the flexibility and adaptability of reinforcement learning, which can continually
improve as it encounters new design scenarios. It also directly manipulates placement parameters, potentially
leading to innovative placement strategies not considered in traditional methods. Based on the transformed graph
and the initial node features defined for each instance, they leverage GraphSAGE 4.7, a variant of GNNs, to
perform unsupervised node representation learning.The main challenges here include the need for significant
computational resources to run numerous simulations for training and the potential difficulty in translating the
learned strategies to physically realizable designs. Both approaches share a common goal of minimizing wire
and net lengths but differ significantly in their methodologies. The GAT-based model focuses on predictive
analytics, providing valuable foresight into potential placement outcomes, which can be used to make informed
decisions early in the design process. On the other hand, the RL-based approach is more dynamic and adaptive,
learning from ongoing processes and capable of adjusting strategies in real-time to find optimal solutions.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 36

4.4.2 Performance Optimization

Provide Placement Guidance The Reference [23] presents a comprehensive approach to addressing the
challenges of VLSI placement, specifically focusing on optimizing the placement process to minimize wire
and net length. The methodology employs a framework known as PL-GNN that integrates unsupervised
machine learning techniques with traditional VLSI design workflows to enhance placement guidance provided to
commercial placers like Synopsys IC Compiler II (ICC2).

PL-GNN framework operates in two main stages as in Figure 4.8. Initially, it employs unsupervised
node representation learning using graph neural networks (GraphSAGE 4.7) to analyze a netlist graph and
extract features that accurately represent the logical affinity among different design instances. The graph-based
representation is crucial as it allows the model to understand and predict how instances should be grouped
to optimize specific design metrics such as wire length, congestion, and timing. After learning the node
representations, the framework utilizes weighted K-means clustering to group instances into clusters, which are
then used as guidance for the placement tool to achieve optimal placement.

One significant advantage of this method is its ability to automate parts of the placement process that
traditionally require in-depth, design-specific knowledge, thereby reducing the reliance on experienced human
designers. The use of GNNs enables the PL-GNN to handle complex netlist structures and optimize them
effectively, leading to demonstrable improvements in wire length, power consumption, and timing, as shown in
the results from commercial multi-core CPU designs.

However, the computational complexity of training and applying GNNs can be significant, especially for
very large netlists typical in modern VLSI designs.

Overall, the PL-GNN framework represents a promising fusion of graph neural networks and traditional
electronic design automation, providing a novel method that improves the efficiency and effectiveness of the VLSI
placement process. This approach not only contributes to reducing the overall design time but also enhances the
quality of the final chip layout, potentially setting a new standard for how machine learning can be integrated
into EDA tools.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 37

Figure 4.8: PL-GNN (a transferable framework developed to provide accurate/automated placement guidance
for any design)

Policy Gradient Optimization To address the placement optimization problem in VLSI design, the Reference
[24] authored by Anna Goldie and Azalia Mirhoseini introduces a novel approach using deep reinforcement
learning (RL). The focus is on improving the placement of nodes within a limited resource environment to
optimize objectives such as power, performance, and area, under specific constraints.

The authors propose using policy gradient optimization, a method within deep RL, which involves an agent
learning to make decisions in an environment that maximizes a cumulative reward. This approach stands out
because it transcends traditional placement algorithms, which often rely on heuristic or deterministic methods,
by incorporating a model that learns and adapts from the environment to find optimal solutions iteratively.

The core of this methodology is to formulate the placement problem as a Markov decision process (MDP)
either, where the RL agent interacts with an environment represented by a state (the current placement of nodes),
takes actions (adjustments to the placement), and receives feedback in the form of rewards (measures of placement
efficiency based on predefined metrics). The reinforcement learning model, which is essentially a deep neural
network, leverages the benefits of policy gradient methods like REINFORCE and Proximal Policy Optimization
(PPO) to navigate the placement landscape effectively.

Minimizing DRC Violations To minimize design rule violations (DRVs) with improving macro placement
specifically, the Reference [25] offers an innovative approach by combining deep learning, a Convolutional Neural
Network(CNN) within the macro placement process to predict routability issues before they occur, enabling
more informed and effective placement decisions.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 38

The methodology centers around a CNN-based predictor which is embedded directly within a macro placer.
This setup allows the placer to evaluate potential macro layouts based on the predicted number of DRVs, which
is a measure of how likely a given placement is to meet stringent design rules without extensive modifications.
The CNN model is trained on data representing different macro placements, where the model learns to correlate
placement patterns with routability outcomes. This predictive capability is leveraged through a simulated
annealing optimization process, aimed at finding a macro placement with minimized potential for DRVs. While
stacking the three 2-dimension feature maps (macro density map/pin density map/connectivity map) to a 3-
dimension input tensor the normalization is applied to each map to keep them unanimous.

The integration of the CNN allows for a significant enhancement in the macro placement process by enabling
predictions that guide the placement tool away from configurations likely to result in high DRVs. This proactive
approach helps in refining design layouts much earlier in the design process, potentially reducing the time and
cost associated with later-stage corrections.

However, this paper does have limitations, its results shared only with less 6 macros which is not realistic
case, usually there would much more than that. Besides it not includes any optimizations of Physical design stage,
this ignores a really significant factor that could affect DRC seriously. At last, any parameters for wire-length
and timing optimizations are not included either.

Path-delay Prediction The Reference [28] authored by Peng Cao, Guoqing He, and Tai Yang, introduces an
advanced machine learning model aimed at enhancing pre-routing path delay predictions in VLSI design. This
study leverages a transformer network combined with a residual model to predict path delays more accurately
before routing, addressing the gap between placement and routing stages that typically complicates the physical
design process due to timing mismatches.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 39

Figure 4.9: Transformer network and residual network-based pre-routing path-delay prediction framework

The core methodology involves using transformer networks to handle feature sequences extracted from each
cell along the timing path as in Figure 4.9, allowing the model to grasp complex architecture and temporal
dynamics within the circuit’s layout. This is paired with a residual model that helps adjust the predictions by
calibrating the initial estimates based on the discrepancies observed between the pre-routing predictions and
actual post-routing outcomes.

The main advantage of this approach is its precision in predicting path delays with significantly reduced error
rates (limited within 1.3% to 3.0%) and high correlation coefficients (above 0.995), which outperforms previous
learning-based models. Such high accuracy is critical for avoiding costly design iterations and over-design,
leading to more efficient power, area, and performance trade-offs. Furthermore, the model achieves a substantial
speedup in prediction times compared to traditional methods and other competitive learning models, showcasing
its potential for practical application in accelerating the VLSI design process.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 40

4.4.3 Timing Prediction

Timing closure is a critical but effort-taking task in VLSI designs. In placement stage, a fast and accurate net
delay estimator is highly desirable to guide the timing optimization prior to routing, and thus reduce the timing
pessimism and shorten the design turn-around time. A fast net-delay timing predictor Can significantly reduce
Time-pessimism and design Turn-around time as in Figure 4.10!

Figure 4.10: Applying machine learning-based timing model at the placement stage can improve timing prediction
and de- liver better design performance

The two studies dedicate into enhancing the accuracy of timing predictions during the placement stage
using machine learning techniques. Both aim to refine pre-routing timing estimations but approach the problem
differently to minimize the necessity for extensive post-routing adjustments and to optimize overall design
efficiency.

The first Reference [26] introduces a method that integrates a look-ahead RC network for feature extraction
shows in Figure 4.11. This novel approach provides accurate early-stage timing predictions, thus reducing the
requirement for conservative design margins that typically lead to overdesign. By predicting endpoint slacks and
critical paths with high accuracy, the model shows significant improvement over traditional methods, achieving
high correlation with post-routing sign-off timing results. Within the experiments, the Random Forest machine
learning technology performs the best sicne it offered the best prediction accuracy.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 41

Figure 4.11: Framework of LaRC-Timer (look-Ahead RC network used to extract features as the input of
placement in the meanwhile the circuit graph are traversed in topology order to compute the arrival time of each
node

The second Reference [27] focuses on reducing the typically pessimistic pre-routing predictions that can lead
to inefficient chip resource use. It employs machine learning models shows in Table 4.5 to predict individual
net delays and incorporates this information into static timing analysis. The approach effectively reduces the
false positive rate of timing violation reports and decreases the mean squared error compared to conventional
estimation tools, enhancing the accuracy of pre-routing timing predictions.

Characteristic Setups Flaws Adavantages
Lasso Linear Regression Algorithm Scikit-Learn Libarary Too simple Really Simple to implement

Neural Network Non-Linear Activation Function Keras Lack of interpretability Easy to customize loss-function
Random Forest Decision(if-then-else)Trees based Model Scikit-Learn Library Rarely support customization of loss-function Better interpretability

K-Nearest Neighbor(KNN) Non-Parametric Tech Scikit-Learn Libarary Lack of interpretability Easy to customize loss-function
Artificial Neural Network(ANN) Model Non-Linear Relationships Scikit-Learn Libarary Chanllenging on training Flexible in learning various features

Table 4.5: The relevant Machine Learning models used in References and the flaws and advantages separately

Both methods leverage machine learning to not only improve the accuracy of timing predictions at the
placement stage but also to reduce the need for subsequent design iterations. They share the challenge of
requiring extensive training data to achieve high levels of accuracy, depending on the representativeness of this
data for performance across various design scenarios. Additionally, the computational complexity of training and
implementing these models poses practical challenges, particularly for very large or complex designs. Based on
their tests, the Lasso and Random Forest were implemented using Scikit-Lear library while the Neural Network
was implemented using Keras, with another commercial prediction tool tested in the experiments, the Random
Forest still performed the best.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 42

In summary, these studies highlight the potential of machine learning to significantly impact the timing pre-
diction process in VLSI design especially with the Random Forest, providing more precise and less conservative
estimates that can lead to more efficient and cost-effective chip designs. As the industry continues to advance,
integrating such sophisticated methodologies will be crucial in meeting the increasing challenges of electronic
design automation.

4.5 ML for Routing

The routing step in EDA design is crucial for determining the ultimate performance and manufacturability of
integrated circuits. This phase involves the precise placement of wires connecting various components while
adhering to stringent design rules and avoiding congestion. As technology nodes shrink and circuit complexity
increases, traditional routing methods are challenged, necessitating more sophisticated solutions. Recently,
there has been a significant shift towards incorporating machine learning techniques to address these challenges,
particularly in predicting design rule violations (DRC), congestion issues, and overall routability.

The integration of machine learning offers a promising avenue to preemptively identify potential problems that
could arise during the routing process, such as DRC violations and areas of high congestion, which traditionally
were only detectable after the routing attempt had been made. By predicting these issues, designers can make
informed decisions early in the design cycle, potentially saving substantial time and resources in later stages.
Moreover, advancements in machine learning have also enhanced routability prediction, enabling more accurate
modeling of complex interactions and dependencies within the routing layer. The following references aime to
these two purpose in routing stage.

Stage of EDA Purpose ML method

Routing
DRC Prediction(Congestion Prediction)

Linear Regression/ANN/RF/K-nearest Neighbor [29]
GAT [30]
CNN [31]

GNN+U-Net [32]

Routability Prediction
CNN [33]
FCN [34]

Conditional-GAN [35]
FCN [36]

Heterogeneous-GNN [37]
Table 4.6: Summary of ML methods applied in Routing

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 43

4.5.1 DRC/Congestion Prediction

The Reference [29] presents a novel approach to addressing congestion issues during the routing stage of FPGA
design. The authors utilize machine learning techniques to predict areas of congestion that can result from the
placement and routing phases, aiming to provide earlier insights that can guide design decisions to avoid costly
redesigns and iterations.

This study adopts a supervised learning approach, employing a Random Forest model, to predict congestion
based on features extracted from the design prior to routing. Features include various properties of the FPGA
architecture and the specifics of the initial placement, such as the number and type of logic blocks used, their
connectivity, and preliminary wire length estimates. The choice of Random Forest is motivated by its ability to
handle high-dimensional data and its robustness in the presence of noise and overfitting, making it well-suited
for the complex and varied data encountered in FPGA design.

The use of machine learning, specifically Random Forests, offers several advantages. It allows for the
modeling of non-linear relationships between design features and congestion, which are often not captured by
traditional analytic models. The predictive model can be trained on historical data, improving its accuracy
and reliability over time as it learns from a wider array of design scenarios. This predictive capability enables
designers to anticipate and mitigate potential congestion issues before they manifest during routing, potentially
saving significant time and resources.

Another Reference [30] represents a significant advance in the use of machine learning to predict routing
congestion in EDA design, specifically focusing on the early prediction of logic-induced routing congestion
from gate-level netlists before the placement and routing stages. This approach is particularly valuable as it can
preemptively inform design adjustments to alleviate potential congestion issues, enhancing both the efficiency
and quality of the resulting chip designs.

The core methodology of the study leverages graph convolutional neural networks (GCNs), specifically
Graph Attention Networks (GATs), to analyze the intricate connectivity and interdependencies within the netlist
graph. By focusing on the local logic structure, which significantly influences congestion at the lower metal
layers, the model can predict congestion hotspots with remarkable accuracy. The use of GATs allows for adaptive
learning of the importance of each connection in the graph, providing a nuanced understanding of how different

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 44

Figure 4.12: Best Partition of experiment result (left : Detail Routed Congestion; right : GAT Congestion
Prediction; Both are in Lower half of Metal stack

elements contribute to overall congestion.
The predictive power of this model is underscored by its ability to achieve a 29% increase in the Kendall

ranking correlation score over previous congestion prediction metrics, which did not utilize placement information.
As shows in Figure 4.12, partition_B performs the best with Kendall Correlation of 0.61. This enhancement is
even more pronounced when focusing on the lower metal layers, where the model’s advantage over traditional
metrics increases to 75%. Additionally, the speed of the model is noteworthy; it can predict congestion in a matter
of seconds for circuits with millions of cells, a significant improvement over the hours required by other methods.
In the other hand, the Reference [31] tackles the increasingly complex challenge of design rule checking (DRC)
violations at advanced semiconductor process nodes. It introduces a novel convolutional neural network (CNN)
architecture, J-Net, specifically customized to predict DRC hotspots effectively without the need for global
routing information, which is typically a time-consuming process.

The methodology centers on addressing the mixed resolution of input data, where high-resolution pin shape
features and lower-resolution layout features must be processed together efficiently. The J-Net architecture shows
in Figure 4.13 is tailored to manage these varying resolutions by feeding different input channels into the encoder
path at appropriate levels, allowing the network to handle the complexity of advanced node design layouts. This
approach helps the model predict DRC hotspots by focusing on pin accessibility, a critical issue at sub-10nm

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 45

Figure 4.13: J-Net Architecture (different levels of input side deal with different resolutions; the number of
levels of encoder is more than the number of levels of decoder so that the output resolutions are definitely less
than the input

scales.
The key advantage of using J-Net is its ability to perform DRC hotspot prediction early in the design process,

potentially avoiding the need for numerous iterations between placement and routing. This can lead to significant
time savings and cost reductions in the chip design cycle. The study demonstrated that J-Net could achieve higher
true positive rates compared to previous models, indicating its effectiveness in identifying potential DRC issues
more accurately. Nevertheless, despite all the advantages of J-Net there’s still flaws like huge time consuming
that heavily influence the whole efficiency. Furthermore, as aimed to fix the problem of DRC Prediction, it’s
totally not considering the aspect of pin accessibility. Taking these two major factors into consideration, the
Reference [32] introduces a sophisticated methodology to tackle the challenge of DRC hotspot prediction in
EDA design. This study highlights the integration of a Graph Neural Network (GNN) with a U-Net architecture
to create a novel model that effectively predicts potential hotspots by considering pin accessibility and routing
congestion simultaneously.

The approach called PGNN utilizes a pin proximity graph to model the spatial relationships and interactions
between pins, capturing how various design elements might influence pin accessibility. This graph structure
allows for detailed representation and manipulation of the physical characteristics of circuit design, which are
crucial for predicting DRC hotspots. The GNN is employed to process this graph, focusing on learning the
intricate dependencies between the pins based on their spatial and connectivity features.

Simultaneously, as shows in the Figure 4.14the U-Net architecture is used to handle grid-based features that
represent routing congestion data. This combination allows the model to integrate detailed pin-level information
with broader congestion patterns to predict hotspots more accurately. By concatenating the outputs of the GNN

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 46

Figure 4.14: The architecture of PGNN including Pin proximity graph used for pin accessibility information and
U-Net for congestion-information extraction

and U-Net, the model provides a comprehensive overview of potential DRC issues, leading to more reliable and
actionable insights early in the design process.

One significant advantage of this method is the significant improvement in prediction accuracy and speed
compared to traditional techniques. The fusion of GNN and U-Net allows for a deep understanding of both
micro-level (pin accessibility) and macro-level (routing congestion) features, enhancing the model’s predictive
capabilities. However, the complexity of the model and the requirement for extensive training data can be
challenging, necessitating substantial computational resources and robust training datasets to achieve optimal
performance. As the last study which focus on solving DRC/Congestion Prediction problem, PGNN presents a
much more advanced method to make improvement over training time(which only takes 3.8 hours while J-Net
needs 31.7 hours), in the meanwhile the high-accuracy created by J-Net is maintained and even increased a little
bit. This phenomenon is specially obvious on F1-score settings.

4.5.2 Routability Prediction

Furthermore, to predict routability based on the number of DRVs, the Reference [33] authored by Zhiyao Xie
et al. explores the utilization of convolutional neural networks (CNNs) to predict routing challenges in EDA
design, focusing on mixed-size designs which include large macros. The study emphasizes the significance of
early routability prediction to proactively identify and resolve potential DRVs, which can be a cumbersome task
at later stages.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 47

RouteNet, the proposed CNN-based model, evaluates cell placement solutions for their overall routability
or pinpoints specific locations prone to DRC hotspots. This method integrates features from various design
stages into a trainable model that recognizes patterns indicative of routing issues. One of the main advantages
of RouteNet is its speed and accuracy, achieving comparable results to traditional global routing methods but
with significantly less computational time and overhead. RouteNet presents a significant advancement in using
machine learning to predict routability issues, particularly for complex mixed-size projects where traditional
methods may falter due to scale and intricacy.

The CNN model leverages the spatial features of chip layouts, treating them similarly to images, which allows
for effective pattern recognition and generalization across different design scenarios. This approach not only
enhances the prediction accuracy but also scales down the runtime, offering a pragmatic solution for early design
stages.

Figure 4.15: The Comparison result between Ground Truth with RouteNet, J-Net and PGNN

The comparison of framework RouteNet [33], J-Net [31] and PGNN [32] with Ground Truth shows in
Figure 4.15. To addresses the crucial aspect of routability optimization, another Reference [34] proposed a deep
learning-based plug-in named PROS.This plug-in integrates seamlessly into modern commercial EDA tools to
predict and optimize routing congestion before detailed routing occurs, substantially reducing DRC violations.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 48

PROS leverages a fully convolutional network (FCN) to predict global routing (GR) congestion using only
data from the placement result, avoiding the overhead typically associated with feature preparation in conventional
methods. The unique strength of PROS lies in its ability to operate with negligible runtime overhead, making
it highly practical for integration into existing design workflows. The FCN model within PROS is specifically
excellent at capturing spatial patterns related to congestion, which facilitates more accurate predictions and
effective optimization of GR cost parameters to improve the overall routability.

However, the demonstrated efficacy of PROS in reducing DRC violations by 11.65% on average across
tested industrial designs underscores its potential to significantly enhance the routability optimization process in
advanced technology nodes.

Another Reference [35]introduces an advanced machine learning approach to enhance routing congestion
prediction at the placement stage of large-scale FPGA design. By reformulating the prediction challenge into an
image translation task, the study employs state-of-the-art generative adversarial networks (GANs), specifically
designed for high-resolution image translation tasks, to produce routing congestion maps from features extracted
during the placement stage.

The methodology utilizes a sophisticated variant of the conditional generative adversarial network (CGAN),
named pix2pixHD, which is capable of handling large-scale image resolutions that are critical for large FPGA
layouts. This approach allows for accurate congestion predictions without the need for extensive feature engi-
neering or intermediate routing stages, offering a direct visual assessment tool for designers to optimize layouts
preemptively.

One of the main benefits of this technique is its potential to integrate directly into existing placement engines,
providing real-time feedback and significantly reducing the number of iterations required to finalize the design.
This can lead to improvements in routed wirelength by up to 7%, demonstrating substantial practical benefits
in terms of efficiency and resource utilization in FPGA design. However the computational resources of this
approach needed to handle large-scale image translations which could limit its application in less equipped
settings.

To optimize routability with in global placement, the Reference [36] introduces a novel approach to enhancing
the routability during the global placement phase of EDA design using deep learning techniques. The paper

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 49

details the development and application of a fully convolutional network (FCN) designed to predict routing
congestion from placement data and integrate these predictions into the placement process.

This method explicitly incorporates a routability model into the placement engine, termed DREAMPlace,
which allows for adjustments in placement to minimize potential routing congestion. By predicting congestion
hotspots and adjusting placements preemptively, the method achieves significant reductions in congestion rates
and improves the routed wire length, showcasing up to 9.05% reduction in congestion and 5.30% improvement
in wire length.

The deep learning model operates by using input features from the current placement to predict congestion,
which is then used to guide the placement engine to adjust layouts to avoid potential congestion areas. This
integration demonstrates an effective use of machine learning to directly influence and improve the VLSI design
process, making it a practical tool for modern electronic design automation (EDA).

Despite the effectiveness of above 4 studies, there’s the flaw that all of them using the crafted features (pin
density map/net density map/RUDY map), which give a strong advantages to some models but extremely easy to
lost netlist information for some models. In the meanwhile, the limitation of CNN itself that it only focusing on
geometrical space and topological connection lost completely would cause several constraints to the experiment
results. Nevertheless, the last Reference [37] presents the model named LHNN (Lattice Hypergraph Neural
Network) leverages the combined strengths of lattice graphs and hypergraphs as shows in Figure 4.16 to preserve
and utilize netlist data throughout the learning process, first net density maps are generated and combined to a
3-net circuit example, later hypergraph and lattice graph part of the circuit are transformed and integrated to
LH-graph and the correlated schema finally, this procedure effectively capturing both geometric and topological
relationships within the circuit layout.

Figure 4.16: LH-Graph formulation and connection with crafted features

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 50

Figure 4.17: The comparison between Ground Truth with best performed model LHNN and other fundamental
models

The LHNN model is designed to address several limitations inherent in traditional CNN-based models by
facilitating the propagation of congestion information through a network that integrates both spatial and relational
data. The model operates on a heterogeneous graph structure that enhances the receptive field beyond mere
geometric adjacency, allowing for a deeper understanding of the circuit’s inherent connectivity and potential
congestion points.

A key advantage of this approach is its ability to predict congestion more accurately by maintaining the
complete netlist information during training, which prevents the loss of critical data through feature conversion
processes typically used in other models. The LHNN significantly outperforms traditional methods, achieving
over 35% improvement on the F1 score compared to CNN models on benchmark datasets. This improvement
highlights the model’s efficacy in integrating complex relational data for congestion prediction. At last, the
comparison between the fundamental models as MLP, Pix2Pix and U-net as mentioned in the previous papers
with the Ground Truth and LHNN which proposed in the last paper is showed in the Figure 4.17, from which we
can obviously obtain that LHNN outcomes other models completely and most similar to the ground truth.

The studies on machine learning applications in the routing phase highlight advancements in predicting
and mitigating issues like congestion and DRC violations using sophisticated models such as deep learning,
graph neural networks, and generative adversarial networks. These approaches allow designers to identify
potential problems early, enhancing the routability and efficiency of circuit layouts. While these methods improve

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 51

prediction accuracy and reduce design iterations, they also face challenges like high computational demands
and the need for extensive training data. Despite these challenges, integrating machine learning into routing
processes promises significant enhancements in reducing design cycles and improving manufacturability in
electronic design automation.

CHAPTER 5

Conclusion

The use of ML methods for CAD has become an active area of research. Due to the ever increasing complexity
and scale of variables in an IC design process, there is an increasing need for efficient ML/AI-assisted EDA
tools. Moreover, with the event of emerging hardware security threats, there is a growing need for EDA tools
to incorporate security countermeasures and mitigation techniques into the IC design flow. Although there
has been significant progress in the development of tools and methods for hardware security, the need for
efficient, easy to integrate, and scalable EDA tools is growing. With growing threats like IC counterfeiting,
overproduction, reverse engineering, hardware trojan insertion, and side-channel attacks, the need to implement
security mitigations and countermeasures into the IC design process is one to be addressed. In summary, this
paper provides an insight on the advancements of using ML algorithms for EDA. The survey is categorized by
the different IC design flow stages separately in Functional Simulation, Formal Verification, Logic Synthesis,
Placement, Routing. Finally, Each section of the review has detailed how ML is being applied to solve specific
challenges inherent in each step, demonstrating a clear trend towards the incorporation of advanced data-driven
methodologies to enhance the efficiency, accuracy, and reliability of electronic design automation (EDA).

Functional simulation has benefited from ML in predicting circuit behavior more accurately and efficiently,
while formal verification has seen improvements in automating and optimizing verification processes to ensure
design correctness without exhaustive manual checks. Logic synthesis has been redefined by ML models
that optimize circuit layouts and configurations to improve performance and reduce power consumption. In

52

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 53

placement, ML techniques help predict and optimize the layout of components to minimize delays and improve
manufacturability. Finally, in routing, ML applications focus on predicting routing congestion and DRC hotspots,
enabling preemptive adjustments that streamline the routing process and reduce the need for costly post-routing
corrections.

Across all these steps, the use of various ML approaches, including deep learning, reinforcement learning,
and graph neural networks, has shown significant promise in transforming traditional EDA processes. These
methods not only automate many of the tedious and complex tasks involved in VLSI design but also offer the
potential to uncover solutions that may not be intuitive to human designers.

However, the review also highlights the challenges that come with the adoption of ML in EDA, such as the
need for substantial computational resources, the dependence on large and high-quality datasets for training, and
the complexities involved in integrating these models into existing workflows. Despite these challenges, the
ongoing advancements in ML present a substantial opportunity to further enhance the capabilities and efficiency
of EDA tools.

Overall, the incorporation of machine learning into EDA represents a significant shift towards more automated,
intelligent, and efficient design processes, holding the promise of keeping pace with the increasing complexity of
modern semiconductor devices and systems. As this field continues to evolve, further research and development
in integrating ML with EDA will undoubtedly continue to reshape the landscape of electronic design.

Bibliography

[1] Rongjian Liang, Nathaniel Pinckney, Yuji Chai, Haoxin Ren, and Brucek Khailany. Late breaking results:
Test selection for rtl coverage by unsupervised learning from fast functional simulation. pages 1–2, 07
2023.

[2] Blaise-Pascal Tine, Sudhakar Yalamanchili, and Hyesoon Kim. Tango: An optimizing compiler for just-in-
time rtl simulation. In 2020 Design, Automation Test in Europe Conference Exhibition (DATE), pages
157–162, 2020.

[3] Fubing Mao, Yapu Guo, Xiaofei Liao, Hai Jin, Wei Zhang, Haikun Liu, Long Zheng, Xu Liu, Zihan
Jiang, and Xiaohua Zheng. Accelerating loop-oriented rtl simulation with code instrumentation. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(12):4985–4998, 2023.

[4] Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and Lu Zhang. Nlocalsat:
boosting local search with solution prediction. In Proceedings of the Twenty-Ninth International Joint

Conference on Artificial Intelligence, IJCAI’20, 2021.

[5] Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs Kozlovics.
Goal-aware neural sat solver. In 2022 International Joint Conference on Neural Networks (IJCNN), pages
1–8, 2022.

[6] Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Can q-learning with graph networks
learn a generalizable branching heuristic for a sat solver? In NeurIPS 2020: Proceedings of the Thirty-fourth

Annual Conference on Neural Information Processing Systems, December 2020.

54

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 55

[7] Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfiability. Advances in

Neural Information Processing Systems, 32, 2019.

[8] Eman M Elmandouh and Amr G Wassal. Guiding formal verification orchestration using machine learning
methods. ACM Transactions on Design Automation of Electronic Systems (TODAES), 23(5):1–33, 2018.

[9] Weijun Zhu, Huanmei Wu, and Miaolei Deng. Ltl model checking based on binary classification of machine
learning. IEEE access, 7:135703–135719, 2019.

[10] Honghao Gao, Baobin Dai, Huaikou Miao, Xiaoxian Yang, Ramon J Duran Barroso, and Hussain Walayat.
A novel gapg approach to automatic property generation for formal verification: The gan perspective. ACM

Transactions on Multimedia Computing, Communications and Applications, 19(1):1–22, 2023.

[11] Fnu Aditi and Michael S Hsiao. Hybrid rule-based and machine learning system for assertion generation
from natural language specifications. In 2022 IEEE 31st Asian Test Symposium (ATS), pages 126–131.
IEEE, 2022.

[12] Eman El Mandouh and Amr G Wassal. Estimation of formal verification cost using regression machine
learning. In 2016 IEEE International High Level Design Validation and Test Workshop (HLDVT), pages
121–127. IEEE, 2016.

[13] Yanqing Zhang, Haoxing Ren, and Brucek Khailany. Grannite: Graph neural network inference for
transferable power estimation. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2020.

[14] MB Rakesh, Pabitra Das, Anant Terkar, and Amit Acharyya. Graspe: Accurate post-synthesis power
estimation from rtl using graph representation learning. In 2023 IEEE International Symposium on Circuits

and Systems (ISCAS), pages 1–5. IEEE, 2023.

[15] Ghasem Pasandi, Mackenzie Peterson, Moises Herrera, Shahin Nazarian, and Massoud Pedram. Deep-
powerx: A deep learning-based framework for low-power approximate logic synthesis. In Proceedings of

the ACM/IEEE International Symposium on Low Power Electronics and Design, pages 73–78, 2020.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 56

[16] Cunxi Yu and Wang Zhou. Decision making in synthesis cross technologies using lstms and transfer
learning. In Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD, pages 55–60,
2020.

[17] Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. Drills: Deep reinforcement
learning for logic synthesis. In 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 581–586. IEEE, 2020.

[18] Walter Lau Neto, Max Austin, Scott Temple, Luca Amaru, Xifan Tang, and Pierre-Emmanuel Gaillardon.
Lsoracle: A logic synthesis framework driven by artificial intelligence. In 2019 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), pages 1–6. IEEE, 2019.

[19] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without human knowledge.
In Proceedings of the 55th Annual Design Automation Conference, pages 1–6, 2018.

[20] Winston Haaswijk, Edo Collins, Benoit Seguin, Mathias Soeken, Frédéric Kaplan, Sabine Süsstrunk,
and Giovanni De Micheli. Deep learning for logic optimization algorithms. In 2018 IEEE International

Symposium on Circuits and Systems (ISCAS), pages 1–4. IEEE, 2018.

[21] Zhiyao Xie, Rongjian Liang, Xiaoqing Xu, Jiang Hu, Yixiao Duan, and Yiran Chen. Net2: A graph
attention network method customized for pre-placement net length estimation. In Proceedings of the 26th

Asia and South Pacific Design Automation Conference, pages 671–677, 2021.

[22] Anthony Agnesina, Kyungwook Chang, and Sung Kyu Lim. Vlsi placement parameter optimization using
deep reinforcement learning. In Proceedings of the 39th international conference on computer-aided design,
pages 1–9, 2020.

[23] Yi-Chen Lu, Sai Pentapati, and Sung Kyu Lim. Vlsi placement optimization using graph neural networks.
In Proceedings of the 34th Advances in Neural Information Processing Systems (NeurIPS) Workshop on

ML for Systems, Virtual, pages 6–12, 2020.

[24] Anna Goldie and Azalia Mirhoseini. Placement optimization with deep reinforcement learning. In
Proceedings of the 2020 International Symposium on Physical Design, pages 3–7, 2020.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 57

[25] Yu-Hung Huang, Zhiyao Xie, Guan-Qi Fang, Tao-Chun Yu, Haoxing Ren, Shao-Yun Fang, Yiran Chen,
and Jiang Hu. Routability-driven macro placement with embedded cnn-based prediction model. In 2019

Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 180–185. IEEE, 2019.

[26] Xu He, Zhiyong Fu, Yao Wang, Chang Liu, and Yang Guo. Accurate timing prediction at placement stage
with look-ahead rc network. In Proceedings of the 59th ACM/IEEE Design Automation Conference, pages
1213–1218, 2022.

[27] Erick Carvajal Barboza, Nishchal Shukla, Yiran Chen, and Jiang Hu. Machine learning-based pre-routing
timing prediction with reduced pessimism. In Proceedings of the 56th Annual Design Automation Confer-

ence 2019, pages 1–6, 2019.

[28] Peng Cao, Guoqing He, and Tai Yang. Tf-predictor: Transformer-based prerouting path delay prediction
framework. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(7):2227–
2237, 2022.

[29] Dani Maarouf, Abeer Alhyari, Ziad Abuowaimer, Timothy Martin, Andrew Gunter, Gary Grewal, Shawki
Areibi, and Anthony Vannelli. Machine-learning based congestion estimation for modern fpgas. In 2018

28th International Conference on Field Programmable Logic and Applications (FPL), pages 427–4277.
IEEE, 2018.

[30] Robert Kirby, Saad Godil, Rajarshi Roy, and Bryan Catanzaro. Congestionnet: Routing congestion
prediction using deep graph neural networks. In 2019 IFIP/IEEE 27th International Conference on Very

Large Scale Integration (VLSI-SoC), pages 217–222. IEEE, 2019.

[31] Rongjian Liang, Hua Xiang, Diwesh Pandey, Lakshmi Reddy, Shyam Ramji, Gi-Joon Nam, and Jiang Hu.
Drc hotspot prediction at sub-10nm process nodes using customized convolutional network. In Proceedings

of the 2020 International Symposium on Physical Design, pages 135–142, 2020.

[32] Kyeonghyeon Baek, Hyunbum Park, Suwan Kim, Kyumyung Choi, and Taewhan Kim. Pin accessibility
and routing congestion aware drc hotspot prediction using graph neural network and u-net. In Proceedings

of the 41st IEEE/ACM International Conference on Computer-Aided Design, pages 1–9, 2022.

Survey on Machine Learning and Artificial Intelligence used for Electronic Design Automation 58

[33] Zhiyao Xie, Yu-Hung Huang, Guan-Qi Fang, Haoxing Ren, Shao-Yun Fang, Yiran Chen, and Jiang Hu.
Routenet: Routability prediction for mixed-size designs using convolutional neural network. In 2018

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[34] Jingsong Chen, Jian Kuang, Guowei Zhao, Dennis J-H Huang, and Evangeline FY Young. Pros: A plug-in
for routability optimization applied in the state-of-the-art commercial eda tool using deep learning. In
Proceedings of the 39th International Conference on Computer-Aided Design, pages 1–8, 2020.

[35] Mohamed Baker Alawieh, Wuxi Li, Yibo Lin, Love Singhal, Mahesh A Iyer, and David Z Pan. High-
definition routing congestion prediction for large-scale fpgas. In 2020 25th Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 26–31. IEEE, 2020.

[36] Siting Liu, Qi Sun, Peiyu Liao, Yibo Lin, and Bei Yu. Global placement with deep learning-enabled
explicit routability optimization. In 2021 Design, Automation & Test in Europe Conference & Exhibition

(DATE), pages 1821–1824. IEEE, 2021.

[37] Bowen Wang, Guibao Shen, Dong Li, Jianye Hao, Wulong Liu, Yu Huang, Hongzhong Wu, Yibo Lin,
Guangyong Chen, and Pheng Ann Heng. Lhnn: Lattice hypergraph neural network for vlsi congestion
prediction. In Proceedings of the 59th ACM/IEEE Design Automation Conference, pages 1297–1302, 2022.

CHAPTER 6

Acknowledgement

First and foremost, I would like to express my deepest gratitude to my supervisor, Professor LAVAGNO
LUCIANO, whose guidance,support and respect for my interested areas were invaluable throughout the duration
of this thesis. Your sight and expertise have profoundly shaped this work and my view of academic works in the
future, in the meanwhile, my growth as a scholar. It’s such an honor to me to complete this work under the your
guidance sir.

I an immensely grateful to the tutor of my thesis, Mr.Muhammad Usman Jamal, his professional advice,
logical academic mindset and his generous spirit and kindly personality has incredibly improved the quality of
this thesis and maintained my mental health, thanks boss.

I also want to extend my thanks to my friends Connor and Sina, who have been providing stimulating and
supportive suggestions to me, thank you guys for being such reliable friends all the time.

A heartfelt thank you to my family and my girlfriend Leda Liu for their unwavering support and understanding
throughout my master-academic journey. To my parents, thank you for your endless encouragement and belief
in me. To my girlfriend, Leda Liu, your love, patience and support have been my anchor during the most
challenging times.

Time has passed as a no-returning river, within which I’ve dedicated lots of efforts and suffered to obtain
knowledge to be a qualified EE, luckily, I’ve harvested such beautiful things with everyone, which would be the
life-time presents to me, thank you all.

59

	Abstract
	Introduction
	Background Information
	Graph Neural Network (GNN)
	Convolutional Neural Network (CNN)
	Reinforcement Learning (RL)

	ML for EDA
	ML for Functional Simulation
	ML for Formal Verification
	SAT
	Model Checking
	Assertion Estimation
	Runtime Estimation

	ML for Logic Synthesis
	Power estimation
	QoR Improvement

	ML for Placement
	Wirelength Minimization
	Performance Optimization
	Timing Prediction

	ML for Routing
	DRC/Congestion Prediction
	Routability Prediction

	Conclusion
	Acknowledgement

