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Abstract

This thesis aims to restructure a real-time model for a hardware-in-the-loop (RT
HIL) system incorporating an inverter, electric motor, mechanical model, and bus
simulation. Hardware-in-the-loop simulation develops and tests complex, real-time
embedded systems. It allows for integrating physical and simulated components to
create a comprehensive testing environment, enabling developers to evaluate control
systems’ performance and behavior under real-world conditions without needing a
complete physical prototype. This method is precious in the automotive industry for
safely and efficiently testing and validating electric motor control systems and other
electronic control units (ECUs).

The restructuring utilizes a multi-core approach to enhance the reusability of
individual components while preserving intellectual property. The resulting model
is composed of two synchronized cores: the first core is a white box, providing
full access to the code for complete calibration capabilities, the addition of new
parts, and comprehensive bus simulation modeling. The second core is a black box
containing all intellectual property using only the build results. This setup allows
future development to use only the black-box core build while enabling full access
to new parts development exclusively on the white-box core.

The multi-core architecture ensures correct data propagation between the proces-
sor’s cores and FPGA, optimizing performance for complex simulations. The RT HIL
system includes a controller developed on Simulink that runs on the HIL’s real-time
processor and is used for open-loop testing. The restructured model was validated
using the open-loop integrated controller. The second step involved validation with
the real device under test, composed of an actual control board (without power stage)
for a high-speed PMSM motor connected by wire to the HIL. The system demon-
strated robustness and high accuracy in motor simulations, maintaining performance
in real-time scenarios and closing the loop. This new modular architecture allows



iii

for a proper compromise of calibration, new development, and intellectual property
policy compliance.



Contents

List of Figures vii

1 Theory and Background 1

1.1 HIL Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Benefits and Applications of HIL Simulation . . . . . . . . 2

1.1.2 DSpace HIL Systems . . . . . . . . . . . . . . . . . . . . 3

1.2 Field-Programmable Gate Arrays (FPGAs) . . . . . . . . . . . . . 5

1.2.1 Xilinx System Generator . . . . . . . . . . . . . . . . . . . 7

1.2.2 Real-Time Interface (RTI) Programming . . . . . . . . . . 8

2 Implementation and Development 9

2.1 Implementation Tools: . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Configuration Desk . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Control Desk . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 RT-Model architecture 14

3.1 eDrive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 ENVIRONMENT_CONTROL . . . . . . . . . . . . . . . . 15

3.1.2 DC_LINK . . . . . . . . . . . . . . . . . . . . . . . . . . 17



Contents v

3.1.3 INVERTER . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.4 MOTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.5 MECHANIC . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.6 NETWORK . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.7 SOFT ECU . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.8 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 FPGA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 RCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 I/O Functional Blocks . . . . . . . . . . . . . . . . . . . . 33

3.2.3 INVERTER . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Motor Model . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.5 MECHANIC . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Restructuring model implementation and new model architectures 40

4.1 Methodology and Approach . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Multi-Core Approach Rationale . . . . . . . . . . . . . . . 40

4.1.2 Model Reusability and Calibration . . . . . . . . . . . . . . 42

4.1.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 New Models Structure and Components . . . . . . . . . . . . . . . 45

4.2.1 Black-Box Model (eDrive-MC) . . . . . . . . . . . . . . . 45

4.2.2 White-Box Model (eDrive-processor-MC) . . . . . . . . . . 47

4.3 Final Model Implementation . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Building the Completed Model in ConfigurationDesk . . . . 50

4.3.2 Building the FPGA . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusion and Results 53

5.1 GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



vi Contents

5.1.1 GUI overview . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.3 Electric Model . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.4 Mechanic model . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.5 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.6 DC Link . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Open-Loop Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Close-Loop Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Advantages of the New Architecture . . . . . . . . . . . . . . . . . 62

5.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References 66



List of Figures

1.1 HIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 LabBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 DS6601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 DS6651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Configuration Desk . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Control Desk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 eDrive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 ENVIRONMENT_CONTROL Model . . . . . . . . . . . . . . . . 16

3.3 Power Supply Control Subsystem . . . . . . . . . . . . . . . . . . 17

3.4 DC_LINK Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Inverter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Motor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 Mechanic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.8 Security and Fault Managementl . . . . . . . . . . . . . . . . . . . 23

3.9 Mechanic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.10 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



viii List of Figures

3.11 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.12 Soft ECU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.13 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.14 DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.15 HW-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.16 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.17 RCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.18 ACTUATOR-FPGA Model . . . . . . . . . . . . . . . . . . . . . . 33

3.19 SENSOR-FPGA Model . . . . . . . . . . . . . . . . . . . . . . . . 34

3.20 INTERRUPT-FPGA Model . . . . . . . . . . . . . . . . . . . . . . 35

3.21 Analog I/O-FPGA Model . . . . . . . . . . . . . . . . . . . . . . . 35

3.22 Digital I/O-FPGA Model . . . . . . . . . . . . . . . . . . . . . . . 36

3.23 INVERTER-FPGA Model . . . . . . . . . . . . . . . . . . . . . . 37

3.24 MOTOR-FPGA Model . . . . . . . . . . . . . . . . . . . . . . . . 38

3.25 MECHANIC-FPGA Model . . . . . . . . . . . . . . . . . . . . . . 39

4.1 SALEXIO Multi-core Architecture . . . . . . . . . . . . . . . . . . 41

4.2 Task management . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Model Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Black-Box Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 White-Box Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 FPGA Model parameter . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8 Building the Model . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 GUI overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Electric Graphical Interfaces . . . . . . . . . . . . . . . . . . . . . 55

5.3 Mechanic Graphical Interfaces . . . . . . . . . . . . . . . . . . . . 55



List of Figures ix

5.4 Inverter Graphical Interfaces . . . . . . . . . . . . . . . . . . . . . 56

5.5 DC Link Graphical Interfaces . . . . . . . . . . . . . . . . . . . . . 57

5.6 Example of a Figure . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.7 FPGA Model parameter . . . . . . . . . . . . . . . . . . . . . . . . 61



Chapter 1

Theory and Background

1.1 HIL Theory

Theory and Technical Meaning of Hardware-in-the-Loop (HIL) Hardware-in-the-
loop (HIL) testing is a simulation technique used to evaluate and validate the per-
formance of control systems within a realistic simulated environment. HIL systems
integrate a real-time environment simulation with either actual hardware components,
known as the Device-Under-Test (DUT), or purely simulated models.

In HIL testing, the real-time simulation platform replicates the operational en-
vironment with which the control system or DUT normally interacts. This allows
for detailed testing under conditions that closely mimic real-world scenarios. The
platform provides real-time inputs to the control system or DUT and receives outputs,
enabling dynamic testing and monitoring of the system’s responses.

HIL systems use advanced computational tools to ensure simulations run in real
time. Powerful processors and Field-Programmable Gate Arrays (FPGAs) handle
complex calculations and data processing at high speeds. The simulation software
models various physical phenomena and environmental conditions, creating a closed-
loop system where the control system and the simulation platform continuously
interact.
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1.1.1 Benefits and Applications of HIL Simulation

HIL simulation[1] offers numerous benefits across various industries, particularly in
developing and testing complex systems. Some key advantages include:

• Cost and Time Savings: HIL simulation significantly reduces the need for
expensive physical prototypes and real-world testing, leading to substantial
cost and time savings in the development cycle.

• Enhanced Safety: By simulating hazardous scenarios and fault conditions
in a controlled environment, HIL simulation allows for safe system testing
without risking equipment or personnel damage.

• Increased Test Coverage: HIL simulation enables comprehensive testing of a
wide range of operating conditions, including extreme cases and rare events
that may be difficult to replicate in real-world testing.

• Early Detection of Design Flaws: By identifying and addressing design flaws
early in development, HIL simulation helps prevent costly issues later on.

• Improved Collaboration: HIL simulation facilitates collaboration between
different teams involved in system development, providing a common testing
and validation platform.
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The applications of HIL simulation span various industries, including:

• Automotive: HIL simulation is extensively used in the automotive industry
for testing electronic control units (ECUs), powertrain systems, and advanced
driver assistance systems (ADAS).

• Aerospace: HIL simulation plays a crucial role in developing and testing
avionics systems, flight control systems, and other critical components in the
aerospace industry.

• Energy: HIL simulation is employed in the energy sector for testing renewable
energy systems, power electronics, and grid integration technologies.

1.1.2 DSpace HIL Systems

The SCALEXIO LabBox is a modular, high-performance, real-time processor specif-
ically designed for HIL applications. It comes in various configurations, and in
option, the 19-slot model offers a balance between scalability and functionality for
diverse testing needs. Features of SCALEXIO labBox:

.

Fig. 1.2 LabBox
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• Real-time processor: is based on an industrial PC with an Intel Core i7-
6820EQ processor, a real-time operating system (RTOS), and a PCIe plug-
in card designed by dSpace for communication between I/O and real-time
processor.The Labbox DSpace connects to the host PC primarily through
a networking interface, utilizing an IOCNET Router (DS6051) or similar
components for flexible integration and scalability.

• I/O boards: Modular I/O refers to an adaptable system of input/output inter-
faces that can be customized and scaled according to specific project require-
ments. These systems allow for easy integration and configuration of various
signal types to meet the diverse needs of simulation and testing environments.
In the dSPACE SCALEXIO system context, the DS6101 board exemplifies
this technology, offering versatile digital and analog channels to facilitate
effective ECU testing and development.

• Communication interfaces the board used in this project. The DS6301
CAN/LIN Board by dSPACE supports various communication protocols, mak-
ing it ideal for automotive projects where realistic communication between a
hardware-in-the-loop (HIL) system and a device under test (DUT) is essential.
The board is equipped to handle:

• CAN and CAN FD: The DS6301 provides four dedicated channels for CAN
(Controller Area Network) and CAN FD (Flexible Data-rate) communications,
extensively used in automotive networks for vehicle systems and components.

• LIN (Local Interconnect Network): Besides CAN, the board offers four dedi-
cated channels for LIN, a simpler, cost-effective network protocol typically
used for automotive sensors and actuaries.

• Integration with DSpace software tools: The LabBox integrates with DSpace
software tools like ControlDesk and ConfigurationDesk, providing a user-
friendly environment for configuring the HIL system, managing test cases, and
analyzing results.

• Scalability: The 19-slot configuration allows adding additional I/O mod-
ules as needed, future-proofing your HIL system for potential expansion and
adaptation to evolving test requirements.
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In the Labbox, we utilize several FPGA boards, which will be described in detail in
a later section.

1.2 Field-Programmable Gate Arrays (FPGAs)

A Field Programmable Gate Array (FPGA), a fundamental component in digital
electronics, is a programmable logic device featuring reconfigurable logic circuits.
These circuits allow for the implementation of both sequential (e.g., flip-flops or more
complex designs) and combinational logic (such as AND/OR gates or more intricate
configurations). FPGAs are programmed and modified using specific hardware
description languages, notably Verilog or VHDL.

The core structure of an FPGA includes a grid of Configurable Logic Blocks
(CLBs) linked by programmable interconnects. Located around the perimeter of
this grid are the input and output blocks (I/O), which facilitate interactions with the
external environment. CLBs execute the logic functions linked through a network of
interconnections, while the I/O blocks handle external circuit interfacing.

Each CLB has several components, such as a lookup table (LUT), a multiplexer,
and a register. These components are configurable to perform as needed. Typically,
FPGAs utilize 4-input LUTs, which can be set to carry out any 4-input logic function.
The LUT’s output is connected directly to one of the outputs of the logic block and
one input of the multiplexer. The multiplexer, which can select between inputs, sends
its output to the register input. Registers within the FPGA can be configured to
operate as a flip-flop or a latch, with clocks set to active high or low.

The FPGA’s interconnects are flexible, enabling any output from a CLB to be
linked to any input of another CLB. Additionally, the primary inputs of the FPGA
can interface with any logic block’s inputs, and the outputs from any logic block can
drive the FPGA’s primary outputs. Advanced peripheral interface functionalities,
such as CAN, I2C, SPI, UART, and USB, are often integrated directly into the chip
as hard cores.

Advantages of FPGAs:

• Flexibility: FPGAs can be reprogrammed post-deployment to adapt to new
standards or update functionalities, providing significant adaptability.
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• Performance: Excelling in parallel processing, FPGAs are ideal for high-
speed operations and real-time data processing.

• Speed of Development: The reconfigurability of FPGAs allows for rapid
prototyping and faster iterations during design, reducing development time.

• Cost-Effectiveness for Low to Medium Volume: FPGAs may offer a more
economical approach compared to custom ASICs for small to medium produc-
tion volumes due to lower initial costs.

• Long-term Maintenance: FPGAs can be updated or reconfigured without
physical replacements, extending the lifespan of the systems they are used in.

• Specialized Integration: Advanced peripheral functionalities such as CAN,
I2C, SPI, UART, and USB can be integrated directly into the chip as hard
cores, simplifying design.

The Labbox framework includes advanced FPGA boards designed to enhance
simulation capabilities and interface management. Two keyboards, the DS6601, and
the DS6651, serve distinct yet complementary purposes in the project setup.

• DS6601 FPGA Board The DS6601 FPGA Board is a cornerstone of our hard-
ware setup, offering robust computational power that is essential for handling
complex algorithms and simulation tasks. Its FPGA is particularly well-suited
for protocols, third-party interfaces, and processor-based electric drive simula-
tions. This board plays a pivotal role in our rapid control prototyping (RCP)
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endeavors, facilitating the development of electric drive and power electronic
controllers. The versatility and high performance of the DS6601 make it
invaluable for advancing our project’s objectives in real-time simulation and
controller design.

.

Fig. 1.4 DS6601

• DS6651 Multi-I/O Module Complementing the DS6601, the DS6651 Multi-
I/O Module extends the system’s interfacing capabilities with various sensors
and actuators. This module provides flexible interfaces for different position
sensors, supports voltage measurement and generation, and includes multi-
purpose digital I/O channels. Its diverse set of channels is ideally suited for
highly dynamic control applications and the high-fidelity simulation of electric
drives and power electronics components. The DS6651’s compatibility with
all SCALEXIO FPGA boards ensures seamless integration into our existing
system architecture, enhancing the project’s scalability and responsiveness to
complex simulation requirements.

1.2.1 Xilinx System Generator

Xilinx System Generator is a powerful design tool that simplifies the development
of digital signal processing (DSP) algorithms on FPGAs. It provides a high-level
graphical interface within the MATLAB/Simulink environment[2], allowing engi-
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neers to design and simulate DSP systems without requiring extensive knowledge of
hardware description languages (HDLs).

With Xilinx System Generator, engineers can seamlessly integrate their Simulink
models with FPGA hardware. The tool automatically generates HDL code from the
Simulink model, which can then be synthesized and implemented on the FPGA. This
streamlined workflow significantly reduces development time and effort, enabling
faster prototyping and testing of HIL simulations.

1.2.2 Real-Time Interface (RTI) Programming

Real-Time Interface (RTI) programming is essential for establishing communication
and data exchange between the FPGA and the HIL simulation software. It involves
defining the interface protocols, data structures, and timing requirements to ensure
seamless interaction between the two domains.

RTI programming typically involves developing software drivers and libraries
that handle the communication between the FPGA and the simulation software.
These drivers manage the transfer of data, synchronization of events, and control of
the FPGA’s operation. Effective RTI programming is crucial for achieving accurate
and reliable HIL simulations, as it ensures that the FPGA’s processing is synchronized
with the simulation’s timing requirements.



Chapter 2

Implementation and Development

2.1 Implementation Tools:

Implementing a Hardware-in-the-Loop (HIL) simulation for this thesis also requires
some software tools. These tools assist in designing, developing, and running the
simulation model and help configure and interface the hardware components of the
model. Some of these tools are:

2.1.1 MATLAB

MATLAB, an acronym for Matrix Laboratory, is a multi-paradigm numerical comput-
ing environment and proprietary programming language developed by MathWorks.
In the late 1970s, MATLAB was created by Cleve Moler, then chair of the computer
science department at the University of New Mexico. Moler designed MATLAB to
give his students access to LINPACK and EISPACK without requiring them to learn
Fortran. It has since evolved into a powerful tool for matrix manipulations, functions,
data visualization, algorithm implementation, user interface creation, and interfacing
with programs written in other languages, including C, C++, Java, and Python.

The main and most widely used windows are the following four:

• Command window: is a window of the main MATLAB interface in which it
is possible to type supported commands and view the results on the screen in
real time;
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• Workspace: the workspace (or memory space) containing the declared vari-
ables;

• Current directory: it allows us to explore the contents of the folders on your
memory medium;

• Command history: all recently typed commands are listed, divided by time
and date

2.1.2 Simulink

Simulink is software for modeling, simulation, and analysis of dynamic systems.
It was developed by the US company MathWorks and is tightly integrated with
MATLAB. It is a block diagram environment used to design systems with mul-
tidomain models, perform simulations before moving on to hardware, and proceed
with distribution without writing code. Simulink is used for Model-Based design,
simulation, Model-Based System Engineering, and agile software development. The
advantages of Simulink are that it requires neither the formulation of differential
equations nor the knowledge of a particular language. It uses a graphical interface
that allows you to build models such as block diagrams. It provides users with a
wide range of predefined functional blocks so that almost all projects are reduced
in practice to the appropriate interconnection of these blocks. Simulink contains a
library of blocks that describes elementary static and dynamic elements. The user
composes the block diagram of the system to be simulated by interconnecting the
elementary blocks. Simulink automatically generates the equations and solves the
desired numerical simulation problem. Models built in Simulink can be hierarchical
models: each system block can be a complex subsystem. Simulink interacts with
MATLAB through the Workspace (Simulink models can contain Workspace vari-
ables). Similarly, the results of the simulations can be exported to the Workspace
and analyzed with MATLAB.
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dSPACE Toolchain: dSPACE offers HIL simulation systems and tools. Their
toolchain also features a software tool known as ConfigurationDesk, which allows
configuring the hardware and software components of an HIL system, as well as
another tool named ControlDesk that enables monitoring and interacting with the
simulation—occurring in real time on an HIL setup. The ConfigurationDesk supports
the engineer in defining I/O interfaces, signal conditioning, and various parameters
involved within the HIL system. The easy-to-use interface on the ControlDesk
enables one to view the simulation data, make changes in the parameters, and inject
faults into the system to test its efficacy.

2.1.3 Configuration Desk

Configuration Desk [3]is a highly intuitive graphical configuration and implemen-
tation software for extensive hardware-in-the-loop (HIL) testing and management
of RCP (Rapid Control Prototyping) applications. This software is integrated with
dSpace real-time hardware platforms, such as SCALEXIO, and is utilized in our
thesis to implement behavioral models and I/O function code. Configuration Desk
facilitates the configuration of real-time hardware and associated behavioral models
from a structured setup of external devices. The software offers numerous advantages
for the development and testing of controllers:

.

Fig. 2.2 Configuration Desk
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• Provides comprehensive management of the signal pathway from the exter-
nal device to the model interface, ensuring a clear overview of the entire
application.

• Decouples the behavioral model from the I/O port configuration, enhancing
the model’s flexibility and reusability.

• Supports simulation of I/O with preset values, enabling testing even when the
actual I/O ports are not yet operational.

• Facilitates the automatic deployment of applications on Real-Time dSpace
hardware.

• An intuitive graphical interface guides the workflow for CPR and HIL applica-
tions, enhancing user experience.

• Allows for integrating multiple models, supporting the development of exten-
sive modular applications.

With tools like MIPS and Simulink Coder, it is possible to generate Simulink
Implementation Container (SIC) files from Simulink models. These SIC files contain
all necessary codes to execute the models across various projects and on different
dSPACE platforms, including VEOS, MicroAutoBox III, and SCALEXIO. This
code is then loaded onto a real-time application via Configuration Desk, streamlining
the deployment process.

2.1.4 Control Desk

Control Desk is a comprehensive dSPACE software tailored to develop control units.
It provides a unified work environment for managing all stages of an experiment,
from initiation to completion. Primarily utilized for Rapid Control Prototyping
(RCP), Hardware in the Loop (HIL) simulations, ECU measurements, calibration,
and diagnostics, it also facilitates access to system buses like CAN, CAN FD, LIN,
and Ethernet. Additionally, it supports virtual validation with tools such as VEOS
and SCALEXIO.

With ControlDesk, you can organize project or experiment data that can later
be accessed in operator mode. The software enables the management of real-time
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applications created in the Simulink environment and set up through Configura-
tionDesk. Furthermore, it allows for the creation of a graphical user interface that
helps monitor and control all relevant variables within the mode. Key Benefits for
ECU Development ControlDesk offers you various tools to create the best possible
conditions for your specific use cases in ECU development.

.

Fig. 2.3 Control Desk



Chapter 3

RT-Model architecture

3.1 eDrive Model

In this section, the modeling approach is based on the enhanced Demo Drive model
dSPACE, which has been further developed by Kineton. This eDrive model, executed
within the MATLAB-Simulink environment and established a robust framework for
detailed analysis and simulation. My thesis builds upon Kineton’s improvements,
introducing additional refinements to the model to meet the specific requirements
of this project. This is the general layout for the initial model structure. Each
subsystem includes different functions, all summarized in a structure array where
every field is associated with the corresponding subsystem. The general system
model is composed of the following subsystems:

• ENVIRONMENT CONTROL

• DC LINK

• INVERTER

• MOTOR

• MECHANIC

• NETWORK

• SoftECU
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• I/O

• ENCODER

Fig. 3.1 eDrive Model

3.1.1 ENVIRONMENT_CONTROL

The ENVIRONMENT_CONTROL subsystem is crucial for setting and managing
the operational environment within the simulation. It includes controls for:

• V_DC_Link [V]: Sets the supply voltage level.

• V_DC_Link Mode [0|1]: Chooses between a dynamic voltage simulation
using a capacitor and a static voltage.

• Reset [0|1]: Resets the FPGA.

• External Torque Switch [0|1]: Selects constant torque or rotational speed
dependency.
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• Control Mode [1|2]: Manages logic for open-loop operations.

• KL15 [0|1]: Activates or deactivates the system.

• n_Set [rpm] and Trq_set [Nm]: Specify rotation speed and mechanical torque,
respectively.

• Watchdog Features: Allows software resets directly from ControlDesk, facil-
itating real-time monitoring and adjustments.

This configuration ensures comprehensive control over simulation parameters,
enhancing testing accuracy and flexibility.

Fig. 3.2 ENVIRONMENT_CONTROL Model

The ENVIRONMENT _CONTROL subsystem includes several constants used
for setting specific operational parameters and fault conditions, such as:
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• CRASH_INPUT1 and CRASH_INPUT2: Trigger specific crash scenarios.

• OCF_A, OCF_B, OCF_C: Set commands for overcurrent faults.

• HVIL_LO and HVIL_HI: High Voltage Interlock settings.

• IGN_INPUT1 and IGN_INPUT2: Ignition input states.

• Various other constants: Control relays and gate driver states.

Power Supply Control Subsystem

Manages the power supply to the system through Voltage_Input_FB, controlling
variables such as PowerSupply_PowerEnable1, PSBoard, and PS Current Limit
to adjust power delivery dynamically based on simulation needs.

Fig. 3.3 Power Supply Control Subsystem

This integration ensures precise control over the simulation environment, enhanc-
ing the system’s response to different test conditions.

3.1.2 DC_LINK

This block simulates the power supply to the inverter/motor system. It offers flexi-
bility in how the voltage dynamics are modeled, allowing users to simulate realistic
voltage behaviors or apply a fixed, predefined voltage level depending on the simu-
lation’s requirements. The DC_LINK block includes an option to select the mode of
operation through the V_DC_Link_Mode [0|1] signal:
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Mode 0: Directly imposes a specified voltage value, bypassing any dynamic voltage
simulation. This mode is helpful for tests requiring constant voltage levels for
stability or specific testing conditions.

Mode 1: Engages a more complex and realistic simulation of voltage dynamics.
This is achieved using the “Capacitor” block, which calculates the effective
voltage based on parameterizable capacitance and resistance values and the
current flowing through the DC link.

Fig. 3.4 DC_LINK Model

The core component for realistic voltage dynamics is the "Capacitor" block. This
block represents how real-world capacitors would behave under varying electrical
loads. It simulates the charge and discharge cycles that affect voltage levels based on
the electrical current demands of the connected systems, such as motors and inverters.
The capacitance and resistance values can be adjusted to match specific hardware
specifications or experimental conditions, offering a versatile tool for engineers to
replicate and study different scenarios accurately.

3.1.3 INVERTER

The DCM Inverter plays a pivotal role in the power electronics unit of our model,
specifically tailored to process and convert DC electrical power into AC. The DCM
Inverter, identified in the model as THREE_PHASE_DCM_INVERTER, encom-
passes six power switches of Insulated Gate Bipolar Transistors (IGBT) and body
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diodes. This configuration ensures effective conversion while managing natural
switching effects like free-wheeling diodes and passive energy recovery back to the
battery.

Fig. 3.5 Inverter Model

Functionality and Interaction

The inverter receives input from the DC Link, which provides the necessary power
supply. It then processes this power through PWM (Pulse Width Modulation) signals
generated by the control unit. These signals are crucial as they determine the
operation of the switches that control the flow of electricity through the motor’s
phases, thus directly affecting the motor’s behavior.

Processor Synchronous Average Calculation

A standout feature of this inverter is its ability to enable detailed and high-precision
simulations of motor behavior. It incorporates a processor-synchronous average
calculation of the motor torque and stator currents. This mechanism works by
toggling a bit with every sample step (PROC_SYNC_IMP) on the processor side
and synchronously on the FPGA side, capturing and calculating the time between
the toggle’s two edges. This sophisticated calculation allows for the precise control
and adjustment of the motor’s torque output based on real-time data.
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FPGA Integration

On the FPGA side[4], the inverter is part of a complex system that ensures the
accuracy of simulations by reducing the latency and increasing the computation
speed, thanks to its parallel processing capability. This integration is crucial for
real-time applications with critical timing and response speed.

Parameter Adjustments and Monitoring

The inverter model within the processor setup allows for online adjustments of char-
acteristic parameters through the Controldesk interface, providing flexibility and ease
in testing different scenarios. This functionality is essential for the dynamic testing
environment of HIL simulations, where parameters often need quick adjustments
based on the evolving conditions of the test.

3.1.4 MOTOR

The MOTOR model represents a high-fidelity simulation of a Permanent Magnet
Synchronous Motor implemented within the MOTOR block of the simulation envi-
ronment. This model is crucial for examining the dynamic responses of PMSMs to
various control strategies and operating conditions in real-time simulations.[5] The
PMSM_XF model is intricately linked to several other simulation blocks, forming a
comprehensive system that reflects the complexities of real-world motor operation.
It receives three-phase voltages from the INVERTER block, speed measurements
from the MECHANIC block, and configurable motor parameters and settings from
the MOTOR interface block within the processor model. All these parameters are
adjustable in real-time using the Controldesk interface.

Input and Output Dynamics

Upon receiving its inputs, the PMSM_XF model processes the three-phase voltages
through the INPUT_ParkClark_v[a;b;c] block, which applies Clarke and Park
transformations. These transformations convert the voltages from the stationary abc
reference frame to the rotating dq reference frame. The transformed voltages in the
dq frame are then input into the dq_MDL block.
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Fig. 3.6 Motor Model

Within the dq_MDL block, the core equations of the PMSM are employed to
compute the corresponding currents in the dq frame and the motor torque, denoted
as Trq[Nm]. These equations are given by:

did
dt

=
vd −Rsid +Lqωiq

Ld
,

diq
dt

=
vq −Rsiq −Ldωid −ψω

Lq
,

Trq =
3
2

p
(
ψiq +(Ld −Lq)idiq

)
,

where id and iq are the direct and quadrature axis currents, vd and vq are the direct and
quadrature axis voltages, Rs is the stator winding resistance, Ld and Lq are the direct
and quadrature axis inductances, ω is the angular velocity, ψ is the flux induced by
the magnet, and p is the number of pole pairs.

The results from these calculations are then converted back from the dq frame
to the abc frame using the OUTPUT_ParkClark_i_HD[a;b;c] block, yielding the
three-phase currents essential for feedback to the control systems and further analysis.
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3.1.5 MECHANIC

The MECHANIC block is a fundamental component within the simulation envi-
ronment. It is designed to interact with the MOTOR block to simulate mechanical
dynamics and responses in real-time. This block integrates mechanical parameters
and settings from the processor-FPGA interface and handles the complex interactions
between mechanical forces and motor outputs.

Fig. 3.7 Mechanic Model

Functionality and Interaction

The Mechanic block plays a critical role by receiving torque from the MOTOR
block and mechanical parameters and settings from the processor-FPGA interface.
This setup enables precise control over mechanical responses such as speed and
rotation, which are fundamental for replicating real-world mechanical systems. The
received torque is modulated by friction torque (Friction_Trq), which depends on
the motor’s speed and is vital in stimulating the motor’s stopping behavior.

Outputs and Calculations

At the output, the Mechanic block yields essential metrics such as speed (APU_Speed)
and angle of rotation (APU_Angle). These outputs are derived from the following
equations, which are part of the integrated Permanent Magnet Synchronous Machine
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(PMSM) framework, ensuring that the mechanical behavior accurately corresponds
to the electrical inputs from the motor:

ωMotor =
1

JMotor + JLoad

∫
(TrqMotor −TrqLoad)dt

εMotor =
∫

ωMotor dt

Where:

• ωMotor and εMotor represent the angular velocity and position of the motor,
respectively.

• TrqMotor and TrqLoad denote the torques from the motor and load.

• JMotor and JLoad are the inertias of the motor and load.

Fig. 3.8 Security and Fault Managementl

Security and Fault Management

Furthermore, the Mechanic block incorporates a security system capable of initiating
an ’off state’ similar to deactivating an inverter under specific conditions. This feature
is critical for managing faults and ensuring safety within the simulation environment,
responding to particular fault signals like FAULTS_L and 6_SO_SAFE_STATE_L, thus
preserving the system’s integrity during anomalies.
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Integration with FPGA

Regarding integration, the Mechanic block is intricately linked with FPGA function-
alities to deliver real-time computation and response capabilities. This connection
permits dynamic adjustments to mechanical parameters, essential for conducting
tests involving variable mechanical loads and conditions.

Fig. 3.9 Mechanic Model

3.1.6 NETWORK

The NETWORK block is essential for communication within the simulation envi-
ronment, particularly handling CAN frames from various sources. It processes and
directs frames generated by the soft ECU block and the Device Under Test (DUT)
within the simulation loop. Specifically, it manages frames originating directly from
the real Electronic Control Unit (ECU) as RX (Receive) frames, while transmitting
(TX) frames are those generated by the soft ECU block.

The output functionality of the NETWORK block primarily focuses on dis-
patching CAN RX frames. These frames, received from the actual ECU, are fully
compiled by the block, incorporating comprehensive details such as the frame’s ID,
signal names, message format, transmission status (TX_Status), reception status
(RX_Status), and raw data bytes.

This capability ensures that each CAN frame on the network is thoroughly
assembled and enriched with all necessary metadata, allowing the simulation model
to control and manipulate the data precisely. This feature is particularly beneficial for
testing and validating the interactions within vehicular networks, ensuring accurate
representation and functionality testing in a controlled simulation environment.
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Fig. 3.10 Network

Controller Area Network (CAN)

Controller Area Network (CAN) is a robust vehicle bus standard designed to facil-
itate communication among various automotive or industrial system components.
Developed by Bosch in the 1980s, CAN allows microcontrollers and devices to
communicate with each other without the need for a host computer, providing a
reliable and real-time communication system.

Fig. 3.11 CAN

Features of CAN CAN has several key features that make it suitable for critical
applications:

• Multi-Master Capability: CAN allows multiple devices to take control of
the bus, enabling a decentralized network without a central master device.
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• Collision Detection and Arbitration: CAN uses a non-destructive bitwise
arbitration method to handle collisions. When two devices transmit simulta-
neously, the one with the higher priority message continues, while the other
waits, ensuring smooth communication without data loss.

• Error Detection and Handling: CAN includes several error detection and
handling mechanisms, such as CRC checks, acknowledgment slots, and er-
ror counters. Faulty nodes are automatically removed from the network to
maintain communication integrity.

• High Speed and Reliability: CAN operates at speeds up to 1 Mbps, with
some advanced versions like CAN FD (Flexible Data-rate) offering higher
speeds and larger data payloads. Its robust error-checking mechanisms make
it highly reliable for critical applications.

Applications of CAN: CAN is widely used in various fields due to its reliability
and efficiency:

• Automotive: In vehicles, CAN networks connect various electronic control
units (ECUs), sensors, and actuators, handling everything from engine man-
agement to climate control and safety systems.

• Industrial Automation: CAN is used in factory automation systems, connect-
ing programmable logic controllers (PLCs), sensors, and actuators.

• Medical Equipment: CAN networks ensure reliable communication in medi-
cal devices, such as patient monitoring systems and laboratory equipment.

Structure of CAN Frames CAN frames are the fundamental units of data trans-
mitted over a CAN network. Each frame consists of several fields, including:

• Identifier (ID): Uniquely identifies the message type and its priority.

• Control Field: Contains information about the frame, such as its length and
type.

• Data Field: Carries the actual data being transmitted, up to 8 bytes in standard
CAN and more in CAN FD.
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• CRC Field: Ensures data integrity by allowing error detection.

• ACK Field: Allows receivers to acknowledge the successful reception of the
frame.

• End of Frame: Marks the end of the frame.

3.1.7 SOFT ECU

The SOFT ECU module plays a pivotal role in simulating the operations of a Control
Unit within a CAN network, utilizing sophisticated artificial logic to manage and
execute network communications. This simulation module is tailored to handle
the ECM mode with its related frames, adhering closely to the predefined CAN
dbc information. The design allows for the input of both model variables and
measured variables, enhancing its utility in diverse testing scenarios. ECU’s response
capabilities under simulated service conditions.

Fig. 3.12 Soft ECU

Within its operational framework, the SOFT ECU is adept at managing a complex
array of data, encompassing two principal message types and three key variables.
This capability ensures that the module can effectively mimic real-world ECU
functionalities, providing a realistic environment for network communication testing.

A critical function of the SOFT ECU involves processing the message
textttECmprCtl_01_XIX_Motor_SUBCAN. This task includes monitoring the state
of the KL15 switch to check if the ignition key is turned ON or OFF, determining
the required revolutions for the eMotor, and computing the maximum allowable
power output. These computations are vital for accurately controlling the eMotor’s
performance within the network.
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Additionally, the module incorporates a DIAG block, a Multi-caching Frame
Machine that operates independently of the network. This block is particularly
proficient in handling service requests, such as when service 30 hex is activated by a
HiL User, and it can manage up to 60 frames per session. This function is crucial for
assessing the ECU’s response capabilities under simulated service conditions.

Furthermore, the SOFT ECU module is designed to handle various fault condi-
tions and scenarios that might occur during operation. It can simulate a range of
faults, including sensor malfunctions, communication errors, and actuator failures,
providing a comprehensive testing environment. The ability to inject faults and mon-
itor the ECU’s response helps validate the robustness and reliability of the control
algorithms under adverse conditions.

The SOFT ECU also supports real-time data logging and monitoring, enabling
engineers to capture and analyze the performance metrics and operational data. This
feature is essential for fine-tuning the control strategies and ensuring that the ECU
operates optimally in all scenarios.

The SOFT ECU module is a powerful tool for developing and validating auto-
motive control systems. Simulating real-world conditions and providing detailed
insights into the ECU’s behavior plays a vital role in the design and testing process,
ensuring that the final product is reliable and efficient.

3.1.8 I/O

The I/O block in the model comprises five subsystems essential for interfacing and
data conversion between the Simulink models and the hardware:

Fig. 3.13 I/O
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• SCALE_DAC: Manages digital-to-analog conversions, enabling direct control
over phase voltages and currents through user inputs in ControlDesk.

Fig. 3.14 DAC

• SCALE_ADC: Handles analog-to-digital conversions, capturing essential
physical inputs like voltage and current from the Device Under Test (DUT).

• Scaling_From_Model: Translates model outputs to hardware-compatible
signals, ensuring they meet the specifications for real-world application.

• HW_Interface: Acts as the central hub for all input and output operations,
integrating signals from environmental and behavioral models.

• Scaling_To_Model: Converts incoming hardware signals back into a format
usable by the Simulink models, maintaining the fidelity of simulation data.

Operational Flow and Integration

• Inputs to the SCALE_DAC include three-phase voltages and currents, which,
after processing, are output directly to the I/O interface.

• The HW_Interface subsystem serves as the nexus for all data exchange,
managing both digital and analog signals and coordinating with power supply
management features for optimal performance.

• ADC inputs, such as voltage and current feedback from the DUT, are crucial
for the system’s ability to monitor and respond accurately to changes.
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Fig. 3.15 HW-Interface

3.2 FPGA Model

Field-Programmable Gate Arrays (FPGAs) [6]are pivotal in high-intensity testing
environments due to their flexibility and high-speed computational capabilities. This
discussion elaborates on the specific roles and advantages of using an FPGA in
Hardware in the Loop (HIL) systems, particularly focusing on the simulation of
electromechanical systems like Permanent Magnet Synchronous Motors (PMSM).

Parallel Processing and System Efficiency

FPGAs enhance simulation environments through their inherent parallel pro-
cessing capabilities, significantly outpacing traditional microcontrollers that execute
instructions sequentially. This feature is critical in simulations where rapid process-
ing and response times are essential.

• Hardware-level Configuration: The architecture of FPGAs allows for cus-
tomized configurations that optimize computational efficiency. Each operation
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Fig. 3.16 FPGA

within the FPGA is implemented via logic gates directly on the hardware level,
enabling faster execution speeds.

• DS6602 FPGA: The chosen FPGA for our application is the DS6602, provided
by dSPACE. It is specifically tailored for dynamic simulations of complex
models, particularly in the automotive industry. Detailed specifications and
performance metrics can be found in the referenced hardware documentation
[7].

Integration with XSG Electric Components Library

The integration of the FPGA with the XSG Electric Components library demon-
strates its capability to handle sophisticated simulations that accurately reflect real-
world behaviors. This integration is crucial for the PMSM simulation, utilizing
components such as the APU, Resolver, and a custom-designed inverter.

• PWM Measurement and Generation: The FPGA is equipped with functions
for PWM control, crucial for the precise manipulation of motor speeds and



32 RT-Model architecture

torques. This capability ensures that the motor control algorithms can be tested
under various conditions and configurations.

• Signal Capturing with Multi-Scope Function: The FPGA’s Multi-Scope
function allows for the capturing and monitoring of various signals across the
system, providing a comprehensive view of the system’s operational status.

• Real-Time Signal Scaling: The MultiScale-DAC function implemented
within the FPGA facilitates the real-time scaling of DAC signals, enhanc-
ing the adaptability of tests and simulations.

Comprehensive FPGA Model Structure

The FPGA model encompasses several functional blocks including RCP, I/O,
INVERTER, MOTOR, and MECHANIC. These components are orchestrated to
simulate and control every aspect of the motor’s operation, from electrical inputs to
mechanical outputs, ensuring high fidelity in the simulations.

3.2.1 RCP

Fig. 3.17 RCP

The PMSM Controller task, RCP (Rapid Control Prototyping), includes the
PMSM controller of the motor. In this subsystem, a simulation of a current mea-
surement and a simulated sensor feedback for speed and position are included. The
Controller measures with these inputs the actual motor current, the actual speed and
position of the motor and provides the necessary duty cycles of each motor phase.
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To generate a PWM signal from this duty cycle the PWM-Generator (located in the
subsystem THREE_PHASE_PWM_GENERATOR) of the XSG Utils[8] library is
used.

ACTUATOR: On the ACTUATOR block there are no direct inputs but only in-
puts coming from the FPGA interface, the output is the PWM generated to command
the inverter gates.

Fig. 3.18 ACTUATOR-FPGA Model

SENSOR: this interface block sends information from the ENCODER block to
the FPGA interface.

INTERRUPT: This feature adjusts the computation parameters of the primary
task, ensuring optimal synchronization and efficiency.

3.2.2 I/O Functional Blocks

Analog I/O

The Analog I/O block is designed to interface physical values with the FPGA’s
oscilloscope. It receives inputs such as the three-phase currents, the three-phase
voltage EMFs, and the internal excitation from the RCP block, facilitating real-time
monitoring and analysis.

Digital I/O

The Digital I/O block plays a critical role in controlling the PWM signals. It accepts
enabling signals for the internal controller and the six excitation values necessary for
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Fig. 3.19 SENSOR-FPGA Model

PWM generation. The outputs from this block are the six finalized PWM signals,
which are crucial for the actuation of power devices within the system.

3.2.3 INVERTER

The THREE_PHASE_DCM_INVERTER_XF block constitutes a three-phase
power converter, integrating six power switches (IGBTs and body diodes) in a bridge
configuration. This block is engineered to perform highly precise simulations, ac-
counting for natural switching phenomena such as the behavior of the free-wheeling
diode and passive energy recovery to a battery system.

3.2.4 Motor Model

This block incorporates a synchronous averaging mechanism of motor torque and
stator currents to facilitate the reusability of critical motor model parameters in
advanced processor models. This feature, termed processor synchronous impulse
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Fig. 3.20 INTERRUPT-FPGA Model

Fig. 3.21 Analog I/O-FPGA Model

(PROC_SYNC_IMP), operates by toggling a bit at every sample step. On the pro-
cessor side, this bit triggers the accumulation of torque and current values, while on
the FPGA side, it coordinates the timing and accumulation of these values between
toggle events. This system also supports downsampling to extend the capture dura-
tion, although this may affect resolution. Additionally, a reset functionality for the
averaging process is integrated to maintain accuracy and reliability in continuous
operation.

MOTOR Block

The MOTOR block simulates a permanent magnet synchronous machine (PMSM)
modeled in fixed-point arithmetic. The sinusoidal back electromotive force (EMF)
generated by the PMSM dictates that the machine be modeled within dq coordinates,
also known as the rotor reference frame. This approach ensures that all motor
parameters, including phase currents and transformed currents, can be dynamically
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Fig. 3.22 Digital I/O-FPGA Model

adjusted by the processor in real time, corresponding to the processor’s sampling
rate.

Dynamic Parameter Adjustment

In addition to standard operation, the MOTOR block can be set into a stimulus
mode, allowing for individual phase currents (a, b, c) or transformed currents (d,
q) to be manually specified. This feature is particularly useful for verifying the
current scaling against the electronic control unit (ECU) specifications, ensuring
compatibility and performance tuning.

Integration with System Blocks

The MOTOR block integrates seamlessly with the INVERTER and MECHANIC
blocks, receiving comprehensive input data that influences all operational aspects.
The output from the MOTOR block encapsulates all relevant physical values such as
phase voltages (Va, Vb, Vc) and currents (i, a, i, b, i, c), which are consolidated into
a single array known as the FPGA Signal Bus. This array is crucial as it provides a
uniform data structure transmitted to both the FPGA interface and the processor, en-
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Fig. 3.23 INVERTER-FPGA Model

suring a consistent and accurate representation of the motor’s operational parameters
across the simulation platform.

Synchronization and Feedback

The structured data from the FPGA Signal Bus is also relayed to the Simulink model,
facilitating a synchronized feedback loop that enhances the simulation’s accuracy
and responsiveness to parameter changes. This integration underscores the MOTOR
block’s pivotal role in accurately simulating electromechanical dynamics within the
HIL system.

3.2.5 MECHANIC

The MECHANIC block in the FPGA framework facilitates the simulation of a
mechanical model characterized by minimal inertia. This module is an integral part
of the system, working in conjunction with the motor dynamics to provide a realistic
simulation environment.
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Fig. 3.24 MOTOR-FPGA Model

Functional Integration

The mechanical block set within the FPGA represents a crucial bundle of the pro-
cessor model functions, specifically "Motor Inertia" and "Motor Position." These
functions are detailed in the "Processor-based model parts" chapter, underscoring
their importance in the overall simulation architecture.

Dynamic Parameter Adjustability

Crucially, this block allows for real-time adjustments to various parameters such
as the damping coefficient and load torque and the implementation of open-loop
control functionalities. These adjustments are made possible through direct inputs
from the processor during runtime, ensuring that the model’s mechanical response
can be finely tuned to match the simulated conditions accurately.

Synchronization and Control

The MECHANIC block enables parameter adjustments during runtime to ensure
the mechanical simulation remains synchronized with other system components.
This synchronization is vital for maintaining the simulation’s fidelity, particularly in
scenarios where dynamic changes to the mechanical properties are required.
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Fig. 3.25 MECHANIC-FPGA Model



Chapter 4

Restructuring model implementation
and new model architectures

4.1 Methodology and Approach

4.1.1 Multi-Core Approach Rationale

The SALEXIO Multi-core architecture is specifically designed to meet the demands
of modern Hardware-in-the-Loop (HIL) simulations, which require high compu-
tational power and efficient data handling. This architecture leverages multiple
processing cores within a single unit or across multiple units to enhance performance
and scalability.

SALEXIO Multi-core Architecture

The SALEXIO system utilizes two synchronized cores: a white-box core and a black-
box core. The white-box core offers full access to the code, allowing developers to
perform complete calibration, add new components, and carry out comprehensive
bus simulation modeling. This core is essential for in-depth testing and development
activities. Conversely, the black-box core contains proprietary intellectual property
and uses only the build results, ensuring the protection of sensitive information. This
dual-core setup provides a balanced approach, enabling the reuse of the black-box
core while offering full development capabilities on the white-box core.
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Fig. 4.1 SALEXIO Multi-core Architecture

Task Management:

Effective task management is crucial in multi-core systems to optimize the perfor-
mance of real-time applications. Tasks are pieces of code controlled by a real-time
operating system (RTOS) and are executed based on their assigned priorities. High-
priority tasks can preempt low-priority tasks, ensuring that critical operations are
completed promptly. Each task can execute one or more runnable functions, which
are the functional blocks of code that perform specific computations. By managing
tasks efficiently, the system ensures that real-time performance requirements are met
and computational resources are optimally utilized (DSpace) (DSpace).

Fig. 4.2 Task management

Interrupt Techniques

Interrupt techniques are used to manage the execution of tasks by allowing higher-
priority tasks to interrupt lower-priority tasks. This preemptive multitasking ensures
that urgent tasks are addressed immediately, maintaining the application’s real-time
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performance. The turnaround time for a task includes the execution time and any
delays caused by higher-priority tasks. By monitoring the task turnaround time
and the number of task overruns, developers can optimize task execution and avoid
performance bottlenecks (DSpace) (DSpace).

Multi-PU System

A multi-processing-unit (multi-PU) system consists of several coupled processing
units, increasing the available real-time processing power and the number of possible
I/O connections. This setup is proper for large real-time applications and testing the
interaction between multiple electronic control units (ECUs) of a target vehicle with-
out integrating them into a real vehicle. Multi-PU applications must be partitioned
into several parts, each executed on a separate processing unit, enabling parallel
processing and efficient resource utilization (DSpace) (DSpace) (DSpace).

The multicore approach ensures correct data propagation between the processor’s
cores and FPGA, optimizing performance for complex simulations. This architecture
is particularly effective in maintaining the integrity and performance of real-time
scenarios, enhancing the accuracy and reliability of HIL simulations (DSpace)
(DSpace).

By leveraging the capabilities of the SALEXIO Multi-core architecture, the
system can handle complex real-time simulations efficiently, ensuring accurate and
reliable performance in various testing scenarios. This architecture facilitates the
protection and reuse of intellectual property while providing the flexibility needed
for comprehensive development and testing.

4.1.2 Model Reusability and Calibration

The concepts of model reusability and calibration are integral to enhancing the
efficiency and effectiveness of Hardware-in-the-Loop (HIL) simulations. This section
thoroughly explores these concepts, focusing on the strategies and tools that facilitate
model reuse and the calibration processes that ensure model accuracy and reliability.
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Fig. 4.3 Model Interfaces

Decoupling Behavioral Models from I/O Configuration

One primary method to enhance model reusability is decoupling behavioral mod-
els from their I/O configurations. Tools like ConfigurationDesk facilitate this by
allowing developers to define and manage the I/O interfaces separately from the
behavioral models. This separation means the same model can be reused with differ-
ent I/O configurations, making it adaptable to various hardware setups and project
requirements.

Use of Simulink Implementation Container (SIC) Files

With tools like Simulink Coder, SIC files can be generated from Simulink models.
These SIC files encapsulate all necessary code to execute the models across dif-
ferent projects and dSPACE platforms, including VEOS, MicroAutoBox III, and
SCALEXIO. This encapsulation ensures that models can be easily transferred and
reused in different simulation environments without the need for recoding or exten-
sive modifications.

Automatic Deployment and Model Portability

ConfigurationDesk supports the automatic deployment of applications on dSPACE
real-time hardware. It ensures a clear overview of the entire application and enhances
the model’s flexibility and reusability by managing the signal pathway from the
external device to the model interface. The graphical interface of ConfigurationDesk
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simplifies the process of integrating multiple models, supporting the development of
extensive modular applications that can be easily modified and reused as needed.

4.1.3 Calibration

Calibration is the process of fine-tuning model parameters to ensure that the simulated
results closely match real-world behaviors. Accurate calibration is essential for the
reliability and validity of HIL simulations.

Fig. 4.4 Calibration

Parameter Management

Effective calibration involves managing a wide range of parameters that influence the
behavior of the simulation models. ConfigurationDesk provides tools for setting and
adjusting these parameters, ensuring the models behave as expected under various
conditions. This includes handling both digital and analog signals and coordinating
with power supply management features for optimal performance.

Real-Time Monitoring and Adjustment

Tools like ControlDesk allow for real-time monitoring and adjustment of simulation
parameters. This capability is crucial during the calibration phase, where immediate
feedback and iterative adjustments are necessary to fine-tune the model. ControlDesk
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enables users to view simulation data, make real-time parameter changes, and inject
faults to test the system’s resilience and accuracy.

Integration with MATLAB and Simulink

Integrating ConfigurationDesk and ControlDesk with MATLAB and Simulink fur-
ther enhances the calibration process. This integration allows for the seamless
transfer of model parameters and results between the simulation environment and
the development tools, facilitating a more efficient and accurate calibration process.
Users can leverage MATLAB’s analytical capabilities to analyze simulation results
and refine model parameters accordingly.

4.2 New Models Structure and Components

Restructuring the initial model led to the creation of two distinct parts: a black-box
model and a white-box model. This separation optimizes performance, enhances
flexibility, and facilitates efficient development and testing processes. The models
are classified into a black-box model, which handles high-speed FPGA-related tasks,
and a white-box model, which focuses on processor tasks, emphasizing parameter
calibration and adjustment.

4.2.1 Black-Box Model (eDrive-MC)

The black-box model, eDrive-MC, integrates the FPGA model and related high-
speed processor components. This model handles real-time control tasks and signal
processing, taking full advantage of the FPGA’s capabilities. Key components of this
model include:

• Bus2Vector: Converts bus signals into vector signals for processing within
the FPGA.

• RCP (Rapid Control Prototyping): Includes several instances that manage
various real-time control tasks, such as:
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Fig. 4.5 Black-Box Model

• Environment Control: Manages environmental parameters affecting the
simulation.

• DC Link: Manages the link between the power sources and the inverter.

• Inverter: Controls the conversion process from DC to AC.

• Motor: Manages motor control algorithms.

• Mechanic: Simulates mechanical aspects like load and torque.

• Interrupt Handling: A dedicated block for managing real-time interrupts,
ensuring timely processing of high-priority tasks.
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4.2.2 White-Box Model (eDrive-processor-MC)

The white-box model, eDrive-processor-MC, handles processor tasks that do not re-
quire the FPGA’s high-speed capabilities. This model is designed for tasks requiring
more flexibility and accessibility for development and calibration. It includes:

Fig. 4.6 White-Box Model

• FPGA Model Parameters: This block outputs parameters the FPGA model
requires, ensuring synchronization and data consistency. It allows for calibrat-
ing and adjusting input parameters, making the system adaptable to various
testing scenarios.

• Environment Control: Manages environmental aspects that do not require
real-time processing.

• IO: Manages general input and output operations.
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Fig. 4.7 FPGA Model parameter

• TA-PLATFORM: Manages platform-specific tasks.

• SoftECU: Simulates electronic control units (ECUs) and manages communi-
cation with CAN buses (CAN2, CAN3) (Industrial Partner).

FPGA Parameters Model

A unique feature of the new structure is the FPGA PARAMETERS block within
the eDrive-processor-MC model. This block consolidates input parameters for the
inverter, motor, and mechanic components, ensuring that all relevant parameters are
correctly configured and fed into the FPGA model. The components and parameters
within this block are:

1. DCM Inverter:

• Const-Inductance-Ls: Inductance (H)

• Const-Resistance-Rs: Resistance (Ω)

• Const-Resistance-RonIGBT: IGBT Resistance (Ω)

• Const-Resistance-RonDiode: Diode Resistance(Ω)

• Const-VfDiode: Diode Forward Voltage (V)

• Const-Minimum-Phase-Current: Minimum Phase Current (A)
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• Const-Downsampling-of-Average-Unit: Downsampling Unit.

2. Motor:

• Const-Ld-Stator: Stator Inductance (H)

• Const-Lq-Stator: Stator Inductance (H)

• Const-NominalCurrent: Nominal Current (A)

• Const-PolePairs: Number of Pole Pairs

• Const-R-Stator: Stator Resistance (Ω)

• Map-Factor-Id-Stator: Mapping Factor

• Map-Factor-Iq-Stator: Mapping Factor

• Map-Factor-Psi: Mapping Factor MotorTopology: Motor Topology.

3. Mechanic:

• Const-Damping: Damping Coefficient ( Ns/m)

• Const-Inertia:Moment of Inertia (kg·m²).

This structure allows the white-box model to interact dynamically with the
black-box model through parameter adjustments, enabling efficient calibration and
real-time simulation tuning. By segregating tasks based on their processing require-
ments and accessibility needs, the system leverages the FPGA for high-speed tasks
while managing less critical tasks within the processor model. This approach opti-
mizes performance, simplifies development and maintenance, and enhances model
calibration and testing flexibility.

The new model structure enhances resource utilization, improves real-time perfor-
mance, and provides greater model calibration and testing flexibility. This modular
approach aligns with best practices in system design, ensuring that each component
is developed and tested in an environment best suited to its requirements.
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4.3 Final Model Implementation

4.3.1 Building the Completed Model in ConfigurationDesk

The following steps outline the process completed to build the final model in Config-
urationDesk:

1. Creating a ConfigurationDesk Project: A new ConfigurationDesk project
was created from the Simulink Editor. The Simulink model representing the
desired FPGA application, which includes components such as the RCP, IO,
INVERTER, MOTOR, MECHANIC, ENCODER, SERVICE, and DEBUG
blocks, was imported.

2. Model Integration: The Simulink model was added to the ConfigurationDesk
application. This step involved importing the model into the Configura-
tionDesk environment and mapping the ports and signals to the FPGA hard-
ware resources.

3. Defining Hardware Topology: The hardware topology, including the FPGA
and other essential components, was defined. This topology outlines the
physical connections and configurations needed for the application.

4. Adding Function Blocks: Necessary function blocks, such as CAN, were
added to the working view in ConfigurationDesk. Each function block corre-
sponds to specific hardware resources and communication protocols.

5. Port Mapping: The function blocks’ configuration ports were manually
mapped to their corresponding ports in the Simulink model. This step ensured
the signals and data paths were correctly established between the model and
the FPGA hardware.

6. Configuring Function Blocks: Function blocks were configured based on the
application’s requirements. Parameters for communication protocols were set,
hardware resources were assigned, and signal properties were defined.

7. Optimizing Configuration: ConfigurationDesk’s optimization tools were
used to ensure the configuration is efficient and free of conflicts. The tool pro-
vides features for automatic configuration optimization and conflict resolution.
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8. Saving the Configuration: Once the model was fully configured and opti-
mized, the configuration was saved in ConfigurationDesk. This saved configu-
ration was then used for the next step of building the FPGA application.

Fig. 4.8 Building the Model

4.3.2 Building the FPGA

After developing the model to run on the FPGA, critical steps must be followed to
successfully configure and test the FPGA using the dSPACE ConfigurationDesk.
These steps ensure that the model is properly prepared for real-time applications.

Timing Analysis

The timing analysis step is crucial to verify that each block and operation within the
implemented model adheres to the set latencies. This test identifies any operations
that require more time than allocated, ensuring the model will run efficiently on the
FPGA.

Building the Model

The build process translates the Simulink model into HDL code, essential for FPGA
implementation. Once the build process is complete, an .ini file is generated
within a specific folder. This file is necessary to configure the FPGA part within the
ConfigurationDesk.
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Configuring the FPGA in ConfigurationDesk

Upon completion of the timing analysis and build process, the next step involves
configuring the model in ConfigurationDesk. The FPGA setup block in Config-
urationDesk automatically generates a project with all necessary connections for
communication between the FPGA and the processor.

The Model Separation Setup block from the dSPACE libraries is utilized to
create this project. This block indicates which subsystems will run on the processor,
streamlining the configuration process.

Final Configuration

After the initial configuration steps, ConfigurationDesk presents a comprehensive
interface displaying the connections and settings for the model. Here, the communi-
cation between the models running on the processor and the FPGA can be monitored
and adjusted as needed.

Once the configuration is complete, the simulator hardware can be imported, and
the new model can be built. This process generates a .sdf file is inserted into the
simulator to enable real-time application execution.

In summary, the steps outlined ensure that the FPGA is correctly configured
and ready for real-time simulation, enabling efficient testing and deployment of the
developed models.
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Conclusion and Results

5.1 GUI

This section presented those that were graphical interfaces developed in such a way
that you can control the application in real time but above all you can make it as
intuitive and accessible as possible

5.1.1 GUI overview

• ON/OFF Control: Located in the upper left corner of the interface, the
ON/OFF button is crucial for starting or stopping the Device Under Test (DUT).
This toggle also enables users to monitor the operational status of the motor,
including its speed, which is essential for system testing and adjustments.

• Dynamic Parameter Monitoring:

– Supply Voltage (Vdc): Displayed in real-time, this parameter is vital
for tracking the power supplied to the motor, essential for operational
assessments.

– Current (Iabc) and Voltage (Vabc): These textboxes update dynamically
as system conditions change, providing critical insights into the electrical
performance of the motor.

– Mechanical Speed (ωm): This displays the motor’s speed, offering
insights into its mechanical output during operation.
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Fig. 5.1 GUI overview

• Interface Usability:

– Quick Access Links: The GUI includes easy-to-navigate links to ad-
ditional layouts and control panels, enhancing the interface’s usability
without overwhelming the main display.

– Layout and Design: Aimed at maximizing user experience, the GUI
is logically arranged and user-friendly, with all controls and indicators
easily accessible and clearly labeled.

5.1.2 Controller

The controller interface for the PMSM is detailed here. It includes real-time control
over three PI controllers’ proportional and integral coefficients. The layout includes
familiar elements such as ON/OFF, Reset, and speed control. Graphical outputs
provide instant trends of significant control signals.

5.1.3 Electric Model

it represents the Permanent Magnet Synchronous Motor (PMSM) electric model.
The user interface includes controls such as an ON/OFF switch, a speed control text
box, and links to the general overview and reset options. Users can adjust real-time
electrical characteristics such as stator resistance, inductance, and flow on the left
side of the interface. The interface also allows for selection between triangle or star
connection configurations. Graphs displayed on the right side show trends in phase
currents, torque, and rotating frame correction factors.
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Fig. 5.2 Electric Graphical Interfaces

5.1.4 Mechanic model

This interface gives the complete vision of what is our mechanic model of our
Permanent Magnet Synchronous motor (PMSM):

Also in this layout, we can find the same buttons present in the previous interfaces:
ON/OFF, Reset, Target Speed and ’Back to Overview’. On the left side, we find
textboxes that allow us to change the engine’s mechanical parameters, such as the
inertia or the damping coefficient, in real-time.

Fig. 5.3 Mechanic Graphical Interfaces

In the center, we can see the change in the model’s values from the appropriate
display, while on the right side, we find three graphs that represent, from the top, the



56 Conclusion and Results

engine’s speed and the mechanical position. Finally, you can activate gain friction
to insert a torque that depends on the speed in the model. However, it has not been
implemented in the model.

5.1.5 Inverter

This interface provides a comprehensive view of the inverter. The layout includes
familiar buttons from previous interfaces: ON/OFF, Reset, Target Speed, and ’Back

Fig. 5.4 Inverter Graphical Interfaces

to Overview’. Some textboxes on the left side allow real-time modification of the
inverter parameters. The inverter diagram clearly displays the PWM trends on each
transistor and the phase voltages for every branch. On the right side, graphs display
the supply voltage and the duty cycles managing the transistors.

5.1.6 DC Link

This interface focuses on the DC Link component, designed to enable or disable the
simulation of a real or ideal power phase. Although not yet functional, the layout
is prepared to facilitate this feature, providing a schematic view and corresponding
operational parameters for the DC Link.
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Fig. 5.5 DC Link Graphical Interfaces

5.2 Open-Loop Test

The open-loop test is a critical phase in validating the functionality and performance
of the restructured Real-Time Hardware-in-the-Loop (RT HIL) model. This test
primarily focuses on assessing the integrated controller’s ability to manage and
control the simulation environment without feedback from the system under control.

Setup and Methodology

In the open-loop test, the integrated controller developed in Simulink is executed on
the RT HIL system’s real-time processor. The controller operates in an environment
that simulates real-world conditions as closely as possible, incorporating the inverter,
electric motor, mechanical model, and bus simulation. The key objective of this phase
is to ensure that the controller can handle various operational scenarios accurately
and efficiently.

To set up the open-loop test, the following steps were undertaken:

• Controller Development: The controller was implemented in the demo
Simulink model to ensure seamless integration with the RT HIL system.

• Environment Simulation: A comprehensive simulation environment was
created, integrating the key components such as the inverter, electric motor,
and mechanical model.
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• Execution on Real-Time Processor: The Simulink-based controller was de-
ployed on the RT HIL system’s real-time processor, allowing for the execution
of control algorithms in real time.

Test Scenarios

Several test scenarios were defined to evaluate the controller’s performance under
different conditions. These scenarios included:

• Start-Up and Shutdown Sequences: Verify the controller’s ability to manage
the system’s initial and final states.

• Steady-State Operation: To assess the controller’s performance in maintain-
ing stable operation under nominal conditions.

• Dynamic Response: To evaluate the controller’s response to changes in input
conditions, such as sudden load variations or speed changes.

Results and Analysis

The open-loop test demonstrated that the integrated controller could effectively
manage the simulation environment, providing accurate and stable control of the
electric motor and other components. Key findings from the test include:

• Accuracy: The controller accurately followed the desired input commands,
with minimal deviations observed in the output responses.

• Stability: The system maintained stable operation throughout the test scenar-
ios, with no significant oscillations or instability.

• Performance: The controller demonstrated robust performance, handling
dynamic changes efficiently and maintaining desired operational states.

The successful completion of the open-loop test validated the initial implementation
of the controller and provided a solid foundation for subsequent closed-loop testing.
The insights gained from this phase were crucial in identifying areas for further
optimization and ensuring the overall reliability of the RT HIL system.
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The open-loop test phase was instrumental in verifying the functionality and
performance of the restructured RT HIL model. This phase ensured that the inte-
grated controller could effectively manage the complex simulation environment by
simulating real-world conditions and evaluating the controller’s response to various
scenarios. The positive results from the open-loop test provided confidence in the
system’s design and paved the way for more comprehensive closed-loop testing.

Fig. 5.6 Example of a Figure

5.3 Close-Loop Test

The closed-loop test[9] is the final and critical phase in validating the performance
and robustness of the restructured Real-Time Hardware-in-the-Loop (RT HIL) model.
This test ensures that the integrated controller can dynamically respond to real-time
feedback from the system under control, maintaining optimal performance under
various conditions.

Setup and Methodology

The closed-loop test setup involved integrating the RT HIL system with a physical
control board designed for a high-speed Permanent Magnet Synchronous Motor
(PMSM). This control board, excluding the power stage, was connected to the HIL
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system, establishing a real-time interaction between the simulated environment and
the actual hardware.

The following steps were undertaken to set up the closed-loop test:

Hardware Integration: The physical control board was connected to the RT HIL
system, creating a closed-loop environment where the controller received continu-
ous feedback from the motor. System Calibration: Calibration ensured alignment
between the physical and simulated components, allowing accurate data exchange
between the control board and the HIL system. Feedback Mechanism: Real-time
feedback from the control board, including parameters like speed, torque, and electri-
cal signals, was fed back into the controller to adjust its commands dynamically. Test
Scenarios Several scenarios were defined to evaluate the controller’s performance
under different conditions:

• Load Variations: The controller’s ability to maintain stability and perfor-
mance under varying loads was tested.

• Speed Control: The accuracy and responsiveness of the controller in achieving
and maintaining desired motor speeds were assessed.

• Fault Injection: Faults and disturbances were introduced to evaluate the
controller’s robustness and fault-handling capabilities.

Results and Analysis

The closed-loop test provided comprehensive insights into the controller’s perfor-
mance. Key findings include:

• Dynamic Adjustment: The controller effectively adjusted its commands
based on real-time feedback, maintaining desired performance levels across
various scenarios.

• Stability Under Load Variations: The system exhibited stable operation
even with significant load variations, demonstrating the controller’s efficiency
in handling dynamic changes.

• Accurate Speed Control: The controller maintained precise motor speed
control with minimal deviations from set points.
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• Robust Fault Handling: The system successfully mitigated the impact of
faults and disturbances, maintaining operational stability and reliability.

The closed-loop test phase validated the RT HIL system’s capability to operate
effectively in a feedback-driven environment. The integrated controller demonstrated
robust performance, dynamically adjusting to real-time feedback and maintaining
optimal performance across various test scenarios. These successful outcomes
confirmed the system’s design and readiness for real-world applications, highlighting
areas for further optimization and ensuring reliable, high-performance control for
complex embedded systems.

Fig. 5.7 FPGA Model parameter

5.4 Conclusion

The restructuring and implementation of the Real-Time Hardware-in-the-Loop (RT
HIL) system in this thesis mark significant advancements in simulation accuracy,
control performance, and system robustness. By leveraging a multi-core approach,
the RT HIL model now exhibits enhanced computational efficiency and superior data
handling capabilities, enabling more complex and high-fidelity simulations.
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Key Findings

Graphical User Interface (GUI)

An intuitive and accessible GUI was developed, facilitating real-time control and
monitoring of the simulation environment. The GUI enabled dynamic parameter
monitoring, quick access links, and a user-friendly layout, significantly enhancing
the overall user experience.

Open-Loop Test Validation

The controller reliably tracked desired input commands, displaying minimal devia-
tions in output responses. The system maintained stable operation across various test
scenarios, showing no significant oscillations or instability. The controller demon-
strated robust performance, efficiently managing dynamic changes and maintaining
desired operational states.

Closed-Loop Test Validation

The controller adeptly adjusted commands based on real-time feedback, consis-
tently maintaining desired performance levels across various scenarios. The system
demonstrated stable operation even with significant load variations, highlighting the
controller’s efficiency in handling dynamic changes. The controller achieved precise
motor speed control with minimal deviations from set points. The system effectively
mitigated the impact of faults and disturbances, maintaining operational stability and
reliability.

5.5 Advantages of the New Architecture

The new architecture provides several notable advantages:

• White Box for Easy Calibration and Model Update: The white box ap-
proach enables straightforward calibration and model updates, significantly
simplifying the process of adding or updating CAN/LIN emulation. This en-
sures the system remains adaptable to new requirements and technologies. The
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ease of model updates and calibration enhances system flexibility, reducing
the time and effort required for adjustments.

• CAN/LIN Emulation: The architecture supports comprehensive CAN/LIN
emulation, facilitating the testing and validation of network communication
protocols within the simulation environment. This capability is essential for
developing and testing automotive and industrial applications where these
protocols are extensively used.

• Adding New Sensors Emulation on RTP: The system’s architecture allows
for the addition of new sensor emulations on the Real-Time Processor (RTP),
enhancing the simulation’s realism and accuracy by incorporating various
sensor inputs. This enables more comprehensive testing of control algorithms
under different conditions.

• Dynamic Parameter Adjustability: The new architecture allows for real-time
adjustments to various parameters, such as the damping coefficient and load
torque, and the implementation of open-loop control functionalities. This
flexibility is critical for fine-tuning the model to match simulated conditions
accurately.

• Task Management and Interrupt Techniques: Effective task management
in multi-core systems optimizes the performance of real-time applications.
High-priority tasks can preempt low-priority tasks, ensuring critical operations
are completed promptly. This capability is essential for maintaining real-time
performance in complex simulations.

• Integration with System Blocks: The new model structure enables seamless
integration of various system blocks, such as MOTOR, INVERTER, and ME-
CHANIC blocks, ensuring comprehensive input data influences all operational
aspects. This integration is crucial for simulating electromechanical dynamics
accurately.

• Model Reusability and Calibration: Decoupling behavioral models from
their I/O configurations enhances model reusability, making the same model
adaptable to various hardware setups and project requirements. This approach,
combined with tools like ConfigurationDesk and ControlDesk, ensures effi-
cient model reuse and accurate calibration.
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• Parallel Processing Capability: The architecture leverages the inherent paral-
lel processing capabilities of FPGAs, significantly enhancing the speed and
efficiency of simulations. This is particularly beneficial for real-time data
processing and high-speed operations.

• Flexibility and Reconfigurability: FPGAs can be reprogrammed post-deployment
to adapt to new standards or update functionalities. This flexibility ensures the
system can evolve over time without requiring significant hardware changes.

• Rapid Prototyping and Development: The reconfigurability of FPGAs al-
lows for rapid prototyping and faster iterations during design, reducing devel-
opment time and enabling quicker transitions from concept to implementation.

• Long-term Maintenance and Updates: FPGAs can be updated or reconfig-
ured without physical replacements, extending the lifespan of the systems and
ensuring they remain up-to-date with the latest advancements and standards.

5.6 Future Work

The successful implementation and testing of the RT HIL system open several
avenues for future research and development: Further research into advanced calibra-
tion techniques can optimize system performance, especially in handling complex
and dynamic simulation scenarios. Integrating machine learning algorithms can
enhance the system’s predictive capabilities, enabling more accurate simulations
and improved control strategies. Expanding the emulation capabilities to include a
broader range of sensors and communication protocols will increase the system’s
applicability across different domains and use cases.

In conclusion, the restructured RT HIL model, with its advanced features and
capabilities, represents a significant step forward in real-time simulation and con-
trol. The system’s flexibility, robustness, and ease of calibration position it as a
powerful tool for future developments in complex embedded systems. The outlined
advantages, including easy calibration and model updates, comprehensive CAN/LIN
emulation, and the addition of new sensor emulations, underscore the system’s
enhanced adaptability and effectiveness.
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In conclusion, the restructured RT HIL model, with its advanced features and
capabilities, represents a significant step forward in real-time simulation and con-
trol. The system’s flexibility, robustness, and ease of calibration position it as a
powerful tool for future developments in complex embedded systems. The outlined
advantages, including easy calibration and model updates, comprehensive CAN/LIN
emulation, and the addition of new sensor emulations, underscore the system’s
enhanced adaptability and effectiveness.
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