
1

Politecnico di Torino

Master degree in
Electronic Engineering

A.a. 2023/2024
Sessione di Laurea Luglio 2024

 Microcontroller-based
implementation of a data extraction

algorithm from a radar signal

Relatori: Candidati:
 Eros Gian Alessandro Pasero

Marina Mondin
 Fereydoun Daneshgaran

Gaia Pia Pistillo

2

Summary

Chapter 1: Introduction …………………………………………………………………………3

Chapter 2: Trilateration ………………………………………………………………………….5

2.1 Principle of trilateration .. 5

2.2 Geometrical interpretation ... 5

2.3 Mathematical interpretation ... 7

2.4 Optimization algorithm ... 9

Chapter 3: RADAR ……………………………………………………………………………….11

3.1 RADAR ... 11

3.1.1 Range measurements .. 12

3.2 FMCW RADAR .. 13

3.2.1 Frequency modulation and Modulation patterns ... 14

3.2.2 FMCW RADAR with chirp modulation .. 16

Chapter 4: Schematic Block Diagram .…………………………………………………………18

4.1 System localization scheme .. 18

4.2 Schematic block diagram .. 19

Chapter 5: Hardware implementation ………………………………………………………….27

5.1 Microcontroller ... 27

5.2 Implementation .. 29

5.2.1 Data acquisition .. 29

5.2.3 Flash programming ... 30

5.3 Code implementation .. 31

5.3.1 Filter implementation .. 31

5.3.2 Envelope detector implementation ... 36

5.3.3 Fast Fourier Transform implementation .. 41

Chapter 6: Performance analysis ………………………………………………………………44

6.1 Frequency estimation .. 44

6.2 Percentage error ... 45

6.2.1 SNR .. 45

6.2.2 Number of FFT points ... 47

6.2.3 NP ... 48

Chapter 7: Conclusions ……………………………………………………………………….51

References .. 53

Appendix ... 54

3

CHAPTER 1

Introduction

Precise and low-cost localization is fundamental in a variety of applications. The focus of

the current research is on augmented reality for multitude of applications from gaming to

training of personnel in various industries. In such applications, one key requirement is that

of identifying a precise position on a given object, possibly in a complex scenario, like a

cluttered environment, with a lot of background noise (one example could be that of

identifying a precise location on a jet engine when training a maintenance operator with

augmented reality). A typical approach when performing localization is that of using

trilateration, starting from range information that has been collected through three or more

radiofrequency receivers.

The process can be facilitated by using an active target, that generates a unique return

signal used to unambiguously identify the target. A further choice that must be made is the

selection of the considered radiofrequency transceiver. To minimize the implementation

cost, a low-complexity chirp RADAR (i.e., a Frequency Modulated Continuous Wave

RADAR), can be used to derive the range information.

Having to identify the signal reflected by a target in a cluttered environment, the system

uses an active target equipped with a small and low-cost transponder that generates, in

response to the RADAR signal, a bandpass signal that can be separated from the clutter

which is generally located around baseband in the down-converted RADAR signal. It is

therefore necessary to have a specific demodulator that recovers this bandpass signal

generated by the active target and processes the signal to generate the range information

needed for trilateration.

Given this general scenario, the thesis work has been focused on the study, simulation,

and implementation of the demodulator able to recover the bandpass signal generated in

the down-converted RADAR signal by the active target in response to the RADAR chirp

signal.

More specifically, this thesis aims to implement a data extraction algorithm from a RADAR

signal on a microcontroller for target localization.

The data extraction algorithm is based on an envelope detector; by demodulating the

4

received signal from a chirp RADAR, the target range can be calculated from the

estimated beat frequency. Then, the target can be precisely localized by using the

trilateration method which consists of combining the target ranges calculated from three

receivers' signals.

The thesis outlines the theory behind this implementation, presents the simulation results

and details the system implementation.

In particular, in Chapter 2 the trilateration method is described and in Chapter 3 the

characteristics of a FMCW RADAR with chirp modulation are presented. In Chapter 4 the

block diagram for the data extraction algorithm is introduced and the individual blocks are

described, with a particular focus on FIR filters which are at the basis of this

implementation. In Chapter 5 the hardware implementation on a TI C2000 F28379D

microcontroller is described. In Chapter 6 the algorithm performances are analyzed.

Conclusions are drawn in Chapter 7.

5

CHAPTER 2

Trilateration

The final application related to this thesis work is that of locating a target. The complexity

in locating an object is represented by the fact that it is not easy to directly find the

position of an object in space; most sensors, usually, estimate the distances from the

object. For instance, sonars and RADARs emit electromagnetic waves and calculate the

distance by detecting how long it takes for the signal to come back after being reflected by

the object.

One of the most common techniques to locate an object is trilateration, which calculates

the position of an object given several distance measurements.

This chapter provides an overview of the trilateration technique and its implementation.

2.1 Principle of trilateration

To find the position of an object in a two-dimensional space using trilateration, the position

of at least three reference points must be known. The position of the object can be found

as the intersection of three circumferences each having as center one of the reference

points and as radius the measured distance of one of the reference points from the object.

 This minimum requirement can be explained by using the geometrical interpretation of the

technique.

2.2 Geometrical interpretation

Indicating the unknown target position as P and the known positions of the three reference

points as 𝐿1, 𝐿2 and 𝐿3, trilateration can be explained by a geometrical point of view as

follows.

By measuring the distance from the target of one reference point, 𝐿1, a circumference with

radius equal to the measured distance, 𝑑1, and center equal to 𝐿1 can be individuated; the

target P is on this circumference (fig. 2.2.1).

 By measuring the distance, 𝑑2, from the target position to the second reference point, 𝐿2, a

second circumference, with radius 𝑑2 and center 𝐿2, can be individuated; the first and

6

second circumferences intersect in two points, as can be seen in Figure 2.2.2 , thus a third

circumference is needed to obtain just one point.

The third circumference can be drawn with radius 𝑑3, i.e distance between 𝐿3 and P, and

center 𝐿3: the point of intersection between the three circumferences is the location P, as

shown in Figure 2.2.3.

Figure 2.2.1: Circumference with radius d and center L

Figure 2.2.2: Intersections between circumference with radius 𝑑1and center 𝐿1

and radius 𝑑2 and center 𝐿2

7

Figure 2.2.3: Trilateration problem in 2D

2.3 Mathematical interpretation

The trilateration problem in two-dimensional space from a mathematical point of view

consists in solving the set of three equations corresponding to the three circumferences

described above.

A point (x,y) in the Cartesian plane lies on a circumference with radius r centered at (𝑐𝑥 , 𝑐𝑦)

if and only if is a solution to this equation:

(𝑥 − 𝑐𝑥)2 + (𝑦 − 𝑐𝑦)2 = 𝑑1
2

Thus, having the three reference points 𝐿1, 𝐿2, 𝐿3 each, respectively, with coordinates

(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3) and distance from the target of 𝑑1, 𝑑2, 𝑑3, the expressions of the

the circumferences having as radius 𝑑𝑖 and center 𝐿𝑖 are:

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 = 𝑑1
2

8

(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 = 𝑑2
2

(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 = 𝑑3
2

Then the location of the target with coordinates (x,y) can be obtained by solving the 3

equations above simultaneously.

This approach works in an ideal case in which the distance measurements are taken with

extremely high accuracy. In practice, however, the signals are usually influenced by

perturbations, as in the case of indoor localization. As a result, the intersection of the three

circumferences will be a domain instead of a point [1], as shown in Figure 2.3.1. The

intersection domain D is defined by the following set of equations:

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 ≤ 𝑑1
2

(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 ≤ 𝑑2
2

(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 ≤ 𝑑3
2

Figure 2.3.1: Indoor Localization Problems in a 2D Space

9

2.4 Optimization algorithm

The mathematical approach is not the best solution for solving the trilateration problem.

As said before, high accurate measurements are needed; in the worst case, if the

measurements are wrong the three circumferences do not intersect and the set of

equations does not have a perfect solution. Moreover, the complexity of that approach

increases if more than three reference points are taken into consideration; this is the case

of the localization problem in three-dimensional space, and an example is the one of GPS,

which requires four reference points.

Thus, a better approach is the one in which an optimization algorithm is used: the goal is

finding the point which is the best approximation to the actual position of the target object.

One of the most commonly employed algorithms is the least squares estimation method,

which minimizes the sum of the squares of the differences between the measured

distances and the calculated distances from the reference points to the unknown point.

Examples are presented in [2], [3].

Another possibility consists of minimizing the mean square error, i.e. the average squared

deviation between the measured and predicted values.

Indicating with P the position of the target object and with 𝐿𝑖 the position of the reference

points which have a distance 𝑑𝑖 from the target, with i=[1,2,3], the goal is to find a point X

which has the same distance 𝑑𝑖 from the reference points. The point X is the point which

minimizes a certain error function, in this case the mean squares error between measured

distances, 𝑑𝑖 , and the calculated distances, dist(X, 𝐿𝑖), from the reference points to the

unknown point. In detail, the errors to minimize are three, one for each reference point. The

errors can be expressed as follows:

𝑒1 = 𝑑1 − 𝑑𝑖𝑠𝑡(𝑋, 𝐿1)

𝑒2 = 𝑑2 − 𝑑𝑖𝑠𝑡(𝑋, 𝐿2)

𝑒3 = 𝑑3 − 𝑑𝑖𝑠𝑡(𝑋, 𝐿3)

And the three errors can be merged into one contribution by averaging their squares,

obtaining the mean squared error (MSE):

10

𝑀𝑆𝐸 =
∑ [𝑑𝑖 − 𝑑𝑖𝑠𝑡(𝑋, 𝐿𝑖)]2𝑁

𝑖=1

𝑁

11

CHAPTER 3

RADAR

In this thesis work the range measurements are obtained using a Frequency Modulated

Continuous Wave (FMCW) RADAR with chirp modulation.

This chapter provides first an overview of RADARs and then a description of FMCW

RADARs.

3.1 RADAR

A RADAR, i.e. RAdio Detection And Ranging, is a system used for the detection and the

range measurement of a target, Figure 3.1.1. RADAR operates by transmitting radio

waves toward an object and then detecting the waves reflected from the object. It is

composed of a transmitter, which produces electromagnetic waves in the radio/microwave

domain, and a receiver, which receives the echo signal reflected by the target.

Figure 3.1.1: RADAR localization

There are two primary types of RADAR: one emitting pulsing waves and one emitting

continuous waves. Pulse RADAR systems transmit a series of equally spaced short and

high-energy pulses and calculate the distance to the target by measuring the time delay

between a transmitted pulse and the returning reflected signal; to do this the transmission

of the pulses is alternated with a period of no transmission in which the eco can be

received. Continuous wave RADAR, or CW RADAR, radiates a transmitting power without

https://www.radartutorial.eu/02.basics/Continuous%20Wave%20Radar.en.html

12

interruption. The echo signal is received and processed simultaneously and continuously.

CW RADARs are divided in:

1. unmodulated CW RADAR: the transmitted signal is constant in amplitude and

frequency; by observing the Doppler shift, the shift in frequency between the

transmitted and received signal due to the target's velocity relative to the RADAR;

moving objects in the detection range of the sensor are detected but it is not

possible to measure distances with them;

2. FMCW RADAR: the transmitted signal is constant in amplitude but modulated in

frequency; having a frequency that varies in time makes it possible to measure a

difference between the received signal frequency and the transmitted signal

frequency. This frequency difference is called beat frequency and from it the range

can be derived.

3.1.1 Range measurements

In the case of pulse RADAR, the range is measured by considering the time of flight of one

pulse:

𝑅 =
𝑐0 ∙ 𝛥𝑡

2

where R is the range, 𝑐0 = 3 ∗ 108 𝑚/𝑠 is the velocity of the wave in air, and 𝛥𝑡 is the time

it takes for the transmitted signal to be reflected by the object and come back to the

receiver.

In the case of FMCW RADAR, the distance is derived from the frequency. First, the

received and transmitted signals are mixed; then the obtained signal is filtered to isolate

the low-frequency component given by the difference between the transmitted and

received frequency, i.e. the beat frequency; in the end, the range is derived from the beat

frequency.

Assuming that the transmitted signal is:

𝑥1(𝑡) = 𝑐𝑜𝑠(2𝜋𝑓1𝑡 + 𝛼1)

and the received signal is:

𝑥2(𝑡) = 𝑐𝑜𝑠(2𝜋𝑓2𝑡 + 𝛼2)

where 𝛼𝑖 is the initial phase of the signal,

13

the mixing of the two signals can be done by multiplying them and obtaining the

superimposition of two sinusoids, one with a higher frequency given by the sum of 𝑓1 and

𝑓2 and one with a lower frequency given by the difference between 𝑓1 and 𝑓2.

Figure 3.1.2: Frequency mixer

The result of the mixing is:

𝑥1(𝑡) ∗ 𝑥2(𝑡) = 𝑐𝑜𝑠(2𝜋𝑓1𝑡 + 𝛼1) ∗ 𝑐𝑜𝑠(2𝜋𝑓2𝑡 + 𝛼2) =

 =
1

2
∗ [𝑐𝑜𝑠(2𝜋𝑡(𝑓1 + 𝑓2) + 𝛼1 + 𝛼2) + 𝑐𝑜𝑠(2𝜋𝑡(𝑓1 − 𝑓2) + 𝛼1 − 𝛼2)]

Then, by using a low-pass filter the low-frequency component can be extracted and by

performing a frequency demodulation of the signal the information for deriving the range is

obtained.

3.2 FMCW RADAR

There are some advantages of FMCW RADAR to pulse RADAR. For instance, the

sensitivity provided by FMCW technology is more than 30 times higher than that of pulsed

RADAR transmitters, which maximizes signal strength and enables it to deliver superior

measurement reliability with a greater signal-to-noise ratio SNR (the ratio of the power of a

signal to the power of background noise).

The basic features of FMCW RADAR are:

1. Ability to measure very small ranges to the target (the minimal measured range is

comparable to the transmitted wavelength);

2. Ability to measure simultaneously the target range and its relative velocity;

3. Very high accuracy of range measurement;

14

4. Signal processing after mixing is performed at a low-frequency range, considerably

simplifying the realization of the processing circuits;

5. Safety from the absence of pulse radiation with a high peak power.

3.2.1 Frequency modulation and Modulation patterns

Frequency Modulation is a modulation in which the carrier wave's frequency is altered

according to the instantaneous amplitude of the modulating signal, keeping phase and

amplitude constant, Figure 3.2.1.

Figure 3.2.1: Frequency modulation

Starting with a carrier waveform with constant frequency 𝑓0, amplitude A, and initial phase

𝛼 expressed as:

𝑥(𝑡) = 𝐴 ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + α)

and a modulating signal 𝑠(𝑡), the frequency modulated signal can be expressed as:

𝑥(𝑡) = 𝐴 ∗ 𝑐𝑜𝑠(2𝜋 ⋅ 𝑔(𝑠(𝑡)) ⋅ 𝑡 + 𝛼)

15

There are several patterns for modulating the transmitted signal in frequency, Figure 3.2.2:

1. Sawtooth modulation: this modulation pattern is used in a relatively large range

(maximum distance) combined with a negligible influence of Doppler frequency (for

example, a maritime navigation RADAR);

2. Triangular modulation: this modulation allows easy separation of the difference

frequency Δf of the Doppler frequency 𝑓𝑑;

3. Square-wave modulation (simple frequency-shift keying, FSK): this modulation is

used for a very precise distance measurement at close range by phase comparison

of the two echo signal frequencies. It has the disadvantage, that the echo signals

from several targets cannot be separated from each other, and that this process

enables only a small unambiguous measuring range;

4. Stepped modulation (staircase voltage): this is used for interferometric

measurements and expands the unambiguous measuring range.

The most commonly used signal for frequency modulation in a FMCW RADAR is the chirp

signal that will be described in the next paragraph.

Figure 3.2.2: Waveforms for frequency modulation

16

3.2.2 FMCW RADAR with chirp modulation

With chirp modulation, the signal frequency increases or decreases linearly over time.

A CHIRP (Compressed HIgh Resolution Pulse) signal is a signal in which the frequency

varies linearly with time; with an up-chirp the frequency increases linearly while with a

down-chirp the frequency decreases linearly, Figure 3.2.3.

Figure 3.2.3: Up-chirp and down-chirp signal in time and frequency domain

The instantaneous frequency f(t) for an up-chirp signal can be expressed as:

𝑓(𝑡) = 𝑓0 + 𝑘𝑡

where 𝑓0 is the starting frequency and 𝑘 is the chirp rate, defined as 𝑘 =
𝐵𝑊

𝑇
, where BW is

the bandwidth and T is the duration of the chirp.

Taking into account this, the transmitted RADAR signal frequency modulated with a up-

chirp signal can be represented as:

𝑥1 = 𝐴1 ∗ 𝑐𝑜𝑠(2𝜋(𝑓0𝑡 +
𝑘

2
𝑡2))

where 𝐴1 is the amplitude of the signal.

Due to the time needed for the signal to arrive at the target and come back to the RADAR

receiver, the received signal is delayed by a quantity 𝛥𝑡 =
2𝑅

𝑐
 where R is the range and c is

the speed of light in air and can be expressed as follows:

𝑥2 = 𝐴2 ∗ 𝑐𝑜𝑠(2𝜋(𝑓0(𝑡 − 𝛥𝑡) +
𝑘

2
(𝑡 − 𝛥𝑡)2))

17

At the receiver, the received signal will be mixed with the transmitted signal generating a

beat frequency 𝑓𝑏, which is the frequency difference between the transmitted and received

signal. Due to the relation between the beat frequency 𝑓𝑏, the time delay 𝛥𝑡, and the chirp

rate 𝑘 given by the following equation:

𝑓𝑏 = 𝑘 ∗ 𝛥𝑡

the range R can be computed as:

𝑅 =
𝑐𝑓𝑏

2𝑘

18

CHAPTER 4

Schematic block diagram

In this chapter the system localization scheme is presented and the schematic block

diagram of the data extraction algorithm is described.

4.1 System localization scheme

The system localization scheme operates using a frequency modulated continuous wave

FMCW RADAR signal, based on the use of a chirp signal. A chirp signal is basically a

frequency modulated signal that uses as information signal a periodic triangular wave,

that, within each period linearly increases the frequency of the transmitted signal. The

FMCW signal is transmitted and intercepted by an active transponder at distance d. The

transponder returns an amplitude modulated and amplified version of the RADAR signal

that it intercepts. The RADAR receiver operates by mixing the received signal with the

original transmitted one. The result has two signal components: one at twice the carrier

frequency and one at a lower frequency, that contains the signal of interest. The signal of

interest is centered around the transponder modulation frequency, denoted as 𝑓0, and

contains information about the distance d from the active transponder. In particular, the

distance information is contained in the “beat” frequency 𝑓𝑚 due to frequency difference in

the FMCW chirp signal due to the double delay introduced by the transponder at distance

d. We can assume that 𝑓0 ≫ 𝑓𝑚. The components around DC also contain range

information about all the obstacles on the path of the RADAR that generate a return signal.

We will denote this DC components as “clutter”. The signal of interest, i.e. the received,

frequency demodulated and low-passed signal (that we will consider as our input signal),

within each period of the periodic triangular wave, can be written as

𝑦(𝑡) = (𝐴 + (𝐴𝑚𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡 + 𝜃)) ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0) + 𝑐(𝑡)

where 𝑐(𝑡) is the clutter signal.

Our goal will be that of recovering the frequency 𝑓𝑚, that will allow us to determine the

distance d and then perform trilateration (using multiple transponders that operate

according to the same principle). The algorithm used to obtain an estimate 𝑓�̂� of the

frequency 𝑓𝑚 will be analyzed, simulated and implemented on a microcontroller.

19

4.2 Schematic block diagram

The schematic block diagram of the algorithm for the envelope detection of the RADAR

signal is shown in figure 4.2.1.

Figure 4.2.1: Schematic block diagram

A dataset of real received RADAR data has been collected and used for testing, but in

order to test the performance of the developed algorithm a simulator for the generation of

the signal has also been created in MATLAB.

The function for the generation of the simulated signal generates a random signal with

baseband scattering with bandwidth B, amplitude modulation with carrier with amplitude A

at frequency 𝑓0 and sidelobes at 𝑓0 + 𝑓𝑚 and 𝑓0 − 𝑓𝑚 with amplitude 𝐴𝑚.

The signal received back by the RADAR has approximately this form:

𝑦(𝑡) = (𝐴 + (𝐴𝑚𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡 + 𝜃)) ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0) + 𝑐(𝑡)

where:

1. c(t) is the clutter, that is the signal reflected by the environment;

2. 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡 + 𝜃) is the signal at frequency 𝑓𝑚, the beat frequency, which

contains the range information;

3. 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0) is the modulating signal;

4. A is a constant.

20

To obtain this in MATLAB the signal is generated in the following way:

𝑠𝑖𝑔𝑛𝑎𝑙 = (𝐴 + 𝐴𝑚 ∗ 𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 𝑓𝑚 ∗ 𝑛 ∗ 𝑇𝑠 + 𝑝ℎ𝑎))′.∗ 𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 𝑓0 ∗ 𝑛 ∗ 𝑇𝑠 + 𝑝ℎ𝑎0)′

 +𝑆𝑎𝑚𝑝 ∗ 𝑠𝑐𝑎𝑡𝑡𝑒𝑟(201: 𝑒𝑛𝑑, 1) + 𝑁𝑎𝑚𝑝 ∗ 𝑛𝑜𝑖𝑠𝑒2(201: 𝑒𝑛𝑑, 1);

To take into account the imperfections of the real signal, the phases pha and pha0 are

generated randomly while the frequencies 𝑓𝑚 and 𝑓0 are generated by adding to the known

values of 𝑓𝑚, 750 Hz, and 𝑓0, 200 kHz, random values. Moreover, scattering in the

baseband and noise to the whole signal are added.

An example of the signal generated during a MATLAB simulation is shown in Figure 4.2.2:

Figure 4.2.2: Complete signal

21

In the baseband there is noise representing the clutter. At frequencies 𝑓0 and -𝑓0 there is

the modulated signal with sidelobes at 𝑓0 + 𝑓𝑚 and 𝑓0 − 𝑓𝑚. The modulated signal can be

seen better by zooming around frequency 𝑓0 (figure 4.2.3).

Figure 4.2.3: Complete signal around 𝑓0

As can be observed the modulated signal is a sinusoid centered at frequency 𝑓0.

Considering that the RADAR sends both the chirp signal and the timing signal only a block

of the signal, corresponding to the samples between two rising edges of the timing signal,

is analyzed. Thus, the signal processed by the algorithm is sigD, which can be seen in

Figure 4.2.4 and zoomed around 𝑓0 in Figure 4.2.5.

22

Figure 4.2.4: Spectrum of one block

Figure 4.2.5: sigD around 𝑓0

23

To eliminate the clutter in the baseband sigD is filtered around frequency 𝑓0 with a

passband filter obtaining sigB, Figure 4.2.6; a zoom of sigB around 𝑓0 can be seen in

Figure 4.2.7.

 Figure 4.2.6: sigB

24

Figure 4.2.7: sigB around f0

SigB has the form:

𝑠𝑖𝑔𝐵(𝑡) = 𝑥(𝑡) ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0).

where x(t) is:

𝑥(𝑡)=𝐴 + (𝐴𝑚𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡 + 𝜃)

Then, to demodulate the signal an envelope detector is used.

First, sigMc and sigMs are obtained by multiplying sigB for a cosine and sine function,

respectively:

𝑠𝑖𝑔𝑀𝑐(𝑡) = 𝑥(𝑡) ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0) ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝛼)

𝑠𝑖𝑔𝑀𝑐(𝑡) = 𝑥(𝑡) ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0) ∗ 𝑠𝑖𝑛(2𝜋𝑓0𝑡 + 𝛼)

Secondly, sigMc and sigMs are filtered with a lowpass filter obtaining sigLc and sigLs:

25

𝑠𝑖𝑔𝐿𝑐 = 𝑥(𝑡) ∗ 𝑐𝑜𝑠(𝜃0 − 𝛼)
1

2

𝑠𝑖𝑔𝐿𝑐 = 𝑥(𝑡) ∗ 𝑠𝑖𝑛(𝜃0 − 𝛼)
1

2

Then, to isolate x(t) sigLc and sigLs are squared and then summed together:

(𝑠𝑖𝑔𝐿𝑐)2 + (𝑠𝑖𝑔𝐿𝑠)2 = (
1

2
𝑥(𝑡))2𝑐𝑜𝑠2(𝜃0 − 𝛼) + (

1

2
𝑥(𝑡))2𝑠𝑖𝑛2(𝜃0 − 𝛼) = (

1

2
𝑥(𝑡))2

As the last step of the demodulation, sigF is obtained by doing the square root of the result

of the previous sum:

𝑠𝑖𝑔𝐹(𝑡) = √(
1

2
𝑥(𝑡))2 =

1

2
|𝑥(𝑡)| =

1

2
|𝐴 + (𝐴𝑚𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡 + 𝜃)|

Then, sigS is obtained by eliminating the first del+1 samples of sigF, where del is the delay

introduced by the filters, which corresponds to
𝐿1

2
+

𝐿2

2
 with Li equal to the order of the filter.

As can be seen in figure 1.7 sigF is a sinusoid with frequency 2𝑓𝑚.

Figure 1.7: sigF

26

The frequency 𝑓𝑚 can be estimated following these steps:

1. eliminating the DC component of sigS, which corresponds to the mean value of

sigS:

 𝑠𝑖𝑔𝑆1 = 𝑠𝑖𝑔𝑆 − 𝑚𝑒𝑎𝑛(𝑠𝑖𝑔𝑆);

2. looking for the maximum of the FFT of sigS1.

Figure 1.8: sigS1

27

CHAPTER 5

HARDWARE IMPLEMENTATION

In this chapter, the implementation of the envelope detector algorithm on the TI

TMS320F2837xD Microcontroller is described.

5.1 Microcontroller

For the hardware implementation of the envelope detector, a TI TMS320F2837xD Dual-

Core Microcontroller has been chosen.

The TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU)

designed for advanced closed-loop control applications such as industrial motor drives;

solar inverters and digital power; electrical vehicles and transportation; and sensing and

signal processing.

The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs,

which provide 200 MHz of signal processing performance in each core.

The most relevant features of the microcontroller are listed below:

1. CLA (Control Law Accellerator)

The F2837xD microcontroller family features two CLA real-time control coprocessors. The

CLA is an independent 32-bit floating-point processor that runs at the same speed as the

main CPU. The CLA responds to peripheral triggers and executes code concurrently with

the main C28x CPU. This parallel processing capability can effectively double the

computational performance of a real-time control system. By using the CLA to service

time-critical functions, the main C28x CPU is free to perform other tasks, such as

communications and diagnostics

2. MEMORY

The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error

correction code (ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are

also available on each CPU for code protection.

3. PERIPHERALS

Performance analog and control peripherals are also integrated on the F2837xD MCU to

further enable system consolidation. Four independent 16-bit ADCs provide precise and

28

efficient management of multiple analog signals, which ultimately boosts system

throughput. The new sigma-delta filter module (SDFM) works in conjunction with the

sigma-delta modulator to enable isolated current shunt measurements. The Comparator

Subsystem (CMPSS) with windowed comparators allows for protection of power stages

when current limit conditions are exceeded or not met. Other analog and control

peripherals include DACs, PWMs, eCAPs, eQEPs, and other peripherals.

To implement and test our application the F28379D LaunchPad has been chosen, Figure

5.1.1, which has USB connected isolated XDS100v2 JTAG debug probe for real-time

debug and flash programming, 4x 20-pin headers/connectors, and programmable buttons

and LEDs.

Figure 5.1.1: F28379D LaunchPad

29

Figure 5.1.2: LAUNCHXL-F28379D Board Overview

5.2 Implementation

The goal was to load the developed code for the envelope detector implementation on the

flash memory of the microcontroller to obtain a stand-alone operation. The needed data,

which are the acquired RADAR signal data and the filter coefficients, have also been loaded

on the flash memory.

5.2.1 Data acquisition

The data processed by the detector have been acquired and frequency demodulated by

the RADAR board, and are further processed by the detector in order to estimate the

distance between the RADAR transmitter and the active target.

The coefficients for the pass-band filter and the low pass filter have been generated using

the firpm function in Matlab which uses the Parks-McClellan algorithm.

All the data have been loaded on the flash memory of the CPU1 of the microcontroller by

programming it using the F021 Flash API library, composed by functions written, compiled

and validated by Texas Instruments.

30

5.2.3 Flash programming

On the F28376D devices, each CPU has its own flash bank [256KB (128KW)], the total

flash for each device is 512KB (256KW). Each bank is divided in 7 sectors. Only one bank

can be programmed or erased at a time and the code to program the flash should be

executed out of RAM. Each bank is divided in 7 sectors.

Moreover, the Flash module contains a Flash state machine (FSM) to perform program

and erase operations.

A typical flow to program the Flash consists of erasing, programming and verifying the

selected sector.

To erase a given sector the Fapi_issueAsyncCommandWithAddress() command is used

which takes as parameters the command to issue the FSM, which for erasing is

Fapi_Erasesector, and the Flash sector address.

Then to program and verify the Fapi_issueProgrammingCommand() command is used

which takes as parameters:

1. the start address in Flash for the data to be programmed;

2. the pointer to the address of the Data buffer containing the data that needed to be

written in the sector;

3. the number of 16-bit words in the Data buffer;

4. the pointer to the ECC buffer address, 0 if the ECC buffer is not being programmed;

5. the number of 8-bit bytes in the ECC buffer, 0 if the ECC buffer is not being

programmed;

6. the programming mode to use, Fapi_DataOnly to only program the data buffer.

Instead, to read data from the flash into a user-given buffer the Fapi_doMarginRead()

command is used which takes as parameters:

1. the start address for region to read;

2. the address of buffer to return read data;

3. the length of region in 32-bit words to read;

4. the read mode, Fapi_NormalRead.

31

5.3 Code implementation

The code written for the microcontroller is in C language. In the following paragraphs the

basic theory and the code behind the implementation of the main elements of the

implemented algorithm will be explained.

5.3.1 Filter implementation

In the implementation of the envelope detector, there are two filters, a pass band filter and

a low pass filter, both are designed as even symmetric FIR filters with an odd number of

coefficients.

FIR FILTER

In signal processing, a filter is a system that alters an incoming signal in the desired way to

extract useful information and discard undesirable components.

 There are two main classes of filters, which differ in the type of signals processed: analog

and digital. Digital filters, being implemented in software algorithms, are more

advantageous compared to analog ones, which are implemented with circuital components

[6]: they do not suffer from component tolerances, their response is invariant to

temperature and time, and they are insensitive to electrical noise to a great extent.

Moreover, they are programmed easily on digital hardware and are very versatile in the

desired responses they can produce. Considering these advantages, digital filters are

preferred to reduce noise or obtain certain aspects of the given signal; this is why they are

used in applications like data compression, biomedical signal processing, speech and

image processing, data transmission, digital audio, and telephone echo cancellation.

The common representation of digital filters through their impulse response leads to their

classification in FIR, Finite Impulse Response, and IIR, Infinite impulse response; as the

name underlines FIR filters have a finite duration pulse response which means having a

nonzero pulse response for only a finite number of samples, while IIR filters have an

infinite duration pulse response and therefore an infinite number of nonzero samples in an

impulse response.

For the localization system developed in this thesis, even symmetry FIR filters with an odd

number of coefficients have been used, which have linear phase and a constant delay

equal to an integer number of samples.

32

The output of a FIR filter, y[n], is given by the discrete-time convolution between the input

signal and the impulse response of the filter, which can be written as:

𝑦[𝑛] = ∑ ℎ[𝑘] ∗ 𝑥[𝑛 − 𝑘];

𝑀−1

𝑘=0

where x[n] is the input signal, h[k] is the impulse response of the filter, and M is the number

of filter coefficients/taps. For each output calculated, there are M multiplications, as shown

in Figure 5.3.1.

Figure 5.3.1: FIR filter

If the filter is symmetric, i.e. if its impulse response satisfies the following condition:

ℎ[𝑛] = ℎ[𝑀 − 1 − 𝑛], with n=1,2,3,..,M-1

the number of multiplications for each output sample reduces to (M-1)/2+1 (when M is

odd), as shown in Figure 5.3.2.

Figure 5.3.2: Symmetric FIR filter

33

Thus, the symmetry in a filter implies a reduction in the computational workload which can

be exploited to generate efficient filter hardware and software implementations. However,

the main reason for choosing a symmetric FIR filter is its linear phase response: all

frequency components of the input signal are delayed in time by the same amount

because the filter does not introduce phase distortion, preserving the wave shape of the

signals.

LINEAR PHASE FILTER

The frequency response of a FIR filter can be expressed as follows:

𝐻(𝑒𝑗𝜔) = ∑ ℎ[𝑘] ∗ 𝑒−𝑗𝑘𝜔

𝑀−1

𝑘=0

with h[k] being the impulse response of the filter.

A system has generalized linear phase if its frequency response can be written as:

𝐻(𝑒𝑗𝜔) = 𝐴(𝑒𝑗𝜔) ∗ 𝑒−𝑗𝛼𝜔+𝑗𝛽

where 𝐴(𝑒𝑗𝜔) is a real function and 𝛼 and 𝛽 are constants.

A filter with generalized linear phase has a constant group delay, which is the measure of

the average time delay of the filter as a function of frequency. In the definition above the

group delay is 𝛼 .

Four types of FIR filters with generalized linear phases exist:

1. type 1: M odd, even symmetry;

2. type 2: M even, even symmetry;

3. type 3: M odd, odd symmetry;

4. type 4: M even, odd symmetry.

Where even symmetry implies that the filter coefficients satisfy the following condition:

ℎ[𝑛] = ℎ[𝑀 − 1 − 𝑛] with n=0,1,..., (M-1)/2 if M is odd and n = 0,1,…, (N/2)-1 if M is even;

while for odd symmetry the condition is the following:

ℎ[𝑛] = −ℎ[𝑀 − 1 − 𝑛], 0 ≤ 𝑛 ≤ 𝑀 − 1 with n = 0,1,…, (M-1)/2 if M is odd and n = 0,1,…,

(M/2)-1 if M is even.

The impulse responses of the four types of linear-phase filters are shown in Figure 5.3.3:

34

Figure 5.3.3: Impulse responses of linear-phase filters

The output y[n] of a linear-phase filter with an odd number of coefficients M can be

expressed as:

𝑦[𝑛] = ℎ[𝑀/2] ∗ 𝑥[𝑛 − 𝑀/2] + ∑ ℎ[𝑘] ∗ (𝑥[𝑛 − 𝑘] + 𝑥[𝑛 + 𝑘 − (𝑀 − 1)])
𝑀−1

2

𝑘=0

CODE IMPLEMENTATION

Due to the memory limitations of the chosen microcontroller, we decided to implement a

block filtering technique for the FIR filter.

Block filtering in signal data involves dividing the signal into blocks and applying a filtering

algorithm to each block independently. This can be particularly useful in real-time

processing, where the signal is too large to be processed as a whole or when the signal

characteristics change over time.

To filter the input signal in blocks we need to prepend the array containing the input block

to be processed an array containing the last filter-order samples of the computed output in

35

the previous iteration. Regarding the first iteration, the array to prepend is composed of all

zeros.

The function to implement the even-symmetry FIR filter with an odd number of coefficients

in C code, simmFIR(), receives as input parameters:

1. the array containing the filter coefficients;

2. an array DL with size equal to the filter order;

3. the array containing one block of input samples;

4. an array to store the output samples;

5. the length of the input block;

6. the length of the filter, M.

In our case, having implemented a signal generator in MATLAB, we can choose the length

of the input signal and we have chosen to generate an input signal with 1991 samples

which can be processed and filtered all at once. Thus, the filtering will consist of one

iteration with one block corresponding to the whole input signal.

After prepending the filter-order array of zeros to the input block array, the obtained array,

inputDL, is processed with the symmetric filter algorithm, which implements the equation of

linear-phase filter with an odd number of coefficients M.

The steps of the algorithm are the following:

1. loop over each new input sample to compute the corresponding output sample:

for (n = 0; n < length_input_block; n++) {

2. Initialize an accumulator variable with the middle filter coefficient multiplied by the

corresponding input sample:

acc = coeffs[(M+1)/2] * inputDL[n + (M+1)/2];

3. Accumulate the contributions of the remaining filter coefficients pairing the input

samples according to symmetry:

36

for (k = 0; k < (M+1)/2; k++) {

 acc += (coeffs[k] * (inputDL[n + k] + inputDL[n - k + M - 1]));

}

4. Store the computed value in the output array:

output[n] = acc;

As the last step, the last M-1 samples of the current extended input, inpuDL, are copied to

the array DL to be used in the next call; in our case the updated array DL will not be used.

5.3.2 Envelope detector implementation

The input signal to the system implemented in the microcontroller is a signal modulated in

amplitude which can be expressed as:

𝑥(𝑡) = [𝐴0 + 𝐴𝑚 ∗ 𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡 + 𝜃)] ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0)

where:

• 𝐴𝑚 ∗ 𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡 + 𝜃) is the modulating signal;

• 𝐴0 ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0) is the carrier signal.

AMPLITUDE MODULATION

Modulation is defined as the process of superimposing a low-frequency signal, the

modulating signal which contains the information needed to be transmitted, on a high-

frequency carrier signal. In particular, with amplitude modulation the amplitude of the

carrier signal varies in accordance with the instantaneous amplitude of the modulating

signal, Figure 5.3.4. When a carrier is amplitude-modulated by a single frequency, two

sidebands are produced:

● Upper Sideband (USB): 𝑓0 + 𝑓𝑚

● Lower Sideband (LSB): 𝑓0 − 𝑓𝑚

37

The spectrum of an amplitude-modulated signal includes the carrier frequency and the two

sidebands, each containing the information from the modulating signal, 𝑓𝑚.

Figure 5.3.4: Amplitude modulation

AMPLITUDE DEMODULATION

To recover the wanted information of the modulating signal from the modulated signal, in

our case 𝑓𝑚, demodulation is needed, which consists of extracting the modulating signal

from the carrier signal.

There are two main techniques for amplitude demodulation:

1. synchronous detection;

2. envelope detection.

With synchronous detection, a carrier signal that is synchronized in frequency and phase

with the received carrier signal is locally generated with an oscillator. Then the received

38

AM signal is mixed with the locally generated carrier signal. This process produces a

signal that contains the original modulating signal and additional frequency components:

[𝑥(𝑡) ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0)] ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0) = 𝑥(𝑡) ∗ 𝑐𝑜𝑠2(2𝜋𝑓0𝑡 + 𝜃0) =

1

2
𝑥(𝑡) +

1

2
𝑥(𝑡)𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 2𝜃0)

Thus, we obtain
1

2
𝑥(𝑡) in baseband and the signal

1

2
𝑥(𝑡)𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 2𝜃0) modulated at

frequency 2𝑓0.

 To isolate the original modulating signal, the output of the mixer is passed through a low-

pass filter to remove the high-frequency components.

However, the need for a local oscillator that is precisely synchronized in frequency and

phase with the incoming carrier wave adds complexity and is expensive. Usually, to do this

a Phase-Locked Loop, PLL, is used which is a control system that adjusts the phase of the

local oscillator to match the phase of the incoming carrier signal. Without a PLL the signal

in baseband after mixing will be:

1

2
𝑥(𝑡)𝑐𝑜𝑠(𝜃0 − 𝜑)

 which will oscillate as the phase 𝜃0 changes, giving not useful information.

Thus, given the complexity of implementing a synchronous detector an envelope detector

implemented in software has been chosen for our implementation, Figure 5.3.5. With an

envelope detector, we do not need to generate a carrier wave with the same phase of the

incoming carrier signal for the mixing. Two sinusoidal signals, a sine and cosine signal, are

generated at the frequency 𝑓0 and then both multiplied for the modulated signal obtaining

two signals which, after low-pass filtering, will be squared and sum together eliminating the

sinusoidal terms with the difference of phases.

The steps are the following:

1. the modulated signal, 𝑥(𝑡) ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0), is multiplied for 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝛼) and

𝑠𝑖𝑛(2𝜋𝑓0𝑡 + 𝛼) obtaining:

𝑠𝑖𝑔𝑀𝑐(𝑡) = 𝑥(𝑡) ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0) ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝛼)

𝑠𝑖𝑔𝑀𝑠(𝑡) = 𝑥(𝑡) ∗ 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝜃0) ∗ 𝑠𝑖𝑛(2𝜋𝑓0𝑡 + 𝛼)

2. the obtained signals, 𝑠𝑖𝑔𝑀𝑐(𝑡) and 𝑠𝑖𝑔𝑀𝑠(𝑡) are filtered with a low pass filter

obtaining:

39

𝑠𝑖𝑔𝐿𝑐 = 𝑥(𝑡) ∗ 𝑐𝑜𝑠(𝜃0 − 𝛼)
1

2

𝑠𝑖𝑔𝐿𝑠 = 𝑥(𝑡) ∗ 𝑠𝑖𝑛(𝜃0 − 𝛼)
1

2

3. 𝑠𝑖𝑔𝐿𝑐 and 𝑠𝑖𝑔𝐿𝑐 are squared and then summed together to isolate x(t):

(𝑠𝑖𝑔𝐿𝑐)2 + (𝑠𝑖𝑔𝐿𝑠)2 = (
1

2
𝑥(𝑡))2𝑐𝑜𝑠2(𝜃0 − 𝛼) + (

1

2
𝑥(𝑡))2𝑠𝑖𝑛2(𝜃0 − 𝛼) = (

1

2
𝑥(𝑡))

2

4. the absolute value of the square root of the previous result is taken, obtaining the

rectification of the modulating signal x(t):

𝑠𝑖𝑔𝐹(𝑡) = √(
1

2
𝑥(𝑡))2 =

1

2
|𝑥(𝑡)| =

1

2
|𝐴 + (𝐴𝑚𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡 + 𝜃)|

Figure 5.3.5: Implemented Envelope detector

CODE IMPLEMENTATION

To implement the envelope detector described before on the microcontroller three C

functions are needed.

The mixing() function which takes as parameters:

1. the size of the input array;

40

2. the frequency f_0 of the carrier;

3. the sampling frequency fs;

4. the input signal, i.e. the modulating signal;

5. an array to store the result of the mixing between the input and the cosine

signal;

6. an array to store the result of the mixing between the input and the sine

signal;

The algorithm for the mixing is quite simple:

1. iterate through each sample of the input signal:

 for (i = 0; i < N; i++) {

2. for each iteration the variable omega is calculated as:

 omega = 2 * PI * (f0 / fs) * i;

3. a sample for each of the two carrier signals is generated for each input sample by

using the floating-point cosine and sine functions, respectively cosf and sinf:

 carrier_c = cosf(omega);

 carrier_s = sinf(omega);

4. the input signal sample sigB[i] is mixed with both the sample of the cosine carrier

and of the sine carrier:

sigMc[i] = sigB[i] * carrier_c;

 sigMs[i] = sigB[i] * carrier_s;

41

The arraySquare() function which takes as input parameters:

1. the size of the input array;

2. the first array that needs to be squared and summed;

3. the second array that needs to be squared and summed;

4. the output array.

The algorithm of this function:

1. iterate through each sample of the input signal:

 for (i = 0; i < N; i++) {

2. for each input sample i the corresponding sample of the first input array and of the

second input array are squared and then summed together; then the result is

squared-root and stored in the output array in position i:

sigF[i] = sqrt(sigFc[i] * sigFc[i] + sigFs[i] * sigFs[i]);

The symmFIR() function, which has already been described above in paragraph 5.3.1.

5.3.3 Fast Fourier Transform implementation

To estimate the modulating frequency 𝑓𝑚 the Fast Fourier Transform algorithm is used

which efficiently computes the Discrete Fourier Transform (DFT) and/or its inverse.

A Fast Fourier Transform (FFT) is a highly optimized implementation of the Discrete

Fourier transform (DFT), which convert discrete signals from the time domain to the

frequency domain. A signal is sampled over a period of time and divided into its frequency

components. These components are single sinusoidal oscillations at distinct frequencies

each with their own amplitude and phase. An example of this transformation is illustrated in

Figure 5.3.6: over the time period measured, the signal contains three distinct dominant

frequencies.

42

The DFT is defined by the formula:

𝑋[𝑘] = ∑ 𝑥[𝑛] ∗ 𝑒−
𝑗2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

where x[n] is an element of the discrete signal composed of N elements, X[k] is an element

of the transformed discrete signal. The number of products needed is 𝑂(𝑁2). Instead, a

FFT algorithm allows to determine the discrete Fourier transform of an input significantly

faster than computing it directly; the number of computations is reduced to 𝑂(𝑁𝑙𝑜𝑔𝑁).

Popular FFT algorithms include the Cooley-Tukey algorithm, prime factor FFT algorithm,

and Rader’s FFT algorithm. The most used FFT algorithm is the Cooley-Tukey algorithm,

which reduces a large DFT into smaller DFTs to increase computation speed and reduce

complexity.

Figure 5.3.6: Example of DFT

43

COOLEY-TUKEY ALGORITHM

To perform the FFT we decide to implement the radix-2 Cooley-Tukey algorithm.

The Cooley-Tukey algorithm is based on the divide-and-conquer approach:

1. Divide: Split the DFT into smaller DFTs.

2. Conquer: Compute the DFTs of the smaller parts.

3. Combine: Merge the results to get the final DFT.

The most commonly used version is the radix-2 Cooley-Tukey algorithm, which works

when the length of the input signal N is a power of 2; the DFT of an arbitrary composite

size 𝑁 = 𝑁1 ∗ 𝑁2 is recursively broken down into many smaller DFTs of sizes 𝑁1 and 𝑁2,

Figure 5.3.7.

CODE IMPLEMENTATION

Being a commonly used algorithm, there are several implementations in C language of the

radix-2 Cooley-Tukey algorithm. The chosen implementation is reported in the Appendix.

Figure 5.3.7: Illustration of Cooley-Tukey algorithm of FFT

44

CHAPTER 6

PERFORMANCE ANALYSIS

In this chapter, a performance analysis of fitting-based and FFT-based frequency

estimation is performed.

6.1 Frequency estimation

To estimate the frequency 𝑓𝑚 we decided to use a FFT algorithm, but another option

consists of using a fitting technique. In particular, in this chapter, the results obtained with

the FFT algorithm, described in Chapter 5, are compared with the ones obtained by fitting

a four parameters rectified sinusoid to the signal after envelope detection.

 The fitting algorithm fits a rectified sinusoidal function to a set of signal samples by

optimizing four parameters: amplitude, frequency, phase, and offset. It begins by setting up

multiple initial guesses for the phase parameter to increase the likelihood of finding the

best fit. For each guess, it constructs a parameter vector that includes the maximum

absolute value of the signal samples as the initial amplitude, a specified frequency, a

phase value varying from 0 to π, and an initial offset of 0. It then optimizes these

parameters to minimize the error between the actual signal and the model's output. The

error is calculated by comparing the fitted signal to the original samples. The algorithm

records the optimized parameters and the corresponding error for each initial guess. After

all iterations, it selects the set of parameters that produced the minimum error. Finally, it

generates the fitted signal using these best-fitting parameters, resulting in a rectified

sinusoidal model that closely matches the original signal samples.

As can be observed from the performance curves, the fitting algorithm offers slightly better

performance than the FFT-based algorithm, but requires a much larger complexity, not

suitable for the low-cost solution examined in this thesis. The FFT-based algorithm was

therefore selected for the final implementation.

45

6.2 Percentage error

The performances between the two methods are compared as percentage error defined

as:

%𝑒𝑟𝑟 =
100 ∗ |𝑓𝑚 − 𝑓𝑚_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

𝑓𝑚

where 𝑓𝑚 is the actual beat frequency, which is known since we used the simulated data

for this analysis, and 𝑓𝑚_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the estimated frequency.

The performances are evaluated for three parameters: the SNR ratio, the logarithm base 2

of the number of points of the FFT (M), and the number of observed sinusoid periods (NP).

6.2.1 SNR

The first parameter is the Signal To Noise ratio SNR which compares the level of the

desired signal to the level of background noise.

It is typically expressed in decibels and computed as follows:

𝑆𝑁𝑅(𝑑𝐵) = 10𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
)

where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 is the average power of the signal and 𝑃𝑛𝑜𝑖𝑠𝑒 is the average power of the

noise.

As can be seen in Figure 6.2.1, as the SNR increases the percentage error decreases. In

the case in which 512 samples are used for the FFT, for a SNR equal to -10 dB the error

became acceptable, 2.5, and a threshold is reached for a SNR equal to -3 dB.

In Figure 6.2.2 a comparison between the percentage error obtained with the FFT with 512

samples and the fitting method with 5 initial phases as the SNR varies can be observed:

with the fitting method, better performances are obtained. For a SNR equal to -12 dB the

percentage error of the FFT method is around 6 while with the fitting method is around 3.

By increasing the SNR the lowest error obtained with the FFT method is around 1.75

obtained for SNR greater than -5.5 dB while with the fitting method is 0.5 obtained for SNR

greater than -1.5 dB.

46

Figure 6.2.1: error vs SNR

 Figure 6.2.2: error vs SNR for fitting and FFT methods

47

6.2.2 Number of FFT points

The second parameter is logarithm base 2 of M, the number of FFT points.

In Figure 6.2.3 we can see what we obtain by varying the number of FFT points in a

condition with no noise: the error decreases as the logarithm base 2 of the number of

points of the FFT (M) increases and becomes steady for values of 𝑙𝑜𝑔2(𝑀) greater than

11.

Figure 6.2.3: error vs M

The average percentage error is:

fit_m = 0.5762 for the fitting method and FFT_m = 1.0903 for the FFT method.

48

6.2.3 NP

The last parameter considered is the number of observed sinusoid periods (NP) which is

proportional to the observation time 𝑇𝑜𝑏𝑠, Figure 5.2.4:

𝑇𝑜𝑏𝑠 = 𝑁𝑃 ∗ 𝑇𝑚

where 𝑇𝑚 is the period of the sinusoid. Thus, the observation time contains NP periods of

the sinusoid, and 𝑁𝑚𝑎𝑥 Signal samples, where 𝑇𝑠is the sampling period and 𝑓𝑠 =
1

𝑇𝑠
 is the

sampling frequency. The link between all the timing parameters is shown in Fig. 6.2.4.

Figure 6.2.4: Observation period

As we can see in Figure 6.2.5 for M=512 and SNR=0dB the error decreases as NP

increases and reaches a threshold for NP equal to 1.5 corresponding to an observation

time of one-half periods of the sinusoid.

49

Instead, in Figure 6.2.6 a comparison between the FFT and the fitting method can be

observed: the performances are similar for NP greater than 1, and for both the threshold is

reached for NP greater than 1.5, but for small NP the error with the FFT method is greater

than the one with the fitting method.

The average percentage error is:

fit_m = 3.2684 for the fitting method and FFT_m = 4.8690 for the FFT method.

Figure 6.2.5: Error vs NP

50

Figure 6.2.5: Error vs NP for fitting and FFT methods

51

CHAPTER 7

Conclusions
The objectives proposed for the thesis have been satisfied by the expected results have

been obtained.

This thesis has explored the implementation of a data extraction algorithm from RADAR

signals on an embedded system for precise target localization using trilateration to identify

precise positions on objects in cluttered environments. Utilizing a low-complexity chirp

Frequency Modulated Continuous Wave (FMCW) RADAR, the research aimed to develop

a cost-effective and efficient solution for range measurement and localization.

Chapter 2 outlined the trilateration method, emphasizing its principles, geometrical and

mathematical interpretations, and optimization algorithms. This method proved effective for

precise localization using range information from multiple radiofrequency receivers.

Chapter 3 discussed the specifics of FMCW RADAR with chirp modulation, highlighting

frequency modulation patterns and the advantages of chirp modulation for improved range

resolution and reduced ambiguity. In Chapter 4, the system localization scheme and

schematic block diagram of the data extraction algorithm were presented, focusing on the

implementation of FIR filters critical for processing RADAR signals.

Chapter 5 detailed the hardware implementation of the developed algorithm on a Texas

Instruments C2000 F28379D microcontroller, covering data acquisition, flash

programming, and the implementation of key components like symmetric FIR filters, the

envelope detector and Fast Fourier Transform (FFT). Chapter 6 provided a performance

analysis of the algorithm, examining frequency estimation through both FFT and fitting-

based methods. Although the fitting algorithm offered slightly better performance, its higher

complexity rendered it unsuitable for the low-cost solution targeted in this thesis.

Therefore, the FFT-based algorithm, despite its marginally lower performance, was

selected for the final implementation due to its lower complexity and suitability for real-time

applications. The results of the performance analysis obtained varying parameters like

SNR, numbers of FFT points and observation period confirm the system's effectiveness

and reliability.

52

The thesis work confirmed the efficiency of trilateration for precise localization and the

advantages of FMCW RADAR with chirp modulation for accurate range measurements at

low complexity and cost. The implementation on the TI C2000 F28379D microcontroller

demonstrated the feasibility of using embedded systems for complex signal processing

tasks, effectively handling filtering and demodulation for real-time applications.

Performance analysis highlighted critical factors affecting system accuracy, providing

insights for optimizing future implementations.

53

References

[1] L. Zheng, An optimization approach to indoor location problem based on received

signal strength, Master's thesis, Wright State University, 2012.

[2] An Efficient Least-Squares Trilateration Algorithm for Mobile Robot Localization, Yu

Zhou, Member, IEEE

[3] W. C. Hu, W. H. Tang, ―Automated least-squares adjustment of triangulation-

trilateration figures‖, Journal of Surveying Engineering, 133-142, 2001.

[4] M. I. Skolnik, Introduction to Radar Systems, 3rd ed. New York: McGraw-Hill, 2001.

[5] M. I. Skolnik, Ed., Radar Handbook, 3rd ed. New York: McGraw-Hill, 2008.

[6] W. Zhong, Linear phase FIR digital filter design using differential evolution algorithms,

Master's thesis, University of Windsor

[7] Schlichthärle, D.: Digital Filters: Basics and Design. Springer, Berlin, Heidelberg (2011)

[8] R. W. Hamming, Digital Filters. Upper Saddle River, NJ: Prentice Hall, 1999.

54

Appendix

FIR filter

void simmFIR(float *coeffs, float *DL, float *input, float *output, int length, int L)

{

 float acc=0; // accumulator for MACs

 int n; //index for output

 int k;//index for the filter coefficients

 int M=(L-1)/2;

 printf("m is %d\n", M);

 //allocate memory for the input to the filter:

 //the first (filterLength-1) position are from the previous input (DL)

 //To which the input from main is appended (input)

 int inputDL_len= length+L-1;

 float *inputDL=malloc(inputDL_len*sizeof(float));

 //1-put in the first (filterLength -1)-positions DL: cause you have (#coeff-1) memory cell
for the delay line

 memcpy(inputDL, DL,

 (L-1) * sizeof(float));

 // 2-append the input:put the new samples at the high end of the buffer

 memcpy(&inputDL[L-1], input,

 length * sizeof(float));

 //stampaArray(inputDL,inputDL_len);

 // apply the filter to each input sample

 for (n = 0; n < length; n++) {

 // calculate output n

 acc = coeffs[M] * inputDL[n+M];

 for (k = 0; k < M; k++) {

55

 acc += (coeffs[k]*(inputDL[n+k]+inputDL[n-k+L-1]));

 }

 output[n] = acc;

 }

 // save the last filterlegth-samples -1 of the input in DL for the next input

 memcpy(DL, &inputDL[length],(L-1) * sizeof(float));

 free(inputDL);

}

Envelope detector

void arraySquare(int N, float *sigFc, float *sigFs, float *sigF) {

 int i;

 for (i = 0; i < N; i++) {

 sigF[i] = sqrt(sigFc[i] * sigFc[i] + sigFs[i] * sigFs[i]);

 //printf("%f\n", sigF[i]);

 }

}

 void mixing(int N, double f0_true, double fs, float *sigB, float *sigMc, float *sigMs) {

 int i;

 double omega;

 float carrier_c, carrier_s;

 for (i = 0; i < N; i++) {

 omega = 2 * PI * (f0_true / fs) * i;

 //printf("%f\n", omega);

 carrier_c = cosf(omega);

 carrier_s = sinf(omega);

 sigMc[i] = sigB[i] * carrier_c;

 sigMs[i] = sigB[i] * carrier_s;

 }

}

56

FFT

//FFT FUNCTIONS

typedef struct {

 double real;

 double imag;

} Complex;

// Function to perform the bit-reversal of an integer

unsigned int reverse_bits(unsigned int x, int n) {

 unsigned int result = 0;

 for (int i = 0; i < n; i++) {

 result <<= 1;

 result |= (x & 1);

 x >>= 1;

 }

 return result;

}

// Function to perform the FFT

void fft(Complex *x, int n) {

 // Bit-reversal permutation

 int log2n = log2(n);

 for (int i = 0; i < n; i++) {

 int j = reverse_bits(i, log2n);

 if (i < j) {

 Complex temp = x[i];

 x[i] = x[j];

 x[j] = temp;

 }

 }

 // Cooley-Tukey FFT

 for (int s = 1; s <= log2n; s++) {

57

 int m = 1 << s;

 double angle = -2.0 * M_PI / m;

 Complex wm = { cos(angle), sin(angle) };

 for (int k = 0; k < n; k += m) {

 Complex w = { 1.0, 0.0 };

 for (int j = 0; j < m / 2; j++) {

 Complex t = { w.real * x[k + j + m / 2].real - w.imag * x[k + j + m / 2].imag,

 w.real * x[k + j + m / 2].imag + w.imag * x[k + j + m / 2].real };

 Complex u = x[k + j];

 x[k + j].real = u.real + t.real;

 x[k + j].imag = u.imag + t.imag;

 x[k + j + m / 2].real = u.real - t.real;

 x[k + j + m / 2].imag = u.imag - t.imag;

 Complex temp = { w.real * wm.real - w.imag * wm.imag, w.real * wm.imag +
w.imag * wm.real };

 w = temp;

 }

 }

 }

}

58

MATLAB code

%% Envelope detector and frequency estimation (with fitting and FFT)
%
% This program estimates the phase of the received signal envelope
%
% The block diagram is:
%
% signal->[decimation h0]->sigD->[BPF h1]->
% sigB->[mixing with sin and cos]->sigM->[LPF h3]->sigF->
% [selection of 1 slot]-> sigS-[fitting]->fitted
%
% sigS is a rectified sinusoid plus a constant. It is fitted with a 4
% parameters rectified sinusoid to estimate its frequency. Its dominant
% frequency (after eliminating the DC component) is also estimated using
% an FFT block and looking for the maximum value.
%
close all
clear all
warning('off','all')
warning

%% Initializations
spectra=false; timeplot=false;
mean_error_fit=[]; mean_error_FFT=[];

Nmeas=50; % number of simulated measurements
f0_ref=200000; % reference center frequency
fs_ref=600000; % reference sampling frewquency
Lmarg=50; % margin for selection of starting point
fm=750; % reference modulated signal frequency
B=f0_ref/20; % filter bandwidth
BT=2*B; % filter transition bandwidth
L1=100; L3=100; % the number of filter coefficients are Li +1
 % the filter delays are Li/2 (the Li values are all even)
Bmin=5*fm; % bandwidth of the low-pass filter
Nsteps=100; % Max number of optimizarion steps for each parameter
M=512; % number of FFT points

%% Parameters of the Nmeas individual measurements
fs_i=fs_ref*ones(1,Nmeas); % sampling frequency
f0_i=f0_ref*ones(1,Nmeas); % center frequency
Nmax=round(2.5*fs_ref/fm) % number of samples
N_i=Nmax*ones(1,Nmeas); % number of acquired samples
ratio=fs_i./(3*(f0_i+B/2)); % oversampling factor
K_i=max(2.^(floor(log2(floor(ratio)))),1); % decimation factor (power of 2)

%% Loop parameters
SNRvecdB=-12:0.5:3;
SNRvec=10.^(SNRvecdB/10);
Nloop=length(SNRvec);
% Nloop=1; % We are simulatring only one SNR value

%% Analysis for various SNRs
for indexS=1:Nloop

59

 dec=[]; est_freq_FFT=[]; est_amp=[]; est_freq=[]; est_pha=[]; error=[];
 rng('default');

 %% Analysis of the Nmeas measured or simulated signals
 for index=1:Nmeas
 % the index-th signal is analyzed
 f0=f0_i(index); % center frequency
 L0=96/K_i(index); % delay of the decimation filter
 K=K_i(index); % decimation factor
 fs=fs_i(index); % initial sampling frequency
 Nsig=N_i(index); % signal contains Nsig non-zero samples

 %% Simulated signal generation
 B_s=30*fm; SNR=SNRvec(indexS); SNRdB=SNRvecdB(indexS);

[A,Am,f0_true,fm_true,pha,signal,timsig,start,stop]=fm_generator(f0,fm,B_s,Nsig,SNR,fs)
;
 fm_t(index)=fm_true; % actual modulation frequency

 %% Spectrum visualization at the input of the demodulator(Nmax samples)
 if spectra
 spectrum(-fs/2,fs/2,fs,Nmax,signal,'Spectrum of complete signal');
 spectrum(f0_true-B/2,f0_true+B/2,fs,10*Nmax,signal,'Spectrum around f0');
 end

 %% Input signal in the demodulator
 %% No decimation (only one block is kept)
 sigD=signal(start:stop); K=1; beg(1)=start; beg(2)=stop; L0=0;
 N=length(sigD); % length of decimated signal
 fs=fs/K; % sampling frequency after decimation

 %% Spectrum visualization after decimation (over N samplest, 1 block)
 if spectra
 spectrum(-fs/2,fs/2,fs,N,sigD,'Spectrum after decimation');
 spectrum(f0_true-B/2,f0_true+B/2,fs,10*N,sigD,'Spectrum after decimation
around f0');
 end

 %% Passband filtering
 [sigB,hPB]=passband_filtering(f0_true,B,BT,fs,L1,sigD);

 %% spectrum visualization after passband filtering over N1 samples
 % note: to visualize the spectrum with more precision we add
 % zero-valued samples with zero-padding

 if spectra
 N1=100000;
 spectrum(-fs/2,fs/2,fs,N1,sigB,'Spectrum of one block after BP filtering');
 spectrum(f0_true-B/2,f0_true+B/2,fs,N1,sigB,'Spectrum after BP filtering
around f0');
 end

 %% Mixing
 omega=2*pi*(f0_true/fs)*(0:N-1); % omega axis
 carrierc=cos(omega); % cosine carrier
 carriers=sin(omega); % sine carrier
 sigMc=sigB.*(carrierc'); % cosine mixing
 sigMs=sigB.*(carriers'); % sine mixing

 %% Low-pass filtering (1 stage)

60

 [h3]=lowpass_filtering_design2(Bmin,2*Bmin,fs,L3);
 sigFc=filter(h3,1,sigMc); % low pass filtering
 sigFs=filter(h3,1,sigMs); % low pass filtering
 dec=[dec floor(fs/(6*Bmin))]; % possible decimation factor

 %% Envelope detection
 sigF=sqrt(sigFc.^2+sigFs.^2);
 save("sigF.txt","sigF","-ascii");
 del=(L0+L1+L3)/2; % processing delay
 endS=min(del+beg(2),length(sigF)); % last available sample

 %% The initial delay is eliminated
 sigS=sigF(del+1:endS);

 %% spectrum visualization after envelope detection over N2 samples
 % note: to visualize the spectrum with more precision we add
 % zero-valued samples with zero-padding
 if spectra
 N2=10000;
 spectrum(-fs/2,fs/2,fs,N2,sigS,'Spectrum after demodulation');
 spectrum(-Bmin,Bmin,fs,N2,sigS,'Spectrum after demodulation (zoom)');
 end

 %% Fitting with a rectified sinusoid plus constant
 NS=length(sigS);
 save("sin.mat","NS","fs","sigS");
 [fitted,c]=fitting_procedure(sigS,NS,fm,fs,Nsteps);

 %% Estimated values
 est_amp=[est_amp abs(c(1))];
 est_freq=[est_freq c(2)];
 est_pha=[est_pha c(3)];
 % normalized error (in percentage)
 error=[error 100*sqrt(error_sin_fit4(c)/sum(abs(sigS).^2))];

 %% DC component is eliminated
 sigS1=sigS-mean(sigS);

 K2=floor(fs/(10*Bmin)); % Decimation factor
 sigS2=sigS1(1:K2:end); fs=fs/K2;
 save("sigS2.txt","sigS2","-ascii");

 %% Spectrum visualization after DC component is eliminated over N3 samples
 if spectra
 N3=10000;
 spectrum(-fs/2,fs/2,fs,N3,sigS2,'Spectrum after demodulation (no DC)');
 spectrum(-Bmin,Bmin,fs,N3,sigS2,'Spectrum after demodulation (zoom and no
DC)');
 end

 %% Estimation of fm looking for the maximum of FFT (using M samples)
 est_freq_FFT=[est_freq_FFT freq_estimate(fs,M,sigS2)];

 %% Plot of received, envelope detected and fitted signals
 if timeplot
 % sigP=sigB(beg(1)+(L0+L1)/2+1:(L0+L1)/2+beg(2));
 sigP=sigB((L0+L1)/2+1:min((L0+L1)/2+beg(2)-beg(1)+1,end));
 figure; plot(sigP-mean(sigP),'g'); grid on; hold on;
 plot(sigS,'k'); plot(fitted,'r');plot(0*fitted,'k');

61

 title(['RX and DEM signals. Signal with index ' num2str(index)]);
 legend('original f0 signal','demodulated','fitted')
 end
 end

 %% Plot of the estimated values
 % figure; plot(est_pha); title('est. phase'); grid on; xlabel('signal index');
 % figure; plot(est_amp); title('est. amplitude'); grid on; xlabel('signal index');
 % figure; plot(error); title('fitting error %'); grid on; xlabel('signal index');
 % figure; plot(K_i,'-ro'); hold on; grid on; plot(ratio,'-k*');
 % legend('K_i','ratio'); title('decimation factor'); xlabel('signal index');
 mean_error_fit=[mean_error_fit mean(abs(fm_t-est_freq))];
 mean_error_FFT=[mean_error_FFT mean(abs(fm_t-est_freq_FFT))];
 SNRdB
end

%% Plot of the SNR performance
if Nloop>1
 figure
 plot(SNRvecdB,100*mean_error_fit/mean(fm_t),'b','LineWidth',1.2); hold on;
 plot(SNRvecdB,100*mean_error_FFT/mean(fm_t),'r','LineWidth',1.2); grid on
 xlabel('SNR [dB]'); title('5 initial phases FIT - 512 samples FFT');
 legend('FIT','FFT'); ylabel('% error'); xlabel('SNR [dB]');
 figure
 plot(SNRvecdB,100*mean_error_FFT/mean(fm_t),'r','LineWidth',1.2); grid on
 xlabel('SNR [dB]'); title('% error with 512 samples FFT');
 ylabel('% error'); xlabel('SNR [dB]');
end
fit_m=mean(100*mean_error_fit/mean(fm_t))
FFT_m=mean(100*mean_error_FFT/mean(fm_t))

