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Abstract

Single-cell sequencing has revolutionized the study of gene expression and its phenotypic
consequences by enabling the simultaneous profiling of thousands of individual cells. Re-
cent advancements in multimodal single-cell sequencing have further expanded the scope
of these techniques, allowing for the integration of transcriptomics, epigenomics, pro-
teomics, and other omic data to obtain a more comprehensive view of cellular states and
dynamics. A specific application of multiomics single-cell sequencing is lineage tracing,
which provides insights into the developmental process from pluripotent cell popula-
tions to fully differentiated states. This thesis proposes scVEMO, a multiomics-based
approach to lineage tracing leveraging CellRank and the RNA-velocity estimation tech-
niques, scVELO and its extension to changes in chromatin states, Multivelo. ScVEMO is
validated on the Fresh Embryonic E18 Mouse Brain dataset provided by 10X Genomics.
Building on the assumption that lineage commitment is a continuous process, where
cells traverse a spectrum of intermediate states, scVEMO builds a K-Nearest Neighbor
graph, connecting neighboring cells based on their joint scRNA-seq and scATAC-seq data
profiles. Then it integrates gene expression, promoter peak counts, and RNA-velocity in-
formation to direct the graph and compute cell state transition probabilities. Finally,
the CellRank framework is employed to simulate the system and identify terminal states.
Particularly, CellRank uses the Generalized Perron Cluster Cluster Analysis (GPCCA)
to coarse-grain the transition probability matrix into a set of macrostates, represent-
ing coarse-grained, metastable cellular states or phenotypes. The results from the ran-
dom walk simulations, coupled with the identified macrostates, enable to compare the
models and gain insights into how effectively each one is able to reconstruct biologi-
cally meaningful developmental lineages. The assessment then extends to examining cell
fate probabilities, which are evaluated based on multilineage potential and the average
probability of each cell cluster towards the identified terminal states. This additional
investigation sheds light on the models’ ability to capture cell fate commitment across
various cellular populations. While the random walk simulations do not identify cell
development at the granular cell-state level, results clearly demonstrate that the integra-
tion of the epigenomic profiles via scVEMO improves macrostate identification on the
UMAP embedding. ScVEMO distinguishes an additional terminal state within the neu-
ronal lineage, corresponding to the upper cortical layers. This enhanced reconstruction
represents a significant improvement over the transcriptomics-only method, which solely
recovers the deeper cortical layers, allowing for a more congruent lineage reconstruction
with the existing biology literature. Additionally, multilineage potential investigations,
assessed through the KL-divergence between the single cell fate probabilities and the av-
erage fate probability per lineage across all cells, show that scVEMO improves cell lineage
commitment compared to the scRNA-seq approach. Together, the results demonstrate
that multimodal data integration can yield to a robust and more informative lineage
reconstruction compared to transcriptomics-only methods.
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Chapter 1

Introduction

The underlying basis for the phenotypic variations observed in biological systems can be
traced back to the intricate patterns of gene expression [1]. The process of gene expres-
sion, whereby the genetic information encoded within DNA is transcribed into RNA and
subsequently translated into functional proteins, is governed by a complex network of
regulatory elements and mechanisms. This includes core promoter sequences that initi-
ate transcription by RNA polymerase, transcription factors that bind to specific DNA
motifs to either activate or repress gene expression, distal enhancer sequences that can
amplify transcriptional activity, and dynamic chromatin remodeling events that alter
DNA accessibility. The delicate balance and interplay between these diverse gene reg-
ulatory components is critical for orchestrating the precise spatiotemporal expression of
genes during cellular development and differentiation, and tissue specification [2]. Fur-
thermore, disruptions or dysregulation of these gene regulatory mechanisms can lead to
profound phenotypic changes, underpinning the onset and progression of various diseases,
such as cancer [3, 4], neurological disorders [4, 5], metabolic syndromes [6], and autoim-
mune conditions [7]. Therefore, elucidating the intricate details of gene regulation has
been a central focus of molecular biology and genetics research, as it holds the key to
understanding the genotype-to-phenotype relationship.

Researchers have gained invaluable insights into the regulation of gene expression
through the rapid advancements in DNA sequencing technologies. The introduction
of next-generation sequencing (NGS) platforms has enabled the high-throughput, cost-
effective analysis of genetic information at an unprecedented scale [8, 9]. These powerful
sequencing techniques have facilitated the deciphering of the precise sequence and organi-
zation of DNA, allowing scientists to identify and characterize the key regulatory elements
that govern gene expression programs. Furthermore, the development of single-cell se-
quencing approaches has revolutionized the field by providing a means to investigate gene
regulation at the level of individual cells [10–12]. The ability to simultaneously profile
multiple omics layers, including the transcriptome, epigenome, and proteome, within in-
dividual cells has further expanded our understanding of the intricate interplay between
genetic, epigenetic, and post-transcriptional mechanisms that ultimately shape cellular
phenotypes.

In the era of big data and high-throughput sequencing, sophisticated data analysis
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pipelines have emerged to effectively manage, analyze, and interpret the vast amounts
of multi-omics data generated [13–17]. These computational workflows and algorithms
help researchers to identify key regulatory sequences, model gene regulatory networks,
integrate multi-omics data to elucidate system-level mechanisms and develop machine
learning-based approaches for predicting gene expression patterns and cell development.
By bridging the gap between experimental biology and computational analysis, these
data pipelines play a pivotal role in advancing our understanding of the complex gene
regulatory landscapes that underlie organismal development, physiological processes, and
disease pathogenesis.

Among the multiple core research topics involving gene expression and its regulation,
lineage tracing has emerged as a powerful approach to elucidate the developmental ori-
gins and differentiation trajectories of various cell types. Lineage tracing refers to the
techniques used to track the progeny of individual cells or cell populations, allowing re-
searchers to map the ancestral relationships and developmental pathways that give rise
to the diverse cell types present within complex tissues and organs [18,19].

Multi-omics approaches have been proven to be extremely useful in deepening our
research understanding of cell type development [2]. By integrating genomic, transcrip-
tomic, epigenomic, and proteomic data from individual cells, scientists can gain a compre-
hensive, systems-level view of the dynamic changes in gene regulation that underpin the
transition from pluripotent or multipotent progenitor cells to terminally differentiated cell
types. The ability to simultaneously profile multiple molecular layers within the same cell
has enabled the identification of key transcription factors and epigenetic modifications
that act as critical regulators of lineage specification and commitment [11]. Moreover,
the application of single-cell multi-omics has revealed the remarkable heterogeneity that
exists within seemingly homogeneous cell populations, providing unprecedented insights
into the stochastic and probabilistic nature of cell fate decisions [16,17]. Among the var-
ious lineage tracing algorithms, two approaches stand out as being of particular interest
for this project: the CellRank framework [16] and the RNA-velocity models [20,21]. Cell-
Rank is a computational tool that reconstructs developmental lineages from scRNA-seq
data, whereas RNA-velocity leverages the dynamics of RNA splicing to infer the future
state of individual cells, providing insights into the directionality and kinetics of cellular
transitions.

The current landscape of single-cell sequencing-based lineage tracing algorithms in-
corporating multiomics data to investigate developmental lineages and cell fate decisions
is still relatively narrow in scope [22,23].

This thesis project introduces scVEMO, a computational pipeline that aims to con-
tribute to the field of multiomics-based lineage tracing. The pipeline extends the ca-
pabilities of the CellRank framework by leveraging a combination of single-cell RNA
sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin se-
quencing (scATAC-seq) data. Specifically, we will compare four distinct models: the first
is the original CellRank model based on scRNA-seq data and RNA-velocity; the second
model exploits the CellRank pipeline by combining scATAC-seq data with RNA-velocity,
to examine whether epigenomic data, when combined with gene velocities, can also be
used to identify developmental lineages. The third model is based on a transition matrix
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constructed from the combination of RNA-velocity with multiomics single-cell (RNA and
ATAC) profiles. Finally, we will replace the computations of scVELO RNA-velocities
with the more advanced MultiVelo approach [21] in the fourth model. For the purpose of
identification, we will refer to these four models as the scRNA-seq model, the scATAC-seq
model, the Multiomics+scVELO model, and the Multiomics+MultiVelo model, respec-
tively.

Our primary goal is to investigate whether multiomics-based approaches, namely the
Multiomics-based model and the MultiVelo-based model, lead to more accurate identi-
fication of terminal states and developmental lineages. We will run each model over a
combination of preprocessing parameters to demonstrate that our findings hold indepen-
dently from the specific preprocessing parameter choices.

ScVEMO is validated on the Fresh Embryonic E18 Mouse Brain (5k) dataset from
10x Genomics, which includes single-cell ATAC and gene expression profiles of the fresh
cortex, hippocampus, and ventricular zone of the embryonic mouse brain at day 18 [24].
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Chapter 2

Background

This chapter provides a comprehensive description of the technologies, models, and in-
formation necessary to fully understand the context within which this thesis project
operates.

First, the chapter outlines the technological context, delving into the details of the
various technologies employed to obtain reliable single-cell profiles from different modal-
ities, including both the data generation and the data processing pipelines that enable
cellular characterization.

Complementing the technological overview, the chapter then elaborates on the con-
cept of lineage tracing. This section presents a deep dive into the scope and objectives
of the research, providing the reader with a comprehensive understanding of the under-
lying biological questions and the state-of-the-art algorithms and techniques available for
investigating cellular differentiation and fate determination.

Finally, the chapter delves into the mathematical foundations and theoretical models
that form the basis of the project’s methodologies. This includes a detailed description
of the CellRank framework and the RNA-velocity models.

2.1 Technological Context

This section’s goal is to provide a comprehensive understanding of the technological
context underlying the analysis conducted within the scope of this thesis project. This
includes sequencing techniques, as well as the data analysis processes used for single-cell
multiomics-based research.

The section begins with a brief overview of the fundamentals of the DNA structure
and the intricate interplay among the different elements that govern gene expression.
This foundational knowledge highlights the importance of integrating multiple cellular
profiles when studying complex biological phenomena.

Next, the section introduces the Next Generation Sequencing (NGS) and Single-Cell
sequencing technologies. It focuses specifically on single-cell RNA sequencing (scRNA-
seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq),
as well as the data preprocessing pipelines associated with these techniques.
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Finally, the section presents an example of a protocol used for the simultaneous pro-
filing of gene expression and epigenomic landscapes within individual cells. This example
illustrates the multiomics library generation processes that might be employed to create a
multimodal dataset, such as the Fresh Embryonic E18 Mouse Brain (5K) one, over which
the scVEMO framework is validated.

2.1.1 The DNA Structure

This section provides a concise introduction to the fundamental biological processes that
underpin the complexity of the genome and the intricate mechanisms governing cellular
development. Beginning with an examination of the chemical structure and informa-
tional properties of deoxyribonucleic acid (DNA), the section establishes a foundational
understanding of how the sequence of nucleotides within this macromolecule encodes the
genetic instructions necessary for life. The discussion then transitions to an exploration
of the higher-order packaging of DNA into chromatin - a dynamic nucleoprotein complex
that facilitates the compaction and regulation of the genetic material within the cell nu-
cleus. This organizational framework is of critical importance, as it serves to modulate
the accessibility and transcriptional activity of the encoded genetic programs.

Building upon this structural knowledge, the section delves into the intricate mech-
anisms of gene regulation, highlighting the pivotal role played by cis-regulatory DNA
elements, such as promoters and enhancers, in controlling the spatiotemporal expression
of genes. These regulatory sequences act in concert with trans-acting factors, including
transcription factors and epigenetic modulators, to orchestrate the precise activation or
repression of genetic programs, thereby enabling the coordinated development and differ-
entiation of cells. Finally, the section examines the process of transcription, whereby the
information encoded within DNA is faithfully transcribed into ribonucleic acid (RNA)
molecules. This essential biological process serves as the critical bridge between geno-
type and phenotype, as the resulting RNA transcripts direct the synthesis of functional
proteins - the fundamental units of cellular structure and function. By providing this
comprehensive understanding of DNA structure, chromatin organization, gene regula-
tion, and transcriptional mechanisms, this section lays a robust theoretical foundation
for the reader to contextualize the more advanced topics and research questions explored
in the subsequent chapters of the thesis.

At the fundamental core of all biological life lies the deoxyribonucleic acid (DNA)
molecule - the essential macromolecule that encodes the genetic information necessary
for the development and function of living organisms. DNA consists of two complemen-
tary polynucleotide strands, each composed of a linear sequence of nucleotide subunits
including the nitrogenous bases adenine, cytosine, guanine, and thymine. These strands
are held together through hydrogen bonding, giving rise to the iconic double helix struc-
ture (Fig. 2.2a).

The genome, representing the complete set of genetic information carried by an or-
ganism, is contained within the nucleus of each somatic cell. During cellular division, the
genome is faithfully replicated, ensuring the propagation of identical genetic material to
daughter cells. The symmetry of the DNA double helix enables the reliable copying of
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the nucleotide sequence through various critical cellular processes, including DNA repli-
cation, transcription, DNA repair, genetic recombination, plasmid replication, and viral
genome replication [1].

Genes, the fundamental units of heredity, are defined as specific DNA sequences that
encode the instructions for the synthesis of functional biomolecules, predominantly pro-
teins. The nucleotide sequence within a gene directly determines the amino acid sequence
of the resulting protein, which in turn governs the protein’s three-dimensional structure
and, consequently, its biological function [1]. These differences in genetic information are
the primary contributors to the remarkable biological diversity observed across species.
By analyzing the nucleotide sequences of genes, researchers can gain valuable insights
into the unique characteristics and evolutionary relationships of different organisms.

The structure of a gene typically includes several key regulatory elements that play
crucial roles in its expression and transcriptional control (Fig. 2.1a). Promoters are DNA
sequences located upstream of the transcription start site (TSS) that serve as binding
sites for the RNA polymerase machinery, thereby facilitating the initiation of transcrip-
tion [25]. Beyond the core promoter region, distal regulatory elements known as enhancers
can significantly augment transcription ease, regardless of their orientation or distance
from the gene. Enhancers provide binding sites for various transcription factors and co-
regulatory proteins, which can enhance the recruitment and activity of the transcription
machinery [25].

Transcription factors (TFs) are DNA-binding proteins that recognize and bind to
specific sequences, such as those found in promoters and enhancers, and subsequently
regulate the transcription of genes during RNA molecule formation. These trans-acting
factors can act as either activators or repressors, respectively increasing or decreasing
gene expression. Furthermore, transcription factors can recruit or interact with the RNA
polymerase, chromatin remodeling complexes, and other regulatory proteins to modulate
transcriptional activity [25–28].

The gene itself is composed of both coding regions, known as exons, and non-coding
regions, referred to as introns [1]. The intricate interplay between promoters, enhancers,
transcription factors, and the spliceosome machinery allows cells to precisely control the
spatial, temporal, and quantitative expression of genes in response to various develop-
mental, environmental, and physiological cues. Proper gene regulation is essential for
maintaining cellular homeostasis, facilitating appropriate responses to changing condi-
tions, and preventing the development of various diseases, such as cancer and genetic
disorders [3, 4, 29].

The genetic information stored in DNA is maintained in the form of chromatin, which
allows DNA to undergo the necessary folding to form chromosomes. Chromatin consists
of nucleosomes, which are structures composed of approximately 147-145 DNA base pairs
wrapped around proteins called histones, as illustrated in Fig. 2.2b.

While there have been conflicting observations in experimental studies about the exact
consequences of DNA methylation [30], this epigenetic modification process plays a cru-
cial role in regulating epigenetic changes that impact nucleosome positioning [31–33] and,
consequently, gene expression and transcription [34]. For example, chromatin remodelers
utilize adenosine triphosphate (ATP) energy to disrupt the interaction between histones
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and DNA, enabling remodeling processes such as nucleosome ejection and nucleosome
sliding, which modify the structure and positioning of nucleosomes [31, 33]. Nucleosome
ejection involves the complete removal of a nucleosome from the DNA, creating an open
region that is accessible for transcription factors and other regulatory proteins, while
nucleosome sliding refers to the process by which a nucleosome is moved along the DNA
strand without being completely removed (Fig 2.2b). Additionally, pioneer transcription
factors can also contribute to increased chromatin accessibility by binding to closed chro-
matin regions and facilitating the binding of other transcription factors [27]. In general,
different levels of DNA methylation profiles have been associated with transcriptional
ease [32]. For instance, low-expressed genomic regions often exhibit a relatively uniform
methylation profile, while highly expressed ones tend to display reduced methylation
towards the transcription termination site (TTS).

Moreover, depending on the degree of chromatin structure condensation, chromatin
exists in two primary forms: euchromatin and heterochromatin [33]. Euchromatin corre-
sponds to a more open and unfolded state of chromatin with widely spaced nucleosomes,
which is associated with higher gene expression levels and facilitates transcription. The
euchromatin state allows transcriptionally active gene bodies to be accessed, particularly
by transcription factors (TFs) in promoter and enhancer regions, leading to productive
transcription. In contrast, heterochromatin refers to a more condensed and closed chro-
matin form.

The core of the gene expression process is the transcription mechanism, whereby a
single strand of DNA is copied into a complementary ribonucleic acid (RNA) molecule
(Fig. 2.3). The transcription of genes is catalyzed by the enzyme RNA polymerase II.
This key transcriptional machinery first binds to the promoter region of the target gene,
specifically recognizing the TATA-box sequence element. The TATA-box serves as a crit-
ical transcription initiation site, providing the docking platform for RNAPII to begin
synthesizing a complementary RNA transcript from the DNA template. This binding
event unwinds the DNA double helix, exposing the template strand (initiation phase) [1].
The RNA polymerase then translocates along the DNA template, sequentially adding
ribonucleotides complementary to the DNA sequence, thereby synthesizing the growing
RNA chain in the 5’ to 3’ direction (elongation phase). Finally, the RNA polymerase
reaches a termination signal on the DNA, which triggers the release of the completed
RNA transcript. This primary RNA molecule, known as the precursor messenger RNA
(pre-mRNA, Fig. 2.1b), undergoes further processing, such as splicing and modifications,
before being exported from the nucleus for subsequent translation into functional pro-
teins [1].

Finally, the RNA splicing process is essential for converting the primary RNA tran-
script (pre-mRNA) into a mature mRNA molecule (Fig. 2.1c). During this critical post-
transcriptional modification, the spliceosome machinery excises the non-coding intronic
sequences from the pre-mRNA, joining the remaining protein-coding exonic sequences to
produce the final mRNA product [1]. Through the process of alternative splicing, multi-
ple distinct mRNA isoforms can be generated from a single gene by selectively including
or excluding different combinations of exons [35]. This allows a single genetic locus to
encode for functionally diverse protein products, vastly expanding the coding capacity of
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the genome.

The precise mechanistic relationships and hierarchical coordination between the di-
verse factors in orchestrating transcriptional control have not been fully resolved. En-
hancing our comprehensive understanding of such complex regulatory networks is there-
fore of paramount importance for illuminating the underlying principles of gene regu-
lation. Emerging multiomics approaches have shown promise in beginning to unravel
the intricate interdependencies between this myriad regulatory elements [2]. By inte-
grating high-throughput datasets encompassing genomic, transcriptomic, proteomic, and
epigenomic information, researchers have been able to elucidate previously obscure con-
nections and causal relationships governing transcriptional programs. Elucidating the
precise mechanisms by which enhancers, promoters, enzymes, transcription factors, and
chromatin modifiers cooperate to fine-tune gene expression represents a critical frontier
in molecular biology. Advancing this knowledge has broad implications, from enhancing
our fundamental understanding of cellular function to informing the development of tar-
geted therapeutic interventions for dysregulated transcriptional states underlying human
disease.

Figure 2.1: Gene structure: a. Simplified gene structure, including the cis-regulatory
elements like enhancers and promoters, as well as the open reading frame that contains
the sequence of introns and exons where the genetic information is stored b. The pre-
mRNA molecule that is produced during the transcription process. c. The mature mRNA
molecule that results after RNA splicing or manipulation operations. The protein-coding
region contains the expressed exons, which will then be translated into a biologically func-
tional protein. A 5’ cap and poly-A tail are added to the RNA transcript to distinguish
mRNAs molecules from other RNA products, indicating respectively, the beginning and
the end of the transcript [1].
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Figure 2.2: Chromatin structure: a. DNA helicoidal structure; b. DNA is wrapped
around histones represented in yellow. Chromatin remodelers use ATP to dissociate DNA
from histones (nucleosome ejection, top right) or modify nucleosome position (nucleosome
sliding, bottom right). Chromatin structure modifications enable ease of transcription.
c. Heterochromatin and euchromatin representation.

2.1.2 Next Generation Sequencing and Single Cell Sequencing Tech-
nologies

Understanding the phenotypic changes observed in a given biological system necessitates
a comprehensive map of the underlying molecular mechanisms driving those changes.
This can be achieved through DNA sequencing, which refers to the determination of the
precise order of the four nucleobases that make up the DNA molecule. DNA sequencing
techniques allow researchers to decipher the genetic code, providing valuable insights
into the genetic architecture and potential drivers of the observed phenotypic variations.
These sequencing approaches can be performed at various levels, from targeting single
genes to analyzing entire chromosomes or even complete genomes.

The first DNA sequencing technologies, also referred to as Sanger Method, were intro-
duced in the late 1970s, marking a significant milestone in the field of molecular biology
and paving the way for a deeper understanding of genotype-phenotype relationships. The
Sanger method [36] involved fragmenting and amplifying the DNA of interest, creating
multiple copies of the template. During the sequencing process, nucleotides were incor-
porated complementary to each strand until a fluorescently labeled dideoxynucleotide
(ddNTP) was added, serving as a chain terminator. This resulted in the generation
of DNA fragments of varying lengths, each terminated by a ddNTP. These fragments
were then separated by size using gel electrophoresis, allowing the precise sequence of
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Figure 2.3: Transcription process. a. Schematic of the transcription process: Tran-
scription factors (TFs, shown in yellow) and RNA polymerase II (RNAPII, shown in
blue) bind to the promoter region, specifically the TATA-box sequence (shown in green),
which specifies the transcription start site. Transcription then proceeds as RNAPII moves
along the open reading frame, synthesizing a new RNA molecule. b. Insights into the
RNAPII molecule: The DNA strands are locally unwound, and ribonucleotide triphos-
phates (rNTPs) are added complementary to the 3’ strand of the DNA to form the new
RNA transcript.

nucleotides in the original DNA template to be determined by the specific order of the
fluorescent signals detected.

In recent years, the field of DNA sequencing has experienced a transformative shift
with the advent of next-generation sequencing (NGS) technologies. These advanced se-
quencing platforms have dramatically increased the throughput and efficiency of genetic
analysis, allowing researchers to generate vast amounts of genomic data at significantly
lower costs compared to earlier sequencing methods [9]. Rather than the slow and labor-
intensive Sanger sequencing approach, NGS technologies employ parallel processing to
enable the simultaneous sequencing of huge amounts of DNA fragments.

Next-generation sequencing (NGS) technologies differ in several key aspects, including
the number of DNA base pairs (bp) that can be read in a single sequence, the number
of individual DNA fragments that can be sequenced in a single run, and the overall
quantity of sequence data generated. Despite these differences, NGS approaches generally
involve an initial sample preparation step. This typically consists of fragmenting the DNA
samples and amplifying the resulting templates, often using polymerase chain reaction
(PCR) techniques [8, 9], which is shown and described in Fig. 2.4.

Following sample preparation, the actual sequencing process is carried out. Even
though the specific sequencing methodology can vary, NGS platforms are broadly clas-
sified into two main categories - second-generation and third-generation sequencing.
Second-generation sequencing focuses on generating large numbers of relatively short
sequence reads. In contrast, third-generation sequencing technologies have been devel-
oped to produce much longer sequence reads, sometimes exceeding thousands of base
pairs, and can often perform sequencing in real-time as the DNA fragments are being
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synthesized, also without prior amplification steps [8].
After the sequencing step, an alignment process is performed to match the generated

sequence reads to a reference DNA template. Alternatively, a de novo assembly approach
can be used to reconstruct the target genomic sequences without the need for a pre-
existing reference. The choice between reference-based alignment and de novo assembly
depends on the specific research objectives and the availability of well-annotated reference
genomes for the organism or system under investigation.

Building upon the advancements in NGS, single-cell sequencing techniques have emerged
as a powerful tool for studying the genetic diversity and heterogeneity within complex bio-
logical samples [9]. Single-cell sequencing refers to the process of isolating and sequencing
the nucleic acids (DNA or RNA) from individual cells, allowing for the precise charac-
terization of gene expression patterns, genetic variations, and other molecular profiles at
the single-cell level. However, the applications of single-cell technologies have expanded
beyond just nucleic acid analysis and innovations in single-cell sequencing have therefore
enabled the exploration of other cellular features and molecules, including the epigenome,
transcriptome, proteome, and metabolome [2]. These approaches, known as multi-omic
single-cell, provide a more comprehensive understanding of cellular identity, function, and
interactions within heterogeneous cell populations. For example, single-cell epigenomics
can reveal the chromatin accessibility and DNA methylation patterns of individual cells,
while single-cell proteomics can quantify the abundance and post-translational modifica-
tions of proteins. By isolating and profiling individual cells, researchers can now uncover
the remarkable diversity and complexity that exists within tissues, organs, and entire
organisms. Single-cell multiomics techniques proved to be extremely accurate in applica-
tions such as cell subpopulation identification [10] [12], the reconstruction of cell hierarchy
and developmental lineages [10,12,16,17,22,23], pseudotime reconstruction [12,17,22] and
inference of gene regulatory networks [10–12].

2.1.3 Transcriptional Profiling of Individual Cells through scRNA-seq

Single-cell RNA sequencing (scRNA-seq) enables the dissection of transcriptional hetero-
geneity at the single-cell level, unlike traditional bulk RNA sequencing approaches that
provide averaged, population-level insights [12,37].

The scRNA-seq workflow begins with the isolation of individual cells, which can be
achieved through a variety of techniques [10,12,37]. While labor-intensive methods such
as laser capture microdissection and micromanipulation can be employed when sample
sizes are limited, these approaches rely on visual identification and morphological as-
sessment of cells [10, 37]. More time-efficient and high-throughput techniques, such as
fluorescence-activated cell sorting (FACS) and microfluidic encapsulation, leverage fluo-
rescence detection or light scattering properties to identify and isolate individual cells,
but these methods typically require larger sample sizes [10,37].

Once the single cells have been captured, their nuclei are lysed, and the released
mRNA molecules are then reverse-transcribed into complementary DNA (cDNA). This
reverse transcription step often relies on poly(T) priming, which can introduce technical
noise due to biases in the efficiency of reverse transcription [10,37]. To obtain the second
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Figure 2.4: PCR mechanism. A single PCR cycle consists of three steps: (1) Denatura-
tion, the process of separating the DNA fragments strands through heat; (2) Annealing,
the process that binds a short synthetic DNA primer to the complementary sequence;
the primer acts as starting point of the DNA synthesis process; (3) Elongation, where
the new DNA strand is synthesized complementary to the template, therefore doubling
the initial DNA molecule. Each cycle repeats the denaturation, the annealing and the
elongation steps, resulting in an exponential increase of the DNA copies.

strand of cDNA, two main approaches are commonly used: poly(A) tailing and template-
switching mechanisms. In the poly(A) tailing method, a poly(A) sequence is added to
the 3’ end of the first-strand cDNA, which then serves as a priming site for the synthesis
of the second strand. Alternatively, the template-switching approach takes advantage of
the terminal transferase activity of reverse transcriptase, which can add a short stretch
of nucleotides to the 5’ end of the first-strand cDNA. This allows for the subsequent
annealing of a template-switching oligonucleotide, which then primes the synthesis of the
second strand.

The amplification of the resulting double-stranded cDNA library can then be achieved
through traditional PCR or in vitro transcription. This latter approach involves the use of
RNA polymerase to generate multiple RNA copies from a single DNA template, thereby
increasing the overall transcript representation [37].

Before sequencing, the samples often undergo a multiplexing step, where unique
molecular identifiers (UMIs), hence short DNA barcodes, are introduced during the re-
verse transcription process. These UMIs uniquely tag each mRNA molecule within a
cell, allowing for the accurate quantification of transcript levels and the elimination of
PCR duplicates during data analysis [37]. Finally, the prepared and multiplexed libraries
are subjected to high-throughput sequencing, generating millions of short reads that can
be computationally mapped to the reference genome, enabling the quantification of gene
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expression levels in each individual cell.
Despite the transformative potential of single-cell RNA sequencing, the raw data

generated through this approach can be inherently noisy and prone to technical biases [10,
12, 37]. Consequently, a robust preprocessing pipeline is essential to improve the quality
and reliability of the scRNA-seq datasets prior to downstream analysis. The most used
scRNA-seq data preprocessing and analysis platforms are Seurat [14] and Scanpy [15].

One key indicator of cell quality is the total number of reads (or percentage of reads)
detected per cell. Cells with abnormally low or high read counts may represent dead
cells or doublets (instances where multiple cells were captured together), respectively.
Additionally, the proportion of reads mapping to the mitochondrial genome can pro-
vide valuable insights into cell health. A high percentage of mitochondrial reads may
suggest that the cell is under stress or undergoing apoptosis, and such cells are often
excluded from downstream analyzes [12]. Also, genes with insufficient sequencing depth,
as indicated by low read counts, are also commonly discarded. Retaining only genes
with adequate coverage helps to enhance the overall signal-to-noise ratio in the dataset.
Furthermore, when scRNA-seq libraries are constructed using diverse experimental pro-
tocols or across multiple batches, systematic technical variations can be introduced. In
such cases, specialized batch correction algorithms can be employed to integrate the data
while accounting for these unwanted sources of variability [12].

Normalization is a critical subsequent step, aiming to adjust for biases stemming
from differences in sequencing depth, as well as technical noise arising from dropouts and
other artifacts [10,12]. By applying appropriate normalization strategies, both within and
across samples, the data can be rendered more amenable for downstream comparative
analyses and interpretations.

Finally, to tackle the inherent high dimensionality of scRNA-seq data, dimensional-
ity reduction techniques are often leveraged. These include the identification of highly
variable genes (HVGs) and the application of principal component analysis (PCA), which
can facilitate feature selection while preserving the key properties of the system. Comple-
mentary visualization methods, such as t-SNE and UMAP, further enable the exploration
and interpretation of the underlying cellular landscapes [12].

An illustration of the full scRNA-seq pipeline can be found in Fig. 2.5.

2.1.4 scATAC-seq: Mapping Chromatin Accessibility in Single Cells

Complementing the insights gained from single-cell RNA sequencing, the field of single-
cell ATAC sequencing (scATAC-seq) has opened new avenues for the study of chromatin
accessibility at the individual cell level.

Much like the scRNA-seq workflow, the scATAC-seq pipeline begins with the isolation
and lysis of single cells, followed by the generation of a sequencing library. The cell isola-
tion and lysis strategies can be broadly categorized into two main approaches: (1) split-
and-pool combinatorial cellular indexing, which leverages 96-well plates and fluorescence-
activated cell sorting (FACS) to uniquely barcode each cell, and (2) microfluidics-based
methods, which offer higher sequencing depth per cell but can process fewer cells simul-
taneously [11]. Several variations of these techniques have been developed, including
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Figure 2.5: scRNA-seq data. a. scRNA-seq pipeline and most common data analysis
procedures. b. Single cell isolation techniques. c. Reverse transcription with poly(T)
priming and poly(A) terminator.

the 10X Genomics Chromium system [38], T-ATAC [39], plate-ATAC [40], and scip-
ATAC [41].

A demultiplexing step is performed to deconvolute the cell-specific barcodes prior to
sequencing. The resulting data is then subjected to quality control, where metrics such
as barcode read depth, which can help identify low-quality cells or potential doublets
mirroring the approaches used in scRNA-seq preprocessing [11]. More specific metrics
such as the ratio of reads mapping to promoter regions or transcription start sites can be
exploited as well.

The core output of scATAC-seq is a cell-by-peak matrix, where the peaks represent
regions of open chromatin that are accessible to transcription factors and other regulatory
elements. These peaks can be annotated to genomic features, often using methods like
MACS2 [42].

It is important to note that scATAC-seq data inherently exhibits increased sparsity
compared to scRNA-seq. While in scRNA-seq between 10-20% of the overall detectable
information is actually sequenced [12, 37], with scATAC-seq this ratio decreases to 1-
10% [11]. To cope with scATAC-seq data inherent sparsity, text mining approaches,
such as term frequency-inverse document frequency (TF-IDF), have proven useful in
highlighting the most informative peaks [11]. Consequently, the dimensionality reduction
approaches leveraged in this scenario can be instrumental in mitigating the effects of
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technical noise and batch effects while preserving the biologically relevant variance. For
dimensionality reduction, Singular Value Decomposition (SVD) is often exploited. The
combination of TF-IDF and SVD is also known as Latent Semantic Indexing (LSI) and
enables the effective handling of both high dimensionality and sparsity in the scATAC-seq
data [11]. Complementary visualization techniques, like t-SNE and UMAP, can then be
applied to the reduced-dimensionality data to aid in the exploration and interpretation
of the chromatin accessibility landscape.

The resulting cell-by-peak matrix can be then exploited for a wide range of down-
stream analyses, such as cell type identification, the study of chromatin accessibility dy-
namics, TF-motif-based hypothesis generation, and enhancer-driven investigations [11].

2.1.5 Single Cell Multimodal Profiling: An Illustrative Example

The integration of complementary single-cell sequencing modalities has emerged as a
powerful strategy to gain a more comprehensive understanding of cellular systems. Algo-
rithms that leverage the combined information from scATAC-seq and scRNA-seq datasets
have been shown to yield more accurate and robust results compared to the analysis of
individual data types [2, 11]. Furthermore, the development of advanced multiomics se-
quencing approaches has enabled the simultaneous profiling of both the epigenome and
transcriptome from the same single cells, providing an even richer perspective on the
regulatory mechanisms underlying cellular identity and function [43].

In this section, as an example of a simultaneous multiomics sequencing technique,
we will illustrate the 10X Genomics Chromium Single Cell Multiome ATAC + Gene
Expression protocol [44], which has been used to obtain the cellular profiles of the Fresh
Embryonic E18 Mouse Brain (5K) dataset [24] employed in this thesis project. The
protocol overview for single-cell isolation and lysis is illustrated in Fig. 2.6. Specific
information and further details can be found in the demonstrated protocol [45].

The single-cell isolation and lysis protocol prepares nuclei for the 10X Genomics
Chromium GEM protocol [44]. This microfluidics-based platform allows for the construc-
tion of both single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing
(scATAC-seq) libraries from the same cell sample. The key steps of the 10X Chromium
Single Cell Multiome ATAC + GEX protocol employed for the dataset construction are
listed below and illustrated in Fig. 2.7, while explicit details can be found in [44]. Gen-
erally, the protocol follows:

1. A transposase enzyme enters the cell nucleus and fragments DNA in open chromatin
regions. Adapters are added to the DNA fragments’ ends.

2. The transposed DNA fragments are then attached to GEMs (Gel Beads-in-Emulsion)
containing poly(dT) and Spacer sequences (Fig. 2.7). Poly(dT) can hybridize to the
poly-adenylated mRNA molecules enabling complementary DNA (cDNA) synthe-
sis. cDNA will be further processed and sequenced to determine the gene expression
profile of each individual cell. The Spacer sequence allows unique barcodes to bind
the transposed DNA fragments representing regions of open chromatin. GEM refers
to the encapsulation of individual gel beads, transposed nuclei, and other necessary

26



2.1 – Technological Context

Figure 2.6: Cell isolation and lysing pipeline overview from Embryonic Mouse Brain
for Single Cell Multiome ATAC + GEX, Document Number GC000366 Rev D, 10X
Genomics, (2022, July 13).

components within tiny droplets of oil. Such a process happens within the microflu-
idic Chromium Next GEM Chips. To achieve single-cell resolution, the nuclei are
delivered at a limiting dilution, hence nuclei concentration is deliberately reduced
in the input mixture to ensure that the majority of the generated GEMs (around
90-99%) do not contain any nuclei. GEMs, where a single nucleus is encapsulated
along with the gel bead, provide the desired single-cell resolution for downstream
analysis. The remaining GEMs are discarded during subsequent steps. Upon GEM
generation, the gel bead is dissolved, releasing the components.

3. Pre-amplification using PCR of both cDNA and DNA.

4. ATAC library construction. The P7 sequence, an Illumina sequencing adapter, is
added to the transposed DNA fragments. This P7 sequence is used in conjunction
with the Illumina P5 sequence (previously added in the GEMs step) during Illumina
bridge amplification.

5. Barcoded, full-length pre-amplified cDNA is amplified via PCR to generate suffi-
cient mass for gene expression library construction.
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6. Gene Expression library construction. First cDNA samples are fragmented during
the enzymatic fragmentation process. Then, cDNA fragments within a desired
length are isolated during the size selection process. This step involves removing
cDNA fragments that are either too small or too large, resulting in a narrower
size distribution that is ideal for downstream processing. Subsequently, P5, P7, i7,
and i5 sample indexes, along with the TruSeq Read 2 primer sequence, are added
through multiple steps: End Repair, A-tailing, Adaptor Ligation, and PCR. End
Repair involves repairing the ends of the cDNA fragments to ensure they have blunt
ends, which are compatible with subsequent ligation steps. A-tailing is the addition
of an adenine (A) nucleotide to the 3’ end of the repaired cDNA fragments. This A-
tailing process prepares the fragments for the ligation of adapters. Adaptor Ligation
involves the attachment of specific adapters to the A-tailed cDNA fragments. These
adapters contain the necessary sequences for subsequent sequencing and indexing
steps. PCR is then performed to amplify the cDNA fragments with the attached
adapters and incorporate the Illumina specific P5 and P7 primers.

7. Finally, sequencing is performed using The Illumina Novaseq 6000 v1 Kit. The
Chromium Single Cell Multiome ATAC library consists of double-stranded DNA
with standard Illumina paired-end constructs that begin with the P5 sequence and
end with the P7 sequence. When coupled with i5 and i7, these sequences are crucial
for demultiplexing and identifying the individual cells in the ATAC library. On the
other hand, the Chromium Single Cell Multiome Gene Expression library consists
of cDNA inserts with standard Illumina paired-end constructs that also begin with
the P5 sequence and end with the P7 sequence. In this case, the combination of P5,
P7, TruSeq Read 1 sequences and the 10X barcode UMI allow for cell identification
and accurate quantification of gene expression at the single-cell level (Fig. 2.7b).

After library construction, the 10X Genomics CellRanger ARC 2.0.0 [46] pipeline is
employed for preprocessing purposes. This workflow demultiplexes the Illumina BCL
(Base Call) separating the sequencing reads into distinct GEX and ATAC FASTQ files.
This crucial step ensures the proper deconvolution of the individual cells and their cor-
responding molecular signatures.

Next, the Cell Ranger ARC workflow generates single-cell feature count matrices for
both the transcriptomic and epigenomic modalities. These matrices provide a quantita-
tive representation of gene expression levels and chromatin accessibility profiles at the
single-cell level, respectively.

Building upon these comprehensive datasets, the data analysis pipeline then also
produces a suite of summary statistics, feature linkage analyses, unsupervised clustering,
and dimensionality reductions. These powerful computational approaches enable the
identification of distinct cell populations, the characterization of their unique molecular
signatures, and the exploration of the intricate relationships between the epigenome and
transcriptome.
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(a)

(b)

Figure 2.7: Overview of the Chromium Single Cell Multiome ATAC + GEX protocol,
Document Number CG000338 Rev. F, 10X Genomics, (2022, August 26). a. Visualisa-
tion of GEMs encapsulation of nuclei with transposase enzymes and nuclei transposition
into open chromatin regions. b. ATAC library (left) and GEX library (right) construc-
tion steps and components.
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2.2 Related Works

This section establishes the theoretical background underlying this thesis project. First,
it introduces the field of lineage tracing, enabling the reader to understand the broader
context within which the project stands and its related works.

Then, this section provides a comprehensive introduction to the mathematical back-
ground employed in this project. It delves into the key theoretical frameworks and models
that form the basis of scVEMO, including the concept of RNA-velocity and the CellRank
framework which lay at the basis of our model. The section also describes key princi-
ples underlying random walks which will be useful for model evaluation. Finally, the
section elucidates the Generalized Perron Cluster Cluster Analysis (GPCCA) method,
which enables the identification and characterization of the system’s fully-differentiated
states. By providing this comprehensive overview of the system model and the theoretical
frameworks, this section lays the foundation for the specific methodologies, experiments,
and findings of the research.

2.2.1 Lineage Tracing Methods and Algorithms

Lineage tracing refers to the process of tracking the developmental origins and differ-
entiation trajectories of individual cells or cell populations within a tissue or organ-
ism [16–19, 22, 47, 48]. This powerful technique provides invaluable insights into the dy-
namic gene regulatory mechanisms that orchestrate cellular fate decisions and tissue pat-
terning during development, regeneration, and disease. As a core topic of this research,
we will introduce the state-of-the-art techniques and methods currently used for lineage
tracing.

According to the comprehensive reviews by [18], we can broadly categorize lineage
tracing approaches into two main groups: prospective and retrospective lineage tracing
techniques. Additionally, the rapid advances in single-cell genomics have given rise to
a suite of computational algorithms that leverage high-throughput single-cell data to
reconstruct developmental lineages [19, 47]. In the following sections, we will delve into
the details of some lineage tracing methodologies, discussing their underlying principles,
experimental workflows, and computational frameworks. This comprehensive overview of
the lineage tracing landscape will serve as a solid foundation for the experimental design
and data analysis components of the thesis work.

Prospective lineage tracing [18, 19] involves techniques that leverage the integration
and tracking of genetic barcodes within target cells and their progeny. These strate-
gies utilize the introduction of synthetic DNA sequences, such as random DNA oligonu-
cleotides or viral genetic elements, that serve as heritable markers within the target cells.
As these cells divide and differentiate, the unique barcodes are passed on to their descen-
dants, allowing researchers to reconstruct the lineage relationships between different cell
types and infer the underlying gene regulatory mechanisms. Some approaches exploit the
integration of DNA transposons [18,49]. Another widely used approach is the Cre-LoxP
system, where the site-specific recombinase Cre induces the expression of a reporter gene
(e.g., fluorescent proteins) in a cell-type-specific manner, marking the lineage of those cells
and their progeny [18, 50]. More recently, CRISPR-based lineage tracing leverages the
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ability of the Cas9 endonuclease to introduce targeted DNA modifications, such as small
insertions or deletions, within the genome of target cells [18,19]. As these cells divide, the
unique genetic scars are passed on to their descendants, creating a heritable barcode that
can be used to reconstruct the lineage relationships between cells. Collectively, these
prospective lineage tracing techniques have become invaluable tools for dissecting the
complex cellular hierarchies and developmental trajectories underlying diverse biological
systems. However, such strategies can be challenging to implement when working with
large and complex organisms. In such cases, researchers can leverage a second category
of lineage tracing approaches, known as retrospective lineage tracing.

Retrospective lineage tracing [18, 19] techniques exploit naturally occurring sponta-
neous mutations that can be inherited by daughter cells. Copy Number Variants (CNVs)
are large-scale structural variations in the genome, such as deletions, duplications, or
amplifications of DNA segments, that can be detected and tracked across cells. Single
Nucleotide Variations (SNVs), on the other hand, refer to single base pair changes that
accumulate in the genome over successive cell divisions. Microsatellite repeats are short,
tandem repeats of DNA sequences that exhibit high mutation rates, making them suitable
as lineage-specific markers. Finally, LINE-1 elements are transposable genetic elements
that can undergo random insertions into the genome, creating unique integration sites
that can be leveraged for lineage tracing.

Single-cell sequencing has emerged as a powerful tool for inferring developing lineages
by leveraging the transcriptional and epigenomic profiles of individual cells. The un-
derlying premise is that cells with similar transcriptomes are likely to be found in close
proximity within the differentiation trajectories, as trascriptomics is strictly related to
cell functioning and identification [18, 47]. Furthermore, transcription factors are known
to play a crucial role in shaping the genomic landscape and orchestrating the precise
spatiotemporal patterns of gene expression that define cellular identity and fate [47]. A
growing number of single-cell data-based lineage tracing algorithms have been developed
to reconstruct developmental lineages, ordering cells along pseudotime and identifying
developmental branches.

A well-established set of single-cell lineage tracing techniques exploits the underlying
manifold structure of the sc-RNA sequencing data to approximate cell state transitions
and reconstruct developmental trajectories [16,17]. These approaches begin by construct-
ing a nearest neighbor (NN) graph, where the vertices represent individual cell states,
and the edges connect the most similar cell states based on their transcriptomic profiles.
The CellRank algorithm [16] further enhances this graph-based representation by incor-
porating RNA-velocity information. RNA-velocity is a measure of the rate of change
in gene expression, which can be used to infer the directionality of cellular transitions.
By leveraging the correlation between each cell’s RNA-velocity and the differences in
neighboring cell transcriptomes, CellRank can direct the NN graph and compute cell-cell
transition probabilities. In contrast, the PALANTIR framework [17] employs diffusion
maps [51] and the projection of the data onto the top diffusion components to compute
the pseudotime ordering of the cells. This pseudotime information is then used to direct
and weight the NN graph, leading to the construction of the cell-cell transition probability
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matrix. Both CellRank and PALANTIR utilize the obtained transition probability ma-
trices to simulate the developmental system using Markov Chains (MC). However, they
differ in the strategies for identifying the initial and terminal states within the system.
PALANTIR identifies the absorbing states of the MC, which correspond to the terminal
cell fates. CellRank, on the other hand, exploits a Generalized Perron Cluster Cluster
Analysis (GPCCA) [52] to perform spectral clustering on the MC transition probability
matrix, summarizing the cell-cell system into broader macrostates. These macrostates
can then be further divided into initial, terminal, and intermediate states of the biological
developmental process. Ultimately, both CellRank and PALANTIR output developmen-
tal lineages, cell-fate transition probabilities, and the associated gene expression patterns
along specific trajectories, offering researchers a comprehensive understanding of the com-
plex cellular differentiation dynamics (Fig. 2.8 2.9).

In addition, another set of single-cell lineage tracing algorithms exploits the integra-
tion of scRNA-seq and scATAC-seq data to provide a more comprehensive visualization
of developmental lineages in a branching tree structure [22, 23]. One such framework is
STREAM [22], which first projects the combined single-cell sequencing data onto a lower-
dimensional space using the Modified Locally Linear Embedding (MLLE) method [53].
It then infers the cellular trajectories by applying an optimized version of the Elastic
Principal Graph (ElPiGraph) algorithm. In contrast, the MIRA framework [23] takes a
different approach, employing a variational autoencoder to perform topic modeling on
the integrated scRNA-seq and scATAC-seq data. It then constructs a k-nearest neighbor
(KNN) graph based on the identified accessibility and expression topics, which is used
to build a developmental tree structure. Furthermore, MIRA leverages regulatory po-
tential (RP) modeling to understand the regulatory influence of chromatin accessibility
on gene expression patterns along the branches of the reconstructed lineage tree. Both
STREAM and MIRA result in tree-structured visualizations that summarize the develop-
mental lineages, including branching points, pseudotime ordering, cell type density, and
the underlying regulatory mechanisms driving the cellular transitions along the different
branches (Fig. 2.10).

Finally, there exists a category of single-cell techniques that aim to identify the bio-
logical development of a system by explicitly leveraging the concept of RNA-velocity [20,
21,48]. RNA-velocity refers to the rate of change in a cell’s gene expression, which can be
inferred from the ratio of unspliced to spliced mRNA transcripts detected via single-cell
RNA sequencing. This temporal information provides a powerful means to infer the di-
rectionality of cellular transitions. The pioneering velocyto model [48] and its subsequent
refinement, scVELO [20], exploit a system of two ordinary differential equations (ODEs)
to describe the evolution of spliced and unspliced RNA. These models incorporate gene-
specific parameters for transcription, splicing, and degradation rates. While the original
velocyto approach assumes a common splicing rate across all genes and relies on a steady-
state approximation, scVELO overcomes these limitations by introducing gene-specific
splicing rates and cell state parameters resulting in a more generalized framework that
can handle transient systems. The MultiVelo model [21] further expands the ODE system
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Figure 2.8: Overview of the CellRank framework. Upper left: the cell-cell transition
probability matrix is coarse-grained using GPCCA into four macrostates which are di-
vided into an initial, an intermediate, and two terminal states. Highlighted cells represent
the 30 top likely cells to belong to the terminal state. Upper-right: cell fate probabilities
mapped over UMAP embedding; each cell is colored according to the terminal state it
is more likely to reach. Bottom left: normalized gene expression plot over the UMAP
representation and lineage-specific gene expression trends along pseudotime. Bottom-
right: heatmap representing gene expression along pseudotime for the top 50 genes cor-
relating with terminal state B. Adapted from Lange, Bergen, Klein et al., Cellrank for
directed single-cell fate mapping, Nature Methods, 19:159-170, 2022, doi:10.1038/s41592-
021-01346-6 Copyright

to include a third equation describing the rate of chromatin accessibility changes underly-
ing the regulation of gene splicing and transcription. These models employ expectation-
maximization (EM) approaches to estimate the relevant parameters from the single-cell
data. The output of these RNA-velocity-based methods includes gene-specific phase por-
traits as well as lower-dimensional visualizations (UMAP, tSNE) that incorporate the
inferred directionality of cellular trajectories (Fig. 2.13a and Fig. 2.12a,b). However, it is

33

https://creativecommons.org/licenses/by/4.0/


Background

Figure 2.9: Overview of the Palantir framework. Top: tSNE map of scRNA-seq epithelial
enriched cells from the mouse colon colored according to cluster, cell pseudotime, and dif-
ferentiation potential on the tSNE embedding. Bottom: Differentiation potential trends
and gene expression trends along pseudotime. Adapted from Setty, Kiseliovas, Levine
et al., Characterization of cell fate probabilities in single-cell data with Palantir, Nature
Biotechnology, 37:451-460, 2019, doi:10.1038/s41587-019-0068-4.

important to note that RNA-velocity estimates are extremely uncertain [16], and these
techniques are often best utilized in combination with other single-cell lineage tracing
algorithms to provide a more comprehensive and robust understanding of the underlying
developmental processes.

2.2.2 RNA-velocity: Mapping Transcription Temporal Dynamics

RNA-velocity is a computational technique that leverages the differential abundance of
spliced and unspliced RNA transcripts within scRNA-seq data to infer the future tran-
scriptional state of each cell. By exploiting the temporal dynamics of gene expression,
RNA-velocity suggests the directionality of cellular differentiation and developmental tra-
jectories.

The underlying principle of RNA-velocity is the observation that unspliced, pre-
mRNA sequences are indicative of recently activated genes, while spliced, mature mRNA
molecules represent the cumulative gene expression history of a cell. By quantifying the
relative abundance of these two RNA species, it is possible to estimate the rate of change
(velocity) in a cell’s transcriptional program.

Throughout Section 2.2.3, 2.2.4 and 2.2.5, we will explore the application of three
major frameworks for RNA-velocity estimation: velocyto [48], scVELO [20], and Multi-
Velo [21].
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Figure 2.10: Illustration of the STREAM framework. Left: flat tree point where each
dot represents a cell colored according to cluster and lines represent branches. Center:
subway map plot, the flat tree point is reordered according to a user-defined initial cell.
Right: stream plot showing cell density along different trajectories. Note that both the
subway map plot and the stream plot allow to visualise gene expression for a gene of
interest. Adapted from Chen, Albergante, et al., Single-cell trajectories reconstruction,
exploration and mapping of omics data with STREAM, Nature Communications, 10,
2019, doi: 10.1038/s41467-019-09670-4

2.2.3 RNA-velocity: the Velocyto Framework

The foundational framework for RNA-velocity analysis is the groundbreaking Velocyto
model [48], which is also known as the steady-state approach. This model relies on the
key assumption that the full gene splicing dynamics, including the induction, repression,
and steady-state phases, can be observed within the single-cell transcriptomic data.

At the core of the Velocyto model is a set of gene-specific, deterministic, and continuous-
valued rate equations that describe the time evolution of the expected number of spliced
and unspliced mRNA molecules. Specifically, for each gene, the model follows the system
of equations:

du(t)
dt

= α(t) − β(t)u(t)

ds(t)
dt

= β(t)u(t) − γ(t)s(t)
(2.1)

In these equations, α(t), β(t), and γ(t) represent the gene-specific transcription, splic-
ing, and degradation rates, respectively, while u(t) and s(t) denote the abundances of
unspliced and spliced mRNA molecules at time t. Constant values for the gene-specific
transcription and degradation rates are assumed, such that α(t) = α, γ(t) = γ, while the
splicing rate β(t) = β = 1 is constant and shared across all genes.
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The analytical solution to the system of equations Eq. 2.1 can be derived as follows:

u(t) = α(1 − e−t) + u0e−t

s(t) =
e−t(1+γ)

[︂
et(1+γ)α(γ − 1) + etγ(u0 − α)γ + et (α − γ(s0 + u0 + s0γ))

]︂
γ(γ − 1)

(2.2)

Here, u0 and s0 represent the initial abundances of unspliced and spliced mRNA, re-
spectively, at time t = 0. The analytical solutions derived for the Velocyto model’s rate
equations provide a powerful means of extrapolating mRNA abundances to future time
points. However, this approach requires the estimation of the gene-specific parameters α
and γ.

The Velocyto model leverages a steady-state assumption, where the rate of change in
spliced mRNA abundance is considered constant over time, i.e., ds(t)

dt = 0 for all t. Under
this assumption, the model parameters can be derived as follows:

γ = u

s
α = u

(2.3)

The Velocyto framework provides a straightforward approach to estimating the degra-
dation rate γ for a given gene. This is achieved by fitting a linear model, where the
size-normalized unspliced mRNA abundance û is regressed against the size-normalized
spliced mRNA abundance ŝ across all cells. In this formulation, the slope of the linear re-
gression line directly corresponds to the degradation rate γ. Graphically, this parameter
can be visualized on the gene-specific phase portrait, as depicted in Fig. 2.11.

While the Velocyto model provides a straightforward approach to estimating the gene-
specific degradation rate γ, the transcription rate α cannot be determined. This poses a
challenge when trying to extrapolate the future abundances of spliced mRNA molecules,
s(t), using the model’s analytical solutions.

To address this issue, the framework proposes two alternative approaches:

1. The constant velocity assumption: RNA-velocity is considered constant over time,
ds(t)

dt = v, leading to a simplified expression for the spliced mRNA abundance:

s(t) = s0 + vt (2.4)

2. The constant unspliced molecules assumption: u(t) = u0. Under this assumption
the analytical solution for s(t) becomes:

s(t) = s0e−γt − u0
γ

(1 − e−γt) (2.5)

The Velocyto framework offers two primary visualization techniques that enable the
interpretation of RNA-velocity. The first approach involves projecting the estimated ve-
locity vectors onto low-dimensional embeddings of the single-cell data, such as t-SNE or
UMAP plots as shown in Fig. 2.11b. The resulting streamlines represent the inferred
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directionality of the transcriptional dynamics within the cellular state space. By visual-
izing the velocity vectors over the embedding, we can identify regions of the state space
where cells are actively transitioning between transcriptional states, indicating areas of
dynamic cellular differentiation.

The second visualization technique involves the construction of gene-specific phase
portraits (Fig. 2.11b), which plot the unspliced versus spliced mRNA abundances for
each gene. The degradation rate slope separates the regions of gene induction and gene
repression. By projecting individual cells onto these phase portraits, we can examine the
distance between the cell’s position and the degradation rate line, which corresponds to
the RNA-velocity for that cell and gene. This approach enables the identification of genes
that are actively being induced or repressed within specific cellular subpopulations.

2.2.4 RNA-velocity: the scVELO Framework

The scVELO framework [20] aims to address two key limitations of the original Velocyto
approach. Firstly, Velocyto relies on the steady-state assumption, which may not always
hold true, particularly in the context of dynamic, heterogeneous cellular populations.
The authors of scVELO recognized the need for RNA-velocity analysis to generalize
to transient states and diverse cellular subpopulations. Secondly, Velocyto assumes a
common splicing rate shared across all genes, whereas the scVELO model introduces gene-
specific reaction rates to better capture the heterogeneity in transcriptional regulation.
To address these limitations, the scVELO framework introduces a more comprehensive
set of parameters, including not only the gene-specific reaction rates, but also additional
variables describing the positioning of cells within the developing biological system.

The scVELO gene-specific deterministic rate equations now capture the dependency
of the transcription rate on the cell’s internal transcriptional state:

du(t)
dt

= α(k)(t) − βu(t)

ds(t)
dt

= βu(t) − γs(t)
(2.6)

In this formulation, the parameters α(k)(t), β, and γ still represent the gene-specific
transcription, splicing, and degradation rates, respectively. However, the transcription
rate α is now dependent on the cell’s state, as encoded by the parameter k. This cell
state-dependent transcription rate α(k)(t) allows the scVELO model to capture gene up-
and down-regulation dynamics that are influenced by the specific transcriptional program
of the cell. The parameter k represents either the induction, repression, and their related
steady states. Consequently, the analytical solutions for the mRNA abundances also
become k dependent:

u(t) = u
(k)
0 e−βτ + a(k)

β
(1 − e−βτ )

s(t) = s
(k)
0 e−γτ + α(k)

γ
(1 − e−γτ ) + α(k) − βu

(k)
0

γ − β
(e−γτ − e−βτ ) τ = t − t

(k)
0

(2.7)
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In this expanded analytical solution, the cell state k impacts both the transcription rate
α(k), the initial mRNA abundances u

(k)
0 and s

(k)
0 , as well as the time point of switching

between states t
(k)
0 . By incorporating this cell state-dependent formulation, the scVELO

model is able to more accurately infer the spliced mRNA abundance s(t).
The scVELO framework employs the Expectation-Maximization (EM) algorithm [54]

to simultaneously infer the key parameters of the model, including the gene-specific reac-
tion rates, the cell-specific transcriptional states, and the switching time points between
states. Given the size-normalized observed mRNA abundances, uobs and sobs, the EM
approach aims to estimate the phase trajectory χ that best approximates the observa-
tions. This is achieved by minimizing the gene-specific negative log-likelihood function,
which quantifies the goodness-of-fit between the estimated phase trajectory x(θ) and the
observed data xobs, where θ =

(︂
α(k), β, γ

)︂
:

l(θ) = 1
2 log(2πσ2) + 1

2σ2
1
n

n∑︂
i

||xobs
i − xti(θ)||2 (2.8)

In this formulation, σ2 represents the variance of the normally distributed residuals be-
tween the observed and the estimated phase trajectory.

The EM algorithm consists of two iterative steps:

• E-step: given the current estimate of the model parameters θ, which parameterize
the phase trajectory x(θ), the E-step assigns a latent time ti to each observed data
point xobs

i . This is done by finding the time point on the trajectory that minimizes
the distance between the observed data and the estimated phase trajectory. Addi-
tionally, the E-step assigns state likelihoods to each cell, based on their proximity
to the different regions of the phase portrait.

• M-step: the algorithm updates the model parameters θ and the switching time
points t0 to better fit the observed mRNA abundance data via Nelder-Mead method [55].

By addressing the limitations of the original Velocyto model and introducing cell pa-
rameters and gene-specific splicing rates, the scVELO framework provides a more com-
prehensive and biologically realistic approach to RNA-velocity analysis. As illustrated in
Fig. 2.12, the velocity stream plots and gene phase portraits obtained using the scVELO
model showcase its enhanced capabilities compared to the Velocyto-based approach. For
the pancreatic endocrinogenesis dataset [56], the velocity vectors computed by scVELO
are able to accurately capture the cycling population of endocrine progenitors, a feature
that the original Velocyto model was unable to achieve (Fig. 2.12a,b). Furthermore, the
scVELO framework offers improved gene-specific phase portraits that enable better as-
signment of α-cells to induction and repression states, as compared to the Velocyto model
(Fig. 2.12c). Finally, the scVELO model also provides enhanced latent time estimates
that better position cells along the developmental trajectory compared to pseudotime
(Fig. 2.12d).
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2.2.5 RNA-velocity: the MultiVelo Framework

Building upon the advancements of the scVELO model, the MultiVelo [21] framework
introduces further enhancements to capture the role of epigenomic changes in gene ex-
pression regulation. The MultiVelo model extends the gene-specific rate equations by
incorporating a term to describe the dynamics of chromatin accessibility:

dc(t)
dt

= kcαc − αcc(t)

du(t)
dt

= α(k)c(t) − βu(t)

ds(t)
dt

= βu(t) − γs(t)

(2.9)

In this formulation, the variable c represents the time-varying levels of chromatin acces-
sibility. Specifically, it is the sum of accessibility at the promoter and linked peaks for a
gene, which is later normalized to mimic a value for c approaching 1 in the opening and 0
in the closing phases. Such a variable is coupled with the rate of chromatin opening and
closing, αc, and the chromatin state (closing and opening) indicator, kc = {0,1}. This
"chromatin velocity" term, dc(t)

dt , is then integrated into the mRNA abundance dynamics,
capturing the interplay between epigenomic changes and transcriptional regulation. The
parameters α, k, β, and γ maintain their interpretations from the scVELO model, where
the k = {0,1} values represent, respectively, repression and induction. By considering the
combinations of k and kc, the MultiVelo framework enables the representation of multiple
biologically feasible developmental cell states.

The analytical solutions for the chromatin accessibility, unspliced, and spliced mRNA
abundances are provided in Equation 2.10. These solutions incorporate the initial states,
c0, u

(k)
0 , and s

(k)
0 , as well as the time points t0 at which the cellular states change.

c(t) = c0e−αcτ + kc(1 − e−αcτ )

u(t) = u
(k)
0 e−βτ − α(k)kc

β
(1 − e−βτ ) + (kc − c0)α(k)

β − αc
(e−βτ − e−αcτ )

s(t) = s
(k)
0 e−γτ + α(k)kc

γ
(1 − e−γτ ) + β

γ − β

(︄
α(k)kc

β
− u

(k)
0 − (kc − c0)α(k)

β − αc

)︄

(e−γτ − e−βτ ) + β

γ − αc

(kc − c0)α(k)

β − αc
(e−γτ − e−αcτ )

(2.10)

Similar to the scVELO framework, the MultiVelo approach aims to estimate a tra-
jectory xi = (ci, ui, si) that best approximates the observed multiomics data xobs =
(cobs, uobs, sobs). This is achieved by minimizing the following negative log-likelihood
function:

l(θ) = 3
2 log(2πσ2) + 1

2nσ2

n∑︂
i

||xi − xobs||2 (2.11)

In this formulation, σ2 represents the variance of the normally distributed residuals be-
tween the estimated trajectory and the observed measurements across the three dimen-
sions: chromatin accessibility (c), unspliced mRNA (u), and spliced mRNA (s).
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The MultiVelo framework employs the Expectation-Maximization (EM) algorithm to
infer the parameters of the underlying ordinary differential equations and the cell-specific
latent times t. However, the estimation of the latent times differs from the scVELO
approach: instead of directly assigning the latent time to each cell, MultiVelo computes
the (c, u, s) values of the ODEs solution at several uniformly distributed "anchor" time
points. The cell is then assigned to the anchor with the shortest distance to the cell’s
observed multiomics measurements at each iteration of the EM algorithm.

Building upon the foundations of the scVELO model and incorporating additional
multiomics measurements, the MultiVelo approach offers several key advantages over
previous RNA-velocity methods. First and foremost, the original Velocyto and the
scVELO models were limited to analyzing transcriptional kinetics alone, without con-
sidering the underlying epigenetic changes that play a crucial role in gene expression reg-
ulation. By bridging this gap, the MultiVelo approach offers enhanced insights into the
diverse developmental states and lineage trajectories that emerge during cellular devel-
opment (Fig. 2.13a,b). Furthermore, the MultiVelo framework introduces a novel latent
time estimation strategy that offers several benefits as it can better accommodate the
inherent heterogeneity and asynchrony within complex biological systems (Fig. 2.13a).
Finally, the rigorous mathematical framework underlying the MultiVelo model, includ-
ing the analytical solutions for the chromatin accessibility, unspliced, and spliced mRNA
abundances, also provides a more robust means of inferring the underlying parameters.
This enhanced parameterization and modeling capability enables the MultiVelo approach
to analyze multiple state cellular configurations and identify the most appropriate model
for each gene (Fig. 2.13c).

2.2.6 Notions on Graph Theory and Random Walks

To study the dynamic behavior of the biological system under investigation, scVEMO
conducts a series of random walk simulations based on the computed cell-to-cell transition
probability matrix P . The outcomes of these stochastic simulations are heavily influenced
by the topological properties of the network encoded within the transition matrix P .
Recognizing the importance of understanding the network structure for interpreting the
random walk dynamics, the current section delves into a detailed analysis of the properties
of this underlying network. This network-level understanding is crucial for interpreting
the results of the random walk simulations.

This analysis follows the comprehensive framework outlined in the work by Fagnani
and Como [57].

A transition probability matrix P ∈ IRN×N is a non-negative square matrix satisfying
the following properties:

0 ≤ pij ≤ 1 and
∑︂

i

pij = 1 (2.12)

In other words, the matrix P represents a set of transition probabilities, where each
entry pij describes the likelihood of transitioning from state i to state j, and the rows of
P sum to 1, ensuring the probabilities are properly normalized.
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This transition probability matrix P can be directly used to construct an associated
weighted directed graph G = {V, ε, W}. The set of nodes V corresponds to the states
in P , while the edges ε and their associated weights W correspond to the entries of P ,
where the weight of each edge is the transition probability.

An important topological property of the graph G is its connectivity. Specifically, a
graph is said to be strongly connected if, for any two nodes i and j in the graph, there
exists a path (a sequence of directed edges) that connects i to j. This strong connectivity
property ensures that all states within the system are accessible from one another through
state transitions.

Additionally, the concept of periodicity is also crucial in the analysis of the graph
structure. The period perG(i) of a node i is defined as the greatest common divisor of
the lengths of all circuits (closed paths) starting and ending at that node. If the period
of all nodes in the graph is 1, the graph is considered to be aperiodic.

The topological properties of strong connectivity and aperiodicity, are fundamental for
the existence and structure of the dominant eigenvalue and eigenvectors associated with
the transition probability matrix P . This relationship is formally captured by Theorem 1.

Theorem 1 Let G = {V, ε, W} a graph with strictly positive out-degree for every node i.
Then, there exists a positive dominant eigenvalue λW with associated non-negative right
eigenvector x = λ−1

W Wx and left eigenvector x = λ−1
W W ′y.

Specifically, given a non-negative and row-normalized matrix P , the dominant eigenvalue
λw has specific properties. First, λw = 1 and, in the case of a strongly connected and
aperiodic graph, λw is both algebraically and geometrically simple. Consequently, there is
a unique dominant eigenvalue π : 1′π = 1 and P ′π = π and its corresponding eigenspace
has dimension 1. Finally, all the other eigenvalues λ of P satisfy the λ < 1 relationship.
The non-negative vector π is referred to as the "invariant probability distribution" of the
graph G and its uniqueness is ensured when the graph is strongly-connected and aperiodic.

Generally, to understand the number of invariant probability distributions of a graph G
one could also study its condensation graph HG . The condensation graph HG is a directed
aperiodic graph (DAG). It is constructed by collapsing the nodes of G into supernodes,
where each supernode represents a strongly connected component of the original graph.
The edges in HG are defined such that there exists a link from one supernode to another
if there is at least one edge in the original graph G that points from a node in the first
connected component to a node in the second connected component (Fig. 2.14).

By analyzing the structure of the condensation graph HG , we can gain valuable insights
into the number of distinct invariant probability distributions associated with the original
graph G. Theorem 2 establishes a direct link between the structure of the condensation
graph HG and the properties of the invariant probability distributions associated with
the original graph G. By analyzing the number of sinks in HG , i.e., supernodes with out-
degree equal to zero, researchers can identify the number of distinct invariant probability
distributions in G and understand their support.

Theorem 2 Let G = {V, ε, W} be a graph. Then,

• Any convex combination of invariant probability distributions of G is and invariant
probability distribution of G.
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• For every sink in HG of G there exists an invariant probability distribution supported
on the connected component corresponding to such a sink. Such invariant probability
distributions are referred to as extremal.

• Every invariant probability distribution can be obtained as a convex combination of
the extremal invariant probability distributions.

• If sG = 1, then G has a unique invariant probability distribution π whose support
coincides with the connected component of such a sink.

Stochastic complex systems are usually simulated using random walks. A discrete-
time stochastic process X(t), t = 0,1, . . . with state space Ω is such that for any couple
of states (i, j) ∈ Ω:

IP (Xt+1 = j|X(0) = i0, X(1) = i1, . . . , X(t − 1) = it−1, X(t) = it) = IPit,j (2.13)

Equation 2.13 states that the future state of the system X(t + 1) only depends on the
current system state and it is independent from the past, a property known as "memo-
ryless" or "Markov" property. Furthermore, the probability of moving to another state
is described by the underlying transition probability matrix P . A process satisfying
Equation 2.13 is known as discrete-time Markov chain (MC) with probability matrix
P ∈ [0,1]N×N .

To get insights about the behavior of the MC one needs to specify both the underlying
transition probability matrix P and an initial probability distribution π̂(0) ∈ [0,1]N ,
indicating the chain probabilities of starting in a specific state. Then, the trajectory
follows:

π̂′(t) = π̂′(0)P, P (t) = P t ∀t ≥ 1 (2.14)

In Equation 2.14, π̂ ∈ [0,1]N is the marginal probability distribution of X(t) and it
describes the probability that the random walk will end in a specific state at time t. When
the chain is run infinitely long, π̂ is known as "stationary distribution". Interestingly,
when the underlying transition probability matrix is irreducible - hence the associated
graph G is strongly connected and aperiodic - the MC stationary distribution aligns with
the invariant probability distribution of the underlying transition matrix P , as stated in
Theorem 3. Consequently, it is of interest to determine if such an invariant probability
distribution exists, whether it is unique, and identify its support to ascertain the most
likely endpoint of the Markov Chain.

Theorem 3 (Convergence in Probability) Let P be an irreducible and aperiodic stochas-
tic matrix and π = P ′π its normalized invariant probability distribution. Let π̂(t), t =
0,1, . . . be the probability distribution vectors of a Markov Chain with transition probabil-
ity P . Then,

lim
t→∞

π̂(t) = π (2.15)

For any initial probability distribution π(0).

42



2.2 – Related Works

Within the MC framework, states can be classified as either recurrent or transient.
A state i is considered recurrent if, when the Markov chain starts from that state, it
will return to i with probability 1. Importantly, when the Markov chain begins in a
recurrent state, it will remain within the set of recurrent states indefinitely. In contrast,
transient states are those from which the Markov chain will eventually depart and never
return. While the recurrent states determine the stationary, long-term behavior of the
Markov chain, the transient ones play a crucial role in influencing the short-term, transient
dynamics of the cellular system.

Finally, the concept of absorption probability is central to both the Markov Chain
simulations and CellRank. Consider a subset of states S within the overall state space
Ω of the Markov chain. For any initial state i ∈ Ω, the absorption probability in state
s ∈ S is defined as:

Hi,s = IPi(X(TS) = s) = IPi(TS = Ts) (2.16)

The absorption probability Hi,s represents the likelihood that, starting from the initial
state i, the Markov chain will first hit the state s ∈ S before reaching any other state in
S \ s. In Equation 2.16, Ts represents the hitting time of state s, which is the first time
t ≥ 0 that the Markov chain X(t) reaches state s. Additionally, TS denotes the hitting
time of the subset S, defined as the minimum of the hitting times of the individual states
s ∈ S:

TS := inf{t ≥ 0 : X(t) ∈ S} = min
s∈S

{Ts} (2.17)

2.2.7 Cell Trajectory Inference: the CellRank Framework

The CellRank framework [16] leverages single-cell RNA-sequencing data to perform tra-
jectory inference, with the goal of automatically detecting the initial, intermediate, and
terminal states of the underlying biological system. This algorithm, then, performs a soft
probability assignment of cells to each of the terminal states, providing insights into the
likelihood of a particular cell to develop into a specific differentiated cell type.

While RNA-velocity platforms [21, 48] are valuable tools for reconstructing develop-
mental lineages, they also embody intrinsic limitations. Authors of CellRank recognized,
for example, the high dependence of velocity computations on the presence of intron-rich
sequences, the use of a single set of gene-specific parameters across all cells, and the
limited interpretability of the velocity vectors themselves.

To address these challenges, CellRank combines RNA-velocity estimations with a
similarity-based trajectory inference approach. By integrating the dynamic informa-
tion from RNA-velocity with transcriptomic similarity and the topological constraints
described by a k-nearest neighbor (KNN) graph, CellRank is able to model cell-state
transitions via a Markov Chain. This approach allows CellRank to better cope with the
inherent stochasticity in cellular differentiation processes, while providing a more robust
and interpretable means of tracing lineage relationships.

CellRank assumes that the state transitions between cellular profiles are gradual,
with each state being transcriptomically similar to the previous one. This reflects the
continuous nature of cellular differentiation processes. Then, it also assumes that the
set of cellular profiles spans the entire trajectory of state changes. This ensures that
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the framework can adequately capture the full spectrum of developmental progression.
Finally, state transitions are modeled as a Markov Chain, which relies on the memoryless
property.

The CellRank algorithm requires two key inputs: a cell-by-gene expression matrix
X ∈ IRN×G, and a matrix V ∈ IRN×G representing a vector field, such as the RNA-
velocity estimates. It then operates in three distinct steps. First, it computes a cell-state
transition probability matrix P to model the stochastic state transitions as a Markov
Chain. Next, CellRank coarse-grains the transition matrix P into a set of initial, ter-
minal, and intermediate macrostates, and computes the macrostate transition probabil-
ities into a matrix Pc. It then assigns each cell a soft probability of belonging to each
macrostate, captured in the membership matrix χ. Finally, CellRank leverages the com-
puted macrostate transition probabilities to determine the fate probabilities of each cell
towards the terminal macrostates and returns a fate matrix F that encapsulates the
likelihood of each cell to develop into the various differentiated cell types.

At the core of the CellRank framework is the construction of a k-nearest neighbor
(KNN) graph, which serves to limit the set of possible cellular transitions to only those
between nearest neighbors. This is a crucial step, as it ensures that the state transitions
modeled by CellRank are consistent with the inherent topological structure of the single-
cell transcriptomic data. To construct the KNN graph, CellRank first projects the high-
dimensional scRNA-seq data onto the first L principal components, in line with the
dimensionality reduction techniques commonly employed in scRNA-seq data analysis.
Next, for each cell i, CellRank computes the Euclidean distance to its K nearest neighbors.
The resulting adjacency matrix A is then symmetrized, such that neighboring cells i and
j are only considered as such if i is a neighbor of j and vice versa. The symmetrization
process however implies that each cell i now has a variable number of neighbors Ki.
Importantly, this means that Ki ≥ K, where K is the original number of nearest neighbors
specified in the KNN graph construction. The associated KNN graph is now undirected
and symmetric.

The CellRank framework leverages the information contained in the field matrix V
to direct the graph and compute cell-to-cell transition probabilities. The core idea is
to assign higher transition probabilities to those neighboring cells whose direction of
transcriptomic change, as encoded in the displacement vector sik = xk − xi, best aligns
with the direction of the velocity vector vi associated with the reference cell i. This
alignment between the velocity vector and the state-change vectors captures the degree
to which the RNA-velocity estimates can predict the observed transcriptomic changes
between the neighboring cellular profiles. Specifically, for each cell i with gene expression
profile xi ∈ IRG and velocity vector vi ∈ IRG, CellRank computes the Pearson correlation
ci ∈ [0,1]Ki between vi and the set of state-change vectors {sik} for all Ki neighboring cells
(Fig. 2.15). These cell-neighbor correlations provide a measure of how well the velocity
vector can predict the transcriptomic changes in the neighboring state profiles.

To transform these correlations into transition probabilities pi ∈ [0,1]Ki , CellRank
employs the softmax function, as shown in Equation 2.18. This operation ensures that
the transition probabilities are non-negative and sum to unity.
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pik = eσcik∑︁
l eσcil

(2.18)

Here, σ is a scalar controlling how centered the distribution is around the state-
change transition with maximum correlation and can be computed using the heuristic
in Equation 2.19. The probabilities are collected within a transition probability matrix
P ∈ [0,1]N×N .

σ = 1
median ({|cik| ∀(i, k)}) (2.19)

The Cellrank framework leverages the Generalised Perron Cluster Cluster Analy-
sis [52] to coarse-grain the obtained transition probability matrix P and project it onto
a lower dimensional space. Such a step enables CellRank to characterize the complex
cellular dynamics and lineage relationships at a more interpretable macrostate level. By
uncovering initial and terminal macrostates, CellRank enables the identification of the
starting and ending cellular types and the developmental lineages within an evolving
system (Fig. 2.8a).

It is important to distinguish between the terms "cluster" and "macrostate" as they are
employed in the subsequent discussion. The GPCCA method identifies coarse-grained,
metastable cellular states, referred to as "macrostates" within the context of this thesis.
This term is used to emphasize that these macrostates represent distinct, higher-level
cellular phenotypes and configurations rather than groupings of individual cells. Con-
versely, the term "cluster" is typically associated with a hard assignment of data points
to distinct groups. In the context of this thesis project, we refer to clusters to indicate the
result from a community detection algorithm, such as the Louvain [58] or the Leiden [59]
methods, which identify cells that are densely connected within the KNN. Notably, the
macrostates identified by the GPCCA analysis can be composed of cells belonging to
different clusters.

Details about the GPCCA method and its implementation in CellRank can be found
in Section 2.2.8.

The coarse-grained transition matrix Pc obtained through the GPCCA analysis is
then used to automatically infer the initial and terminal states within the system. This is
accomplished by leveraging the stability index (SI), which is defined as the self-transition
probability Pcmm for each macrostate m. Notably, the terminal macrostates are first
identified as those having a very high stability index (SI ≥ 0.96), indicating that they
are less likely to transition to other macrostates. Such a high degree of self-transition
probability suggests that they represent stable, endpoint cellular phenotypes. Conversely,
the CellRank framework determines the initial macrostates by computing the invariant
probability distribution πc of the coarse-grained transition matrix Pc. This invariant
distribution πc represents the long-term, stationary probabilities of the system occupying
each macrostate. The initial macrostates are characterized by having low values in the
πc vector. This is because the initial states are less likely to be visited multiple times
in the Markov chain dynamics, as the system tends to transition towards the terminal
ones. All macrostates which are not classified as either initial or terminal are known as
intermediate.
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Building upon the GPCCA-derived membership matrix χ and the identified terminal
macrostates, the CellRank framework computes the likelihood of each individual cell
transitioning towards each of the terminal macrostates. For each terminal macrostate
t ∈ {1, . . . , nt}, CellRank first identifies a set of f cells that are strongly assigned to that
macrostate according to χ. These cells are considered to be the representatives of the
terminal macrostate t and are grouped into the terminal index set Rt. All remaining
cells are then collected into a disjoint transient index set T . For each cell in T , CellRank
computes a cell fate probability vector fi ∈ IRnt , where each element fi,t represents
the probability of that cell transitioning towards the corresponding terminal macrostate
t. Finally, these cell fate probabilities fi vectors form a valid probability distribution,
satisfying the partition of unity and non-negativity properties. The complete set of cell
fate probabilities is accumulated into a fate matrix F ∈ IRN×nt .

The computation of the cell fate probabilities within the CellRank framework relies
on the concept of absorption probabilities in Markov Chains. As previously discussed,
the Markov Chain states can be categorized as either recurrent or transient states. Upon
a suitable permutation of the cell barcodes, the transition matrix P can be represented
in the following block form: (︄

P̃ 0
S Q

)︄
(2.20)

In this representation, the submatrix P̃ represents the transition probabilities within the
set of recurrent states, hence cells in {Rt}, while Q represents the transition probabilities
within the set of transient states, i.e., cells in T . The submatrix S captures the transitions
from the transient states to the recurrent states, while it is not possible to move from the
recurrent to the transient ones.

To compute fate probabilities towards terminal states, CellRank computes absorp-
tion probabilities towards cells in {Rt}. CellRank converts the terminal index set into
absorption states by removing out-going edges from cells belonging to {Rt} in the graph
G underlying P . Absorption probabilities are then computed as follows:

A = (I − Q)−1S (2.21)

To retrieve probabilities towards a specific Rt, CellRank sums the absorption probabilities
towards the representing individual cells.

The key strength of the CellRank framework is its ability to provide intuitive visu-
alizations that bring complex cellular dynamics and lineage relationships to life. One
particularly powerful visualization is the overlay of the computed cell fate probabilities
and terminal macrostates onto the UMAP embedding of the single-cell data. The vi-
sualization presents each cell as a point, with the color of the point encoding the cell’s
fate probability vector fi, revealing the developmental trajectories and branching points
within the cellular landscape. Regions of the UMAP corresponding to high probability
for a given terminal macrostate are clearly delineated, providing an intuitive understand-
ing of the lineage relationships and fate decisions governing the system. Overlaid on
top of this fate probability map, CellRank also highlights the location of the terminal
macrostates identified through the GPCCA analysis. These terminal states serve as the
attractors or end-points of the developmental trajectories, as illustrated in Fig. 2.8a.
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2.2.8 The Generalised Perron Cluster Cluster Analysis and its Appli-
cation in CellRank

The Generalised Perron Cluster Cluster Analysis (GPCCA) [52] is a spectral clustering
method that leverages the eigenvectors of a row-stochastic matrix to perform dimension-
ality reduction. In the context of this work, the input to GPCCA is the row-stochastic
CellRank transition probability matrix P , which encodes the similarities and transition
probabilities between the individual cells. The algorithm identifies ns macrostates, which
represent the coarse-grained, metastable cellular states or phenotypes. GPCCA delivers
a fuzzy clustering of the data, where each cell is assigned a probability of belonging to
each of the identified macrostates.

The fuzzy spectral clustering problem consists of separating N data objects o1, . . . , oN

into different ns macrostates M1, . . . , Mns according to their pairwise similarities sij . This
problem can be represented by a matrix χ ∈ IRN×ns , also known as membership matrix,
satisfying:

0 ≤ χij ≤ 1,
ns∑︂

j=1
χij = 1 ∀i = 1, . . . , N (2.22)

In χ, each value χij can be interpreted as the membership of the i-th data object belonging
to the j-th macrostate.

The underlying assumption in GPCCA is that any stochastic matrix can be viewed
as a small perturbation of an uncoupled Markov Chain. In this latter case, there exists
a unique linear transformation of the matrix eigenvectors that can be used to represent
the spectral clustering. Specifically, in the uncoupled Markov Chain scenario, the un-
derlying transition probability matrix is block diagonal. This implies that the associated
graph is composed by multiple disconnected components. Intuitively, in the uncoupled
MC scenario, the macrostates identified by GPCCA would correspond directly to the
disconnected components in the graph. Furthermore, the data objects (in this case, the
individual cells) would be automatically assigned to the graph component to which they
belong. (Fig. 2.16).

While the real-world transition probability matrix P derived from the single-cell data
is unlikely to be precisely an uncoupled Markov chain (Equation 2.20), the GPCCA
method leverages this underlying assumption to find a suitable fuzzy clustering. Even
in the case of a general stochastic matrix, GPCCA is able to identify a membership
matrix χ that satisfies an optimality criterion, providing a meaningful representation of
the coarse-grained, metastable cellular states.

The identification of macrostates within the GPCCA framework is typically per-
formed by projecting the transition probability matrix P into its coarse-grained version
Pc ∈ IRns×ns . This projection is achieved by leveraging an invariant subspace of P .
However, a significant challenge arises in the case of non-reversible matrices, such as the
CellRank transition probability matrix P , where there exist complex-valued eigenval-
ues. In such situations, since the traditional eigenvector decomposition approach is not
directly applicable, the GPCCA method utilizes the Schur decomposition [60]:

P = QRQT (2.23)
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Here Q is a unitary matrix whose columns are the Schur vectors. Instead, R is an upper
quasi-triangular matrix whose diagonal elements correspond to the eigenvalues of P - real
eigenvalues lie on the 1×1 blocks while conjugate complex pairs on the 2×2 blocks. The
key insight is that the real Schur vectors and the Schur vectors associated to complex
conjugate eigenvalues - only when such vectors are coupled - span the same invariant
subspace as the eigenvectors of the transition probability matrix P [52].

The matrix Q̃ ∈ IRN×ns is obtained by selecting ns columns from Q. Then, the
membership and the projected transition matrices are obtained as in Equation 2.24.

χ = Q̃A

Pc = (χT Dχ)−1(χT DPχ)
(2.24)

Where A ∈ IRns×ns is a non-singular matrix, and D is a diagonal matrix such that
Q̃

T
DQ̃ = I. Typically, these diagonal entries are chosen according to some distribution

of the cellular states of interest, which in the case of CellRank is the uniform distribution.
The goal of the GPCCA analysis is now to find a transformation matrix A that satisfies
the partition of unity and positivity conditions of the membership matrix χ, as expressed
in Equation 2.22. As previously mentioned, there exists a set of feasible transformation
matrices FA that satisfy these conditions. To identify the optimal transformation ma-
trix A, the GPCCA approach employed in CellRank resolves the following optimization
problem:

min fns(A) = ns − trace(D̃−1
χT Dχ)

s.t. χij ≥ 0 ∀i ∈ {1, . . . , N} ∀j ∈ {1, . . . , ns},
ns∑︂

j=1
χij = 1 ∀i ∈ {1, . . . , N}

(2.25)

Where
D̃

−1 = diag

(︄
1∑︁

j(χT Dχ)1j
, . . . ,

1∑︁
j(χT Dχ)nsj

)︄
The GPCCA optimization problem aims to make the identified macrostates as crisp or
distinct as possible. In other words, the goal is to find a transformation matrix A that
leads to a membership matrix χ that is as similar as possible to an indicator matrix. An
indicator matrix is a binary matrix where each row represents a data point (in this case,
a cell) and each column represents a macrostate. Each entry in the indicator matrix is
either 0 or 1, indicating whether the corresponding data point belongs to the respective
macrostate or not. By seeking a membership matrix χ that is as similar to an indicator
matrix as possible, the GPCCA optimization process attempts to achieve an unambigu-
ous assignment of cells to the identified macrostates and provide a more interpretable
representation of the distinct cellular states.

It is important to note that the resulting coarse-grained transition matrix Pc ∈ IRns×ns

obtained through the GPCCA optimization process does not represent a Markov process
anymore. In other words, Pc is not a transition probability matrix itself. Unlike the
original transition probability matrix P , the coarse-grained matrix Pc may contain nega-
tive values. When the optimization process is unable to achieve a clear separation of the
macrostates, the resulting Pc matrix will exhibit such negative values.
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(a)

(b)

Figure 2.11: Velocyto RNA-velocity representation. a. (top-left) Schematic representa-
tion of the compartmental model underlying the Velocyto rate equations. (bottom-left)
The gene-specific phase portrait according to the Velocyto model: the dashed line repre-
sents the degradation rate γ, which separates the regions of gene induction (above γ) and
gene repression (below γ); each cell, depicted as a red data point, can be plotted on this
phase portrait, and the distance between the cell’s position and the γ line corresponds to
the RNA-velocity. (right) Visualization of the spliced and unspliced mRNA abundances
as a function of the transcription rate α: this plot illustrates how changes in the tran-
scriptional rate are reflected in the differential dynamics of these two RNA molecules.
b. RNA-velocity vectors projection on the t-SNE embedding of the hindbrain of adoles-
cent (P20) mice (left) and gene phase portraits (right). Adapted from La Manno, G.,
Soldatov, R., Zeisel, A. et al. RNA-velocity of single cells. Nature 560, 494-498 (2018).
https: // doi. org/ 10. 1038/ s41586-018-0414-6 .
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Figure 2.12: RNA-velocities derived for the pancreatic endocrinogenesis using the
scVELO dynamical model (a.) and the Velocyto steady-state approach (b.). c. Phase
portrait comparison for the Cpe gene recovered from the models: the steady state model
incorrectly assigns α-cells to the repression phase. d. scVELO’s latent time can bet-
ter identify the cell’s positioning in the biological development compared to pseudotime.
Adapted from Bergen, V., Lange, M., Peidli, S. et al. Generalizing RNA-velocity to
transient cell states through dynamical modeling. Nat Biotechnol 38, 1408-1414 (2020).
https: // doi. org/ 10. 1038/ s41587-020-0591-3
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Figure 2.13: Comparison of the scVELO and MultiVelo frameworks over the mouse skin
dataset. a. Velocity stream plot and latent time estimation using MultiVelo predict two
developmental lineages. b. Velocity stream plot using scVELO: transcriptomic data only
cannot correctly recover developmental lineages. c. Relative proportion of each type
of kinetics across all fit genes. Adapted from Li, Virgilio, Collins, et al., Multi-omic
single-cell velocity models epigenome-transcriptome interactions and improves cell fate
prediction, Nature Biotechnology, 41:387-398, 2023, doi:10.1038/s41587-022-01476-y..

Figure 2.14: Graph (left) and its condensation graph (right). Dashed circles highlight
connected components, while numbers are used to label each connected component and
the respective supernode. Edges are colored according to the supernodes they are con-
necting in both the graph and its condensation version.
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Figure 2.15: Cellrank probabilities computations. A reference cell i is highlighted with
its velocity vector vi and neighbors. The displacement vector sij represents the difference
in gene expression for neighboring cells. Probabilities are computed considering the angle
α between each displacement vector and the velocity one.

Figure 2.16: Transition matrix representation of an uncoupled Markov Chain - up to
a perturbation of the order of the objects. The block-diagonal matrix (left) and the
representation of the associated disconnected graph (right) match the block color with
the respective component.
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Chapter 3

Methods

This chapter presents the various models and computational approaches employed in our
analysis of the 10X Genomics dataset on the embryonic mouse brain.

The baseline model is based on scRNA-seq data alone. This serves as a reference
to assess the performance of the multimodal approaches. Next, we construct a model
based solely on scATAC-seq data. This allows us to investigate whether it is possible
to recover meaningful lineages only from the highly sparse epigenomic data. Finally, we
build two multiomics models that leverage both epigenomics and transcriptomics data,
albeit with different strategies. The Multiomics+scVELO model correlates both the peak
count matrix and the gene expression one with the RNA velocities computed using the
scVELO framework. Instead, the Multiomics+MultiVelo model employs a gene activity
matrix and computes the velocities using the MultiVelo framework.

The chapter first provides a brief overview of the 10X Genomics dataset, describing
the key contents of the files that will be leveraged throughout our analysis. Next, it
delves into the preprocessing pipelines used to perform quality control and compute the
RNA-velocity estimates for each of the models under investigation. Building upon the
preprocessed data, it then introduces the methodologies used to compute the transition
matrices used as input for the CellRank model.

Finally, this chapter provides an overview of the model evaluation metrics employed
to assess the performance and robustness of the various approaches.

3.1 Dataset

The 10X Fresh Embryonic E18 Mouse Brain (5k) dataset [24] consists of paired ATAC
and GEX cellular profiles. This single-cell sequencing dataset comprises cells sampled
from the fresh cortex, hippocampus, and ventricular zone of the embryonic mouse brain
at day 18. Cells are extracted from a combination of fresh, cryopreserved, and flash-
frozen tissue samples. Nuclei isolation is performed using the Embryonic Mouse Brain
pipeline for the Single Cell Multiome ATAC+GEX [44] and the ATAC and RNA libraries
preparation step is carried out using the 10X Genomics Chromium Single Cell Multiome
ATAC+GEX protocol [38], as described in previous sections.

The processed libraries are then analyzed using CellRanger-ARC 2.0.0 [46]. The
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resulting dataset contains 4878 different cells, around ten thousand linked genes, and
56,000 linked peaks.

To leverage this multimodal dataset, we employ the feature-barcode matrix provided
in HDF5 format. This matrix contains the count matrix entries, the features identifiers,
and cell barcodes, as well as the feature type to distinguish genes from peaks. Addition-
ally, we use the peak annotation TSV file, which provides a map from peaks to genes,
with the peaks categorized as promoter (±1000 base pairs from any TSS), distal (within
200kb from the closest TSS but not in the promoter region), or intragenic.

In addition, the spliced and unspliced mRNA counts required for RNA velocity esti-
mations are also provided by the MultiVelo framework [21]. These velocity-related counts
are computed from the dataset using the Velocyto Command Line Interface (CLI) [48].

Furthermore, MultiVelo authors also provide cell type annotations, which identify 12
distinct cell clusters within the embryonic mouse brain sample. A visualization of the
clusters is provided in Fig. 3.1.

Figure 3.1: UMAP visualisation of the 10X Fresh Embryonic E18 Mouse Brain. Cells are
clustered according to cell labels provided by MultiVelo.
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Clusters have been validated by investigating the expression of known marker genes [61–
64] for each cluster as listed in Table 3.1. Gene expressions are plotted in Appendix B.

Table 3.1: Marker genes per cluster obtained from literature

Cajal-Retzius Reln
Interneurons Dlx1, Gad1, Lhx6
Microglia Trem2
OPCs Olig2, Pdgfra
Astrocytes Aldoc, Slc1a3
Radial Glia Vim
IPCs Eomes
V-SVZ Sema3c
Deeper Layer Fezf2, Rorb
Upper Layer Satb2, Inbha

To provide the necessary context about the embryonic mouse brain development, we
present results on the complex process of mouse brain development [61–64]. This litera-
ture review will later help us determine the expected terminal states and differentiated cell
types that our models should be able to recover. The process of embryonic development
begins with the gastrulation process (around E7), where the three primary germ layers -
ectoderm, endoderm, and mesoderm - are established [61,64]. These germ layers serve as
the building blocks for the development of specialized tissues and organs, including the
brain and nervous system. The ectoderm - the outermost layer - gives rise to the epider-
mis, nervous system (both brain and spinal cord), sensory organs, and other derivatives.
The endoderm forms the digestive tract and associated organs, the respiratory system,
and parts of the urinary and reproductive systems. The mesoderm or middle layer germ,
on the other hand, contributes to the musculoskeletal system, cardiovascular tissues, and
urinary system.

During the subsequent neurulation stage (between E8 and E10), the formation of the
neural crest and neural tube occurs [61, 64]. The neural crest is a temporary structure
that forms between the neural tube and the ectoderm, giving rise to multipotent cells that
differentiate into diverse tissues, such as the meninges, sympathetic and parasympathetic
nervous systems, and some non-neuronal brain cells like Schwann cells. The neural tube,
formed from the ectoderm, serves as the precursor of the central nervous system, hence
the brain and the spinal cord. Radial glia cells (RG) emerge from the neural tube as
proliferating cells and act as precursors for all neural cell types.

As development progresses, around E14, the radial glia cells lose their proliferative
capacity and transform, giving rise to glial lineage [64]. The glial cells (GCs) are non-
neuronal cells that provide support and insulation for neurons, as well as contribute to
the functioning of the nervous system. The glial cell population further differentiates into
astrocytes (cells that provide structural support to neurons and contribute to processes
such as repair of the neural tissue and synaptic functioning) and oligodendrocytes (OPCs,
cells involved in the electrical signaling processes).
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In addition, the radial glia cells also serve as precursor cells for neurons. The neu-
rogenesis process happens between E10 and E18 [64]. RG cells proliferate into neuronal
intermediate progenitor cells (nIPCs) [62], which subsequently transition and form inter-
mediate structures such as the ventricular zone, the subventricular zone, and the sub-
plate [61, 64]. The subplate is a transient layer of cells that acts as an intermediary
zone, involved in early neuronal connections, neuronal maturation, and cortical circuit
formation. The ventricular zone (VZ) is a germinal zone considered a primary source of
neurons during neurogenesis, the process of creating neurons. The subventricular zone
(SVZ) contains progenitor cells derived from radial glia in the VZ. Even after the second
postnatal week, RG cells in the V-SVZ continue to generate new granule cells, albeit at
a reduced rate [62].

Finally, the neurons divide and form the cerebral cortex [63]. The cerebral cortex
consists of six layers, which can be categorized into three groups: Layer I, Upper Layers,
and Deeper Layers. Layer I primarily consists of Cajal-Retzius cells and represents the
first cortical layer to form. Layers V-VI (Deeper Layers) are generated before Layers
II-IV (Upper Layers) due to the inside-out pattern of cortical development. Neurons that
are born earliest occupy the deepest layers, while later-born neurons migrate past them
and occupy more superficial layers [63]

3.2 Data Preprocessing

Data preprocessing is performed using Seurat 5.0.0 [14] Signac 1.12.0 [13] and Scanpy
1.9.6 [15]. The SeuratDisk 0.0.0.9021 package has been employed to perform conversions
between the SeuratObject and the corresponding H5 file.

We compute the standard quality control metrics on the dataset and perform filtering
as recommended in standard single-cell sequencing pipelines [13–15]. For the scRNA-seq
data, we keep genes with shared counts (i.e., counts in both the spliced and unspliced
layers) greater than 10, while for the scATAC-seq data, we retain peaks that are found
in at least 10 cells. This selective filtering allows us to focus our analysis on the most
informative features within the dataset.

Next, we integrate the cell annotations and remove the "Cajal-Retzius", "Microglia",
and the three interneurons clusters. This allows us to concentrate our analysis on the
developmental cells, which are the primary focus of our research.

We compute additional standard quality control metrics, as illustrated in Fig. 3.2a.
This includes examining the gene and peak counts per cell to identify and remove any
potential duplicates or dead cells. The nucleosome signal and TSS enrichment score
are employed to filter the epigenomic data. The nucleosome signal provides insights into
the degree of chromatin accessibility, with a high nucleosome signal potentially indicating
technical artifacts or low cell lysis. Signac computes the ratio of mononucleosome (147-291
base pairs) and nucleosome-free (<147 base pairs) fragments to identify the nucleosome
signal for each barcode. The TSS enrichment score, on the other hand, reflects the
concentration of ATAC-seq signal around transcription start sites, which is an indicator of
successful transcription. To compute the TSS enrichment, the reads distribution around
a TSS (±2000 base pairs) is collected and normalized by taking the average read depth
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in the 100 base pairs at each of the end flanks of the distribution (for a total of 200 base
pairs of averaged data) and then calculating the fold change at each position over that
average read depth.

We filter barcodes within the 2nd and 98th percentiles for each metric.

(a)

(b) (c)

Figure 3.2: Data preprocessing a. Quality Metrics computed for the dataset. b. PCA
explained variance and elbow plot for scRNA-seq data. c. SVD dimensions correlation
with sequencing depth.

After the initial quality control and filtering steps, we normalize the scRNA-seq data.
This process involves log-transforming the data, as shown in Equation 3.1, followed by
scaling and it helps remove any potential batch effects present in the dataset. Next,
we extract the 2,000 most variable features from the normalized scRNA-seq data. This
feature selection step is crucial for capturing the most informative and biologically rel-
evant genes within the dataset. To reduce the dimensionality of the scRNA-seq data,
we perform Principal Component Analysis (PCA). As depicted in Fig. 3.2b, the elbow is
reached between 10 and 30 principal components (PCs). Within this range, the explained
variance reaches approximately 33%, which is considered sufficient given the highly sparse
nature of the scRNA-seq data.
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To handle the highly dimensional and variable nature of the scATAC-seq data, instead,
we employ the Latent Semantic Indexing (LSI) technique, which is a natural language
processing (NLP) method typically used to identify patterns and relationships between
terms and concepts in unstructured text collections. The LSI approach first applies the
Term-Frequency-Inverse-Document-Frequency (TF-IDF) weighting scheme to the peak-
count matrix. The term frequency statistic, tf(pi, cj), represents the relative frequency
of the i-th peak in the j-th cell. The inverse document frequency, on the other hand,
measures how much information the peak provides in terms of its rarity across the entire
collection of barcodes, C. The rationale behind using TF-IDF is that a peak has higher
significance for a cell when its term frequency is high, and its inverse document frequency
is low, meaning the peak is not commonly found across the whole collection. By applying
this weighting scheme, TF-IDF aims to identify peaks that are specific to each cell, while
assigning lower weights to common peaks in the collection, as shown in Equation 3.2.

tf(pi, cj) = countsij∑︁
i countsij

idf(pi, C) =
∑︁

j countsij

N
tfidf(pi, cj , C) = log(1 + tf(pi, cj) ∗ idf(pi, C) ∗ 104)

(3.2)

Following data transformation, LSI employs Singular Value Decomposition (SVD) to
determine patterns in the relationship between peaks and cells and perform dimensionality
reduction. As illustrated in Fig. 3.2c, we examine the correlation between the sequencing
depth and the reduced components. Based on this analysis, we decide to discard the
first dimension, as it appears to capture sequencing depth-related variations rather than
biologically relevant information [13].

To compute the RNA-velocities for our multimodal analysis, we leveraged scVELO
0.3.1 [20] and integrated it with our preprocessing workflows in Scanpy and Seurat.

For the scRNA-seq data, we first use Scanpy to compute the K-Nearest Neighbor
(KNN) graph and the UMAP embedding of the cells. We then normalize the spliced
and unspliced RNA count matrices and compute the first-order moments -i.e. mean gene
expressions - for each cell across its neighborhood. These moments are then used by
scVELO to recover the full splicing kinetics for the genes and infer the RNA velocities in
all models except the MultiVelo-based one.

For the Multiomics+scVELO and the scATAC-seq models we use, respectively, Seurat
FindNeighbors and FindMultiModalNeighbors functions to compute the KNN graph.
We then leverage Seurat UMAP embedding implementation.

The Multiomics+MultiVelo model employs the preprocessing pipeline developed by
MultiVelo 0.1.3 [21]. We use Seurat to compute the multimodal KNN and UMAP em-
bedding, and then exploit scVELO to get the first-order moments over the RNA data.
Additionally, we use the MultiVelo TFIDF procedure to transform the peak count matrix.
The framework aggregates the promoter and enhancer peaks to genes based on the peak
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annotation TSV file from the CellRanger ARC pipeline and constructs a gene activity
matrix that summarizes chromatin accessibility information for the genes of interest. The
aggregate_peaks_10x function collects distal putative enhancer peaks with a correlation
greater than or equal to 0.5 with promoter accessibility or gene expression either anno-
tated to the same gene or within 10kb of that gene. Then the function annotates these
distal putative enhancers to the promoter peaks for the corresponding genes. Finally,
we normalize and smooth this new gene activity matrix representation and computed
RNA-velocities using the MultiVelo framework.

A further distinction between the multiomics models, beyond the employed RNA-
velocity framework, lies in the construction of the nearest neighbor graph. In the case
of the Multiomics+scVELO approach, we utilize the shared nearest neighbor (WSNN)
graph computed by the Seurat’s FindMultiModalNeighbors function, while the Multi-
omics+MultiVelo model relies on the standard KNN graph, as suggested in [21]. Unlike
KNN, SNN considers the effect of shared nearest neighbors around each node, capturing
local density and connectivity.

To ensure the reliability and robustness of our velocity estimation models, we explore
various preprocessing parameter configurations. This allows us to study the sensitivity
of the scVELO framework to different hyperparameter settings. Specifically, we investi-
gate the impact of the size of the local neighborhood, which determines the number of
neighbors in the KNN graph. We refer to this parameter as K in the following sections.
Additionally, we explore the effects of including different numbers of principal compo-
nents and latent semantic indexing dimensions in the dimensionality reduction steps. We
denote these parameters as PC and LSI, respectively. The specific parameter values
explored in our robustness study are reported in Table 3.2.

Table 3.2: Preprocessing parameters

K 10,20,30,50,60,80
PC 10,15,20,25,30
LSI 10,15,20,25,30

3.3 Transition Matrix Construction and Developmental Lin-
eages Identification

After the preprocessing steps, each model is associated with a feature count matrix or
a gene activity matrix (in the case of the Multiomics+MultiVelo model) and an RNA-
velocity matrix, computed either via scVELO or MultiVelo. It is important to note that
the scATAC-seq model alone cannot provide a velocity matrix, and therefore needs to be
coupled with a scRNA-seq dataset to obtain the necessary RNA-velocities. The pipeline
proceeds with the computation of a transition matrix for cell-state transitions and the
identification of the macrostates and cell fate probabilities using CellRank 2.0.2 [16].

The scRNA-seq transition matrix is been computed through the standard CellRank
VelocityKernel class. Such a class performs computations as shown in Fig. 2.15.
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The scATAC-seq model only consists of a transformed matrix XP ∈ IRN×npeaks and it
requires RNA-velocities from an additional scRNA-seq embedding, specifically the K =
30, PC = 30, LSI = 10 model. The peak count matrix is first subset, keeping only
promoter peaks to highly variable genes. Then, columns corresponding to peaks that are
promoters to multiple genes are repeated within the matrix, as illustrated in Fig. 3.3.
Such a matrix manipulation step is performed as the correlation operation requires the
RNA-velocity and the displacement vectors to have the same length. Then, we compute
the displacement vectors between neighboring cells via the expanded peak count matrix.
Finally, we correlate each promoter peak with the velocity of the corresponding gene for
the same cell, using a similar approach to the original CellRank framework. Correlations
are then transformed in probabilities via softmax.

The Multiomics+scVELO model consists of two input matrices: the gene expression
matrix for highly variable genes, XG ∈ IRN×ngenes , and the peak count matrix, XP ∈
IRN×npeaks . Similar to the scATAC-seq case, the ATAC matrix is subset to retain only
the promoter peaks corresponding to the highly variable genes and then expanded for
those peaks that are associated with multiple genes. In this multimodal setting, the
RNA-velocity vector is correlated with both the gene expression and the peak counts for
each cell. This integrated approach leverages the complementary information from the
transcriptomic and epigenomic data to compute the transition matrix.

The process of creating the transition matrices for the scATAC-seq and Multiomics+scVELO
models is illustrated in Fig. 3.3.

The CellRank framework provides the PrecomputedKernel class, which takes a user-
supplied transition matrix and the annotated data object as input, and offers an interface
to perform the CellRank computations, such as random walk simulations and the spectral
clustering with GPCCA.

Figure 3.3: Transition Matrix computation for the scATAC-seq and Multiomics+scVELO
models.

Finally, in the Multiomics+MultiVelo model, we utilize two input matrices: the gene

60



3.3 – Transition Matrix Construction and Developmental Lineages Identification

activity matrix XA ∈ IRN×ngenes and the gene count matrix XG ∈ IRN×ngenes , which
contains the gene expression values. To compute the transition matrix, we correlate the
neighboring cells’ gene activities with the chromatin velocities, as well as the gene counts
with the RNA-velocities. Both the chromatin and RNA-velocities are derived using the
MultiVelo framework. After the individual correlation matrices are obtained, we combine
them into a unified representation (Fig. 3.4) and apply a softmax transformation to
convert the values into probabilities.

Figure 3.4: Transition Matrix computation for the Multiomics+MultiVelo model.

Following transition matrix construction, we employ the CellRank framework to sim-
ulate the system at the cell-state level using a random walk. CellRank provides the
plot_random_walks function for both the VelocityKernel and PrecomputedKernel
classes, which simulates a Markov Chain using the transition matrix and plots the results
over the UMAP embedding. Such a function requires the user to provide an initial or
terminal set of barcodes for the simulation. In our analysis, we randomly selected 250
barcodes from the "IPC", "V-SVZ", and "RG, Astro, OPC" clusters as the initial set and
the initial probability distribution for the walk is the uniform over such a set. Each
model, along with its parameter configurations, is simulated 200 times, with the stopping
condition set to reach 25% of the total number of barcodes.

We then employ the Generalised Perron Cluster Cluster Analysis to coarse-grain the
transition matrices through Schur decomposition. To this end, Cellrank provides a GPPCA
class and its compute_schur method. This operation allows us to identify the 10 dominant
real and complex conjugate eigenvalues. For the corresponding number of macrostates
(ns), we compute and plot the initial and terminal states, via the CellRank GPCCA class
methods compute_macrostates, predict_terminal_states, plot_terminal_states and
the corresponding initial macrostates functions. Here, we allow CellRank to identify over-
lapping terminal and initial macrostates, since we anticipate the models to recover not
only the initial macrostate, but also a terminal macrostate within the "RG, Astro, OPC"
cluster. We also retain the GPCCA minChi and crispness values for each model and
parameter configuration to evaluate the quality of the spectral clustering.
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Next, we compute the cell fate probabilities and determine the multilineage potential
metrics. The CellRank method compute_fate_probabilities implements an iterative
procedure to solve the linear problem described in Equation 2.21. Given the system
complexity, we utilized petsc4py 3.20.5 [65] linear solver, as recommended by the CellRank
framework. Furthermore, we employed the Incomplete LU (ILU) preconditioner in our
implementation. This is because the convergence of the petsc4py solver typically depends
on the spectrum of the input matrix. The use of preconditioning techniques, can alter
the spectrum of the matrix and thereby accelerate the convergence rate of the iterative
methods [65–68].

Finally, we retrieve multilineage potential metrics through the compute_lineage_degree
function from CellRank specifying both the KL-divergence and entropy methods.

3.4 Evaluation metrics

This section outlines the specific strategies and metrics employed to evaluate models
performance. Initially, it examines the transition matrix to gain insights into the behavior
of each model at the cell-state level. Subsequently, it introduces GPCCA evaluation
metrics that aid in determining the optimal number of macrostates. Lastly, it elucidates
the metrics about multi-lineage potential, the identification of terminal states, and cell
fate probabilities.

3.4.1 Markov Chains

In the previous sections, we highlighted how the behavior of a random walk is influenced
by the topological properties of the graph G associated with the transition probability
matrix P . Specifically, we will focus on two crucial properties: connectivity and aperiod-
icity. Establishing these properties is essential for ensuring the existence of an invariant
probability distribution for the transition matrix, as per the theoretical results presented
in Theorem 2.

To further assess the number of extremal invariant distributions π and their support,
we construct the condensation graph HG of the original graph G. By analyzing the
number of sink components in HG , we can gain insights into the structure of the invariant
probability distribution of P . By thoroughly examining the connectivity, aperiodicity,
and condensation structure of the graph G, we can ensure that the Markov chain model
satisfies the theoretical requirements for the existence and uniqueness of π. This, in
turn, will enable us to confidently interpret the long-term cell fate probabilities and
developmental trajectories predicted by the Markov chain runs.

Graph analysis has been performed using networkx 3.2.1 [69].

3.4.2 Number of Macrostates

The number of macrostates ns for the spectral clustering using GPCCA is a crucial
hyperparameter that can be tuned using various methods, as discussed in the literature
[16, 52]. Some of the most commonly employed approaches for determining the optimal
number of macrostates include the eigengap heuristic, crispness, and minChi criterion.
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These methods provide insights into the macrostates sharpness as well as their overlap
in composition- i.e., in terms of clusters.

The crispness (ϵ) metric measures the optimality of the solution for the GPCCA
optimization problem, as presented in Equation 2.25. A larger value of ϵ corresponds to
a smaller overlap between the macrostates, indicating a crisper assignment of cells in the
membership matrix χ. Therefore, an optimal choice for ns would maximize the following
crispness criterion:

ns − fns

ns
= trace(D̃−1χT Dχ)

ns
(3.3)

Complementary to the crispness metric, the minChi criterion suggests that selecting
the number of macrostates ns associated with a minChi value close to 0 leads to a crisper
decomposition of the dynamics. The minChi value is computed as:

minChi = min
i

min
j

χi,j (3.4)

Therefore, the tuning of ns involves first selecting the candidates with a minChi value
close to 0, and then prioritizing the higher values of the crispness ϵ metric to identify the
optimal number of macrostates.

3.4.3 Terminal States and Developmental Lineages

The primary objective of performing spectral clustering with GPCCA is to identify the
initial and terminal macrostates while obtaining cell-specific probabilities of reaching each
terminal state through a soft assignment procedure. To assess the biological relevance of
the developed models, it is essential to examine whether the identified terminal states and
their cellular composition align with the current biological understanding of embryonic
mouse brain development. Based on the literature findings in Section 3.1, we expect the
models to identify one terminal macrostate composed primarily of cells from the "RG, As-
tro, OPC" cluster, representing the glial cell lineage and at least one terminal macrostate
associated with the neuronal developmental lineage, i.e., cells from the "Deeper Layer"
and "Upper Layer" clusters. We expect also models to recover an initial state consist-
ing of cells from the "RG, Astro, OPC" cluster. By assessing the alignment between
the model outputs and the well-established biological underpinnings of embryonic mouse
brain development, we can validate the ability of the computational framework to recover
biologically meaningful terminal cellular states and developmental lineages.

3.4.4 Multilineage Potential

Multilineage potential refers to the inherent ability of a single cell or progenitor cell
to undergo differentiation and give rise to multiple distinct cell lineages or cell types.
It suggests that a particular cell possesses the capacity to develop into diverse cellular
identities, providing valuable insights into the developmental potential of various cell
populations and the hierarchical relationships that exist among them. In the context of
this work, the computed cell fate probabilities are leveraged as a tool to evaluate the
multilineage potential of the identified cellular populations.
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CellRank [16], offers two methods for estimating multilineage potential. The first
approach utilizes entropy calculations based on fate probabilities. In information theory,
entropy refers to the average level of uncertainty or information associated with the
potential outcomes of a random variable. In the case of a discrete probability random
variable X, with a sample space Ω, the entropy is computed as:

H(X) := −
∑︂
x∈Ω

p(x) log(p(x)) (3.5)

A higher entropy value for X indicates a greater degree of uncertainty regarding the
possible outcomes of the experiment. For instance, when flipping a fair coin, the outcome
is more uncertain compared to an unfair coin, as the fair coin is expected to result in
a more balanced distribution of outcomes. Consequently, a fair coin is associated with
higher entropy than an unfair one.

Entropy, also known as Differentiation Potential (DP) in [17], serves as a measure of
cell plasticity, reflecting the cell’s capacity for differentiation. In the context of devel-
opmental lineage identification, DP is computed for each cell based on fate probabilities
towards terminal states and it is then correlated with pseudo-time, revealing that early
progenitor cells possess higher entropy (DP) compared to terminally differentiated cells.
In CellRank [16], the entropy of a cell, denoted as Si, is utilized to quantify the extent to
which the cell’s fate probabilities fi deviate from a uniform distribution. Cells exhibiting
higher values of Si indicate a reduced level of commitment to a particular fate, implying
a higher potential for exploring alternative differentiation paths.

The second method utilized to estimate multilineage potential involves the use of
Kullback-Leibler (KL) divergence. The KL divergence, also known as relative entropy
and denoted as DKL(P ||Q), is a statistical measure that quantifies the dissimilarity be-
tween a probability distribution of interest P and a reference probability distribution Q.
Specifically, when given two probability distributions P and Q defined on the same sam-
ple space Ω, DKL(P ||Q) calculates the expected logarithmic difference between P and
Q. The KL divergence can be interpreted in various ways. In the context of machine
learning, DKL(P ||Q) represents the information gain obtained when using P instead of
Q. In statistics, it corresponds to the expected value of the logarithm of the ratio of the
likelihoods of the two distributions. In Bayesian statistics, the KL divergence measures
the information gained by updating prior beliefs, represented by the prior probability
distribution Q, with the posterior distribution P .

The Kullback-Leibler (KL) divergence, despite being used to measure the difference
between two distributions and often interpreted as a measure of distance, does not meet
the criteria to be considered a metric due to its inherent asymmetry. For discrete proba-
bility distributions, the relative entropy is defined as:

DKL(P ||Q) =
∑︂
x∈Ω

P (x)log

(︃
P (x)
Q(x)

)︃

DKL(Q||P ) = −
∑︂
x∈Ω

P (x)log

(︃
Q(x)
P (x)

)︃ (3.6)

A relative entropy of 0 indicates that the two distributions being compared are identical.
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In CellRank, the Kullback-Leibler (KL) divergence (also referred to as priming de-
gree [70]) is employed to capture information regarding cell commitment and differen-
tiation towards specific lineages by comparing the fate probabilities fi of a cell i with
the average fate probability per lineage across cells denoted as f̄ . This measure allows
for assessing the extent of lineage priming, where a higher degree of priming indicates a
stronger commitment of a cell to a particular lineage.

DKL(fi||f̄) =
∑︂

j∈{terminal states}
fij ∗ log

(︄
fij

f̄ j

)︄
(3.7)

The use of both Si and DKL(fi||f̄) allows for the comparison of different models in
terms of multilineage potential. This is because lower values of DKL(fi||f̄) and higher
values of Si indicate cells with lower levels of commitment. By considering these measures
together, it becomes possible to assess and compare the extent of cell commitment across
different models.

To identify cell commitment during the development process, we therefore conducted a
comparison between the different models using both entropy and KL divergence. Results
are compared for models sharing the same size of the neighborhood K, the number of
principal components PC, and the number of terminal macrostates ns.

It is important to note that in scenarios where the initial cells are anticipated to
exhibit a clear bias towards a specific fate direction, author in [16] suggests employing
KL divergence instead of entropy. This recommendation is based on the observation
that KL divergence increases monotonically as cells progress towards terminal states. In
contrast, entropy reaches its maximum at the point where the initial and terminal states
converge closest to a uniform distribution.

3.4.5 Preprocessing Parameters

In this analysis, we investigate the impact of the size of the local neighborhood K, the
number of principal components PC, and the number of SVD dimensions LSI on the
models’ results. We aim to assess the robustness of the models and understand how these
preprocessing parameters influence the key outcomes.

First, we identify whether there are any variations in the models’ ability to recover the
developmental lineages, terminal and initial macrostates, and macrostate compositions.
Coherent results across different parameter settings would indicate the models’ robustness
to these variations.

Next, we explore the impact of the parameters on the multilineage potential. To do
this, we fit linear models to the KL-divergence values for each cell cluster and the different
ns values. The linear model is defined as follows:

KL =β0 + β1 ∗ K + β2 ∗ PC + β3 ∗ LSI + β4 ∗ K ∗ PC+
β5 ∗ K ∗ LSI + β6 ∗ PC ∗ LSI + β7 ∗ K ∗ PC ∗ LSI

(3.8)

The coefficient β0 represents the baseline, corresponding to the average value of KL-
divergence when K = 20, PC = 10, and LSI = 10. This serves as a reference point
to understand the changes in KL-divergence as the parameter values vary. The β1, β2,
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and β3 coefficient vectors represent the changes in mean KL-divergence compared to the
baseline values when a single parameter changes, while keeping the other parameters
constant. For example, β1,1 is the mean change in KL-divergence when K = 30 is used
instead of K = 20, keeping PC and LSI constant (10,10). The additional coefficient
vectors (β4 to β7) represent the added KL-divergence means due to the interaction of
two or three changing parameters with respect to the baseline. Therefore, to explain the
effect of K = 30, PC = 30 and LSI = 10 on multilineage potential, then one should
compute β0 + β1,1 + β2,1 + β4,1.

The presence of many categorical combinations, however, makes single coefficients and
the associated p-values difficult to interpret. To determine these interactions’ impacts,
we use ANOVA to investigate the following hypotheses:

H0 : βi = 0, i = 4,5,6,7
HA : βi /= 0, i = 4,5,6,7

(3.9)

The ANOVA test shows a p − value < 0.05 when interactions are significant. In
such cases, we further evaluate if any trend exists in the multilineage potential as the
parameter combinations vary.
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Chapter 4

Results

This chapter presents the key findings and comparisons across the various models inves-
tigated in this study. The primary focus is on the performance of the multiomics-based
approaches in relation to the transcriptomic-only model. Additionally, the chapter pro-
vides an analysis of the scATAC-seq model’s behavior in comparison to the scRNA-seq
framework.

At first, the chapter examines the cell-state level behavior of the different models.
This analysis aims to determine whether the scVEMO approach can effectively simulate
the developing system under investigation. Moving forward, it delves into the results of
the GPCCA analysis. Here, the goal is to study whether the models accurately identify
the developmental lineages, as well as the initial and terminal states. We will consider the
models that can recover the two distinct developmental lineages and the differentiation
between the upper and deeper cortical layers as the well-performing ones.

Finally, this chapter provides an evaluation of the cell fate commitment. It first intro-
duces an analysis of the cluster-specific average fate commitment towards the terminal
states for each model. However, since the performance of this metric is heavily influenced
by the identified macrostates, models that recover different states are unlikely to be di-
rectly comparable. To address this challenge, we will leverage the multilineage potential
analysis, which has been successfully employed in the Palantir framework. We expect the
well-performing models to exhibit high potential values (i.e., low lineage commitment)
for the progenitor clusters.

Through this comprehensive analysis, this chapter aims to provide a thorough under-
standing of the strengths and limitations of the multiomics-based approaches in compar-
ison to the transcriptomic-only and scATAC-seq models.

4.1 Markov Chain Simulations

To understand the behavior of the random walks, we first investigate the properties of
the graph G associated with each transition matrix P . We identify the connectivity and
aperiodicity topological properties of the graph associated with the transition probability
matrix P , as well as the condensation graph HG , for each model and parameter configu-
ration. Finally, we run the Markov chain on P .

67



Results

All scRNA-seq models exhibit transition matrices P that correspond to an aperiodic
and strongly connected graph G. The associated condensation graphs HG consist of
a single sink component as shown in Fig. 4.1a. Consequently, the transition matrices
possess a single invariant probability distribution π supported on the entire embedding,
as highlighted in Theorem 2.

scATAC-seq transition matrices also yield to an aperiodic and strongly connected
graph. However, there is one exception in the K = 10, LSI = 20 model where the graph
is not connected, and two sink components are present (Fig. 4.1b.).

Instead, the Multiomics + scVELO models transition matrices result in a single sink in
HG and an aperiodic graph only for K > 10. When K = 10, regardless of the PC and LSI
parameters, the resulting graphs exhibit two disconnected components. This observation
suggests that the neighborhood size is too small to recover a connected system. On the
other hand, the Multiomics+MultiVelo models consistently produce strongly connected
and aperiodic graphs across all parameter configurations. This result can be attributed to
the less restrictive nature of the KNN approach, which allows for the formation of more
densely connected graphs compared to the SNN one used in the Multiomics+scVELO
framework.

As discussed in previous sections, the Convergence in Probability Theorem (Theo-
rem 3) allows us to predict the expected behavior of a random walk using the invariant
probability distribution of the transition matrix, π. However, this requires strong con-
nectivity and aperiodicity to be satisfied. When these conditions are met, the long-term
behavior of the Markov chain π̂ is guaranteed to converge to the invariant probability
distribution π. This means that the random walk will eventually settle into a stable
pattern that reflects the underlying dynamics of the system.

On the other hand, if the aperiodicity constraint is not satisfied, the nodes in the
graph G may form a grid-like structure. In such cases, the random walk can exhibit
periodic behavior, repeatedly visiting the same set of nodes cyclically. Furthermore, the
dominant eigenmodes of the system will correspond to these periodic patterns, causing
the random walk to recognize these cycles as metastable states and remain trapped within
them. However, such a scenario never occurs in our simulations.

Lastly, if the graph G is disconnected, the random walk is confined to the starting
component, and its long-term behavior is determined solely by the initial probability
distribution π̂(0). This means that the random walk is unable to explore the full state
space of the system, limiting the conclusions that can be drawn from the analysis.

In Fig. 4.2-4.5 random walks for the four models of interest are shown. In the plots,
black-color coded dots represent starting cells, while the yellow ones coincide with the
simulations’ ending points. The edges’ colors tend to yellow as the walk reaches its end.
This visual encoding provides information about the progression towards the terminal
states within the lineage reconstruction framework.

The majority of the scRNA-seq simulations end in the "Deeper Layer" cluster, with a
few reaching cells in the "RG, Astro, OPC" one. These results underscore the ability of the
CellRank framework to effectively capture the developmental trajectory of the neuronal
lineage. In contrast, the gliogenic lineage, which is a crucial component of the developing
system under investigation although minor, is not as comprehensively recovered by the
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(a)

(b)

Figure 4.1: Examples of condensation graphs HG in the case of a strongly connected
graph (a.) and a disconnected graph (b.).

scRNA-seq model.
Conversely, simulations of the scATAC-seq and the two multiomics models result in

cells scattered throughout the embeddings. For such cases, we investigate the 30 most
likely cells on each embedding, highlighting the barcodes associated with higher invariant
probability distribution values (Fig. 4.6). Interestingly, these top likely cells span the
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entire UMAP. This outcome implies that the transition matrices, which correlate RNA
velocities with genes and/or promoter peak frequencies, fail to accurately capture the
developmental trajectories at the cell-state level. Such a result could be attributed to
two potential factors:

• The correlation operation between neighboring displacement vectors and cell-specific
RNA velocities may not be aligning the graph with the expected developmental lin-
eages.

• The correlation operation between neighboring displacement vectors and cell-specific
RNA velocities tends to assign high probability values also to cell-state transitions
that are opposite to the anticipated direction of development.

Despite the models are not able to simulate the embryonic mouse brain dynamic at the
single-cell level using P , we will later see that the incorporation of the cellular epigenomic
profiles improves the identification of the macrostates.

Figure 4.2: Random walk simulation for scRNA-seq model. Edges color becomes lighter
(yellow) as the simulations reach the end

4.2 Number of Macrostates

In this work, we tune the number of macrostates (ns) used in the GPCCA (Generalized
Perron Cluster Cluster Analysis) framework by leveraging a combination of two key
metrics: minChi and crispness. Optimal values of ns are those where minChi is 0 and
have higher crispness values, indicating that the macrostates are well-separated.
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Figure 4.3: Random walk simulations for scATAC-seq model. Edges color becomes lighter
(yellow) as the simulations reach the end

Figure 4.4: Random walk simulations for Multiomics+scVELO model. Edges color be-
comes lighter (yellow) as the simulations reach the end

Figure 4.7-4.10 illustrate the results of our investigation, where each data point rep-
resents a combination of preprocessing parameters, color-coded based on the number
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Figure 4.5: Random walk simulations for Multiomics+MultiVelo model. Edges color
becomes lighter (yellow) as the simulations reach the end

of macrostates. We have values of ns ranging from 2 to 10, as we expect at least two
developmental lineages to be present - the glial and the neuronal-related ones.

The analysis of the minChi metric shows that all the considered numbers of macrostates
behave correctly, with all values being 0.

When examining the crispness metric, we set two thresholds: 0.6 and 0.7. The mul-
tiomics models with ns = 2 and ns = 3 deliver crispness values above the 0.6 threshold,
with only the models with ns = 2 surpassing the more stringent 0.7 threshold. The
Multiomics+scVELO models provide in general higher crispness values than the Mul-
tiomics+MultiVelo ones. For the scRNA-seq data, we also observe good solutions for
some ns = 4. Conversely, the scATAC-seq models provide lower crispness values over-
all, suggesting that the identification of developmental lineages based only on the cell
epigenomics profiles might not actually provide accurate results.

Based on these findings, we will consider the models with ns = {2,3} for further
analysis. This result aligns with our expectations regarding the number of terminal states
in the system. We anticipate that the initial and one terminal state should coincide with
cells in the "RG, Astro, OPC" cluster, representing the glial cell lineage. Furthermore,
we expect at least one terminal state to be recovered in the neuronal lineage, specifically
composed of cells from the "Deeper Layer" and "Upper Layer" clusters.

Concordantly, the case of ns ≥ 4 leads to a series of undesirable properties:

• Some macrostates within the same embedding exhibit smaller sizes. In certain
cases, it is not even possible to identify a macrostate with more than the minimum
size of 6 cells, leading to limitations in determining reliable cell fate probabilities.
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• The composition of the macrostates becomes highly heterogeneous, with many
macrostates not being uniquely associated with a single cell type and significant
overlap occurring in terms of the underlying cell clusters.

• The models are unable to accurately identify the developmental lineages of interest.

• A considerable number of entries in the coarse-grained transition matrix are nega-
tive, indicating bad problem conditioning.

Consequently, we focus our subsequent analyses exclusively on the results obtained
with 2 and 3 macrostates, as these configurations exhibit more desirable properties and
align better with our expectations regarding the number of terminal states in the system.

4.3 Developmental Lineages and Fate Probabilities
Based on the literature review presented in Section 3.1, we expect the models to re-
cover two key developmental lineages. The first anticipated lineage is the glial trajectory,
which encodes the transition from radial glia cells into more differentiated glial cell types,
such as astrocytes and oligodendrocyte precursor cells. We therefore expect to observe
a lineage that is primarily composed of cells from the "RG, Astro, OPC" cluster. The
second expected lineage is the neuronal development trajectory, which should include
the neural intermediate progenitor cells (IPC), ventricular, subventricular zone (V-SVZ),
and subplate cells, eventually terminating in the cerebral cortex clusters. Superior model
predictions will further distinguish between the upper and deeper cortical layers, as they
correspond to early-born and later-born neurons, respectively. In addition to the identi-
fication of these developmental lineages, we will investigate the macrostate composition
for each initial and terminal state. This analysis will provide further insights into the ac-
curate identification of the macrostates and their biological relevance, with heterogeneous
composition being an indicator of worse model performances.

We begin by investigating the case where the number of macrostates, ns, is set to 2.
The results of this analysis are illustrated in Fig. 4.11-4.14.

Interestingly, all of the models considered in this study correctly recover the sin-
gle initial "RG, Astro, OPC" macrostate. This suggests that the various computational
techniques can unanimously identify the starting point of the developmental process cor-
responding to the multipotent radial glia cells.

Moving forward, the models also correctly identify two terminal developmental lin-
eages, corresponding to the "Deeper Layer" and "RG, Astro, OPC" macrostates. From
the biological perspective, these recovered lineages encode the expected trajectories of
cell differentiation, with RG transitioning to IPCs and giving rise to neurons and the
glial products, astrocytes, and oligodendrocytes, arising from the radial glia as well.

To further validate these findings, we examine the macrostate composition, as shown
in Fig. 4.15-4.18. The cells belonging to the corresponding homonymous clusters are
indeed the predominant contributors to the identified macrostates, providing additional
confidence in the biological relevance of the results.

In Fig.4.11-4.14 cells are color-coded according to the cell-fate probabilities. In-
terestingly, the scRNA-seq model exhibits higher probability values compared to the
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multiomics-based models, particularly within the neuronal lineage, while the scATAC-
seq model presents the lowest probability values overall. To further investigate these
cell fate probabilities, we conducted a comparative analysis across the four models. This
involved examining the average probability for each cell cluster to transition towards the
two terminal states, along with the corresponding 95% confidence intervals. The results
are plotted in Fig. 4.19. The resulting confidence intervals are narrow, indicating a suffi-
cient number of samples to yield reliable estimates for the average fate probabilities. The
desired model behavior entails assigning a greater average fate probability to cells within
the "RG, Astro, OPC" cluster, thereby facilitating movement towards the correspond-
ing terminal state. Conversely, all remaining clusters should exhibit a higher average
probability towards the "Deeper Layer" macrostate.

Upon examination, it becomes evident that for the "Deeper Layer" terminal state
(Fig. 4.19b), the scRNA-seq embedding exhibits higher average fates for all clusters,
compared to the multiomics approach. Furthermore, when considering the "RG, Astro,
OPC" terminal state (Fig. 4.19a), all multiomics average probabilities surpass the corre-
sponding scRNA-seq values, with the highest average probabilities associated with the
"RG, Astro, OPC" cluster. However, a closer inspection of the scRNA-seq model with
ns = 2 reveals an interesting observation. The "Upper Layer" cluster displays a strong
average fate probability to transition towards the deeper cortical macrostate, which is
not expected, as the cortical layers II-IV are formed later in development than the lay-
ers V-VI. Having fixed the terminal states, the absorption probabilities computation is
subject to the partition of unity and non-negativity constraints. As a result, all cells can
either transition towards the "Deeper Layer" or the "RG, Astro, OPC" clusters, regardless
of the potential presence of other terminal states. The scRNA-seq model assigns then a
strong probability to transition towards the "Deeper Layer" terminal state to most clus-
ters. Such a distribution results from the strongly committed random walks towards the
corresponding cluster. Conversely, the multiomics-based Markov Chain simulations are
not as engaged to the "Deeper Layer" cluster as the baseline model, a result that might
indicate the presence of additional terminal states within the same lineage. Such a result
explains the lower cell-fate transition probabilities in the multimodal approaches, as well
as the results in the ns = 3 case, where cells show increased cell-fate probability, although
towards the "Upper Layer" terminal state.

The scATAC-seq-based model stands out as the weakest performer in terms of aver-
age cell fate probabilities compared to the other approaches. When examining the "RG,
Astro, OPC" terminal state, the scATAC-seq model exhibits the highest average prob-
abilities across all neuronal-related clusters. Conversely, when considering the "Deeper
Layer" terminal state, the scATAC-seq approach demonstrates the lowest average clus-
ter probabilities. Interestingly, for the "RG, Astro, OPC" cluster itself, the scATAC-seq
model performs comparably to the Multiomics+MultiVelo framework.

More interesting results emerge when considering the case of ns = 3 terminal states.
The scRNA-seq model identifies two "RG, Astro, OPC" macrostates and a single "Deeper
Layer" macrostate (Fig. 4.24). The lineage reconstruction plot displayed in Fig. 4.20
illustrates that the scRNA-seq-based model recovers the same terminal states and devel-
opmental lineages as in the ns = 2 scenario. In contrast, the multiomics models uncover
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an "Upper Layer" terminal state in addition to the "RG, Astro, OPC" and "Deeper Layer"
ones (Fig. 4.22,4.23).

Regarding cell fate probabilities, the outcomes mirror findings obtained in the scenario
with ns = 2. Considering the "Deeper Layer" terminal state, the multiomics models
consistently exhibit lower average fate probabilities compared to the scRNA-seq-only
approach, regardless of the specific cell cluster (Fig. 4.28b). When examining the "RG,
Astro, OPC" terminal state (Fig. 4.28a), the average fate probabilities for the "RG, Astro,
OPC" cluster in the multiomics models exceed the scRNA-seq. However, average fate
probabilities for all other clusters are lower in the scRNA-seq models compared to the
multiomics.

Interestingly, compared to the ns = 2 scenario, the cell fate probabilities towards the
"RG, Astro, OPC" terminal state for neuronal-related clusters decreased in the multiomics
models. This result suggests that the higher number of macrostates has further boosted
the performance of the multiomics models.

In the ns = 3 scenario, the scATAC-seq model recovers a macrostate composed mostly
of "V-SVZ" cells, in addition to the "Deeper Layer" and the "RG, Astro, OPC" ones.
Consistent with the ns = 2 case, the scATAC-seq model presents the lowest performances
for the average cell fate probabilities across all clusters.

When comparing the Multiomics+scVELO and Multiomics+MultiVelo approaches,
several key insights emerge. In both ns = 2 and ns = 3 scenarios, the average cell fate
probabilities towards the "RG, Astro, OPC" and "Deeper Layer" macrostates are generally
comparable between the two models. However, the Multiomics+scVELO framework ex-
hibits a slight advantage when considering the "RG, Astro, OPC" cluster, providing results
more aligned with the expected fate behaviors. Turning to the "Upper Layer" terminal
state, generally, the scVELO-related model yields superior average cell fate probabilities
compared to the MultiVelo-based approach. Finally, the "Upper Layer" macrostate in
the MultiVelo case shows a higher percentage of "V-SVZ" cells (Fig. 4.27). While the two
approaches generally produce comparable results, the scVELO model demonstrates en-
hanced performance in capturing the behavior of specific cell clusters, particularly those
associated with the "Upper Layer" macrostate (Fig. 4.29). This highlights the importance
of carefully evaluating model performance across diverse cellular subpopulations to fully
appreciate the strengths and tradeoffs of the different multimodal integration strategies.

The identification of the "Upper Layer" terminal state can be considered an improve-
ment of the multiomics models over the scRNA-seq approach. Additionally, the accurate
identification of biologically relevant states in the multiomics scenario indicates that, even
though the transition probability matrix correlating RNA-velocities and promoter peak
frequencies may not fully capture the system’s development, it can still be effectively
utilized for identifying terminal states. The discrepancy in the scATAC-seq model’s be-
havior across different cell types highlights the limitations of relying solely on chromatin
accessibility data for comprehensive lineage reconstruction. This underscores the value
of integrating multimodal information, such as transcriptomic and epigenomic profiles,
to achieve more robust and reliable predictions of cellular developmental trajectories.
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4.4 Multilineage Potential

A significant factor that impacts the performance of the multiomics-based models in
terms of average cluster fate probabilities is the identification of the "Upper Layer" ter-
minal state. The presence of different macrostates in the ns = 3 scenario makes it
challenging to interpret the model comparisons indeed. To gain deeper insights into cell
fate probabilities and accurately evaluate developmental lineages, it is important to ex-
amine the multilineage potential of the cells. Multilineage potential refers to the capacity
of a single cell or progenitor cell to give rise to multiple distinct cell lineages or cell types.
This metric has been previously exploited in other lineage tracing frameworks [16,17].

This approach utilizes the cell fate probabilities to calculate the KL-divergence and
entropy measures, as highlighted in the previous sections. The underlying premise is
that progenitor cells are expected to exhibit low commitment (or higher potential), while
terminally differentiated clusters should display high fate commitment (or lower poten-
tial). Importantly, lower commitment levels correspond to higher entropy and lower
KL-divergence values.

In this study, we will specifically compare the average KL-divergence and entropy,
along with the corresponding 95% confidence intervals, for the following cell clusters:
"RG, Astro, OPC", "Deeper Layer", "Upper Layer", and "IPC". Results are illustrated in
Fig. 4.30 and Fig. 4.31.

The multiomics-based models demonstrate their ability to accurately recover the mul-
tilineage potential of the cellular subpopulations. When examining the KL-divergence
values, the multiomics-based approaches correctly exhibit higher values compared to the
scRNA-seq model for the "Deeper Layer" and "RG, Astro, OPC" clusters, across both
the ns = 2 and ns = 3 configurations. This trend is further corroborated by the entropy
results. The multiomics-based models present lower entropy for the "Deeper Layer" clus-
ter, while showing lower or comparable entropy for the "RG, Astro, OPC" one. These
findings indicate that the multiomics-based frameworks can better capture the fate com-
mitment of these cell populations, with the terminally differentiated "Deeper Layer" cells
exhibiting lower multilineage potential compared to the more progenitor-like "RG, Astro,
OPC" cluster.

Interestingly, all the models retrieve higher commitment compared to the scRNA-seq
case, as evidenced by lower entropy and higher KL-divergence values, for the "IPC" clus-
ter. While we might expect high multipotency levels in this cluster, representing pluripo-
tent cells, the literature suggests that such cells are only capable of developing towards
the neuronal lineage and cannot differentiate into astrocytes or oligodendrocytes. This
commitment of the "IPC" cluster to the neuronal lineage might justify the multilineage
potential metrics behavior.

When considering the "Upper Layer" cluster, an additional insight emerges. In the
ns = 2 scenario, we do not expect the fate probabilities to drive these cells towards
a specific lineage, as the "Upper Layer" terminal state is not recovered by the models.
However, the ns = 3 configuration highlights how the integration of epigenomic profiles in
the multiomics-based approaches yields better results in macrostate identification, which
in turn increases the lineage commitment of the "Upper Layer" cluster (Fig. 4.30b).

Notably, the scATAC-seq model also provides the worst performance in identifying
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multilineage potential. With ns = 2, the scATAC-seq model fails to recover the commit-
ment levels of the "RG, Astro, OPC" cluster, while in the ns = 3 scenario, it performs
comparably to the scRNA-seq case. Regarding the deeper cortical layers cluster, the
scATAC-seq model slightly outperforms the scRNA-seq one for ns = 2, while for ns = 3,
it recovers better performances than the baseline. Lastly, the scATAC-seq model ex-
hibits similar performances to the transcription-only-based approach when considering
the "IPC" cluster.

4.5 Preprocessing Parameters

In this section, we present the evaluation of the models’ behavior in response to variations
in preprocessing parameter settings.

For the ns = 2 scenario, all the models exhibit robustness to the parameter variations,
consistently recovering the two developmental lineages associated with the "RG, Astro,
OPC" and "Deeper Layer" macrostates. However, when considering the ns = 3 case,
the models display divergent behaviors. The scRNA-seq model remains confined to the
same lineages as in the ns = 2 setting, while the multiomics-based approaches continue
to identify the "Upper Layer" terminal state. This terminal state typically comprises a
composition of subventricular zone cells and upper layer neurons, although its specific
composition tends to improve and exclude the V-SVZ cells as PC and K are increased.
Interestingly, the Multiomics+scVELO model outperforms the Multiomics+MultiVelo
approach in accurately capturing the upper layer terminal state.

Another improvement observed in the multiomics models compared to the scRNA-
seq approach is the identification of the initial states in the ns = 3 scenario. The
transcriptomic-based model does not always recover an initial state in the "RG, As-
tro, OPC" cluster, sometimes identifying the initial developmental point with ependymal
or nIPCs cells instead. In contrast, the multiomics-based models exhibit robustness in
accurately identifying an initial macrostate in the "RG, Astro, OPC" cluster.

In contrast, the scATAC-seq model struggles to perform GPCCA and identify macrostates
for high values of K. These results further emphasize that relying solely on epigenomic
data, likely due to its inherent sparsity, cannot reliably recover the cellular development
trajectories.

To further examine the influence of parameter configurations on the multilineage po-
tential, we perform the ANOVA model presented in Equation 3.8. The results of this
analysis, reported in Appendix A, indicate that the parameter interactions are statisti-
cally significant for the Multiomics+scVELO model. Therefore, we investigate eventual
trends in the multilineage potential by plotting the results of the linear model (Ap-
pendix A). In the scenario with ns = 2 macrostates, different parameter configurations
display comparable behaviors. However, in the ns = 3 case, we observe a positive trend
associated with increasing values of the K parameter, especially for the "RG, Astro, OPC"
and "Deeper Layer" clusters. Additionally, the identification of a terminal "Upper Layer"
macrostate improves the KL-divergence for all parameter combinations compared to the
ns = 2 scenario, especially when PC > 10.

Similar findings concern the Multiomics+MultiVelo model. When considering the
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ns = 2 macrostate scenario, the parameter interactions are non or little significant for
the "Deeper Layer" and "IPC" clusters. Even in the "RG, Astro, OPC" cluster, where
a negative trend with increasing K and PC > 10 is observed, the confidence intervals
for the different parameter settings overlap. This indicates that the model maintains
a relatively consistent performance across the tested parameter configurations, without
exhibiting drastic changes in the KL-divergence metric. As in the previous model, the
analysis for ns = 3 shows a positive trend in KL-divergence with increasing K values,
despite its magnitude being smaller compared to the Multiomics+scVELO model.

Although there are statistically significant interactions between the parameters, the
F-statistic and the difference between the residuals in the ANOVA are relatively small,
indicating that the interactions may not have a substantial practical impact. The models’
behaviors do not significantly change between different parameter configurations, and the
confidence intervals in the plots are overlapping. The most appreciable impact is observed
with the K parameter, ultimately improving the multilineage potential identification in
the clusters, thus enhancing the overall model performance.
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(a)

(b)

Figure 4.6: Top 30 likely cells according to the invariant probability distribution in Mul-
tiomics+scVELO (a.) and Multiomics+MultiVelo (b.) models.
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Figure 4.7: Scatterplot evaluating GPCCA macrostate quality for the scRNA-seq model.
The dotted vertical line corresponds to the optimal minChi = 0 value, while dashed
horizontal lines correspond to the crispess = {0.6, 0.7} optimality thresholds.

Figure 4.8: Scatterplot evaluating GPCCA macrostate quality for the scATAC-seq model.
The dotted vertical line corresponds to the optimal minChi = 0 value, while dashed
horizontal lines correspond to the crispess = {0.6, 0.7} optimality thresholds.
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Figure 4.9: Scatterplot evaluating GPCCA macrostate quality for the Multi-
omics+scVELO model. The dotted vertical line corresponds to the optimal minChi = 0
value, while dashed horizontal lines correspond to the crispess = {0.6, 0.7} optimality
thresholds.

Figure 4.10: Scatterplot evaluating GPCCA macrostate quality for the Multi-
omics+MultiVelo model. The dotted vertical line corresponds to the optimal minChi = 0
value, while dashed horizontal lines correspond to the crispess = {0.6, 0.7} optimality
thresholds.
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(a)

(b)

Figure 4.11: Initial (a.) and terminal macrostates with cell fate probabilities (b.) for the
scRNA-seq model with ns = 2.
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(a)

(b)

Figure 4.12: Initial (a.) and terminal macrostates with cell fate probabilities (b.) for the
scATAC-seq model with ns = 2.
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(a)

(b)

Figure 4.13: Initial (a.) and terminal macrostates with cell fate probabilities (b.) for the
Multiomics+scVELO model with ns = 2.
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(a)

(b)

Figure 4.14: Initial (a.) and terminal macrostates with cell fate probabilities (b.) for the
Multiomics+MultiVelo model with ns = 2.
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Figure 4.15: Macrostate composition for ns = 2 in the scRNA-seq model.

Figure 4.16: Macrostate composition for ns = 2 in the scATAC-seq model.
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Figure 4.17: Macrostate composition for ns = 2 in the Multiomics+scVELO model.

Figure 4.18: Macrostate composition for ns = 2 in the Multiomics+MultiVelo model.
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(a)

(b)

Figure 4.19: Average cell fate probabilities towards the "RG, Astro, OPC" (a.) and
"Deeper Layer" (b.) terminal states in the ns = 2 scenario.
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(a)

(b)

Figure 4.20: Initial (a.) and terminal macrostates with cell fate probabilities (b.) for the
scRNA-seq model with ns = 3.
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(a)

(b)

Figure 4.21: Initial (a.) and terminal macrostates with cell fate probabilities (b.) for the
scATAC-seq model with ns = 3.
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(a)

(b)

Figure 4.22: Initial (a.) and terminal macrostates with cell fate probabilities (b.) for the
Multiomics+scVELO model with ns = 3.
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(a)

(b)

Figure 4.23: Initial (a.) and terminal macrostates with cell fate probabilities (b.) for the
Multiomics+MultiVelo model with ns = 3.
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Figure 4.24: Macrostate composition for ns = 3 in the scRNA-seq model.

Figure 4.25: Macrostate composition for ns = 3 in the scATAC-seq model.
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Figure 4.26: Macrostate composition for ns = 3 in the Multiomics+scVELO model.

Figure 4.27: Macrostate composition for ns = 3 in the Multiomics+MultiVelo model.
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(a)

(b)

Figure 4.28: Average cell fate probabilities towards the "RG, Astro, OPC" (a.) and
"Deeper Layer" (b.) terminal states in the ns = 3 scenario.
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Figure 4.29: Average cell fate probabilities towards the "Upper Layer" terminal states in
the ns = 3 scenario.
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(a)

(b)

Figure 4.30: KL-divergence for ns = 2 (a.) and ns = 3 (b.)
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(a)

(b)

Figure 4.31: Entropy for ns = 2 (a.) and ns = 3 (b.)
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Chapter 5

Conclusions

The primary goal of this project is to understand whether the integration of epigenomic
data can lead to better identification of developmental lineages compared to using tran-
scriptomic data alone. To this end, this work presents scVEMO, a comprehensive pipeline
that reconstructs developmental lineages from multimodal data. ScVEMO constructs
transition matrices describing the system’s evolution over time using various modeling
approaches, including scATAC-seq data combined with RNA-velocity, as well as two mul-
timodal frameworks integrating both epigenomic and transcriptomic information. The
pipeline is validated on the Embryonic E18 Mouse Brain (5K) dataset from 10X Ge-
nomics, with the expectation that the system would develop from radial glia (RG) cells
into two distinct lineages: one representing gliogenesis products (astrocytes and oligo-
dendrocytes) and the other representing the neuronal developmental lineage culminating
in the six cortical layers.

In the first stage of the analysis, scVEMO simulates the system at the granular cell-
state level, where individual barcodes represent cellular states and the connections be-
tween them reflect cell-state transitions. The goal is to understand whether the inte-
gration of scRNA-seq, scATAC-seq, and RNA-velocity can capture the developmental
continuum, where cells traverse a spectrum of intermediate states during differentiation.
However, our models are unable to recover the system’s development at this granular
cell-state level. This suggests that the correlation of RNA-velocity with epigenomic
data alone does not improve the computation of transition probabilities compared to
the transcriptomics-only-based approaches.

We then investigate the models’ capacity to identify the developmental lineages, in-
cluding the initial and terminal states. For this purpose, we employ the CellRank frame-
work and its spectral clustering implementation to reduce the high-dimensional transition
matrix into a set of biologically meaningful macrostates, representing coarse-grained cel-
lular states. CellRank also computes cell-fate probabilities towards each macrostate. Our
analysis focuses on two key aspects:

• The identified macrostates correspond to terminally differentiated cell clusters?

• The computed fate probabilities are meaningful, i.e., whether the different cell clus-
ters differentiate towards the correct lineages?
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We expect our models to identify at least one terminal macrostate in the neuronal
lineage. The multiomics models perform on par with the transcriptomics-only approach
in recovering a macrostate associated with cells from the deeper cortical layers, astro-
cytes, and OPCs. However, with an increased number of macrostates, the multiomics
models outperform the scRNA-seq-only approach by also recovering an additional termi-
nal state composed of cells from the upper cortical layers. This aligns with the biological
understanding that the deeper layers V-VI form before the upper layers II-IV during
corticogenesis.

The multilineage potential analysis further demonstrates the reliability of the multi-
modal approaches in computing fate probabilities towards the identified terminal states.
These models provide higher average lineage commitment for the differentiated clusters
compared to the scRNA-seq-only approach. Additionally, the multimodal models yield
slightly higher multilineage potential values for the intermediate "IPC" progenitor cluster,
however, within the investigated system such progenitor cells are limited to the neuronal
lineage and cannot contribute to other lineages, such as glia.

The insights gained from this project suggest that the integration of epigenomic data,
when combined with transcriptomic information and RNA-velocity, can enhance the iden-
tification of biologically relevant macrostates and improve the computation of cell-fate
probabilities during developmental lineage reconstruction. However, the limitations ob-
served in the granular cell-state level simulations indicate that further methodological
advancements may be necessary to fully harness the potential of multimodal data inte-
gration for this purpose.

In this project, we primarily focused on the role of promoter peaks in the integration
of epigenomic and transcriptomic data for developmental lineage reconstruction. While
promoter regions play a crucial role in gene regulation, gene expression is ultimately gov-
erned by a complex interplay of various regulatory elements beyond just the promoter.
The regulation of gene expression involves the coordinated activity of diverse genomic fea-
tures, including enhancers, silencers, insulators, and other distal regulatory sequences, in
addition to the proximal promoter regions. These regulatory elements can act in concert
to fine-tune the spatiotemporal patterns of gene expression during cellular differentia-
tion and development. By primarily considering promoter peaks in our models, we may
have overlooked the potential contributions of these other regulatory elements in shap-
ing the transcriptional landscape and the underlying lineage dynamics. The inclusion of
a broader range of epigenomic features, beyond just promoter regions, could lead to a
more comprehensive representation of the gene regulatory mechanisms governing cellular
differentiation.

Finally, the CellRank framework employed in our analysis utilizes a deterministic ap-
proach to reduce the high-dimensional transition matrix into a set of biologically mean-
ingful macrostates. This deterministic implementation provides a straightforward and
interpretable means of identifying the key developmental lineages and their correspond-
ing terminal states. However, the stochastic implementation of CellRank could provide
additional insights and potentially enhance the robustness of our lineage reconstruction
results, as it could help capture the probabilistic nature of cellular transitions and ac-
count for the heterogeneity within the system. The exploration of alternative lineage
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branching scenarios could provide a more comprehensive assessment of the inherent flex-
ibility and plasticity of the cellular differentiation process. By leveraging the stochastic
formulation, the lineage reconstruction process can account for the noise and variability
present in the RNA-velocity estimates. As we continue to refine and expand the multi-
modal lineage reconstruction methodologies, the incorporation of stochastic RNA-velocity
modeling should be a key area of focus.
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Appendix A

Table A.1: Multiomics+scVELO: ANOVA results for KL-divergence on "Deeper Layer"
cluster.

ns = 2 ns = 3
Res. DF F-score P-val Res. DF F-score P-val

Additive 78362 78362
Interactions 78250 112 46.875 *** 78250 112 3.685 ***

Table A.2: Multiomics+scVELO: ANOVA results for KL-divergence on "IPC" cluster.

ns = 2 ns = 3
Res. DF F-score P-val Res. DF F-score P-val

Additive 22862 22862
Interactions 22750 112 1.8683 *** 22750 112 1.9114 ***
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Table A.3: Multiomics+scVELO: ANOVA results for KL-divergence on "RG, Astro,
OPC" cluster.

ns = 2 ns = 3
Res. DF F-score P-val Res. DF F-score P-val

Additive 54862 54862
Interactions 54750 112 16.325 *** 54750 112 11.511 ***

Table A.4: Multiomics+scVELO: ANOVA results for KL-divergence on "Upper Layer"
cluster.

ns = 2 ns = 3
Res. DF F-score P-val Res. DF F-score P-val

Additive 119987 119987
Interactions 119875 112 16.325 *** 119875 112 215.78 ***

Table A.5: Multiomics+MultiVelo: ANOVA results for KL-divergence on "Upper Layer"
cluster.

ns = 2 ns = 3
Res. DF F-score P-val Res. DF F-score P-val

Additive 116147 116147
Interactions 116039 108 3.0831 *** 116039 108 2.7219 ***

Table A.6: Multiomics+MultiVelo: ANOVA results for KL-divergence on "Deeper Layer"
cluster.

ns = 2 ns = 3
Res. DF F-score P-val Res. DF F-score P-val

Additive 75854 75854
Interactions 75746 108 5.8101 *** 75746 108 9.39 ***

Table A.7: Multiomics+MultiVelo: ANOVA results for KL-divergence on "IPC" cluster.

ns = 2 ns = 3
Res. DF F-score P-val Res. DF F-score P-val

Additive 22130 22130
Interactions 22022 108 1.296 * 22022 108 1.569 ***

Table A.8: Multiomics+MultiVelo: ANOVA results for KL-divergence on "RG, Astro,
OPC" cluster.

ns = 2 ns = 3
Res. DF F-score P-val Res. DF F-score P-val

Additive 53106 53106
Interactions 52998 108 7.845 *** 52998 108 3.748 ***

110



Figure A.1: Linear model results for the Multiomics+scVELO model with ns = 2 and
Deeper Layer cluster
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Figure A.2: Linear model results for the Multiomics+scVELO model with ns = 2 and
Upper Layer cluster
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Figure A.3: Linear model results for the Multiomics+scVELO model with ns = 2 and
RG, Astro, OPC cluster
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Figure A.4: Linear model results for the Multiomics+scVELO model with ns = 2 and
IPC cluster
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Figure A.5: Linear model results for the Multiomics+scVELO model with ns = 3 and
Deeper Layer cluster
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Figure A.6: Linear model results for the Multiomics+scVELO model with ns = 3 and
Upper Layer cluster
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Figure A.7: Linear model results for the Multiomics+scVELO model with ns = 3 and
RG, Astro, OPC cluster
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Figure A.8: Linear model results for the Multiomics+scVELO model with ns = 3 and
IPC cluster
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Figure A.9: Linear model results for the Multiomics+MultiVelo model with ns = 2 and
Deeper Layer cluster
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Figure A.10: Linear model results for the Multiomics+MultiVelo model with ns = 2 and
Upper Layer cluster
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Figure A.11: Linear model results for the Multiomics+MultiVelo model with ns = 2 and
RG, Astro, OPC cluster
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Figure A.12: Linear model results for the Multiomics+MultiVelo model with ns = 2 and
IPC cluster
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Figure A.13: Linear model results for the Multiomics+MultiVelo model with ns = 3 and
Deeper Layer cluster
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Figure A.14: Linear model results for the Multiomics+MultiVelo model with ns = 3 and
Upper Layer cluster
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Figure A.15: Linear model results for the Multiomics+MultiVelo model with ns = 3 and
RG, Astro, OPC cluster
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Figure A.16: Linear model results for the Multiomics+MultiVelo model with ns = 3 and
IPC cluster
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