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Abstract

Latency mitigation (or compensation) is one of the main concerns when developing
online applications that rely on real-time interaction between users, as latency constraints
for highly dynamic applications (e.g., competitive First-Person Shooters or racing games)
are very strict.

In a server-authoritative setting — i.e., a client-server configuration in which the server
has the final say on any performed action — Artificial Intelligence (AI) enables a new
solution for reducing the round-trip time of packets to and from users experiencing high
latency.

This thesis’ contribution, in collaboration with the MPAI (Moving Picture, audio and
data coding by Artificial Intelligence) Community, is an application of an Imitation Learn-
ing approach to a custom-made kart racing videogame, with the purpose of showing a
possible implementation of the SPG (Server-based Predictive Multiplayer Gaming) spec-
ification for the steps that concern a single user (namely data gathering, model training
and evaluation).

Imitation Learning is widely used in conjunction with Reinforcement Learning to train
robotic agents. In contrast with a fully Reinforcement-Learning-based approach, demon-
strations from a human "expert" are provided to the agent to take example from, which
kick-start the following autonomous learning phase typical of Reinforcement Learning.

For behavior modeling, however, Imitation Learning is used exclusively, training on
users’ in-game performances, with no following Reinforcement Learning.
The resulting models, according to the MPAI-SPG specification, are then employed by
the server in order to temporarily take control of a user’s vehicle if they were to incur in
high latency spikes.
After a server intervention episode, a faithful model would allow for minimal reconciliation,
and an ideally seamless experience for all other players.

In addition to the aforementioned karting videogame, an in-editor framework was
developed to aid in automating training and testing, and to ease interaction with the
data-hosting server.
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Chapter 1

Introduction

Online videogames represent an ever growing share of the global videogame market, itself
rapidly growing and expected to reach a total revenue of over $200 billion by the end of
2024 [1][2].

One of the main hurdles to overcome when developing a real-time multiplayer game is
correctly synchronizing all players. Latency, or "lag", plays a role in any form of communi-
cation, but for highly dynamic videogames especially, great care is taken in implementing
methods that mitigate discrepancies between player experiences and, at the same time,
try not provide an advantage to any of the parties involved.

Many latency compensation methods were engineered throughout the decades [3], but
MPAI, a standard-developing non-profit organization, proposes SPG: a specification for a
novel approach to this task.
Server-based Predictive Multiplayer Gaming (SPG) mitigates latency by predicting the
actions of a player, so as not to wait for their communication: this is obtained by means
of intelligent agents, which are capable of controlling player avatars on the users’ behalf.
These agents were trained in order to behave as their respective player, and are issued by
the server when connection responsiveness drops under a certain threshold.

This thesis showcases work done to gather user data and create personalized AI models
by means of Imitation Learning: a Machine Learning approach that instructs an agent on
how to perform a task by imitating a set of provided demonstrations.
Both an example karting videogame and a set of utilities were created thanks to the Unity
game engine. Subsequently a small field test was conducted to assess the performance of
this solution.

1.1 Background
Machine Learning (ML) is a broad term that refers to any computer algorithm that allows
decisions to be taken based on previous experience, and to improve at a task by increasing
the amount or quality of provided experience.

ML tasks are usually tasks for which a closed-form formula or algorithm does not exist:
these can range from simple spam e-mail filters, to advanced recommendation systems or
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Introduction

real-time decision-taking strategies for autonomous cars.
Most ML tasks can be classified in two great categories:

• Unsupervised tasks;

• Supervised tasks;

Unsupervised tasks generally involve identifying hidden common patterns in data —
most typical examples being clustering and data generation.
These tasks do not possess an inherently "correct" answer, frequently relying on relation-
ships between elements to organize them.

Most tasks, however, fall under the Supervised category.
For these tasks, the algorithm needs some degree of external intervention, usually in the
form of correct examples from which to learn.
For image classification problems, for example, these examples could be a set of images
joined with a textual description of their contents (see Fig. 1.1).

Figure 1.1: A possible description for this training image could be: "Two puppies sitting
on a grassy field with orange flowers in the foreground and background".

The process of optimizing an algorithm’s parameters for a certain task by processing
examples is referred to as training.
It opposes to testing, i.e. the actual deployment of the algorithm to its target usage
scenario, which — if training was successful — just consists in using the optimized pa-
rameters.

Yet, some supervised tasks are much too complex to be learned through examples
alone, or perhaps they rely on styles or behaviors more than single answers.

4



1.1 – Background

1.1.1 Reinforcement Learning
Reinforcement Learning (RL) is a Machine Learning paradigm that builds on the concept
of reinforcement. Due to this distinctive feature, it could be treated as a third macro-
category other than Supervised and Unsupervised Learning.

Just like animals or children, a RL agent learns by doing: if an action leads to a positive
or desirable outcome, the agent learns that it is good, and will tend to perform it again;
otherwise the action is thought as bad, and the agent will be more reluctant to take that
choice again in the future.

This approach is different than the usual "Question and Answer" style of Supervised
Training, as the objective of the agent is to maximize its long-term reward rather than to
provide an exact result.

In order to train for a task, a RL agent necessitates three elements:

• Observations;

• Actions;

• Rewards.

Observations allow the agent to sense the environment. They can be as simple as a
few numbers or as complex as high-resolution images.

Observations are processed to form the State, the internal representation of the agent’s
present (and eventually past) condition.

Actions are the agent’s decisions, based on previous observations, rewards and its
current state.

Rewards are the environment’s response to the agent’s actions.
The agent’s internal logic keeps track of the reward that was assigned for every action
and every state.

Rewards are perhaps the most important aspect of Reinforcement Learning, as it is
instrumental that the agent get rewarded for exactly what it should be doing and not for
something it should not.
It seems obvious, but sometimes, correctly identifying for what actions and how much
to reward the agent in order to obtain desirable behaviours is not a trivial task: e.g.
rewarding a racing agent for driving fast is not a guarantee of good performance if it is
not penalized for going backwards.
At the same time, if a task is very hard or emits rewards only upon specific series of
actions, it can be beneficial to add some small "utility" rewards, in order to give the agent
more feedback on its actions.

This process of devising optimal rewards is known as reward shaping, and varies greatly
depending on the task.

Imitation Learning

Imitation Learning (IL) is a variation on the Reinforcement Learning paradigm, where
the reward that the agent receives does not depend on the absolute quality of its actions,
but rather on their similarity to some actions provided as reference.
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Figure 1.2: A schematic representation of RL. ① The environment provides the agent with
an observation; ② The agent computes the current state; ③ The user performs the best
action according to its internal logic; ④ The environment rewards the agent based on the
action; ⑤ The agent updates its internal representation.

IL often co-exists with RL, as the two paradigms can be applied successively, or even
at the same time — if the two rewards are appropriately balanced.
Specifically, IL can be used to kick-start RL: by providing successful examples performed
by an expert (e.g., a human), by the time RL starts, the agent can already be capable of
executing the task, leaving the RL step as a phase to further refine its actions.

1.1.2 Neural Networks
RL is a general paradigm that can be implemented in many ways: from simple state–action
dictionaries to complex situation-aware models.

A Neural Network is a computational model inspired by biological neuron structures.
As such, it consists of many simple computational units that can be arranged in complex
formations to solve the most disparate tasks.
Each unit, called a neuron, receives inputs and can produce outputs depending on the
value of its inputs and their weights, and its internal activation function.

Each task is characterized by a loss function: a function that codes a "penalty" for
each mistake a network can make when emitting a result.

In order to find an optimal solution to a task, a neural network first produces a result,
which gets fed to the loss function, producing a loss. Loss is minimized by traversing the
network in reverse, changing the weights of its parameters based on their contribution to
the loss: this is known as back-propagation1.
This process gets repeated until the loss reaches some desired value, or an arbitrary amount
of time has passed.

1Loss minimization is an example of Empirical Risk Minimization
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1.1 – Background

Being neural networks a branch of Machine Learning, the ML definition of training
applies to this process.

Not all parameters pertain to the network, however: for example, parameters regarding
the training process itself, such as the overall duration or the intensity of the weight
adjustment during back-propagation (known as learning rate), are fixed during a single
training, but can nevertheless benefit from being optimized.

These parameters are referred to as hyperparameters, and their optimization is crucial
for the performance of the resulting network — often called model.

Notable Layouts

Like biological neuronal structures, shapes and connections play a fundamental role in the
function and performance of a neural network.

An ordered grouping of neurons is called a layer, and is usually treated as the smallest
unit of a network.

Figure 1.3: Diagram portraying a neural network with one input, one output and one
intermediate (hidden) layer.

If each neuron of a layer has a connection to all neurons of the following layer, the
layer is called fully connected (such as in Fig. 1.3).
Due to the presence of multiple layers, neural-network-based variants of most algorithms
are often called deep.

Multi-Layer Perceptron Fully connected layers are the foundational elements of the
Multi-Layer Perceptron (MLP), one of the simplest types of neural network. Fig. 1.3
shows the smallest possible MLP, with only one hidden layer.
MLPs are very flexible, and can prove a valid solution for many ML tasks — especially
ones that feature limited possible answers, such as classification.
However, the high number of connections introduces some issues when increasing the size

7



Introduction

and complexity of the network: for example, they are not optimized for large inputs, such
as images.

Convolutional Neural Network Another extremely popular network layout is the
Convolutional Neural Network (CNN).
In these networks, neurons are arranged to perform matrix-focused operations such as
discrete convolution and sampling.
For this reason, this architecture is predominantly employed by tasks based on images
and videos.

Convolutional layers are not fully connected, as the operation aggregates data, reducing
its dimension, so that significant features can more easily be abstracted.
CNNs present fully connected layers only towards the output, where features are computed
and formatted according to the network’s specific use case (e.g assigned probability for
classification tasks, coordinates for object detection tasks, etc.).

Figure 1.4: Diagram of a typical CNN architecture[4]: the input image is down-sampled
repeatedly, corresponding to features of decreasing sizes being extracted progressively
from the original data.

Recurrent Neural Network A Recurrent Neural Network (RNN) is a kind of neural
network that features loops among its connections.
Unlike previously described architectures, which are typically feed-forward (i.e., data trav-
els unidirectionally from the input to the output), some layer outputs are connected to
previous layers’ inputs.
This distinctive feature makes them inherently fit for tasks that are repeating in structure
but varying in contents, like time series analysis or language modeling.

Especially noteworthy are Long Short Term Memory (LSTM) Networks, which feature
a few different types of neurons that can be trained to discriminate what to remember.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) extend the concepts of neural networks by using
two networks at the same time and pitting them against each other as opponents of a 1-
on-1 competition.
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1.1 – Background

Figure 1.5: Diagram of a typical RNN architecture[5]. Both the input xt and the output
ht are dependant on time, whereas the internals A keep a state that persists through
iterations. The network on the right is a time-unrolled representation of the one on the
left.

The generator ’s objective is to produce content that is as similar as possible to a certain
original set of data (e.g. portraits, cat pictures). This generated (also called synthetic)
data is sent to the discriminator, which tries to ascertain whether it was produced by the
generator or sampled from the original data.
This continuous battle between the generator, trying to fool the discriminator, and the
discriminator, trying to see through the generator’s deception, leads to an independent
— albeit tied — improvement of both networks.
Once a certain level of proficiency has been reached by the generator, it can be detached
and used on its own to create new content.

Training data is only used to train the discriminator, as the generator is trained based
on its performance against the discriminator. Moreover — in contrast with usual training
procedures — training data need not be labeled, since the objective of the discriminator
is to learn defining data distributions, similarly to unsupervised tasks.
For this reason, GANs are usually categorized in yet another macro-category: Self-
Supervised Learning.

Although they are primarily used for image generation, GANs can work with any kind
of data with an identifiable distribution (provided the network architecture supports it).
In this thesis, for example, a GAN will be employed to create a model that produces user
actions for a videogame.

Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) applies the concepts of Imitation Learn-
ing to Generative Adversarial Networks [6].
Given that the aim of the generator in a GAN architecture is to mimic provided data, it
is inherently a great fit for the concept of imitation.
In particular, the generator produces user actions, whereas the discriminator tries to de-
termine whether the actions came from the generator or from the reference data.

With this approach, good performance and generalization can be obtained with rel-
atively little reference, proving more flexible and data-efficient than other methods like
Behavioral Cloning or Inverse Reinforcement Learning.
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1.1.3 Latency in Multiplayer Videogames
Latency is an unavoidable aspect of all communications, online or not, due to the non-
infinite transfer speed of any medium.

When speaking of videogames, the term latency (or lag) can refer to many, often
unrelated, sources of delay: peripherals might operate at too low of a frequency, the CPU
or GPU might not be performant enough for the task they have been assigned to, or
communication with other users might be taking too long.
All these cases can have the effect of introducing a delay to the user’s actions, which
usually is what gets noticed [7]. However, from now on, the term "latency" will be referring
exclusively to connection latency, often informally called ping.

Given the highly interactive nature of the medium, latency plays a crucial role in user
experience and overall game feel [8][9].
For this reason, over the decades, numerous lag compensation techniques were developed
[3], detailing a very fragmented landscape with great variety among solutions.

1.1.4 MPAI-SPG
MPAI2 (Moving Picture, Audio and Data Coding by Artificial Intelligence) is an interna-
tional, non-profit organization that aims to improve efficiency of data transfers through
compression and AI.
MPAI-SPG3 (Server-based Predictive Multiplayer Gaming) is a project with the objective
of developing a standard for addressing client latency by means of server-side predictions.

Firstly, it is required that the communication be server-authoritative: i.e., all client
actions must first get validated by the server before being registered and relayed to other
users.
Secondly, the server has to possess an AI model for each connected user (for example, sent
by the user when connecting to the server).

Given these prerequisites, the server is able to substitute any player experiencing con-
nection issues and take actions on their behalf until the episode is over.
If the model was properly trained, other participating players would not notice any dis-
continuity in the actions of the substituted player, greatly benefiting their experience.

This framework can also double as an anti-cheating supervisor: by letting the predic-
tion engine running continuously (instead of enabling it only situationally), every user
action can be compared to its model’s choice. If the two are found to be too different, it
means that cheating is afoot and user input is discarded.

2https://mpai.community/
3https://mpai.community/standards/mpai-spg/
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1.2 – State of the Art

1.2 State of the Art
Like most of Machine Learning, Imitation Learning has seen significant advancements
in the last three decades [10][11]. Nowadays, IL algorithms have been applied to very
complex tasks, mainly in the field of robotics, to great success [12][13].

However, employing IL algorithms to control videogame characters is not a recent con-
cept either: first applications date back to 2002 [14], although they were mostly Machine-
Learning-based solutions.
Few years later, Neural Networks started gaining more traction, and with them Deep
Reinforcement Learning. Using Neural Networks became the standard for training RL
models, and similarly IL.

There are several studies investigating the usage of IL to move player characters in
FPS (First Person Shooter) games [15][16], 2D side-scrolling games [17][18][19], and racing
games [20][21]. However, given the great strides that were made in the field of autonomous
driving in recent years, much of recent research related to Imitation Learning applied to
driving concerns real life or realistic driving simulations [22].

Moreover, one crucial aspect that all mentioned examples share, is the usage of IL as
a means to obtain optimal performance. All demonstrations are expected to be provided
by "experts", i.e. real humans that are good at performing the task at hand, from which
the agent can learn by imitation.
In fact, one remark that was frequently noted, is that the model’s performance highly
depends from the quality of reference demonstrations.
For some, the optimum is a generic, user-like behavior, for others the lowest possible com-
pletion time or the least number of mistakes. In any case, this approach is fundamentally
different from the goal of this thesis, which is to model the driving style of a single user
as faithfully as possible, no matter how optimal their demonstrations are. In this regard,
literature is quite lacking.

Another notable difference in approach between this thesis and previously mentioned
studies, is the presence of game engine data. Most of the mentioned models are image-
based, which implies that the agent is being developed by a third party who has no access
to internal game data. This is not the case for this work, as the development of a user
modeling framework is expected to benefit any game developer who wishes to implement
user predictions as part of their own game’s multiplayer functionalities.

Ultimately, this thesis builds on the same concepts that were explored by Spina et al.
[23], although it differs from their work in various ways: this project was started from
scratch, and most features were implemented differently (namely, the prediction network
and the training workflow).
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Chapter 2

Methods

In order to train an Imitation Learning model, there need to be some reference demon-
strations to imitate. They are collected via the Data Gathering Application: a browser
game composed of various levels of increasing difficulty.
Agent observations, user actions and RL rewards are recorded for every lap and uploaded
to a server for storage.

These files are subsequently retrieved by an import utility, then, training and evalu-
ation runs are started and managed by the Training Session editor script, which allows
automating an otherwise long and repetitive series of manual actions.

All aspects related to learning are controlled by the ML-Agents library’s Python script,
running in parallel with the Unity scene. The resulting model can then be evaluated
against unseen trajectories from the same user it was trained upon.

After the user application and the training/testing framework were established, a field
test was conducted to measure the performance of the final models when deployed in a
realistic usage scenario.

2.1 Training
At the inception of the project — in order to gauge feasibility and performance — training
was performed with a regular Reinforcement Learning setup.
Checkpoints were added to all tracks and reward conditions were put in place to allow for
an optimal driving logic to emerge autonomously.

Given the good results obtained from the resulting model, building on this foundation,
Reinforcement Learning was then substituted with Imitation Learning.
Many settings were retained, however — most notably — rewards went unused: since
Generative Adversarial Networks come with their own Objective Function to maximize1,
task-specific rewards, as defined for Reinforcement Learning, cannot be used for model
training and optimization.

1As will be explained in Section 2.2, this will complicate following evaluations.
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2.1.1 Reinforcement Learning
As explained in Section 1.1.1, in order to learn, a Reinforcement Learning agent needs
observations and rewards.

Observations

The agent’s in-game vehicle is equipped with two sets of distance sensors called 3D Ray
Perception Sensors. Not unlike LIDAR sensors of real self-driving cars, these sensors
radially shoot a multitude of rays that are able to measure whether they hit something,
and if they did, at what distance from their starting point.

The two sets of sensors can identify, respectively, walls and other karts. It was necessary
to implement them as separate sensors, since enabling sensitivity to both types of objects
would have made it impossible to distinguish which of the two types was blocking the
beams.

These sensors provide most of the agent’s observations, as every sensor accounts for
multiple rays (in the final configuration, 11 for walls and 9 for karts, as shown in Figure
2.1a and 2.1b respectively).

To ensure a better understanding of the task by the agent, in addition to the distance
sensors, another four elements (of the equivalent size of nine floating point numbers) were
selected to be added to the observations:

1. Normalized kart local speed (float);

2. Kart absolute rotation (Quaternion, 4 floats);

3. Normalized direction to next checkpoint (Vector3, 3 floats);

4. Dot product between kart’s front and next checkpoint’s front (float).

Rewards

Despite rewards being normally assigned synchronously (s) after every agent decision
— as with sensing, usually every FixedUpdate (20 ms) — most rewards are assigned
asynchronously (a), as their related events happen:

• Move towards correct checkpoints: +0.03 · ⃗vkart · ⃗(poscheckpoint − poskart);

• Pass correct checkpointa: +1;

• Pass incorrect checkpointa: -1;

• Hit wallsa: -1;

• Hit other kartsa: -0.5;

• Continued wall hita: End episode.

14



2.1 – Training

(a) Wall perception sensors. The color of a ray indicates the distance to the obstacle, red is
closest, white is farthest.

(b) Kart perception sensors. These rays integrate a sphere cast for a denser sensing perimeter.
In this image the green kart is too far, so it does not get picked up by the sensor.

Figure 2.1

Ending an episode is roughly equivalent to a high penalty, since it does not allow the
agent to gain any more rewards.
Comparable results can be obtained by waiting for the end of an episode (10’000 steps),
but in general prematurely resetting the agent upon a very bad choice can yield speedups.
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Heuristics

The goal of the Heuristic function is to substitute the model’s decision making: i.e., take
actions bypassing normal decision logic.

This function is reserved for any logic that is external to the agent’s experience, such
as a custom decision function or a random policy, usually to be used if a trained model is
not available.
However, for what concerns the ML-Agents library, the most common — and officially
encouraged — way to use this function is to perform input processing in it.

Doing so fills the Decision Array with user input, but to all other aspects of the
Reinforcement Learning environment (namely rewards), it is as if the decisions were taken
by the agent itself.

When a DemonstrationRecorder component is present, Observations, Heuristics and
Rewards are recorded into a demonstration file. Demonstrations are foundational elements
for Imitation Learning.

2.1.2 Imitation Learning
When provided with demonstrations, a Reinforcement Learning agent can be enabled for
Imitation Learning, either through Behavioral Cloning (BC) or Generative Adversarial
Imitation Learning (GAIL).

Behavioral Cloning BC works similarly to regular supervised learning: the expert
demonstrations provided by the user are used to learn possible situations and what actions
to perform when they happen.

However, the greatest downside of this approach is that the resulting agent lacks gen-
eralization capabilities, being effectively limited to already encountered scenarios.
In other words, adequate performance can be reached only through a high amount of
training data.

Generative Adversarial Imitation Learning GAIL harnesses the power of Genera-
tive Adversarial Networks (GANs) to generalize behaviors.
Thanks to the typical architecture of GANs, after the training phase it is possible to keep
using the generator to take decisions — even for unseen situations.

This is particularly useful given the application scenario: since the purpose of the
model is to substitute a player under any circumstance, but at the same time keep as
consistent as possible of a behavior to their recordings.

2.1.3 Network Parameters
Both for RL and IL, the underlying Neural Network was mostly left untouched from its
default settings.
The basic structure of the network is a MLP with two hidden layers of 128 neurons each,
however, by specifying the "Memory" parameter, it is supported by a RNN.
Observations are first processed by the RNN, which selectively emits features that it
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2.1 – Training

believes to be useful; this extra data is appended to the regular input, which flows through
the MLP as normal.

General Hyperparameters

Batch Size 1024
Buffer Size 10240

Learning Rate 2 · 10−3, Linear
PPO Hyperparameters

Beta 5 · 10−3, Constant
Epsilon 0.2, Linear
Lambda 0.95

Network Settings

Hidden Units 128
Hidden Layers 2

Memory Sequence Length 64
Memory Size 256

Table 2.1: An overview of the main hyperparameters and their values. These values were
used in all settings.

GAIL Hyperparameters

Strength 1
Gamma 0.99

Learning Rate 2 · 10−3

Use Actions True

Table 2.2: GAIL-specific hyperparameters. "Use Actions" specifies that the agent should
try to imitate actions, other than states.

2.1.4 Execution
Aside from model settings, hyperparameters and training options, almost all of the training
logic is managed by the ML-Agents library, which communicates with its associated Unity
package.

When training is started, all agents are spawned at random checkpoints along the
track: this allows for a thorough exploration of the track and for a simple way to introduce
collisions between agents.
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Once instanced, the agents perform actions according to their policy, be it Reinforce-
ment Learning or Imitation Learning.
All the agents share a single brain, so their experiences are compounded and processed
jointly: each agent instance can thus access all the others’ experience while retaining full
decision-making abilities.

When the defined number of timesteps has expired, training is stopped and a file for
the final model is created and moved to a separate folder.
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2.2 – Evaluation

2.2 Evaluation
Evaluating a model is as important as training it, as it allows for objective measurement
of training progress (or lack thereof).
Moreover, suitable metrics allow for better supervision of the training task, and offer
unbiased guidance when tuning hyperparameters.

In this context, the objective of a model evaluation task is to measure how similarly
a model, trained on demonstrations from a certain user, behaves with respect to to the
user it was trained on: an AI model and a user can be considered "similar" if they both
take similar actions when subjected to the same stimuli.

Several metrics, including some rewards and losses, come included out-of-the-box with
the training framework. However, being this a task that is highly integrated with Unity
— for which a performance estimate is not easily obtainable during training — it is in-
strumental to integrate the available general metrics with an application-aware evaluation
criterion.

In fact, the abundance of application-specific features that need to be taken into ac-
count for a model evaluation rendered necessary the development of a custom evaluation
environment (2.4.1), which, unfortunately, could not be fully integrated with the Python
training framework .

2.2.1 Trajectory Similarity
The result of a model evaluation is obtained by measuring similarity between a set of
trajectories generated by the trained model and a set of ground truth trajectories that
were generated by the user.
To ensure equal stimuli, the model has to be tested on the same track on which the
user recorded the reference trajectories. This is not strictly enforced by the evaluation
framework — which supports testing on a different track — however it was a prerequisite
that was established for all evaluations.

The metric that was used to measure the similarity between any two trajectories is a
simple variation of the Normalized Lockstep Euclidean Distance metric:

DT1,T2 =
q

i(T1,i − T2,i)
Length(T ) , (2.1)

where T1 and T2 are two trajectories (of the same length) and i iterates over the length
of the trajectories.

Trajectory Similarity is thus defined as:

ST1,T2 = 1 − clamp[0,1](DT1,T2), (2.2)

where clamp[0,1](f) is defined as: 
0 f < 0
f 0 ≤ f ≤ 1
1 f > 1
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With respect to other well-known metrics [24], Lockstep Euclidean Distance does take
time into account, meaning that identical trajectories at different times will be considered
as different.
This is because of the strong connection that should exist between a real trajectory
recorded by the player and a trajectory generated by their personalized AI model. In
order for another player (or spectator) to have a suitable experience, the predicted posi-
tion has to be in the same place and the same time of the ground truth.

Figure 2.2: The green trajectory follows the same path as the red one, but was obtained
by driving slower. Metric-wise, it is equivalent to the blue trajectory.

Despite being able to process rotation data — being it both saved in the replay file
and generated by the AI model — it was chosen not to take rotations into account for
trajectory similarity calculations. Since position is the main focus of the project, and being
this a heavily physically-constrained setting, rotations can be considered as consequences
of positions.

2.2.2 Execution
Two types of evaluation were analyzed:

1. On unseen laps;

2. On unseen tracks;

Both methods extract training and test data from user demonstrations — being the
only source of "labeled data" — however what differs between them is the criterion ac-
cording to which demonstrations were selected to be training data or test data.

Unseen Laps

The model is trained on demonstrations from all tracks, however only some laps are used.
The remaining laps are kept as test data.
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Figure 2.3: In this example, out of the ten laps, the first seven are used for training and
the last three for testing.

This configuration allows gauging how much the model is able to understand of the
driving style of a user, on a specific track, by processing demonstrations from that user,
on that specific track.

Unseen Tracks

The model is trained on all laps, but not all tracks.

Figure 2.4: In this example, out of the five tracks, four are used for training and one for
testing.

This configuration assesses how well the model infers an user’s driving style on an
unseen track from that user’s driving data on different tracks.

This scenario is more akin to the theoretical use case if integrated in a server appli-
cation, where — after the initial modeling phase — the model would have to generalize
learned behaviors to new and unseen tracks.
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2.3 Data Gathering Application
This is the application that was presented to the participants to the data collection phase.
After an initial prototype made from scratch to test out the training systems, it was chosen
to build the app upon the Karting Microgame2 template: an example project provided
by Unity that implements solid driving mechanics but is highly customizable in many
aspects.
On top of these valuable features, it is also built for out-of-the-box compatibility with the
ML-Agents library.

Time was spent investigating ways to create and export tracks made in Blender, how-
ever, due to the less than ideal workflow and unsatisfactory results, it was chosen to opt
for a simpler, more scalable solution: building blocks.

2.3.1 Tracks
The recorded portion of the application consists of five tracks of increasing difficulty, which
were entirely assembled using assets from the official "Racetrack" addon for the Karting
Microgame3.
The 16 modular pieces strike a good balance between interesting shapes (banked straights
and turns, sloped hairpins) and ease of traversal (constant width, 90° corners).
Moreover, being the track pieces from an official source related to the base project, they
share aesthetics to some extent, granting greater visual cohesion to the entire application.

Figure 2.5: All the pieces that were used to build the tracks (including mirrored variants).

Considering that the scope of this project is to analyze a player’s unique driving style,
be it advanced or inexperienced, it is important that the tracks do not distract or take away
focus from the driving itself, even at the cost of lower enjoyment from the participants.
For this reason, all tracks are devoid of any power-ups or jumps (which would have been
rather fitting for the context), only incentive being an inconsequential lap timer.

2https://learn.unity.com/project/karting-template
3https://assetstore.unity.com/packages/3d/racetrack-karting-microgame-add-ons-174459
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2.3 – Data Gathering Application

By using a small set of fixed pieces, it was possible to manually add checkpoints for
every block.
As explained in Section 2.1.1, checkpoint positions are part of the agent’s observations,
so it was necessary to add them to all track pieces.
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Introduction

The application introduces controls and driving mechanics through an introductory, free-
roam level, which is not timed nor recorded, and only serves as a warm up for the levels
to come.

The track layout is simple, but at the same time offers a good variety of track blocks
for the user to get acquainted with.
The scene is fully explorable and does not impose any time limit, so users can stay and
experiment as long as they please.

(a) An aerial view of the play area.

(b) A view of the starting spot parking lot.
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Square

The first recorded level is a simple square shape. This regular and lenient layout does not
pose a real challenge, but it introduces the format of the following, more complex tracks.

Figure 2.7: Track 0 – Square
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8

The second recorded level is a variation on the first level in the shape of a figure eight:
half of the track is elevated but the overall experience is very similar to the first track.

Figure 2.8: Track 1 – 8
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2.3 – Data Gathering Application

Monza

The third recorded level was inspired by the famous Monza Formula 1 circuit.
It is still quite linear, but it features a couple of chicanes and a banked 180° corner.

Figure 2.9: Track 2 – Monza
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Spa

The third recorded level was inspired by the equally famous Spa-Francorchamps Formula
1 track.
This track is much more challenging than the previous ones, as it features many corners
and sharp turns, especially towards the end.

Figure 2.10: Track 3 – Spa
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Twisty

The fifth and last recorded circuit is the hardest out of all the tracks.
It was made specifically to use all the types of track building blocks, and features many
sharp turns, elevation changes and banked sections.

Figure 2.11: Track 4 – Twisty
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2.3.2 Online Services
The final application was built for the WebGL platform and published via Unity Play4,
an online platform for sharing web-based games.

This approach was chosen over more popular download-based solutions mainly for ease
of access by participants, but also to allow a more uniform experience among them.

When crossing the finish line, all user data produced during the lap gets collected and
sent to the storage server provided by Firebase5, a Google service for hosting web and
mobile applications.
Despite Google providing an Unity implementation of the Firebase APIs, due to lack of
support for WebGL, it was chosen to access the web server via simple HTTP requests.

4https://play.unity.com/
5https://firebase.google.com/
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2.4 Unity Editor
A majority of development time was allotted to coding Editor Scripts to allow automating
training and testing procedures.

During development it is fair to say that the training script was called at least a few
thousand times: Editor Scripts might not be the flashiest out of all the elements of the
project, but they were certainly the set of features that most (positively) impacted overall
development time and iteration speed.

Editor Scripts Unlike regular Unity MonoBehavior Scripts, Editor Scripts exist inde-
pendently from GameObjects or Components, since they live in a window of their own in
the Editor.
Like MonoBehaviors, however, they possess a life cycle with many of the same functions
(namely Awake, OnEnable and Update) and can access Editor variants of most of Play
Mode-only classes and methods.

These features make Editor Scripts ideal for supervising tasks that require entering and
exiting Play Mode multiple times, such as training and evaluating, or in general for tasks
that interact with the OS at a deeper level than a regular Unity Application, for example
reading and writing files in arbitrary locations, or launching a detached executable that
runs in parallel with the application.

Conda Virtual Environments are an invaluable tool for managing different Python
projects, since every one requires different libraries, different versions of the same library,
or different versions of Python itself.

Creating a Virtual Environment for each project greatly aids in troubleshooting pack-
age version issues (which are very insidious by themselves) and ensures nothing gets altered
on projects that are not being worked on.

The Virtual Environment tool that was employed is Anaconda6 (more specifically a
lighter distribution called "Miniconda", Conda for short).

Every time the Trainer Python script is called, it has to be called from the Anaconda
Terminal. This is very easy to do as a human, but significantly harder to automate.
This will be a recurring theme for the next section.

2.4.1 Training and Evaluation
TrainingSessionEditor is the most important Editor Script, both in size and relevance,
as it manages saving, loading and execution of Training and Evaluation procedures.

It establishes the concept of a Training Session, which is comprised of an arbitrary
number of steps, each of which can be either a Training Step or an Evaluation Step (Fig.
2.12-5.1).

6https://www.anaconda.com/
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Figure 2.12: A screenshot of the TrainingSessionEditor script window.
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Each step possesses the information needed for its execution (e.g. Track GameObject ref-
erence, number of agent instances, trainer file, number of evaluations to perform...)(Fig.
2.12-5.2, 5.3).

The Training Session can be saved as a json file for ease of retrieval (Fig. 2.12-6).
Moreover, it is possible to specify some common parameters, such as username (Fig.
2.12-1) and trainer name (Fig. 2.12-2), so as not to repeat them for each step.

Each session can be repeated for different tracks (Fig. 2.12-3, 4). In this case all the
fields and suffixes related to the tracks are automatically compiled at the start of each
session.

Lastly, in the lowermost area of the window (Fig. 2.12-8) lie some diagnostics and
progress status (Session State is better explained in section 2.4.1).

Training

Abstracting momentarily from Editor Scripts, the training process — be it Imitation or
Reinforcement Learning — consists of the following steps:

1. Download the demonstrations in the correct folders (if needed);

2. Load the training scene in Unity;

3. Start the Virtual Environment (if present);

4. Launch the command mlagents-learn, passing all relevant Command Line Argu-
ments such as trainer file and run-id;

5. After the script has started (but before it times out), enter Play Mode in the Unity
Editor;

6. Instantiate agent(s) and track(s) and perform the training;

7. When training is complete, both the Scene will exit Play Mode and the script will
stop automatically.

Automation As mentioned earlier, these steps are straightforward enough for a human,
but automating them requires solving a few criticalities:

• The Virtual Environment startup file is machine-dependant;

• The demonstration folder changes for each training run, but it cannot be specified
as an argument;

• Play Mode has to be started in a (relatively) precise time window;

The first two issues were solved without too much trouble by respectively setting up
a dedicated, per-machine configuration file (Fig. 2.12-7), and by having a series of fixed,
identical trainer files, only changing the demonstration directory between them.

The last constraint was the hardest to solve, requiring plenty of trial and error.
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There needs to be some form of communication between the Python script (the launched
party) and the Editor script (the launching party), so that the Editor knows when to start
Play Mode. During training, communication between Unity and Python is handled by
the respective libraries. This link is established via a loopback connection that is created
when the Python script is launched.
This connection, however, sees the Python script as the listener, so no information can be
gathered by listening on the connection prior to the launch of Play Mode.

As an alternative to the previous method, when launching a process, the C# language
(which Unity uses as a scripting language) allows the caller to keep open streams to the
stdin, stdout and stderr of the launched process, in order to read its output or send
further commands to it. This is particularly useful for this setting, since the Python script
signals that it is ready by printing a fixed string, that can be analyzed accordingly and
acted upon.

However, in order to enter Play Mode, there must be no running processes bound to
the Editor. Solving the timing issue as just described causes a deadlock situation, where
the script is waiting for Unity to enter Play Mode and Unity is waiting for the script to
finish before doing so.

The only solution to this obnoxious issue is launching the Python script as a detached
process: this means that no information can be exchanged between the two, since the
streams will not be established, but to the advantage of allowing Unity to freely enter
Play Mode.

Now, neither the loopback connection, nor the process’s stdout can be used to bind
the Editor script and the Python script, so how does Unity know that the script is ready
in order to start Play Mode?
It does not.
This solution is rather disappointing, as it simply operates on a timer. Since — at least
in my configurations — performances are quite consistent between all machines, a fixed
10 second delay sufficiently accounts for all the initial loading.

Execution Training takes place in a dedicated empty scene, where the track(s) and
agent(s) are instantiated procedurally. The Training configuration settings allow specify-
ing how many copies of the track and agent to spawn, other than various parameters to
be passed to the Python Script.

Training multiple instances of the agent at the same time is beneficial to the overall re-
sults: other than allowing Reinforcement Learning agents to learn about collisions between
them, it speeds up training time significantly, effectively spreading training timesteps
among all the instances.

Another crucial quality of life feature of the training script is the ability to pass an
entire folder of demonstration as argument, instead of single files. In conjunction with the
aforementioned ad-hoc trainer files, which are addressable via command line argument,
this feature enables specifying a different demonstration folder for each training run.
This is especially useful when frequently switching demonstration files, for example when
changing the number of laps to train on (as needed in Section 2.5.1).
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Figure 2.13: The training scene populated with the default training configuration of four
tracks, each with 16 agents.

Evaluation

Evaluating is less involved than training from a conceptual standpoint, but no less complex
from an implementation standpoint.

Execution Given a trained model and a replay state file, an evaluation is performed
as follows:

1. The scene containing the reference’s track (or an override if specified) is loaded, and
the necessary setups are performed;

2. The reference trajectory is extracted from the provided state file;

3. The trajectory is split into a certain number of sub-trajectories of fixed length (both
amount and length are specified via the evaluation settings);

4. Starting at each sub-trajectory, the agent is instantiated and allowed to drive for the
defined amount of timesteps;

5. The resulting agent-generated trajectory is compared to the original;

6. All evaluations are averaged and saved in the evaluations.jsonl file of the model.

Due to an unplanned degree of variability in the agent’s actions — despite enforcing
deterministic decisions — all evaluations are averaged over a settings-specified amount of
repetitions.

Moreover, when provided with a folder instead of a single file, the evaluation is per-
formed (multiple times, if specified) for each file in the folder, each getting its line in the
evaluations.jsonl file.
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jsonl files

jsonl7 is a variant of the extremely popular and widely used json (JavaScript Object
Notation) file format.
The "l" in jsonl stands for lines, and it refers to the ability of storing one json object
per line, instead of encasing them into an overarching array.

This distinguishing feature of jsonl makes it non-compliant with regular json syntax,
which normally ignores newlines and requires separators between objects. However, it
avoids reading and parsing the entire file, and allows adding new entries to the file simply
by seeking its end and writing to it.

Given the fact that a model usually gets evaluated multiple times, this format is really
convenient for saving many, independent measurements in a single file of arbitrary length.

State Management

Given the complexity of the interactions between the editor, the application and the
external scripts, a Finite State Machine (FSM) had to be developed to supervise and
coordinate these interactions. Figure 2.14 shows a diagram of the main workings of the
FSM.

As shown in the diagram with rounded boxes, the states of the FSM are:

• Stopped: rest state;

• Started: checks input data and triggers execution;

• Waiting: during scene setup and timed waits;

• Training/Evaluating: during training/evaluation;

All steps in the box marked as "Session" can be repeated multiple times if more than
one track is specified (Fig. 2.12-3).

The State Change conditional towards the bottom of Figure 2.14 refers to another state
machine, managed by the Unity Editor: EditorApplication.playModeStateChanged,
which tracks entering and exiting Play Mode and Edit Mode and allows reacting to these
changes via callbacks.

7https://jsonlines.org/
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Figure 2.14: A diagram of the TrainingSessionEditor Finite State Machine.
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2.4.2 Miscellaneous
As mentioned, training and evaluation were undoubtedly the most frequently executed
tasks, however, a handful of editor scripts were created to aid in other, less important or
more uncommon actions.

Demonstration Importer

This utility allows downloading .demo and .state file from an user’s Firebase folder, and
sorting them to the correct local folders.
Given the great number of separate files to download — reaching up to twenty per user
— it was an invaluable tool for automating this frequent task.

It offers support for both types of training/evaluation configurations (as explained in
Section 2.2.2), variable number of laps and arbitrary download folder.

Standalone Model Evaluation

It possesses all the features that are available to evaluations during a training session,
however it integrates them with a few extra functionalities that were thought for stan-
dalone usage: namely a trajectory visualization utility — to see the trajectories that were
generated by the agent right where they were generated — and an in-scene trajectory
score viewer, to see the score of each sub-trajectory and the overall score without needing
to save to a file.

Replay File Player

It allows playback of .state files.
It was not used much during development, but can prove useful, as replays are saved as
plain text, and would otherwise be quite difficult to analyze or troubleshoot.

One completely unused feature of the entire file saving/loading system is support for
.input files: instead of saving physical positions, velocities, etc., .input files only save
user inputs.
Likewise, there exists an Input File Player, although it did not find any practical usage.
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2.5 Experiment Setup
Before executing training and evaluations as previously described, a preliminary parameter
search was performed to identify an optimal number of laps to ask of the users.
This analysis was inconclusive, and a reasonable number of laps was chosen based on the
total runtime of the performance.

Thus the application was built, published on Unity Play and publicized to friends and
colleagues. The final sample size amounted to twenty unique users, each getting a model
trained and evaluated on the laps they ran.

2.5.1 Preliminary Lap Number Search
When creating the User Application, development had to face the simple and practical
question of how many laps to set for every track.
This, however, opened another question, of greater significance, as to whether it made
any significant difference to the agent’s learning capabilities.
Seeking a definitive answer to this query, a lengthy parameter search was conducted on
data obtained by means of my own demonstrations.

Firstly, all tracks were ran for ten laps. Considering that it required approximately
fourty minutes of constant focus, it was obviously not feasible for a large-scale user test,
but it served as an upper boundary to the agent’s performance.

Secondly, models were trained and evaluated for each number of laps, ranging from
two to ten, for both unseen laps and unseen tracks configurations (as explained in Section
2.2.2).

All evaluations were repeated around 50 times, spread amongst the various laps, the
exact number depending on the closest multiple of the number of laps (e.g 48 for 3 laps,
49 for 7 laps, etc.).

Unseen Laps Since some laps were needed to perform evaluations, only six models were
trained, from three to eight training laps.
Training was started from scratch for each track, each being divided in ten steps of 100’000
timesteps each, totalling one million steps per track.
Evaluations were performed after every step on the laps that were not used for training,
so from seven to two.

Unseen Tracks Nine models were trained, from two to ten training laps.
Training was performed on Square, 8, Monza and Twisty (Tracks 0, 1, 2, 4), one million
steps at a time, each step continuing from the resulting model of the previous one.
Evaluations were performed after every step (after each track) on all ten laps of Spa (Track
3).

As will be further analyzed in the next chapter, results were inconclusive, so it was
arbitrarily opted to set four laps for each track: enough to grant sufficient familiarity with
the track by the last lap, but not too much to strain the user, especially for longer tracks.
Moreover, with these settings, the overall runtime of the app amounts to 10-15 minutes,
which is adequate.
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2.5.2 User Data Analysis
Twenty people took part in the data collection, each running four laps on each of the five
tracks8.
One model was trained and evaluated for each user, in the same unseen tracks configu-
ration that was explained in the last section, with splits of both 20 and 40 timesteps in
length.

In addition to the regular GAIL-trained models, one purely RL-based model was
trained as a control. This model was trained exactly with the same settings (same tracks,
same network parameters, same number of training timesteps), only difference being that
it is completely unbiased: it receives no demonstrations and only tries to drive as opti-
mally as possible (as described in Section 2.1.1).

8A couple of users experienced connection issues, which lead to the loss of a small portion of their
data. However, impact was minimal, and their results ended up being fully (statistically) compatible
with the others’.
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Chapter 3

Results

3.1 Optimal Lap Number Search
Evaluations were performed by splitting every lap into 20 sub-trajectories, each being 20
timesteps long (400 ms).
Despite, as explained in the previous chapter, being evaluated at multiple times during
training, all following plots show evaluations performed on the final model.

Results (Fig. 3.1a, 3.1b) show lower performance for later tracks, which is understand-
able, since they are ordered by complexity.
However, they also show negligible difference for any number of laps, and no clear trend.
This can be attributed to multiple possible causes:

1. Demonstrations might be very data-rich: given the high recording frequency, the high
generalizing potential of the simple observation format and the high data-efficiency
of GAIL, a few laps might be enough reference for the model;

2. There might be some issue with the training library: even when providing more
demonstrations, internally only the same few demonstrations might get processed;

3. Evaluation sub-trajectories might be too short to evince differences between good
and bad models: not much can go wrong in 400 milliseconds, starting from the
same spot and speed. Longer splits might better exacerbate differences in behavior
between the player and its respective model.

Disproving the first hypothesis would have required a restructuring of the entire project,
other than an additional parameter search, so it was opted not to explore it and leave it
as a possible explanation.
In the same vein, it was chosen not to pursue a proof to the second hypothesis either, as
it would have lead the analysis too far off the intended scope of the thesis.

The third hypothesis, however, had a feasible solution readily available. Given the
already established training and evaluation framework, evaluation splits could easily be
adjusted in length, so it was decided to perform a second run of evaluations on all models,
with a doubled length (40 timesteps, 800 ms).
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Unseen Laps, 20 timestep splits

(a) Performance of models trained on each track as the number of training laps increases.

Unseen Tracks, 20 timestep splits

(b) Performance of the model resulting from training on Tracks 0, 1, 2 and 4 as the number of
training laps increases. Evaluations performed on Track 3.
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Unseen Laps, 20 vs 40 timestep splits

Unseen Tracks, 20 vs 40 timestep splits

Figure 3.2: Comparison of performance for 20 timestep splits (left) against 40 timestep
splits (right) for both Unseen Laps and Unseen Tracks configurations.
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Increased Split Length

Results from the second run (Fig. 3.2, right) yielded results comparable to the previous
run, only significant distinction being a lower average score — which was to be expected,
given the higher potential for error that a longer trajectory entails.

It would seem that, in this case, changing split length did not add any discerning
quality to the evaluation procedure.

3.2 Final User Test
Results with actual user data do not deviate significantly from what emerged from the
preliminary analysis1 (Fig. 3.2b).
As expected, lengthening the evaluation splits caused a drop in performance, again com-
patibly with what was obtained previously.

Interestingly, the user-independent RL model that was trained as a control ended up
performing slightly better than the average of the user-based GAIL models (Fig. 3.4).
While IL models were trained and evaluated on a single player each, the RL model was
evaluated on all players’ Track 3 replays, and the results were then averaged.

1Due to an oversight in the model configuration, results from previous analyses benefit from slightly
higher values. However, it was ensured that none of the fixes changed any of the conclusions that were
drawn from them.
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Unseen Tracks, 20 timestep splits

Unseen Tracks, 40 timestep splits

Figure 3.3: Scatter plots displaying the performance of models trained on user demon-
strations and tested with 20 (a) and 40 (b) timestep splits.
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Unseen Tracks, 20 vs 40 timestep splits

Figure 3.4: Plots comparing the average performance of all GAIL models with the score
obtained by the RL model, on both 20 and 40 timestep splits.
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Chapter 4

Conclusion

Despite experiencing a satisfactory development overall, most of the development time and
effort ended up being taken by the user app (2.3) and the in-editor training framework
(2.4.1) — unlike initially planned.
Due to this fact, some aspects of the project were neglected for the final product, opting
for a minimal functioning implementation. There is much room for improvement for these
features, especially given the final results.

4.1 Future Works

The most important absentee from the overall process is hyperparameter optimization.
As mentioned in Section 1.1.2, often hyperparameter optimization is what makes a solid
neural-network-based project a groundbreaking neural-network-based project.
However, it is to be taken into consideration that there are numerous hyperparameters to
analyze, so a proper optimization requires adequate time and methodology.
The same case could be made for exploring different network architectures — which is not
a hyperparameter per se, but likewise needs a dedicated search — especially Recurrent
Neural Networks (RNNs) such as Long Short Term Memory (LSTM) Networks.

The second missing key aspect is a full-stack implementation of the SPG paradigm.
This thesis focuses on the aspects that concern a single user, i.e. data gathering and
model training, so no server infrastructure, nor multi-user interactions were considered.
Once the standard is integrated in every aspect, it would be insightful to perform at least a
qualitative test on user perception of the prediction engine at work, and possibly compare
results to those of Spina et al. ([23]), who conducted a similar enquiry.

Another aspect that was overlooked in this thesis is the performance of different algo-
rithms for IL, mainly Behavioral Cloning — as it is already included in the ML-Agents
library — but possibly other popular algorithms such as Inverse Reinforcement Learning
or simpler Machine Learning solutions [12].
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In this regard, looking into ML-Agent’s own support for custom trainers1 might be a
worthwhile investment.

One development that will likely be investigated once this project is further along the
roadmap for the MPAI-SPG standard, is an assessment of the flexibility of the framework
to different genres, such as FPS, racing simulations or strategy games.
Since the standard aims to be application-agnostic, it will be interesting to see how easily
the process can be adapted, or if it will ever be a plug-and-play implementation for the
developer.

4.2 Final Words
In this thesis, a framework was developed to aid in the collection and processing of user
demonstrations for the purpose of training an autonomous driving agent based on the
user’s driving style.
This was obtained by means of Generative Adversarial Imitation Learning, a training
technique that produces a behavior that resembles the reference material, but at the same
time is able to adapt to unseen scenarios.

User data was gathered from multiple tracks, the number of laps being determined by
a previous investigation, stored on a server, then downloaded and processed.

While personalized learning produced subpar results when applied to real users, it was
found that the performance of an agent trained by Reinforcement Learning only was, on
average, surprisingly high.

As stated, many improvements can be made to the training process, but the hope is
that any future work can build on top the framework that was developed for this thesis.

1https://unity-technologies.github.io/ml-agents/Tutorial-Custom-Trainer-Plugin/
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