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Summary

The focus of this thesis is the development of an exergame prototype designed for
the rehabilitation and telerehabilitation of the upper limbs. Development focused
on creating a game set in a gym environment, using Google’s MediaPipe library to
detect the user’s movements and spatial positioning.

The exergame was built using the Unity game engine, based on an existing
open source solution that integrates MediaPipe’s pose detection via a Python
script with a Unity sample scene. From this, the solution was further developed
by incorporating a server-side component, consisting of a NodeJS server and a
MongoDB database, to store all data collected during the exercises. Real-time data
is transmitted via WebSocket from both the Python code and Unity game engine,
while CRUD operations, such as user’s login and registration, recording successful
repetitions and errors, are managed through REST APIs. Additionally, a web user
interface (UI) was implemented to enable users to read and download all significant
data collected, with filters available for user’s name and surname, date and time,
session, or specific exercises.

The architecture of this solution is designed to centralize the server, allowing
multiple clients to connect simultaneously. This is especially important for telereha-
bilitation, enabling the possibility to retrieve data from users performing exercises
remotely.

The exergame features a range of exercises focused on lifting the upper limbs,
both laterally and frontally, in various modes: single lifts, alternating lifts, or
simultaneous lifts. Users receive positive reinforcement through audio and visual
cues during exercises. Additionally, the game can be used in an assisted mode,
where game prompts can be guided by an operator via keyboard input, further
allowing customization. To determine if a repetition is performed correctly, the
game assesses the angle between the user’s arm and the corresponding side of their
torso. When the correct angle is achieved, the repetition is marked as correct. The
game evaluates also the angle between the arm and the user’s shoulder line; if the
user fails to maintain the correct plane of movement, the game signals an error.

The objective of this study is to demonstrate that a markerless solution, uti-
lizing an integrated webcam or simple RGB camera, can achieve a reliable and
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sufficient level of precision for the execution of rehabilitation exercises. During the
development phase, data were analyzed to verify the accuracy and frequency of
data recording.

Furthermore, the study highlighted the accuracy of Google’s MediaPipe pose
detection. The system performed well under optimal lighting conditions, where
the subject was evenly exposed and the background had high contrast. Conversely,
performance declined in suboptimal lighting conditions, such as when one side of
the subject was overexposed or the background contrast was poor.
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Chapter 1

State of the art

1.1 Introduction

As highlighted by recent studies, in the past few years the analysis and rehabilitation
of patients in healthcare has often relied on technological solutions, including video
analysis, pose detection, and development of exergames. These solutions and
studies often proved that with the right tools and methodologies, the rehabilitation
efficiency can be improved and significant data can be collected, to better study
and understand the effects of rehabilitation.

In particular, one of the studies collected (Garcia-Agundez et al., 2019) [1]
analysed the main solutions proposed in the medical field and the technologies
primarily used, by collecting and analyzing sixty-four publications. This resulted
in a comprehensive analysis of the main technologies, showing that the use of
reliable and safe technologies for patients, such as Microsoft Kinect and Wii
Balance Board, leads to solutions that are not only as effective as traditional motor
rehabilitation but in some cases even more so. Additionally, the possibility of
continuing rehabilitation through exergames at home is emphasized, using systems
that allow for both autonomous rehabilitation and continuous remote monitoring
by healthcare personnel.

Other studies analysed the performances of single camera systems, with marker-
less pose detection solution, comparing them with conventional three-dimensional
solutions, such as RGB-D camera or marker based solutions [2][3]. Chung et al. [4]
analysed and compared open source skeleton-based human pose estimation systems
and algorithms; the findings of this study validated our choice to use Google’s
MediaPipe library, as explained in the sections 1.3.4 and 2.2.

The present work is based on these findings and constitutes an attempt to
apply and expand this field of research, studying the possibility to use simple RGB
cameras, such as integrated webcams of PCs, to reliably capture the pose of the
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users in a consistent and precise manner. Using markerless pose detection solutions
with these devices, would not require the mandatory use of RGB-D cameras such as
Microsoft Kinect, inherently less suited for telerehabilitation, given the complexity
of use and higher costs for generic users.

1.2 Research methodology
To understand the current technological landscape, a literature search was conducted
using PubMed database. Articles published from 2019 onwards were retrieved,
using the keywords "exergame", "markerless", "pose detection", "pose estimation" or
"rehabilitation" and combinations of these terms.

The search produced this results:

1. 528 results were found for the combination "rehabilitation exergame";

2. 45 results were found for the combination "markerless pose detection"

3. 155 results were found for the combination "markerless pose estimation"

4. no results were found for the combination "exergame mediapipe"

The figure 1.1 visualizes the results distribution, showing an increase on publi-
cations about these topics in the last five years (for 2024, only the first six months
have been considered).

(A) (B) (C)

Figure 1.1: Search results distribution for "rehabilitation exergame" (A), "marker-
less pose detection" (B) and "markerless pose estimation" (C).

To gather the results reported below, a subset of twenty publications were
analysed:

1. one published in 2019;

2. one published in 2020;

3. two published in 2021;
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4. eight published in 2022;

5. five published in 2023;

6. three published in 2024.

The research excluded all the results not regarding of exergames, virtual reality or
video analysis, as they were not relevant in this context.

1.3 Results

1.3.1 Traditional rehabilitation versus telerehabilitation
A study conducted in 2022 (Hashemi, Yazdan et al., 2022)[5] indicates that ex-
ergames for upper limb motor rehabilitation, both supervised and unsupervised,
using Microsoft Kinect, could improve certain aspects of sensory and motor func-
tions in patients with upper limb impairments. Therefore, these technological
solutions could be used in telerehabilitation, especially considering the limitations
induced by the COVID-19 pandemic.

In another publication (Chuang, Chieh-Sen et al., 2022), twenty-three studies
with 949 participants were analysed. The results indicate that exergames and virtual
technology-assisted rehabilitation lead to significant improvements in balance and
gait outcomes compared to usual treatments and other active control interventions
[6][7].

These considerations highlight the potential of exergames and virtual technology-
assisted rehabilitation as effective tools for improving motor functions and overall
physical outcomes, particularly in the context of telerehabilitation.

1.3.2 Game as a rehabilitative tool
In the same publication mentioned earlier (Chuang, Chieh-Sen et al., 2022)[6], it
was also analysed that there were no significant changes in the depressive levels
of patients who underwent rehabilitation through exergames, neither positive nor
negative. The evaluation of acceptability results also shows that all the exergames
examined were adequately tolerated, as indicated by low dropout rates.

Another study conducted in 2023 (Barth, Marcus et al., 2023)[8] demonstrates
the beneficial effects of exergame-based training under review and confirms the
assumption of a similar impact in a home setting. The software used, which relies
on Microsoft Kinect technology, meets patient approval, and the group dynamics
appear to provide additional support for the desired goal of improving mobility.
These dynamics should be considered an essential aspect of video games in therapy.
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Chen et al. in 2023 [9] studied the effect of VR exergames on adults over
sixty-five years old, for a total of twelve randomized controlled trials and 482 older
adults, and proved that adults that completed exergames interventions improved
their cognitive outcome as well as improve their balance.

Ultimately, other recent studies analysed the available solutions via randomized
controlled trials that use pose detection combined with exergames or VR experiences
(Manser et al. 2024, Pelaez-Velez et al. 2023) [10][11], studying the beneficial
support of exergames in rehabilitation. These studies highlight that the use of
games and VR experiences proved beneficial especially in the treatment of stroke
[11], in addition to traditional physiotherapy.

Overall, these findings underscore the potential of exergames as a viable thera-
peutic tool, offering significant cognitive and physical benefits while maintaining
high levels of patient acceptability and engagement.

1.3.3 Single camera markerless systems
In 2021 and 2022 different studies (Stenum et al. 2021, Scott et al. 2022) [12]
[3] analysed healthcare applications that were using a single camera markerless
motion capture solution. The study conducted by Scott et al. [3] analysed fifty
different solutions and concluded that single camera markerless systems performed
well when single plane measurements were involved, compared to three-dimensional
marker-based solutions, but they were less effective at out-of-plane tracking and
capturing fine movements, such as finger tracking.

Another study (Wade L. et al. 2022) [2] analysed the main limitations and
applications of markeless motion capture methods, especially in bio-dynamics
applications. The study exhibits that markerless solutions can be limited in
capturing data with high accuracy and high frequency, in particular the possible
limitations are:

1. self occlusion: a well know problem of two-dimensional motion capture [13][14],
self occlusion of the captured joints can result in a data loss for one or more
frames and inconsistent data collection;

2. most of the algorithms have been trained to extract only two point for each
segment, but three points are required to analyse all six degrees of freedom
(DoF) of the body or a part of it;

3. the pose detection algorithms are developed based on the assumption that the
camera is perfectly aligned with the frontal or sagittal plane movements.

Despite these limitations, markerless motion capture systems continue to show
promise in specific applications, offering valuable insights and practical benefits for
healthcare research.
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1.3.4 Google’s MediaPipe usage
Among the solutions analysed, some stand out for their use of the Google MediaPipe
library as a system capable of near real time pose detection and estimation.

The first solution considered (Güney, Gökhan et al., 2022)[15] utilizes Medi-
aPipe’s hand landmark detection for estimating hand tremors in patients with
Parkinson’s disease. In the experiment, hand movement was measured both with
an accelerometer and through video estimation using MediaPipe to identify the
accuracy of tremor perception via MediaPipe. Although the research results were
positive, it does not serve as a comparison for the project in this thesis because it
is not an exergame or a rehabilitation project, but solely a video analysis.

The second and most recent case considered (Jansen, Talisa S et al., 2024)[16]
involved the use of MediaPipe, also in terms of video analysis, for the automated
recognition of eyelid closure in neuro impaired patients and healthy individuals,
to compare the results of the two groups analysed. In this case, MediaPipe’s face
landmark detection functionality was used.

MediaPipe’s pose detection was used in detecting post-stroke compensatory
movements (Lin et al., 2023)[17]. The study shows that, despite some limitations,
the solution performed well in near real time analysis of the patients movements.

The present work will be based on Google’s MediaPipe solution, given the
numerous findings on the use of Google’s MediaPipe in real time or near real time
applications [17][18][19], proven to be effective for rehabilitation purposes and in
healthcare context.

Furthermore, from a technical point of view, MediaPipe Pose:

1. outputs 33 landmarks, or keypoints, a more than sufficient number of joints
for the purpose of this prototype, as well as for future implementations or
exergames based on this solution [20];

2. can estimate the pose on three different models, lite, full or heavy; this allow
easy settings modification to evaluate which model performs best [20];

3. it was specifically trained for fitness-related applications [21];

4. it’s lightweight and multi device, even on a mobile device, using the CPU, it
will work in near real time at 30 FPS [21];

5. its sampling frequency of 30 FPS matches the capture FPS of most of the
webcams or simple RGB camera in use [21][20];

6. the main requirement to use the solution, that is keeping the head always
visible so that the pose estimation can be correct [21], while it’s prone to user
error, it does not represent a blocking issue for the purpose of this work.
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1.4 Conclusions
Exergames and non-immersive virtual reality technologies show promising potential
for the rehabilitation of neuro impaired patients, by improving upper limb sensori-
motor functions, balance, and gait. The rising number of solutions explored in the
past five years shows growing interest in these technologies, especially markerless
and easy to use solutions.

Rehabilitation through software/games is well accepted by patients, and group
dynamics offer additional benefits, suggesting that these technologies could represent
a significant advancement in rehabilitation strategies[8]. The use of simple RGB
cameras combined with markerless pose detection solutions proved to be effective
and functional, although with some limitations, if used together with traditional
physiotherapy [3]. The ease of use of these solution could be the key factor to allow
testing of telerehabilitation solutions, both based on exergames or video analysis. In
the past five years, a lot of different open source solutions based on two-dimensional
cameras were developed with different limitations, applications and performances
[12]. Analysing different solution, the present work will be developed using Google’s
MediaPipe solution, given its fitness aimed training and proved efficiency in real
time scenarios and healthcare applications [19][17][18].

Other studies show that the overall effectiveness still remains inconclusive,
and further high-quality studies with a larger number of cases are needed [22];
highlighting the limitations that relatively new technologies and solutions face.

This work and solution aim to fit into this overview of possible solutions for the
rehabilitation and telerehabilitation of impaired patients, providing patients with
a simple, marker-less, intuitive, and engaging tool to accompany them on their
rehabilitation journey, and providing healthcare personnel with an analytical tool
to verify the health and recovery status of patients through consultation of data
from various therapy sessions.
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Chapter 2

Goals and methodology

2.1 Goals

The goal of this thesis, developed through the collaboration between Politecnico
di Torino and Consiglio Nazionale delle Ricerche (CNR) - Istituto di Elettronica
e Ingegneria dell’Informazione e delle Telecomunicazioni (IEIIT), is to create a
prototype of an exergame that allows users to follow a rehabilitation program for
the upper limbs.

Exergames, short for "exercise games," are video games that combine physical
activity with interactive gaming, using technology to track and respond to the
player’s body movements to promote exercise and fitness in an engaging and
entertaining manner [23].

Specifically, the research focused on developing an exergame based on the
Google’s MediaPipe library, using a computer webcam, and avoiding the use of
specialized RGB-D cameras like Microsoft Kinect [24]. In a second phase, the aim
of this project is to be used in rehabilitation and telerehabilitation for patients
affected by Parkinson’s disease or patients affected by cerebral stroke with minimum
or no assistance.

The initial goal is to develop a prototype that can analyse the accuracy of Medi-
aPipe’s pose detection and its performance in a rehabilitation context, recording all
data and users’ positions during the rehabilitation session. The aim is to develop a
solution that can record a number of information that can be relevant to analyse
the movement and possibly the reaction time and amplitude of movement of the
users.
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2.2 Technology stack
Developing an exergame that accurately tracks human movement within a three-
dimensional environment necessitates the implementation of a pose detection
solution. With numerous options available, selecting the appropriate one is crucial.
This section aims to provide a non-exhaustive overview of the main pose detection
open source solutions, with a more specific overview on Google’s MediaPipe library
models.

2.2.1 Human pose estimation
Human pose estimation in a three-dimensional environment is employed to predict
joint movements and positions in space, which are then translated into a three-
dimensional model. There are three types of modeling used, kinematic, planar or
volumetric.

• Kinematic: used by most methods, it represents human body as an entity
formed by joints and limbs. It’s also called "skeleton-based model", and it is
mainly used to capture the relations between body parts, but it doesn’t give
information on external shape or texture.

• Planar: used in two-dimensional estimation to represent shape and texture
of a human body. Each body part is represented by multiple rectangles that
approximate the human body shape analysed.

• Volumetric: used for three-dimensional pose estimation, it represents the
human body with a three-dimensional mesh. While it’s the most precise model
representation, it’s not suitable for real-time pose estimations.

Most of the solutions use the kinematic model, which contains both body
kinematic structure and body shape information. This is also the model most
suitable for the solution, aimed to calculate the angles between arms and the user’s
torso.

In pose estimation, two primary approaches are employed to achieve accurate
results.

• Bottom-up approaches involve the initial estimation of individual body
joints, followed by the grouping of these joints to form a complete pose. This
method focuses on identifying and localizing each joint independently before
assembling them into a coherent pose representation.

• Top-down approaches begin with the detection of persons within an image or
video frame. Once individuals are identified, the system proceeds to estimate
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the positions of their respective body joints. This method prioritizes detecting
people as a whole entity before refining the localization of specific body parts.

The choice between bottom-up and top-down approaches depends on factors such
as computational efficiency, accuracy requirements, and the specific characteristics
of the target application.

OpenPifPaf

In 2021, Kreiss et al. developed OpenPifPaf [25], a bottom-up approach open-source
library designed for multiperson human pose estimation. This library focuses on
detecting, associating, and tracking semantic keypoints in video data, even in
complex scenes. The bottom-up methodology of OpenPifPaf is notable for its
efficiency, stable field representation, accuracy and performance, often surpassing
top-down methods. The model architecture features a shared base network, either
ResNet or ShuffleNetV2, without max-pooling. Central to the framework are the
Composite Intensity Field, which represents joint intensity, and the Composite
Associations Field, which forms associations to track poses; the Composite Fields
detect and construct a spatio-temporal pose, creating a single, connected graph
with nodes representing semantic keypoints (such as body joints) across multiple
frames. For temporal associations, the Temporal Composite Association Field
(TCAF) is used; this approach enhances the model’s ability to track poses over
time, contributing to its robust performance in various scenarios.

MoveNet

Released in 2021 by Google, MoveNet is a real-time, bottom-up pose detection
model developed by Google to identify seventeen keypoints on a single person
using heatmaps [26][27]. Similar to MediaPipe, MoveNet employs the MobileNetV2
architecture [28] as its feature extractor, which includes four prediction components:
the person center heatmap, keypoint regression field, person keypoint heatmap,
and two-dimensional per-keypoint offset field. These elements work together to
accurately predict human keypoints. MoveNet was trained on two datasets: the
COCO dataset [29] and Google’s internal dataset called Active. The model is
available in two versions: Lightning and Thunder. Lightning provides faster
inference times but with slightly reduced accuracy compared to Thunder.

OpenPose

OpenPose (Cao et al. 2019)[30] is one of the most well know pose detection
solutions developed in recent years. It’s aimed specifically to the pose detection
and pose estimation of multiple bodies in a single image with high accuracy, using
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non-parametric representation, which is called Part Affinity Fields (PAFs), to learn
to associate body parts with individuals in the image. In comparison to other
solutions, OpenPose also rely on combined detection for body and foot placement,
reducing the inference time. Based on COCO [29] and MPII [31] datasets, the
applications for OpenPose can be many and not specific to a single area.

DeepCut

DeepCut, developed by Pishchulin et al. in 2016 [32] simultaneously manages
detection and pose estimation, determining the number of people in a scene,
identifying occluded body parts, and distinguishing body parts of individuals in
close proximity. It was developed primarily for applications with multiple people
present in the frame at the same time. Unlike other solutions analysed in this section,
DeepCut uses a joint formulation to both detect and estimate the body poses. It
employs a partitioning and labeling strategy for a set of body-part hypotheses
generated by convolutional neural network (CNN)-based part detectors. This
strategy, framed as an integer linear program, implicitly performs non-maximum
suppression on the part candidates and groups them into body part configurations
that respect geometric and appearance constraints.

AlphaPose

Born in 2016 and perfected in 2018, AlphaPose was theorized and implemented
by Fang et al. [33]. The solutions was developed to tackle the pose detection
and estimation of multiple bodies in a frame, using a regional multi-person pose
estimation (RMPE) framework to facilitate pose estimation in the presence of
inaccurate human bounding boxes. The solution is composed by three components, a
Symmetric Spatial Transformer Network (SSTN), a Parametric Pose Non-Maximum-
Suppression (NMS), and a Pose-Guided Proposals Generator (PGPG).

Google’s MediaPipe

Google’s MediaPipe was launched in 2019 as a framework for pose, head and hand
detection and estimation, to be used on multiple devices, lightweight and trained
specifically for fitness applications [34]. The pose detection task of MediaPipe is
based on BlazePose model (Bazarevsky V., Grishchenko I. et al., 2020)[21] and
outputs thirty-three keypoints (called landmarks), providing a full representation
of a body and its movements in real-time.
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Conclusions

Based on the analysis of detailed solutions, as outlined also in section 1.3.4, this
study will focus on Google’s MediaPipe solution.

1. Other frameworks were trained for multi person detection [33][30][32][25],
which is out of scope in the present context.

2. Performances in real time are key in this context and MediaPipe proved
to be reliable in different applications [17][15][16]; its lightweight and multi
platform approach ensure satisfactory performances even on systems without
a dedicated graphics processing unit (GPU).

3. Easy to use and to work on with a detailed Python guide [35][36]; the extensive
documentation allow for an easy integration with Unity.

4. Even if the solution performed sub par in still image pose detection, compared
to other solutions, its real-time video detection and estimation capabilities are
among the highest in the frameworks evaluated [4].

2.2.2 Google’s MediaPipe specifications
The MediaPipe Pose Landmarker task detects landmarks of human bodies in an
image or video. The task identifies body locations, analyse posture, and categorize
movements and uses machine learning (ML) models that work with single images
or video. It outputs body pose landmarks in image coordinates and in three-
dimensional world coordinates.

A series of models are used to predict the pose landmark. The first model, a
pose detection model, detects the presence of a human bodies in the image or video,
while a second model bundle, pose landmarker model, creates the kinematic model
with landmarks (or keypoints).

This bundle, composed by a lite, full and heavy model, uses a convolutional
neural network similar to the MobileNetV2 architecture (Sandler M., Howard A. et
al., 2019) [28] and it’s optimized for real-time applications. The pose landmarker
model is a variant of the BlazePose model (Bazarevsky V., Grishchenko I. et al.,
2020)[21] using GMHU (Hongyi Xu, Bazavan E. G. et al., 2020)[37] an end to end
pipeline to estimate full three-dimensional body pose.

The BlazePose model outputs 33 landmarks (or keypoints) describing the ap-
proximate location of body parts:

1. nose;

2. right eye (3 keypoints): inner, center, outer;
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3. left eye (3 keypoints): inner, center, outer;

4. ears (2 keypoints): right, left;

5. mouth (2 keypoints): right corner, left corner;

6. shoulder (2 keypoints): right, left;

7. elbow (2 keypoints): right, left;

8. wrist (2 keypoints): right, left;

9. pinky knuckle (2 keypoints): right, left;

10. index knuckle (2 keypoints): right, left;

11. thumb knuckle (2 keypoints): right, left;

12. hip (2 keypoints): right, left;

13. knee (2 keypoints): right, left;

14. ankle (2 keypoints): right, left;

15. heels (2 keypoints): right, left;

16. foot index (2 keypoints): right, left.
The output is a 33 × 5 array, representing the world landmark position with X, Y,
Z coordinates and the visibility and presence of the landmark.

From the model documentation [20]:
1. X, Y coordinates are local to the region of interest and range from [0.0, 255.0].

2. Z coordinate is measured in "image pixels" like the X and Y coordinates and
represents the distance relative to the plane of the subject’s hips, which is the
origin of the Z axis. Negative values are between the hips and the camera;
positive values are behind the hips. Z coordinate scale is similar with X, Y
scales but has different nature as obtained not via human annotation, by
fitting synthetic data (GMHU model) to the two-dimensional annotation. Z is
not metric but up to scale.

3. Visibility is in the range of [0.0, 1.0] and after user-applied sigmoid denotes
the probability that a keypoint is located within the frame and not occluded
by another bigger body part or another object.

4. Presence is in the range of [0.0, 1.0] and after user applied sigmoid denotes
the probability that a keypoint is located within the frame.

Starting from this the pose landmarker model outputs the normalized coordinates
and world coordinates for each landmark.
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Figure 2.1: Pose landmarker model

2.2.3 Game Engine

A game engine is a software framework designed to facilitate the development
and creation of video games. It provides a suite of tools and features, such
as rendering graphics, simulating physics, handling input, managing audio, and
scripting, which developers use to build and manage game environments. Game
engines streamline the game development process by offering reusable components
and systems, allowing developers to focus more on game design and functionality
rather than underlying technical details. Examples of popular game engines include
Unity [38], Unreal Engine [39], and Godot [40]. We chose to use the Unity game
engine for this project, because it’s widely used for academic purposes and the
open source solution this prototype is based on was already developed with Unity
game engine.
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Unity

Unity is a widely-used game engine developed by Unity Technologies [38], known
for its versatility and user-friendly interface. It supports the development of
two-dimensional and three-dimensional games and interactive experiences across
multiple platforms, including consoles, PCs, mobile devices, and virtual/augmented
reality. The engine uses C# for scripting, providing robust capabilities to control
game behavior and logic.

The package manager in Unity allows easy integration and management of various
packages and plugins, ensuring that projects can be extended and customized
efficiently. In the context of this work, WebSocketSharp [41] and Newtonsoft
JSON.Net [42] packages were used.

Beyond game development, Unity is widely used in research and academic
contexts. Its flexibility and powerful visualization capabilities make it a valuable
tool for creating simulations and interactive educational content. Unity also enables
rapid prototyping and iteration, allowing developers to test and refine their ideas
swiftly.

Overall, Unity is a powerful and versatile game engine, supporting a wide variety
of game genres and interactive experiences; for these reasons it was chosen as the
game engine to develop the exergame work of this thesis.

2.2.4 Server and database
The implementation of a dedicated server and database for data persistence ad-
dresses the need to collect data from multiple devices and different clients, as well
as the possibility to read and download the data not necessarily on the same device
where the game is installed.

Furthermore the server and database are developed keeping in mind the scal-
ability and development of the solution, opting for a No-SQL database for its
scalability and support of both structured and un-structured data and the efficiency
in storing big volumes of data. The server as well, with a MVC-inspired design
pattern [43] allows to easily add models, services and DAO classes to save, access
and manipulate different types of data and information.

Node.js

Node.js is a runtime environment that allows to run JavaScript on the server side
[44]; it’s known for its efficiency and scalability. Node.js uses an event-driven, non-
blocking I/O model, making it ideal for building real-time applications (Dalbard
and Isacson, 2021) [45].

A key feature of Node.js is the Node Package Manager (NPM) [46], which
provides access to a vast library of reusable packages and modules, accelerating
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the development process. Its asynchronous nature and single-threaded event loop
enable handling multiple connections simultaneously, ensuring high performance
without the overhead of multiple threads.

Node.js is flexible and versatile, suitable for creating RESTful APIs, microser-
vices, and serverless architectures. Its rapid prototyping capability allows for quick
testing and iteration.

MongoDB

MongoDB [47] is a high-performance NoSQL database known for its ability to
handle real-time data efficiently [48][49]. Utilizing a document-oriented model, it
stores data in JSON-like documents, allowing for dynamic schemas and flexible data
management. The architecture of MongoDB supports horizontal scaling through
sharding, distributing data across multiple servers to ensure high availability and
quick response times. This makes MongoDB particularly suitable for applications
requiring real-time processing. With robust querying and indexing capabilities,
MongoDB efficiently retrieves data from large datasets. Its aggregation framework
supports real-time analytics and data transformations within the database. Key
features like replication and automatic failover ensure data durability and reliability.
Its schema-less design allows for flexible data modeling and rapid development,
beneficial for agile projects and research requiring quick adaptation.

2.2.5 Web UI development
This section outlines the technology stack used to develop the web interface. The
web UI must be compatible with multiple browsers and responsive to desktop
screens of various sizes.

jQuery

jQuery [50] is a fast, small, and feature-rich JavaScript library. It simplifies HTML
document traversal, event handling, and animation, making it easier to manage
and manipulate web pages. jQuery’s cross-browser compatibility ensures that
code works consistently across different browsers. jQuery’s simplicity and ease
of use facilitates rapid development and reduces the complexity of JavaScript
programming.

Bootstrap

Bootstrap [51] is a widely-used front-end framework for developing responsive and
mobile-first websites. Bootstrap’s responsive grid system allows for flexible layouts
that adapt to various screen sizes, ensuring a consistent user experience across
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devices. Its pre-styled components and extensive documentation make it easy
for developers to create aesthetically pleasing and functional interfaces quickly.
Bootstrap’s widespread adoption and strong community support make it a reliable
choice for web development. In the context of this work, the last stable version 5
of Bootstrap was used.

2.2.6 Communication protocols
The detailed solution is based on different nodes that require specific communication
protocols. This section provides an overview of the communication protocols used
in the client-server architecture detailed in section 3.1.1.

TCP connection

TCP [52] is a reliable and connection-oriented protocol, ideal for ensuring the
correct and ordered delivery of data between the client and server, which are
fundamental characteristics for the type of application being developed.

1. Reliability: TCP ensures that data packets sent from the client to the server
arrive in an orderly and lossless manner.

2. Stable Connection: As a connection-oriented protocol, TCP establishes
a dedicated connection between the client and server before starting data
transmission, guaranteeing continuous and uninterrupted communication.

3. Congestion Control: TCP includes mechanisms for managing network con-
gestion, reducing the risk of network overload and improving data transmission
efficiency.

WebSocket

The WebSocket communication protocol [53] establish a full duplex communication
between the client and the server within a single TCP connection, facilitating
real-time data transfer. Data is transmitted keeping the connection open, until
one of the two involved, client or server, closes the connection. For this reason the
WebSocket protocol was used to send all the real-time data captured by Google’s
MediaPipe pose detection to the server, as well as all the FPS informations gathered
to test the solution performances. The following table details all the WebSocket
communications of the developed solution.
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Sender Receiver Goal
MediaPipe Python Script Node.js Server Performance recording (FPS)
MediaPipe Python Script Node.js Server Save landmark position

Unity Game Node.js Server Performance recording (FPS)

Table 2.1: Instances of WebSocket communication in the solution

HTTP

HTTP (Hypertext Transfer Protocol)[54] was used, especially with REST architec-
ture, in the communications between the Unity game engine and the server, as well
as in the communications between the web interface and the server. The following
scheme in figure 2.2 sums up all the main APIs exposed by the server.

Figure 2.2: Main APIs provided by the server

Pipe

A pipe is used for passing information directly from the running Python process
to the Unity process. In this context it’s used to share the pose detection data
in real-time. By writing data to a pipe, the Python script can immediately send
information to Unity, which reads from the pipe.

The information provided from Python are:
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1. a timestamp in microseconds;

2. a session unique id (UUID [55]) generated when the Python script starts;

3. for each landmark of the MediaPipe’s pose detection: the x, y and z global
position values and their visibility value.

These information are written by the Python code in a string in a shared format
and read by Unity in a running thread (refer to section 3.2). The collected data is
used to render the humanoid figure, following the movement of the user in real time.
This allows for efficient, in-memory data transfer without the need for intermediate
storage. In this context, it ensures that the two processes running on the same
computer can quickly and reliably exchange information, enabling them to work
together effectively.

2.3 Research methodology
The research on the rehabilitation exergame focused on the target audience for the
prototype, the technologies chosen for use, and the project requirements outlined
in the initial stages of thesis development.

2.3.1 Target
The final target audience for the prototype includes patients with Parkinson’s
disease or those who have experienced a cerebral stroke, both of whom often
face compromised mobility. The primary objective of the game is to facilitate
rehabilitation by enabling patients to perform therapeutic exercises tailored to their
specific needs. For patients with cerebral stroke, the game is designed to assess
and compare the recovery of the affected side with the healthy side, allowing for a
detailed evaluation of rehabilitation progress.

Additionally, the exergame is designed to be inclusive for sitting users who have
compromised or impaired lower limb mobility. This feature ensures that patients
who cannot stand or walk can still participate fully in the rehabilitation exercises.
The game will offer exercises that can be performed from a seated position, targeting
the upper body.

By incorporating these features, the exergame aims to provide a comprehensive,
accessible, and effective tool for physical therapy, supporting the recovery and
improvement of motor functions in patients with significant mobility challenges.

2.3.2 Development requirements
The main requirements of the solution are:
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1. rehabilitation exercises for the upper limbs, through lateral and frontal lifts.
The difficulty should be selectable and should be based on three angles, 60°,
75° and 90°;

2. easy to use and engaging UI;

3. user authentication is required, both for the game and the web dashboard;

4. exercises types: single lifts, alternate lifts and simultaneous lifts;

5. two exercise modes: with a timer deadline or with a specified number of
repetitions;

6. it should be possible for another user to indicate which arm the user should
lift and when;

7. the solution should register all the position data from Google’s MediaPipe
library;

8. data should be searched and downloaded from a dedicated UI dashboard;

9. it should be possible to save automatically the data gathered in the current
session.

2.4 Development methodology
The development methodology used for the prototype involved employing a Kanban
board [56] to gather the macro-requirements and subsequently break them down
into individual, actionable requirements. This approach ensured that all aspects of
the project were systematically addressed and tracked, facilitating clear visibility
and management of tasks throughout the development process.

To ensure the project remained aligned with its goals, a progress meeting was
held every week. These meetings provided an opportunity to reassess priorities and
make adjustments to the development process as necessary, reflecting an Agile-like
software development structure [57].

For version control, GitHub [58] was utilized to maintain the source code and
developer documentation. Project builds and releases followed semantic versioning
(SemVer) [59], adhering to the MAJOR.MINOR.PATCH convention. Each version was
tagged in the remote repository, ensuring a clear history of releases and facilitating
easy reference to specific states of the project.

Developer documentation was written in English using markdown [60]. This
choice was made to ensure that the documentation was accessible, easy to read, and
could be immediately viewed on GitHub. Markdown’s simplicity and readability
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made it an ideal format for maintaining comprehensive and clear documentation
throughout the project’s life cycle.

By integrating these methodologies and tools, the development process was both
structured and adaptable.

20



Chapter 3

Prototype realization

3.1 Introduction
The development of this prototype serves as a starting point to introduce exergames
using MediaPipe framework into a larger spectrum of solutions, aimed to the
rehabilitation of neuro impaired patients, like Parkinson’s disease affected patients
or patients that suffered cerebral strokes.

While the prototype’s user interface (UI) is written in Italian, to cater to
the target, all the code and documentation are in English. This ensures that
the technical aspects of the project are accessible to future developers who may
contribute to or build upon this work.

The development of this prototype, as part of this thesis, aims to evaluate the
performance of an end-to-end solution. This involves assessing the robustness of
MediaPipe’s pose detection and estimation capabilities, as well as the performance
and usability of the exergame developed in Unity. An important aspect of this
evaluation is the quality of the data collected during development and internal
testing phases. This data include information such as the positions of each joint of
the user during exercises, which is essential for analyzing movement accuracy and
progress.

The development of the solution was organized so that it will be scalable and
maintainable, with a versioning repository and developer’s documentation, as well
as a code organized and reviewed with ESLint [61], to ensure that the solution can
be easily developed by others in the future.

3.1.1 Architecture
Given the requirements outlined in the previous chapter, particularly considering
the future use of this prototype, it was decided to implement a solution with a client-
server architecture, where the exergame, Python script and web UI dashboard are
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the clients, and the server is developed using Node.js , with MongoDB as Database
Management System (DBMS). That means that the communication will be based
on TCP communication protocol [52]. The following figure 3.1 details the high level
architecture of the solution, as well as the communication protocols used between
the nodes.

Figure 3.1: High-level architecture of the solution

3.2 MediaPipe pose detection development
The MediaPipe pose detection and estimation bundle was developed starting from
the open source code developed by GitHub user ganeshsar [62] and expanded to
address the needs of the solution. In particular, the existing solution is composed
by a multi-thread process and the code is divided in three Python scripts:

1. global_vars.py : contains all the global variables used in the Python bundle;

2. main.py : launches the Python process, starting the BodyThread of the
body.py script;
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3. body.py : core script of the bundle, it starts the CaptureThread, BodyThread
and WebSocketThread.

global_vars.py

Includes different parameters and variables used in the script bundle.

• KILL_THREADS : this variable is used to shut down the running thread if a
keyboard input is given to stop the code execution.

• DEBUG : used to set the code in debug mode; if True shows the camera
estimation output and print on console performances information.

• RECORD_FPS : used to determine if the performances information (Capture
FPS, Theoretical FPS and Real FPS) should be sent to the server via Web-
Socket.

• WEBCAM_INDEX : used to determine which camera to use, if more than one
camera is installed.

• USE_CUSTOM_CAM_SETTINGS : if True the parameters FPS , WIDTH and
HEIGHT are used to capture the video.

• FPS : used only if USE_CUSTOM_CAM_SETTINGS is True . It sets the desired
FPS (frames per second) for capturing the video.

• WIDTH : used only if USE_CUSTOM_CAM_SETTINGS is True . It sets the desired
width in pixels for capturing the video.

• HEIGHT : used only if USE_CUSTOM_CAM_SETTINGS is True . It sets the
desired height in pixels for capturing the video.

• MODEL_COMPLEXITY : used to determine which MediaPipe output model to
use for the estimation, if lite (0), full (1), heavy (2) (see section 2.2.2 [36]).

These settings can be changed but can impact the performances, especially the
parameters DEBUG and MODEL_COMPLEXITY have an impact on performances both
perceived by the final user and measured in FPS. These findings are detailed in
section 4.2.

main.py

The purpose of this script is to start the thread BodyThread of the body.py
script and to kill all the threads when the session is closed. It’s used to launch the
Python solution execution.
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body.py

The body.py script is the core script of the Python solution and it’s main func-
tionalities are:

1. establish a WebSocket connection with the Node.js server. If the connection
fails, the script retries to connect. The server needs to always be reachable to
use the solution;

2. start a thread (WebSocketThread) to send data to the server via WebSocket
connection;

3. start a CaptureThread that captures video with the specified camera;

4. start the BodyThread to use the captured video as input for MediaPipe Pose
Detection. The estimated positions are written to the pipe for use by the
Unity game engine and sent to the Node.js server via WebSocketThread [36]
[35];

5. create a unique id (UUID [55]) representing the session. This is used to identify
the landmarks associated with the session.

In the method run() of the thread, the pose is captured with

1 mp_pose . Pose ( min_detect ion_conf idence =0.80 ,
min_tracking_conf idence =0.5 , model_complexity = globa l_vars .
MODEL_COMPLEXITY, static_image_mode = False , enable_segmentation =
True ) as pose :

It this case, the pose detection uses a min_detection_confidence of 0.80
and a min_tracking_confidence of 0.5. The code is structured so that the
landmarks’ positions are written in the pipe only if the specified pipe is open. The
pipe is opened by the Unity code and in Python the thread checks if the pipe is
open every second.

1 i f s e l f . p ipe==None and time . time ( )− s e l f . t imeSinceCheckedConnection
>=1:

2 t ry :
3 s e l f . p ipe = open ( r ’ \\ .\ pipe \UnityMediaPipeBody ’ , ’ r+b ’ , 0)
4 except FileNotFoundError :
5 pr in t ( " Waiting f o r Unity p r o j e c t to run . . . " )
6 s e l f . p ipe = None
7 s e l f . t imeSinceCheckedConnection = time . time ( )

The Python code writes a string with all the landmark positions as such:
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1 f o r i in range (0 ,33 ) :
2 s e l f . data += "FREE| { } | { } | { } | { } | { } \ n " . format ( i ,

body_world_landmarks_world [ i ] [ 0 ] , body_world_landmarks_world [ i ] [ 1 ] ,
body_world_landmarks_world [ i ] [ 2 ] , s t r ( s e s s i on_id ) )

3 landmarks . append ({ " x " : ’ %.3 f ’%(body_world_landmarks . landmark [ i ] . x )
, " y " : ’ %.3 f ’%(body_world_landmarks . landmark [ i ] . y ) , " z " : ’ %.3 f ’%(
body_world_landmarks . landmark [ i ] . z ) , " v i s i b i l i t y " : ’ %.3 f ’%(
body_world_landmarks . landmark [ i ] . v i s i b i l i t y ) , " landmark " : i })

The self.data is written in the pipe, while the landmarks JSON array is
used to save the landmarks positions in the server.

• First entry is the landmark index , corresponding to the joints presented in
figure 2.1.

• Second, third and fourth entry are the x,y,z world positions estimated as
described in section 2.2.2.

• Last entry is the sessionId generated for the present session.

The JSON body sent to the server is composed as follows.

1 {
2 " sessionId " : string ,
3 " timestamp ": float ,
4 " frameId " : integer ,
5 " landmarks " : [{
6 "x" : float ,
7 "y" : float ,
8 "z" : float ,
9 " visibility " : float

10 },
11 . . .
12 ]
13 }

A version 4 UUID [55] is generated at the start of the process and used to signal
Unity and the server which session the landmarks are linked to. To improve code
efficiency, the data is collected and sent in packages of thirty units, approximately
once every second, depending on the performances. The frameId parameter is
used to ensure that no package get lost in sending or receiving or saving data on the
database, it’s increased by one each time a frame is captured. The UNIX timestamp
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[63] is generated in microseconds and it’s used to evaluate the performance of the
solution, as shown in the results chapter of this thesis.

3.3 Game development
The exergame was developed starting from the requirements detailed in the section
2.3.2, and here summarized:

• create a set of exercises to help user with upper limbs rehabilitation;

• it should be possible to play the game with no help from another person,
starting the exercises with hand gestures;

• user authentication is required;

• it should be set in a gym environment;

• the game should communicate successful repetitions as well as errors made by
the users;

• it should be possible to play based on maximum time per exercise or maximum
repetitions per exercise.

Given these requirements, the development started from an open source project
by Github user ganeshsar [62] that tested the Google’s MediaPipe pose detection
inside of Unity using Python bindings. This was the starting point of the devel-
opment, around which the environment, game mechanics and code improvements
took place. The game is structured in Unity scenes:

1. Login scene: allows the user to log into the game with username and
password;

2. Main menu scene: allows the user to start the game with default options,
change options or exit the game;

3. Settings scene: allows the user to tailor the exercise session to their needs,
as detailed in section 3.3.2;

4. Exercise session scene: core scene were the user plays and exercise; player
movements are rendered in real-time via the pose estimation of MediaPipe.

To optimize the game, the environment is instantiated in the first scene and
kept alive using the DontDestroyOnLoad method of Unity Engine. The same was
done for the AudioManager , the component that plays the game soundtrack. Each
scene also has a canvas on which all the UI components are rendered. Background
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(A)

(B)

Figure 3.2: Login scene (A) and Main menu scene (B)

assets were provided to use for all the buttons in the game and the default font
used was the Riffic Font (a sample is shown in figure 3.3). The figure 3.4 shows
the different two-dimensional assets used as background for the buttons and text
containers in the game.

Figure 3.3: Default font sample used for the game UI
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Figure 3.4: 2D assets used as backgrounds for the game UI

3.3.1 Environment
To create the environment, the research group focused on a lighthearted theme, with
bright colors and an easy setting, as represented by the two-dimensional assets and
the font used for the UI. The environment was modeled using CC0 Public Domain
assets [64] found online on CGTrader [65] and the scene was composed in the Unity
game engine editor. Materials for all the assets were created directly in Unity,
while the texture for the floor (formed by color, normal, roughness, smoothness,
displacement and ambient occlusion maps) was downloaded from ambientCG [66],
a library that allows to download CC0 public domain textures.

We decided to create a more open and airy environment with the use of mirrors
on the left side, to create the illusion of a bigger room. The mirrors were created
by placing secondary cameras on four panels and using the camera output as
the panel’s texture. The figure 3.5 shows the finished environment used in the
prototype.

3.3.2 Settings
The settings panel allows to tailor the exercise session on the user’s needs. The
possible settings are detailed in the table 3.1.

After the user sets the desired criteria, or leave the default options, they can
start the exercise session by clicking the "Inizia sessione" button. The figure 3.6
shows the game settings with default values.
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Figure 3.5: 3D environment used as background and setting for the game

Name Purpose Default
Exercises Multiple selection of which exercise to

perform, meaning which arm to lift: single
right arm, single left arm, alternate arms,
both arms simultaneously. More than one
option can be selected.

Single
Right Arm

Lifting mode Select if frontal or lateral movement. The
options are mutually exclusive.

Lateral

Exercise control Select if the exercise are to be automatic
or controlled by a second user. The op-
tions are mutually exclusive.

Automatic

Arm lift difficulty Select the difficulty of the movement for
the arm to be lifted (sixty, seventy-five or
ninety degrees). It can be selected for ei-
ther arm, as some users, particularly those
affected by cerebral stroke, may have more
difficulty lifting one arm than the other.

Easy (60°)

Number of repeti-
tions

Can be written directly by the user in nu-
meric values. One input for each exercise
to be performed.

Five (5)
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Exercise type Choose whether the exercise ends when a
specified time is reached or when the spec-
ified number of repetitions is completed.
These options are mutually exclusive, so
selecting one will disable the fields corre-
sponding to the other.

Number of
repetitions

Time limit Set the time limit in seconds during which
the user should do as much repetitions as
possible.

20

Interaction hand Select which hand to use to select the
start of an exercise in automatic exercise
control mode.

Right arm

Automatic saving
data on disk

Allows the user to automatically save the
data recorded on disk at the end of the
training session. It also allows to specify
a path. If a path is not provided, the file
are downloaded and saved in the "Reports"
folder in the root of the installed game.

True (saved
in "Re-
ports/"
folder)

Table 3.1: Game settings and default values

Figure 3.6: Game settings UI with default values
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3.3.3 Game flow
Once the user logs in and edits the settings to their needs, the exercise session
begins. This section provides a list of actions or events that describe the game flow
during the rehabilitation session.

1. The users click on "Inizia sessione" (start session) from the settings page.

2. The superimposed UI changes, showing on the top of the screen the timer,
back button and successful repetitions on the left, instructions in the center
and the score, stop button and next exercise button on the right.

3. The humanoid figure is rendered into the environment, tracking the same
movements of the user in real time.

4. A green spinning cube is rendered in front of the user, and in the instruction
panel the user is invited to touch the cube with their interaction hand of
choice to start the first exercise.

5. Upon the user touching the green cube, the cube disappears and two dumbbells
are rendered and anchored to the hands of the user, depending on the exercise
type; if the exercise is alternate or simultaneous lifts, one dumbbell for each
arm is rendered, otherwise only on the arm involved in the exercise. The
camera zooms in and pans on the user, showing the top-half part of the body
better. A countdown starts so that the user can regain the starting position.

6. When the countdown stops, the exercise starts effectively and the user is
instructed on which arm to lift and how, also bright colored arrows are
rendered to help the user to understand which arm to lift.

7. The user completes the repetitions, or does as much repetitions as they can,
based on the exercise mode. If the user does a valid repetition, a sound
confirming the positive action plays, the score and the repetitions number are
increased. If the user does a wrong repetition, a dull sound plays and the
score is reduced.

8. At the end of the exercise a success finishing sound plays and the camera
returns at the default location. If there are other exercises to be done, the
cube reappears allowing the user to start the next exercise. If the completed
exercise was the last one, the total score is shown to the user, with a button
to exit the session.

All these actions can be done also by sitting users, the solution is accurate even
if the user is sat and the figure 3.7 shows a gameplay screen of a sitting user.
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Figure 3.7: Gameplay screenshot with sat user

3.3.4 Score system and positive reinforcements
A score system was implemented to add a positive reinforcement for the user. For
each correct repetition, the user is awarded with a hundred points, while for a
wrong repetition the score decreases by twenty-five points. At the beginning of
each exercise the score counter resets, but the score of the exercise is summed to
the total session score. At the end of the session, the game shows the total score
to the user, with a visual representation of the score with three stars. Stars are
awarded if the total score of the session reach some thresholds:

• if the total score is greater than 30% of the maximum total score one star is
awarded;

• if the total score is greater than 60% of the maximum total score two stars
are awarded;

• if the total score is greater than 90% of the maximum total score three stars
are awarded.

The total score possible (T ) is calculated with the following formula.

T =
EØ

e=1

A
ReØ

r=1
P

B
(3.1)

Where:
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• T is the total points.

• E is the number of exercises

• Re is the number of repetitions for the e-th exercise

• P represents points per repetition (one hundred)

In timed exercise mode, the number of repetitions for each exercise is estimated
by dividing the exercise duration in seconds by two, assuming that each complete
lift cycle takes approximately two seconds. So in the case of timed exercise Re

changes as such
Re = MaxTime/2

The figure 3.8 shows how the score appears to the user at the end of the session.

Figure 3.8: Final session score UI

3.3.5 Visual and audio cues
Visual and audio cues help users to understand if they are doing the exercise
correctly or not, as well as keeping track of how many repetitions are completed.
The cues are divided in visual and audio cues.

Visual cues

Visual cues assist users with exercise execution and display score, time, and the
number of successful repetitions. A three-dimensional arrow appears for each arm:
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a blue arrow for the right arm and a green arrow for the left arm. Depending on
the exercise mode, the arrows will either appear automatically or in response to
controller input. For example, in alternate exercise mode, after the user completes
a repetition with the right arm, the blue arrow disappears and the green arrow
appears. Alternatively, the arrows will appear only when the user signals to lift the
arm via keyboard inputs, using the keyboard arrows. These arrows are anchored
to the respective arms, maintaining a fixed rotation along the longitudinal axis,
used as animation.

(A) (B)

(C)

Figure 3.9: Dumbbell and arrows positioning for single arm exercise (A), alternate
arms exercise (B) and simultaneous exercise (C).

Another visual cue is a rotating green cube positioned in front of the user. This
cube must be touched with the interaction hand to start the exercise in automatic
mode and disappears at the beginning of the exercise. Initially, the cube was
placed to the side of the user, either right or left, depending on the interaction
arm selected in the settings. However, this positioning can be challenging for users
with reduced shoulder mobility. Therefore, the cube was re-positioned in front of
the user, making it reachable by bending the elbow without requiring a shoulder
movement.

A yellow small sphere is anchored to the hand on the interaction hand, serving
as a selector, so that the user knows which arm to use to start the exercise, as
shown in figure 3.10
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Figure 3.10: Starting UI for the exercise session. Repetitions and timer text (A),
instruction text (B), start-exercise cube and selector sphere (C), partial score text
(D)

Audio cues

Each time the user does a correct repetition, reaching the required angle, a success
sound is triggered. Otherwise, if the user does not correctly lift their arm, for
example with a wrong angle, a dull error sound is triggered. A success sound plays
at the end of each exercise. All these sounds were gathered from a public domain
CC0 sounds library, called freesound.org [67].

3.4 Server and database development

3.4.1 Server
The server utilizes Node.js as its runtime environment and is written in TypeScript,
employing an MVC-like structure to ensure scalability and maintainability [43].
Initially, the server code was written in plain JavaScript but was soon adapted to
TypeScript due to the latter’s versatility and robust typing system [68].

The primary function of the server is to collect, manipulate, and store data
received from clients, the Python script, the game, or the web dashboard, using
WebSocket and REST API protocols. The server hosts the WebSocket server on
one port and the HTTP server on another, with both ports configurable in the
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environment.ts file. This allows future developers to modify the ports without
altering the source code. The main functionalities of the server are detailed in table
3.2.

Functionality Description
WebSocket server Open a WebSocket server on port 8080 (can

be customized); the WebSocket connection is
opened at the start of the solution and remains
listening until the solution is closed.

HTTP server Open a HTTP server on port 3080 (can be
customized); as for the WebSocket connection,
the HTTP server remains listening until the
code execution is stopped. It exposes a list of
APIs as detailed in figure 2.2.

Handle user’s authorization
and creation

The HTTP server exposes APIs to register
new users and allow the user authorization
via a login operation.

Data persistency Using mongoose package the server saves the
collected data in MongoDB, with pre-defined
schemas and a defined DB structure detailed
in section 3.4.1 and 3.4.2.

Expose collected data in or-
ganized JSON structures or
files

Data collected in the database is exposed via
REST APIs in structured JSON format for use
by the web dashboard UI. It is also available in
organized zip files for download by dashboard
users.

Table 3.2: Node.js Server main functionalities

express.js

express.js package is used as web framework to develop the server solution. Used
widely for these purposes, its ease of use, the HTTP utility methods and the
flexible routing framework allow to build reliable and robust APIs [69]. All the
Rest calls made to the server are processed by a router and, given the URL and
HTTP method used by the client, redirected to one of the server services. Here is
an example for the start exercise operation, used in the Unity code to signal the
start of a specific exercise, identified by exerciseIndex . The body also contains
information about the patient, identified by loggedUserId , the exercise plane of
movement (if frontal or lateral lifts) and the current sessionId .
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1 t h i s . _router . put ( ’/ api / e x e r c i s e s / s ta r t ’ , async func t i on ( req , r e s )
{

2 t ry {
3 l e t exe r c i s eDto = new Exerc i s e ( ) ;
4 exe r c i s eDto . pa t i en t Id = req . body . loggedUserId ;
5 exe r c i s eDto . s e s s i o n I d = req . body . s e s s i o n I d ;
6 exe r c i s eDto . e x e r c i s e I n d e x = req . body . e x e r c i s e I n d e x ;
7 exe r c i s eDto . ex e r c i s e P l a n e = req . body . e x e r c i s e P l a n e ;
8 r e s . s t a tu s (200) . j son ( await e x e r c i s e S e r v i c e .

s t a r t E x e r c i s e ( exe r c i s eDto ) ) ;
9 } catch ( e r r o r ) {

10 conso l e . l og ( e r r o r ) ;
11 r e s . sendStatus (500) ;
12 }
13 })

The server router parse the body in an Exercise object and uses it to call the
asynchronous startExercise method in the exerciseService class. Once the
operation returns a result, if no errors where detected, the router returns the call
with an HTTP status 200 [70] and the JSON object of the created exercise. In this
case the object will be used by Unity to retrieve the exerciseId generated by
MongoDB.

mongoose

The mongoose package [71] is used to connect to the MongoDB database, define
document schemas and perform database operations. Code snippet of the database
connection:

1 t h i s . mongoose . connect ( ur i , { useNewUrlParser : t rue }) ;
2

3 const db = t h i s . mongoose . connect ion ;
4 db . on ( ’ e r ror ’ , ( ) => conso l e . l og ( " Connection Error " ) ) ;
5 db . once ( ’ open ’ , ( ) => {
6 conso l e . l og ( ‘ [ INIT ] DB connect ion s t a r t e d on port ${db . port }

${db . name} ‘ ) ;
7 })

Example of the exercise schema created to save the exercises in the corresponding
MongoDB collection:

1 const exerc i seSchema = new mongoose . Schema ({
2 id : Number ,
3 exerciseName : Str ing ,
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4 s e s s i o n I d : Str ing ,
5 startTimestamp : Number ,
6 endTimestamp : Number ,
7 su c c e s s f u lReps : Number ,
8 wrongReps : Number ,
9 pat i en t Id : Str ing ,

10 commandTimestamps : [ Number ] ,
11 }) ;

Mongoose schema will allow to save, get, update or delete documents in the
corresponding collections of the database, using utility methods provided. Following
the current use case, the create exercise operation is:

1 Exerc i s e = r e q u i r e ( ’ . . / models /dao/ e x e r c i s e s ’ ) ;
2

3 pub l i c async c r e a t e E x e r c i s e ( s e s s i o n I d : s t r i ng , loggedUserId :
s t r i ng , e x e r c i s e I n d e x : number , e x e r c i s eP l a n e : number , a f f e c t e d S i d e
: A f f e c t edS id e s ) {

4 l e t exerciseDB = new t h i s . Exe r c i s e ( ) ;
5

6 exerciseDB . startTimestamp = Date . now ( ) ∗ 1000 ;
7 exerciseDB . pa t i en t Id = loggedUserId ;
8 exerciseDB . exerciseName = Exerc iseTypes [ e x e r c i s e I n d e x ] ;
9 e x e r c i s e P l a n e == Exerc i s eP lanes . La t e ra l ? exerciseDB .

exerciseName = exerciseDB . exerciseName + ’ l a t e r a l e ’ : exerciseDB .
exerciseName = exerciseDB . exerciseName + ’ f r o n t a l e ’ ;

10 exerciseDB . s e s s i o n I d = s e s s i o n I d ;
11

12 re turn await exerciseDB . save ( ) ;
13 }

Where the async method createExercise() returns the created document as
JSON while Exercise is the schema detailed above.

3.4.2 Database
As already mentioned in section 2.2 the DBMS of choice is MongoDB for the
excellent performances in real-time data processing [48][49]. The solution’s database
is composed by five collections.

1. Exercises: stores the exercise data, linking the user and session, saving
userId and sessionId .

2. LandmarkPositions: stores all MediaPipe pose positions data, linking them
to the session by saving the sessionId . This collection is filtered during the
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report download process by evaluating the timestamps and comparing them
to the timestamps at the beginning and end of the exercise.

3. Performances: stores all the performance data from both the Python code
and the Unity game engine, linking it to the session by saving the sessionId .

4. Sessions: stores all the session information, a session starts when the Medi-
aPipe Python solution starts the video capture and ends when the solution is
closed and the video capture stops.

5. Users: stores all the information about users.

The structure, using the Mongoose package, provides an easily scalable solution.
When new schemas are created on the server, the corresponding collections are
automatically generated in the MongoDB database. Additionally, as a NoSQL
database, MongoDB allows future modifications to existing schemas without re-
quiring any database operations; new documents can be saved without affecting
the existing ones.

MongoDB auto-generate a 12-byte ObjectId , when a document is saved in a
collection [72]. The hexadecimal string values of these ids are then used by the
application to retrieve, modify or delete specific data.

3.5 UI Dashboard development
The server also provides all the files for a minimal web page. The web dashboard is
developed using HTML5 [73] and Javascript, using jQuery [50] and Bootstrap [51].

Login and registration pages

The first page rendered is the login, from which the user can log into the system or
register a new user. To register a new user, it’s mandatory to add the information
detailed in table 3.3. The login and registration forms are showed in figure 3.11.

Field Values
Username Username of the new user. If a user with the

same username already exists, the web page
responds with an error message upon form
submission.

Password Password of choice for the user
Name User’s name
Surname User’s surname
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Role A selection of available roles, with four possi-
bilities: patient, guest, developer or healthcare
professional.

Age User’s age
Pathology User’s diagnosed pathology (if any)
Affected side A selection of affected side, can be right, left

or both
Affected for Specifies for how many years the patient has

been affected by the diagnosed pathology

Table 3.3: User registration input fields

(A)

(B)

Figure 3.11: Login (A) and registration (B) forms for the web dashboard page
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Dashboard page

The main web page is composed by a left vertical menu, which allows to visualize
the homepage or the list of users registered. The homepage and default page is
composed by a form that can be completed to filter the results of the research and
subsequently the data to be downloaded. The table 3.4 details each applicable
filter and the figure 3.12 shows the page with applied filter and results table.

Field Values Mandatory
Patient (Paziente) All the patients present in the database,

filtered by the server.
Yes

From (Da) Select a date from which filter the results. No
To (A) Select a date to which filter the results. No
Session (Sessione) Select a specific session. Sessions are fil-

tered by the selected user, so the options
change based on the userId .

No

Exercise List of exercises of the specific selected
session. Multiple selection is possible.

No

Include 3D Posi-
tions (Includi po-
sizioni 3D)

Choose to include 3D positions in the out-
put of the search.

No

Table 3.4: Web search filters

Figure 3.12: Default web page with results from exercises research

If the user selects a session, the session can be deleted. Deleting the session
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will also delete all associated exercises, performances and positions recorded. For
this reason, being a non-idempotent operation, the UI asks the user to confirm the
operation via a modal, shown in figure 3.13.

Figure 3.13: Confirm modal to delete a session

If the user clicks on search ("Ricerca") the homepage will render a table with
all the exercises that match the filters, provided by the server, as shown in figure
3.12. If the user clicks on the download icon, a .zip file is downloaded with all the
exercises data of the selected session, divided in structured JSON files. These files
can then be used to analyse patient’s data, containing all the information about
the patient’s positioning during the exercise, as explained in section 4.1.1.

3.6 Executable bundle development
A batch bundle was created to launch the application from a single batch executable
file. It consists of three batch file and one executable file.

1. launch.bat : the main batch file that starts the solution. It starts the server
batch, the Python batch and the Unity executable. It also intercept the game
solution process closing, to kill also the other open processes.

2. launchNodeJs.bat : launches the Node.js server, ensuring that all the npm
packages are installed with the npm install command.

3. launchPython.bat : launches the Python script bundle, creating a pyenv
[74] environment to use the correct Python version to adapt to computers
with multiple Python versions installed.

4. GymRehabilitation.exe : it executes the Unity game itself; once its killed,
all the other processes are killed as well.
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5. launchDashboard.bat : it launches only the server and opens the web dash-
board in the default browser.
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Chapter 4

Results

4.1 Types of data collected
Collected data helped the team to understand better the solution potential, its
limitations and its improvement areas. Data was gathered during development in
different areas: one room with poor and non-uniform lighting and, during a weekly
meeting done at Politecnico di Torino, in a laboratory with ideal lighting conditions
and setting; the space was free of obstacles with direct neon lights above the user,
so that all the parts of the body were uniformly illuminated. All data were saved
and collected in the database, associated with the user session by the sessionId .

The exported data, as described in section 4.1.1, consist of a list of JSON
files containing all relevant information about the exercise, detailed in table 4.1.
This JSON output is analysed in MATLAB [75] using a script that calculates the
trajectories of the right and left arms and the average FPS rate. The average FPS
rate is determined using the timestamps for the start and end of the exercise, along
with the number of frames collected.

Data Type Purpose
Capture FPS The effective capture FPS of the camera during the

pose estimation. Saved to gather what is the differ-
ence between camera FPS and pose estimation FPS.
Saved once every second only if DEBUG variable is
True (see section 3.2).

Theoretical FPS Calculated immediately after the pose estimation by
MediaPipe, it indicates what could be the ideal per-
formance, indicated by maximum FPS of the solution.
Saved once every second only if DEBUG variable is
True (see section 3.2).

44



Results

Real FPS The effective FPS of the Python code after writing
to the pipe and sending the data to the server. Saved
once every second only if DEBUG variable is True
(see section 3.2).

Landmark positions As shown in section 3.2, all position data with times-
tamps were saved to be analysed afterwards.

Exercise start and stop Each time a user starts or stops an exercise, the start
or stop action timestamp is saved in database, linked
to the exercise.

Command action Each time a user receives a command to lift an arm,
either in automatic or controlled mode, the command
timestamp is save in database, to analyse the reaction
time of the patient, comparing it to the timestamp
in which the arm reaches the required angle.

Unity FPS FPS of the rendered game, to observe an eventual
drop in performances.

User’s repetitions Both successful and wrong repetitions completed by
a user are saved in the database.

Table 4.1: Collected data overview

In the initial iterations of server and game development, MATLAB analysis
helped identify and address performance issues. For example, while the capture
FPS was expected to run at an average of 30 FPS, the actual FPS dropped to 22
FPS or lower, indicating a loss of eight or more FPS.

Improvements to the Python script, including the implementation of a multi-
thread structure (refer to 3.2), enhanced the average FPS to 25. Further code
optimizations in the Node.js server and bug fixes improved performance to an
average of 29 FPS. These enhancements significantly reduced data loss, allowing
for more accurate analysis and output.

4.1.1 Data structure
In this section it will presented the structure of data extracted and successfully
analysed with MATLAB.

1 {
2 " exercise ": {
3 "id": "667 e8958083fa5e072f5d955 ",
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4 " exerciseName ": "Alzata braccio sinistro
laterale ",

5 " startTimestamp ": 1719568728364000,
6 " endTimestamp ": 1719568743728000,
7 " commandTimestamps ": [
8 1719568730793000, 1719568731996000, ...
9 ],

10 " patientId ": "667 e8921083fa5e072f5d4bb ",
11 " sessionId ": "e8bbc5b6 -5027 -4 db1 -b1ba -

ab9dcd8949a2 ",
12 " successfulReps ": 10,
13 " wrongReps ": 0
14 },
15 " landmarks ": [
16 {
17 "_id": "667 e8959083fa5e072f5d961 ",
18 " landmarks ": [
19 {
20 "x": "0.011" ,
21 "y": " -0.636" ,
22 "z": " -0.361" ,
23 " visibility ": "1.000" ,
24 " landmark ": 0
25 },
26 {
27 "x": "0.018" ,
28 "y": " -0.674" ,
29 "z": " -0.344" ,
30 " visibility ": "1.000" ,
31 " landmark ": 1
32 },
33 ...
34 ],
35 " timestamp ": 1719568728395221,
36 " sessionId ": "e8bbc5b6 -5027 -4 db1 -b1ba -

ab9dcd8949a2 ",
37 " frameId ": 579,
38 "__v": 0
39 }, ...
40 ]
41 }
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The extracted data is combined with all the information about the exercise, as
detailed in section 3.4, and all the landmark positions recorded during the exercise.
The server uses the startTimestamp and endTimestamp to retrieve only the
landmarks positions needed.

4.2 Data analysis
The analysis is conducted with MATLAB, using a script that traces the movements
of right and left arm, evaluating the angle between the arm and the corresponding
side of the user. This analysis conducted during the development highlighted some
limitations that can be mitigated following some rules and constraints:

1. the user should not wear big clothes that conceal body joints or limbs definition;

2. the lighting should be as diffused as possible, not leaving a side of the body
obscured compared to the other;

3. the head of the user should always be visible in the frame. This is mandatory,
otherwise the pose detection will fail, as explained in section 2.2.2;

4. the user should not wear bracelets or clocks of sort on their wrists;

5. the background should be as uniform as possible, with a good contrast with
the user’s figure.

If these rules are not followed, the pose detection can suffer lag or wrong
estimation, especially if two joints overlap, as shown in figure 4.1, where the user
was wearing a dark bracelet. This wrong estimations are also saved in the database,
it’s clearly visible a difference also in the data analysed with MATLAB, where
there is a more jagged curve of movement (not representative of real movements) in
sub-optimal conditions, and a much smoother curve in optimal or good conditions,
as shown in figure 4.7.

To evaluate the performances of the finished prototype (version 0.10.3 ) data
was collected for each of the exercise type (single for both arms, alternate arms
and simultaneous arms). Exercise type collected are described by the table 4.2.
The data was collected in both the most suitable setting with optimal lighting and
in the setting with sub-optimal condition.

Plane Mode Exercise goal
Frontal lifts Automatic Repetition number
Lateral lifts Automatic Repetition number
Frontal lifts Controlled Repetition number
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Lateral lifts Controlled Repetition number
Frontal lifts Automatic Max repetitions in fixed

time
Lateral lifts Automatic Max repetitions in fixed

time
Frontal lifts Controlled Max repetitions in fixed

time
Lateral lifts Controlled Max repetitions in fixed

time

Table 4.2: Collected exercise data in different conditions
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Figure 4.1: Examples of wrong and good pose estimation with good lighting, but
complex background (wrong positions for wrist and hand joints)

This produced a conspicuous number of results that were analysed:

• a total of ten sessions from the last version were gathered, from three individ-
uals, two males and one female;

• different sessions were gathered from old and non-optimized versions of the
solution during development, for the purpose of this work three of this sessions
will be analysed;

• fifty-six different exercises in total were analysed in MATLAB;

Data analysis in this section will be divided in areas, highlighting the differences
between settings, old and new versions of the solution, or between a good set with
ideal lighting and a set with sub optimal lighting.
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(A) (B)

(C) (D)

Figure 4.2: All the visual representations produced by the MATLAB analysis
for a single arm exercise, with right arm angle (A), left arm angle (B), original vs
smoothed arm joints positions (C) and frames per second (D)

Model complexity: performance analysis

As detailed in Section 3.2, the MODEL_COMPLEXITY variable can be adjusted to
select between the lite, full, or heavy detection models provided by MediaPipe
[20]. Modifying this variable directly affects the user experience: the heavy model,
while more accurate, can cause significant rendering lag, whereas the lite model
offers better performance but with reduced accuracy. The figures 4.3 and 4.4 show
comparisons between the different trajectories analysed with MATLAB and the
FPS performances for all the three different model complexities.

To obtain these results, the same exercise was repeated with varying model
complexity settings. The exercise involved a single arm lift, performed at a steady
pace, with a maximum duration of ten seconds. The user executed the lifts without
any errors. After completing the arm lifts, an additional two-second interval was
included to allow the user to return their arm to the initial position before stopping
the exercise. Consequently, each exercise session lasted a total of twelve seconds.
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(A) (B)

(C)

Figure 4.3: Comparing data positions quality with model complexity 0 - Lite (A)
1 - Full (B), and 2 - Heavy (C)

During this interval, the pose detection and estimation produced the perfor-
mances, shown in figure 4.4:

• 460 frames for the lite model, with an average framerate of 38.83, the solution
registered seven correct repetitions and two errors and produced an irregular
and jagged trajectory curve;

• 330 frames for the full model, with an average framerate of 27.64, the solution
registered seven correct repetitions and no errors and produced a much more
refined trajectory curve compared to the lite model;

• 94 frames for the heavy model, with an average framerate of 8.60, the solution
registered five correct repetitions and no errors and produced the smoothest
curve, compared to the lite and full models;

Therefore, while the heavy model produces the smoothest curve, as shown in
Figure 4.3, its performance in terms of average framerate is insufficient. Conversely,
the lite model offers excellent performance in terms of average FPS but lacks the
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(A) (B)

(C)

Figure 4.4: Comparing FPS performances with model complexity 0 - Lite (A) 1 -
Full (B), and 2 - Heavy (C)

necessary precision for effective use. The full model is the best compromise in
terms of performance and accuracy, so it was selected as the best option to set
the default value of the model complexity. All data collected in this section are
therefore collected using the full model.

Optimization of the average framerate

As detailed in section 4.1 the average framerate was calculated to analyse the
solution performances. The FPS were calculated with:

1 TIME=tab l e2a r ray ( c e l l 2 t a b l e ( timestamp ) ) ;
2 DELTA_TIME = (TIME( : )−TIME(1) ) ∗10^−6;
3 f ramerate =1./( d i f f (TIME∗10^−6) ) ;
4 framerate_m=mean( f ramerate ) ;

Where the variables represent:

• TIME : Contains the timestamps converted from microseconds to seconds.
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• DELTA_TIME : Contains the time differences between each timestamp and the
first timestamp, in seconds.

• framerate : Contains the instantaneous frame rates calculated as the recip-
rocal of the time differences.

• framerate_m : Contains the average (mean) frame rate computed from fram-
erate.

The calculated results were also plotted to provide a visual representation of the
FPS during the exercise. As shown in Figure 4.5, the initial average framerate was
quite low, with an average FPS of 19.27 in version 0.1.0 of the solution. Setting
DEBUG to False , that showed the rendering by MediaPipe pose detection and
print console logs, as described in section 3.2, subsequent improvements were made,
and in version 0.4.0 , there were significant enhancements, yielding a 24/25 FPS
on average. However, this version still experienced performance drops due to a bug
in the data persistence layer and the single-thread Python solution. In the latest
version, 0.10.3 , bug fixes, code improvements, and the addition of a separate
thread in the Python solution resulted in an average FPS of 28.93, calculated from
more than 50 entries. The best result achieved was 29.72 FPS, though other results
were also commendable, with the lowest FPS recorded in the latest version being
27.64.

53



Results

(A) (B)

(C)

Figure 4.5: Average framerate evolution from version 0.1.0 (A, framerate avg
19.27), to version 0.4.0 (B framerate avg 25.31) and final version 0.10.3 (C framerate
avg 29.61)

Effects of illumination on arms trajectories

The MATLAB script provides also the visual representation of the trajectories
of the arms, plotting the angle between each arm and the corresponding user
side. As mentioned in the introduction of this chapter, the trajectories can suffer
from a suboptimal setting for the exercises and can indicate lag or incorrect pose
estimations by the MediaPipe pose estimation solution. For example, if the user
is illuminated only from an angle, leaving one side darker than the other, the
trajectories of the arm will be imperfect, as shown in figure 4.6, which compares
the trajectories of right ad left arm in simultaneous arm lift exercise.

The data recorded can also be of sub-optimal quality if the camera is against
the light, as shown in figure 4.7, were the same exercise (simultaneous lateral arms
lift) was performed first with optimal conditions and then with a strong backlight.
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(A) (B)

Figure 4.6: Comparing right side (A) and left side (B) in a exercise where the
left side is poorly illuminated

(A) (B)

(C) (D)

Figure 4.7: Comparing data positions quality with good lighting (A) and (B),
and bad lighting (C) and (D)
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4.3 Guidelines for effective data collection and
use

Meaningful data collection hinges on users adhering to specific guidelines. The
analysis has demonstrated that factors such as lighting conditions, background
settings, user behavior, and clothing choices significantly impact data recording
accuracy. When these variables are not controlled or standardized, they can
introduce variability and diminish the quality and reliability of the collected data.
Therefore, following established guidelines, described at the beginning of the section
4.2, ensures more consistent and valuable data, facilitating accurate analysis and
informed decision-making.

Data collection serves not only to analyse the performance of the solution
but, more importantly, to track the progress of patients over a defined period.
Specifically, the collected data can be utilized to:

1. evaluate the progression of a patient, comparing the numbers of correct and
wrong repetitions;

2. compare the effectiveness of tele-rehabilitation vs rehabilitation, in terms of
successful repetitions, frequency of completed sessions, drop out rates and so
on;

3. analyse the response time of the patient, comparing the commandTimestamp
value with the timestamp of maximum lift by the patient.
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Future developments

5.1 General solution improvements
Self contained solution

To ensure the exergame and accompanying Python code can function independently
of server connectivity, a self-contained solution should be developed. This standalone
version would eliminate the dependency on a reachable server and remove the need
for user login. While data collection would not occur in this scenario, the self-
contained solution remains highly beneficial for rehabilitation purposes. Developing
a self-contained solution aligns with the goal of making the exergame accessible and
effective for rehabilitation purposes, even in environments where server connectivity
is not guaranteed.

Versioning

To enhance the organization and maintainability of the exergame solution, it can
be divided into different repositories. This separation allows for better management
of the codebase, with each component being developed, tested, and maintained
independently. By creating a specific repository for each solution node, including
the Python code, Unity game, server, and web dashboard, the architecture can be
more scalable and maintainable.

Security improvements

The current prototype was developed and maintained in local environments. How-
ever, if the solution is released and the server and database are centralized, a
security layer needs to be added to protect sensitive information and ensure data
encryption. Several measures can be adopted:
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1. use JSON Web Tokens (JWT [76]) to create a temporary secure connection
between the clients and the server;

2. release the solution over HTTPS by creating a SSL/TLS certificate [77];

3. use an external identity and access management solution to handle sensitive
user information and data, such as passwords, names, diagnoses and so on;

4. implement regular data backups and establish a robust data recovery plan;

5. ensure that data stored in the database is encrypted. This helps protect
sensitive information in case of unauthorized access to the database files;

6. set up comprehensive logging and monitoring to detect and respond to suspi-
cious activities.

5.2 Game mechanics
New game mechanics can be added to the exergame, improving the user experience
and rehabilitation efficiency. As proven by recent studies, group interaction can be
an important factor in patients with Parkinson’s disease [8], so it could be a good
addition to evaluate a solution where more people can be tracked and rendered in
the game.

The user’s movements can be rendered using a three-dimensional avatar instead
of a plain humanoid figure, providing a more immersive and engaging experience.
The joint positions can be used to animate the skeleton of a three-dimensional
character accurately, making the movements appear more realistic and lifelike. This
approach could significantly enhance player engagement, particularly if players have
the option to customize and select their avatars in advance. By allowing players to
choose avatars, the system can create a more personalized and enjoyable experience,
ultimately encouraging continued participation and improving the effectiveness of
the exercise program.

To further enhance the versatility and efficiency of the exergame, the solution
can be adapted to include exercises targeting the lower part of the body, so that
the exergame can offer a more complete rehabilitation, catering to a broader range
of physical therapy needs.

5.3 User Interface
Three-dimensional movement representation

The web page can be improved by adding a visual representation of the patient
movements. A solution based on libraries such as three.js [78] or aframe.js [79] can
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be used to visualize the movements of the users in a three-dimensional environment
on a web page, using WebGL API [80]. All the dimensions saved in the database
are real-world dimensions measured in meters. The mentioned libraries also use
three-dimensional positions represented in meters. Therefore, it should be possible
to directly render the joints, considering that the positions saved from MediaPipe
use the user’s hip center as their origin.

Exercises and users related actions

To enhance the functionality of the system, CRUD (Create, Read, Update, Delete)
operations can be implemented for both the exercise table and the patients table.
This would provide users with the capability to perform comprehensive data
management tasks.

By incorporating these CRUD operations, the system becomes more flexible
and user-friendly, allowing administrators and authorized personnel to effectively
manage the data related to exercises and patients.

Download a single exercise report

It should be given the possibility to download the reports of single exercises instead
of a whole session. It should also be reviewed the exercise output file to check if
there are other information that can be useful to the data analysis.

5.4 Server and Database
The server and database architecture can be improved to incorporate data analysis
capabilities within the server layer itself. This would allow the generation of plot
images depicting the movements of the patients, eliminating the necessity for script
execution in MATLAB. By processing and visualizing data directly on the server,
it ensures a more streamlined and efficient workflow.

Additionally, a functionality could be introduced to facilitate the download of
all exercise information in a CSV or Excel file format. This feature would provide
users with an easy way to access and analyse their data offline or integrate it with
other applications for further analysis.

Furthermore, the system could be integrated into an existing solution, removing
the requirement for users to create and register new accounts. This integration
would enhance user convenience by leveraging existing authentication and user
management systems, providing a seamless user experience.
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Conclusions

The development and implementation of an exergame solution, leveraging the
MediaPipe framework, aimed at the rehabilitation of neuro impaired patients, has
been comprehensively documented and analysed. This conclusion draws together
the key findings and outcomes.

The data collected during exergame sessions were analysed using MATLAB,
focusing on the trajectories of the right and left arms and the average FPS rate.
Initial tests revealed performance bottlenecks, such as lower-than-expected FPS
rates. However, through iterative improvements, performance was significantly
enhanced, reducing data loss and providing more accurate and reliable analysis.

In comparing these findings to the initial goals, it is clear that the project has
addressed the core requirements set out at the beginning. The solution effectively
integrates real-time pose estimation, data collection, and analysis, within a scalable
and maintainable architecture. The iterative development process, coupled with
testing and evaluation, has resulted in a robust prototype that meets the needs of
use.

The initial goal of creating an innovative rehabilitation tool has been achieved,
with the potential for further enhancements and developments to expand its
capabilities. The use of the MediaPipe framework for pose estimation has proven
effective, offering a solid foundation for tracking and analyzing movements. However,
it’s important to note that while MediaPipe is robust and reliable under ideal
conditions, its accuracy can diminish in less optimal environments. Factors such as
poor lighting, occlusions, or unconventional body postures can affect the precision
of pose estimation. Therefore, user training is essential to ensure that users are
aware of the conditions required for accurate data capture. The data collected
and analysed will provide valuable insights into the patient’s progress and the
effectiveness of the rehabilitation exercises.

Looking ahead, the proposed future developments offer a clear roadmap for
enhancing the solution. By creating a self-contained version, introducing new
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game mechanics, and improving the user interface and server, the exergame can
become more accessible and engaging for users. Upgrading the server and database
capabilities will further streamline the data analysis process, providing real-time
feedback and enhancing the overall user experience.

In conclusion, the project has successfully met its initial objectives, providing
a solid foundation for future research and development. The continued evolution
of this solution, driven by the proposed future developments, promises to deliver
more effective and personalized rehabilitation programs, ultimately improving the
quality of life for patients.
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