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Summary

This thesis explores the intricacies of data-based modeling for nonlinear hydrody-
namics in wave energy conversion systems. It explores into the complexities of
wave energy conversion, highlighting the need for precise and computationally light
modeling to be prepared for control design phase to optimize system performance.
Through the development of a two-degree-of-freedom model integrating nonlinear
Froude-Krylov effect, the thesis aims to deepen our understanding of wave energy
converters and contribute to the advancement of more effective technologies in the
field. The thesis presented here could offer insights for the wave energy conversion
systems, suggesting how data-based modeling can contribute system efficiency and
reliability. In essence, this thesis represents a modest yet meaningful contribution
to the field of wave energy conversion, laying groundwork for further research and
development in sustainable energy technology.
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Chapter 1

Introduction

1.1 Background

Wave energy gives a substantial and reliably predictable form of renewable energy,
with abundent potential resources(estimated total wave energy is up to 80,000
TWh a year[1]). The extraction of wave energy from oceans holds the promise of
making significant contributions to global sustainability objectives, aligning with
the pursuit of a better environment on earth. So wave energy converter systems
have emerged to make use of the vast renewable energy hidden in the ocean waves.
These systems are designed to capture the kinetic energy and potential energy
present in waves and convert it into electrical power.

Wave energy Convertors (WEC) of different mechanisms have been implemented
to extract energy from shoreline out to the deeper water offshore to harness wave
energy efficiently. The most common ones are: attenuator(floating devices capturing
energy from the relative motion of the two arms), point absoeber(converting the
motion of the buoyant top relative to the base into electricity), oscilating wave
surge converter(extracting energy from wave surges and the movement of water
particles within them), oscilating water column(generating electricity through
airflow by waves compressing and decompressing the air in a hollow structure),
overtopping/terminator device(waves breaking into a reservoir, then returning
to the sea through a low-head turbine to generate power), submerged pressure
differential(waves causing alternating pressure thus pumping fluid through a system
to generate electricity), bulge wave(water passing a mooring rubber tube filled with
water to generate power via pressure variation), rotating mass(capturing electricity
by the movement of the device heaving and swaying in the waves)[2].
While the specific configurations and operational principles vary among these
devices, the most fundamental principle of absorbing energy from ocean waves
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Introduction

involves intricate interactions between the mechanical components of WECs and the
dynamic motion of the waves themselves. Understanding the principle is essential
for optimizing the design and performance of WEC systems. The mechanisms of
WECs commonly used mentioned before can be broadly categorized into three
types:

• Hydrodynamic Effects: utilizing the pressure differentials and fluid dynamics
induced by wave motion.

• Mechanical Oscillation: relying on mechanical oscillation induced by wave
action to capture energy.

• Wave-Structure Interaction: harnessing the relative motion between waves
and fixed or floating physical structure of WECs to extract energy through
mechanisms such as pitch, heave, or surge motion.

However, it should be noted that wave energy technology is still in its early
stages of development compared to other renewable energy such as solar and
wind energy. As a result, currently it is not competitive commercially when
compared to traditional fossil fuel or nuclear energy. The primary reason hindering
commercialization is inefficient energy extraction usually due to the fact that the
WEC’s dynamic parameters are not optimally tuned thus their control is not
optimal for most wave profiles[3]. And the irregular and stochastic nature of
ocean waves brings significant challenges for WEC’s dynamic parameters tuning.
Also WEC have to confront with the disadvantage of wave power, which is the
significantly random variability in several timescales: from wave to wave, with sea
state, and from month to month[4].
Control technology plays a critical role in addressing these challenges of optimizing
the operation of WECs in real-time. Through advanced control technology, WECs
can adapt their response to changing wave conditions, ensuring maximum energy
absorption under diverse environmental scenarios.

1.2 Motivation
To optimize the energy extraction from ocean waves using wave energy converters
(WECs), it is necessary to design a more effective controller. To advance the design
of a sophisticated controller, there are several key motivations drive us to come up
with a new modelling approaches:

1. The operational range of motion for wave energy converters can extend into
nonlinear regimes, where the interaction between the device and wave forces
becomes increasingly complex. Nonlinearities arise from various sources, in-
cluding fluid-structure interactions and hydrodynamic effects. These nonlinear
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effects can manifest as phenomena such as wave-induced motion, resonance
amplification, and energy dissipation[5].
As the operational envelope of WECs expands to accommodate a wider range
of wave conditions and operating scenarios, the significance of nonlinear dy-
namics becomes more pronounced. Failure to adequately account for these
nonlinear effects in WEC modeling can lead to inaccurate predictions of device
performance, compromising design optimization efforts and hindering the
development of effective control strategies. Among all the sources of nonlin-
earities, Froude-Krylov (FK) effect, which play a crucial role in the energy
absorption performance of WEC systems[6].

2. The complexity of wave energy converter models presents challenges in terms
of computational effort. The ratio bettween accuracy gain and computational
effort is descreasing as the model get more complicated in terms of intricate
geometries, control strategies, and environmental considerations. So nowadays
the engineering challenges to WEC design include the trade-offs in modeling
accuracy versus computational cost[7]. And real-time feasibility is essential in
wave energy converters for two reasons:

• Real-time control: Real-time feasibility is necessary to implement control
strategies that can adjust the WEC’s behavior based on changing wave
conditions and other factors to optimize their performance and ensure
safe operation.

• Real-time simulations: Real-time simulations are used to test and validate
WEC in the design stage. Real-time feasibility is essential to ensure that
simulations can be completed quickly enough to provide useful feedback
for design and control optimization.

The computational demands of WEC models can be significant due to factors
like the radiation convolution integral. These challenges highlight the need
to balance modeling accuracy with computational efficiency, especially when
considering real-time applications[8].

3. While the majority of wave energy converter control strategies primarily
focus on linear hydrodynamic WEC models (as evidenced in sources such
as[9]), exceptions do exist. These exceptions mostly involve the consideration
of relatively ’simple’ nonlinear hydrodynamic effects, in terms of analytical
complexity. For instance, some studies have investigated the incorporation
of nonlinear effects such as viscous drag forces and state-dependent restoring
effects[10]. These efforts signify a departure from the conventional linear
models and reflect a growing interest in understanding and harnessing the
nonlinear dynamics inherent in wave energy conversion systems. But as
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mentioned before, the Froude-Krylov (FK) effect is a significant nonlinear
contribution to the hydrodynamic force experienced by a variety of wave
energy converters (WECs) currently in development[6].
The Froude-Krylov (FK) effect is a nonlinear hydrodynamic force that results
from the pressure distribution on the WEC surface due to the incident waves.
The nonlinearity of FK effect is more significant in devices with variable cross-
sectional areas due the fact that the variable cross-sectional area can cause
complex pressure distributions on structure surface. And recent WEC design
trends are moving towards floating structures with variable cross-sectional
areas, thus it is important to consider nonlineaar Froude-Krylov effect.

4. There are some papers take the nonlinear Froud-Krylov effect into considera-
tion, such as a variable-structure control strategy developed for a heaving point
absorber WEC to handle both static and dynamic Froude-Krylov forces[11].
Similarly, a nonlinear model predictive controller for a WEC system with
comparable dynamic characteristics is designed to handle this[12]. However,
both strategies outlined before share a fundamental drawback: they rely on an
analytical model that represents Froud-Krykov effects, particularly dynamic
part of it, assuming a regular (monochromatic) free-surface elevation, which is
composed of a single frequency component. But this is a strong assumption,
as real ocean waves are typically panchromatic, meaning they are composed
of a range of frequencies. The limitation of this assumption is that it may
not accurately represent the complex dynamics of real-world wave conditions,
which can have a significant impact on the performance of WECs. Therefore,
the controllers developed using these models may not be directly applicable
in realistic scenarios, where the ocean wave conditions are more complex and
varied.
Not only due to the poorly representation of real world, but also due to the
reason that with those models, wave number which can only be defined for
regular wave inputs is necessary for design and synthesis procedure of control
technology. Consequently, the application to stochastic (irregular) wave fields
is not available.
Another similar issue is that this assumption is also used to derive a closed-form
expression for the latching time, which is necessary for the implementation of
latching control in heaving WEC systems such as [13][14].
This highlights the need for more sophisticated models that can accurately rep-
resent the complex dynamics of real-world wave conditions and the nonlinear
Froude-Krylov effects that arise from them.

5. Model-based control strategies play a crucial role in optimizing the performance
of WECs by regulating device operation in response to varying environmental
conditions and operational objectives. The absence of a model-based optimal
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control design for WEC systems, taking into account nonlinear Froude-Krylov
(FK) effects, may contribute to the lack of control-oriented models that
accurately capture these effects in a way that aligns with contemporary
control methods.
Numerical methods, such as the analytical method, boundary-integral equation
method, Navier-Stokes equations method, and empirical method, have been
used to model floating-point absorbers in wave energy converters. However, the
utility of those models for control design could be constrained by computational
limitations, model inaccuracies, and the complexity of WEC dynamics. For
instance, the analytical method assumes a linear relationship between the
wave height and the wave velocity, which may not hold in real-world scenarios
where that can be nonlinear. Similarly, the boundary-integral equation method
assumes that the fluid is not viscid and not compressible, which may not be
true in real-world scenarios[15]. Regardless of the inaccuraccy and computation
limitation of those models, numerical methods like NLFK4ALL developed
by Giorgi[16] could hardly used for control techniques design. Because this
method assumes a ’frequency-by-frequency’ decomposition of the pressure
field, which does not align well with model-based control design requirements.
Model-based control synthesis typically necessitates a closed-form description,
at least in terms of input-output dynamics[10].
Developing control-oriented models could offer a promising alternative for
model-based control strategies, at the same time, providing a computationally
efficient framework for capturing the essential dynamics of WEC systems while
accommodating uncertainties and nonlinearities.

In light of these listed motivations, the pursuit of developing control-oriented
models stands as a promising way to designing highly effective model-based control
strategies. By focusing on the complicated dynamics of WEC systems, such
models have the potential to accurately capture system behavior while maintaining
computational efficiency. Moreover, they enable the accommodation of uncertainties
and nonlinearities inherent in real-world wave energy conversion scenarios.

1.3 Objective
A control-oriented model is a mathematical representation of a system that is used
to design and analyze control systems. A control-oriented model is different from
traditional models by emphasizing the representation of system dynamics in a form
that is conducive to control design and analysis. It is a simplified model of the
system that focuses on the aspects that are relevant for control design, such as
the system’s dynamics and response to inputs. A control-oriented model should
be able to predict the system’s behavior accurately enough for control design
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purposes, while being computationally efficient and easy to manipulate. A good
control-oriented model should have the capability to predict observed data and
be represented in a state-space form that satisfies the separation principle. This
principle implies that the future output of the system should depend only on the
current state and the future input, with the current state summarizing the effect
of past inputs on future outputs.
In the context of wave energy converters, the control-oriented model could be
tailored to capture the essential dynamics relevant to control design, such as wave-
structure interactions, actuator dynamics, and energy conversion mechanisms. But
in this research, nonlinear Froude-Krylov effect which is reason of deficiency of
current control systems of WECs. So the primary objective of this research is to
develop a control-oriented model for wave energy converters that facilitates the
design and implementation of effective control strategies. And it should be a sim-
plified mathematical representation of a system and predict the system’s behavior
focusing on Froude-Krylov effect accurately enough, while being computationally
efficient and easy to manipulate.

To achieve the objective of developing a control-oriented model, this research
adopts a data-based framework that make use of the computed data on FK forces
and system identification techniques. Specifically, the framework involves:

• Generation of a Set of Froude-Krylov (FK) Data: The first step involves
collecting a comprehensive dataset of FK forces under a multinsine wave
which encompassing a wide range of frequencies representative of real ocean
states. This study will utilize the numerical solver NLFK4ALL to generate this
dataset. This dataset serves as the basis for characterizing the hydrodynamic
interactions between waves and the WEC structure. By systematically measur-
ing FK forces, a representative dataset is obtained, enabling the identification
of key trends and patterns in FK force behavior.

• Model Reduction and System Identification: The device configuration of this
study is a giant cylinder which has 6 degrees of freedom. But in order to
simplify the complexity of the system by approximating its behavior, a lower-
dimensional model which is able to retaine the essential dynamics is developed.
And this process is called model reduction. In the context of this study, the
original 6 degrees of freedom (surge, sway, heave, roll, pitch, roll) is trimed to
be 2 degrees of freedom (heave and pitch) to accurately capture the physics of
a system in terms of our interest in a wave energy converter.
System identification is a methodology for building mathematical models
of dynamic systems using measurements of the system’s input and output
signals which is dataset from NLFK4ALL solver in this study. Through
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this process, the control-oriented model is created to capture the dominant
dynamics governing WEC performance, facilitating the design of effective
control strategies.
In this study, two separate models will be developed to accurately represent
static Froude-Krylov effects and dynamic Froude-Krylov effects.
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Chapter 2

Theoretical Preliminary

2.1 Frequency-Domain Models
In the numerical modeling of Wave Energy Converters (WECs), the application of
Newton’s second law is essential, asserting that the net force acting on the WEC is
balanced by the total forces applied. These forces include:

• Hydrostatic force This results from changes in the hydrostatic pressure distri-
bution due to the device’s oscillatory movements.

• Excitation loads These are generated by the interaction of incident waves with
the stationary device.

• Radiation force This arises when the device alters the surrounding pressure
field through its own oscillations, in the absence of external wave activity.

2.1.1 Potential Flow Theory
Potential flow theory assumes ideal flow conditions, characterized by inviscid (fric-
tionless) and irrotational fluid motion. In inviscid flow, there are no viscous shear
stresses, only normal stresses are present, and fluid elements do not deform or
rotate. Irrotational flow means that fluid elements do not rotate relative to their
center of gravity.

1. Laplace Equation
If we assume the flow to be in-compressible, the continuity equation becomes:

∇u = 0, (2.1)

where u(x, y, z)denotes the fluid velocity vector and x, y and z z represent the
spatial coordinates in a three-dimensional space, with x being the direction
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of the wave, z indicating the up and down direction, and y representing the
remaining spatial direction, in a right-hand coordinate frame.
Since potential flow theory assumes the flow is irrotational, the curl of u is
zero:

∇ × u = 0 (2.2)

The water velocity can be also expressed in terms of a velocity potential,
ϕ(x, y, z, t):

u = ∇ϕ (2.3)

By combining these equations, Laplace Equation is formulated:

∇2ϕ = 0. (2.4)

2. Boundary Conditions
Dynamic boundary conditions arise from maintaining pressure stability at
the fluid’s free surface. Leveraging the Bernoulli principle, which describes
fluid dynamics and energy preservation, these conditions can be effectively
integrated at the free surface to consider the boundary conditions.

∂ϕ

∂t
+ 1

2(∇ϕ)2 + gη = 0 on z = −η(x, y, t) (2.5)

where η represents the deviation of the water’s free surface from its resting
state, with positive values indicating that the surface is raised above the xy
plane.

Kinematic boundary condition requires that the component of the fluid velocity
normal to the surface must equal to the surface velocity:

∂η

∂t
+ ∂ϕ

∂x

∂η

∂x
+ ∂ϕ

∂y

∂η

∂y
+ ∂ϕ

∂z
= 0 on z = −η(x, y, t) (2.6)

These two conditions are nonlinear due to the second-order terms but it could
be solved by using linear theory based on the assumption that the wavelength is
much larger than the wave amplitude. So the second order could be neglected
because its magnititude is much smaller than other terms. While applying
linear theory, boundary conditions are only considered at the equilibrium
position of the free water surface. By ignoring the nonlinear term of them and
combining them together:

∂2ϕ

∂t
+ g

∂ϕ

∂z
= 0 on z = 0 (2.7)
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The boundary condition applied with linear theory over the body-fluid interface
requires that fluid velocity component perpendicular to the body’s surface,
un, must equal with the body’s velocity in its normal direction:

∂ϕ

∂n
= un (2.8)

The boundary condition at the seafloor requires that there is no vertical
component of the fluid velocity, based on the assumption that the seabed is
level and located at a depth z = −h:

∂ϕ

∂z
= 0 on z = −h (2.9)

Intuitively, at a distance from the oscillatory body, the wave field should
remain undisturbed or resemble the incident wave field. So the boundary
condition over radiation requires that the magnitude of the potential should
diminish proportionally with the inverse of the square root of the distance
from the source, reflecting the decay in intensity as distance increases:

ϕ ∝ (kr)−1/2e−ikr as r → ∞, (2.10)

here r denotes the radial distance from the body and k represents the wave
number, related to the wave frequency given by:

ω2

g
= k tanh kh. (2.11)

3. Decomposition
To solve boundary value problem, velocity potential could be rewritten as
a form of complex amplitude and a sinusoidal time dependence with unit
amplitude, eiωt:

ϕ(x, y, z, t) = Re
î
ϕ̂(x, y, z)eiωt

ï
(2.12)

Under the assumption of linearity, the resultant wave field around a WEC can
be described as a combination of an incident wave, a diffracted wave, and a
radiated wave. In this context, the ’incident field’ is characterized by a plane
wave propagating freely in the absence of any obstructions. The ’diffracted
wave field’ emerges due to the interactions between the incident wave and
a stationary object. Moreover, the ’radiation wave field’ is produced by the
oscillations of the object when there are no incoming waves present. Therefore,
the total velocity potential can be broken down as follows:

ϕ = ϕD + ϕr

ϕD = ϕ0 + ϕs

(2.13)
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where ϕ0 and ϕs represent the scattered/diffraction and the incident wave
potential.
The velocity potential associated with a propagating incident wave is:

ϕ̂0 = igA
ω
e(kz) exp{−ik(x cos β + y sin β)}

e(kz) = cosh[k(z + h)]
cosh kh

(2.14)

where β denotes the angle between the direction of propagation of the incident
wave and the x-axis and e(kz) is the decay function where h denotes the water
depth, indicating how the dynamic pressure decreases with distance below the
still water line.
The scattered wave or diffraction wave is generated by the interaction of the
incident wave and the motionless body:

−∂ϕ̂s

∂n
= ∂ϕ̂0

∂n
(2.15)

Here,ϕr represents the radiation potential linked with the wave radiated by
the body. This potential is required to meet the boundary conditions imposed
by the body’s oscillations across all unconstrained degrees of freedom. The
overall complex amplitude of the radiation potential is determined by the
principle of superposition:

ϕ̂r = iω
NØ

j=1
ξ̂jφj (2.16)

where N denotes the number of oscillatory modes, ξ̂j denotes the complex
amplitude of the harmonic body motion in mode j and every j indicates a
degree of freedom. φj is a complex coefficient representing the amplitude of
the radiation potential caused by motion in mode j with unit amplitude.

2.1.2 Equation of Motion - single degree of freedom
In the time domain, the general motion equation, based on the second law of
Newton, is written as:

mξ̈(t) = F (t) (2.17)

According to linear theory and assuming harmonic oscillations of both waves and
the device, it is feasible and advantageous to separate each term of Equation(2.17)
into its spatial and temporal components like velocity potential. Therefore, the
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device displacement, velocity and acceleration vectors becomes:

ξ(t) = Re
î
ξ̂(ω)eiωt

ï
ξ̇(t) = Re

î
−iωξ̂(ω)eiωt

ï
ξ̈(t) = Re

î
−ω2ξ̂(ω)eiωt

ï (2.18)

Hence, the equation of motion may be rewritten as:

−ω2mξ̂(ω) = F̂hd(ω) + F̂hs(ω), (2.19)

where F̂hd(ω) is hydrodynamic force and F̂hs(ω) id hydrostatic force.

1. Hydrodynamic Force
This force is decomposed into two components: the wave excitation force and
the wave radiation force.
From the Bernoulli equation ignoring second order terms, the dynamic pressure
could be written, not considering second-order terms, as

pe = −ρ(∂ϕ
∂t

) (2.20)

Hence, the linear hydrodynamic force of a floating body with wet body surface
Sb is obtained from

Fhd =
Ú

Sb
pendSb = ρ

Ú
Sb

∂ϕ

∂t
ndSb, (2.21)

As velocity potential is decomposed in Section 2.1.1, hydrodynamic force could
be decomposed:

F̂hd = F̂e + F̂r

= iωρ
Ú

Sb

1
ϕ̂0 + ϕ̂s

2
ndSb − ω2ρ

Ú
Sb

NØ
j=1

ξ̂jφjndSb,
(2.22)

where F̂e and F̂r is excitation force and radiation force respectively.

Excitation Force The wave excitation force on the body is decomposed
into two components: the Froude-Krylov force, and the scatter or diffraction
excitation force:

F̂e = F̂FK + F̂s = iωρ
Ú

Sb
φ̂0ndSb + iωρ

Ú
Sb
φ̂sndSb. (2.23)
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The Froude-Krylov force is calculated from the velocity potential of the inci-
dent wave which remains unaffected by the presence of the body, resulting
from the pressure distribution over the mean wet surface of the motionless
body.
The diffraction component of the exciting force came from the integration
of the diffraction wave potential on the wet surface. Considering that the
Froude-Krylov effect treats the body as transparent, this term serves as a
correction factor to account for the presence of the body.

Radiation Force Radiation force arises from the water displacement around
the body due to its movement, which may be written as:

F̂r = −iωZξ̂

Z = −iωρ
Ú

Sb
φndSb = R + iX = R + iωA

(2.24)

where Z denotes the radiation impedance. R, the real part, signifies the
hydrodynamic damping coefficient, accounting for energy dissipation as body
oscillations transmit energy to the surrounding water. X, the imaginary
part, denotes the radiation reactance, representing the difference between
the average kinetic energy added by water displacement and the average
gravitational potential energy associated with water surface deformation.
Given the harmonic response of the system, the energy stored in the water
oscillates between the mechanical system and the surrounding water and this is
the so-called reactive effect. X could be be expressed as ωA, where A denotes
the added mass coefficient, reflecting the inertial increase caused by water
displaced around the body during motion. Accordingly, radiation force could
be rewrite as:

F̂r = −iωRξ̂ + ω2Aξ̂, (2.25)

2. Hydrostatic Force
The hydrostatic force originates from the balance between buoyancy and
gravitational forces. It is determined by integrating the hydrostatic pressure
distribution across the body’s wet surface under static conditions. For sce-
narios where the motions of the body amplitudes are very small, a linear
approximation of the hydrostatic force can be quite precise. Under these
conditions, the hydrostatic force is proportional to the displacement, which
simplifies the calculation of its complex amplitude to:

F̂hs = −Gξ̂, (2.26)
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where G is the hydrostatic spring stiffness and hydrostatic coefficient is another
term of it. In the context of a heaving WEC the equilibrium between gravity
and buoyancy formulates:

G = ρgS, (2.27)
where S indicates the cross-sectional area of body and sea level which is
undisturbed. Due to the assumption of linear theory, assuming that this area
would be constant during the device moving.

3. Complex Amplitude of the Body Motion
By incorporating the formulated hydrostatic restoring force from Eq. (2.26),
alongside the hydrodynamic radiation from Eq. (2.25) and the wave excitation
loads from Eq. (2.23) into the equation of motion, Eq. (2.19), after some basic
mathematical computation, we derive the complex amplitude of the device
motion,

ξ̂ = F̂e

−ω2(m+ A) +G+ iωR. (2.28)

2.1.3 Equation of Motion - multiple degrees of freedom
The general equation of motion for a multiple degree-of-freedom (DoF) WEC is
essentially an expansion of that for a WEC in single DoF as in the last section. It
could be easily written in a matrix form as:

ξ̂ = Aw f̂e
è
−ω2(M + A) + G + iωR

é−1
(2.29)

where matrix or vector is represented by the bold font denotes. In f̂e indicates
the vector of complex amplitudes of the excitation wave forces under a unit
amplitude wave on the mean body wet surface, and it is usually computed with
BEM radiation/diffraction numerical codes such as Nemoh. And other denotations
are:

• M is the mass matrix and for a 2 DoF in terms of heave and pitch of an
unconstrained floating rigid body is described by

M =
C

m −mxg
−mxg I22

D
, (2.30)

where m is the mass of the body, and it equals to the mass of the displaced
water under freely floating conditions, given by m = ρV , xg represents the
coordinates of the center of gravity, and I22 denotes the moments of inertia
about the x-axis, related to the corresponding radius of gyration r22, through
the relationship:

I22 = ρV r22 |r22| . (2.31)
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• G is the matrix of hydrostatic stiffness or hydrostatic restoring coefficients
and it is given by:

G33 = ρg
s

Sb
n3dSb

G35 = −ρg
s

Sb
xn3dSb

G55 = ρg
s

Sb
x2n3dSb + ρgV zb −mgzg

(2.32)

• R is the damping and A is the added mass. As previously discussed, the
damping coefficient pertains to the waves generated by the oscillatory motions
of the body and the energy dissipated as it is transmitted away from the
body. Conversely, the added mass factor addresses the additional inertial
effect caused by the displacement of water in the vicinity of the body when it
moves, acknowledging that acceleration of a water particle from rest results
in acceleration of the surrounding fluid as well. The added mass coefficient
comprises two components: a term that dependes on frequency and the
infinite added mass. The infinite added mass is a constant that is always
positive representing the added inertia at infinite frequency, where no waves
are radiated from the body. This constant component is often referred to as
A∞ = limω→∞ A.

2.2 Time-Domain Models
The frequency-domain numerical methods outlined in Section 2.1 are essential for
a thorough understanding of the dynamics of wave energy converters (WECs) and
their operational principles. However, these techniques rely on linearity within the
system. Time-domain models, on the other hand, can handle nonlinearities originat-
ing from various stages of the energy conversion process, as well as more intricate
formulations for fluid interaction and damping mechanisms, resulting in nonlinear
hydrodynamic forces. Moreover, time-domain methods enable the modeling of
transient scenarios which could be critical in some cases that cannot be captured
in a frequency-domain approach, which is limited to stationary processes.However,
time-domain methods are considerably more computationally demanding compared
to frequency-domain approaches.

2.2.1 The Cummins Equation for Modelling
Implementing the Cummins equation for the floating body under wave forces FW AV

yields:
6Ø

j=1

31
Mij + A∞

ij

2
ẍj(t) +

Ú t

−∞
Kij(t− τ)ẋj(τ)dτ + Cijxj(t)

4
= Fwav

i (t)(x, ẋ, t)
(2.33)
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where Mij and Cij denote elements from the mass matrix and restoring coefficient
matrix respectively, A∞

ij is the added mass at infinite frequency and K(t) is the
radiation impulse response function (RIRF).
From this formulation, it is easy to find that the system is causal and this is
ensuring the response of the floating body aligns with the dynamics induced by
external forces and moments, an effect derived from the radiation behavior of water
waves.

2.2.2 Wave Excitation Force
1. Wave Loads in Time-Domain Models

In models of wave energy conversion, the energy transmitted by propagating
ocean waves is incorporated into the system through the action of forces
known as wave ’excitation’ forces. In the massive majority of cases, only the
first-order excitation forces which is typically oscillating with the frequency of
the incident waves are significant and included in the model.

2. Excitation Forces as Superposition of Harmonic Components
For regular monochromatic waves, on the ’j’ mode the excitation force exerted
can be expressed as:

Fej(t) = Γ(ω)A cos(ωt+ ϕ(ω)), (2.34)

where Γ(ω) is the excitation force coefficient and ϕ(ω) is the phase angle.
The phase angle denotes the temporal difference between a peak in the wave
profile at a reference point—typically the center of the Wave Energy Converter
(WEC)—and a peak in the excitation force. The phase angle information
is crucial in systems with multiple degrees of freedom due to the phase
discrepancies among the excitation forces affecting various degrees of freedom.
The most straightforward approach to modeling first-order wave forces in
irregular waves is to use the linear superposition of N independent sinusoidal
components:

Fej(t) =
NØ

i=1
Γ (ωi)Ai cos (ωit+ ϕ (ωi) + φi) (2.35)

3. Convolution of the Excitation Force
The excitation force in the time domain is linked to its frequency-domain coun-
terpart via an inverse Fourier transform. Specifically, the equation presented
in Eq. (2.35) represents a discrete version of the inverse Fourier transform
applied to the frequency-domain excitation force, achieved by selecting specific
frequencies and phases.

16



Theoretical Preliminary

The representation of the wave excitation force in the ‘j’ mode could be given
by:

Fej(t) =
Ú +∞

−∞
hfj(τ)η (x0, y0, t− τ) dτ, (2.36)

where hij(t) represents the impulse response function (IRF) of the wave
excitation force and η(x0, y0, t) is the wave elevation at the time t.

4. Nonlinear Wave Forces
Accounting for the nonlinear Froude–Krylov force in the incident wave force
is crucial when there are significant changes to the wet surface, which may
result from the amplitude of the incident wave, the amplitude of the body’s
movements, or both.

2.2.3 Radiation Impulse Response Function
If we regard the velocity amplitude as an input to the dynamic system, we can
treat this unitary radiation force as a frequency-domain transfer function for the
radiation force. Thus, the force exerted on degree of freedom ’i’ due to motion in
degree of freedom ’j’ can be written as follows::

F̂ij(ω) = Ûj f̂ij(ω) (2.37)

where f̂ij(ω) is the radiation transfer function, defined with added mass and
damping coefficient:

ωAij = Im
1
−f̂ij

2
Bij = Re

1
−f̂ij

2 (2.38)

By applying an inverse Fourier transform to Eq.(2.37), we obtain:

Fkj(t) =
Ú ∞

−∞
åUj(τ) åfkj(t− τ)dτ (2.39)

We could rewrite radiation transfer function by knowing Eq.(2.38) as:

f̂ij(ω) = −iω
1
Āij(ω) + A∞

ij

2
−Bij(ω). (2.40)

And accordingly the inverse Fourier transform of the radiation transfer function is:

åfij(t) = 1
2π

Ú ∞

−∞

1
−iωĀij(ω) −Bij(ω)

2
eiωtdω − A∞

ij δ̇(t) (2.41)

and defining
Kij(t) = 1

2π

Ú ∞

−∞

1
iωĀij(ω) +Bij(ω)

2
eiωtdω (2.42)
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By combining these equations together and considering that Kij is real and causal,
radiation force could be described by:

Fij(t) = −
Ú t

−∞
Ũj(τ)Kij(t− τ)dτ − Aij

∞ ˙̃Uj(τ) (2.43)

Since the RIRF is real, K̂ij could be seen as a Hermitian matrix, whose real part is
an even function of ω and imaginary part is odd function of ω. This implies that
Eq.(2.42) could be written as:

Kij(t) = 1
π

Ú ∞

0

1
−ωĀij(ω) sinωt+Bij(ω) cosωt

2
dω (2.44)

Considering that K̂ij is causal which inferred by the fact that it represents the
effect of the past body oscillations on its actual state, K̂ij is zero when t < 0 and
this relation is derived:

−
Ú ∞

0
ωĀij(ω) sinωtdω =

Ú ∞

0
Bij(ω) cosωtdω for t < 0 (2.45)

Using this relation, K̂ij becomes:

Kij(t) = 2
π

Ú ∞

0
Bij(ω) cosωtdω

Kij(t) = − 2
π

Ú ∞

0
ωĀij(ω) sinωtdω

(2.46)

2.3 System Identification

System identification is a method to determine models from input/output data
measured from the system.
The identification process follows a series of steps. Initially, a parametric model
structure is selected. Subsequently, an appropriate input signal is administered to
stimulate the system, and the response is recorded. Utilizing the captured input
and output signals, an identification algorithm is employed to ascertain the optimal
model parameters. These parameters are determined to minimize the error between
the measured output and the output anticipated by the identified parametric model.
The concept of model identification from recorded wave energy converter (WEC)
data is illustrated below:
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Figure 2.1: System identification procedure

A significant challenge in system identification lies in ensuring that the in-
put/output data utilized to establish the model adequately represents the system
dynamics. In the context of wave energy converters, it should encompass a spectrum
of frequencies and amplitudes expected during system operation.
A convincing approach to generating appropriate input/output data is by utilizing
a Numerical Wave Tank (NWT). An NWT refers to a class of numerical simulators
designed to model nonlinear free surface waves, hydrodynamic forces, and floating
body motions.
This approach could encompass an enough range of frequencies and amplitude of
excitation waves not like using open ocean to collect input data. And this approach
is economical compared to a tank test and it also avoids the problems brought
from tank wall reflections. But it do have drawbacks like extremely long time to
perform the numerical computation of the response and evaluating the accuracy of
an NWT simulation proves challenging without experimental validation and may
be constrained by numerical diffusion.

2.4 Numerical Solver NLFK4ALL
As discussed in the last section, utilizing numerical wave tank(NWT) which basically
is a mathematical model is a promising approach to generate data. Extensive para-
metric studies are necessary to optimize energy cost-effectiveness, aiming to enhance
power extraction capabilities while minimizing capital and operational expenses.
Moreover, model-based control strategies, crucial for maximizing WEC performance,
demand accurate and real-time mathematical models. So efficient computation
is a critical requirement as well as accuracy for mathematical models employed
in design processes, especially for wave energy converters. Balancing accuracy
and computational efficiency poses a challenge, necessitating a suitable compromise.

In this research, an open-source solver called NLFK4ALL which offering a
readily applicable implementation across multiple degrees of freedom is used to
collected data. This is an nonlinear Froude-Krylov (NLFK) force model tailored

19



Theoretical Preliminary

for axisymmetric floaters. Leveraging the geometry’s symmetry, common in WECs,
enables achieving rapid computation, approximately in real-time. Furthermore, as
nonlinear Froude-Krylov (NLFK) forces constitute primary nonlinearities in such
devices, the model attains higher accuracy compared to linear models.

2.4.1 Reference Frame

1. World and body-fixed frames
Two right-handed frames of reference are used:

• World-frame(WF): (x, y, z)′

• Body-fixed frame(BF): (x̂, ŷ, ẑ)′

The inertial world-frame of reference (x, y, z)′ has its origin at the still water
level (SWL), with the x-axis extending positively in the direction of wave
propagation, and the z-axis extending positively upwards. The body-fixed
frame of reference (x̂, ŷ, ẑ)′ is non-inertial, with the origin anchored at a
reference point (RefP), typically located at the centre of gravity (CoG) or at
the SWL, and the z-axis oriented upwards.
The revolution function of the axisymmetric floater is defined as f(ϱ) between
ϱ1 and ϱ2 using cylindrical coordinates. So the coordinates points of surface
of floater could be written as:

x̂(ϱ, ϑ) = f(ϱ) cosϑ
ŷ(ϱ, ϑ) = f(ϱ) sinϑ , ϑ ∈ [−π, π) ∧ ϱ ∈ [ϱ1, ϱ2]
ẑ(ϱ, ϑ) = ϱ

(2.47)

And the displacement of the RefP in WF coordinates is denoted by (xR, yR, zR)′
WF.

2. Translation and Rotation
By applying 3-2-1 Euler rotation sequence, the rotation matrix which is around
the RefP and about the body-fixed axes, Rot is defined as:

Rot =

 cψ −sψ 0
sψ cψ 0
0 0 1


 cθ 0 sθ

0 1 0
−sθ 0 cθ


 1 0 0

0 cϕ −sϕ
0 sϕ cϕ

 (2.48)

where ϕ is the roll angle around the x̂-axis, θ is the pitch angle around the
ŷ-axis, and ψ is the yaw angle around the ẑ-axis.
After the rotation, apply the translation C = (xR, yR, zR + zRefP P )′

WF. By
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combining rotation and translation, compact matrix R is defined:

R =

 Rot C

0 0 0 1

 (2.49)

So the transformation from BF to WF is easily given by:

x
y
z
1

 = R


x̂
ŷ
ẑ
1

 (2.50)

3. Intersection
In order to represent the instantaneous wet surface of the floater analytically,
the analytical definition of the intersection between the body-surface and free
surface elevation which is decribed by an arbitrary function the need to be
defined.
In general, a typical irregular wave could be written as:

η(x, t) =
NωØ
i=1

ai cos (ωit+ φi − kix) , (2.51)

where ai, ωi, φi, and ki are the wave amplitudes, frequencies, phases, and
wave numbers, respectively.
The wave surface is defined in the WF as:

Γ =


x
y

η(x)
1

 (2.52)

So wave surface is defined in the BF is: Γ̂ = R−1Γ. The intersection is found
by equating ϱ to the third line of Γ̂ which means:ϱ = (0,0,1,0)R−1Γ. And by
representing Γ as a function of ϱ and θ, rewrite the equation as:

f(ϱ) (cosϑ (R11R13 +R21R23) + sinϑ (R12R13 +R22R23)) +
ϱ
1
R2

13 +R2
23 − 1

2
+R33(η(ϑ, ϱ) − C(3))

2
= 0

(2.53)
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2.4.2 Integration
An integral I of a generic function g(x̂, ŷ, ẑ) over a surface S could be mapped to
g(u, v):

I =
ÚÚ

S
g(x̂, ŷ, ẑ)dS

I =
Ú

u

Ú
v
g(u, v) ∥eu × ev∥ dudv

(2.54)

where eu and ev are the unity vectors in the u and v direction, respectively:

eu =


∂x̂
∂u
∂ŷ
∂u
∂ẑ
∂u



ev =


∂x̂
∂v
∂ŷ
∂v
∂ẑ
∂v


(2.55)

1. Parametric representations
Hereafter cylindrical coordinates are shown, along with the unity and normal
unity vector n:

x̂(ϱ, ϑ) = f(ϱ) cosϑ
ŷ(ϱ, ϑ) = f(ϱ) sinϑ , ϑ ∈ [−π, π) ∧ ϱ ∈ [ϱ1, ϱ2]
ẑ(ϱ, ϑ) = ϱ

eϱ =

 f(ϱ)′ cosϑ
f(ϱ)′ sinϑ

1



eϑ =

 −f(ϱ) sinϑ
f(ϱ) cosϑ

0



eϱ × eϑ = f(ϱ)

 − cosϑ
− sinϑ
f(ϱ)′


∥eϱ × eϑ∥ = f(ϱ)

ñ
1 + f(ϱ)′2

(2.56)

So the unity normal vector n over surface is computed as:ÚÚ
S

ndS =
ÚÚ

S

eϱ × eϑ

∥eϱ × eϑ∥
dS =

Ú
ϑ

Ú
ϱ
(eϱ × eϑ)dϱdϑ (2.57)

2. Normalization of the integration domain
The domain of integration for cylindrical coordinates is defined as ϑ ∈ [−π, π)∧
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ϱ ∈ [ϱ1, ϱ2] and it is convenient to map it to ϑ ∈ [−π, π) ∧ ϱ̃ ∈ [0,1] where
ϱ̃ = ϱ1 + ϱ (ϱ2(ϑ) − ϱ1). So the unity normal vector n over surface could be
rewritten as:ÚÚ

S
ndS =

Ú π

−π

Ú ϱ2

ϱ1
(eϱ(ϱ, ϑ) × eϑ(ϱ, ϑ)) dϱdϑ

=
Ú π

−π

Ú 1

0
(eϱ(ϱ̃, ϑ) × eϑ(ϱ̃, ϑ)) (ϱ2(ϑ) − ϱ1) dϱ̃dϑ

(2.58)

3. Geometric Properties

• Surfaces
The total surface S is composed of the lateral surface SL plus the bottom
Sbot and top Stop discs.

Sbot =
ÚÚ

Sbot

dS =
Ú

ϑ

Ú
r
∥eϑ × er∥ dϑdr =

Ú π

2π

Ú R1

0
rdϑdr = πR2

1

SL =
ÚÚ

SL

dS =
Ú

ϑ

Ú
ϱ

∥eϑ × eϱ∥ dϑdϱ =
Ú

ϑ

Ú
ϱ
f(ϱ)

ñ
1 + f(ϱ)2dϑdϱ

(2.59)
• Volumn

V = −
ÚÚ

S
n1x̂dS = −

ÚÚ
S
n2ŷdS = −

ÚÚ
S
n3ẑdS (2.60)

• Centre of buoyancy
The centre of buoyancy CoB = (x̂B, ŷB, ẑB) is the centroid of the displaced
volume of fluid by the floater. Considering that the body is axisymmetric,
x̂B and ŷB are null. The resulting integral for ẑB is:

ẑB = − 1
2V

3Ú π

−π

Ú ϱ0

ϱ1
ϱ2f(ϱ)f(ϱ)′dϱdϑ+ πR2

1ϱ
2
1 − πR2

2ϱ
2
0

4
(2.61)

where ϱ0 as the body-frame vertical coordinate of the still water level.

2.4.3 Nonlinear Froude-Krylov force
The Froude-Krylov force originates from the pressure distribution on the surface
of the WEC induced by incident waves. In the world-frame, the pressure field p
follows Airy’s theory and incorporates Wheeler stretching, represented as:

p(x, z, t) = pst + pdy = −ρgz + ρga cos(ωt− kx)cosh (k (z′ + h))
cosh(kh) (2.62)

where pst and pdy are the static and dynamic pressure, a is the wave amplitude,
ω = 2π

T
is the wave frequency and T the wave period, k = 2π

λ
is the wave number and

23



Theoretical Preliminary

λ the wave length, h is the water depth. Specially, z′ is the change of coordinates
in order to eliminate the free surface boundary condition error: z′ = h z+h

η̄+h
− h,

where η̄ is an approximation of the free surface.

The static and dynamic Froude-Krylov force is then defined as:

FF Kdy
=
ÚÚ

Sw

pdyndS

FF Kdy
=
ÚÚ

Sw

pdyndS
(2.63)

where Fg = (0,0,−mg)′ is the gravity force, with m the mass of the body, Sw

the instantaneous wet surface, and n the unity vector normal to the surface.
Accordingly, static and dynamic Froude-Krylov torques are defined as:

TF Kst = rg × Fg +
ÚÚ

Sw

pst(r × n)dS

TF Kdy
=
ÚÚ

Sw

pdy(r × n)dS
(2.64)

where r is the generic position vector, and rg is the position vector of the centre of
gravity.
It is easier to write the equation of motion in the body-fixed frame where inertial
matrix is constant and the NLFK forces are computed in the BF too. But the free
surface elevation and the pressure field are defined in world-frame. Therefore, η
and p could be mapped into the BF and compute the integrals directly in the BF
by 4D rotaion matrix R. And hereafter are ndS and (r × n)dS, after the change
or coordinate transformation, in polar and cylindrical coordinates:

r =


x̂(ϱ, ϑ) = f(ϱ) cosϑ
ŷ(ϱ, ϑ) = f(ϱ) sinϑ , ϑ ∈ [−π, π) ∧ ϱ ∈ [ϱ1, ϱ2]
ẑ(ϱ, ϑ) = ϱ

ndS = eϱ × eϑ = f(ϱ)

 − cosϑ
− sinϑ
f(ϱ)′



(r × n)dS = r × (eϱ × eϑ) =

 f(ϱ) sinϑ (f(ϱ)f(ϱ)′ + ϱ)
−f(ϱ) cosϑ (f(ϱ)f(ϱ)′ + ϱ)

0



(2.65)

2.5 Excitation Waves
In numerical wave tank simulations, the accurate representation of wave excitation
is essential for modeling the dynamic behavior of wave energy converters (WECs)
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and simulating real-world wave conditions. Two primary types of excitation waves
are utilized in these simulations: multinse waves for model building and waves to
simulate real ocean states.

2.5.1 Irregular Waves to Simulate Real Ocean
Real ocean could be modeled as the linear superposition of a large number of
harmonic waves at different frequencies and angles of incidence, where the incident
wave is defined as η(x, y, t):

η(x, y, t) =
Ø

i

Hi

2 cos (ωit− ki (x cos θi + y sin θi) + ϕi) (2.66)

where H is the wave height, ω is the wave frequency
1
ω = 2π

T

2
, k is the wave

number
1
k = 2π

λ

2
, θ is the wave direction, and ϕ is the wave phase (randomized

for irregular waves).
The frequency domain representation of linearly superimposed regular waves with
varying amplitudes and periods is defined by a wave spectrum. These spectra
are defined by certain parameters including significant wave height, peak period,
wind speed, fetch length, and etc, which are determined through statistical analysis.

• Pierson–Moskowitz (PM) Spectrum
The Pierson-Moskowitz (PM) spectrum is used for a fully developed sea,
where wave growth is unrestricted by fetch. It’s a two-parameter spectrum
determined by significant wave height and peak wave frequency. By adjusting
the peak frequency for a given significant wave height, various sea conditions
from developing to decaying seas can be accounted for. These parameters
are mainly influenced by wind speed, wind direction, fetch, and storm front
locations. PM spectrum[17] is defined by:

SP M(f) = Hm0
2

4 (1.057fp)4 f−5 exp
−5

4

A
fp

f

B4


Aws = Hm0
2

4 (1.057fp)4 ≈ 5
16Hm0

2fp
4 ≈ Bws

4 Hm0
2

Bws = (1.057fp)4 ≈ 5
4fp

4

(2.67)

• JONSWAP (JS) Spectrum The JONSWAP (Joint North Sea Wave Project)
spectrum is an adaptation of the PM spectrum designed for developing sea
states within a fetch-limited environment. It incorporates a higher peak and
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a narrower spectrum during stormy conditions, while maintaining the same
total energy as the PM spectrum. JS spectrum[17] is defined by:

SJS(f) = Cws(γ)SP Mγ
α

Cws(γ) =
s∞

0 SP M(f)dfs∞
0 SP M(f)γαdf

= 1 − 0.287 ln(γ)

α = exp

−

 f
fp

− 1
√

2σ

2 , σ =
I

0.07 f ≤ fp

0.09 f > fp

γ =


5 for Tp√

Hm0
≤ 3.6

exp
1
5.75 − 1.15 Tp√

Hm0

2
for 3.6 ≤ Tp√

Hm0
≤ 5

1 for Tp√
Hm0

> 5

(2.68)

2.5.2 Multisine Waves for Model Building
Multisine waves serve as useful tools for model development and validation within
numerical wave tank simulations. These waves are generated using spectral meth-
ods, which synthesize wave spectra corresponding to different sea states and wave
climates. The fundamental principle behind spectral wave generation is the su-
perposition of individual wave components, each characterized by its amplitude,
frequency, and phase. Mathematically, the surface elevation η(t) of a multisine
wave can be represented as:

η(t) =
NØ

i=1
Ai cos (ωit+ ϕi) (2.69)

where:
- Ai is the amplitude of the i th wave component,
- ωi is the angular frequency,
- ϕi is the phase angle, and
- N is the total number of wave components.
By synthesizing multinse waves with varying characteristics, researchers can explore
the dynamic response of WECs under different wave conditions, facilitating model
validation and performance assessment.
Moreover, phases are often adjusted or optimized to minimize the crest factor (peak
to RMS ratio) and thereby enhance the signal-to-noise ratio (SNR) for frequency
response function (FRF) measurements. This optimization is necessary because
physical systems typically have limited maximum excitation amplitudes. One
common choice for optimizing phases is the use of Schröder phases[18]:

ϕk = −k(k − 1)π
Nk

(2.70)
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Chapter 3

Implementing two DoF

3.1 Hydrodynamic WEC modelling
In this section, we recall foundational principles underpinning the intricate nonlin-
ear hydrodynamic modeling, particularly tailored for the dynamic interplay within
wave energy conversion systems. The modelling is firmly rooted in the potential
flow theory, a basic approach in fluid dynamics that offers profound insights into
the behavior of fluid-solid interactions, together with the frequency-domain model
and time-domain model describe in Chapter 2. Driven by a pursuit of clarity, we
make a deliberate choice to narrow our focus to devices within two degrees of
freedom (DoF) which is heave and pitch. By simplifying our exposition to two
degrees of freedom framework, we aim to enhance the accessibility of our discourse
while preserving the essence of the underlying principles.

Recalling the second law of Newton as describe in Eq.(2.17), the force acting on
the floater could be decomposed to two parts, gravity and forces exerted by water:

mz z̈(t) = mzg − Fz

mpp̈(t) = mpg − Fp

(3.1)

where mz is the mass of the floater and mp is the moment of inertia of y-axis.
According to flow theory ϕ(t) = ϕI + ϕd + ϕr (ϕI is incident wave, ϕdis diffraction
wave and ϕris radiation wave as described in Eq.(2.13), forces exerted by water
could be decomposed as:

• Fdyn
F K is the dynamic Froude-Krylov force:

Fdyn
F K(t) = −

ÚÚ
S(t)

Pdy(t)ndS (3.2)

where Pdy = −ρ∂ϕI

∂t
− ρ |∇ϕI |2

2 the dynamic pressure.
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• Fd is the diffraction force:

Fd(t) = −
ÚÚ

S(t)
Pd(t)ndS (3.3)

where Pd = −ρ∂ϕd

∂t
− ρ |∇ϕd|2

2 the diffraction pressure. And it could be also
described as:

Fd(t) = kd ∗ η (3.4)
where the impulse response kd : R+ → R, kd ∈ L2(R), fully characterises a
linear time-invariant system with input η and output Fd(t).

Remark the diffraction kernel kd is always calculated numerically using
Boundary Element Method (BEM) solvers in a non-parametric form.

• FR is the radiation force:

FR(t) = −
ÚÚ

S(t)
PR(t)ndS (3.5)

where PR = −ρ∂ϕR

∂t
−ρ |∇ϕR|2

2 the radiation pressure. This radiation force could
be modelled as the time-domain model specially proposed in Section 2.23,
write radiation forced constraited to heave and pitch mode:

Frad (t) = −A∞ξ̈ −
Ú t

0
Kr(t− τ)ξ̇(τ)dτ (3.6)

where ξ = (z, p) is generalized floater displacement. So it can be also written
in convolution form:

FR(t) = −A∞ξ̈ − kr ∗ ξ̇ (3.7)

Remark Transforming the radiation convolution integral into state-space
(SS) representation is greatly advantageous. Such a transformation has been
demonstrated to significantly enhance computational efficiency, enabling the
application of conventional control techniques reliant on linear state-space
models.

• Since the fluid is assumed to be inviscid, there is also viscous force and it is
modelled using the Morrison equation:

Fvis = −1
2ρCdAd |V − V0| (V − V0) (3.8)

where Cd is the drag coefficient, Ad is the characteristic surface, V is the
velocity of the floater and V0 is the undisturbed flow velocity.
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• Static Froude-Krylov force is an exception because it is not just stemming
from waves, instead it is given as the balance between the gravity force and
the Archimedes force:

FF Kst(t) = Fg −
ÚÚ

S(t)
Pst(t)ndS (3.9)

where Pst = −ρgz.

Define z : R+ → R, t → z(t) as device displacement in heave mode, p : R+ →
R, t → p(t) as device displacement in pitch mode and η : R+ → R, t → η(t) be
undisturbed free-surface elevation which is measured at the centre of the body’s
reference frame. The dynamic behavior of such a Wave Energy Converter (WEC)
system can be formulated within a system ΣW, applicable for t ∈ R+, as follows:

ΣW :


Mξ̈ =fr(ξ) + fv(ξ̇) + fd(η)+

f st
FK(η, ξ) + fdyn

FK (η, ξ),

y =C
è
ξ ξ̇

é⊤
,

(3.10)

where M is a matrix of mass and moment of inertia in y-axis and it is written

as:
C
m 0
0 Iyy

D
. fr : R2 → R2 is the radiation force and it could be written as

fr(ξ̇) = −A∞ξ̈−kr ∗ ξ̇. fv : R2 → R2 is the viscous effects, fd : R → R2 reprensents
the diffraction force, and the mappings f st

FK : R × R2 → R2 represents the static
Froude-Krylov (FK) effects (or forces) and fdyn

FK : R × R2 → R2, represent the
dynamic Froude-Krylov (FK) effects (or forces) instead. The output y : R4 → R2 is
considered to be a linear combination of device velocity and displacement, defined
by the matrix C⊤ ∈ R2×4.

3.2 Generating data

3.3 Modelling Static FK effect
The mapping function f st

F K represents a static function that relies on the free-surface
elevation η and the heave of the device z and pitch of the device p. While analytical
derivations for f st

F K exist for certain geometries like a purely pitching prismatic
device[13], the aim of this section is to introduce a comprehensive data-driven
approach. This methodology is designed to be universally applicable, irrespective
of the particular shape of the device, ensuring versatility across various device
configurations and geometries.
This mapping function could be seen from a system-theoretic perspective and
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expressed as Σst, where the input of this system is heave displacement z, pitch
displacement p, free-surface elevation η and the output is the static Froude-Krylov
force in term of heave and pitch.

Σst :
I
yst =

C
ystz

ystp

D
= f st

FK(η, z, p) (3.11)

The following assumption have to be made to develop a data-based approximation
towards static Froude-Krylov force. It assumes that the mapping f st

FK belongs to the
function space identified by the family of continuous basis functions ϕj : R3 → R,
with j = 1, . . . ,M (where M may be ∞). In other words, there exist constants
az

j ∈ R and ap
j ∈ R, with j = 1, . . . ,M , such that

f st
FK(η, z, p) =

CqM
j=1 a

z
jϕj(η, z, p)qM

j=1 a
p
jϕj(η, z, p)

D
, (3.12)

for any η, z, and p. And intuitively when there is no incident wave, the floater will
be still: ϕj(0,0,0) = 0.
The standard assumption that the mapping to be approximated can be expressed
using a family of basis functions is commonplace. In practice, a trial-and-error
approach can be adopted. For example, one might begin by employing a polynomial
expansion or an expansion based on functions akin to those generated by the signal
generator like sinusoids for sinusoidal inputs.
Thus, let

P =
C
az

1 az
2 · · · az

N

ap
1 ap

2 · · · ap
N

D

Φ(η, z, p) =
è
ϕ1(η, z, p) ϕ2(η, z, p) . . . ϕN(η, z, p)

é⊤ (3.13)

with N ≤ M . Using a weighted sum of basis functions, Eq. (3.2) can be written as

f st
FK(η, z, p) =

CqN
j=1 a

z
jϕj(η, z, p) + ez(η, z, p)qN

j=1 a
p
jϕj(η, z, p) + ep(η, z, p)

D
(3.14)

where e(t) = qM
N+1 ajϕj(η, z, p) is the error resulting by terminating the summation

at N . So now consider the approximation

f̃ st
FK(η, z, p) =

CqN
j=1 a

z
jϕj(η, z, p)qN

j=1 a
p
jϕj(η, z, p)

D
= PΦ(η, z, p) (3.15)

which neglects the truncating error e(t).
So the approximating system could be represented as:

Σ̃st :
î
ỹst = f̃ st

FK(η, z, p), (3.16)
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With Equation (3.5), the approximation task boils down to identifying an appro-
priate matrix P for any given basis-function vector Φ(η, z, p). Here, we introduce
a method to compute P based on a recursive least-squares approach. Consider
T w

k = {tk−w−1, . . . , tk−1, tk} ⊂ R+, a set of time instants where we numerically
assess the output of the target static FK system, denoted as yst in Equation (3.1).
This set essentially represents a moving window of w ∈ N samples. Assuming the
numerical evaluation of yst, we choose the free-surface elevation η as the external
input, typically generated as a multisine signal.(The reason behind of choosing
multisine is that it is persistently exciting and set T w

k can always be selected such
that the above assumption holds without lost of generality) Let Ξk ∈ Rw×N and
Υk ∈ Rw be defined as:

Ξk =
è

Φtk−w−1 . . . Φtk−1 Φtk

é⊤
,

Υk =
è
yst

tk−w−1
. . . yst

tk−1
yst

tk

é⊤
.

(3.17)

with Φtr = Φ (η (tr) , z (tr) , p (tr)) ∈ RN and yst
tr

= yst (tr) ∈ R2.
Let Pk be an on-line estimate of the matrix P in time window T w

k , namely
computed at the time tk using the last w instants of time. If Ξk is full column rank,
then

vec (Pk) =
1
Ξ⊤

k Ξk

2−1
Ξ⊤

k Υk,

is an approximation of the estimate Pk.
To ensure that the approximation is well-defined for all k, we need that the elements
of Tw

k be selected such that Ξ⊤
k Ξk is full column rank aiming to guarantee the

upcoming methodology to be well-posed.
The cost function is to determine the quality of Pk based upon the following
criterion:

min
Pk

...ΞkP⊤
k − Υk

...2

2
(3.18)

Now Algorithm 1 is proposed, a recursive method to based on the cost function
Eq.(3.8) solve for Pk.

Algorithm 1 unfolds as follows with a more detailed exposition. Initially, metic-
ulous consideration is given to the selection of an optimal multisine signal fid for
the generation of the input η. Simultaneously, a carefully chosen initial value
k0, sufficiently large to accommodate the iterative process, is established. The
iterative construction of matrices Ξk and Υk ensues, a step-by-step process reliant
on the continuous interplay between the supplied input η = fid, the numerically
derived device heave motion z and device pitch motion p, and the resultant total
static force yst. It’s crucial to underscore that the computation of these latter
three variables can be conveniently facilitated by utilizing any state-of-the-art
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numerical nonlinear FK solver, such as the NLFK4ALL toolbox. And to initialize
the recursion process, the selection of P0 is necessary but it can be accomplished
by employing ’dummy’ values, which may consist of random values drawn from
a uniform distribution. This initial choice serves as a provisional starting point
for the recursive algorithm. It’s noteworthy that as the algorithm iterates, older
measurements become progressively supplanted by newer ones.

At each iteration, when a new set of samples becomes available, the old infor-
mation is discarded, and the algorithm continues until reaching a certain threshold
condition on the error between iterations. This threshold condition is specified by
the sufficiently small value ϵ. This iterative process ensures that the algorithm
refines its estimates over successive iterations until it converges to an acceptable
solution.

Algorithm 1 Static FK approximation. Let k0 be a sufficiently large integer, and
let ϵ be a sufficiently small user-defined error tolerance. Define P0 ∈ R2×N as the
initialisation vector for the computation of P .

1: procedure Static FK approximation(η, z, p)
2: ▷ Intitial Conditions:
3: ▷ k = k0

4: ▷ E = ϵ+ 1
5: ▷ Pk−1 = P0

6: ▷ Execution
7: while E > ϵ do
8: Ψk =

1
Ξ⊤

k Ξk

2−1

9: P⊤
k = P⊤

k−1 + ΨkΦtk

1
yst

tk
− Φ⊤

tk
P⊤

k−1

2
− ΨkΦtk−w

1
yst

tk−w
− Φ⊤

tk−w
P⊤

k−1

2
10: E = ∥Pk − Pk−1∥2
11: k = k + 1
12: end while
13: end procedure

3.4 Modelling Dynamic FK effect
The Dynamic Froude-Krylov (FK) effect refers to the dynamic hydrodynamic forces
experienced by a floating or submerged body in response to the motion induced
by ocean waves. Unlike the static FK effect, which accounts for the steady-state
hydrodynamic forces when the body is stationary, the dynamic FK effect captures
the time-varying forces acting on the body as it moves in response to wave motion.
This dynamic characteristic invites a system-theoretic interpretation, where fdyn

F K

can be viewed as the output mapping ydyn originating from a dynamic system Σdyn.
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Like static Froude-Krylov effect, the dynamic one should be decomposed in terms
of heave mode and pitch mode:

ydyn =
C
ydynz

ydynp

D
(3.19)

Within this system-theoretic framework, free-surface elevation η, heave motion z
serve and pitch motion p as inputs, contributing to the dynamical evolution of
the system’s output representation. This dynamic representation encapsulates
the intricate interplay between wave-induced motions and resulting hydrodynamic
forces, offering a comprehensive understanding of the dynamic behavior underlying
Froude-Krylov forces. And it can be represented as:

Σdyn :

 q̇ = κ(q, η, z, p),
fdyn

FK = θ(q, η, z, p) = ydyn (3.20)

where q(t) ∈ Rn is the associated state-vector, with n ∈ N large enough. The
dimensions of mappings is: κ : Rn× R×R×R → Rn and θ : Rn ×R×R×R → R2.
Due to the physical limitations, the following boundary conditions should be
imposed:

• κ(0,0,0,0) = 0 and θ(0,0,0,0) = 0.

• The zero-equilibrium of system q̇ = κ(q, 0,0,0) is stable under small perturba-
tions in the vicinity of this point. (Specifically, it means that if the system is
initially close to this equilibrium point, its behavior will converge back towards
this point over time, and this convergence will occur exponentially fast.)

• For every (q, η, z, p) defined within a extremely small neighborhood N of
(q, η, z, p) = (0, 0, 0, 0), the system’s behavior can be effectively described by
a strictly proper linear system Σ̃dyn. This system has η as its sole external
input. To be exact, the following conditions

∂κ

∂q

-----
(0,0,0)

= F,
∂κ

∂η

-----
(0,0,0)

= G,
∂κ

∂z

-----
(0,0,0)

= 0, ∂κ
∂p

-----
(0,0,0)

= 0

∂θ

∂q

-----
(0,0,0)

= H,
∂θ

∂η

-----
(0,0,0)

= 0, ∂θ
∂z

-----
(0,0,0)

= 0, ∂θ
∂p

-----
(0,0,0)

= 0

hold, with F ∈ Rn×n, {G} ⊂ Rn, {H} ⊂ R2×n, and therefore system Σ̃dyn can
be written as

Σ̃dyn :
I
q̇(t) = Fq(t) +Gη(t),
f̃dyn

FK (t) = Hq (t+ tc) = ỹdyn(t), (3.21)
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where tc ∈ R+, and λ(F ) ⊂ C<0 by the second condition above. tc is nec-
essary because it represents a non-causal time-shift or advance, originates
from the scenario where the generated wave, characterized by the free-surface
elevation, could potentially influence the WEC body and exert a wave force
before any wave has physically reached the central point of the device. This
phenomenon underscores the importance of considering the time delay between
the initiation of the wave and its interaction with the WEC structure, particu-
larly in modeling dynamic wave forces and their effects on the system dynamics.

Considering that the linear model Eq.(3.11) offers computational simplicity, ad-
heres to the principle of superposition, and facilitates the application of a wide
range of mathematical tools for analysis, simulation, and control/estimator design,
there is a strong incentive to utilize it. However, existing literature predominantly
characterizes the system Σ̃dyn using boundary element method (BEM) solvers like
the open-source software Nemoh. These solvers compute the impulse response
associated with the system in a non-parametric manner, assuming infinitesimally
small device motion around the zero-equilibrium.

Given that the primary design goal for WECs is to maximize energy conversion,
which often involves significant induced device motion, this approach is likely to
yield an inaccurate linear model for the dynamic Froude-Krylov effect. In contrast
to BEM solvers, we propose a methodology to compute a representative linear
model Σ̃dyn tailored to specific wave operating conditions of the device, such as
significant wave heights and peak periods. To achieve this, we leverage techniques
from system identification and introduce a framework for generating representative
models using only input-output data in the frequency-domain.

Let U = {ηi = fidi
}Q

i=1 be a set of suitably selected multisine input signals
that is free-surface elevation, where Q ∈ N, generating a corresponding set of
outputs Y =

î
ydyn

i

ïQ

i=1
that is dynamic Froude-Krylov forces. For the system, an

input-output pair of signals is represented by (ηi, y
dyn
i ). The empirical transfer

function estimate (ETFE), denoted as Hi : C0 → C and defined by jω → Hi(jω),
is formulated for each input-output pair using the expression:

Hz
i (jω) = Ydynz

i (jω)
Ui(jω)

Hp
i (jω) = Ydynp

i (jω)
Ui(jω)

(3.22)

with i ∈ N, and where Ui : C0 → C and Ydyn
i : C0 → C denote the Fourier
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transform of ηi and ydyn
i respectively.

By utilizing the ensemble of ETFE mappings H = {Hi}Q
i=1, we can efficiently

derive the collective ETFE, denoted as H̄, which serves the purpose of constructing
a more robust and stable input dataset for the frequency-domain identification
technique. This aggregated ETFE, computed through a synthesis of individual
mappings, aims to minimize variance and enhance reliability, ensuring a more
effective utilization within the frequency-domain identification framework. And
the average EFET is computed as:

H̄z(jω) = 1
Q

QØ
i=1

Hz
i (jω)

H̄p(jω) = 1
Q

QØ
i=1

Hp
i (jω)

(3.23)

It is important to recall that the primary goal of the proposed system identification
approach is to derive a parameterized representation that approximates the behavior
of Σdyn using a representative linear structure Σ̃dyn. This approximation relies on
the characterization offered by the average ETFE (23), which is computed solely
based on input-output data. Considering that there existing unknown non-causal
time shift, it is covenient to rewrite the average EFET:

H̄(jω) = ejωtcH̄c(jω), (3.24)

where H̄c only represents the causal component of H̄ and ejωtc denotes the frequency-
domain equivalent of the time-shift component.

The approach adopted here to derive a state-space structure from the average
ETFE is based on subspace-based identification. Specifically, the method is that
directly computes the associated Hankel matrices from frequency-domain data
that is average EFET H̄. Considering that non-causal shifting time tc is unknown
but it is necessary to compute the system, n iterative process to estimate the
corresponding time-advance tc are integrated with this methodology.

The approach outlined in Algorithm 2 involves several steps aimed at construct-
ing a representative linear model for the dynamic Froude-Krylov (FK) effect. To
begin, the user initiates the process by carefully selecting a suitable ensemble of
multisine input signals. These input signals are designed to cover a range of relevant
operating conditions that real ocean state where the device will be placed and are
applied to the NLFK4ALL toolbox to collect corresponding dynamic FK output
data. Once the input-output dataset is obtained, the next step involves the compu-
tation of the average empirical transfer function estimate (ETFE) using Eq.(3.13).
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This average ETFE serves as a crucial base in the subsequent steps of the algorithm.

Moving forward, since the precise value of the time-advance parameter, tc is
typically unknown, a finite set of trial values, denoted as Tc, is predefined. For each
trial value in Tc, the associated modified ETFE, denoted as H̄c, is computed using
Eq.(3.14). Subsequently, employing subspace techniques, a corresponding approxi-
mating state-space structure, denoted as Σ̃, of an appropriate order (dimension) ñ
is computed. It is important to note that this computation step is encapsulated
within the ’function’ identify(input, output).

Finally, to determine the optimal linear approximation model for the dynamic
FK effect, the system Σ̃i that yields the lowest fitting error, along with its associated
time-advance parameter tc, is selected as the representative linear model Σ̃dyn. The
detailed process is shown below.

Algorithm 2 Consider the dynamic FK approximation. Assume the input set
U = {ηi}Q

i=1 where each ηi is a carefully chosen multisine signal fidi
. Define

Tc = {tci
}P

i=1 ⊂ [al, ah] ⊂ R+ as a collection of trial time-shifts, with al being
adequately small, and both ah and P ∈ N being adequately large. Let Σ̃ represent
an approximated state-space system, derived using an average ETFE H̄, and
characterized by a user-selected finite order (dimension) ñ. Additionally, let H̃
represent the associated transfer function.
▷ Compute the set of free-surface elevation in frequency domain
U = {Ui(jω)}
▷ Compute the set of FK force in heave mode in frequency domain
Y dynz =

î
Ydynz

i (jω)
ï

▷ Compute corresponding average EFET in heave mode
H̄z(jω) = 1

Q

qQ
i=1

Ydynz
i (jω)
Ui(jω)

▷ Compute the set of FK force in pitch mode in frequency domain
Y dynp =

î
Ydynp

i (jω)
ï

▷ Compute corresponding average EFET in pitch mode
H̄p(jω) = 1

Q

qQ
i=1

Ydynp
i (jω)
Ui(jω)

for i = 1 to P do
Tc = tci

barHc = e−jωTcH̄(jω)
Σ̃i = identify

1
H̄c, ñ

2
Ei =

...ejωTcH̃i(jω) − H̄(jω)
...

2
end for
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This process ensures that the resultant model accurately captures the dynamic
behavior of the system under varying operating conditions, facilitating robust
analysis, simulation, and control design.

3.5 Control-oriented Model
Utilizing the suggested approximating frameworks for both static and dynamic
Froude-Krylov effects, as described in Sections 3.3 and 3.4, respectively, enables the
construction of a control-oriented model Σ̃W . This model aims to approximate the
nonlinear dynamics of the WEC system ΣW as described in Eq.(3.9). To accomplish
this goal, we follow the steps outlined as below.

1. Without any loss of generality, the mapping f̃ st
F K representing nonlinear static

FK forces within the presented approximation framework, can be ‘separated’
as into two parts, linear part f̃ st

FK1 and nonlinear part f̃ st
FKnl

:

f̃ st
FK = f̃ st

FK + f̃ st
FKnl

, (3.25)

where

f̃ st
FK1(ξ) =

P ∂Φ
∂z

---
(0,0,0)

z

P ∂Φ
∂p

---
(0,0,0)

p

 ,
f̃ st

FKnl
(η, ξ) = f̃ st

FK(η, ξ) − f̃ st
FK1(ξ),

(3.26)

The linear mapping f̃FK1st, emphasizing its dependence solely on ξ. According
to the underlying physical principles governing WEC dynamics, it can be
demonstrated that ∂Φ

∂η

--- (0,0,0) = 0. Consequently, the linear component of the
static FK force is contingent only upon the displacement of the device.

2. Regarding dynamic Froude-Krylov forces, and in alignment with the mathe-
matical framework established for the diffraction force in Eq.(3.4), we express
the output of the approximating system Σ̃dyn utilizing its corresponding im-
pulse response function. This approach ensures consistency throughout the
analysis and facilitates a comprehensive understanding of the system’s dynamic
behavior.

f̃dyn
FK (η) = k̃dyn

FK ∗ η (3.27)
where k̃dyn

FK : R+ → R2, k̃dyn
FK ∈ L2(R), can be directly defined in terms of the

triple of matrices (F,G,H) from Eq.(3.20) as

k̃dyn
FK (t) = HeF (t+tc)G (3.28)

So the excitation force could be written as:

Fext =
1
k̃d + k̃dyn

FK

2
∗ η (3.29)
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Specially there is a fundamental distinction existing between excitation force
kernel utilized in linear potential flow theory models and the one proposed in
this research: while kdyn

FK is derived here based on a representative linear model,
the conventional linear potential flow theory computes the corresponding model
assuming infinitesimally small motion of the device about the zero-equilibrium.

Hereafter, an overview of the framework of control-oritented model is provided,
illustrating the interplay of forces in the model.

Figure 3.1: Control-oriented Model

The triple of matrices (Ac, Bc, Cc), defining used in the framework, can be
straightforwardly defined as:

Ac =


0 0 1 0
0 0 0 1

1
m+Az

∞
Pz

∂Φ
∂z

---
(0,0,0)

0 − Bz
visc

m+Az
∞

0

0 1
Iyy+Ap

∞
Pp

∂Φ
∂p

---
(0,0,0)

0 − Bp
visc

Iyy+Ap
∞

 (3.30)

Bc =


0 0
0 0
1

m+Az
∞

0
0 1

Iyy+Ap
∞

 (3.31)

Cc =
C
0 0 1 0
0 0 0 1

D
(3.32)
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Implementing two DoF

Let x = [ξ, ξ̇]⊤ = [z, p, żṗ]⊤ ∈ R4 be the state vector associated with the WEC
system, and the approximating control-oriented model can be then represented as:

Σ̃W :


ẋ =Acx+Bc

1
−kr ∗ Ccx+

1
kd + kdyn

FK

2
∗η + PΦnl) ,

y =Cc = ξ̇,

(3.33)
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Chapter 4

Application

4.1 Floater

The floating body employed in this research is a fundamental vertical cylinder
configuration, similar with the traditional spar-buoy design commonly found in
offshore applications. Notably, it exhibits distinct dynamic characteristics, featuring
a significant pitch natural frequency denoted as ω5 = 0.108rad/s. Interestingly, this
frequency stands at approximately half the magnitude of its heave natural frequency,
denoted as ω3 = 0.216rad/s. This interplay between pitch and heave dynamics
emphasizes the complexity inherent in the body’s response to wave-induced forces
and emphasizes its relevance in offshore engineering studies.

Hereafter, the values for the important parameters used in the model are listed.

Table 4.1: Physical properties of the floater

Parameter Value
Cross section area AC 1087 m2

Water density ρ 1000 kg/m3

Mass M 2.15 × 108 kg
Draft LD 198.1 m
Gravity g 9.81 m/s2

Constant added mass in heave mode m3 1.37 × 107 kg
Metacentric height GM 10.1 m
Damping coefficient in heave mode C3 1.19 × 106 kg/s
Moment of inertia in pitch modeI5 1.12 × 1012kgm
Distance from centre of mass to still water level LSC 109.1 m
Damping coefficient in pitch mode C5 7.54 × 109kgm/s
Constant added mass in pitch mode m5 7.26 × 1011 kg
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4.2 Excitaion Wave
To comprehensively capture the varied displacements of the floater, a multisine
wave is employed for data collection. This choice enables the exploration of a wide
spectrum of dynamic responses. Specifically, with natural frequencies in heave and
pitch modes identified at 0.216 rad/s and 0.108 rad/s, respectively, a frequency
range spanning from 0.005 rad/s to 0.3 rad/s is selected.
Recalling the fundamental insights described in Section 2.5.2, a more specific
representation of multisine wave which will be utilized later is as bellow:

fid(t) =
KØ

p=1
Ap cos (lpωidt+ ψp) (4.1)

where {Ap, ψp}K
i=1 ⊂ R, and where ωid = 2π/Tid, with Tid the measurement period,

and lp a positive integer. And the frequency ωid is referred to as the fundamental
frequency (in [rad/s] ) of the multisine signal.

This frequency range is finely sampled at intervals of 0.001 rad/s to ensure
thorough coverage so the ωid is 0.001 and measurement period Tid is around 6284s.
Additionally, to capture transient behavior effectively, simulations are conducted
over 10 periods of oscillation, with a simulation time step of 1 second. This system-
atic approach facilitates a comprehensive understanding of the floater’s behavior
across various operational conditions. And the amplitude should controlled by
user easily due to adapt different cases. As outlined in Section 2.5.2, in order
to minimize the crest factor, Schröder phases, as defined in Eq. (2.70), are employed.

Therefore, there is an example of multisine wave used in both in time domain
in Fig 4.1 and frequency domain in Fig 4.2 presented as bellow.
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Figure 4.1: Multisine wave in time domain
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Figure 4.2: Multisine wave in frequency domain

4.3 Modelling Static FK Effect
In this study, the investigative scope is specifically limited to examining the linear
aspects of the nonlinear Froude-Krylov force. This focused approach necessitates
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the selection of a minimal amplitude that is sufficiently small to ensure that the
behavior remains predominantly linear. Consequently, this limitation in amplitude
is essential for accurately generating the values of the matrix P, which plays an
important role in the analysis. In this regard, an amplitude of 0.01 meters emerges
as a reasonable choice, ensuring the requisite magnitude to effectively trigger non-
linear effects.

Recalling the procedure outlined in Algorithm 1, the initial step involves selecting
suitable basis functions. These functions should effectively capture the static FK
effect while mitigating the risk of overfitting, considering their intended application
across various scenarios. The process entails a trial-and-error approach to determine
the most suitable basis functions. After carefully considering, a set of basis functions
as chosen as:

Φ =
è
1 z p zp η ηp ηz ηzp

é
, (4.2)

which corresponds with the first 8 terms of the polynomial series expansion of f st
FK

about (z, p, η) = (0,0,0). Using corresponding Algorithm 2, the final computed
solution of P is: 

−517.273244940658 −9021.61694855900
−10788572.2726150 −22249386712.3616
−10702584.2812758 −392855.737666598
35105784.4688144 1345866867.70791
598401.682233837 10108894.2575522

−18229978.9275238 −1925148668.90044
−335277.035124412 3025192.00161225
−14798543922.6449 460249872338.523


(4.3)

4.4 Modelling Dynamic FK Effect
Now that we have outlined the approximation of static nonlinear FK forces using
the proposed framework, we advance towards the modeling of dynamic FK effects
tailored for control purposes. This progression aligns with the systematic approach
delineated in Section 3.3, delineated by Algorithm 2.

Prior to the implementation of this procedure, it is important to carefully select
an appropriate excitation multisine wave. This selection process aims to ensure that
the resulting Bode diagram of dynamic Froude-Krylov forces exhibits a notably
smooth profile across the designated frequency spectrum. Specifically, the chosen
frequency range spans from 0 rad/s to 0.25 rad/s, thereby encompassing the natural
frequencies associated with both heave and pitch modes.
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Here are some resulting Bode diagrams from Fig 4.3 to Fig 4.6. In each figure,
the upper two plots depict the behavior in the heave mode, while the lower two
plots represent the pitch mode.
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Figure 4.3: Amplitude-2m
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Figure 4.4: Amplitude-0.1m
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Figure 4.5: Amplitude-0.05m
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Figure 4.6: Amplitude-0.01m

Therefore, the multisine wave selected has the amplitude as 0.01 meters.

Regarding the specific parameters characterizing Algorithm 2, the order (dimen-
sion) is set to ñ=10, which strikes a balance between computational complexity and
model accuracy. The set of uniformly spaced trial time-shifts Tc, used to compute
an estimate of the output time-advance characterizing the dynamic FK system, is
defined such that Tc ∈ [0,15]. As depicted in Fig 4.7, illustrating the approxima-
tion error of Algorithm 2 across different Tc values, the optimal time-advance is
determined to be tc=6.32s.
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Figure 4.7: Approximation error of different shifting time

The outcomes of implementing the proposed algorithm are synthesized in the
Fig 4.8 where the upper two subplots are for heave mode and the down two subplots
are for pitch mode, representing by a comprehensive Bode plot. This plot composes
an averaged ETFE H̄(jω) (depicted in orange lines), and the frequency-response
mapping linked with the computed approximate model Σ̃dyn (displayed in yellow
lines). This figure distinctly demonstrates a fairly promising alignment with the
target H̄(jω), which mean it is a robust fit. Moreover, to emphasize the difference
between conventional linear hydrodynamic FK representations and the innovative
approach, this figure depicts the frequency-response of the linear dynamic FK
model derived via BEM solvers (specifically, Nemoh in this context).
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Figure 4.8: Bode plot of the corresponding average ETFE, computed approxi-
mating model, and linear BEM model

It’s important to note a significant gap between the linear BEM model which is
Nemoh in this case and the representative linear structure derived from Algorithm
2, in terms of both amplitude and phase descriptions, especially the phase one.
Specifically, the BEM model fails to capture the time-advance adequately, resulting
in almost zero-phase behavior within the frequency range relevant to the device’s
operational conditions. This discrepancy in phase representation could lead to
notable shortcomings in energy-maximizing performance for controllers relying on
dynamic FK BEM models. This is because having accurate insight into the instan-
taneous phase of the WEC system variables is crucial for achieving satisfactory
control performance.

To comprehensively assess the quality of the combined static and dynamic
Froude-Krylov approximation models, we present a detailed comparison in Fig
4.9. This comparison involves the target static and dynamic FK force, denoted
as Yz

F Kst
, Yp

F Kst
, Yz

F Kdy
and Yp

F Kdy
, which are computed using the nonlinear solver
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NlFK4All, and the corresponding approximation obtained through the proposed
control-oriented framework, denoted as Ỹz

F Kst
, Ỹp

F Kst
, Ỹz

F Kdy
and Ỹp

F Kdy
. At the

top of this figure, there is a visual representation of the time traces associated with
the target Yz

F Kst
, Yp

F Kst
, Yz

F Kdy
and Yp

F Kdy
(indicated by dotted lines) and the ap-

proximating Ỹz
F Kst

, Ỹp
F Kst

, Ỹz
F Kdy

and Ỹp
F Kdy

(depicted by solid lines) Froude-Krylov
forces. This comparison enables a direct observation of how well the approximating
model aligns with the target FK force over time.
Furthermore, Fig 4.10 offers a quantitative measure of the approximation error.
This error is computed as the difference between the target and approximating
total FK forces, normalized by the maximum absolute value of the target force. By
consistently evaluating this approximation error, we can evaluate the performance
of our proposed approximation framework.
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Figure 4.9: Time-traces corresponding with target and approximating total FK
force
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Figure 4.10: Time-traces of associated approximation error
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In essence, these figures not only presents empirical data but also serves as a
gateway to understanding the behavior of the system under consideration. Overall,
this comprehensive analysis shows the efficacy of this approach in accurately
approximating the total FK force, thus highlighting the practical utility and
reliability of the control-oriented modeling strategy.

4.5 Building Control-oriented Model

Following the development of models to approximate both static and dynamic
Froude-Krylov effects, these models are integrated into the control-oriented frame-
work. The figure below Fig 4.11 illustrates the displacement(heave and pitch in
this cotext) of the floater computed by the numerical solver NLFK4ALL alongside
the control-oriented model proposed in this research.
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Figure 4.11: Displacemnt comparation between NLFK4ALL and proposed frame-
work
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The image shown in Fig 4.11 effectively demonstrates how well the proposed
framework works. By carefully combining models of both static and dynamic Froude-
Krylov effects into a unified system that focuses on control, this computational
approach accurately represents the movements of the floater. The comparison in
the figure highlights that the model’s calculations of the floater’s movements are
as accurate as those from a numerical solver, NLFK4ALL, while also emphasizing
that the proposed method requires less computational effort. This observation
points out that the framework is designed to handle complex calculations efficiently
and provide precise results about the floater’s behavior.

4.6 Validation

4.6.1 Jonswap excitation wave
For the validation of the developed model, a Jonswap wave profile is employed
to emulate a realistic sea state. The JONSWAP (Joint North Sea Wave Project)
spectrum is particularly chosen due to its ability to closely represent the spectral
characteristics observed in natural sea states. It adjusts the peak enhancement
factor to simulate varying sea state conditions more accurately than other models.
The wave profile is characterized by a significant wave height of 0.1 meters and a
period of 54 seconds. The frequency range of the wave, spanning from 0.09 rad/s
to 0.21 rad/s, comprehensively covers the natural frequencies of the floater in both
heave and pitch modes. This selection ensures that the wave conditions used in
the model testing are representative of the operational environment anticipated
for the device. The figure below Fig 4.12 illustrates the magnitude of this wave in
the frequency domain, providing a visual representation of the wave characteristics
used for model validation.
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Figure 4.12: Jonswap wave in frequency domain

4.6.2 Static FK Effect Validation
Initially, it is essential to make sure the adequacy of the developed model intended
to approximate the static Froude-Krylov force, ensuring its suitability for further
analysis. The results from this preliminary validation are crucial for proceeding
confidently with subsequent modeling stages.
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Figure 4.13: Static FK effect comparartion in Jonswap wave

The findings, as depicted in the accompanying figure, indicate that the model
demonstrates a high degree of accuracy in approximating the static Froude-Krylov
force. The alignment between the model’s predictions and the empirical data sug-
gests that the model not only captures the fundamental dynamics with considerable
precision but also exhibits robustness in its predictive capabilities.

4.6.3 Dynamic FK Effect Validation
Secondly, it is important to evaluate the fidelity with which the dynamic Froude-
Krylov effects are approximated. An examination of the accompanying figure
reveals that the approximated dynamic Froude-Krylov force is consistently larger
than that derived from the NLFK4ALL solver. Notably, this discrepancy man-
ifests as an error that is changing with magnitude constantly across the entire
range of time. This systematic deviation is attributed to the inherent nonlinearity
introduced by the multisine wave employed during the identification process, a
characteristic not encapsulated by the Jonswap spectrum typically used.
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Figure 4.14: Dynanic FK effect comparartion in Jonswap wave

To address and mitigate this observed deviation, a scaling coefficient of 0.917
is applied to the approximated dynamic Froude-Krylov effect. This adjustment
significantly enhances the alignment between the approximated results and the
target data derived from NLFK4ALL, as demonstrated in the subsequent figure.
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Figure 4.15: Dynanic FK effect comparartion in Jonswap wave after scaling

The introduction of this scaling factor effectively normalizes the response, ensur-
ing that the approximated and actual dynamic Froude-Krylov forces align closely
across the tested conditions. This alignment is critical for validating the accuracy
of the modeling approach and shows the adaptability of our methodology in com-
pensating for the nonlinear influences encountered during the wave identification
phase.

This rigorous assessment and correction process not only affirms the validity of
the approximated model but also illustrates the analytical necessary to refine and
adapt hydrodynamic models to accurately reflect complex real-world phenomena.

4.6.4 Validation of Control-oriented Model
Following the successful validation of both static and dynamic Froude-Krylov force
components, the next logical step in our research is to proceed with the validation
of the entire model that simulates the displacement of the floater.
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The accompanying figure presents the results of this extensive model validation.
It illustrates how the model performs in approximating the floater’s displacement,
focusing on the pitch and heave modes in this context.
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Figure 4.16: Displacement comparation in Jonswap wave

In the pitch mode, the model demonstrates a quite good level of accuracy,
closely replicating the expected displacements. However, the approximation in
heave mode, while generally good, does not achieve the same level of precision.
This discrepancy indicates potential areas for refinement in how the model handles
vertical displacements or interacts with wave forces in heave mode.
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Chapter 5

Conclusion

In this Master’s thesis, the focus has been on the data-based modeling of nonlinear
hydrodynamics that Froude-Krylov effect in this scope for wave energy conversion
systems. The primary objective was to develop accurate models that capture the
complex nonlinear behavior of wave energy converters, with the ultimate goal
of enhancing their performance and efficiency, and at the same time suitable for
developing control system on the basis of it.

It begins with highlighting the importance of nonlinear dynamics in accurately
predicting device performance. The significance of the Froude-Krylov effect and
other nonlinearities in WEC modeling was emphasized, indicating the necessity to
account for these factors to optimize design and control strategies.

This Master’s thesis has tried to extend the boundaries of knowledge in the field of
wave energy conversion, building upon the foundational work of my supervisor Niclas
Feado and Giuseppe Giorgi. The goal of this study was to expand upon the existing
data-based modeling approach for wave energy converters, initially developed for
single degree of freedom systems, and extend it to encompass the complexities of
two degrees of freedom systems. This extended framework enabled the exploration
of more complex interactions between wave conditions and WEC behavior, yielding
valuable insights into system performance across different scenarios.

The challenges of balancing modeling accuracy with computational efficiency
were also addressed, which involved in developing complex models for real-time
applications. The need for efficient computation and accurate mathematical models
in design processes was highlighted.

Through the exploration of nonlinear hydrodynamics and the implementation of
advanced modeling techniques, this thesis has contributed to a deeper understanding
of wave energy conversion systems. The insights gained from this research have
practical implications for the design, optimization, and control of WECs, offering
new path for improving their efficiency and reliability.

As the wave energy industry continues to evolve, the work of this thesis pave
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the way for further research and development in the field of wave energy conversion.
By continuing to refine data-based models and explore innovative solutions, it
is possible to drive advancements in wave energy technology and accelerate the
transition towards a more sustainable energy future.

In conclusion, this Master’s thesis represents a significant step towards exploiting
the full potential of wave energy conversion systems through the modeling of
nonlinear hydrodynamics. The work presented here lays the groundwork for future
advancements in the field, with the hope of contributing to the widespread adoption
of wave energy as a clean and renewable energy source.
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