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Summary

An ensemble of statistical techniques and artificial intelligence methods is proposed
for the detection of abnormal conditions (anomalies) in safety-critical applications.
Stacked Autoencoders (SAEs), Autoencoders(AEs), isolation forest (IF), the Local
Outlier Factor (LOF) method and Gaussian Mixture Models (GMMs) are considered
in the ensemble. The outputs of these algorithms (i.e., properly defined anomaly
scores) are normalized within an original probabilistic framework and combined
for the robust and conservative identification of anomalies in datasets: different
combination functions are employed, including "averaging", "maximization" and
"AKPV", which averages the scores of the top three anomaly detectors. SAEs are
also used as efficient tools for dimensionality reduction in the overall framework.
The developed approach is tested on two functional datasets made of time series: 1)
the ECG5000 dataset; and 2) a set of transients representing the time evolution of
several physical parameters (e.g., fluid temperatures) taken from the simulator of a
Generation-IV nuclear reactor, i.e., a Molten Salt Fast Reactor (MSFR). The global
accuracy and the Area Under The Curve (AUC)-Receiver Operating Characteristics
(ROC) scores are used for assessing the performance of the individual methods
and of the ensemble. The results show that the use of an ensemble improves the
performance in the detection of anomalies with respect to the individual detectors.
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Chapter 1

Introduction

1.1 Background

Since the early 20th century, some fields such as Data Science, Machine Learning
and Deep Learning has drawn significant attention across diverse industries. Thanks
to the advancement of computing power and the growth of database, it is possible to
implement such techniques in different industrial fields and applications, especially
anomaly detection, one of the vital tasks [1].

Anomaly detection, also known as outlier detection, plays a crucial role in a
wide range of fields, including healthcare, finance, cybersecurity, and industrial
systems. In the operation and control of safety-critical systems and plants, operators
are typically required to promptly identify their abnormal conditions and the
corresponding causes, considering the time evolution of continuously. Many anomaly
detection algorithms for time series signals have been proposed in recent years.
The main categories of anomaly detection algorithms are based on statistics,
density, distance, clustering, isolation, ensemble, and subspace[1]. In many machine
learning tasks, ensemble-based methods are well known for their better performance
compared to the individual methods[1]. Among almost all the anomaly detectors
had been proposed, it is difficult to find a single winning algorithm or method that
performs well across different datasets, despite the significant advancement in time
series anomaly detection area[2].

The choice of applying the ensemble method to specific datasets, ECG5000 and
MSFR datasets, is motivated by the real-world relevance of anomaly detection
in healthcare and nuclear systems. Exploring and enhancing the performance of
anomaly detection methods in these domains aims to contribute methodologies
applicable to critical sectors.

This thesis holds significance in advancing the field of (times series) anoma-
ly/outlier detection by means of the following contributions:
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1. Most methods rely on their own “arbitrary” definitions of outliers and of how
they differ from normal datapoints. This results from the lack of a rigorous
definition of what constitutes “normal (resp., abnormal) behavior” and of
a corresponding quantitative measure that can be universally accepted as
such. To tackle this issue, the outlier detection algorithms here employed are
originally tailored to produce normalized anomaly scores: actually, in many
contexts, a quantifiable “score of outlyingness” is much more useful than a
simple binary label of “inlier” or “outlier” (that many available techniques only
provide), since there will always be data whose outlyingness may be considered
too small to classify them as outliers, but whose score is still sufficient to
be relevant when analyzing their taxonomy. In particular, in this thesis the
outputs of the detection algorithms (i.e., properly defined anomaly scores) are
normalized within an original probabilistic framework to motivate a statistical
interpretability of the unified scores. Outlier scores usually are not equally
distributed in their value range but follow a much more complex distribution,
which is hard to grasp analytically, and many assumptions must be made to get
a reliable result. Instead, it becomes much easier to analyze the actual score
distribution on the data set without assuming anything on the distribution of
the data. In [3] several normalization functions are proposed that are based on
classical Gaussian, Gamma, F and Cauchy Probability Distribution Functions
(PDFs). It should be again pointed out that we do not draw any assumptions
on the distribution of the data, but on the distribution of the derived outlier
scores. The intuition of this approach is the following: we do not have a direct
way to interpret the score, we instead evaluate how “unusual” the score of
a point is, using the algorithms output score as a one-dimensional feature
projection of the data. Let us note that any distribution function can be used
for this purpose analogously, depending on how well it fits to the distribution
of the derived outlier scores. In this work, we employ an Empirical Cumulative
Distribution Function (CDF) approach to fit the available scores and avoid
making any assumption on their distribution.

2. Due to the very broad and diverse nature and taxonomy of the time series
outliers, the performance of the available detection methods largely depends
on the “physical origin” of the anomaly, on the nature and spatial distribution
of the data points (i.e., depending on the type, sparsity and homogeneity of
the dataset). In practice, no single detection algorithm can universally apply
to all datasets. To address this problem, several diverse detection algorithms
are considered within an ensemble framework and all the normalized anomaly
scores produced are aggregated to get a unique, robust and reliable score.
The underlying idea is that some algorithms will perform well on a particular
subset of points (i.e., the outliers that are the most “obvious” from their
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respective standpoints), whereas other algorithms will do better on other
subsets of points. By so doing, the ensemble combination is often able to
obtain more accurate and robust results because of its ability to combine
the outputs of multiple algorithms and to “correct” errors committed by the
single, diverse ensemble members. In this thesis, the (probabilistic) normalized
anomaly scores are combined for the robust and conservative identification of
anomalies in datasets: different combination functions are employed, including
"averaging", "maximization", "damped average" and "AKPV", which averages
the scores of the top three anomaly detectors.

3. The diversity of the existing methods hinders the comparability of the results.
In an unsupervised framework the only valid way of testing the detection
capabilities of a detection algorithm is to compare its provided results through
a chosen set of toy examples. Most examples simply rely on the comparison
of their detection rates in rather simple models, and they are almost never
tested on sets of functional data coming from real systems or generated by
numerical simulations. In this respect, in the present thesis the effectiveness
of the proposed approaches is systematically assessed by means of several
diverse statistical indicators. In particular, the global accuracy, the True
Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR),
False Positive Rate (FPR) and the Area Under The Curve (AUC)-Receiver
Operating Characteristics (ROC) scores are used for assessing the performance
of the individual methods and of the ensemble.

4. Two relevant and realistic functional datasets made of time series and taken
from “safety-critical” sectors are considered: 1) the ECG5000 dataset (a
collection of heartbeat signals); and 2) a set of transients representing the
time evolution of several physical parameters (e.g., fluid temperatures) taken
from the simulator of a Generation-IV nuclear reactor, i.e., a Molten Salt Fast
Reactor (MSFR).

The outcomes of this thesis have the potential to improve the accuracy and effi-
ciency of anomaly detection in practical scenarios, thereby enhancing the reliability
and security of systems in various domains.

1.2 Overview of this thesis structure
The thesis is organized as follows. In chapter 2, we discuss related the frontier
research in anomaly detection which contains the technologies with Machine Learn-
ing (ML) and Deep learning (DL). The overview of the method and algorithms
that are used in anomaly detection is also presented in this section. In chapter 3, it
contains the detailed introduction of algorithms that are AE, SAE, LSTM, T-SNE,

3
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LOF, GMM, IF. In chapter 4, the general introductio of ensemble, ecdf and the
methods of combination of scores are presented. In chapter 5, it is the description
of dataset, experimental setting and discussion of results. And it also contains the
method related to ensemble of outputs from these methods and algorithms. In
section 6, it is the conclusion.

4



Chapter 2

Related works

2.1 Frontier Research in Anomaly Detection

There are lots of survey works that introduce anomaly detection and compare
performance of different algorithms and methods. Take [1] as example, the authors
introduce the definition of anomaly and categories of anomaly. And the authors
compare different algorithms among statistics-based, density-based, distance-based,
clustering-based, isolation-based, ensemble-based, and subspace-based. In order to
extract global feature from time series data, the authors of [4] proposed a model
combined Transformer and 1-D CNN. This model consists of encoder with multiple
Transformer layers and a decoder with one 1-D CNN layer. This method utilizes
the self-attention mechanism from Transformer to extract global features of time
series data. And some ensemble methods based machine learning models have
developed. Such as [5], one ensemble method is proposed, named LODA, which
ensemble different ‘weak’ detectors as a ‘strong’ detector to achieve high perfor-
mance in particular tasks. LODA is a collection of k one-dimensional histograms,
each approximating the probability density of input data projected onto a single
projection vector. The projection vectors diversify individual histograms, improving
the performance of a single detector. LODA emphasizes the speed of anomaly
detection procedure so that it can operate in real-time system. And [6], which
introduces the LSCP framework, which addresses the challenge of combining base
outlier detectors in unsupervised outlier ensembles by emphasizing data locality
and dynamic selection.

5
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2.2 Common Algorithms for Anomaly detection
2.2.1 AE: Autoencoder
Autoencoder are a type of neural network used for unsupervised learning. For the
sake of unsupervised learning, no need for labeled anomaly data, which can be
scarce or difficult to obtain. The autoencoders can be used as data reconstruction
and dimension reduction. But only one autoencoder is not always extract feature
efficient, so the stacked autoencoders are introduced.

2.2.2 SAE: Stacked Autoencoder
Stacked Autoencoder is a variant of Autoencoder, which is wieldy used in anomaly
detection tasks. By stacking more than one autoencders, SAE can reduce dimension
lower than single AE. In time series signal anomaly detection, LSTM based block
and CNN based block are always stacked together to extract local feature from
original data. Furthermore, to extract global feature from complex time series
signal, Self-attention mechanism based Autoencoder structure become more and
more popular.

2.2.3 LOF: Local Outlier Factor
LOF is degree of being an outlier for each object proposed in [7]. It is more
meaningful to assign to each object a degree of being an outlier, leading to the
introduction of the concept of LOF, which quantifies how outlying an object is.
This approach addresses the limitations of existing outlier detection methods and
provides a more comprehensive understanding of outliers in datasets. The LOFs of
inliers always have values that more or less equal to 1. And the ones of outliers
always have values more than 1. The higher it is, the more it indicates an outlier
for each object.

2.2.4 IF: Isolation Forest
Isolation Forest is a machine learning algorithm proposed in [8]. IF is a model-
based anomaly detection method that isolates anomalies instead of profiling normal
instances, achieving high detection performance and fast execution given the
assumption that anomalies are data patterns which differ from normal instances
and the number is significant less that the number of normal data. The IF algorithm
is a two-stage process for anomaly detection. In the training stage, isolation trees
are constructed using sub-samples of the training set. The tree height limit is set
based on the sub-sampling size, focusing on data points with shorter-than-average
path lengths, as they are more likely to be anomalies. The number of trees and the

6
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sub-sampling size are input parameters that can be adjusted based on the desired
detection performance [8]. What’s more, ReMass-iForest [9] is variant of iForest,
which use relative score instead of global score as used in iForest. Due to relative
score, ReMass-iForest is able to detect local anomalies, which is shortcoming of
iForest [1].

2.2.5 GMM: Gaussian Mixture Model
Gaussian Mixture Model is also called Finite Mixture Model (FMM). GMM is an
ancient model that more than 100 years old. Thanks to Expectation Maximization
(EM) algorithm, FMM refreshed. The EM algorithm is ideally suited to problems
that estimation of the parameters [10]. GMM fits multiple Gaussian models from
dataset, which the number of models could be consider as hyperparameter and
the parameters of models (for gaussian distribution, the parameters are mean and
variance) could be found by EM algorithm. Given the assumption that normal
data concentrate with high probability density and abnormal data lie on the region
with low probability density, probability density for each object could be set as a
criteria to judge abnormality, which lower values represent anomalies [11].

2.2.6 OCSVM: One Class Support Vector Machine
SVMs use reprocessing strategy in learning by mapping the input space to feature
space for classification. And SVMs try to find a hyperplane that maximizes the
margin between itself and the nearest training points [12]. OCSVM is a variant of
SVM for anomaly detection. OCSVM tries to find a hyperplane to separate the
training data form the origin, considering the abnormal data lying on the origin.
This stimulates the thought that this consideration is the weak point of OCSVM
as this requires the origin to be a member of the outlier class [13].

2.2.7 k-NN: k-nearest neighbors
K-NN assums that the abnormal data is far away fram its-nearest neighbour,
anormaly score computed as distance between data instace and its k-NN [1]. K-NN
is expensive on staring and computation complexity by storing all training data
and calculating the distance of testing data and all training data. Base k-NN, some
more improved variants are proposed, like kth-NN [14], Sp [15].

2.2.8 k-means
K-means is an unsupervised learning algorithm primarily used for clustering data
into ’k’ clusters based on feature similarity. For anomaly detection, k-means can
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help identify data points that do not fit well into any cluster, which are considered
anomalies or outliers. Furthermore, Outlier Finding Process (OFP) [16] is a anomaly
detetction method based k-means. It uses modified k-means clustering and then
minimum spanning tree is constructed. The tree with less nodes are considered as
anomalies [1].

8



Chapter 3

Methodologies considered in
this thesis

3.1 Autoencoder
The autoencoder (AE) stands as an importable neural network architecture within
machine learning. Recognized for its capacity in unsupervised learning, autoen-
coders operate without the necessity of explicit labels during the training phase. It’s
worth noting that autoencoders can be more accurately described as self-supervised,
as they derive their own labels from the training data [7]. AE also function as a
generative model, and AEs adept at producing reconstructed data. This character-
istic has led to widespread utilization of autoencoders in anomaly detection tasks.
Typically, an autoencoder is trained to accurately reconstruct normal data while
encountering difficulty in reconstructing abnormal data, thus yielding a substantial
reconstruction error. Additionally, the output of the ’bottleneck’ layer, termed the
’code’, may exhibit distinctions between normal and anomalous data. The measure-
ment of ’reconstruction error’ commonly serves as the criterion for distinguishing
between anomalies and normal data.

An autoencoder consists of encoder and decoder. The encoder is responsible for
mapping input data to a latent space (usually in the lower dimension in comparison
with original dimension). Typically composed of multiple hidden layers, each
containing multiple neurons. The decoder receives the encoded data and attempts
to reconstruct the original input. Structurally symmetrical to the encoder, using
multiple hidden layers to progressively reflect the structure of the input data. The
output of the encoder is the encoding in the latent space, which is a compressed
representation of the input data. The dimensionality of this latent space is usually
lower than that of the input data, achieving dimensionality reduction. The structure
of AE is shown in the figure 3.1. Image source is [17].
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Figure 3.1: sample structure of autoencoder

Let a dataset X = [x1, x2, x3, . . . , xN ] be i.i.d. sample of data, where xi ∈
Rd, X ∈ RN×d. feed X to autoencoder, the encoder of AE performs dimensional re-
duction on X to the defined dimension of latent codes. And the latent representation
is a(1) = [a(1)

1 , a
(1)
2 , a

(1)
3 , . . . , a

(1)
N ]

a(1) = f(W1X + B1)

Where f, W1, B1 are activation function, weights matrix and bias matrix respectively.
As a sequence, decoder of AE starts to reconstrue the original data from latent
codes a to reconstructed output is

Xreconstructed = g(M2a + C2)

where g, M2, C2 are activation function, weights matrix and bias matrix. Through
adding more layers to encoder and decoder, AE could be built as deep autoencoder,
shown in figure 3.2. Image source is [18].
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Figure 3.2: sample structure of deep autoencoder

In terms of deep autoencoder, the laten representation

a(1) = fn(Wn . . . f2(W2f1(W1X + B1) + B2) + · · · + Bn)

where n is the number of layers of encoder. The reconsturucted data is

Xreconstructed = gm(Mm . . . g2(M2g1(M1a + C1) + C2) + · · · + Cm)

where m is the number of layers of decoders.

3.2 Stacked Autoencoder
Stacked Autoencoder (SAE) emerges as a variant of conventional AE, which always
boasts better performance not only on reconstruct data but also feature extraction.
SAE consists of multiple AEs (usually with multiple layers). In SAE, each AE
has an encoder and a decoder. In usage phase, the more meaningful output is not
reconstructed data rather than the ‘code’ that the outputs of ‘bottleneck’ layer.
However, in training phase, reconstructed error is used for updating wights with
back propagation.

In SAE, the encoding from the previous AE is connected to the input of the
subsequent autoencoder, forming a cascading structure. This connection continues
until the final AE, whereupon the encoding is linked to the decoder input of the
subsequent autoencoder in reverse order, ultimately reaching the initial AE. This
results in a stacked structure where each autoencoder relies on the representation
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learned by the previous autoencoder, the ‘code’ of each autoencoder serves as the
input for the next one. This allows the network to learn hierarchical representations
of the data, with each layer capturing more complex features. In general, the outer
AE engage to reconstruct data and inner AE engage to feature extraction.

In practice, the outermost autoencoders primarily focus on data reconstruction,
while the inner autoencoders emphasize feature extraction. Therefore, during the
training phase, careful attention must be directed towards the reconstruction ability
of the outer autoencoders, while the inner autoencoders prioritize feature extraction.
For a visual depiction of the SAE structure, refer the figure 3.3. Image source is
[19]

Figure 3.3: sample structure of SAE

In terms of deep autoencoder, the latent representation

a(1) = fencoder n(fencodern−1 . . . fencoder2(fencoder1(X)))

fencoder1 = f1m1(W1m1 . . . f12(W12f11(W11X + B11) + B12) + . . . B1m1)

fencodern = fnmn(Wnmn . . . fn2(Wn2fn1(Wn1X
(n−1) + Bn1) + Bn2) + . . . Bnm1)

Where Wnmn is the mnth wights matrix function for the nth encoder, Bnmn is
the mnth bias matrix for the nth encoder, and fnmn is the mnth active function for
the nth encoder. Xn−1 is the output of ‘bottleneck’ layer of the (n − 1)th encoder.
The reconstructed data is
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Xreconstructed = gdecoder n(gdecodern−1 . . . gdecoder2(gdecoder1(X)))

gdecoder1 = g1m1(M1m1 . . . g12(M12g11(M11a + C11) + C12) + . . . C1m1)

gdecodern = gnmn(Mnmn . . . gn2(Mn2gn1(Mn1a
(n−1) + Cn1) + Cn2) + . . . Cnm1)

Where Mnmn is the mnth wights matrix function for the nth decoder, Cnmn is
the mnth bias matrix for the nth decoder, and gnmn is the mnth active function for
the nth decoder. an−1 is the output of ‘bottleneck’ layer of the (n − 1)th decoder.
And a is the ’code’.

Thank to this chain structure, encoder of SAE could increasing do dimensional
reduction and extract high-level features from original data [19]. The bottleneck
dimension of SAE could be lower than one of single AE.

3.3 LTSM: Long Short-Term Memory

Long Short-term Memory (LSTM) block is widely used in Recurrent Neural Net-
works (RNNs), particularly acclaimed for its effectiveness in extracting temporal
features from time series data. In traditional RNNs, recurrence means repeti-
tive multiplication, which introduces two issues, gradient vanish and exploring.
These challenges impede the training of RNNs and hinder their ability to capture
information over long sequences.

To address these obstacles, the LSTM architecture was introduced as a spe-
cialized variant of RNNs. LSTM is specifically designed to solve the long-term
dependency problem in traditional RNNs. Gradient exploring is achieved through
the incorporation of ‘memory unit’ and ‘gate’ mechanisms. This memory unit can
selectively remember or forget information and does so through a gating mechanism.

LSTM comprises three gates: input gate, forget gate and output gate. These
gates regulate the flow of information, which how input is processed in the memory
unit, when previous information is forgotten with forget gate, and new information
is propagated forward with output gate.

Overall, the architectural design of LSTM empowers it to effectively process
and retain information over extended sequences, making it particularly adept at
handling temporal data. The structure of LSTM block is shown in the figure 3.4.
Image source is [19].
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Figure 3.4: sample structure of LSTM block

In real usage case, there are five activation functions added for input gate signal,
memory cell input gate, forget gate, memory cell output gate and output gate.
And there are four inputs, and one outputs. The output of the block is recurrently
connected back to the block input and all of the gates [20]. The real usage structure
is shown in the figure 3.5.
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Figure 3.5: sample structure of LSTM

Where f is gate activation function, always is sigmoid function to mimic open
and close.

According to the structure displayed by above image.

zi = f(Wiizt + bii + Waiat−1 + bai)

zo = f(Wiozt + bio + Waoat−1 + bao)

zf = f(Wifzt + bif + Wafat−1 + baf )

it = tanh(Wiizt + bit + Watat−1 + bat)

Ct = zf ⊗ Ct−1 + zi ⊗ tanh(it)

at = zo ⊗ tanh(Ct)

Where zi, zo, zf are signals that control input gate, output gate and forget gate
respectively. And it is input signal for ‘memory unit’ at the current time, where
Wit and Wat are the weights associated with current input zt and last time hidden
state a(t − 1), respectively, while bit and bat are bias vectors. For input gate, Wii
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and Wai are the weights associated with current input zt and last time hidden state
at−1, respectively, while bii and bai are bias vectors. In terms of output gate, Wio

and Wao are the weights associated with current input zt and last time hidden state
at−1, respectively, while bio and bao are bias vectors. For forget gate, Wif and Waf

are the weights associated with current input zt and last time hidden state at−1,
respectively, while bif and baf are bias vectors. Ct is current cell state, and Ct−1 is
cell state at the previous time stamp. In the real usage, during training, all the
weights metrics and bias vectors are calculated by backpropagation through time
(BPTT) [21] algorithm like other neural networks (NNs).

3.4 T-SNE: T-Distributed Stochastic Neighbor
Embedding

T-Distributed Stochastic Neighbor Embedding (T-SNE) is a dimensionality re-
duction technique used to visualize high-dimensional data. In comparison with
Principal Component Analysis (PCA), a very famous linear dimensionality reduc-
tion technique, T-SNE mainly does non-linear dimensional reduction. For the
sake of visualization, T-SNE maps the high-dimensional (hundreds even thousands
dimension) datapoints to two or three dimensional datapoint [22]. T-SNE is a
variant of Stochastic Neighbor Embedding (SNE) with improvements. T-SNE tries
to find a similar distribution on low-dimensional space from high-dimensional space,
in the other words, T-SNE tries to adjust the points in low-dimensional space
in order to let the points that are similar in high-dimensional space become in
low-dimensional space.

Given the data X = {x1, x2, . . . , xn}, and an initial hyperparameter perplexity:
prep. Perplexity can be interpreted as a smooth measure the effective number of
neighbors. The performance of SNE is fairly robust to changes in the perplexity,
and typical values are between 5 and 50 [22]. The parameter is, in a sense, a
guess about the number of close neighbors each point has. The perplexity value
has a complex effect on the resulting pictures [23]. And optimization parameters:
number of iterations T , learning rate: η and momentum: α(t) are also user defined
as initial hyperparameters. T-SNE calculates pairwise p(j|i) in original data space
with pre-defined perp.

p(j|i) =
exp(−∥xj−xi∥)2

2σ2
i

)q
k /=i exp(−∥xj−xi∥)2

2σ2
i

)

Where p(i|i) = 0, and σi is variance of Gaussian distribution that centered on
datapoint xi, and it is selected according to perp with the equation:

prep(Pi) = 2H(Pi)
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where Pi is is probability induced by σi, and H(Pi) is Shannon entropy of Pi, which
is:

H(pi) = −
Ø

j

pj|ilog2pj|i

SNE performs a binary search for the value of σi that produces a Pi with a fixed
perplexity[22].

And set:
pij = pj|i + pi|j

2
And then sample initila solution Y (0) = {y1, y2, . . . , yn}, which has a difference
on the final result because the lost function is non-convex. Subsequently, T-SNE
performs T iterations for finding the optimized solution with equation:

qij = (1 + ∥yj − yi∥2)−1q
k /=l(1 + ∥yk − yl∥2)−1

And the gradient is:

∂L

∂yi

= 4
Ø

j

(pij − qij)(yi − yj)((1 + ∥yj − yi∥2)−1)

Where L is loss function powered by KL divergence:

L = KL(P∥Q) =
Ø

i

Ø
j

pijlog
pij

qij

Y (t) = Y (t−1) + η
∂L

∂Y
+ α(t)(Y (t−1) − Y (t−2))

3.5 LOF: Local Outlier Factor
LOF is an algorithm used to detect outliers in a data set. LOF is able to identify
data that has anomalous behavior relative to its neighboring data points, not just
globally. This makes it useful in various fields such as anomaly detection, data
cleaning, and pattern recognition. The core idea of LOF is to determine the degree
of anomaly by calculating the density ratio of each data point to its neighboring
points. Points with lower density may be outliers. This local approach makes LOF
perform well when processing data in regions of different densities. LOF is a degree
of being an outlier to each object.

Given the data X = x1, x2, . . . , xn, to calculated the LOF with equation:

LOFk(xi) = 1
|Nk(xi)|

Ø
o∈Nk(xi)

lrdr(o)
lrdk(xi)
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Where lrdk(.) is the local reachability density of each data, Nk(xi) is the
k − nearest neighbors of observation xi. |Nk(xi| is the number of observations in
Nk(xi). Local reachability density lrdk(.) could be given by the equation:

lrdk(xi) = 1/

q
o∈Nk(xi) reach_distk(xi,0)

|Nk(xi)|

Where reach_distk(xi, o) is reachability distance of observation xi with respect to
observation o, which is defined as

reach_distk(xi, o) = max(dk(o), d(xi, o))

Where dk(o) is the kth smallest distance among the distances from observation o to
its neighbors. And d(xi, o) is the distance between observation xi and observation o.
|Nk(xi)| is always greater than or equal k. In LOF, k and the method to calculate
the distance could be considered as hyperparameters [7].

3.6 IF: Isolation Forest
IF is an anomaly detection method based tree structure [8]. The main idea of
Isolation Forest is to isolate outliers by constructing randomly divided binary trees.
Unlike other algorithms, Isolation Forest adopts a bottom-up tree building strategy,
that is, starting from the entire data and gradually creating subtrees. In the
process of building the tree, the algorithm divides the data into different subsets
through random selection of features and random cuts. In Isolation Forest, normal
samples usually require a long path to be isolated, while outliers are relatively short.
Therefore, by measuring the path length required for the sample to be isolated,
it can be used to determine whether the sample is an outlier. The advantage
of this approach is that outliers have relatively short isolated paths in the tree
and therefore can be detected faster, while normal samples require longer paths,
making the algorithm more efficient. In this case, IF consider the path length after
normalization as anomaly score, which higher score, the more it indicates an outlier
for each object.

IF is distinguished from existing model-based, distance-based and density-based
methods with such characters [8]:

• 1. IF allows to use small data samples to build batter isolation trees (IF) with
the help of isolation characteristic.

• 2. IF eliminates major computational through removing the distance or density
measures.
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• 3. IF has a linear time complexity with a low constant and a low memory
requirement, so that it occupies low memory usage.

• 4. IF is high scalable

Through building iTrees, IF builds isolation forest. Given the dataset X =
x1, x2, . . . , xn of n instances from a d-variat distribution, to build an iTree. And
X is divided by selecting an attribution randomly until the meet the following
requirements [8]:

• 1. The number of datapoint in remanding dataset |x| = 1.

• 2. The tree reaches a heigh limits l, usually l = celling(log2φ). Where φ is
the size of dataset.

• 3. All data in remanding dataset are same.

The number of iTrees in IF could be considered as hyperparameter t. As usual,
t = 100 [8]. After training phase, one IF has been built with t iTrees. Each iTree
contributes a path length h(xi) for each data point xi. Anomaly score for each
observation s(xi):

s(xi) = 2
E(h(xi))

c(n)

Where, E(h(xi)) is the averae of h(xi) from all iTress. And c(n) is the average
of h(xi) given n iTrees, which could be considered as normalization of h(xi), could
be calculated by

c(n) = 2H(n − 1) − (2(n − 1)
n

)

where, H(i) is harmonic number and it can be calculated by H(i) = ln(i) + 0.5772.

3.7 GMM: Gaussian Mixture Model
GMM is a collection of Gaussian distribution models that represent overall popu-
lation, which each Gaussian distribution model represent distribution of subpop-
ulation. In anomaly detection field, each Gaussian distribution model represents
normal subpopulation. In this case, anomalous data points lie very ‘edging’ region
standing for very small probability density, with assumption that the number of
anomalies is significant less that the number of normal data. Under the help of EM
algorithm, GMM is reborn. But it is possible for GMM to reach a local optimization
or saddle point, since EM algorithm maximizes the likelihood literately.
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Given a dataset X = {x1, x2, . . . , xN}, xi ∈ Rn . And a GMM has parameters
that means and variances for each single model. And the formular is following:

p(xi) =
KØ
i

ϕiN(xi|µi, Σi)

N(xi|µi, |Σi) = 1ñ
2πK |Σi|

exp(−1
2(xi − µi)T Σ−1

i (xi − µi))

KØ
i

ϕi = 1

Where the probability density for each observation p(xi) is the weighted sum of
all probability densities from each single. And ϕi is weight for each model. What’s
more, if ϕi is learned, it could be seen as a-posteritori information. Instead, if
ϕi is not learned, it could be seen as a-priori information. K is the number of
components, which could be considered as hyperparameter.

For training phase, it’s time for EM algorithm to play.
First step is that randomly defined initial parameters µ̂ and Σ̂ for K componnets

µ̂ = {µ̂1, µ̂2, . . . , µ̂K}

Σ̂ = {Σ̂1, Σ̂2, . . . , Σ̂K}

ϕ̂ = {ϕ̂1, ϕ̂2, . . . , ϕ̂K} = { 1
K

,
1
K

, . . . ,
1
K

}

Where µ̂ is means that are usually randomly selection from datapoints. And Σ̂
is initial variance that are initial with the equation.

Σ̂ = 1
N

NØ
i=1

(xi − x̄)2

x̄ = 1
N

NØ
i=1

(xi)

where ϕ̂ is set as average.
And the second step is the first step for EM algorithm, which is Expectation

(E) step. In E step, the probability γ̂lk of xi from each mode is calculated with the
initial parameters.

γ̂lk = ϕ̂kN(xi|µ̂k, Σ̂k)qK
j=1 ϕ̂j(xi|µ̂j, Σ̂j)
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Subsequently, with γ̂lk, all parameters are calculated m̂u, Σ̂ and ϕ̂ again with
the following equation:

ϕ̂k =
NØ

i=1

γ̂lk

N

µ̂k =
qN

i=1 γ̂lkxiqN
i=1 γ̂lk

Σ̂k =

öõõôqN
i=1 γ̂lk(xi − µ̂k)T (xi − µ̂k)qN

i=1 γ̂lk

EM algorithm will repeat expectation (E) and maximization (M) steps until the
parameter’s estimates converge.
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Chapter 4

Ensemble based outlier
detection

4.1 General introduction of ensemble
Ensemble methods are techniques that create multiple models (in outlier detection
field, it could be called as detectors), and combine them to produce improved
results. The central idea is that a group of weak detectors can come together to
form a strong detectors, reducing errors and improving prediction accuracy.

The command types of ensemble methods:

1. Bagging: Involves training multiple models on different random subsets of the
training data and combining their outputs

2. Boosting: Sequentially trains models, with each new model focusing on
correcting errors made by previous models.

3. Stacking: Uses predictions of several models (base learners) as input features
for a higher-level model (meta-learner), which makes the final prediction.

4. Voting: Combines predictions of multiple models through majority voting (for
classification) or averaging (for regression).

5. Bagged Ensembles of Neural Networks: Trains several neural networks on
different bootstrap samples of the training data and averages their predictions.

6. Snapshot Ensembles: Saves multiple snapshots of a single neural network
during training and combines their predictions.

The advantages of ensemble:
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1. Improved Accuracy: Ensembles often achieve higher accuracy than individual
models by combining their strengths and reducing weaknesses.

2. Robustness: They are generally more robust to overfitting, as the ensemble
averages out the noise and reduces the variance of predictions.

3. Error Reduction: Aggregating predictions helps in reducing both bias and
variance, leading to better generalization on unseen data.

4. Versatility: Ensembles can combine different types of models to leverage the
unique strengths of each.

The elements that give the ensemble advantages also induce the disadvantages.
The disadvantages of ensemble:

1. Increased Complexity: Training and managing multiple models induces more
computation complexity, in comparison with single model.

2. Interpretability: Ensembles can be harder to interpret compared to single
models, especially when combining different model types, even though the
interpretability problem commonly exists in deep learning field.

3. Inference Time: Predictions can be slower, as they involve running multiple
models, which can be problematic for real-time applications. For the sake of
real-time applications, ensemble could be more expensive.

4. Resource consuming: Maintaining and updating multiple models can be
challenging and resource-intensive. Deploying multiple detectors needs more
hardware resourse. For some resource limited hardware, ensemble could be
impossible.

5. Hyperparameter Tuning: Ensemble methods often require careful tuning
of hyperparameters for each base model and the ensemble itself, adding to
the complexity of the process. In this thesis, we use autoencoders to do
dimensional reduction. The dimension of the ’botllneck’ layer is crucial. Too
small dimension could cause feature lossing and too large dimension could
make the dimensional reduction meaningless.

Since ensemble combines the different anomaly scores from the different algo-
rithms and each algorithm of the ensemble provides scores of different magnitude
and nature, in order to aggregate them, they need to be normalized and made "ho-
mogeneous" by transformation. In this work, we employ an Empirical Cumulative
Distribution Function (CDF) approach to fit the available scores and avoid making
any assumption on their distribution.
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4.2 Scores Transformation – CDF
The Empirical Cumulative Distribution Function (CDF) is a statistical tool used
to visualize the distribution of a dataset. It’s constructed by sorting the data in
ascending order and assigning each data point a cumulative probability based on
its rank. In this thesis, we use ecdf to make the scores from different models in the
same range (from 0 to 1).

The first step to creat the ecdf is sorting the data to arrange the data points in
ascending order. And then, the second step, calculate cumulative probability. For
each data point, assign a cumulative probability that represents the proportion of
data points less than and equal to that value. This can be calculated using the
formula:

P (x) = number of data points <= x

total number of data points

For visualisation, it would draw a diagram that rises in the shape of a staircase.
The least largest value has the one hundred percent. Ortherwise, the least value

has the smallest pertages.

4.3 The method of combiantion scores
The methods of combination scores are used in this thesis:

1. Maximization: The maximization defines the final scores to each datapoint as
the maximum of the scores among all detectors.

2. Average: The average algorithm attributes an outlier score as final scores to
each datapoint based on the average of the scores yielded by each individual
detector.

3. Damped Average: The damped average defines the final scores to each data-
point as the average of the square root of anomaly scores from all detectors.

4. AKPV: The AKPV attributes the final anomaly score to each datapoint based
on on the average of the scores of top three detectors.
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Chapter 5

Experimental Design and
Results Analysis

5.1 Experimental Design and Results Analysis
on ECG5000

In this thesis, we utilize Stacked Autoencoder (SAE) (on ECG5000 dataste) and
AEs (on MSFR dataset) not only as an anomaly detector but also for dimensional
reduction purposes. The reconstructed error serves as the criterion for determining
whether each observation is normal or anomaly. Additionally, the “code” extracted
from the “bottleneck” layers of SAE and AEs are employed for subsequent anomaly
detection algorithms.

5.1.1 Description of ECG5000 dataset
The first dataset is ECG5000 [24] which is a collection of heartbeat signals. There
are five thousand of samples in this collection, whose number is large enough for
training a deep neural network. The original dataset of "ECG5000" is a 20-hour
long ECG downloaded from Physionet[25] which is “dataset bank”. The original
dataset is “BIDMC Congestive Heart Failure Database” in the original publication
[26], also called “chfdb”. ECG5000 is the record of “chf07”. This database of “chfdb”
contains long-term ECG recordings from 15 subjects (11 men, aged 22 to 71, and
4 women, aged 54 to 63) with severe congestive heart failure (NYHA class 3–4)
[27]. Signal preprocessing is crucial not only in biomedical field but also in other
industrial fields due to presence of noise, artifacts and any trends that can influence
the results [28]. According to the discerption of ECG5000 [10], the signals were
pre-processed in two steps:
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1. Extracting each heartbeat

2. Making each heartbeat equal length using interpolation

This dataset was originally used in "A general framework for never-ending learning
from time series stream" [29].

In ECG5000 dataset, there are five categories which are normal, ‘PVC’, ‘R
on T’, ‘SP’ and ‘UB’, In this thesis, the four categories expect for ‘normal’, are
considered as severe congestive heart failure and fused together as anomaly. The
sample waveform of heartbeats is shown in the figure 5.1.

Figure 5.1: Waveform of heartbeats signal

5.1.2 ECG5000 Data waveform
ECG5000 dataset is ready dataset, in the other words, ECG5000 dataset can
be used directly. ECG5000 dataset contains 5000 one-lead sequences and every
sequence has 140 points(the sequence length is 140), which means that each time
series data is 140-point sequence. To say it directively, the dimension of the signal
is [5000, 1, 140] (number of observation, the number of lead of each observation, the
number of points of each sequence) The signals in ECG5000 dataset is heartbeats
signals, the ready heartbeats signal is shown in the figure 5.2. This waveform looks
different from the figure 5.1 due to pre-processing.

5.1.3 Model Structure Definition
There are two autoencoders being employed on ECG5000 dataset, which are SAE
and FC-AE.

Considering the drwaback of LSTM, which LSTM models have strong memory
capabilities and may overfit on the training set, especially when the amount of
data is small or there is a lot of noise, FC-AE is used as a supplement of SAE.
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Figure 5.2: waveform of heartbeats signal

The objective for SAE is dimensional reduction and getting reconstructed error.
In terms of FC-AE, the reconstructed error is the only output, as the criteria for
anomaly detection.

Stacked Autoencoder (SAE)

Taking the consideration of the necessary of extracting temporal information, LSTM-
based AE is widely used in anomaly detection field [30]. The thesis employed a
configuration comprising four layers of LSTM, two in encoder and two in decoder,
and one fully connected layer as the output layer for the “external” Autoencoder
(AE) in the Stacked Autoencoder (SAE) framework. Additionally, for the sake of
more efficient dimensional reduction, a fully connected AE (FC-AE) was utilized
as the “internal” AE. During the training phase, the LSTM-based AE and FC-AE
were trained independently. The “code” extracted from the “bottleneck” layer
of the LSTM-based AE served as the training data for the FC-AE. The overall
structure of SAE in the training phase is shown in the figure 5.3. The "external"
AE make the main contribute to reconstruct data, and the "internal" AE mainly
focus on the dimensional reduction. Thus, the reconstructed error is sensitive to
’external’ AE and the ’code’ is sensitive to the ’internal’ AE.
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Figure 5.3: overall structure of SAE in training phase

In the testing or usage phase, the two Autoencoders (AEs) are stacked together
to form the Stacked Autoencoder (SAE). The output from the ’bottleneck’ layer of
the LSTM-based AE is directly connected to the FC-AE as input. And the output
of decoder of FC-AE works as the input of decoder of LSTM-based AE. The overall
structure of SAE in the usage phase is shown in the figure 5.4.

5.1.4 Experiment on ECG5000 dataset
SAE Model Design

In LSTM based SAE, the "external" AE is LSTM-AE and "internal" AE is FC-AE.
The details of LSTM-AE is shown in the figure 5.5, and the details of FC-AE is

shown in the figure 5.6. After stacked, the details of SAE is shown in the figure 5.7.
From the figure 5.5, the "Estimated Total Size" is the model size, which the size
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Figure 5.4: overall structure of SAE in usage phase

of memory occupied by the model when the model is running, and it is 3.63MB.
The "Total params" and "Trainable params" are the total number of parameters
and the number of parameters within training in the model. In this model "Total
params" is equal to "Trainable params". They are 727,169.

From the figure 5.6 and the figure 5.7, the "Estimated Total Size" could be figured
out as 0.4 MB (Estimated Total Size of SAE - Estimated Total Size of LSTM-AE).
And the "Total params" is 99,008. In terms of SAE, the "Estimated Total Size" is
4.03 MB and the "Total params" is 826,177 ("Total params" of LSTM-AE + "Total
params" of "FC-AE").

By comparison between LSTM-AE and SAE, stacking makes the model size
increased slightly for the sake of dimensional reduction.
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Figure 5.5: The details of LSTM-AE

Figure 5.6: The details of FC-AE

Individual FC-AE Model Design

The details of FC-AE is shown in the figure 5.8. From the figure 5.8, the "Estimated
Total Size" is 0.09, and the "Total params" is 21,008.

The advantage of FC-AE is light weight. In this thesis, introducing the individual
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Figure 5.7: The details of SAE

FC-AE in usage phase does not introduce more significant running time, which
makes that individual FC-AE could be used as a complementary tool for SAE.
Even though, SAE has ability to learn the latent representation and reconstruct
input well, SAE still hard to learning everything percisely.

Experimental Design

The training settings is in the table 5.1, where Absolute Difference error is also
known as L1 loss (L1_loss): l(x, x̂)=|x − x̂|. Mean squared error loss (MSE_loss):
l(x, x̂)=(x − x̂)2. Optimization functions are Adam [31] that considers the ‘inertia’
of gradient. With the help of gradient ‘inertia’, Adam could push neural networks
(NNs) pass local optimization and saddle points, which makes the NN less sensitive
to hyperparameters. And scheduler make the learning rate dynamic. For the
scheduler of "ConsineAnnealingWarmRestarters", it make the leaning rate change
as consine signal and it also help NNs pass local optimization. Thanks to ’Adam’
and ’learning rate scheduler’ make NNs less sensitive to hyperparameters. In terms
of the "Batch Size", "1" means that the data could be fed to model one by one,
which sacrifices efficiency but make it more accurate. And the "random seed" is for
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Figure 5.8: The details of individual FC-AE

reproduction. This is because, during trainning phase, the model could initialize
the initial hyperparameters randomly. And during spliting the dataset, the total
dataset could be splited into trining dataset, validation dataset and test dataset
randomly. These two procedures could be controlled by define the same "random
seed".

LSTM-AE/FC-AE FC-AE
Batch Size 1 1

Optimal function Adam Adam
Loss Function Absolute difference(L1)/Mean Square Error (MSE) Absolute difference(L1)

scheduler ConsineAnnealingWarmRestarters/None ConsineAnnealingWarmRestarters
Training epochs 200/50 200

Early stop 50/None 50
Learning Rate 0.001 0.001
Random Seed 19980425 19980425

Platform Nvidia T4 GPU on Kaggle Nvidia T4 GPU on Kaggle

Table 5.1: Training settings for ECG5000 for SAE and FC-AE.
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Results Analysis

Firstly, the comparison between SAE and individual FC-AE is shown in the table
5.2.

SAE FC-AE average maximum Damped average
TNR 0.8942 0.6173 0.8000 0.9317 0.8000
FNR 0.0040 0.0146 0.0076 0.0026 0.0076
TPR 0.9960 0.9854 0.9924 0.9974 0.9924
FPR 0.1058 0.3827 0.2000 0.0683 0.2000

Accuracy 0.9923 0.9720 0.9853 0.9950 0.9853
AUC 0.9970 0.9835 0.9943 0.9934 0.9943

Table 5.2: Comparison among SAE, individual FC-AE and ensemble.

The accuracy of SAE is 0.9923 that is better than 0.9720 of individual FC-AE.
And in terms of TNR, SAE is even significant better than FC-AE. However, after
ensemble, the performance still gets improvemts. For accuracy, it grows from 0.9923
to 0.9950, that is a slight improvement. And the TNR grows from 0.8942 to 0.9317,
which could be meaningful improvement. Considering all performance matrix, after
ensemble of maximum, the performance gets general improvements.

The redults reveal that even thought the overall performance of FC-AE is worse
than the performance of SAE, individual FC-AE is still helpful for better performace
after ensemble.

The results of SAE and individual FC-AE is shown in table 5.3, where LSTM-
AE stands for the ’external’ AE for SAE. From the "Mean of Loss", LSTM-AE
creats the best result among LSTM-AE, SAE and FC-AE. SAE still have a "FC-
AE" as "internal" AE, which tend to reconstruct the ’code’s from the "bottleneck"
layer of "external" AE, LSTM-AE, and it also induces the reconstructed error on
the reconstructed "code". Reconstructed "code" with error make the decoder of
"LSTM-AE" "understand" the "code" worse than pure LSTM-AE.

LSTM-AE SAE FC-AE
Mean of Loss 9.36 10.62 20.89

Dimension of code [1,128] [1,64] [1,8]

Table 5.3: Results for ECG5000 for SAE and FC-AE.

Reconstructed data from pure LSTM-AE and input data are show in the figure
5.9, where the blue curve is original input data, and the orange curve is reconstructed
data. In the figure 5.10, where the blue curve is original input data, and the orange
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curve is reconstructed data from SAE. And in the figure 5.11, where the blue curve
is original input data, and the orange curve is reconstructed data from LSTM-AE
and the green curve is reconstructed data from SAE.

Figure 5.9: comparison between input data and reconstructed data from LSTM-
AE

In order to check models performance on dimensional reduction, T-SNE is
employed on the ’codes’ from the ’bottleneck’ layers of LSTM-SAE and FC-AE.
The results are shown in the figures 5.12 and 5.13. In these two figures, the blue
points are for anomaly and the red points stand for the normal data. According to
the figures 5.12 and 5.13, the abnormal datapoints and normal datapoints separates
generally, even though some special points lie in the wrong region.

Stacking another AE introduced slight larger reconstructed error than without
stacking. And in terms of the results of T-SNE employed on the ‘codes’, SAE
return the similar result as AE. For dimensional reduction, SAE do dimensional
reduction from [1,140] to [1,64], in comparison with LSTM-AE [1,128], SAE is more
efficient even though slight performance sacrifice.
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Figure 5.10: comparison between input data and reconstructed data from LSTM-
SAE

Ensemble

The performance is evaluated with 2607 data points, in which there are 526 normal
data points and 2081 abnormal data points. These abnormal data points are
separated to 104 batch with 20 data points in one batch. And the 526 normal
data points and every 20 abnormal data points are combined to feed to different
models. The global performance matrix in the table 5.4. In general, all ensemble
methods got improvement in comparison with any single method. And ensemble
method of ‘maximum’ performs best in terms of all evaluation. In the table 5.4,
where ’LSTM-AE’ stands for stacked autoencoder based LSTM. ’FC-AE’ stands for
autoencoder based fully connected structure. ’Average’ stands for the combination
method of average sum. ’Maximum’ stands for selecting the maximum value among
four methods. ’Damped average’ stands for average sum on the square root of
anomaly scores. ’AKPV’ stands for average sum of the top 3 anomaly detectors.
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Figure 5.11: comparison between input data and reconstructed data from LSTM-
SAE and reconstructed data from LSTM-AE

Figure 5.12: TSNE-SAE Figure 5.13: TSNE-AE
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SAE AE LOF GMM average maximum Damped average AKPV
TNR 0.8942 0.6173 0.9505 0.9058 0.9457 0.9894 0.9457 0.9534
FNR 0.0040 0.0146 0.0019 0.0942 0.0021 0.0040 0.0021 0.0018
TPR 0.9960 0.9854 0.9981 0.9964 0.9979 0.9996 0.9979 0.9982
FPR 0.1058 0.3827 0.0495 0.0036 0.0543 0.0106 0.0543 0.9982

Accuracy 0.9923 0.9720 0.9964 0.9931 0.9960 0.9992 0.9960 0.9966
AUC 0.9970 0.9835 0.9989 0.9981 0.9985 0.9923 0.9985 0.9981

Table 5.4: Ensemble performance matrix on ECG5000

5.2 Experimental Design and Results Analysis
on MSFR dataset

In terms of MSFR dataset, one data point contains four sequences. For this case
study, we did three different experiments, which a bidirectional LSTM-based AE is
fed by four sequences, and the code from bidirectional LSTM-based AE as input
to LOF, GMM, IF. The second experiment is that there are four fully connected
AEs for the four sequences and connected the ‘codes’ as one ‘big’ code fed to
LOF, GMM, IF. The third case is that there are four fully connected AEs and
four LOFs and four GMMs and four IFs for the four sequences. The reconstructed
error serves as the criterion for determining the normalcy or anomaly of each
observation. Additionally, the code extracted from the bottleneck layer is employed
for subsequent algorithms.

5.2.1 Description of MSFR dataset
The second application is obtained from a MSFR simulator, developed by [32]. It
has been developed as a useful tool for analyzing the reactor parameters and testing
the control strategies for the EU SAMOFAR project. The simulator was designed
with the Modelica language, an object-oriented, declarative, multi-domain modeling
language for component-oriented modeling of complex engineering systems. Since
its acasual modeling characteristics, the language is suitable for building a flexible
and reusable scheme for a complex system. The thermal-hydraulic aspect has been
carried out using the ThermoPower library. Plant simulators have already been
developed for the ALFRED (Advanced Lead Fast Reactor European Demonstrator)
project and for the IRIS reactor, adopting the Modelica language. Dymola (Dynamic
Modelling Laboratory) is the simulating software in which the current simulator
has been built. It is equipped with state-of-the-art implicit numerical integration
algorithms, as DASSL [33].

Since a MSFR has the salt mixture that acts as fuel and coolant at the same
time, a strong coupling between the thermo-dynamic variables and the neutronic
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parameters is present. So, it is necessary to take into account the motion of the
delayed neutron precursors: a one-dimensional approximation has been applied,
that gives good results for the neutronic modeling and it is computationally efficient.
A point kinetic modelling that is able to deal with the motion of precursors has
been used, based on 0D-1D approach. A complementary 2D MATLAB model has
been built to compare the results of the simulator for what concern the neutronic
part.

The scheme of the MSFR model is shown in the following figure 5.14, from [32].

Figure 5.14: MSFR scheme

The plant presents three different loops: in the primary and intermediate loops,
the fluoride based molten salt extracts thermal power from the core. The third one
is a classic Brayton -Joule cycle. The reactor generates 3000 MWth, the fuel salt
has an average temperature of 700 oC, entering in the core at 650 oC and exiting
at 750 oC. The total salt volume is 18 m3.

In the present work, the plant behavior has been simulated, with the “injection”
of faults, randomly sampled. It has been simulated a pump failure, varying the mass
flowrate from 0% to 90% with respect to the nominal value. The FDD detection
has been carried out 50 times, with 501 normal transients and one anomaly for
each iteration. Four different temperatures have been studied: the maximum and
minimum temperature in the intermediate loop and the maximum and minimum
one in the fuel circuit.

The molten salt presents two limits. The upper one is related to the maximum
temperature that can be tolerated by the structural material and it is set to 1373
K (or 1100 oC). The minimum allowed temperature is set at 858 K, when the fluid
freezes.

The simulator has performed 1000 runs, with 499 faults and 501 normal suc-
cessful transients. The most common failure criterion is the physical one, when a
temperature exceeds the limits, with 280 failures. Numerical failures happen 219
times during the simulations.
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n figure 5.15, from [34], the various failure mode types are presented, including
the numerical ones: the most common one regards the freezing of the fluid in the
intermediate circuit.

Figure 5.15: Most common failure modes

In the present work, the implementation regards the minimum temperature in
the intermediate circuit, which is the one with the highest number of failures. In
figure 5.16, a transient with the representation of a numerical failure is presented.
In figure 5.17, a normal behavior and a physical failure is presented.

Figure 5.16: T IC min, numerical failure
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Figure 5.17: T IC min, success and physical failure

5.2.2 The first case (BiLSTM-AE)

The bidirectional LSTM augments standard LSTMs to improve the model’s per-
formance on feature extraction on long time-dependencies. It trains two LSTMs
on the input data. The first LSTM on the original input data and the other on a
reversed replica of the input data. The training of BiLSTM is on all past and future
input information available within a particular time frame. Intuitively, BiLSTM
process input data in two directions (thus, from left-to-right and right-to-left) using
a forward hidden layer and a backward hidden layer [35]. By combining the outputs
of these two layers, BiLSTMs can utilize information from both the past and the
future of a given point in the sequence, providing a richer and more comprehensive
understanding of the data.

The general architecture of BiLSTM is shown in figure 5.18. Image source is
[36]. There are two LSTM blocks, one of blocks get signal from the beginning to
the end of signals and another block get signal from the end to the beginning of
the signals.

BiLSTM-based AE model design

There is a one-dimensional Convolutional layer for extracting feature across four
sequences in encoder and one transposed one-dimensional Convolutional layer to
convert the dimension as same as input data in decoder. For time dependency
feature, two bidirectional Long Short Term Memory layers are employed in encoder
and two bidirectional Long Short Term Memory layers are employed in decoder.
The general structure of model is shown in the figure 5.19. The ‘code’ (output
from bottleneck layer) is fed to LOF and GMM and IF as input.
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Figure 5.18: Bidirectional LSTM architecture

Figure 5.19: general structure of model

The details of BiLSTM-AE

The details of BiLSTM-AE is shown in the fugure 5.20. In the figure 5.20, where,
the "Total params" is 18.828 and the "Estimated Total Size" is 0.55 MB, could be
considered as small, and the "Total mult-adds" is 7,47 millions times, that means
that one forward processing contains 7.47 millions operations. This is the reason
that it needs long time to train and inference.

Experimental Design

Only one BiLSTM-AE is trained not only for anomaly detection but also for
dimensional reduction, and the detail settings is shown in the table 5.5.
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Figure 5.20: The details of BiLSTM-AE

BiLSTM_AE
Batch Size 32

Optimal Function Adam
Loss Function Mean Square Error (MSE)

Schedular ConsineAnnealingWarmRestarters
Training opochs 1000

Early Stop 300
Learning Rate 0.01

Table 5.5: Experimental design for BiLSTM-AE on MSFR dataset

Results Analysis

With the help of BiLSTM-AE, the dimension of ’code’ is [1,32].
Sample reconstructed data and input data are shows in the figures 5.21, 5.22,

5.23and 5.24, where the yellow curves are original signal and the blue curves are
the reconstructed signals. And the reconstructed data for anomaly is shown in
figure 5.25, where the yellow curve are original signal and the blue curves are the
reconstructed signal.

According to the figures 5.21, 5.22, 5.23 and 5.24 the model can reconstruct
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BiLSTM_AE
Mean of Loss 1.90

Dimension of code [1,32]

Table 5.6: Results Analysis

Figure 5.21: T-FC-MAX-success Figure 5.22: T-FC-MIN-success

normal data with small reconstructed errors and for the abnormal data, in the
figure 5.25, the reconstructed error could be larger.

Ensemble

For evaluating, the same method as ‘ECG5000’ dataset is used. There are 51 normal
data and 20 abnormal data in one test set and rangking them with ‘anomaly scores’
from large values to small. And then the number of anomaly data in the first
20 position and the number of normal data in the last 51 positions are used for
calculating the TNR, FNR, TPR and FPR and accuracy. And then replace the
20 anomaly data with another 20 anomaly data until run out anomaly data. And
then calculating the mean of such performance index.

The details of performance is shown in the table 5.7. According to the table 5.7,
among all the individual methods, the dominating detector is GMM, with the help
of low dimensinal ’code’ from BiLSTM-AE. After ensemble, the dominating one
is ’Maximum’ with scarifying AUC. For the reason that ’Maximum’ gets the best
performance, the four individual methods (BiLSTM-AE, GMM, LOF, IF) trend
to give all data point the less anomaly scores than the ground truth (even though
the groung truth is unknown) and ’maximum’ trend to give the larger value than
the individual give. This could be found through that, among the four individual
detectors, the TNRs are truly lower than the TPRs, which means in general the
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Figure 5.23: T-IC-MAX-success Figure 5.24: T-IC-MIN-success

Figure 5.25: Failure Signal

anomal score for each observation is lower the ground truth. And for the scrifying
of AUC, this is because selecting the maximum anomaly scores as the final anomaly
scores could make all anomaly scores increase. In this case, the normal data are
forced to have the large anomaly scores.
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BiLSTM_AE GMM LOF IF Maximum Average AKPV Damped Average
TNR 0.8792 0.9208 0.8312 0.8250 0.9437 0.9208 0.9292 0.9208
FNR 0.0474 0.0310 0.0662 0.0686 0.0221 0.0310 0.0278 0.0310
TPR 0.9526 0.9690 0.9338 0.9314 0.9779 0.9690 0.9722 0.9690
FPR 0.1208 0.0792 0.1687 0.1750 0.0563 0.0792 0.0708 0.0792

Accuracy 0.9319 0.9554 0.9049 0.9014 0.9683 0.9554 0.9601 0.9554
AUC 0.9557 0.9791 0.9483 0.9589 0.9003 0.9862 0.9861 0.9856

Table 5.7: Ensemble performace of first case

5.2.3 The second case (four FC-AEs and one LOF, IF and
GMM)

This case is for the case that ‘four fully connected AEs, one GMM, one LOF, one
IF’. In this case, the dominating method among individual method is ‘AE’. After
combination of (AEs, GMM, LOF, IF) the best situation happened on ‘maximum’
and ‘AEs’, which means ensemble did not get improvement.

The first step for this case is spliting the four-sequence-datapoint to four seperate
sequences. And then feeding these four sequences to Four FC-AEs. This step is
shown in the figure 5.26

Figure 5.26: the first step of the second case

And the second step is that calculating the ecdf values for the four reconstruted
errors and selected the maximum one among the four ecdf values. This step is
shown in the figure 5.27
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Figure 5.27: the second step of the second case

And the third step is that connecting the four ’codes’ as a ’large’ vector and
feeding it to LOF, IF and GMM separately. And then calculating the ecdf values of
the anomaly scores from these three models. This step is shown in the figure 5.28

And the forth step is that selecting the maximum one among these four ecdf
values (for FC-AEs, LOF, IF and GMM). This step is shown in the figure 5.29

Model structure design

There are two similiar FC-AEs, one for the first sequence of T-FC-MAX shown in
the figure 5.30 , another is for the other sequences of T-FC-MIN, T-IC-MAX and
T-IC-MIN shown in the figure 5.31.

The details of the models

The details of the models are shown in the figure 5.32 and the figure 5.33. In com-
parison with the information of BiLSTM-AE, these two model could be considered
as "large" model for the "Total params" is 441,169, and the "Estimated Total Size"
is 1.78 MB. However, training these two models is faster than BiLSTM-AE. This is
because, the "Totla mult-adds" is 0.44 M times, which is significant less that the
BiLSTM-AE.

Experimental Design

The details of Experimental Design is shown in the table 5.8.

Results Analysis

The results from the four FC-AEs is shown in the table 5.9
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Figure 5.28: the third step of the second case

Figure 5.29: the forth step of the second case

Sample reconstructed data and input data are shows in the figures 5.34, 5.35,
5.36and 5.37, where the yellow curves are original signal and the blue curves are
the reconstructed signals.
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Figure 5.30: model structure for sequence of T-FC-MAX

Figure 5.31: model structure for sequence of T-FC-MIN, T-IC-MAX and T-IC-
MIN
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Figure 5.32: The details of the model for the sequence of T-FC-MAX

Figure 5.33: The details of the model for the sequences of T-FC-MIN, T-IC-MAX
and T-IC-MIN

Ensemble

For evaluating, the same method is employed. There are 51 normal data and 20
abnormal data in one test set and rangking them with ‘anomaly scores’ from large
values to small. And then the number of anomaly data in the first 20 position and
the number of normal data in the last 51 positions are used for calculating the TNR,
FNR, TPR and FPR and accuracy. And then replace the 20 anomaly data with
another 20 anomaly data until run out anomaly data. The detail is shown in the
table 5.10. According to the table 5.10, the dominating method among all individual
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FC-AE (sequnence 1) FC-AEs (sequences 2,3,4)
Batch Size 32 32

Optimal Function Adam Adam
Loss Function Mean Square Error (MSE) Mean Square Error (MSE)

Schedular ConsineAnnealingWarmRestarters None
Training epochs 1000 1000

Early Stop None 300
Learning Rate 0.001 0.001
weight decay 0.1 0.1

platform M1 CPU M1 CPU

Table 5.8: Experimental design for FC-AEs on MSFR dataset

FC-AE (seq 1) FC-AE (seq 2) FC-AE (seq 3) FC-AE (seq 4)
Mean of Loss 38.42 16.64 10.11 66.60

Dimension of code [1,9] [1,9] [1,9] [1,9]

Table 5.9: Results on FC-AEs on MSFR dataset

detetors is AEs (four AE for four sequences). After ensemble, no improvements
are got. This is because, the fully-connected AE did not extract features very well.
Thus the ’code’ after connecting makes other detetors confused because the features
of four sequences are extracted separately with four independent AEs. This results
in GMM, LOF, IF connot get good results.

5.2.4 The third case (four FC-AEs and four LOFs, IFs and
GMMs)

The third case is for the case that ‘four FC-AEs, four GMMs, four LOFs, four
IFs’. That is that the four ’code’s from four AEs go to the four GMM, LOFs,
IFs. In this case, the dominating method among individual method is ‘GMM’.
After combination of (AEs, GMMs, LOFs, IFs) the best situation happened on
‘maximum’.

The first step and the second step are as same as the first two steps of the
second case. And the third step is that there are four ’codes’ from four FC-AEs,
and feeding them to four LOFs, IFs and GMMs for detecting the anomaly from
four sequences separately. And then calculating the ecdf values and selecting the
maximum one. This step is shown in the figure 5.38

And the forth step is as the same as of the forth step of the second case, which
selecting the maximum one among these four ecdf values (for FC-AEs, LOFs, IFs
and GMMs).
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Figure 5.34: comparison between input
data and reconstructed data from FC-AE
(T_FC_MAX)

Figure 5.35: comparison between input
data and reconstructed data from FC-AE
(T-FC-MIN)

Figure 5.36: comparison between input
data and reconstructed data from FC-AE
(T-IC-MAX)

Figure 5.37: comparison between input
data and reconstructed data from FC-AE
(T-IC-MIN)

Ensembel

For evaluating, we use the same method as mentioned above. The detail is shown
in the table 5.11. According to the table 5.11, all of these evaluation index get
improvement, even though the models of Autoencoders are as the same as the
models for the second case. In the third case, anomaly detection on every sequence
is carried on desperately, which does not depend on the relation among the four
sequences. This results in the better performance than the second case.

Comperison the performace of BiLSTM-AE and AEs, AEs’ performance are
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AEs GMM LOF IF Maximum average AKPV Damped Average
TNR 0.9604 0.8750 0.9354 0.8208 0.9604 0.9000 0.9146 0.8979
FNR 0.0155 0.0490 0.0253 0.0703 0.0155 0.0392 0.0335 0.0400
TPR 0.9845 0.9510 0.9747 0.9297 0.9845 0.9608 0.9665 0.9600
FPR 0.0396 0.1250 0.0646 0.1792 0.0396 0.1000 0.0854 0.1021

Accuracy 0.9777 0.9296 0.9636 0.8991 0.9777 0.9437 0.9519 0.9425
AUC 0.9656 0.9366 0.9831 0.9625 0.8952 0.9713 0.9702 0.9696

Table 5.10: Ensemble performace of the second case

Figure 5.38: the third step of the third case

better than BiLSTM-AE’s. This could be considered as motivation to ensemble
more than one simple models. Deploying multiple simple models can save runtime
without scarifying the performace.
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AEs GMMs LOFs IFs Maximum average AKPV Damped Average
TNR 0.9604 0.8083 0.9583 0.8708 0.9688 0.8896 0.8854 0.8875
FNR 0.0155 0.0752 0.0163 0.0507 0.0123 0.0433 0.0449 0.0441
TPR 0.9845 0.9248 0.9837 0.9493 0.9877 0.9567 0.9551 0.9559
FPR 0.0396 0.1917 0.0417 0.1292 0.0312 0.1104 0.1146 0.1125

Accuracy 0.9777 0.8920 0.9765 0.9272 0.9824 0.9378 0.9354 0.9366
AUC 0.9656 0.9172 0.9904 0.9650 0.9632 0.9790 0.9735 0.9770

Table 5.11: Ensemble performace of the third case
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Chapter 6

Conclusion

This thesis holds significance in advancing the field of (times series) anomaly/outlier
detection by means of the following contributions:

1. Most methods rely on their own “arbitrary” definitions of outliers and of how
they differ from normal datapoints. This results from the lack of a rigorous
definition of what constitutes “normal (resp., abnormal) behavior” and of
a corresponding quantitative measure that can be universally accepted as
such. To tackle this issue, the outlier detection algorithms here employed are
originally tailored to produce normalized anomaly scores: actually, in many
contexts, a quantifiable “score of outlyingness” is much more useful than a
simple binary label of “inlier” or “outlier” (that many available techniques only
provide), since there will always be data whose outlyingness may be considered
too small to classify them as outliers, but whose score is still sufficient to
be relevant when analyzing their taxonomy. In particular, in this thesis the
outputs of the detection algorithms (i.e., properly defined anomaly scores) are
normalized within an original probabilistic framework to motivate a statistical
interpretability of the unified scores. Outlier scores usually are not equally
distributed in their value range but follow a much more complex distribution,
which is hard to grasp analytically, and many assumptions must be made to get
a reliable result. Instead, it becomes much easier to analyze the actual score
distribution on the data set without assuming anything on the distribution of
the data. In [3] several normalization functions are proposed that are based on
classical Gaussian, Gamma, F and Cauchy Probability Distribution Functions
(PDFs). It should be again pointed out that we do not draw any assumptions
on the distribution of the data, but on the distribution of the derived outlier
scores. The intuition of this approach is the following: we do not have a direct
way to interpret the score, we instead evaluate how “unusual” the score of
a point is, using the algorithms output score as a one-dimensional feature
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projection of the data. Let us note that any distribution function can be used
for this purpose analogously, depending on how well it fits to the distribution
of the derived outlier scores. In this work, we employ an Empirical Cumulative
Distribution Function (CDF) approach to fit the available scores and avoid
making any assumption on their distribution.

2. Due to the very broad and diverse nature and taxonomy of the time series
outliers, the performance of the available detection methods largely depends
on the “physical origin” of the anomaly, on the nature and spatial distribution
of the data points (i.e., depending on the type, sparsity and homogeneity of
the dataset). In practice, no single detection algorithm can universally apply
to all datasets. To address this problem, several diverse detection algorithms
are considered within an ensemble framework and all the normalized anomaly
scores produced are aggregated to get a unique, robust and reliable score.
The underlying idea is that some algorithms will perform well on a particular
subset of points (i.e., the outliers that are the most “obvious” from their
respective standpoints), whereas other algorithms will do better on other
subsets of points. By so doing, the ensemble combination is often able to
obtain more accurate and robust results because of its ability to combine
the outputs of multiple algorithms and to “correct” errors committed by the
single, diverse ensemble members. In this thesis, the (probabilistic) normalized
anomaly scores are combined for the robust and conservative identification of
anomalies in datasets: different combination functions are employed, including
"averaging", "maximization", "damped average" and "AKPV", which averages
the scores of the top three anomaly detectors.

3. The diversity of the existing methods hinders the comparability of the results.
In an unsupervised framework the only valid way of testing the detection
capabilities of a detection algorithm is to compare its provided results through
a chosen set of toy examples. Most examples simply rely on the comparison
of their detection rates in rather simple models, and they are almost never
tested on sets of functional data coming from real systems or generated by
numerical simulations. In this respect, in the present thesis the effectiveness
of the proposed approaches is systematically assessed by means of several
diverse statistical indicators. In particular, the global accuracy, the True
Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR),
False Positive Rate (FPR) and the Area Under The Curve (AUC)-Receiver
Operating Characteristics (ROC) scores are used for assessing the performance
of the individual methods and of the ensemble.

4. Two relevant and realistic functional datasets made of time series and taken
from “safety-critical” sectors are considered: 1) the ECG5000 dataset (a
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collection of heartbeat signals); and 2) a set of transients representing the
time evolution of several physical parameters (e.g., fluid temperatures) taken
from the simulator of a Generation-IV nuclear reactor, i.e., a Molten Salt Fast
Reactor (MSFR).

From the camparison between the individual methods and the ensemble methods,
the ensemble method of "maximum", that selecting the maximum one among
the outputs from the different methods, always get improvements no matter on
ECG5000 dataset and MSFR dataset. Even though in the second case on MSFR
dataset, its performance is as the same as the dominating individual method. For
ECG5000 dataset, the dominating method is related to "LOF" with accuracy of
0.9964, and then the "maximum" has the accuracy of 0.9992. For the MSFR dataset,
for the first case, the dominating method is related to "GMM" with accuracy of
0.9554, and then the "maximum" has the accuracy of 0.9683. For the second case
of MSFR dataset, the dominating method is related to "GMM" with accuracy of
0.9554, as the same as the ensemble method of "maximum". For the MSFR dataset,
for the third case, the dominating method is related to "AEs" with accuracy of
0.9777, and then the "maximum" has the accuracy of 0.9824.

And in terms of comparison among individual methods on these two datasets,
the dominating methods are different, which is also motivation to use different
methods on the single dataset to find the more suitable method.

And the performance of the SAE and individual FC-AE on ECG5000 dataset
indicates that even the simple model with unsatisfying performace could be com-
plementary for the complex model for the accidental negligence of the complex
model. By combination of SAE and FC-AE, the ensemble method of "maximum"
also got improvement, in terms of accuracy, from 0.9923 to 0.9950

In terms of three cases on MSFR dataset, there are two different kinds of
models, BiLSTM-AE and the combination of four FC-AEs. BiLSTM-AE usually
is considered as more complex than FC-AEs and it also more difficult to train
due to gradient exploring and gradient vanish and it gets better performance than
single FC-AE as well. Whereas, for this case study, the performance of FC-AEs
combination is better than the performance of BiLSTM, which motivates to use
more than one simple models on complex data to get the satisified result. And
combination of more than one simple models also could be faster than one complex
model. In terms of computaional complexity, BiLSTM-AE has 7.47 M times total
mult-adds and the four FC-AEs have 0.83 M total mult-adds totaly.
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