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Summary

The aim of this work is to analyze the crucial aspect of ROV dynamics and to
develop and compare performance of different kind of control systems able to
counteract hydrostatic forces, external disturbances and unbalance in order to let
the underwater drone with stable attitude at a specific depth. We will describe
the various mathematical models used for simulate the dynamic behavior of the
ROV and for control purposes. Subsequently, different control techniques will be
analyzed, and their performances will be compared. At the end of the work we
will choose the control system to apply based on a trade off between performance,
robustness, online computational complexity and design effort.
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Chapter 1

Introduction

The underwater world has always posed a challenge for humans due to its in-
hospitable and inaccessible nature. However, advancements in technology have
opened up new frontiers, allowing humans to venture into the depths of the ocean
without physically entering the water. One remarkable innovation in this field
is the Remotely Operated Vehicle (ROV), a robotic system specifically designed
for underwater operations. This thesis will address the topic of mathematical
modeling and control of a ROV. After a brief introduction on the state of art
and the motivations of the thesis, two mathematical modeling techniques will be
discussed: one for simulation purposes, and another aimed for designing control
laws. Various control techniques will be developed and their performances will be
compared.

1.1 State of art
ROVs are unmanned, remote-controlled submersible robots that enable humans to
access and interact with the underwater world from the safety of the surface. These
highly sophisticated machines consist of various components, including a control
system, propulsion system, manipulator arms, cameras, and sensors. The control
system allows operators to maneuver the ROV in three dimensions, providing
real-time visuals and data feedback [1].

ROVs find applications in a wide range of industries and fields. In the offshore
oil and gas industry, they play a crucial role in underwater inspection, maintenance,
and repair of subsea infrastructure. ROVs are also extensively used in underwa-
ter exploration and research, enabling scientists to study marine life, geological
formations, and ecosystems that were previously inaccessible. Moreover, they are
employed in marine archaeology to explore and document submerged archaeological
sites.
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Introduction

Environmental monitoring and conservation efforts greatly benefit from the
use of ROVs, allowing scientists to assess the health of marine ecosystems, study
endangered species, and identify potential pollution sources. In search and rescue
operations, ROVs aid in locating and retrieving objects or individuals in challeng-
ing underwater environments. Additionally, these versatile robots assist in the
maintenance and monitoring of subsea installations, such as underwater cables,
pipelines, and offshore wind farms. ROVs are also frequently deployed by military
organizations to enhance their capabilities in surveillance and search and rescue
operations, all while maintaining cost efficiency [2].

Figure 1.1: Different ROVs

The development of ROVs can be traced back to the mid-20th century when the
first prototypes emerged. Early versions were primitive and limited in capabilities.
Over time, advancements in materials, control systems, and imaging technology have
propelled the evolution of ROVs. Significant milestones include the introduction of
tethered ROVs, the development of work-class ROVs capable of heavy-duty tasks,
and the integration of advanced sensors and manipulator arms [3].

Figure 1.2: ROVs with various tools

In conclusion, ROVs have revolutionized the way humans explore and interact
with the underwater realm. All the studies present in the literature on the control

2



Introduction

of an ROV are based on mathematical models by Fossen [4] and those that do not
is beacause theme decide to use black box models based on System Identification,
as seen in [5][6][7][8]. For control, the most commonly used technique is tuning a
simple PID controller as seen in [9][10][7][8], before moving on to nonlinear controls
such as sliding mode control as done in [11][12][10][13][14]. The problem with PID
is that it may not be able to reject disturbances, while the issue with sliding mode
control is that exact knowledge of the ROV’s mathematical model is required,
which is difficult due to the large number of parameters that need to be estimated.
The objective of this thesis is therefore to implement various control techniques
with specific requirements to overcome the issues outlined.

1.2 Thesis motivation
The aim of this thesis is the control of the ROV EVA, a prototype developed by the
PoliTOcean team at the Polytechnic University of Turin. The PoliTOcean team
has been involved in underwater robotics for several years and participates annually
in the World Championship MATE (Marine Advanced Technology Education)
ROV Competition in the USA. The team focuses on prototyping underwater
vehicles such as ROVs and floats. The EVA prototype is equipped with 8 thrusters
(T200 by BlueRobotics [15]), four for vertical movement and four for maneuvering.
The overall power supply is 48V and is provided through the tether into the
electronics box, where the Power Printed Circuit Board (PCB) distributes it across
all the other boards. The ROV is equipped with various sensors, including an
Inertial Measurement Unit (IMU) with an integrated Kalman Filter (WT61p by
WitMotion [16]) that can directly provide roll and pitch values, in addition to linear
accelerations and angular velocities, and a barometer (Bar02 by BlueRobotics [17]).
These are the sensors that will detect measurements useful for control.

Furthermore, EVA has two camera boxes, one at the front and one at the bottom,
and a two-degree-of-freedom robotic arm with which it can perform operations
at depth. The frame is made of high-density polyethylene (HDPE), while the
electronics box, made of an aluminum alloy, is enclosed by very thick plexiglass.

The entire system is designed to withstand depths close to 300 meters and is
controlled by a joystick from the surface. All electronic components and PCBs
are manufactured by the Electronic Division, the firmware is entirely written by
the Firmware Division, and the mechanics are designed and manufactured by the
Mechanical Division, also using 3D printing and CNC machining (Computerized
Numerical Control). Additionally, the team includes the Hydrodynamic Division,
which deals with Computational Fluid Dynamics (CFD) for calculating hydro-
dynamic parameters useful for the ROV’s mathematical model, and the Control
System Division, which handles the design of control systems.
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Figure 1.3: PoliTOcean Student Team

Given that the ROV must be capable of performing manipulations at various
depths, it is essential that it be easily maneuverable. The ROV is designed to
be positive buoyant, and as it must manipulate various objects, it is continuously
subjected to disturbances that alter its attitude. In addition, the system is not
perfectly balanced and therefore requires attitude compensation. Therefore, to
successfully carry out operations, the presence of a control system capable of
maintaining the ROV at the desired depth and with a stable attitude is crucial. It
must also be capable of counteracting disturbances. The purpose of this thesis is
precisely the development of the control system that automatically commands the
thrust and stabilizes EVA to the desired depth and attitude.

Figure 1.4: EVA
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Chapter 2

ROV Modelling

In this chapter different mathematical models of the ROV are presented. The
first model, discussed in section 2.1, is a high-fidelity model used to simulate its
dynamics, while the other models, presented in section 2.3, are control-oriented
models, representing simplified dynamics of the ROV. They are useful because they
are linear models and can be expressed in state space and transfer function form,
and therefore theme are directly applicable for controller design.

2.1 Simulation model: Fossen model
In this section the high fidelity ROV mathematical model is derived. This model
will be used for simulation purpose, since it describes exactly the dynamic behaviour
of our ROV to be controlled. Modelling of rigid bodies moving in a fluid has been
widely studied in literature. Please, refer to [4] and [18] for more details.

The study of dynamics can be divided into two parts: kinematics, which treats
only geometrical aspects of motion, and dynamics, which is the analysis of the
forces causing the motion.

The overall 6 DoF marine craft equation of motion can be written in a vectorial
setting according to [4], hence the following relation holds:

η̇ = JΘ(η)ν (2.1)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (2.2)
In equation (2.1) JΘ is the Jacobian matrix. For what regards equation (2.2) we

have that: M is the sum of the rigid body mass matrix MCG
RB and the added mass

matrix MA, C(ν) is the sum of the rigid body Coriolis and centrifugal contribution
CCG
RB and added mass Coriolis and centrifugal contribution CA (ν), D(ν) includes

all damping effects and g(η) is the hydrostatic term.
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ROV Modelling

DoF Forces and
moments

Linear and
angular

velocities

Positions
and Euler

angles
Surge X u x
Sway Y v y
Heave Z w z

Roll, Heel K p ϕ
Pitch, Trim M q θ

Yaw N r ψ

Table 2.1: The notation of SNAME (1950) for marine vessels

2.1.1 Notation
The motion of a ROV in 6 DoFs can be represented in a vectorial form using the
SNAME notation (Society of Naval Architects and Marine Engineers - 1950) in
table 2.1 where six individual coordinates are generalised to describe the position
and orientation and their time derivatives describe the linear and angular velocities
of the vehicle.

According to the SNAME notation (SNAME 1950), the generalised pose, velocity
and forces and moments coordinates can be addressed by (2.3), (2.4) and (2.5)
vectors, respectively.

η =
è
x y z ϕ θ ψ

éT
(2.3)

ν =
è
u v w p q r

éT
(2.4)

τ =
è
X Y Z K M N

éT
(2.5)

Their sub-vectors are given by using the following vector notations:

• Position:
p =

è
x y z

éT
∈ R3

• Euler angles:
Θ =

è
ϕ θ ψ

éT
∈ SO(3)

• Linear velocity:
v =

è
u v w

éT
∈ R3

• Angular velocity:
ω =

è
p q r

éT
∈ R3

6
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• Force on ROV:
f =

è
X Y Z

éT
∈ R3

• Moment on ROV:
m =

è
K M N

éT
∈ R3

where R3 denotes the three dimensional Euclidean space and SO(3) indicates
the three dimensional sphere in which three angles are defined on the interval of
[−π, π] for ϕ and ψ, and the interval of [−π/2, π/2] for θ.

Therefore, the general motion of a ROV in 6 DoFs can be described by the
following vectors:

η =
C

p
Θ

D
∈ R3 × SO(3) (2.6)

ν =
C

v
ω

D
∈ R6 (2.7)

τ =
C

f
m

D
∈ R6 (2.8)

where η is the position and orientation (pose) vector, ν is the linear and angular
velocity vector and τ is the force and moment vector.

2.1.2 Rigid Body’s Kinematics
When analyzing the motion of marine craft in 6 DOF, it is convenient to define
two important reference frames (Figure 2.1):

NED: The North-East-Down (NED) coordinate system {n} = (xn, yn, zn) with origin
on is defined relative to the Earth’s reference ellipsoid (World Geodetic System,
1984). It is defined as the tangent plane on the surface of the Earth moving
with the craft. The x axis points towards true North, the y axis points towards
East while the z axis points downwards normal to the Earth’s surface.

BODY: The Body-fixed reference frame {b} = (xb, yb, zb) with origin ob is a moving
coordinate frame fixed to the craft. We describe position and orientation of
ROV relative to the inertial reference frame ({n}) while linear and angular
velocities are expressed in the body-fixed frame. The body axes xb, yb and zb
coincide with the principal axes of inertia, and they are defined as (see Figure
2.2):

– xb: longitudinal axis

7



ROV Modelling

Figure 2.1: Reference frames. Source: Handbook of Marine Craft Hydrodynamics
and Motion Control [4]

– yb: transversal axis
– zb: normal axis

It is possible to describe the orientation of the ROV with two different represen-
tation: Euler angles and quaternions. Depending on which of the two is used, we
can derive the transformation between BODY and NED differently. In this work we
will use Euler angles. The transformation of the ROV’s kinematics variables from
the Body-fixed frame {b} to the Inertial frame {n} can be expressed by a rotation
matrix referred to as Direct Cosine Matrix (DCM). To derive the DCM it is possible
to consider the total rotation in the 3-Dimensional space as a composition of three
elementary rotations (Tait-Bryan 321 representation), each one of them described
by one of the Euler angles. The final matrix representing the composition of the
three rotations is:

Rn
b (Θ) = Rz(ψ)Ry(θ)Rx(ϕ) (2.9)

Rn
b (Θ) =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

 (2.10)

8
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Figure 2.2: Body-fixed frame of the ROV

where we indicated the sin(x) and cos(x) functions as sx and cx respectively for
abbreviation.

We can now define the equation that describe the transformation of the ROV’s
linear velocity from BODY to NED as:

vn = Rn
b (Θ)vb (2.11)

Moreover, thanks to the fact that the DCM is an orthogonal matrix, we can get
the inverse relation of (2.11) by simply remember that (Rn

b (Θ))−1 = (Rn
b (Θ))T =

Rb
n(Θ).
As far as the transformation of the ROV’s angular velocity is concerned, we need

to highlight one important fact. The derivative of the Euler angles Θ̇ =
è
ϕ̇ θ̇ ψ̇

éT
does not coincide with the actual angular velocity ω of the ROV. This is due to
the fact that we use the Euler angles as representation of a generic rotation in the
space. Several ways can be used to derive the Tait-Bryan 321 kinematic equation
that represent the transformation of the ROV’s angular velocity from the BODY
frame to the NED.ϕ̇θ̇

ψ̇

 = 1
cθ

cθ sϕsθ cϕsθ
0 cϕcθ −sϕcθ
0 sϕ cϕ


ω1
ω2
ω3

 ⇐⇒ Θ̇ = TΘ(Θ)ω. (2.12)

It is useful to collect the kinematic equations in 6-dimensional matrix forms.
Recalling equations (2.6), (2.7), (2.11), (2.12), we can thus write [18] [4]:

η̇ = JΘ(η)ν ⇐⇒
C

ṗ
Θ̇

D
=
C
Rn
b (Θ) 03×3

03×3 TΘ(Θ)

D C
vb

ωb

D
(2.13)

9
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2.1.3 Rigid Body’s Dynamics
Various methods can be explored in formulating the equations governing the
motion of a rigid body. Below, we’ll provide a concise overview of the Newton-Euler
approach.

If ρ is the density of a particle of volume dV of a rigid body B, ρdV is the total
mass denoted by the position vector p in an inertial frame O − xyz. If VB is the
the total body volume we have:

m =
Ú
VB
ρdV (2.14)

The center of mass of B is defined as

pC = 1
m

Ú
VB

pρdV (2.15)

The linear momentum of the body B is by definition the vector

l =
Ú
VB

ṗρdV = mṗC (2.16)

Force is the derivative of linear momentum, so for a system with constant mass,
the Newton’s law of motion for the linear part is simply the Newton’s equations of
motion:

f = l̇ = m
d

dt
ṗC (2.17)

f = mp̈C (2.18)

where f is the resultant of the external forces expressed in the Body-Frame {b}
and p̈C is the acceleration of the center of gravity (CG).

For what regards attitude dynamics we have to consider a rigid body rotating
with respect to an inertial reference frame with angular velocity ω = ω1b1 + ω2b2 +
ω3b3. With reference to the Figure 2.3, for a particle of mass mi of the Body we
can write:

pi = X î1 + Y î2 + Z î3 (2.19)

pC = Xoî1 + Yoî2 + Zoî3 (2.20)

ri = xb̂1 + yb̂2 + zb̂3 (2.21)

ṙBi = ẋb̂1 + ẏb̂2 + żb̂3 (2.22)

10
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pi = pC + ri (2.23)

where îj, j = 1,2,3 are the unit vectors of the Inertial Frame (IF) and
b̂j, j = 1,2,3 are the unit vectors of the Body Frame (BF).

Figure 2.3: Kinematics of a particle of the rigid body

We want now to derive equation (2.23) to get the velocity of the particle in the
Inertial Frame. The derivative of the first term pC is just ṗC as it is expressed in
the IF, while the derivative of the second term ri is:

dri
dt

=
A
dx

dt
b̂1 + dy

dt
b̂2 + dz

dt
b̂3

B
+
xdb̂1

dt
+ y

db̂2

dt
+ z

db̂3

dt

 (2.24)

where the first bracket represents the variation of velocity in time and the
second bracket is the variation of velocity due to the axes rotation, according to the
Coriolis’s Theorem. It is worth noting that, since we are referring to the Inertial
Frame, the unit vectors b̂j, j = 1,2,3 are considered non constants during the
derivation as the Body Frame moves with respect to the Inertial Frame.
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Recalling the Poisson’s Theorem, we can state that there exists one and only
one vector ω for which the following equations are valid:

db̂1

dt
= ω × b̂1 (2.25)

db̂2

dt
= ω × b̂2 (2.26)

db̂3

dt
= ω × b̂3. (2.27)

Plugging equations (2.25), (2.26) and (2.27) into equation (2.24) and arranging
everything we can write the derivative of equation (2.23) as:

ṗi = ṗC + ṙbi + ω × ri. (2.28)

Moreover, it is worth keeping in mind the definition of Center of Mass (CG):

pC = 1
m

NØ
i=1

mipi (2.29)

where m = q
imi and N is the number of particles. We can rearrange (2.29) to

get the following property:

NØ
i=1

mi (pi − pC) =
NØ
i=1

miri = 0 (2.30)

Now we can compute the Angular momentum (moment of momentum) of the
particle as follows:

Hi
.= ri ×miṗi = ri ×mi

1
ṗC + ṙbi + ω × ri

2
. (2.31)

Being ṙBi = 0 (Rigid Body) and remembering this property of the cross product
a × b = −b × a we can rewrite:

Hi = ri ×mi (ṗC + ω × ri) (2.32)
= −ṗC ×miri + ri ×mi (ω × ri) . (2.33)

The angular momentum of the entire body is:

12
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H = −
NØ
i=1

ṗC ×miri +
NØ
i=1

ri ×mi (ω × ri) (2.34)

= −ṗC ×
NØ
i=1

miri +
NØ
i=1

ri ×mi (ω × ri) . (2.35)

According to equation (2.30) it is possible to rewrite (2.35) as:

H =
NØ
i=1

ri × (ω × ri)mi (2.36)

and for mi → dm, we can express everything in continuous form:

H =
Ú
VB

r × (ω × r) dm. (2.37)

By using the well known property of the cross product according to which

a × (b × c) = (a · c) b − (a · b) c (2.38)

we have that:

r × (ω × r) = (r · r) ω − (r · ω) r =
1
1r2 − rrT

2
ω. (2.39)

We can thus rewrite equation (2.37) as follows:

H =

 Ix Ixy Ixz
Iyx Iy Iyz
Izx Izy Iz


ω1
ω2
ω3

 = Iω (2.40)

where I is the Inertia Matrix or Inertia Tensor,

Ix =
Ú
VB

1
y2 + z2

2
dm (2.41)

Iy =
Ú
VB

1
x2 + z2

2
dm (2.42)

Iz =
Ú
VB

1
x2 + y2

2
dm (2.43)

are referred to as moments of inertia and
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Ixy = Iyx = −
Ú
VB
xy dm (2.44)

Ixz = Izx = −
Ú
VB
xz dm (2.45)

Iyz = Izy = −
Ú
VB
yz dm (2.46)

are referred to as products of inertia.
Suppose that a moment m is acting on the body B. The second law of dynamics

for a rotating body is:

Ḣ = m. (2.47)

Hence we need to derive the equation (2.40). The inertia matrix is considered
as a constant matrix while the derivative of ω in the Inertial Frame is:

ω̇ = ω̇b + ω × ωb (2.48)

as for equation (2.24). Thus we get:

Ḣ = Iω̇b + ω × Iωb. (2.49)

Replacing (2.49) in (2.47) we finally get the Euler’s moment equation:

Iω̇ + ω × Iω = m. (2.50)

The latter equation is expressed in the Body-Frame {b} and the inertia matrix
is computed about CG.
We can now derive the equation of dynamics computed with respect to the CG.
From equation (2.18) it follows that:

f b = d

dt

1
mvbC

2
= m

1
v̇bC + ωb × vbC

2
(2.51)

By remembering that the cross product operator is defined by:

λ × a
.= S(λ)a (2.52)

where S is a skew-symmetric matrix
1
S = −ST

2
defined as:

S(λ) = −ST (λ) =

 0 −λ3 λ2
λ3 0 −λ1

−λ2 λ1 0

 ,
λ1
λ2
λ3

 (2.53)
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with the off-diagonal elements that satisfy sij = −sji for i /= j while the diagonal
elements are zero, we can thus rewrite equations (2.50) and (2.51) as:

m
è
v̇bC + S

1
ωb
2

vbC
é

= f b (2.54)

Iω̇b − S (Iω) ωb = mb. (2.55)

The Newton–Euler equations (2.54) and (2.55) can be represented in matrix
form according to

MCG
RB ν̇ + CCG

RBν = τ (2.56)

C
m13×3 03×3
03×3 I

D C
v̇bC
ω̇b

D
+
C
mS

1
ωb
2

03×3

03×3 −S (Iω)

D C
vbC
ωb

D
=
C

f b

mb

D
. (2.57)

We may want to derive the equations of motion with respect to an arbitrary
origin CO to take advantage of ROV geometric properties. To do this, we can
simply do a coordinate transformation of the equations of motion about CG to CO.

vbC = vbO + ωb × pbC (2.58)
= vbC − pbC × ωb (2.59)
= vbC + ST

1
pbC
2

ωb (2.60)

It follows that C
vbC
ωb

D
= H

1
pbC
2 CvbO

ωb

D
(2.61)

where H
1
pbC
2

∈ R3×3 is a transformation matrix:

H
1
pbC
2 .=

C
13×3 ST

1
pbC
2

03×3 13×3

D
, HT

1
pbC
2

=
C

13×3 03×3

S
1
pbC
2

13×3

D
. (2.62)

Notice that angular velocity doesn’t changes. We now have to transform (2.57)
from CG to CO using (2.61). This gives

HT
1
pbC
2

MCG
RB H

1
pbC
2 Cv̇bO

ω̇b

D
+ HT

1
pbC
2

CCG
RBH

1
pbC
2 CvbO

ωb

D
= HT

1
pbC
2 C f b

mb

D
(2.63)

We can now define two new matrices in CO according to
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MCO
RB

.= HT
1
pbC
2

MCG
RB H

1
pbC
2

(2.64)

CCO
RB

.= HT
1
pbC
2

CCG
RBH

1
pbC
2

(2.65)

These expressions can be expanded as [18] [4]:

MCO
RB =

 m13×3 −mS
1
pbC
2

mS
1
pbC
2

Io

 (2.66)

=



m 0 0 0 mzC −myC
0 m 0 −mzC 0 mxC
0 0 m myC −mxC 0
0 −mzC myC Ix −Ixy −Ixz

mzC 0 −mxC −Iyx Iy −Iyz
−myC mxC 0 −Izx −Izy Iz


(2.67)

CCO
RB =

 mS
1
ωb
2

−mS
1
ωb
2

S
1
pbC
2

mS
1
pbC
2

S
1
ωb
2

−S
1
Ioω

b
2  . (2.68)

2.1.4 Hydrostatics
A rigid body submerged in a fluid is under the effect of gravitational force and
buoyancy. Bouyancy is not function of the relative movement between body and
fluid so it is an hydrostatic effect.

Figure 2.4: Gravitational and buoyancy forces acting on the center of gravity
(CG) and center of buoyancy (CB) of a submarine. Source: Handbook of Marine
Craft Hydrodynamics and Motion Control [4]
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Let us define as

gn =

 0
0

9.81

 m/s2 (2.69)

the acceleration of gravity, ∆ the volume of the body and m its mass. We can
write the weight of the body as

W = m∥gn∥ (2.70)
and its buoyancy as

B = ρ∆∥gn∥ (2.71)

where ρ is the fluid density. Gravity acts in the center of mass pbC =
è
xC yC zC

éT
while buoyancy acts in the center of buoyancy pbB =

è
xB yB zB

éT
and them are

represented in body-fixed frame by:

f b
G

1
Rb
n

2
= Rb

n

 0
0
W

 , (2.72)

f b
B

1
Rb
n

2
= −Rb

n

 0
0
B

 . (2.73)

We can now write a (6 × 1) vector of force/moment in body-fixed frame:

gRB
1
Rb
n

2
= −

 f b
G

1
Rb
n

2
+ f b

B

1
Rb
n

2
pbC × f b

G

1
Rb
n

2
+ pbB × f b

B

1
Rb
n

2 . (2.74)

Expression (2.74) in terms of Euler angles is:

g (η2) =



(W −B) sθ
− (W −B) cθsϕ
− (W −B) cθcϕ

− (yCW − yBB) cθcϕ + (zCW − zBB) cθsϕ
(zCW − zBB) sθ + (xCW − xBB) cθcϕ

− (xCW − xBB) cθsϕ − (yCW − yBB) sθ


. (2.75)

Usually a ROV is designed with B > W (positive buoyancy) such that the
vehicle is able to surface automatically in case of power failure or other emergencies.
Nevertheless, if the vehicle design is such that B ≫ W , then we will need too
much control energy to submerge the ROV. So a good design is a trade-off between
control energy and positive bouyancy [18] [4].
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2.1.5 Hydrodynamics

In this subsection, we will discuss the main hydrodynamic effects involved in the
dynamics of a ROV. In particular, we will talk about the two most relevant effects:
added mass and damping.

"The theory of fluidodynamics is rather complex and it is difficult to develop a
reliable model for most of the hydrodynamic effects. A rigorous analysis for incom-
pressible fluids would need to resort to the Navier-Stokes equations (distributed
fluid-flow)."[18].

When a rigid body moves through a fluid, it experiences an additional inertia
caused by the fluid surrounding it, which is accelerated by the body’s movement.
This phenomenon, known as added mass, must be taken into account because it
becomes significant in underwater applications where the density of water (approx-
imately ρ ≃ 1000kg/m3) is comparable to that of the ROV.

As the body moves through the fluid, it accelerates the fluid around it, requiring
a force to achieve this acceleration. The fluid, in turn, exerts a reaction force equal
in magnitude but opposite in direction. This reaction force constitutes the added
mass contribution. Since any motion of the underwater craft induces movement in
the otherwise stationary fluid, the fluid must displace and then re-fill the space
behind the craft as it passes through. Consequently, the fluid gains kinetic energy
that it wouldn’t possess otherwise. (see Figure 2.5). The fluid kinetic energy TA is
written as:

TA = 1
2νTMAν, ṀA = 0 (2.76)

where MA = MT
A ≥ 0 is the 6 × 6 system inertia matrix of added mass terms:

MA = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


(2.77)

The SNAME notation is used in this expression. Of course added mass introduce
an added Coriolis and centripetal contribution. It can be proved that this effect
can be parameterized as:
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Figure 2.5: Rigid-body and fluid kinetic energy. Source: Handbook of Marine
Craft Hydrodynamics and Motion Control [4]

CA (ν) =



0 0 0 0 −a3 a2
0 0 0 a3 0 −a1
0 0 0 −a2 a1 0
0 −a3 a2 0 −b3 b2
a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0


(2.78)

where

a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

a2 = Yu̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

a3 = Zu̇u+ Zv̇v + Zẇw + Zṗp+ Zq̇q + Zṙr

b1 = Ku̇u+Kv̇v +Kẇw +Kṗp+Kq̇q +Kṙr

b2 = Mu̇u+Mv̇v +Mẇw +Mṗp+Mq̇q +Mṙr

b3 = Nu̇u+Nv̇v +Nẇw +Nṗp+Nq̇q +Nṙr

(2.79)

Typically, when an underwater vehicle operates in 6 DOF at high speeds, its
motion exhibits significant non-linearity and coupling. Nonetheless, in numerous
applications involving AUV and ROV, movement is restricted to low speeds. More-
over, if the vehicle possesses three planes of symmetry, it implies that the influence
stemming from the off-diagonal elements within the MA matrix can be disregarded.
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So, the following expressions are obtained:

MA = MT
A = −diag {Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ} , (2.80)

CA (ν) = CT
A (ν) =



0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


. (2.81)

For what regard damping effects, them are related to the presence of fluid
viscosity that leads to the generation of dissipative drag and lift forces acting on the
body. A typical simplification involves accounting for linear and quadratic damping
terms and organizing them into a matrix, DRB, where DRB (ν) > 0, ∀ν ∈ R6.
These matrix coefficients are assumed to be constant.

DRB (ν) = −diag {Xu, Yv, Zw, Kp,Mq, Nr} + (2.82)
− diag

î
Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|,Mq|q||q|, Nr|r||r|

ï
(2.83)

If we adopt a diagonal structure for the damping matrix, we are essentially
disregarding the coupling dissipative terms. Viscous effects can be viewed as the
combination of two forces: drag and lift forces. Drag forces are aligned with the
relative velocity between the body and the fluid, whereas lift forces are perpendicular
to it. It is assumed that both drag and lift forces act upon the body’s center of
mass. When considering a sphere in fluid motion, the drag force can be represented
as:

Fdrag = 1
2ρU

2SCd (Rn) , (2.84)

where ρ is the fluid density, U is the velocity of the sphere, S is the frontal area
of the sphere, Cd is the drag coefficients and Rn is the Reynolds number. The lift
forces act perpendicular to the direction of flow and can be represented as:

Flift = 1
2ρU

2SCl (Rn, α) , (2.85)

where Cl is the lift coefficient and α is the angle of attack [4][18].
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2.2 System parameters
For simulation purposes the high fidelity model discussed in section 2.1, was
implemented in MATLAB Simulink to test the dynamic behaviour of EVA and
different control systems performances. To do this we needed the numerical values
for all the system parameters discussed before.
For what regard mechanical parameters we used different ways. For parameters like
mass and Volume (useful for Bouyancy) we directly measured them experimentally,
while for the Inertia Tensor and for the center of mass we referred to the complete
CAD (Computer Aided design) of EVA realized from the mechanical division of
PoliTOcean team.
The CAD is created in SolidWorks, and faithfully reproduces each component of
the ROV, including electronics, and contains the properties of each of the materials
comprising EVA We extracted the necessary information from the ‘SolidWorks mass
property‘ section of the software. Also the measurements necessary for computing
the Thrust Configuration Matrix (TCM) used for control allocation were extracted
through the CAD.
Hydrodynamic parameters such as added mass, damping and center of bouyancy
were estimated from the hydrodynamic division of PoliTOcean team.

In the following subsections, the procedure for calculating the TCM, which is
useful for control allocation, will be presented, along with the steps performed by
the hydrodynamic division for calculating the hydrodynamic parameters.
All the parameters with their related values and measurement units are listed in
table 2.2.
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EVA’s PARAMETERS
m mass 16.6 kg
W weight 162.846 N
B buoyancy 168.928 N

Ix
moment of

inertia 0.40423 kg m2

Iy
moment of

inertia 0.66054 kg m2

Iz
moment of

inertia 0.92002 kg m2

Ixy
products of

inertia 0.04893 kg m2

Ixz
products of

inertia 0.06762 kg m2

Iyz
products of

inertia 0.01505 kg m2

|Xu̇| added mass 1.3169 kg
|Yv̇| added mass 2.5699 kg
|Zẇ| added mass 14.4260 kg
|Kṗ| added mass 0.2089 kg m2 rad−1

|Mq̇| added mass 0.3637 kg m2 rad−1

|Nṙ| added mass 0.1482 kg m2 rad−1

|Xu| linear
damping 9.716 N s m−1

|Yv|
linear

damping 20.53 N s m−1

|Zw| linear
damping 68.855 N s m−1

|Kp|
linear

damping 0.07 N s rad−1

|Mq|
linear

damping 0.07 N s rad−1

|Nr|
linear

damping 0.07 N s rad−1

--Xu|u|
-- quadratic

damping 18.18 N s2 m−2

--Yv|v|
-- quadratic

damping 21.66 N s2 m−2

--Zw|w|
-- quadratic

damping 36.99 N s2 m−2

--Kp|p|
-- quadratic

damping 1.55 N s2 rad−2

--Mq|q|
-- quadratic

damping 1.55 N s2 rad−2

--Nr|r|
-- quadratic

damping 1.55 N s2 rad−2

pbB
coordinates
of the CoB [0; 0; −0.03] m

pbC
coordinates
of the CoM [0; 0; 0] m

Table 2.2: EVA’s parameters
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2.2.1 Thruster Dynamics, TCM and Control Allocation
Since EVA has 8 thrusters, the thruster forces can be represented using a vector

F =
è
F1 F2 F3 F4 F5 F6 F7 F8

éT
, (2.86)

while the control inputs can be represented using a vector

u =
è
u1 u2 u3 u4 u5 u6 u7 u8

éT
. (2.87)

Given the force vector f =
è
Fx Fy Fz

éT
and the moment arms

r =
è
lx ly lz

éT
, the forces and moments in 6 DoFs can be determined by [19]:

τ =
C

f
r × f

D
=



Fx
Fy
Fz

Fzly − Fylz
Fxlz − Fzlx
Fylx − Fxly


. (2.88)

Hence, the generalised forces and moments in 6 DoFs τ ∈ R6 due to 8 thrusters
F ∈ R8 can be then modelled as:

τ = T (α)F (2.89)

where T =
è
t1 t2 t3 t4 t5 t6 t7 t8

éT
∈ R6×8 is the thrust configuration

matrix and α ∈ R8 is the thrust rotation angle vector [20]. As a consequence, the
thrust configuration matrix T can be then computed by using equation (2.88).

The moment arms of 8 thrusters relative to centre of gravity (CG) are computed
and listed in Table 2.3.

Figure 2.6: EVA schematic of thrust forces w.r.t. CG

The angles of rotation for the horizontal thrusters from T1 to T4 are as follows:
3π
4 , −3π

4 , π
4 , and −π

4 , respectively. Thrusters T5 to T8, on the other hand, are
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Ti lxi (mm) lyi (mm) lzi (mm)
T1 143.63 143.63 31.55
T2 152.73 -152.73 31.55
T3 -187.27 187.27 31.55
T4 -196.37 -196.37 31.55
T5 178.86 125.9 0
T6 178.86 -144.1 0
T7 -266.14 125.9 0
T8 -266.14 -144.1 0

Table 2.3: Moment arms of 8 thrusters of EVA

vertical thrusters that do not involve any horizontal rotations. Consequently, the
forces and moments generated by thruster T1 can be determined.

τ1 =



Fx1
Fy1
Fz1

Fz1ly1 − Fy1lz1
Fx1lz1 − Fz1lx1
Fy1lx1 − Fx1ly1


=



−F1 cos
1
π
4

2
F1 sin

1
π
4

2
0

−F1 sin
1
π
4

2
× 0.032

−F1 cos
1
π
4

2
× 0.032

F1 sin
1
π
4

2
× 0.144 + F1 cos

1
π
4

2
× 0.144


. (2.90)

Hence,

τ1 = F1



−0.7071
0.7071

0
−0.0223
−0.0223
0.2032


= F1t1. (2.91)

where we have considered the schematic depicted in Figure 2.6.
By following the same procedure, the forces and moments produced by total 8

thrusters are found to be:
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τ = T (α)F =

=


−0.7071 −0.7071 0.7071 0.7071 0 0 0 0
0.7071 −0.7071 0.7071 −0.7071 0 0 0 0

0 0 0 0 1 1 1 1
−0.0223 0.0223 −0.0223 0.0223 0.1259 −0.1441 0.1259 −0.1441
−0.0223 −0.0223 0.0223 0.0223 −0.1788 −0.1788 0.2661 0.2661
0.2032 −0.2160 −0.2648 0.2778 0 0 0 0





F1
F2
F3
F4
F5
F6
F7
F8


(2.92)

Therefore, the thrust configuration matrix T for EVA is given by:

T =


−0.7071 −0.7071 0.7071 0.7071 0 0 0 0
0.7071 −0.7071 0.7071 −0.7071 0 0 0 0

0 0 0 0 1 1 1 1
−0.0223 0.0223 −0.0223 0.0223 0.1259 −0.1441 0.1259 −0.1441
−0.0223 −0.0223 0.0223 0.0223 −0.1788 −0.1788 0.2661 0.2661
0.2032 −0.2160 −0.2648 0.2778 0 0 0 0

 .

(2.93)

The control allocation problem is the computation the control input signal u
to apply to the thrusters such that the overall desired control forces τ can be
generalised. First of all, we need to find a relationship between the input signal u
and the thrust forces F . Since EVA uses BlueRobotics T200 Thrusters both for
the horizontal and vertical thrusts, we can exploit the following relationship [15]:

We can now derive the inverse of Equation (2.89) as

F = T −1τ . (2.94)

However, since the thrust configuration matrix T for EVA is non-square, the
Moore-Penrose pseudo-inverse T + is applied given by:

T + = T T
1
T T T

2−1
. (2.95)
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Hence, the thrust forces vector F can be calculated as:

F = T +τ . (2.96)

In this way we can give as input the forces and moments vector τ and get as output
the relative thrust forces vector F . Finally, we can apply to each motor a PWM
signal as shown in Figure 2.7 depending on the value of F [20].

Figure 2.7: T200 BlueRobotics Thrust (kgf) with respect to the ESC PWM Input
Value (µs)

2.2.2 Hydrodynamic parameters
In literature, there are several studies that report the work done for calculating
the hydrodynamic parameters of ROVs and AUVs. Some estimate the parameters
based on carefully collected data, while others use CFD [6][21]. In this subsection,
we are gonna discuss the resolution of the problem and the techniques used by the
hydrodynamic division of the PoliTOcean team.

In order to calculate the added mass and damping, we performed Dynamic
Fluid Body Interaction (DFBI) simulations using the computational fluid dynamics
software Star CCM+. DFBI simulations employ a different approach compared
to more common simulations. In fact, DFBI simulations use the overset mesh
technique to allow a body (in this case, the ROV) to move within a domain. The
alternative to this simulation is to have a stationary body in the domain subjected
to a flow, which does not accurately reproduce the real physics where the water is
stationary, and the ROV has its own velocity.
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In short, DFBI simulations are carried out by generating two meshes: the first
for the domain within which the body will move and a smaller one containing the
moving body. These two meshes are overlapped, hence the name overset mesh. At
each time-step, the body will move within the domain. To avoid generating a too
large domain, which would lead to high computational costs, the outer domain
mesh can also be set in motion by assigning it the same velocity as the moving
body. In this way, the relative motion between the reference frame of the body and
the external domain will be null, but since the fluid is stationary with respect to
both reference frames, it will still be possible to simulate the motion of the ROV
in the fluid.

To achieve this, we used a simplified geometry of the ROV that allowed us to
maintain a relatively low computational cost.

Figure 2.8: Simplified CAD of EVA

The type of mesh was chosen to account for the turbulence generated by the
squat geometry of the ROV. Therefore, a polyhedral mesh was chosen, as the cells
generated by this mesh are polyhedrons usually consisting of more than six faces.
This is important because in numerical computation, where finite volumes are
used (as in Star CCM+), the transmission of information between one cell and
another generates a certain error depending on the angle of incidence between the
information and the surface. The closer this angle is to a right angle, the smaller
the error generated. In areas where turbulence is present, the information comes
from every direction, and to obtain an error that does not negatively affect the
result, it is important to have cells that are not only small but also have a large
number of faces. Another feature of the mesh is the prism layers near the body.
These were used because it is known that the gradient at the wall is vertical.

27



ROV Modelling

Figure 2.9: Mesh of the ROV, side
section view

Figure 2.10: Mesh of the ROV,
top section view

We chose to use the Standard k − ε all y+ turbulence solver, belonging to the
family of Unsteady Reynolds-Averaged Navier-Stokes (URANS). The reason why
the simulations were conducted in an unsteady regime instead of a steady state
is twofold: the DFBI method implies that the movement of the ROV varies over
time, and to observe the added mass, it was necessary to vary the body’s velocity
in the domain. We chose to use the Standard k − ε all y+ solver because we found
that it yields results more similar to experimental ones. We chose to use an all
y+ approach because, given the squat geometry, the drag coefficient is largely
generated by pressure and only minimally by shear stress. This means that we
can afford to lose some information at the wall without it negatively affecting our
results.
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2.3 Control-oriented model
In this section, mathematical models used for computing control laws will be
presented. These models are all linearized and comes from certain simplifying
assumptions about the dynamics of the ROV under control. They draw inspiration
from lateral and longitudinal models presented in [4] and other works employing
similar models. For example in [10] a linearized model is used for heave control
design, while in [6] and [8] similar models are used as basic structure for System
Identification purposes. However, the key difference lies in the fact that in the
cited models, the ROV is assumed to be neutrally buoyant, whereas in those to
be presented, the weight force and buoyancy will be taken into account as EVA is
positively buoyant.

According to [4] the 6-DOF equations of motion of a ROV can be divided into
two non-interacting (or lightly interacting) subsystems:

• Longitudinal subsystem: states u, w, q, and θ.

• Lateral subsystem: states v, p, r, ϕ, and ψ.

Starting from these two MIMO models, it is possible to isolate the dynamics
and derive SISO models for each dynamic. This is the procedure used below for the
derivation of the control oriented models used for the design of the control system
of EVA.

Longitudinal subsystem is based on the following assumptions:

• States v, p, r, ϕ are small.

• Higher-order damping can be neglected.

• Diagonal MA.

• Coriolis is simplified assuming v, w, p, q, r are small.

• xg = xb.

By adding the assumption u = constant we can remove the forward speed state.
From the obtained Longitudinal subsystem, we derived the heave model and pitch
control oriented models presented in subsections 2.3.1 and 2.3.2.
As made for longitudinal model, the lateral model assumptions are listed below:

• States u, w, p, r, ϕ, θ are small.

• Higher-order damping can be neglected.

• Diagonal MA.
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• Coriolis is simplified.

• xg = xb and yg = yb.

From the obtained Lateral subsystem, we derived the roll control oriented models
presented in subsections 2.3.3.

2.3.1 Heave model
Following all the assumption of the longitudinal subsystem we can extract the
heave model:

(m+ |Zẇ|)ẇ + |Zw|w +B −W = τz. (2.97)
In state space form, considering the states [ w ; z ], becomes:

ẋ =
C
ẇ
w

D
=
C −|Zw|
m+|Zẇ| 0

1 0

D C
w
z

D
+
C 1
m+|Zẇ|

0

D
(τz +W −B) (2.98)

y =
è
0 1

é Cw
z

D
. (2.99)

The bode diagram of the system is reported in 2.11.

Figure 2.11: Bode Diagram of Heave model

By discretizing with the Zero Older Hold method the model with sampling time
0.01 seconds, considering (τz +W −B) as input and z as output, and substituting
the system parameters we obtain the transfer function of the heave dynamics:
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Gheave(z) = 1.6 × 10−6(z + 0.9926)
(z − 1)(z − 0.9781) (2.100)

A we can see from 2.100 the system is stable since all the poles are inside the
unitary circle in the z plane. In addition we can notice the presence of a pole located
in z=1 that, in closed loop, ensure steady-state zero error for step reference and
zero steady-state output error for step disturbances on measurements. Furthermore,
as evidenced by the Bode plot and the transfer function, the system is overdamped.

2.3.2 Pitch model
Following all the assumption of the longitudinal subsystem we can extract the pitch
model:

(Iy + |Mq̇|)θ̈ + |Mq|θ̇ + (zgW − zbB) = τpitch. (2.101)

In state space form, considering the states [ θ̈ ; θ̇ ], becomes:

ẋ =
C
θ̈

θ̇

D
=
C −|Mq |
Iy+|Mq̇ |

zbB
Iy+|Mq̇ |

1 0

D C
θ̇
θ

D
+
C 1
Iy+|Mq̇ |

0

D
τpitch (2.102)

y =
è
0 1

é Cθ̇
θ

D
. (2.103)

The bode diagram of the system is reported in 2.12.

Figure 2.12: Bode Diagram of Pitch model

31



ROV Modelling

By discretizing with the Zero Older Hold method the model with sampling
time 0.01 seconds, considering τpitch as input and θ as output, and substituting the
system parameters we obtain the transfer function of the pitch dynamics:

Gpitch(z) = 4.88 × 10−5(z + 1)
z2 − 1.999z + 0.9993 (2.104)

A we can see from 2.104 the system is stable since all the poles are inside the
unitary circle in the z plane. Furthermore, as evidenced by the Bode plot and the
transfer function, the system is underdamped.

2.3.3 Roll model
Following all the assumption of the lateral subsystem we can extract the roll model:

(Ix + |Kṗ|)ϕ̈+ |Kp|ϕ̇+ (zgW − zbB) = τroll. (2.105)

In state space form, considering the states [ ϕ̈ ; ϕ̇ ], becomes:

ẋ =
C
ϕ̈

ϕ̇

D
=
C −|Kp|
Ix+|Kṗ|

zbB
Ix+|Kṗ|

1 0

D C
ϕ̇
ϕ

D
+
C 1
Ix+|Kṗ|

0

D
τroll (2.106)

y =
è
0 1

é Cϕ̇
ϕ

D
. (2.107)

The bode diagram of the system is reported in 2.13.

Figure 2.13: Bode Diagram of Roll model
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By discretizing with the Zero Older Hold method the model with sampling
time 0.01 seconds, considering τroll as input and ϕ as output, and substituting the
system parameters we obtain the transfer function of the pitch dynamics:

Groll(z) = 8.1512 × 10−5(z + 1)
z2 − 1.998z + 0.9989 (2.108)

A we can see from 2.108 the system is stable since all the poles are inside the
unitary circle in the z plane. Furthermore, as evidenced by the Bode plot and the
transfer function, the system is underdamped.
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Chapter 3

Control System Design

In this chapter, we will present the various mathematical steps for designing control
systems for the ROV. First, a controller will be constructed using pole placement,
then control techniques such as LQR and MPC will be explored. All the calculus
and performances consideration are based on different models presented in chapter
2 in section 2.3. The comparison of performances on the simulation model of
different control system developed in this chapter, will be discussed in chapter 4.

Let’s consider the basic 1 DOF controller closed loop structure reported in figure
3.1.

Figure 3.1: 1 DOF architecture

The purpose of control for heave dynamics is to meet the following requirements:

• Overshoot ŝ ≤ 10% for step reference signal

• Settling time to 1% of the reference ts,1% ≤ 4 s for step reference signal

• Regime output response |y∞
d1 | = 0 in the presence of a step disturbance signal

d1
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• Regime output response |y∞
d2 | = 0 in the presence of a step disturbance signal

d2

• Maximum of the control input must be max u(t) ≤ 80 N

• Minimum of the control input must be min u(t) ≥ −60 N.

So the heave controller must be able to track a step signal and to reject different
step disturbances that comes from manipulated objects. For what concern pitch
and roll dynamics we want that the output of the feedback scheme is always zero;
we want a very fast disturbance compensation. In particular the compensation
of step disturbances is crucial because the ROV is called to do lot of tasks that
involves manipulations. Each time EVA catch an object, from the control system
point of view, is like a step disturbance on heave, pitch and roll. The disturbance
is mainly on pitch due to the geometry of the ROV, but we cannot assume a priori
the shape and the weight distribution of the object under manipulation; depending
on what has been said, the external object can also introduce disturbances on
the roll dynamic. Furthermore, is crucial to highlight the fact that the system
is not perfectly balanced, so compensating for disturbances in all the considered
dynamics is necessary to offset all the system unbalances. This is true for very
small unbalances, as they introduce non linearities that cannot be represented
as external disturbances. So the requirement for roll and pitch control are the
following:

• Regime output response |y∞
d1 | = 0 in the presence of a step disturbance signal

d1

• Regime output response |y∞
d2 | = 0 in the presence of a step disturbance signal

d2

• Maximum of the control input must be max u(t) ≤ 30 Nm

• Minimum of the control input must be min u(t) ≥ −30 Nm.

For roll and pitch dynamics, the performance comparison will be based on
the system’s response speed for disturbance compensation under equal applied
disturbances. If the system reacts quickly enough to disturbances, the magnitude
of the output displacement due to disturbance d1 will be lesser, as well as the time
required to return to the reference. Similarly, for disturbance d2, a better response
will allow for faster return to the reference. This is why it is necessary to specify
additional requirements for the control design:

• Maximum value of the output due to d1 must be max yd1 ≤ 0.1 rad

• Settling time to 1% of the reference td1
s,1% ≤ 1 s.

35



Control System Design

• Settling time to 1% of the reference td2
s,1% ≤ 1 s.

Lastly, the ROV has a manipulator with only two degrees of freedom, namely wrist
and gripper. Consequently, due to its limited mobility and positioning within the
ROV, it may encounter significant difficulties when tasked with lifting small objects
resting on the seabed. This is why we want the ROV to be able to adjust its attitude,
particularly the pitch angle, to facilitate such manipulations. Consequently, the
pitch dynamics must also be controlled for tracking a specific angle not exceeding
30°. The process of identifying issues to address through control can be summarized
in the graph shown in figure 3.2.

Figure 3.2: Control problem identification

In this chapter the design phase on control oriented models is considered. So, the
input saturation constraint requirements are omitted. We will deal only with other
requirements. We will add anti wind up scheme for thrust saturation (explained
in subsection 3.1.1) only in simulation models in chapter 4 where the thruster
dynamics is simulated and makes sense to take this phenomena into account.

3.1 Control design via pole placement
In this section we are going to discuss all the mathematical procedure for the
pole placement control system design. For heave and pitch dynamics, since deal
with tracking, we will develop a 2 DOF control system scheme to obtain better
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performances, while for roll a 1 DOF scheme is enough since the reference signal
is always zero. Every time a 1 DOF control system is discussed, reference will be
made to the diagram shown in the figure 3.1, while for what concern 2 DOF control
system, the figure 3.3 is considered.

Figure 3.3: 2 DOF architecture

The first degree of freedom is the transfer function C(z), while the second is the
transfer function F (z). For the moment, we will consider all the requirements of
the problem, except those related to input saturation. In fact, we will address the
issue in a dedicated section (subsection 3.1.1) where an anti-windup technique will
be presented for dealing with constraints. Once all the mathematical steps for the
controller design and the introduction of anti-wind up have been presented, we will
examine in detail the results obtained for each of the dynamics that need to be
controlled in subsections 3.1.2 3.1.3 3.1.4.
The first step of pole placement control design is checking some basic assumption.
Defining:

G(z) = B(z)
A(z) C(z) = S(z)

R(z) (3.1)

we need to have A(z) coprime and monic, B(z) coprime with no roots at z = 1
and G(z) strictly proper. The closed loop transfer function considering the 1 DOF
structure will be:

W (z) = B(z)S(z)
A(z)R(z) +B(z)S(z) = Bm(z)

Am(z) . (3.2)

So we can simply design a controller C(z) able to place desired poles to the closed
loop transfer function W (z) by solving:

A(z)R(z) +B(z)S(z) = Am(z). (3.3)

Solving equation 3.3 means computing the unknown polynomials R(z) and S(z).
The equation 3.3 is known as Diophantine equation and it admits a solution if the
assumption mentioned before are verified.
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Due to the fact that we want disturbance rejection for step disturbances we
want to introduce a pole in z = 1 in the controller transfer function C(z).

We may also want to simplify the closed loop dynamic by introducing stable
zero-pole cancellations between C(z) and G(z). In general we cancel factors that
correspond to asymptotically stable modes, but in practice is better to follow a
rule of thumb based dumping properties. We introduce the cardiod region that is
a region of the z plane that corresponds to roots with higher dumping with respect
to the desired closed loop poles.

Taking into account the considerations done till now we can rewrite the problem
in a new way. We can rewrite G(z) as:

G(z) = B(z)
A(z) = B+(z)B−(z)

(z − 1)l1A+(z)A−(z) (3.4)

Where B+(z) and A+(z) are the stable factors inside the cardiod region of B(z)
and A(z), while B−(z) and A−(z) are the remaining factors. The l1 poles in
z = 1 if they exist, are kept separate. To cancel B+(z) and A+(z) and to impose
disturbance rejection for step disturbances the controller must have the following
form:

C(z) = S(z)
R(z) = A+(z)S∗(z)

(z − 1)l2B+(z)R∗(z) (3.5)

where l2 = 1 for our purposes.
The closed loop transfer function, if l = l1 + l2, become:

W (z) = B−(z)S∗(z)
(z − 1)lA−(z)R∗(z) +B−(z)S∗(z) = Bm(z)

Am(z) (3.6)

and the Diophantine equation:

(z − 1)lA−(z)R∗(z) +B−(z)S∗(z) = Am(z). (3.7)

To obtain a unique solution from equation 3.7 we need the number of unknowns
equal to the number of algebraic equations. Based on this we can write the following
equations for the degree of the involved polynomials:

deg(S∗) = l + deg(A−(z)) − 1 (3.8)

deg(R∗) = deg(A−(z)) + deg(A+(z)) + l1 − deg(B+(z)) − 1 (3.9)
deg(Am) = l + deg(A−(z)) + deg(A+(z)) + l1 − deg(B+(z)) − 1 (3.10)

The pole placement is done by imposing the roots of Am. Typically, two poles
are set based on the requirements using formulas of a 2nd order prototype system.

p1,2 = −ζωn ± jωn
ñ

1 − ζ2 (3.11)
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where zeta and omega are calculated from requirements with the formulas:

ζ = |ln(ŝ)|ñ
π2 + ln2(ŝ)

(3.12)

ωn = 4.6
ζts,1%

(3.13)

If Am has a degree greater than two, then the remaining poles are set to be very
fast so that the dominant dynamics of the second order is left unchanged.

Till now we referred to the 1 DOF control structure. To realize the 2 DOF
structure we need to design the F (z) transfer function. F (z) has to be proper and
stable to guarantee closed loop stability with all the structure defined before. The
denominator is usually designed to cancel slow zeros introduced by S∗(z) to avoid
to affect closed loop response:

F (z) = T (z)
S∗(z) (3.14)

W (z) = F (z) B−(z)S∗(z)
(z − 1)lA−(z)R∗(z) +B−(z)S∗(z) = (3.15)

= T (z)B−(z)
(z − 1)lA−(z)R∗(z) +B−(z)S∗(z) (3.16)

The numerator of F (z) is designed to place additional zeros in W (z) to improve
output performances and to impose a suitable DC gain on the total closed loop. In
this thesis T (z) is used to cancel the additional faster poles of W (z) added to the
two dominant poles in the 1 DOF phase for obtaining a unique solution from the
Diophantine equation. We can also impose a desired DC gain kw to W (z) thanks
to F (z) by writing it as:

Fk(z) = kf
T (z)
S∗(z) . (3.17)

By calculating the DC gain of the total closed loop transfer function:

W (z) = Fk(z)
B−(z)S∗(z)

(z − 1)lA−(z)R∗(z) +B−(z)S∗(z) = (3.18)

= kfT (z)B−(z)
(z − 1)lA−(z)R∗(z) +B−(z)S∗(z) (3.19)

it’s easy to see that we can find a suitable kf fixing kw with the formula:

kf = kw
S∗(1)
T (1)

(z − 1)lA−(z)R∗(z) +B−(z)S∗(z)
B−(z)S∗(z) . (3.20)

In this way, from the reference tracking point of view, the closed loop behaviour is
exactly the 2nd order prototype desired ones[22][23][24].
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3.1.1 Anti wind-up for saturation handling
Till now the requirements taken into account in the design are ŝ, ts,1% and |y∞

d | = 0
in the presence of a step disturbance signal d1 or d2. In this section a way to deal
with input saturation will be presented. This problem is analyzed in [22] and we
will consider it in the design from chapter 4.

Since real actuators have limited authority, it is crucial to consider this aspect,
as neglecting it can lead to significant performance degradation. A common issue
when an input reaches its saturation limit is that, if the controller includes an
integrator, it may continue integrating despite the input constraint. As a result,
the integrator’s state may escalate to an undesirable level, leading to sub optimal
transient performance. This problem is known as wind up.

Numerous alternative approaches exist for safeguarding against wind-up. All
these techniques center around ensuring that the states of controller have two
crucial attributes reported here from [22]:

• the state of the controller should be driven by the actual constrained plant
input

• the states of the controller should have a stable realization when driven by
the actual plant input.

Attaining these conditions is notably straightforward when dealing with a biproper
and minimum phase controller. Considering the controller C(z), we can decompose
it into the direct feedthrough component, denoted as C∞, and a strictly proper
transfer function represented by C̄(z). If we consider the scheme in figure 3.4 we
can see that the transfer function from e(t) to u(t) is C(z).

Figure 3.4: Feedback form of biproper controller

Since C(z) is minimum phase, [C(z)]−1 is stable so all the bottom part of the
scheme is stable and has as input u(t). So the listed conditions are satisfied. The
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final block scheme that ensure safety from wind up is the same of figure 3.4, but
with saturation block placed as in figure 3.5 where all the control loop is represented.
In the saturation block we simply saturate the input signal as the requirements on
u(t) impose.

Figure 3.5: Anti wind-up control loop

In the design phase on control oriented models the input saturation constraint
are not considered. We will deal only with other requirements. We will add anti
wind up scheme for thrust saturation only in simulation models where the thruster
dynamics is simulated and makes sense to take this phenomena into account.

3.1.2 Heave control via pole placement
For depth control, the poles were selected to achieve better performances compared
to the requirements, adopting a more conservative approach in anticipation of the
degradation present in the simulation model due to non idealities. With ŝ = 0%
and ts,1% = 1 s, we obtain ζ = 1 and ωn = 6.64 rad/s. Since the heave transfer
function is the one in equation 2.100, considering the cardiod region defined by
zeta, we can define:

A+(z) = (z − 0.9781); A−(z) = 1 (3.21)

and:
B+(z) = 1; B−(z) = 1.6 × 10−6(z + 0.9926) (3.22)

Using equations 3.8 3.9 3.10 we have:

deg(S∗) = 1; deg(R∗) = 1; deg(Am) = 3. (3.23)
So we have to place 3 poles, 2 that depends on equation 3.11 and one that is an

additional faster pole. This poles in discrete time are:

p1,2 = 0.9357; p3 = 0.7175. (3.24)
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Solving Diophantine equation 3.7, considering that C(z) must have a pole in z = 1
for the requirements on disturbances, according to equation 3.5, we obtain:

C(z) = A+(z)S∗(z)
(z − 1)l2B+(z)R∗(z) = 12499(z − 0.9781)(z − 0.9707)

(z − 1)(z − 0.609) . (3.25)

Since the control in z-axis deals with tracking, we can improve performances with a
2 DOF structure. The transfer function F (z) have the form of equation 3.14. The
denominator is equal to S∗(z) to cancel the slow zeros in the closed loop response,
while the numerator is used to cancel the effect of the additional fast poles p3 of
W (z). The gain kf is calculated thanks to equation 3.20, imposing kw = 1. At the
end F (z) is:

F (z) = 0.10359(z − 0.7175)
(z − 0.9707) . (3.26)

The obtained control law has been tested in MATLAB/Simulink with a 2 DOF
structure as in figure 3.3. The reference signal is a step signal of amplitude 1 m.
At time t = 2.5 s we introduced a step disturbances d1 = 20 N, while at time t = 5
s a step disturbances d2 = 0.2 m. The output response and the control input are
plotted in figure 3.6

Figure 3.6: Pole placement control for heave dynamic

As we can see the requirements are satisfied with a safety margin since:

ŝ = 0; ts,1% = 1 s; |y∞
d1,d2| = 0. (3.27)

Input saturation is considered in chapter 4 with the anti wind-up techniques
explained in subsection 3.1.1.

3.1.3 Pitch control via pole placement
For pitch control, the poles were selected to achieve a fast disturbance rejection,
adopting a more conservative approach in anticipation of the degradations present
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in the simulation model due to non idealities. With ŝ = 0% and ts,1% = 0.5 s, we
obtain ζ = 1 and ωn = 13.28 rad/s. Since the pitch transfer function is the one in
equation 2.104, considering the cardiod region defined by zeta, we can define:

A+(z) = 1; A−(z) = z2 − 1.999z + 0.9993 (3.28)

and:

B+(z) = 1; B−(z) = 4.8804 × 10−5(z + 1) (3.29)

Using equations 3.8 3.9 3.10 we have:

deg(S∗) = 2; deg(R∗) = 1; deg(Am) = 4. (3.30)

So we have to place 4 poles, 2 that depends on equation 3.11 and two that are
additional faster poles. This poles in discrete time are:

p1,2 = 0.8756; p3,4 = 0.5148. (3.31)

Solving Diophantine equation 3.7, considering that C(z) must have a pole in z = 1
for the requirements on disturbances, according to equation 3.5, we obtain:

C(z) = A+(z)S∗(z)
(z − 1)l2B+(z)R∗(z) = 4661.7(z2 − 1.843z + 0.8514)

(z − 1)(z − 0.009544) . (3.32)

Since the pitch control deals with tracking, we can improve performances with a 2
DOF structure. The transfer function F (z) have the form of equation 3.14. The
denominator is equal to S∗(z) to cancel the slow zeros in the closed loop response,
while the numerator is used to cancel the effect of the additional fast poles p3 of
W (z). The gain kf is calculated thanks to equation 3.20, imposing kw = 1. At the
end F (z) is:

F (z) = 0.016493(z − 0.5148)
(z2 − 1.843z + 0.8514) . (3.33)

The obtained control law has been tested in MATLAB/Simulink with a 2 DOF
structure as in figure 3.3. In the first simulation, the reference signal is a constant
signal of amplitude zero. At time t = 2.5 s we introduced a step disturbances
d1 = 10 Nm, while at time t = 5 s a step disturbances d2 = 10 degree. The output
response and the control input are plotted in figure 3.7.
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Figure 3.7: Pole placement regulation for pitch dynamic

As we can see the requirements are satisfied with a safety margin since:

|y∞
d1,d2 | = 0; max yd1 = 0.012 rad; td1

s,1% = 0.17 s; td2
s,1% = 0.14 s.

(3.34)
In a second simulation everything is left unchanged except for reference signal that
is now an angle of π

6 rad. As we can see in the next figures, tracking is achieved.

Figure 3.8: Pole placement tracking for pitch dynamic

Input saturation is considered in chapter 4 with the anti wind-up techniques
explained in subsection 3.1.1.

3.1.4 Roll control via pole placement
For roll control, the poles were selected to achieve a fast disturbance rejection,
adopting a more conservative approach in anticipation of the degradation present
in the simulation model due to non idealities. With ŝ = 0% and ts,1% = 0.5 s, we
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obtain ζ = 1 and ωn = 13.28 rad/s. Since the roll transfer function is the one in
equation 2.108, considering the cardiod region defined by zeta, we can define:

A+(z) = 1; A−(z) = z2 − 1.998z + 0.9989 (3.35)

and:
B+(z) = 1; B−(z) = 8.1512 × 10−5(z + 1) (3.36)

Using equations 3.8 3.9 3.10 we have:

deg(S∗) = 2; deg(R∗) = 1; deg(Am) = 4. (3.37)
So we have to place 4 poles, 2 that depends on equation 3.11 and two that are

additional faster poles. This poles in discrete time are:

p1,2 = 0.8756; p3,4 = 0.5148. (3.38)

Solving Diophantine equation 3.7, considering that C(z) must have a pole in z = 1
for the requirements on disturbances, according to equation 3.5, we obtain:

C(z) = A+(z)S∗(z)
(z − 1)l2B+(z)R∗(z) = 2785.5(z2 − 1.844z + 0.8518)

(z − 1)(z − 0.009875) . (3.39)

The obtained control law has been tested in MATLAB/Simulink with a 1 DOF
structure as in figure 3.1. The reference signal is a constant signal of amplitude
zero. At time t = 2.5 s we introduced a step disturbances d1 = 10 Nm, while at
time t = 5 s a step disturbances d2 = 10 degree. The output response and the
control input are plotted in figure 3.9.

Figure 3.9: Pole placement control for roll dynamic

As we can see the requirements are satisfied with a safety margin since:

|y∞
d1,d2 | = 0; max yd1 = 0.020 rad; td1

s,1% = 0.24 s; td2
s,1% = 0.14 s.

(3.40)
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Input saturation is considered in chapter 4 with the anti wind-up techniques
explained in subsection 3.1.1.

3.2 Control design through LQR
In this section we are gonna discuss all the mathematical procedure for Linear
Quadratic Regulator (LQR) design. The LQR problem is formulated in lot of papers
and books. The ones used for the formulation of our problem are [22][25][26][27].

LQR is an optimal control technique whose main objective is to minimize a
quadratic cost function that combines system state and control inputs, suitably
weighted during the design phase according to the specifications. LQR control is
based on optimal control theory, specifically on the Riccati equation, which is used
to compute the optimal control law.

In the following passages the mathematical model of the plant is a state space
form. In our applications this are the control-oriented models presented in setion 2.3.
Evaluations of control performance on control-oriented models will be conducted in
this chapter, as with all other types of control discussed in this thesis. Subsequently,
in Chapter 4, the performance of the controllers obtained will be compared on
simulation model. The discrete time LQR control for a linear system of order n is
usually based on the following optimization problem:

min
u(k)

∞Ø
i=0

xT (k − i)Qx(k + i) + uT (k + i)Ru(k + i)

s.t. x(k + 1) = Ax(k) + Bu(k)
(3.41)

where Q = QT ≥ 0 and R ≥ 0 are design parameters that are chosen according to
the desired performance tradeoff. It can be proven that:

if ρ(MR(A,B)) = n & ρ(MO(A,Cq)) = n, (3.42)

the existence and uniqueness of the solution and asymptotic closed loop stability
are guarantee. Cq is the Choleski factor of matrix Q hence, it holds that:

Q = CT
q Cq. (3.43)

If all the assumptions made above hold true, then the solution to the optimal
control problem is given by:

u∗(k) = −Kx(k) with K = (R + BTP B)−1BTP A (3.44)

where P = P T ≥ 0 is the solution of the following Discrete Algebraic Riccati
Equation:

P = ATP A + Q − ATP B(R + BTP B)−1BTP A. (3.45)
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This control law is useful for regulation purpose with the following block scheme:

Figure 3.10: Static state feedback control architecture

If our purpose is not regulation, but tracking or step disturbance rejection, this
control law leads to weak steady state performances. Hence, we need to modify the
control structure and compute a control action that take into account the tracking
error as shown below:

Figure 3.11: LQR with set point tracking structure

In this structure we introduced the integral q(k) of the tracking error as an
additional state of the system. Hence, calling Ts the sampling time, we have:

q(k + 1) − q(k)
Ts

= r(k) − y(k) −→ q(k + 1) = q(k) + Tse(k). (3.46)

The coefficient Kq comes from the modified control law that is obtained repeating
the passages explained above, but with the matrices of the augmented system
obtained by including in the system state the time integral of the tracking error:

xaug(k) =
C
q(k)
x(k)

D
∈ Rn+1. (3.47)
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The state equations of the augmented system are now:

xaug(k + 1) =
C

1 −TsC
0n×1 A

D C
q(k)
x(k)

D
+
C

0
B

D
u(k) +

C
Ts

0n×1

D
r(k) (3.48)

y(k) =
è
0 C

é Cq(k)
x(k)

D
. (3.49)

Replacing the new matrix of the system in the passages explained above we will
obtain the following modified augmented control law:

u∗(k) = −Kaugxaug(k) = −
è
Kq Kx

é Cq(k)
x(k)

D
. (3.50)

It can be shown that if the original A and B matrix of the system are reachable,
also the augmented system is fully reachable. Furthermore due to the presence of
the integrator in the feedback law, the asymptotic stability is guarantee; the system
will have zero steady state tracking error for constant reference and disturbance
rejection for step disturbances. The design of LQR for heave, roll and pitch dynamic
of EVA is based on the procedure explained before; the design parameters Q and
R were tuned in each controller to fit requirements. The structure used is the one
reported in figure 3.11. The result of simulations on control oriented models are
in the next figures. For what regard heave, the reference signal is a step signal of
amplitude 1 m. At time t = 2.5 s we introduced a step disturbances d1 = 20 N,
while at time t = 5 s a step disturbances d2 = 0.2 m. The output response and the
control input are plotted in figure 3.12.

Figure 3.12: LQR for heave dynamic

As we can see the requirements are satisfied with a safety margin since:

ŝ = 0.060 m; ts,1% = 1.30 s; |y∞
d1,d2| = 0. (3.51)
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For pitch control, in a first simulation, the reference signal is a constant signal
of amplitude zero. At time t = 2.5 s we introduced a step disturbances d1 = 10
Nm, while at time t = 5 s a step disturbances d2 = 10 degree. The output response
and the control input are plotted in figure 3.13.

Figure 3.13: LQR regulation for pitch dynamic

As we can see the requirements are satisfied with a safety margin since:

|y∞
d1,d2 | = 0; max yd1 = 0.012 rad; td1

s,1% = 0.16 s; td2
s,1% = 0.28 s.

(3.52)
In a second simulation everything is left unchanged except for reference signal that
is now an angle of π

6 rad. As we can see in the next figures, tracking is achieved.

Figure 3.14: LQR tracking for pitch dynamic

For roll control, the reference signal is a constant signal of amplitude zero. At
time t = 2.5 s we introduced a step disturbances d1 = 10 Nm, while at time t = 5
s a step disturbances d2 = 10 degree. The output response and the control input
are plotted in figure 3.15.
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Figure 3.15: LQR for roll dynamic

As we can see the requirements are satisfied with a safety margin since:

|y∞
d1,d2 | = 0; max yd1 = 0.014 rad; td1

s,1% = 0.15 s; td2
s,1% = 0.25 s.

(3.53)
Until now, the requirements regarding control input saturation have not been taken
into consideration. Similarly to what has been done for the control laws presented
in this chapter so far, these requirements will be addressed in chapter 4, where
we will compare the performance of all the control systems, on the simulation
model. Regarding LQR control, the windup cannot be avoided like for controllers
in transfer function form. Consequently, taking into account the input saturation
requirements is considered the introduction of a new type of optimal control that
solves the constraint problem a priori. The control system in question is Model
Predictive Control, discussed in the following section.

3.3 MPC design
In this section we are gonna discuss all the mathematical procedure for Model
Predictive Control (MPC) design. The MPC problem is formulated in lot of papers
and books. The ones used for the formulation of our problem are [28][29]. Unlike
traditional control systems that immediately determine control action in response
to the current state of the system, MPC makes control decisions predictively by
looking ahead in time through a dynamic model of the system. In other words,
it forecasts how the system will evolve in the future, considering a defined time
window, and selects the optimal control action that minimizes a cost function
subject to constraints.

The basic idea of MPC is to use a model of the plant to predict the future
evolution of the process to optimize the control signal. The model is of course a
simplified model since it has to run in real time and to compute prediction and
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optimization at each time step. Of course the big advantage of this kind of control
techniques is that we can take into account saturations on inputs, outputs and
states, directly on the constraint of the optimization problem involved.

The philosophy of MPC is receding horizon principle: at time k it solves an
optimal control problem over a finite future horizon called prediction horizon Np.
Then it apply only the first optimal move u∗(t), neglecting the rest of the trajectory
and at time k + 1, it get new measurements and repeat the optimization. So the
prediction horizon define a moving horizon window that dictates how far we wish
to try to predict the future. This process works well thanks to the advantages
obtained from the feedback structure, but we have to find a good trade off on
the model of the plant involved in optimization. The model has to be descriptive
enough to describe the most significant dynamics of the system, but also simple
enough for solving the optimization problem each time step in real time.

The objective function to be minimized has to be related to an error function
based on the difference between the desired and the actual responses plus a term
that express how much control effort we want to consider.

In this thesis the models used for prediction are the linearized control-oriented
models. Them are simple enough for online optimization, but also expressive
enough. The prove is in chapter 4 where we will see how the control laws designed
in this chapter, work well in the ROV simulator. After the explanation of all the
mathematical procedure in MPC, we will see performances on control-oriented
models, while in chapter 4 we will see how it works on simulation model.

We said that the prediction models are the one introduced in section 2.3, but
we want to change them to suit all the following procedure where an integrator is
embedded. Calling xm the original states and Am, Bm and Cm the original system
matrices, the equivalent system with the embedded integrator for a system of order
n is:

C
∆xm(k + 1)
y(k + 1)

D
=
C

Am 0n×1

CmAm 1

D C
∆xm(k)
y(k)

D
+
C

Bm

CmBm

D
∆u(k) (3.54)

y(k) =
è
01×n 1

é C∆xm(k)
y(k)

D
. (3.55)

So from now on in this section we will refer to these matrices with the following
notation:

x(k) =
C
∆xm(k)
y(k)

D
; A =

C
Am 0n×1

CmAm 1

D
;

B =
C

Bm

CmBm

D
; C =

è
01×n 1

é
.

(3.56)
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After creating the mathematical model, the next stage in designing a predictive
control system, involves predicting the plant’s output using the future control signal
as adjustable factors. This forecasting is described within the optimization window
of length Np discussed before. We assume that at time ki we have access to the
state variable vector x(ki). This vector, x(ki), gives us the current status of the
system. With given measurement x(ki), the future state variables are predicted for
Np number of samples and denoted as:

x(ki + 1 | ki),x(ki + 2 | ki), . . . ,x(ki +m | ki), . . . ,x(ki +Np | ki) (3.57)
where x(ki +m|ki) is the predicted state at time ki +m knowing x(ki).

The future control actions are denoted as:

∆u(ki), ∆u(ki + 1), . . . , ∆u(ki +Nc − 1) (3.58)
where we called Nc the control horizon. It is usually chosen to be less or equal

to the prediction horizon. While the prediction horizon is the time period into the
future over which the controller predicts the system’s behavior, the control horizon
is the time period into the future over which the controller actively computes and
implements optimal control actions. It indicates how many time steps the controller
considers in the decision-making process to determine optimal control actions. We
can calculate the future states sequentially as:

x(ki + 1 | ki) = Ax(ki) + B∆u(ki) (3.59)
x(ki + 2 | ki) = Ax(ki + 1 | ki) + B∆u(ki + 1)

= A2x(ki) + AB∆u(ki) + B∆u(ki + 1)
...

x(ki +Np | ki) = ANpx(ki) + ANp−1B∆u(ki)
+ ANp−2B∆u(ki + 1) + . . .+ ANp−NcB∆u(ki +Nc − 1).

Now we can simply substitute to obtain predicted output form the predicted
states:

y(ki + 1 | ki) = CAx(ki) + CB∆u(ki)
y(ki + 2 | ki) = CA2x(ki) + CAB∆u(ki) + CB∆u(ki + 1)
y(ki + 3 | ki) = CA3x(ki) + CA2B∆u(ki) + CAB∆u(ki + 1) + CB∆u(ki + 2)

...
y(ki + Np | ki) = CANpx(ki) + CANp−1B∆u(ki) + CANp−2B∆u(ki + 1) + . . .

+ CANp−NcB∆u(ki + Nc − 1).
(3.60)
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Of course since our available information is x(ki) all the predictions are formulated
in terms of it and in terms of ∆u(ki + j) with j = 0,1,2, ..., Nc − 1 that is the
future control movement. We can rewrite the output prediction given x(ki) and
∆u(ki + j) with j = 0,1,2, ..., Nc − 1 in compact form as:

Y = F x(ki) + Φ∆U (3.61)

where we defined:

Y = [y(ki + 1 | ki) y(ki + 2 | ki) y(ki + 3 | ki) . . . y(ki +Np | ki)]T ;
∆U = [∆u(ki) ∆u(ki + 1) ∆u(ki + 2) . . . ∆u(ki +Nc − 1)]T ;

F =



CA
CA2

CA3

...
CANp

 ; Φ =



CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0

... ... ... . . . ...
CANp−1B CANp−2B CANp−3B . . . CANp−NcB


(3.62)

The aim of the model predictive control system is to minimize the disparity
between the predicted output and the reference signal. We operate under the
assumption that the set-point signal remains steady within the optimization window.
This goal is then translated into a strategy to determine the optimal control
parameter vector, ∆U . Considering r(k) as reference signal and defining RT

s as the
vector:

RT
s = 11×Npr(ki) (3.63)

we can define the cost function:

J = (RT
s − Y )T (RT

s − Y ) + ∆UT R̄∆U . (3.64)

R̄ is a diagonal matrix of size Nc × Nc and has the role of design parameters
that has to be tuned considering a trade off between performances and size of ∆U .

Now that we have introduced the objective function of the optimization problem
we can define constraints. Different kinds of constraints can be introduced:

• Constraints on the control variable incremental variation ∆u(k)

• Constraints on the amplitude of the control variable u(k)

• Constraints on output y(k)

For our purposes, requirements impose constraints only on control variable u(k):

umin ≤ u(ki) ≤ umax. (3.65)
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Considering the fact that:

∆u(ki) = u(ki) − u(ki − 1) (3.66)

we can express constraints on u(ki) in terms of ∆u(k) as:C
1 01×Nc−1

−1 01×Nc−1

D
∆U(ki) ≤

C
umax − u(ki − 1)

−umin + u(ki − 1)

D
. (3.67)

At the end we obtained the following optimization problem:

min
∆U

(RT
s − Y )T (RT

s − Y ) + ∆UT R̄∆U

s.t.
C

1 01×(Nc−1)

−1 01×(Nc−1)

D
∆U(ki) ≤

C
umax − u(ki − 1)

−umin + u(ki − 1)

D
.

(3.68)

It is a constrained Quadratic Programming (QP), hence an optimization problem
where we minimize a quadratic objective in a polyhedron. It and can be written in
standard form, considering equation 3.61:

min
∆U

∆UT2(ΦTΦR̄)∆U − 2ΦT (Rs − F x(ki))∆U

s.t.
C

1 01×(Nc−1)

−1 01×(Nc−1)

D
∆U(ki) ≤

C
umax − u(ki − 1)

−umin + u(ki − 1)

D
.

(3.69)

In general if the Hessian of the objective is positive semi-definite, then the
problem is tractable and efficiently solvable since it is convex. The design of MPC
for heave, roll and pitch dynamic of EVA is based on the procedure explained
before; the design parameter R̄ was tuned in each controller to fit requirements.
At each time instant, we computed the objective function and verified that its
Hessian is positive semi-definite to ensure the tractability of the problem. Finally,
employing the receding horizon principle, we applied the control law to the plant.
The algorithm used for solving the quadratic program is the active-set algorithm,
that is in general one of the best methods for small/medium scale problems. The
algorithm stars by trying to guess the optimal active set and then, if the guess is
not correct, repeatedly drop one index from the actual estimation of the set using
information from gradient and Lagrange multipliers [30]. At the end the control
law u(t) is the solution of the following problem:

u(k) = u(k − 1) + arg min
∆U

∆UT2(ΦTΦR̄)∆U − 2ΦT (Rs − F x(ki))∆U

s.t.
C

1 01×(Nc−1)

−1 01×(Nc−1)

D
∆U(ki) ≤

C
umax − u(ki − 1)

−umin + u(ki − 1)

D
.

(3.70)

The result of simulations on control oriented models are in the next figures. For
what regard heave, the reference signal is a step signal of amplitude 1 m. At time
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t = 2.5 s we introduced a step disturbances d1 = 20 N, while at time t = 5 s a step
disturbances d2 = 0.2 m. The output response and the control input are plotted in
figure 3.16.

Figure 3.16: MPC for heave dynamic

As we can see the requirements are satisfied with a safety margin since:

ŝ = 0.044 m; ts,1% = 1.82 s; |y∞
d1,d2| = 0. (3.71)

For pitch control, in a first simulation, the reference signal is a constant signal
of amplitude zero. At time t = 2.5 s we introduced a step disturbances d1 = 10
Nm, while at time t = 5 s a step disturbances d2 = 10 degree. The output response
and the control input are plotted in figure 3.17.

Figure 3.17: MPC regulation for pitch dynamic

As we can see the requirements are satisfied with a safety margin since:

|y∞
d1,d2 | = 0; max yd1 = 0.010 rad; td1

s,1% = 0.12 s; td2
s,1% = 0.31 s.

(3.72)
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In a second simulation everything is left unchanged except for reference signal that
is now an angle of π

6 rad. As we can see in the next figures, tracking is achieved.

Figure 3.18: MPC tracking for pitch dynamic

For roll control, the reference signal is a constant signal of amplitude zero. At
time t = 2.5 s we introduced a step disturbances d1 = 10 Nm, while at time t = 5
s a step disturbances d2 = 10 degree. The output response and the control input
are plotted in figure 3.19.

Figure 3.19: MPC for roll dynamic

As we can see the requirements are satisfied with a safety margin since:

|y∞
d1,d2 | = 0; max yd1 = 0.013 rad; td1

s,1% = 0.13 s; td2
s,1% = 0.26 s.

(3.73)
We can notice that, unlike what occurred in other types of control, input

saturation requirements are satisfied in all the control laws simulated above. That’s
because we considered constraints in the optimization problem involved at each
time instant as in equation 3.70.
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Chapter 4

Control Performance
Comparison

In this chapter, the performances of the various control systems developed in
chapter 3 will be compared by simulating the behavior of EVA using the simulation
model (Fossen model) presented in section 2.1. The control achieved through pole
placement will be presented in it original form and in anti-windup form (subsection
3.1.1), the LQR will be simulated in its original form, while the MPC, considering
that it takes into account the constraints of the control input within its design
equations, will be simulated in its original form.

In the first section we will simply report all the performances on the simulator,
while in section 4.2 a critical analisys of the results is presented: in that section,
we will try to understand which of the implemented controllers is the best and the
compromises that need to be addressed if we are looking for simplicity or if we are
looking for performances and robustness.

4.1 Performance comparison on simulator

In this subsection we will report all the control laws performances. The problems
analyzed are the ones reported in figure 3.2, where from physical observations we
understood the various control problems.

All the results are simulated in MATLAB/Simulink and the mathematical model
used in the closed loop scheme is the Fossen model presented in section 2.1.

For what regard heave tracking, we runned a 10 s simulation with a 1 m step
reference signal. The output response and the control input for each one of the
control laws are plotted in figure 4.1.
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Figure 4.1: Heave tracking performance comparison

As we can easily see from the plots, the LQR controller has serious windup
problems and input constraint violation, so it is not able to achieve the requirements.
The 2 DOF Pole placement control in its original form is able to track the reference,
but it violates constraint. The problem is solved introducing the anti-windup
scheme as we can see from the green line. Hence the 2 DOF Pole Placement control
with anti-windup scheme is able to ensure heave tracking with a safety margin on
requirements since:

ŝ = 0.070 m; ts,1% = 3.35 s; −60 N ≤ u(t) ≤ 80 N. (4.1)

The MPC is the one with the best performance and complies with the input
constraints:

ŝ = 0.021 m; ts,1% = 2.67 s; −60 N ≤ u(t) ≤ 80 N. (4.2)

For what regard pitch tracking, we runned a 10 s simulation with a π
6 rad step

reference signal. The output response and the control input for each one of the
control laws are plotted in figure 4.2.
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Figure 4.2: Pitch tracking performance comparison

As we can easily see from the plots, also in this case the LQR controller has
serious windup problems and input constraint violation, so it is not able to achieve
the requirements. As well as the heave tracking problem, the 2 DOF Pole placement
control in its original form is able to track the reference, but it violates constraint.
The problem is solved introducing the anti-windup scheme as we can see from the
green line. Hence the 2 DOF Pole Placement control with anti-windup scheme is
able to ensure heave tracking with a safety margin on requirements since:

ŝ = 0.0764 rad; ts,1% = 0.90 s; −30 Nm ≤ u(t) ≤ 30 Nm. (4.3)

The MPC is the one with the best performance and complies with the input
constraints:

ŝ = 0.0564 rad; ts,1% = 0.79 s; −30 Nm ≤ u(t) ≤ 30 Nm. (4.4)

Lets now consider disturbance rejection problems starting from heave dynamic.
For heave disturbance rejection controller comparison, we runned a 5 s simulation
starting from a condition in wich the ROV has already achieved a 1 m step reference
signal. At time t = 1 s a step disturbance of 20 N is introduced. The output
response and the control input for each one of the control laws are plotted in figure
4.3.

59



Control Performance Comparison

Figure 4.3: Heave disturbance rejection performance comparison

We can notice that all the control laws are able to counteract disturbance and
to satisfy input saturation constraint. So, this time the differences between all the
controllers are simply performances. Given that all controllers are good enough to
allow a deviation of no more than one percent from the reference, then the only
meaningful parameter to use for comparison is the maximum output value reached.
The worst is the 2 DOF Pole Placement, that, by switching to the anti-windup
form, reduces the maximum from 0.011 m to 0.0099 m. The maximum in the LQR
case is 0.0055 m, but the best performance is achieved with the MPC control law,
that reach a maximum of 0.0008 m

For pitch disturbance rejection controller comparison, we runned a 3 s simulation
where at time t = 0.5 s a step disturbance of 10 Nm is introduced. The output
response and the control input for each one of the control laws are plotted in figure
4.4.

Figure 4.4: Pitch disturbance rejection performance comparison
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We can notice that all the control laws are able to counteract disturbance and
to satisfy input saturation constraint. So, as for heave disturbance compensation,
also this time the differences between all the controllers are simply performances.
The worst control law is the 2 DOF Pole Placement, that has maximum pitch
displacement from reference of 0.015 rad. The maximum in the LQR case is 0.014
rad, while for the MPC control law it is 0.012 rad. This time the best performance
is achieved from the 2 DOF Pole Placement control law in anti-windup form with
a maximum displacement of 0.011 rad.

For roll disturbance rejection controller comparison, we runned a 3 s simulation
where at time t = 0.5 s a step disturbance of 10 Nm is introduced. The output
response and the control input for each one of the control laws are plotted in figure
4.5.

Figure 4.5: Roll disturbance rejection performance comparison

We can notice that all the control laws are able to counteract disturbance and
to satisfy input saturation constraint. So, as for heave disturbance compensation,
also this time the differences between all the controllers are simply performances.
The worst is the 2 DOF Pole Placement, that, by switching to the anti-windup
form, reduces the maximum from 0.025 rad to 0.018 rad. The maximum in the
LQR case is 0.017 m, but the best performance is achieved with the MPC control
law, that reach a maximum roll displacement of 0.015 rad.
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4.2 Critical analisys
After understanding the reasons behind the necessity of a control system in an ROV,
and after detailing how to develop mathematical models for simulation purposes
and control-oriented ones, our focus shifted to the actual design of various control
systems, transitioning from more traditional methods such as pole placement to
optimal control methods like MPC. Finally, in the just-concluded section, we
observed the results of each of these controllers on the EVA ROV simulator,
showcasing the strengths and weaknesses of each. At this point, it’s time for a
critical analysis of the results obtained to understand which control law is most
suitable.

For a correct choice, it’s necessary to ask the right questions and understand
various factors of the system to be controlled. The three fundamental aspects are:
what level of performance do we aim to achieve, what computational complexity
can we handle online in real time, and how faithful is our simulator, and therefore
how much can we rely on the data obtained by simulating the dynamic behavior
of our ROV. We will explain how, on the basis of this aspects, we can choose a
control law for a generic ROV or for our specific ROV EVA.

All the characteristic of our control systems are summarized in the following
table reported in figure 4.6.

Figure 4.6: Critical comparison of controllers

In this table we reported the three aspect listed before, plus and additional one
that put emphasis on the design effort needed.

At first glance at the table, it is immediately evident that LQR should be
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excluded from the control selection. In fact, it fails to meet the requirements due
to a significant windup effect when it’s asked to track a specific signal. The 2 DOF
controller obtained through Pole Placement shows slightly better performance and
is able to track signals, but it also exhibits a slight windup due to not adhering
to the constraints of the control input. This problem is overcome in the 2 DOF
controller obtained through Pole Placement with an anti-windup scheme, as well
as in MPC, which directly considers constraints within its optimization problem.
Among all, the controller with the best performance is indeed MPC, thanks to its
optimal control nature.

Speaking instead about the computational complexity required by the ROV in
real time, MPC ranks at the bottom of the list. It requires solving a significant
optimization problem in real time and online for each time step. Obviously, this
demands high computational power from the ROV, and it’s not guaranteed that it
can provide it. On the other hand, the other controllers are all fairly simple from a
computational standpoint: the two controllers obtained with Pole Placement are
simple transfer functions, while LQR consists of coefficients calculated by solving
an offline optimization problem.

Finally, speaking of the design aspect, both LQR and MPC require greater
design effort compared to 2 DOF Pole Placement, suggesting the use of the latter
for rapid prototyping.

Based on what has been said so far, the choice lies between the 2-DOF controller
with anti-windup scheme and MPC because others have problems of performance.
If our priority is to have a controller with acceptable performance, lightweight
computationally, and simple to implement, then the controller obtained through
Pole Placement with anti-windup scheme is undoubtedly the best choice. However,
if the priority is to have a controller with very high performance, especially if
we believe that our simulation model is not sufficiently faithful to reality, then
the choice falls on MPC, assuming that the ROV is capable of handling the
computational complexity required by such a controller.

In the case of the EVA ROV, numerous efforts have been made to create the
simulation model. In fact, the CAD used to derive the mechanical parameters is
highly faithful to reality, as are the hydrodynamic parameters obtained through
CFD, which were acquired after extensive hours of study and simulations. This
is why we can assert that our simulator is truly a high-fidelity model of the EVA.
Consequently, we have opted for controller, simpler both in terms of design and
computational demands on the ROV, but at the same time ensuring good tracking
and disturbance rejection performance. The controller we’re talking about is, of
course, the 2 DOF control obtained through Pole Placement with an anti-windup
scheme.
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The aim of this thesis is the mathematical modeling and control of a ROV. The
purpose of the control is to stabilize and enhance the maneuverability of the ROV
at different depths. This is because the ROV must be capable of performing
various manipulations with a robotic arm, and it is therefore crucial for it to
automatically maintain the desired depth and to compensate for disturbances
caused by interaction with external objects. So, the objective of the control was
to track a desired depth or a specific pitch angle to facilitate operations on the
seabed, and to compensate for disturbances on the heave, pitch, and roll dynamics.

After discussing the main features and utilities of ROVs and presenting the ROV
used for this thesis, the focus of the work shifted to mathematical modeling. In
fact, in Chapter 2, two types of mathematical models were presented: the first is a
high-fidelity model useful for accurately simulating the dynamic behavior of the
ROV (section 2.1), while the others are control-oriented models (section 2.3), thus,
linearized models that represent individual dynamics in a simplified manner. These
latter models are derived from the high-fidelity model based on some assumptions
and simplifications grounded in the physics of the system.

In Chapter 3, the design of various control systems based on control-oriented
models was discussed. First, a 2 DOF controller was developed using Pole Placement,
explaining also how to handle the physical limits of thrust saturation and thus
avoid the destructive problem of windup. Subsequently, the attention shifted to
optimal control, and LQR and MPC controllers were implemented.

Finally, in Chapter 4, the performance of each controller in closed loop with the
high-fidelity model was compared, and a critical analysis was presented highlighting
the advantages of one type of control over another.

Ultimately, it emerged that an MPC controller ensures the best performance,
although it requires lot of design effort and computational complexity. It requires
solving an online optimization problem in real-time for each time instant. Hence, the
suggestion of this thesis is to use a 2 DOF controller obtained with Pole Placement
and an anti-windup scheme. Indeed, it represents the right compromise between
performance, design effort and online computational cost. It is simple to design
and lightweight computationally. Moreover, it demonstrates good performance in
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the simulator.
Indeed, one of the possible advancements that could be made is the transition to

data-driven black box models. They could be more faithful and representative of the
real dynamics of the system, thus providing a solid basis for the design of controllers
like those developed in this thesis. This is indeed one of the ongoing projects that I
am carrying out together with the Control System Division within the PoliTOcean
team. Our goal is to achieve a robust identification of different control-oriented
models from measurements obtained from our IMU and our barometer. This work,
along with the implementation of additional control systems, could lead to further
improvement in performance and consequently to a better performance of our EVA
ROV in future competitions.
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